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BUSINESS CYCLES, FINANCIAL CRISES AND STOCK VOLATILITY

0. William Schwert

Introduction

The stock market 'crash' in October 1987 raised considerable concern about the

stability of financial institutions and the future of the economy. Not only did broad indexes

of stock prices around the world fall about 20 percent on October 19, but for many weeks

afterward stock volatility remained at very high levels. As we now know, United States

financial institutions survived with very few problems (perhaps due to the calm reaction of

government and private institutions). The economy has not entered a major recession. In

addition, stock volatility returned to much lower levels by December 1987)

There has been a plethora of research trying to explain the October 1987 crash.

including reports from several government and financial industry-sponsored commissions.

This paper will not report additional facts about the recent crash. Instead, it documents the

relations between business cycles, financial crises and stock volatility in the U.S. from l84

through 1987. This period covers the entire history of the United States as an industrialized

econom'. Thus, it provides an exhaustive record of the evidence available to judge whether

the October 1987 crash was anomalous. The evidence shows that stock volatility increases

after stock prices fall, it increases during recessions, and it increases around major financial

crises. The historical record of 150 years justified the concern about both financial stability'

and future economic growth following the October 1987 crash. While it is possible that the

crash foreshadowed a major recession still in the future, the historical evidence suggests that

such a long lag is unlikely.

The notion that economic fluctuations have larger amplitude in bad times is not new.

Many authors have noted that economic time series behave differently during recessions than

expansions. Hamilton [1989] models quarterly real GNP using processes that reflect regime-



switching. Stambaugh [1988] shows that the term structure of interest rates behaves

differently in expansions and recessions. Schwert [1988] shows that the standard deviation

of both stock returns and industrial production growth are higher during recessions than

during expansions. He also shows that increases in aggregate financial leverage cannot

explain the increase in stock volatility during recessions.

Financial institutions provide one reason that the economy might behave differently

in recessions versus expansions. Bernanke [1983], extending the arguments of Friedman and

Schwartz [1963], argues that defaults of financial intermediaries play an important role in

major recessions. They have permanent negative effects on the long-run growth path of the

economy. Gorton [1987] shows that bank failures and financial crises are associated with

increased risk. This paper will provide further evidence that crises in financial institutions

are linked to economic activity. It is difficult, however, to show that financial crises effect

real activity.

Section 2 summarizes the major theoretical arguments linking stock volatility with

macroeconomic behavior. Section 3 contains estimates of a linear autoregressive model for

both conditional means and standard deviations of stock returns. It also uses Hamiltons

[1988, 1989) nonlinear regime switching algorithm to model stock returns. Both of these

methods show that stock volatility was noticeably higher during 19h century financial crises.

during the post-World War! recession, during the 1929-1934 and 1937-1938 depressions, and

during the 1973-1974 OPEC recession. Section 4 contains a brief history of the major

financial crises in the 19'' and 20°' centuries in the United States, and shows how stock

volatility behaved during these episodes. Section 5 estimates the relation between stock

volatility and margin requirements set by the Federal Reserve Board. Section 6 summarizes

the empirical results and relates these findings to policy debates following the October 1987

stock market crash.
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Volatili t. Crises and Recessions

There are several theories about the relation between stock volatility and

macroeconomic behavior. The most controversial, advocated by Shiller [198 la,b,1984] and

Summers [1986], is that random or sociological factors have large effects on stock volatility,

From this perspective, stock volatility has adverse effects on the economy when rational

investors bear unnecessary risk. It is not clear how stock volatility would affect other

macroeconomic variables, It is also unclear, however, why such sociological behaviors would

only affect financial asset markets and not capital, labor, or consumption goods markets.2

An alternative theory posits that the stock market discounts expected future events

into current prices. Thus, the volatility of stock returns reflects uncertainty about future cash

flows and discount rates, or uncertainty about the process generating future cash flows and

discount rates. From this perspective, stock prices reflect increased uncertainty about the

future course of' the economy, which shows up later in the realized growth rates of

nonfinancial macroeconomic variables such as the money supply, consumption and

investment. This rational expectations/efficient markets approach implies that time-varying

stock volatility (conditional heteroskedasticity) provides important information about future

macroeconomic behavior.

The relation between stock prices and future economic growth has been recognized

for many years. It is more complicated, however, to relate conditional heteroskedasticitv of

stock returns to future economic behavior. Consider the present value model,

E(D,.,)
P,= > , (I)

4=r [l+r1J'

where E(D,) is the cash flow to stockholders expected in period t+i, r1, is the discount rate

and P1 is the stock price, all conditional on information available at time t. Assuming that

discount rates are constant over time, stock prices are a fixed linear combination of future

expected cash flows. If cash flows follow a first order autoregressive process,

(D, - lLd) (D,.1 - Pd) + u,,

3



where Pd is the long-run expected cash flow, then the stock price is

P1 (p. / r) + ([. (D, — ii)] / [l+r—4i]) (3)

and the variance of the stock price is

Var(P1) Var(u) / [(l+r)2 — 2j (4)

The variance of the rate of return to the stock, R. (P, —P,4 + Dj/P1.1, is inversely related to

the level of stock prices P1.

These relations do not provide a realistic model for stock prices or dividends.3 Rather,

they illustrate that the conditional variance of prices Var(P,)is proportional to the conditional

variance of cash flows Var(u,) if cash flows follow a constant parameter ARMA process, and

if discount rates are constant over time. In this model, Var(P1) changes more than Var(u,) if

either (a) the persistence parameter increases, or (b) the discount rate r falls.

Schwert [1988) concludes that stock return volatility increased too much during the

Great Depression to be explained by increases in the volatility of variables that reflect future

cash flows. One interpretation is that discount rates changed during the Depression, or that

the stochastic process perceived to be generating future cash flows changed. Hamilton's

[1989] evidence that recessions typically have shorter duration than expansions predicts that

cash flow persistence should decrease during recessions. French, Schwert and Stambaugh's

[1987] study of expected risk premiums on stocks shows that discount rates increased with

volatility during the Depression. Also, the Fama and French [1988] analysis of the relation

between dividend yields and expected stock returns implies that discount rates rise when

yields are high. Thus, the empirical evidence for changing persistence or changing discount

rates does not help explain the behavior of stock volatility during the Depression using the

model in (4).

Of course, alternative specifications of the dividend process (2), or of the process for

discount rates, would produce different implications for the relation between conditional

volatility of stock prices (returns) and the volatility of cash flows (growth rates). The

important point is that stock volatility reflects aggregate uncertainty about future payoffs and
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discount rates. These factors are important determinants of many macroeconomic vadables,

including consumption, investment, and employment.

Bernanke [1983] argues that financial crises cause economic losses that exacerbate

recessions. In essence, there are large bankruptcy costs associated with failures of financial

institutions. It is not possible to eliminate these costs because of the asymmetry of

information between banks and depositors about the quality of the bank's loan portfolio (also

see Diamond and Dybvig [1983]). Thus, financial crises would lead to high stock volatility

because the chance of large permanent losses increases. Of course, exogenous stock volatility

could increase the likelihood of a financial crisis. Nevertheless, crises would induce further

volatility because of the associated bankruptcy costs.

Gorton [1987] shows that consumers would rationally increase their demand for

liquidity as they perceive that a recession is imminent. When consumers expect a recession,

they understand that banks suffer larger losses on their loan portfolios. They also expect that

consumption will be lower, so the risk of bank deposits increases before recessions. Because

banks have better information about the quality of their loan portfolios than depositors, they

cannot credibly increase the rate of return on deposits to pay for the increased risk. Instead.

they use alternative mechanisms, such as suspension of convertibility of deposits into

currency, to avoid insolvency (see Gorton [1985]). Gorton's [1987] evidence suggests that

business failures are a leading indicator for both risk and financial crises. He concludes that

crises often precede recessions. They occur when business failures and perceived risk reach

critically high levels from 1865-1914 in the U.S. Gorton's analysis of risk uses estimates of

the covariance of pig iron production with depositor losses. The evidence in thispaper using

monthly stock volatility data will enhance understanding of the dynamic relations among risk.

business cycles and financial crises.

DeLong and Summers [1986] show that the variance of real GNP was not much higher

during the financial panics from 1890-1913 than during non-panic periods. They note that

money growth was much more variable in the panic periods, and conclude that the private

credit system was able to prevent the financial panics from having large effects on real

5



activity.

Miron [1986] states that a desire to curb stock market speculation led the Federal

Reserve Board to restrict credit following the death of Benjamin Strong (the governor of the

New York Fed) in October 1928. He argues that this restrictive credit policy exacerbated the

severity of the 1929-1933 recession. Hardouvelis [1988] says that increases in margin

requirements by the Fed since October 1934 have reduced stock volatility (and decreases in

margin requirements have increased volatility). This conclusion differs from Officer's [1973)

analysis of the same question. If Federal Reserve policy can curb 'excess' stock volatility of

the type discussed by Shiller and Summers, it would increase economic welfare. On the other

hand, if the Federal Reserve adjusts its credit policy in response to stock volatility, and this

has adverse effects on other sectors of the economy, it would reduce welfare. This question

is analyzed empirically in Section 5.

Thus, there are many reasons to believe that stock volatility will change over time.

and that it is related to business cycles and financial crises. The problem of assigning

causality is particularly difficult here. Exogenous 'sociological' stock volatility could causL'

bank runs if depositors worry that defaults on stock market related loans will rise (or if the

Fed adjusts its credit policies to respond to the volatility). Alternatively, stock volatility

could simply reflect the present discounted uncertainty about future economic growth. In

both cases, stock volatility would precede or coincide with bank failures, recessions, and

crises.
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Statistical Models br Stock Volatility

It is useful to characterize 'normal' behavior of stock volatility before analyzing

unusual volatility associated with crises and recessions. This section presents two methods of

modeling volatility. The first is from Schwert [1988], who relates stock volatility to the

volatility of many macroeconomic series. It is a two—step autoregressive filter for both the

conditional mean and the conditional standard deviation. The second is an extension of

Hamilton's [1988. 1989] nonlinear Markov filter applied to stock returns. It assumes that

stock returns are generated by one of two regimes with different means and variances. It

yields estimates of the means and variances of the regimes, along with the probabilities of

remaining in a given regime. Both methods identify periods when stock returns were

unusually volatile. Later sections of the paper relate these high volatility periods to crises and

recessions.

Autoregressne Models for Conditional Means and Standard DeIations

Schwert [1988] uses monthly return data for a large portfolio of common stocks from

1857 through 1986 to measure the behavior of the standard deviation of stock returns through

time. He uses the following procedure to estimate the conditional standard deviation of stock

returns:

th

i) estimate a 12 order autoregression for the returns, including dummy variables

D, to allow for different monthly mean returns, using all data available for

the series,

12 12

R1 E c D + E fi, + ,, (5a)
j=l 1=1

th

(ii) estimate a 12 order autoregression for the absolute values of the residuals

from (Sa), including dummy variables to allow for different average monthly

standard deviations,

12 12

E + E t1., + u,, (5b)
j=1 i=1
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(iii) the regressand t is an estimate of the standard deviation of the stock return

for month t, , (using just I observation). The fitted values from (5b) estimate

the conditional standard deviation of R,, given information available before

month t.'

This method is a generalization of the 12-month rolling standard deviation estimator used by

Officer[1973], Fama [1976], Merton [1980] and others. It allows the conditional mean return

to vary over time in (5a), and it allows different weights for lagged absolute unexpected

returns in (5b). It is similar to the autoregressive conditional heteroskedasticity (ARCH)

model of Engle [1982]. Davidian and Carroll [1987] argue that standard deviation

specifications such as (5b) are more robust than variance specifications based on

Following their suggestion, literate twice between (5a) and (5b), using the predicted values

from (Sb) to create weighted least squares (WLS) estimates of (5a). Experiments with further

iteration produced only small changes in the parameter values and standard errors.

Table I contains the estimates of (5b) from 1836—1987, along with diagnostic tests for

the adequacy of the model specification. The stock return data are from Smith and Cole

[1935] for 1834-1856, from Macaulay [1938) for 1857-1870, from Cowles [1939) for 1871-

1925. and from the Center for Research in Security Prices (CRSP) at the University of

Chicago for 1926-1987. The data begin in 1834 because that is the first year when many

railroad stocks were actively traded.5 The Smith and Cole data represent all of the actively

traded railroad, bank and insurance stocks for that period. The Smith and Cole and Macaulay

series do not include dividends, so I added the average monthly dividend yield from the

Cowles series from 1871—1879 to calculate the returns from 1834—1870. This does not affect

the variation of these series, but it does raise the mean return by about 6 percent per year

during this period.

There are measurement problems with the older stock return series. For example, the

Cowles returns are based on the average of the high and low prices for each stock within a
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Table I - — Estimates of the Autoregresshe Model for Stock Volatility ItJ, Eq.(5b)

Monthly Data, 1836-1987, T=1824

Parameter Estimate Std Error T—statistic

p1 .1540 .0462 3.33
p2 .0916 .0384 2.38
p, .1105 .0408 2.71

.0063 .0336 .19

.0483 .0328 1.47
p6 .0005 .0326 .02

.0404 .0323 1.25

p1 .0666 .0497 1.34
p, .1521 .0479 3.18
plo - .0068 .0464 -.15
p11 .0694 .0426 1.63

p12 .0189 .0333 .57

Sum of AR coefficients
and Unit root test .75 18 .0888 2.79

F—test for equal
monthly intercepts
and its p-value 2.42 .0052

Box—Pierce test of
residual autocorrelation
for 24 lags and
its p—value .0138

Coefficient of
Determination .195

Note: Asymptotic standard errors, t and F—tests use White's [1980] correction
for heteroskedaslicity. The unit root test is a Dickey—Fuller test (see
Fuller [1976]). The Box-Pierce [1970] test should be distributed as x2 with
12 degrees of freedom.

month. This is similar to the time-averaging effect analyzed by Working [1960]. It creates

artificial first order autocorrelation of returns and lowers the variance of returns by about

20 percent (e.g., see Wilson, Sylla and Jones [1988]). Smith and Cole and Macaulay use point-

sampled prices, although it is not clear when during the month the prices were available.

The CRSP returns are based on end-of-month point-sampled prices. All of these series

represent the broadest available coverage of stock prices. While the stock market certainly
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grew over this 150 year period, so did the economy. The industries represented by publicly

traded stocks in the 19" century were the major large corporations at that time. Schwert

[1988] shows that the size and industrial diversification of this 'market portfolio' does not

explain important movements in stock volatility over time.

The monthly dummy variable coefficients are not shown, but the F-test for equality

of monthly intercepts, =...—', is 2.42, with a p-value of .005, showing there is seasonal

variation in stock volatility. The sum of the autoregressive coefficients, p1+...+p12, equals

.752, with an asymptotic standard error of .089, showing there is a high degree of persistence

in stock return volatility. Once volatility increases, (5b) predicts that it would remain high

for many future periods. Schwert [1987, 1989a] argues that this test understates the

persistence in stock volatility for at least two reasons (also see Pagan and Ullah [1988]). First.

estimates of autoregressive parameters are biased toward zero in finite samples. Second, and

more important in this situation, the absolute residuals from (5a) ltJ measure current volatility

with error. Each value of tJ is an estimate of the true unobserved standard deviation a, based

on a single data point, so there is large sampling error in ItJ. This is a classic errors-in-

variables problem if the autoregressive process in (Sb) has constant parameters. The sum of

the autoregressive parameters in (Sb) will be biased towards zero, even in large finite

samples.6 Schwert [1987, l989a] shows that the bias is largeeven for large samples (over

1,000 observations) in situations such as this where the measurement error is large. From this

perspective, the coefficient of determination R2.l9 is strong evidence that stock return

volatility is persistent over time. The Box—Pierce statistic for 24 lags of the residual

autocorrelations from (5b) is 25.2, with a p—value of .014 from a x2distribution with 12

degrees of freedom.7 This suggests there may be additional autocorrelation in stock volatility

that is not captured by the AR(12) model in (Sb), although the autocorrelations are small.8

Table 2 contains several tests based on the standardized errors, t1/,, the ratio of the

residual from (Sa) to the fitted value from (Sb). The skewness coefficient is -.14 and the

kurtosis coefficient is .91. While the p-values for these statistics are small, the comparable

statistics for the raw stock returns are .24 and 8.73. The studentized range (SR) statistic
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Table 2 -- Tests for Normality and Independence of the Standardized Errors from
(Sa)-(Sb), t1/It

Tests Test Statistic P-value

Skewness -.137 .0173 -

Excess Kurtosis .913 <.0001

Studentized Range 8.10 .010

Box-Pierce test for
residual autocorrelation
for 24 lags 20.8 .054

Brock-Dechert-Scheinkman
Test for Independence -.36 .719

Note: All tests are based on the errors from (5a), standardized by reciprocals of the
fitted values from (Sb). David, Hartley and Pearson [I 954J describe the studentized
range statistic. Brock, Dechert and Scheinkman [1987] develop the BDS test.

(David, Hartley and Pearson [1954]) is 8.10, which is not strong evidence against a stationarY

normal distribution (SR is 14.60 for the raw stock returns.) Thus, the two-step filter in (5a)-

(Sb) reduces the excess kurtosis typicaHv found in stock return data.

The negative skewness in the standardized errors is similar to that found by French,

Schwert and Stambaugh [1987) when analyzing errors from a generalized autoregressive

conditional heteroskedasticity in mean (GARCH-M) model for daily returns to the Standard

& Poor's composite portfolio of stocks from 1928-1984. They argue that this nonnormality

of the standardized errors has an important effect on the estimate of the relation between the

conditional mean return and the conditional variance, although the estimates of the

conditional variance are not affected by this specification error. The Box—Pierce statistic for

24 lags of the standardized errors is 20.8, with a p-value of .054. The Brock, Dechert and

Scheinkman [19871 test for independent and identically distributed (i.i.d.) errors is designed

to detect a variety of forms of nonlinear dependence. I calculated several versions of this test

varying (the spread parameter) and m (the dimension parameter). Table 2 contains the BDS

statistic for =1 standard deviation and m—6. The statistic is —.36, which should have an
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asymptotic normal distribution. Based on Monte Carlo experiments by Hsieh and LeBaron

[1988a,bJ. a BDS statistic of -.36 with a sample size over 1,000 represents strong evidence for

the i.i.d. null hypothesis. Thus, the model in equations (5a)—(5b) seems to fit the stock return

data well.
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Figure 1 -- Conditional Standard Deviations of Monthly Stock Returns. 1836-1987
(Fitted Values from Estimate of Equation (5b))

Figure 1 shows estimates of conditional stock return volatility (the fitted values from

(5b)) for 1836-1987. Stock volatility was in the range from 2 to 6 percent per month from

1836-1928 and from 1940-1987. During the Great Depression from 1929-1939 stock

volatility was much higher, often above 10 percent per month. There are some periods when

stock volatility increased temporarily, including the 1857 and 1907 recessions and the 1973-

1974 OPEC oil crisis.

Before considering the role of financial crises in explaining the time series behavior

of stock volatility, I will consider an alternative method for modeling stock return behavior.



It does not impose a linear structure such as (5a)—(5b),so it is capable of representing more

complex types of time series behavior.

State-dependent Behaior of Stock Returns

Hamilton [1989] proposes a switching-regime Markov model for GNP growth rates

as a model for recessions and expansions. Briefly, consider a variable y1 that follows the

stochastic process,

y1 — s(S) = 4 [y — p(S,.1)] + [y.2 — u(S,.2)) +

+ [y,, - p(S1.,)] + o(Sjv1 (6)

where v is NID(O, I) and the autoregressive polynomial (L) (I - - ... - L') has roots

outside the unit circle. This is an rn"order autoregressive (AR(m)) model, except that the

mean, (S), and the residual standard deviation, c(S,), are a function of the 'regime' in period

t. The regimes are assumed to follow a two—state first order Markov process,

P(S,=l IS,.1=l) p

P(S=O IS,=1) = 1-p
(7)

P(S=1 I S,=O) = 1-q

P(S=O I S.=O) =

and the parameters of (6) are modeled as,

= a0 + a S,
(8

o(S,) w0 + c S1.

Finally, the errors v, are assumed to be independent of all S,. Given this structure, it is

straightforward to use numerical procedures to maximize the likelihood as a function of the

parameters In addition to point estimates and asymptotic standard

errors, Hamilton's algorithm estimates the probability that the variable is in regime I"

conditional on data available at date t. The unconditional probability of being in regime 1

is

13



P(S=l) p (l-q)/[(l-p)+(1—q)],

and the expected future value of the state variable S. given information about the current

state of the system S=s is,

E(S,.)S=s,) p + ) (s,-p) (9)

where ) = -l+p+q. Note also that the conditional variance of y1 is a function of the state

variable S,. If the variable was in regime I last period (S11), the variance of the squared

forecast error for period t is,

E{(S,)IS,.= I } + Var(p(S)IS= I)

[E(o(SJIS.,= 1 )] + Var(c(S,)IS1= I } + E([J2(S,) — E(,i(S,)JIS.1= 1)

= + w1pf + p(l-p) + p(1—p). (lOa)

If the variable was in regime 0 last period (S=0), the variance of the squared forecast error

for period is.

E(o(S,)IS,.1=0) +

= [E((S,)IS.1=0)]2 + Var{c7(S1)IS1..0) + E((4(S,) — E(M(S,)flS=0)

= [w + w1(l-q)]1 + w2 q(l-q)+ 12 q(l-q). (lOb

Thus, if the probability of staying in the same regime is high (both p and q are well above

.5). the parameter w1 plays a large role in determining the conditional variance of the process

in (6)-(8). As noted by Hamilton [1989], the Markov process in (7) contributes to the

heteroskedasticitv of the forecast error from (6) when p and q differ. In essence, uncertaint\

about the regime in period t given knowledge of the regime in period t-l (e.g., p or q close

to .5) adds uncertainty to the conventional forecast error a(S)v,. If p=q=.5, the variance of

the forecast error is the same no matter which regime exists in period t— I.

Table 3 contains maximum likelihood estimates of (6)-(8) for a fourth order

autoregressive process (AR(4)) for the monthly stock return series from 1834-I987. It is

interesting that the regime-switching algorithm seems to identify periods with a higher

14



Table 3 -- Estimates of Switching Regime Model for Monthly Stock Returns, 1834-
1987

Maximum Likelihood Estimates of Hamilton's Two-state Marko
Autoregressie Model, Equations (6)-(8)

Parameter Estimate Std Error T—statistic

"Regime 0" Mean, a0 .0086 .0011 7.97

Incremental "Regime I" Mean, a1 -.0122 .0076 -1.60

"Regime 0' Standard Deviation, w .0319 .0010 31.27

Incremental "Regime I" Std Dev, w .0580 .0059 9.85

AR(1) parameter, .1864 .0244 7.64

AR(2) parameter, -.0320 .0240 -1.33

AR(3) parameter, , .0022 .0242 0.09

AR(4) parameter, .0411 .0234 1.76

Probability of remaining
in "Regime 0", q .98 10 .0061 160.10

Probability of remaining
in "Regime 1", p .8839 .0313 28.26

Negative log-likelihood 5062.40

Note: A numerical optimization algorithm was used to find the maximum
likelihood estimates of the model parameters. Asymptotic standard errors and the
t-statistics are based on the inverse of the negative of the estimated matrix of
second derivatives of the likelihood function at the maximum.

standard deviation of returns. The incremental standard deviation, w1, is reliably above 0,

with an asymptotic t-statistic of 9.8. The incremental mean return, a1, is -1.12 percent, but

the t—statistic is only -1.60. The estimate of mean return in regime 1, a0+a1, is also negative,

but its t—statistic is only -.48. The estimate of the mean return in regime 0 is .86 percent per

month with a t-statistic of 7.97.

The estimate of the standard deviation in regime I, w+w1, is .090, with an asymptotic

t-statistic of 14.09. This is almost 3 times higher than the estimate of the standard deviation

IS



in regime 0. Thus, the main factor that distinguishes the regimes identified by Hamiltons

algorithm is the difference in volatility.

The probabilities of remaining in a given regime are quite high. Conditional on being

in the low variance regime in period t, the probability of remaining in that regime in the next

period is q .98. If you are in the high variance regime in period t, the probability of

remaining in that regime in period t+l is p = .88. Both of these estimates are more than 3

standard errors from 1 using conventional t—tests, although the reliability of such tests against

values on the boundaries of the admissible parameter space is questionable.t' The

unconditional probability of being in the high variance regime is p .141, and the decay

parameter for the switching process in (9) is .86. Thus, the high variance regime

represents a small proportion of the overall 1834-1987 sample. Once in it, however, there is

a high likelihood that it will persist. The expected duration of high variance episodes is

(I—p) = 8.6 months, while the expected duration of the low variance episodes is (I-q)1 =

52.7 months. The asymptotic t-statistic for the hypothesis that p q is -3.35, so these

estimates of duration are reliably different.

Figure 2 plots the estimates of conditional standard deviation of returns from the

model in (6)_(8).12 There were several short episodes of high volatility in the 19th century.

including 1837, 1843, 1847, 1857, the Civil War period 1862—1865, 1873 and 1893. During

the 20" century, episodes of high volatility occurred in 1907, 1919—1920, and virtually the

entire 1929-1934 and 1937—1938 periods and 1973-74. Also, there seem to be several periods

of high volatility in the post-1973 period.

Summary of the Eidence on Conditional Stock Volatility

The alternative statistical models provide similar pictures of stock volatility. The

major difference between them occurs during the Great Depression. One limitation of

Hamilton's model in (6)-(8) is that it only allows two regimes. In Figure 1, stock return

volatility is much higher during the Great Depression than during other parts of the sample.

The two-state model underlying Figure 2 forces all "high volatility" periods to have the same
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Figure 2 -- Conditional Standard Deviation of Stock Returns from Hamilton's Regime-
switching Model, 1836 - 1987

distribution. While it is possible to generalize the Markov model to allow for more states, or

to allow the process in (6) to include autoregressive conditional heteroskedasticity (ARCH).

these extensions involve much more complicated computational procedures. I suspect that the

benefits from such extensions would not exceed the costs.

To compare the ability of the two models to explain the behavior of stock returns. I

follow a strategy suggested by Hamilton (1989]. Define a variable S1.1 as the estimate of the

probability of being in the high variance regime in period t-1, based on information available

in period t-I. Then add S.1 as an additional regressor to both equations (5a) and (5b). The

t-tests for these regression coefficients tell whether the estimate of the regime probabi1it

adds incremental explanatory power. The t—test for the mean equation (5a) is 1.20, and the

t-test for the volatility equation (Sb) is 1.05. Thus, there is weak evidence that the Marko'

regime-switching model adds information to the autoregressive models in (5a) and (5b).
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A Brief History of Panics and RecessIons, 1854-1987

N.B.E.R. Recessions

Table 4 -- Dates and Descriptions of N.B.E.R. Recessions, 1854-1987

Dates DescriDtipn Dates

July,1857-December, 1858 September, 191 8-March,1 919 mild
November, 1860-June, 1861 February, 1920-July. 1921 severe
May, 1865-December, 1867 June, 1923-July, 1924 mild
July. 1869-December, 1870 November, 1926-November, 1927 mild
November, 1873-March, 1879 severe September, 1 929—March,1 933 severe
April,1882-May, 1885 mild June, 1937-June,1938 severe
April,1 887-April,1 888 mild March,1945—October,1945 mild
August, 1890-May, 1891 mild December,1948-October, 1949 mild
February, 1893-June, 1894 severe August, 1953—May, 1954 mild
January, 1896-June, 1897 mild September,1957—April, 1958 mild
July, 899-December, 1900 mild May, 1960-February, 1961 mild
October, 1902-August, 1904 mild January, 1970-November, 1970
June, 1907-June, 1908 severe December,1973—March, 1975
February, 191 0-January, 1912 mild February, 1980-July,1 980
February,1913-December,1914 mild August,1981—November,1982

Table 4 contains a list of recessions as determined by the National Bureau of

Economic Research (N.B.E.R.) from 1854 through 1987, along with a brief description of the

severity of the economic contraction, The descriptions of severity are from Friedman and

Schwartz [1963], so they are not available for the post—1970 recessions. It is clear from a

comparison of Table 4 with Figures 1 and 2 that severe recessions are associated with higher

stock volatility. The recessions of 1857-1858, 1860, 1893-1894, 1907-1908, 1920-1921.

1929-1933, 1937-1938 and 1973-1975 correspond to high predicted volatility in Figures 1 and

2. Of course, the Great Depression, 1929-1933 and 1937—1938, is the most severe contraction

and it is also the period when volatility was the highest during the 1834-1987 sample period.

Schwert [1988] notes that stock volatility is higher during recessions, and that

industrial production volatility is also higher during recessions. For many other

macroeconomic time series, however, there is only weak evidence that volatility increases

during recessions. Stambaugh [1988] notes that the behavior of the term structure of interest

rates is related to the stage of the business cycle. He argues that one interpretation of this
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phenomenon is that the variance of expected future consumption growth is higher during

recessions than during expansions. This is consistent with Hamilton's [1989] model for GNP

growth if recessions have shorter duration than expansions, which his estimates predict.

Table 5 - - Estimates of Differential Mean and Standard Deviation of Stock Returns
During Recessions, 1855-1987

Coefficients of Dummy Variables Added to Equations (5a), (5b) and (ii)

Coefficient Std Error T-statistic

Differential Mean (5a) —.0115 .0026 —4.44

Differential Volatility (5b) .0054 .0019 2.80

Differential Probability of Being
in High Variance Regime (II) .0152 .0074 2.05

Note: Asymptotic standard errors and t—statistics use White's 11980]
correction for heteroskedasticity. A dummy variable equal to 1 during NBER
recessions, and 0 otherwise, is added to equations (5a), (Sb) and (11) to estimate
these coefficients.

Table 5 contains estimates of the coefficients of dummy variables equal to I during

the recessions in Table 4, and 0 otherwise, when they are added to equations (5a) and (Sb).

Stock prices have been a business cycle indicator since at least Macaulay [1938], so it is not

surprising that the average return to stocks is significantly lower during recessions. The

estimate of -.01 is similar in size to the monthly intercepts, implying that the average return

to stocks is near 0 during recessions. The estimate of differential volatility is .0054, about

60 percent larger than the average monthly intercept in (Sb), implying that volatility is much

higher during recessions.

Table 5 also contains estimates of the coefficient of the recession dummy variable D

in the regression,

S,..p0+S.1+p1D+v1, (ii)
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where S, is the estimate of the probability of being in the high variance regime in period

from the model estimated in Table 3. Equation (II) is an empirical version of (9), except the

N.B.E.R. recession variable is added. The estimate of the persistence parameter ) is .85, close

to the value implied by the parameter estimates in Table 3. The constant term p0 in (II) is

.0157. Thus, the unconditional probability of being in the high variance state during an

expansion is .10 — .0l57/(1-.85). The estimate of the recession variable coefficient p1 is

.0152, with a standard error of .0074, which implies that the probability of being in the high

variance regime increases by about 60 percent after the recession has gone on for 6 months.

and almost doubles after the recession has gone on for 18 months.13 This difference is reliably

larger than 0. The N.B.E.R. announces that a recession or expansion has begun at least 6

months after it starts. Thus, the regressions in Table 5 are not forecasting models. Rather.

they show that stock return behavior is related to the factors the N.B.E.R. uses to decide

when the economy is in a recession.

Financial Panics

Table 6 contains a list of the major bank panics and financial crises from 1834-1987.

Friedman and Schwartz [1963], Gorton [1985,1987] and Miron [1986) provide further analysis

of these events. I put the crises into severe ("Fail") and less severe ("Panic") groups in the

right column based on the descriptions available in these sources. One thing that identifies

severe crises is that many banks suspended the convertibility of demand deposits into

currency. During the 19" century, the banking system was subject to brief periods when

depositors sought to withdraw cash from many banks simultaneously. Gorton [1987] argue5

that the banking panics before the founding of the Federal Reserve in 1914 were due to

expectations of an imminent recession. The desire for liquidity, along with a forecast of

future dissaving due to the recession, caused many depositors to try withdrawals

simultaneously. He focuses most of his analysis on the behavior of the currency/deposit ratio

for national banks.
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Table 6 -- Major U.S. Bank Panics and Financial Crises, 1834 - 1987

Dates Descrintion Type

5/1837 Bank panic Fail

10/1839 Bank panic Fail

10/1857 Bank panic Fail

1/1862 convertibility of Union currency into specie suspended Panic
(resumed 1/1/1879); flexible exchange rates;
greenback standard, UK on gold standard

9/1873 Bank panic Fail

6/1884 Bank panic - no suspension of convertibility Panic

8/1890 Bank panic - no suspension of convertibility Panic

5/1893 Bank panic (suspension of convertibility of deposits into Fail
currency -— ends in Sept)

12,/1896 Bank panic - no suspension of convertibility Panic

12/1899 Bank panic - no suspension of convertibility Panic

5/1901 Morgan/Harriman fight for North Pacific collapses Panic
(more stock sold than issued)

3/1903 Bank panic - no suspension of convertibility Panic

10/1907 Bank panic (suspension of convertibility of deposits into Fail
currency —— lifted in early 1908)

8/19 14 NYSE closed due to World War I Panic
(trading resumed 12/12/1914)

10/1930 first banking crisis Panic

3/1931 second banking crisis Panic

1/1933 Banking panic Panic

3/1933 National Banking Holiday 3/6-3/13 (US off gold standard) Fail

Sources: Friedman and Schwartz [1963], Gorton [1985,1987] and Miron [1986].

In many instances, a stock market panic accompanied these financial crises. Sobel

[1968] discusses stock market panics in 1837, 1857, 1869, 1873, 1884, 1893, 1901, 1907, 1914,

1929 and 1962. In addition, he identifies less dramatic crises in 1847, 1860, 1878, 1889, 1898,

1903, 1920, 1937, 1940, 1955 and 1963. Certainly, an updated version of his work would

include the 1973-1974 bear market and the October 1987 crash. Stock market crashes are

defined by the size and the volatility of stock returns. To avoid a tautology, I do not measure
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the relation between stock market crashes and stock returns or volatility.

I use dummy variables to measure the behavior of stock returns and volatility for sk

months before and after the crises listed in Table 6. D = 1 in the months severe crises began

(Fail), Dpr = I in the months less severe crises began (Panic), and they equal 0 otherwise.

Thus, the model for stock returns in (5a) becomes,

12

R= E
j=1

12

E
i=1

and the model for stock volatility in (5b) becomes,

Figure 3a -- T—statistics for the Relation of Financial Crises
(Dummy variables in Equation (l2a))

with Stock Returns
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Figures 3a and 3b plot the t-statistics for 6 leads and lags of D and D in (l2a) and (l2b.

They also show the 1-statistics for the sums of all of the coefficients (—6 6), of the lead

coefficients (—6 0), and of the lag coefficients (I ,...,6).14 Not surprisingly, stock returns are

reliably negative for both Fail and Panic events (the coefficient estimates at lag 0 are -.07

and -.038, respectively). For the major crises, labeled Fail, the average return is reliably

negative for several months before the date of the crisis. The t—statistic for the um of the

lead coefficients is -5.25. The t—statistic for the sum of the 6 lag coefficients is 1.92, showing

that stock prices rose on average after the crisis. Stock volatility increases following both

types of crises, shown by the t-statistics of 2.90 and 2.42 for Fail and Panic crises.

respectively. There are individual months before these crises that have large 1—statistics, but

some are positive and some negative, and the sum of the lead coefficients is not reliably

different from 0. Thus, the average behavior for stock prices surrounding these crises is for

Figure 3b —— T—statistics for the Relation of Financial Crises
(Dummy variables in Equation (12b))
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prices to fall before and at the time of the crisis, and for return volatility to rise after the

crisis.

Figure 4 plots the 1-statistics for 6 leads and lags of D and D, when these variables

are added to equation (II), showing the relation between these financial crises and the

probability of being in the high variance regime (S l) for stock returns. Consistent with the

Figure 4 -- T-statistics for the Relation of Financial Crises with Probability of Being
in the High Variance Regime, (Dummy Variables added to Equation (Ill)

results in Figures 3a and 3b, the probability of being in the high variance regime is reliably

higher in the months before and of severe crises (the coefficient estimates are .254 and .245

for months -l and 0, with t-statistjcs of 1.70 and 2.54). The effects of the less severe crises

(Panic) are weaker, although the sum of all lead and lag coefficients has a t-statistic of 2.16.

Since many of the panics occurred before or during recessions, I also estimated the

regressions underlying Figures 3a, 3b and 4 including the recession dummy variable D., along
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with the leads and lags of D1, and D. Although the estimates change somewhat, the general

pattern of the results is the same as that displayed in the figures above.

Figures 5a and 5b plot the t-statistics for 6 leads and lags of D and D, in equations

like (12a) and (l2b), except that short-term interest rates are the regressands instead of stock

returns.'5 There is strong evidence that interest rates rose during the period before the major

Figure Sa — - T-statis(ics for the Relationof Financial Crises with Interest Rates
(Dummy variables in Equation (12a), using interest rates instead of stok
returns)

crises and fell in the six months after these crises (t—statistics of 2.83 and -2.51). There is

little evidence that short-term interest rates behave unusually during the less severe crises.

Interest rate volatility increased during the three months surrounding the major crisçs (Fail).

with t-statistics of 2.29, 4.61 and 4.05, for months -1, 0 and 1.

Thus, one thing that distinguishes the major crises from the minor ones is the

behavior of short—term interest rates. Short rates rose before and fell after the major crises.
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5

Figure 5b -- T-statistics for the Relation of Financial Crises with Interest Rate
%'olatiIit, (Dummy variables in Equation (12b), using interest rates instead
of stock returns)

and there was an increase in interest rate volatility during the 3 months surrounding these

crises (Fail). There is no reliable evidence of unusual behavior of short rates during the

minor crises (Panic). Since money market yields increased before the majorcrises, and banks

did not increase their yields in response, it is not surprising that the quantity of deposits in

banks declined.

There is some disagreement among economic historians about which of the events in

Table 6 were really crises. To check the sensitivity of my results to alternative specifications.

I also estimated regressions where the dummy variable Fail only covered the 1873, 1893 and

1907 crises. The results were qualitatively similar. Also, the analysis by Wilson, Sylla and

Jones (1988] of stock volatility during the panics of 1873, 1884, 1893 and 1907 supports the

results in Figure 3b.

Finally, it is worth noting that the dummy variable coefficients measure the
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difference between the predictions from equations (5a) and (5b) and the realizations for a

small subset of the total sample. The Fail variable equals I in only 7 of the 1,848 months.

Thus, Figure 3b shows whether a standard deviation estimate based on 7 observations is

significantly different from the standard deviation estimated from the full sample. Even

though the total sample is large, there are only a few major bank crises, so the power of this

test is not high.

Interpretation

What can be gleaned from such evidence? These results raise questions about Gorton's

119871 claim that risk increased before crises. While default risk for bank deposits may ha'.e

increased before panics, stock and interest rate volatility increased during or after the major

crises.

Another interpretation of this evidence is that I have formalized the measures used

by economic historians to define a financial panic -- short-term interest rates rise quickly

and stock prices fall and become volatile. Nevertheless, Gorton [1987] documents rises in the

currency/deposit ratio and in the losses suffered by depositors during these episodes. He

notes that man of the major crises were also associated with the failure of at least one large

corporation or bank.

Is it possible to blame stock volatility for creating these crises? That seems unlikely.

Stock volatility increases after the crises. If interest rates rise and stock prices fall, it is not

surprising that volatility also increases at the time of these crises (e.g., French, Schwert and

Stambaugh [1987]). 1 have estimated the regressions underlying Figures 3a, 3b, 4, 5a and 5b

including the recession dummy variable Dr and, while some of the t-statistics are smaller, the

qualitative picture remains the same. Thus, even though these panics often began during or

immediately before major recessions (compare Tables 4 and 6), the 13 months surrounding

the panics are reliably different from the remaining recession months. The t-statistics for

the recession dummy variable are smaller than in Table 5, but they remain reliably different

from 0.
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Margin Requirements and Stock Volatility

Officer [1973] and Hardouvelis [1988] analyze the relation between stock volatility

and margin requirements set by the Federal Reserve Board. Officer concludes that the Fed

increases margin requirements after stock return volatility has fallen. Hardouvelis concludes

that margin requirements cause a decrease in stock volatility. Both papers use rolling 12-

month volatility estimates to measure stock volatility. The rolling 12-month estimator of

volatility implicitly assumes volatility is nonstationary." Moreover, the time path of margin

requirements is persistent. Thus, the 'spurious regressions' problem (see, for example,Plosser

and Schwert [19781) is likely to be serious in this case.

Table 7 -- Initial Margin Requirements Set by S.E.C., 1934 - 1987

Dates Dates Rate

10/15/1934 45 1/16/1958 50

2/1/1936 55 8/5/1958 70

11/1/1937 40 10/16/1958 90

2/5/1945 50 7/28/1960 70

7/5/1945 75 7/10/1962 50

121/1946 100 11/6/1963 70

2/1/1947 75 6/8/1968 80

3/30,'l949 50 5/6/1970 65

1/17/1951 75 12/6/1971 55

2/20/1953 50 11/24/1972 65

1/4/1955 60 1/3/1974 50

4/23/1955 70

Source: New York Stock Exchange Fact Book. 1983, p. 45. Gikas Hardouvelis

informs me that the NYSE Fact Book contains a data error. Using annual reports

of the Federal Reserve System, he finds that the margin requirement was lowered

to 50 percent on 7/10/1962, not raised to 90 percent as the Fact Book shows.

Table 7 lists the level of initial margin requirements m, set by the Federal Reserve

Board from October 1934 to the present. This policy variable affects the credit terms for

investors who borrow money to buy stock. A 100 percent margin requirement means that

stock cannot be used as collateral for loans, and a 50 percent margin means that a loan can

pay for half of the cost of stock. Some analysts claim that personal leverage contributed to

the severity of the 1929 stock market crash, as margin investors sold securities quickly ic
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repay loans when stock prices fell. They claim that induced selling further depressed stock

prices. Miron (19861 argues that the Federal Reserve Board was concerned about the effect

of bank credit to securities purchasers before the 1929 crash. Thus, they restricted general

credit conditions in 1928-1929 to dampen speculation in the stock market. Consistent with

this argument, the 1934 Securities and Exchange Act gave the Fed the power to set margin

requirements. This created a policy instrument directly focused on credit to the securities

markets.

Table $ - - Relation of Changes in Margin Requirements with Stock Returns and Stock
Volatility, 1935-1987

Sum Std Error T—statistic
Tests for Returns

All leads and lags (-12,..,12) .6449 .2290 2.82

Leads (-12,..,0) .4867 .1508 3.23

Lags (l,..,12) .1582 .1393 1.14

Tests for Volatility,

All leads and lags (-12,..,12) -.3234 .1576 —2.05

Leads(-12,..,0) —.2117 .1102 -1.92

Lags (1,..,12) —.1118 .1001 —1.12

Note: Asymptotic standard errors, t—statistics and p—values use White's [19801

correction for heteroskedasticity. Twenty-five leads and lags (-12,..,12) of the
change in margin requirements are added to equations (5a) and (Sb) to estimate the
relation of changes in margin requirements with stock returns or stock volatility
from October 1935 through December 1987.
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Table 8 containS tests for the relation between changes in margin requirements and

both stock returns and volatility. Twelve leads and lags of changes in margin requirements.

dm, = m, - m1, are added to both (5a) and (Sb). Table 8 contains the sum of all 25

coefficients, and the sums for the leads (—12 toO) and the lags (Ito 12). The results strongly

support Officer's interpretation that the Federal Reserve Board has increased(decreased)

margin requirements after stock prices have risen(fallen). The coefficients of margin changes

in the return equation are reliably positive for the leads and only about one standard error

above 0 for the lags. Moreover, increases(decreases) in margin requirements seem to follow

periods when stock volatility is low(high). The coefficients of margin changes in the

volatilit equation are reliably negative for the leads and only about one standard error below

0 for the lags.

When the recession dummy variable D is included in these regressions, the results are

slightly stronger: margin requirements are increased after stock prices have risen and stock

volatility is relatively low. There is no evidence that stock return behavior is different from

normal in the 12 months following a change in margin requirements. The obvious

interpretation of this result is that the Fed responds to stock market conditions. The policy

actions have little or no effect on stock return behavior.
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Summary and Conclusions

This paper provides evidence on the behavior of stock prices and volatility during the

last 150 years. Two different statistical models present similar pictures of the time series

behavior of stock volatility. One model allows the conditional mean and standard deviation

of returns to follow a high-order autoregressive process. The second model, adopted from

Hamilton [1988, 1989], allows stock returns to come from two different distributions.

depending on which regime occurs in time t. Diagnostic tests for these models suggest they

are adequate representations of the data. Both of these statistical methods show that stock

volatility was high during the Great Depression from 1929-1939 and it was also high for

several shorter periods.

Confirming the evidence in Schwert [1988], I show that stock volatility is higher on

average during recessions. This fact reinforces the notion that the stock market is an

important business cycle indicator. While the volatility effect is not as reliable as the

relatively low level of stock returns during recessions, it does suggest that stock volatility

could be used as an additional factor in assessing the state of the economy. Moreover, this

evidence supports the notion that business cycles are asymmetric (see Neftci 11984]), since the

duration of high volatility episodes is reliably shorter than the duration of low volatility

episodes.

I show that the stock market reacted strongly to major and minor banking crises.

Stock prices fell and short-term interest rates rose immediately before the major panics.

Interest rates fell and stock volatility rose following the major panics. These events explain

many of the larger increases in stock volatility during the 1834-1934 period. While it is

impossible to prove that the stock market did not cause these panics, the facts are consistent

with Gorton's [1987] interpretation that panics resulted from of a large increase in the

probability of a recession. Whether panics also exacerbated the severity of subsequent

recessions (as argued by Bernanke [19831) cannot be determined from these data.

The evidence for the relation between margin requirements and stock volatility during

the 1934-1987 period suggests that the Fed reacts to stock price behavior. There is no
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evidence that the Fed's policy changes effect stock price behavior.

Thus, analysis of credit markets and the stock market for 1834- 1987 is consistent with

the notion that stock prices reflect rational anticipations of future economic events. There

is little evidence to suggest that speculative bubbles or fads induced crises in credit markets.

Nevertheless, many analysts believe this concern motivated the actions of the FederalReserve

Board even before the 1934 Securities and Exchange Act gave the Fed power to set margin

requirements.

What implications does this evidence have for current policy debates caused by the

October 1987 crash? The evidence on margin requirements has an interesting parallel in the

current policy debate concerning contingent claims contracts on stock market indexes. There

has been much debate about whether trading in financial futures contracts and options

contracts on stock indexes exacerbated the October 1987 crash. One of the policy

prescriptions favored by the stock markets is to increase margins for financial futures.

perhaps to the same level as margins for stocks, which would increase transactions costs in

the futures market. Since the historical evidence from the stock market is the only available

basis for assessing the efficacy of margin requirements, I conclude there is little basis for

these recent policy recommendations.

How unusual was the October 1987 Crash? The drop of over 20 percent on October

19rh is the largest one day decrease in the Dow-Jones or Standard & Poor's composite

portfolios from 1885 to 1987. The next largest one day declines were 12 and 10 percent on

October28 and 29, 1929. On the other hand, the drop of 21 percent for October 1987 is only

the fourth largest monthly percentage decline from 1834-1987 (September 1931, March 1938,

and May 1940 all had larger losses).

What does the October 1987 crash portend for the future of the economy? If the drop

in stock prices and the brief spurt of high volatility in October 1987 was either a forecast or

a cause of a major financial crisis or a recession, those events should have happened by now.

The historical evidence suggests very close timing relations among volatility, crises and

recessions. Since it is now 12 months after the crash and there has been no recession, the
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October 1987 crash was not similar to the 19th and early 20th century bank crises or the

national banking holiday in 1933.

Friedman and Schwartz [1963], among others, conclude that the financial Crisis of

1907 led to the passage of the Aldrich-Vreeland Act in 1908. They also say that this Act

led to the creation of the Federal Reserve Board in 1914. One of the first actions of the Fed

was to close the New York Stock Exchange in August 1914 when World War I began in

Europe. Historical accounts of this episode report that stock trading eventually resumed in

December 1914. The Fed imposed rules that prices could be no lower than they had been

when trading halted at the end of July. Trading had occurred off the floor of the Exchange

during this period, and prices were neither falling nor particularly volatile. Thus, one

interpretation of that episode is that the newly appointed Fed panicked and halted trading for

over four months in fear of a nonexistent financial crisis.

The National Banking Holiday in March 1933, resulted in the closing of over 4,000

banks. This event caused the creation of the Federal Deposit Insurance Corporation since it

was clear that the Fed was incapable of assuring depositors that their claims were safe during

a severe recession.

The drop in stock prices and highly volatile stock returns during this period led to the

1934 Securities and Exchange Act, creating the Securities and Exchange Commission (S.E.C.).

Several authors have tried to determine whether the creation of the S.E.C. caused an increase

in public confidence and an associated reduction in stock volatility. Officer [1973] concludes

that this explanation is inconsistent with the fact that stock volatility returned to pe- 1929

levels in about 1940, and that it had not been as high as the 1929-1933 episode anytime from

1897-1928. Benston [1973] also concludes that the beginning of S.E.C. activity in October

1934 was not associated with a decrease in stock volatility. This paper presents additional

evidence that stock volatility was lower throughout 1834-1928 than 1929-1933. Moreover.

volatility was very high again during the 1937- 1938 recession, long after the S.E.C. began its

activities. Thus, as with margin requirements, major innovations in financial regulation

follow increases in stock volatility. There is little evidence that the actions of these regulator)
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agencies directly reduce volatility.

One message from this analysis is that new regulatory initiatives following the October

1987 crash should be cautious. Efforts to control stock volatility can have important negative

effects on other parts of the economy. For example, if the Fed restricted general credit in

1928-1929 to reduce the extent of stock market speculation (Miron [1986]), this probably

increased the severity of the 1929—1933 recession (Friedman and Schwartz [1963]).

Proposals to impose trading halts, increase margin requirements, or to restrict trading

in financial futures or options contracts would be innocuous if they do noteffect credit costs

or investment opportunities. If these proposals create large frictions in capital markets.

however, the costs of regulatory solutions could easily exceed any hypothetical benefits from

reducing stock volatility.
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I. Implied monthly standard deviation estimates from prices of call options on the S&P composite

index were about .035 during 1987 until October 19, when they rose to above .08. They dropped

below .06 by November 17 and gradually declined to about .04 by the end of April 1988.

2. Indeed, the evidence on the relation between aggregate consumption growth rates and stock returns

suggests that there is too little variation in aggregate consumption.

3. An alternative model proposed by Kleidon [1986] assumes that cash flows follow a geometric

random walk with drift. in that case, the variance of stock returns would be proportional to the

variance of dividend growth rates, and it would be unrelated to the level of the stock price.

4. Since the expected value of the absolute error is less than the standard deviation from a Normal

distribution, E I — a,(2/w)112, all absolute errors are multiplied by the constant (2/)2, Dan Nelson

suggested this correction.

5. The volatility of the Smith and Cole index of bank and insurance stock returns from 1792-1833

is much lower than for the composite index from 1834-1856. I omitted the early data because the

composition of the sample apparently affected the behavior of the index.

6. Fuller [1976] shows how a pth order autoregression can be transformed into a first order

autoregression, along with I 1 lagged changes in the series. This transformation is used in the Dickey-

Fuller tests for unit roots in autoregressions. The autoregressive coefficient in the transformed

model is equal to the sum of the autoregressive coefficients in the original ph order autoregression.

7. All Box-Pierce tests are corrected for small sample bias.

8. Since the sample size is so large (T.l824), small residual autocorrelations cause the Box-Pierce

statistic to be large. In effect, the test is so powerful that it rejects at very small significance levels

even when the model misspecification seems trivial.
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9. Hamilton (1988, 1989] provides additional information about the statistical model and the related

estimation procedures. I am grateful to Jim Hamilton for providing the FORTRAN source code used

to estimate these models.

10. The autoregressive model is limited to order 4 because of computational considerations. The

largest coefficients in the estimates of equations (5a) and (5b) are in the first few lags, so this should

not impair the comparison of the two modeling approaches.

11. If either p or q equals either 0 or 1, the model in (6)—(8) degenerates to the AR(4) model in (6).

Similarly, if both o and w equal 0, there is no difference between the two regimes.

12. Hamilton 11988,19891 describes the process used to calculate the probability of being in a given

regime based on information at time t. It assumes that the parameter estimates from the whole

sample are known otherwise, only data through time t are used to estimate this probability. I use

the estimates of P(S,. =1 I y, ) and P(S=0 I y,.1,...), with the transition probabilities in (7) and the

formulas in (lOa) and (lOb) to estimate the conditional standard deviation of stock returns in period

t based on data through time t- I.

13. Jam grateful to Bob Shiller for correcting an error in this calculation in an earlier version of this

paper.

14. Geweke, Meese and Dent (1983] discuss this type of single equation 'causality test,' where lags

•of the dependent variable, along with leads and lags of the independent variable are included in the

same regression. Also, see Nelson and Schwert [1982] for an analysis and comparison of various types

of causality tests.

15. 1 use high-grade commercial paper rates from Macaulay [19381 for 1834-1925, spliced to match

the short-term Treasury bill yields from the CRSP Bond File for 1926-1987. See Schwert [1988]

for more information about the construction of this series.
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16. As mentioned previously, and as I discuss in detail in Schwert [1979], it is generally difficult to

assign causality based on estimated predictive relations. For example, if stock volatility had increased

before the crises, there are several competing hypotheses that would predict such behavior.

Nevertheless, since volatility didn't increase until after the panics, it is difficult to imagine reverse

causality scenarios where depositors descend on banks in anticipation of future stock volatility.

17. The optimal forecast function for an ARIMA(p,d,0) process is a (p+d) period rolling average of

the past observations, where the weights sum to I if d>O. Thus, the 12—month rolling average

implicitly assumes that the volatility process follows a nonstationary ARIMA( 11,1,0) process with

equal autoregressive parameters.

18. 1 use a weighted average of the Dow—Jones indexes of railroad and industrial stock prices from

1885-1927, and the Standard & Poor's composite index from 1928-1987. See Schwert [1989b3 for

further analysis of the behavior of daily stock market returns from 1885-1988.
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