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1 Introduction

When a central bank follows a monetary policy rule, it commits to a target interest
rate that depends on the state of the macroeconomy. However, when policy is also
subject to random departures from this rule – which we refer to as monetary policy
discretion – the central bank also introduces a potential new source of risk.1 The
interest rate we observe, which we refer to as the policy rate, therefore, is the sum of
the target rate and discretion. Our goal is to add to the traditional analysis of how
monetary policy affects the macroeconomy by exploring the relationship between
policy discretion and financial-market conditions.

Most studies to date explore the consequences of shocks to interest-rate policy in one
of two ways. The most common method imposes sufficient structure on the behavior
of discretionary policy to identify an exogenous policy shock (e.g., Clarida, Gaĺı, and
Gertler, 1998, and Christiano, Eichenbaum, and Evans, 1999). Alternatively, using
futures data to measure unexpected shocks to the policy rate requires less structure,
but these shocks will necessarily combine both target-rate and discretionary shocks
(e.g., Kuttner, 2001, and Piazzesi and Swanson, 2008).

We use elements from both of these two approaches to explore different sources for
monetary-policy risk. We use financial-market data to reveal the shock to the policy
rate. We then impose just enough structure on the behavior of discretionary policy to
separately identify its properties from those of the target rate. Since we don’t want
to wed ourselves to any particular theory of discretion, we impose only long-run
neutrality restrictions. These apply across a broad class of both new-Keynesian and
neoclassical models, and are likely to conform to most economists’ prior beliefs. The
features of the data we uncover, therefore, can serve as a benchmark for assessing
the relative merits of competing candidate theories.

We specify a macro term-structure model that characterizes the dynamics of the
pricing kernel as well as macro variables such as inflation and output growth. This
is a convenient setting to explore questions of monetary policy through interest rate
targeting. In theory, this framework can characterize the dynamic responses of both
real and nominal variables to unobservable shocks to policy discretion, but in prac-
tice, this model alone is not enough. In the words of Joslin, Le, and Singleton

1Cochrane (2011), Sims and Zha (2006), among many others, refer to the difference between
the actual policy rate and the target rate as a policy disturbance. Taylor (1999) uses the more
value-loaded term of policy mistake.



(2013): “Several recent studies interpret the short-rate equation as a Taylor-style
rule... However, without imposing additional economic structure... the parameters
are not meaningfully interpretable as the reaction coefficients of a central bank.”
This echos the concerns of Cochrane (2011), “The crucial Taylor rule parameter is
not identified in the new-Keynesian model.”

The novelty in our solution to this identification problem is the addition of a long-run
real asset-pricing restriction to the more customary long-run real output restriction.
We assume that the discretionary monetary policy shock does not have a permanent
effect on either the level of real output or the level of real asset values. But since
this does not restrict short-run responses, our empirical model is still consistent with
most reduced-form econometric models as well as most structural models used in
macroeconomics and macro-finance.

We should be clearer about our use of “shocks” in this informal discussion to avoid
confusion later. Here we use it to describe unexpected changes from any and all
sources. We use long-run restrictions on the impact of unexpected changes to identify
structural parameters. We do not use these restrictions to create an orthogonal
structure to the exogenous innovations of our dynamic system. As a result, we
will not know which shock – or if any shock – in our model can be interpreted
as an exogenous change in monetary policy that does not also cause a change in
macro and financial variables. Therefore, we cannot conduct the impulse response
exercises emblematic of most empirical work in this area, such as structural vector
autoregressions. But since we do identify a process for discretionary policy – just
not an exogenous innovation to that policy – we are still able to see how it relates
to key macroeconomic and financial variables.

In that context, we find that most macroeconomic and financial-market variables are
related to a shock to the policy rate in much the same way as they are to a shock to
just the target rate. What this masks, however, is that shocks to discretionary policy
exhibit substantially different behavior especially with respect to output growth and
risk premiums. For example, both discretionary easing and target-rate easing tend to
coincide with good news on inflation. However, for output growth, discretionary eas-
ing tends to coincide with good news whereas easing through the target-rate coincides
with bad news. This evidence is broadly consistent with patterns in the empirical
macro literature that find that discretionary policy exhibits a preference for interest-
rate smoothness or inertia, e.g., Clarida, Gaĺı, and Gertler (2000) and Rudebusch
(2006), or slow adjustment of long-run inflation expectations, e.g., Gürkaynak, Sack,
and Swanson (2005a).
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With respect to financial markets, we find that discretionary policy is an important
contributor to both the mean and variance of risk premiums. We can attribute
as much as 20% of the average forward premium on a 10-year discount bond to
discretionary policy, which contrasts with its negligible contribution for very short-
maturities. We can also attribute about 17% of the variance of forward premiums
of all maturities to discretionary policy.

We find that easing through either the target rate or discretion tends to coincide with
bad news about long-term financial-market conditions in the form of an unexpected
increase in the term premium on long-maturity nominal bonds. However, discre-
tionary and target-rate easing exhibit substantially different patterns in short-term
nominal bond markets: discretionary easing tends to coincide with good news in
the form of unexpected decreases in the risk premiums of short-term nominal bonds,
whereas target-rate easing coincides with increases in these same risk premiums.

Finally, since the patterns for target-rate shocks are similar for both short- and
long-term yields, movements in the target-rate are closely related to movements in
the level of the yield curve. However, since the discretionary shock is more closely
related to movements in short-term yields, movements in discretionary policy are
closely related to movements in the slope of the yield curve.

Section 2 lays out the macro term-structure model that forms the basis for our
empirical analysis. Section 3 introduces monetary policy in the form of a standard
Taylor rule and frames the identification issue. Section 4 details our identification
strategy. Section 5 presents our estimation method and empirical results. Section
6 explores the relationship between policy shocks and macroeconomic and financial-
market conditions. Section 7 concludes and suggests future directions.

2 A macro term-structure model

2.1 Abritrage-free pricing

Affine term-structure models have become the standard framework for empirical
term-structure research. In the macro-finance branch of this literature, the state
includes macroeconomic variables like inflation and output growth. Examples include
Ang and Piazzesi (2003), Moench (2008), Rudebusch and Wu (2008), Chernov and
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Mueller (2012), Jardet, Monfort, and Pegoraro (2013), Hamilton and Wu (2012),
Joslin, Le, and Singleton (2013), and Joslin, Priebsch, and Singleton (2014).

The state of the economy is an n-dimensional vector xt that evolves over time ac-
cording to the process

xt+1 = Axt + εt+1, (1)

where A is stable, εt is independent across time, and εt ∼ N (0,Σ), where Σ is positive
definite and symmetric with a unique Cholesky decomposition, B. (All vectors and
matrices conform in size to the dimension of xt.) We will often replace εt with its
equivalent form, Bwt, where wt ∼ iid N (0, I) and I is the identity matrix. The
unconditional covariance matrix of xt, Vx, is the solution to Vx = AVxA

> + Σ. To
maintain a clear distinction between theory and empirical applications, we assume
that xt is exogenous, and the parameters A and B are part of the structure of the
economy.

The pricing model starts with the specification of the log pricing kernel that will be
used for valuing nominal cashflows,

−m$
t+1 = a0 + a>xt + λ>t λt/2 + λ>t wt+1, (2)

where λt = λ0 + λxt. The one-period continuously-compounded nominal interest
rate, it, is then

it = − logEt exp(m$
t+1) = a0 + a>xt.

Given the pricing kernel and the linear transition equation (1), the absence of ar-

bitrage implies that the date-t price, q
(h)
t , of a default-free pure-discount bond that

pays $1, at date t+ h, h > 0, is log-linear in the state:

− log q
(h)
t = B(h)

0 + B(h)xt.

See Appendix A for the standard derivation of B(h)
0 and B(h) as functions of the

model’s parameters.

This implies that continuously compounded yields for h > 0 are linear in the state:

y
(h)
t = − log q

(h)
t /h =

1

h

[
B(h)
0 + B(h)xt

]
,

and it = y
(1)
t . The forward interest rate for h periods in the future, f

(h)
t , is also linear

in the state:

f
(h)
t = log q

(h)
t − log q

(h+1)
t

= a0 + a>A∗(h)A∗0 − a>A∗(h)BB>A∗(h)>a/2 + a>A∗hxt,
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as is the risk premium imbedded in this forward rate, i.e. the forward premium:

fp
(h)
t = f

(h)
t − Etit+h

= a>A∗(h)A∗0 − a>A∗(h)BB>A∗(h)>a/2 + a>(A∗h − Ah)xt.
(3)

The risk-neutral dynamics of the state, xt = A∗0 + A∗xt−1 + Bwt, are governed by
parameters A∗ = A − Bλ and A∗0 = −Bλ0 (see Appendix A), and A∗(h) = (I −
A∗)−1(I − A∗h).

2.2 Term structure identification

At this level of generality, our term-structure model is under-identified. That is, the
predictions of the model are invariant to linear transformations of the state variable,
xt. In particular, since multi-period yields depend only on A∗, we cannot distinguish
among values for A and λ that leave A − Bλ unchanged. For example, consider a
transformation of the state variable given by a matrix T that defines a new state
variable x̂t = Txt. The physical process for this new state variable is

x̂t = TAxt−1 + TBwt

= (TAT−1)x̂t−1 + (TB)wt,

and the nominal-risk-neutral process becomes

x̂t = −(TB)λ0 + T (A−Bλ)T−1x̂t−1 + (TB)wt

= TA∗0 + (TA∗T−1)x̂t−1 + (TB)wt.

Identification of this model, therefore, will be specific to the choice of the matrix
T that defines the state variable. We adopt the canonical form used by Hamilton
and Wu (2012), Joslin, Le, and Singleton (2013), and Joslin, Priebsch, and Singleton
(2014), among many others, and choose a transformation that results in a diagonal
matrix governing the dynamics under the risk-neutral distribution. We therefore set
the columns of the matrix T−1 equal to the eigenvectors of the matrix A−Bλ, which
results in a diagonal matrix TA∗T−1. It is important to note that this choice of a
rotation affects only the interpretation of the state variable. It does not restrict the
behavior of our model of the pricing kernel.

For notational simplicity, we drop the transformation given by the the matrix T .
From here on we will refer to the parameters we identify as A, B, and a diagonal
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matrix A∗. But the reader should be aware that by assuming a diagonal A∗, we have
chosen to work with a specific rotation of the abstract state space.

Finally, note that the conditional variance of bond yields, B(h)BB>B(h)> = a>(I −
A∗)−1(I−A∗h)BB>(I−A∗h)(I−A∗)−1a, cannot distinguish a from B. We therefore
set a equal to a vector of ones so that the factors, xt, inherit the same scale as the
short rate, it. Note that we will continue to use the same notation, but from hereon,
a will denote an n-dimensional vector of ones.

2.3 Macro variables and the real pricing kernel

Our empirical model will include some key macroeconomic variables along with the
bond yields. Specifically, we will include the rate of inflation, πt = logPt − logPt−1,
where Pt is the price level, and the rate of growth of aggregate real output, gt =
log Yt − log Yt−1, where Yt is the level of real output. Both are assumed to be linear
functions of the vector of state variables:

πt = b0 + b>xt

gt = c0 + c>xt,
(4)

hence, as is common in the macro-term structure models, e.g., Ang and Piazzesi
(2003), Bikbov and Chernov (2010), and Joslin, Le, and Singleton (2013), and many
others, output growth and inflation are assumed to be stationary, though poten-
tially highly persistent.2 Unlike the factor loadings for bond yields, however, the
parameters (b0, b) and (c0, c) are unrestricted by the model.

Implicit in this specification is a real (log) pricing kernel,

−mt+1 = −m$
t+1 − πt+1

= (a0 − b0) + (a> − b>A)xt + λ>t λt/2 + (λ>t − b>B)wt+1.
(5)

Our empirical exercise does not use any data on real asset prices, nonetheless the
real pricing kernel in equation (5) will play an important role in the identification of
discretionary monetary policy.

2The reduced-form empirical evidence for nonstationary inflation, e.g., Stock and Watson (2007),
is weaker for the sample period we use below than for the the entire post-war period, although such
evidence can be difficult to interpret in finite samples. Moreover, a nonstationary inflation process
in the context of our model would result in a Taylor rule that is incompatible with a stationary
nominal short rate, and would also imply a real yield curve that tends to −∞ as maturity increases,
which is inconsistent with the evidence from TIPS markets in Gürkaynak, Sack, and Wright (2010).
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3 Monetary policy

There is nothing in the specification of our model that would allow us to attach any
particular economic interpretation to the state variables, xt, hence, we are not yet at
a point where we can talk about policy shocks in a concrete way. To do this we must
first introduce a specific policy rule, and explore how shocks to that rule evolve with
the state variable, xt.

3.1 A policy rule

Assume that the monetary authority uses the one-period bond market as its primary
policy instrument, and trades whatever quantities of the bond necessary to achieve
a target short-term interest rate, denoted iRt , according to a standard Taylor rule, as
in Taylor (1993),

iRt = τ0 + τππt + τggt, (6)

where τ0, τπ, and τg are policy parameters.3 Implementation of this rule, however,
is subject to discretion. The actual one-period interest rate that we observe is a
combination of the target rate, iRt , and a policy discretion term, st,

it = iRt + st. (7)

In keeping with our stationary log-linear model, we assume that discretion evolves
with the state of the economy according to

st = d>xt, (8)

where d is a vector of unknown parameters, but is otherwise unrestricted. Policy
discretion, st, could be iid noise, an independent AR(1) process, or it could depend
on all the factors that drive the macroeconomy and financial markets, or just a subset
of them. At this point, we are completely agnostic about the properties of st encoded
in its factor loadings, d.

The necessity for a policy discretion term is self-evident since data on the short
rate will never perfectly align with the data on inflation and output growth that set

3Taylor’s original formulation of the rule used the deviation of output from a trend, i.e. potential
output. We simplify this by using output growth itself rather than the de-trended level. This choice
better aligns our model with the macro term-structure literature while still capturing the intent of
Taylor’s original rule.
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the target rate. The fundamental determinants of this discretion, however, remain
outside of our model. Conceptually, there are many possibilities that seem plausible.
For example, it could reflect short-term political pressure that is at odds with the
long-term economic goals of a central bank that lacks complete independence. Or
it could reflect the market microstructure of interactions between the central bank
and its network of private brokers when implementing a particular policy rule. Or
real-time measurement error in inflation and output. Or a central bank’s desire to
keep the short rate positive. Or its response to a financial crisis. These all suggest
that the central bank’s interest rate policy will depend on more than just πt and gt
through the target rate, iRt . “Even strong proponents of simple policy rules generally
advise that they be used only as guidelines, not as substitutes for more complete
policy analyses,” in the words of Chairman Bernanke (2005).

The presence of the policy discretion term, st, in the specification of monetary policy
is intended to capture these possibilities. However, each of these examples, either
individually or in some combination, is likely to result in a process for the policy
discretion term that depends on the state of the economy in a different way. In the
empirical exercise below, we don’t attempt to model st explicitly, rather we simply
allow the data to determine the process for policy discretion. But as we show in
the next section, since st is not directly observable, we must first place additional
structure on the model to achieve identification.

3.2 Identification of monetary policy

Incorporating monetary policy into our term-structure model introduces an ad-
ditional identification problem beyond the term-structure identification discussed
above.4 To keep this discussion separate, assume that we already know the values
of all of the parameters of the macro term-structure model. That is, we know the
factor loadings for inflation and output growth, i.e., the parameter vectors b and c,
as well as the intercept parameters a0, b0, and c0. (Recall that the factor loadings for
the interest rate have been scaled to equal a vector of ones.) The only parameters
left to identify and estimate are those of the target rate, τ0, τg, and τπ, and policy
discretion, d.

4See Backus, Chernov, and Zin (2015) for a more thorough discussion.
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3.2.1 The problem

Since monetary policy discretion is only observed indirectly as the difference be-
tween the policy rate and the target rate, a necessary first step must be to identify
the parameters that determine the target rate separately from the parameters that
determine policy discretion. For example, if we see the policy rate increase when we
see inflation and output increase, we could be tempted to conclude that this is a nat-
ural consequence of the policy rule. Likewise, if we see the policy rate increase when
inflation and output are constant, we could be tempted to conclude that this must be
the result of policy discretion. But since equilibrium inflation and output respond to
both changes in the target rate and changes to policy discretion simultaneously, we
can draw no such conclusions. Additional structure is needed to separately identify
each of these effects.

To see this algebraically, we write each term in the monetary-policy equation (7) as
a function of the state variable:

a0 + a>xt︸ ︷︷ ︸
=it

= τ0 + τπ(b0 + b>xt︸ ︷︷ ︸
=πt

) + τg(c0 + c>xt︸ ︷︷ ︸
=gt

) + d>xt︸︷︷︸
=st

,

which implies n+ 1 linear parameter restrictions

a = τπb+ τgc+ d

a0 = τ0 + τπb0 + τgc0.

In other words, monetary policy added n + 1 new restrictions to our system of
equations. But it also added n+ 3 new parameters, τ0, τπ, τg, and d. Note also that
there are no additional identifying restrictions provided by the equations for multi-
period bonds yields. Identification of the equations for bond yields did not depend
on monetary policy, and likewise, monetary policy does not depend on those bond
yields. Even if we had exact prior knowledge of all the parameters of the pricing
kernel, they would be of no help identifying the parameters of the monetary policy
rule.

This lack of identification does not come as a surprise since our model is just a more
general case of the well-known example in Cochrane (2011). Simplify our model by
setting a> = b>A, so that the interest-rate equation is it = r+Etπt+1 (i.e., a simple
Fisher equation with a constant real rate, r = a0 − b0). Simplify the policy rule to
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depend only on inflation, i.e., assume τg = 0, then the parameter restrictions implied
by the Taylor rule are

b> = d>(A− τπI)−1

b0 = (a0 − τ0)/τπ.
(9)

Even if b0, a0, b, and A were known, we are still left with an under-identified system
of equations: in this case n+ 1 equations in n+ 2 unknowns, τ0, τπ and d.

This example is simple, but telling. Since st is unobservable, we cannot estimate d
directly. And measuring st as a residual in the policy rate equation requires prior
knowledge of the other policy parameters, τ0, τπ, and τg, which we do not have.
We need at least two additional restrictions on d to identify the Taylor rule in (6).
Note that 2 restrictions will be enough to identify the 2 policy parameters τπ and
τg, so that τ0 can be identified from the equation τ0 = a0 − τπb0 − τtc0, which will
then identify the policy discretion term, st, as a residual so that we can estimate
the remaining n independent parameters of d. Additional restrictions on d may add
information, but are not strictly necessary for identification.

It is worth highlighting that this lack of identification has nothing to do with the
reduced-form nature of our arbitrage-free macro term-structure model and nothing
to do with our definition of the policy rule. Placing additional economic structure
on the pricing kernel, the macroeconomic variables, or the policy rule itself does not
alter the monetary policy identification problem if that structure does not somehow
restrict the policy parameters, τ0, τπ, τg, or d. (See Appendix B for examples.)

3.2.2 The role of instrumental variables

Finally, identification via an instrumental variables estimator presupposes the exis-
tence of at least two valid instruments, zit, such that E(zitst) = 0, for i = 1, 2. In the
context of our state-space model, zit is a function of the state variable, say zit = β>i xt,
for a vector of parameters βi. Instrumental variables estimation, therefore, requires
E(zitst) = E(β>i xtx

>
t d) = β>i Vxd = 0. In other words, this identification is predi-

cated on knowledge of at least two additional restrictions on the parameters of the
policy rule, restrictions that are not part of the specification of the model. Without
an economic theory of st that places additional structure on its behavior, the motiva-
tion and interpretation of any instrumental variables estimator is open to question.
Unfortunately, macroeconomic theory is generally quite vague about the fundamen-
tal determinants of policy discretion even though a policy-discretion variable is a
standard feature of most structural models of monetary policy.
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The general feature of the identification problem highlighted in these simple examples
extends to more complicated models: unless a model places explicit restrictions on
the parameters of the policy rule it will be fundamentally under-identified. In the
next section we introduce and justify a set of such restrictions and integrate them
into our macro term-structure model.

4 The long-run neutrality of discretionary shocks

If we had exact prior knowledge of the values of τπ and τg, then identification of
the discretionary shock would require nothing more beyond the identification of the
parameters of the macro term-structure model. To take a concrete example, if we
were certain that τπ = 1.5 and τg = 0.5, then given values for a, b, and c, the
discretionary shock is simply st = (a − 1.5b − 0.5c)>xt. Likewise, if we had exact
prior knowledge of the values of d, then identification of the target-rate parameters
would require nothing more beyond the identification of the parameters of the macro
term-structure model. For example, if we were certain that the third factor in a three-
factor macro term-structure model was an exogenous AR(1) process for discretionary
policy, i.e., st = d3x3t, then we would also be certain that d1 = 0 and d2 = 0.
The target-rate parameters, τπ and τg, would then simply solve the linear equations
τπb1+τgc1 = a1 and τπb2+τgc2 = a2. Unfortunately, we have neither a theoretical nor
an empirical justification for assuming such exact prior knowledge either about the
target-rate parameters or the discretionary policy parameters. And since identifying
assumptions cannot be tested, relying on our personal intuition or sheer guesswork
is unlikely to lead to convincing empirical conclusions.

Rather than assuming exact prior knowledge about specific parameter values govern-
ing monetary policy, perhaps we would have more confidence assuming exact prior
knowledge of some properties of the joint distribution of variables in our model. For
example, if we have exact prior knowledge that current and lagged values of the
discretionary shock are uncorrelated with real output growth, i.e., E[gtst] = 0 and
E[gtst−1] = 0, then parameters of the macro term-structure model provide two lin-
ear equations, c>Vx(a − τπb − τgc) = 0 and c>AVx(a − τπb − τgc) = 0, that we can
solve for τπ and τg. Unfortunately, such assumptions are also unlikely to lead to con-
vincing empirical conclusions since they are inconsistent with both new-Keynesian
sticky-price models and neoclassical models with frictions. In essence, we would be
assuming away one of the most interesting and long-standing questions in macroe-
conomics – Does monetary policy have real effects? – ironically, for the sake of

11



identifying monetary policy. Did we simply make an unfortunate choice using gt?
Why not something like a long-term bond yield, y

(n)
t , instead? Couldn’t we just

substitute B(n) for c in those two linear restrictions to identify the target-rate pa-
rameters? In principle, yes of course. But if we want to allow for the possibility
that real output growth affects the pricing kernel and, hence, bond valuations, while
maintaining a channel for discretionary policy to affect real output growth, then we
are right back in the same situation. We would have achieved identification by ruling
out the most commonly used structural asset-pricing models, and as a result, our
empirical conclusions would rightly be viewed with skepticism.

Where does that leave us? We could go on and on describing potential identifying
restrictions, then questioning their usefulness as the basis for our empirical exercise.
Once again, without specifying a complete structural model, such an exercise would
amount to little more than speculation and subjective personal intuition. But there
is no free lunch! To proceed we must necessarily restrict some features of our model
and our empirical conclusions must necessarily depend entirely on those restrictions.

Ideally we want an approach that is flexible enough to accommodate as large a set of
structural models as possible yet still restrict the parameters of monetary policy. To
that end, we will focus exclusively on the long-run consequences of temporary shocks
to discretionary policy. One feature shared across a very broad class of structural
models, and which is likely to conform to most economists’ prior beliefs, is that
a temporary shock to discretionary monetary policy may affect the real economy,
but that effect will not be permanent. We will now show how that seemingly weak
and robust requirement can be used for identification, then how that identification
translates to the empirical properties of our macro term-structure model.

4.1 A long-run quantity restriction

The first restriction we impose is a standard assumption in both new-Keynesian
and neoclassical models: shocks to monetary policy discretion may have short-run
consequences for the level of real output but they do not have a permanent impact.
Note that in our macro term-structure model, we have implicitly assumed that the
level of real output is nonstationary. Recall that gt+1 is the continuously compounded
growth rate of real output, which we denote as Yt. Since we have assumed that gt+1

is stationary, the process for log Yt has a unit-root, log Yt+1 = log Yt + gt+1, which
implies

log Yt+n = log Yt + gt+1 + gt+2 + · · ·+ gt+n.
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In other words, even when n is arbitrarily large, the current shocks to the state of
the economy, wt+1, continue to have effects on log Yt+n directly through gt+1 and
indirectly through the conditional means of gt+j, j = 2, . . . , n.

What concerns us, however, isn’t an arbitrary shock to the state of the economy, but
rather the shock specifically to discretionary policy, st+1 = d>xt+1. What we would
like to rule out is that specific linear function of the state affecting the conditional
forecast of log Yt+n when n is large. Note that the conditional covariance of gt+j and
st+1 for j ≥ 1 is

Covt(gt+j, st+1) = Et[c
>xt+jx

>
t+1d] = c>Aj−1BB>d,

which implies

lim
n→∞

Covt(log Yt+n, st+1) =
∞∑
j=0

c>AjBB>d = c>(I − A)−1BB>d.

The assumption that this long-run covariance is zero, therefore, implies a linear
restriction on d. Recall that d is a function of the factor loadings from the macro
term-structure model and the parameters of the policy rule, i.e., d = a− τπb− τgc,
so the restriction is

c>(I − A)−1BB>(a− τπb− τgc) = 0, (10)

that we can use to help identify the parameters of the monetary policy rule.

We could have derived this same restriction in a slightly different way. Following
Beveridge and Nelson (1981) we can decompose the log of real output into a perma-
nent component log Y P

t+1 that is a random walk, and a temporary component log Y T
t+1

that is stationary. Begin with the moving average representation for log Yt,

(1− L) log Yt+1 = c0 + c>(I − AL)−1Bwt+1,

where L is the lag operator. The permanent component in the Beveridge-Nelson
decomposition is given by the random walk with an innovation scaled by the moving
average polynomial evaluated at L = 1,

(1− L) log Y P
t+1 = c>(I − A)−1Bwt+1,

and the transitory component is then log Y T
t+1 = log Yt+1−log Y P

t+1. This is equivalent
to decomposing the growth rate of real output, gt+1, into additive permanent and
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transitory components, gt+1 = gPt+1+g
T
t+1, where gPt+1 = c>(I−A)−1Bwt+1. Therefore,

if a discretionary monetary policy shock has no permanent effect on the level of real
output, it’s covariance with real output growth satisfies the restriction

Et[gt+1st+1] = Et[(g
P
t+1 + gTt+1)st+1] = Et[g

T
t+1st+1], (11)

or simply Et[g
P
t+1st+1] = 0. This can be written as

c>(I − A)−1BB>(a− τπb− τgc) = 0,

which is the identical restriction to (10).

This alternative derivation doesn’t add much value to the more intuitive direct
method we originally used to derive equation (10). In the next section, however,
we will need to apply similar arguments to the nonlinear process for the real pric-
ing kernel, mt+1, in which case the analog to the Beveridge-Nelson decomposi-
tion given in Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and
Hansen (2012), will prove much more useful. Nonetheless, providing the permanent-
transitory decomposition for gt+1 may help clarify the parallel interpretation of our
two identifying restrictions. It is also helpful to see that a model with the restric-
tion Et[gt+1st+1] = Et[g

T
t+1st+1] still has ample (if not total) flexibility to match any

short-run relationship between discretionary policy and real output evident in the
data.

The restriction in equation (10) is analogous to the long-run restriction on monetary-
policy shocks used in structural VAR models popularized by Blanchard and Quah
(1989). In fact, if we could observe st, then it could be included in a VAR with
gt, and (10) would be the natural identifying restriction in the Blanchard-Quah
methodology. In the context of our model however, st is unobservable. Therefore, we
use this restriction to identify structural parameters of the policy rule rather than to
orthogonalize the shocks in a structural VAR. The result of this identification will be
a process for discretionary monetary policy, st, with the desired long-run neutrality
property.

It is also important to note that imposing comparable restrictions that shocks to
other variables in our model have no impact on the level of long-run real output, do
not restrict the parameters of discretionary policy, d, or the target-rate, τ0, τπ, or
τg. For example, assuming that the shock to inflation has no permanent effect on
the level of real output implies the constraint c>(I − A)−1BB>b = 0, or similarly
the shock to nominal interest rates, c>(I − A)−1BB>a = 0, or the shock to any

14



long-term bond yield, c>(I − A)−1BB>B(n) = 0. None of these constraints involve
the parameters of discretionary policy, d, or the target-rate, τ0, τπ, or τg. Adding
such restrictions will over-identify the parameters of the macro term-structure model
and may be of interest for other reasons, but they will not help identify the unknown
policy parameters.

Alternatively, we could consider adding other observable real quantities to our macro
term-structure model, such as consumption and investment, and impose similar re-
strictions on the long-run responses of their levels to discretionary policy shocks as
additional identifying restrictions. These would indeed involve d and, in principle,
could help with identification. However, given the evidence that the levels of other
real variables are cointegrated with the level of real output, e.g., Engle and Granger
(1991), such restrictions are unlikely to add much new information beyond (10),
and would at best provide a very weak identification. Instead, we make use of our
pricing-kernel model and explore real asset prices as the source for additional – and
as yet unexplored – identifying restrictions.

4.2 A long-run asset-pricing restriction

The second restriction we impose is a natural analog to (10) applied to real asset
prices: shocks to discretionary policy may have short-run consequences for the level
of real asset values but they do not have a permanent impact. Since we have already
assumed that the long-run level of real quantities are unaffected by shocks to policy
discretion, what this assumption adds is a restriction to the process for real marginal
valuations, denotedMt. As with real output, this is a unit root process in logs with
increments determined by the real pricing kernel, logMt+1 = logMt +mt+1, which
implies

logMt+n = logMt +mt+1 +mt+2 + · · ·+mt+n.

In other words, even when n is arbitrarily large, current shocks to the state of
the economy, wt+1, continue to have effects on real marginal valuations, logMt+n,
directly through mt+1 and indirectly through the conditional means of mt+j, j =
2, . . . , n. Unlike our model of real quantities, however, the real pricing kernel has an
additional channel for wt+1 to affect long-run real valuations: directly through the
price of risk in mt+2, and indirectly through the conditional means of the prices of
risk in mt+j, j = 3, . . . , n.

Again, what concerns us isn’t how an arbitrary shock to the state of the economy
affects long-run real valuations, but rather the shock specifically to discretionary
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policy, st+1 = d>xt+1. What we would like to rule out is that specific linear function
of the state affecting the conditional forecast of logMt+n when n is large.

In parallel to our earlier discussion of the decomposition of real output growth, we
follow Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Hansen
(2012), and decompose the real pricing kernel into multiplicative permanent and
transitory components, which will then be additive in logs, mt+1 = mP

t+1 +mT
t+1. If a

discretionary monetary policy shock has no permanent impact on the real asset val-
ues, its covariance with the real pricing kernel must satisfy the restriction analogous
to equation (11),

Et[mt+1st+1] = Et[(m
P
t+1 +mT

t+1)st+1] = Et[m
T
t+1st+1], (12)

or simply Et[m
P
t+1st+1] = 0.

It is worth emphasizing that this restriction is not a requirement that the prices or
returns of long-term assets such as long-maturity bonds, be unaffected by the shocks
to monetary policy either through the target rate or discretion. On the contrary,
the model still has ample (if not total) freedom to match whatever features of these
relationships are evident in the data. The restriction simply connects the price of the
real risk embedded in the policy discretion term to its covariance with the return on
a real consol bond. Let r

(∞)
t+1 denote the one-period log return on a zero-coupon real

consol, then the real pricing kernel decomposition above implies that −mT
t+1 = r

(∞)
t+1 .

Therefore, this restriction can be written as

Et[mt+1st+1] = −Et[r(∞)
t+1 st+1].

That is, the real risk price of a shock to policy discretion can be measured with its
covariance with the return on a real consol bond.

Following Hansen and Scheinkman (2009), we extract the permanent component
using the dominant eigenvalue, ρ, of emt+1 , and its corresponding eigenfunction, φt.
The eigenfunction and eigenvalue satisfy the equation

Et
[
emt+1φt+1

]
= eρφt,

which implies that the log of the permanent component is defined by

mP
t+1 = mt+1 − ρ+ log φt+1 − log φt.
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Given the affine structure of the real pricing kernel in (5), the eigenfunction will be
log-linear, log φt = k>xt, where k> = (b>A∗ − a>)(I − A∗)−1, and the permanent
component of the real pricing kernel is given by

mP
t+1 = −(b+ k)>BB>(b+ k)/2− (b+ k)>A∗0 − λ>t λt/2

+ [b>A− a> − k>(I − A)]xt + (b>B − λ>t + k>B)wt+1.

The covariance restriction in (12) is then

Et[m
P
t+1st+1] = [(b> − a>)(I − A∗)−1 − λ>t B−1]BB>d = 0. (13)

The first term in this expression is analogous to the permanent component of the
Beveridge-Nelson decomposition we saw previously. But here it is applied to the
process for the conditional mean of the risk-neutral distribution of the real pricing
kernel. The second term recognizes the fact that shocks to the pricing kernel may
also have a separate permanent effect through the price of risk. Therefore, we must
restrict the combined correlation through both channels.5

This provides us with a set of linear restrictions on d, one for each value of xt. Since
we need only one more restriction for our monetary policy identification exercise,
and since we are primarily concerned with restricting long-run behavior, we assume
that this conditional moment restriction holds when xt is equal to the mean of its
long-run distribution, Ext = 0, which implies

[(b> − a>)(I − A∗)−1 − λ>0 B−1]BB>(a− τπb− τgc) = 0. (14)

Note that given the dependence of this restriction on the price-of-risk parameters,
λ0 and λ (recall A∗ = A − Bλ), a well-specified pricing-kernel model is essential to
the construction of this second identifying restriction.6

5Following Hansen (2012), we can use mP
t+1 in our affine setup to form a “twisted” process for

the state variable analogous to the risk-neutral distribution, xt+1 = AP0 + APxt + Bwt+1, with
the property that the permanent component of the valuation of a random payoff exp{g>xt+1},
given by Et exp{mP

t+1 + g>xt+1} is equal to the expected value of that payoff under the twisted
process, EPt exp{g>xt+1}, where AP = A∗ and AP0 = (b − a)>(I − A∗)−1BB> + A∗0. In that
context, the restriction in (13) is equivalent to the restriction EPt st+1 = Etst+1. In other words,
the discretionary shock does not contribute any long-run real risk.

6The restriction in (14) still has content when the real asset pricing kernel corresponds to a
literally risk-neutral model, −mt+1 = rt. In that case, A∗ = A and λ0 = b>B, so that λt−b>B = 0.
The real marginal utility of wealth becomes a simple linear process with innovations given by the
real interest rate, so that its permanent component is given by the Beveridge-Nelson decomposition.
The identifying restriction in (14) reduces to (a> − b>A)(I −A)−1BB>d = 0, which still says that
the discretionary policy shock is uncorrelated with the permanent component in the real marginal
utility of wealth.
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Intuitively, the value-added of this asset-pricing-based restriction relative to the
quantity-based restriction in equation (10), is in the way it restricts the long-run
response of real risk prices to a discretionary monetary policy shock. To see this,
consider the log real pricing kernel in a typical new-Keynesian macro model like the
one discussed in Section 3.2, mt+1 = δ0 + δgt+1, which is based on a representative
agent with CRRA expected utility (we’re now interpreting gt+1 as real consumption
growth as in an endowment economy). The real risk prices in this model are constant
so that risk-neutral persistence is the same as physical persistence, i.e., A∗ = A. In
addition, from equation (17) we know that λ>0 B

−1 = δc> and (b − a)> = δc>A. In
this case, equation (14) reduces to c>(I − A)−1BB>d = 0. This is identical to the
restriction in equation (10). A simpler way to see this, of course, is just to note
that the moving-average coefficients in this linear time-series model of the log real
pricing kernel are equal to δ times the moving-average coefficients of gt+1, hence,
it’s permanent component is proportional to that of gt+1. And obviously, any model
that shares this feature with CRRA expected utility will likewise produce a redun-
dant restriction. Since this is not the case for our model with state-dependent risk
prices, equation (14) will add an additional restriction that we can use to identify
the parameters of monetary policy.

5 Empirical Results

Our empirical exercise proceeds sequentially. In the first step we estimate the pa-
rameters of the macro term-structure model detailed in Section 2. Note that the
restrictions in Section 4 that will ultimately identify monetary policy play no role
in this step. By design, the identification assumptions of the factor model outlined
in Section 2.2 do not restrict either the temporary or permanent components of the
pricing kernel. And the same is true for the factor loadings for macro variables in
equation (4) which are completely unrestricted. In other words, any equilibrium
implications of monetary policy or the restrictions in Section 4 will be captured in
the estimates of the macro term-structure model through the observed behavior of
interest rates, inflation, output growth, and multi-period bond yields.

The second step is to substitute the parameter values from this macro term-structure
estimation into the two restrictions that identify the monetary policy parameters
given in equations (10) and (14), and solve for estimates of τg and τπ. And those two
values will then imply a value for d = a− τπb− τgc. In that sense, the parameters of
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our monetary policy model will be just-identified even when the macro term-structure
model is over-identified.

5.1 Macro term-structure estimation

We estimate the affine term-structure model as outlined in Section 2 using quarterly
US data from 1980Q3 to 2019Q4 and Generalized Method of Moments based on
the conditional-moment restrictions of our model. (See the Appendix D for details.)
The sample period begins one year after Volcker’s ascendance as Fed chair to allow
his monetary regime to establish credibility.7 For the quarterly interest rate we
use the Fama-Bliss data (available from CRSP), and for longer-maturities we use
continuously compounded default-free pure-discount bond yields as measured by
Gürkaynak, Sack, and Wright (2007). All yields are measured on the last day of
the quarter. Real GDP growth rates are from the National Income and Product
Accounts, and core CPI inflation from the Bureau of Labor Statistics. Inflation is
measured as the quarter-to-quarter change in the average monthly CPI. Growth rates
are continuously compounded at annual rates. Figures 1 displays these standard data
for our sample period.

The results of GMM estimation are summarized in Table 1. The estimated parameter
values have a number of noteworthy features. The risk-neutral dynamics encoded
in the non-zero elements of A∗, are substantially more persistent than the actual
dynamics of the state space in A. The absolute values of the 4 eigenvalues of A,
which govern the persistence in the process for xt, are 0.9775, 0.6705, 0.6705, and
0.3180 (the middle pair correspond to complex conjugates). The diagonals of A∗

are 0.9961, 0.8814, 0.8348, and 0.3638, and they are very precisely estimated – a
consequence of the additional information in the cross-equation restrictions implied
by the absence of arbitrage – and are all significantly different than zero.

Many of the off-diagonal elements of the matrixB are significantly different from zero,
suggesting that our vector of state variables does not have orthogonal innovations.
This will play an important role when we explore the model’s dynamics below.

7Based on our understanding of the events of that time as summarized in Goofriend and King
(2005), it seemed prudent to avoid the temporary disruption caused by the imposition of credit
controls at the beginning of 1980, which the Fed was able to effectively work around by the summer
of that year. Since our focus will be on a stable Taylor rule we avoided using pre-Volcker data. The
end of our sample was dictated by the available data when we undertook the estimation.
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The inflation rate has significant loadings (the values of b) for all four factors. On
the other hand, real GDP growth has significant loadings (the values of c) for only
the first three factors. This suggests that the model is capturing a purely nominal
feature in the data with the fourth latent factor.

The average price of risk, λ0, is negative for all four latent factors and appears to be
different from zero for three of the four factors. For the third factor – the third most
persistent under the risk-neutral distribution – it is both small in absolute value and
statistically insignificant. The average price of risk for the first factor – the most
persistent factor under the risk-neutral distribution – is negative and close to zero,
but it is statistically significant. The least persistent factor has an average prices of
risk that is relatively larger and is statistically significant.

Finally, since we will be basing our monetary-policy identification on the decompo-
sition of the real pricing kernel into permanent and transitory components, it would
be reassuring if those components were consistent with asset-pricing restrictions be-
yond the term-structure moments used in estimation. Alvarez and Jermann (2005)
propose using an entropy bound for this purpose. (See Appendix C for closed-form
expression for various measures of entropy for our model.) At our point estimates,
the ratio of unconditional entropy of the permanent component of the real pricing
kernel to the unconditional entropy of the real pricing kernel itself is 1.0267, which
is consistent with the estimates of lower bounds provided in Alvarez and Jermann
(2005).

5.2 Monetary policy estimation

Given estimates of the parameters of the macro term-structure model and the two
additional restrictions in equations (10) and (14), we can identify the target rate
parameters, τ0, τπ, and τg, as well as the factor loadings for policy discretion, d.
Note that once we have identified τπ and τg, identification of τ0 and d follows from
equation (6): τ0 = a0 − τπb0 − τgc0 and d = a − τπb − τgc. Estimates of these
parameters are presented in the bottom panel of Table 1. Asymptotic standard
errors are calculated using the delta method. (See the Appendix for details.)

It is both reassuring and surprising that although we have adopted a novel asset-
pricing approach for identification, the estimates for the Taylor rule parameters are
quite conventional. The coefficient on πt is 1.6230, which safely satisfies the Taylor-
principle stability condition, τπ > 1. It is larger than Taylor’s original specification
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of τπ = 1.5, suggesting a somewhat more aggressive inflation policy. Our estimate of
τg is 0.6532, which is quite close to Taylor’s value of τg = 0.5, however, the units are
difficult to compare directly as we use output growth rather than deviations from a
potential-output trend.

The estimates of the factor loadings for the policy discretion term, d, are significant
for only two of the four factors. The loading on the first factor – the most persistent
factor – is small and insignificant, which stands in contrast to real GDP growth which
has a small but significant loading on that factor. But similar to GDP growth, the
policy shock does not appear to depend on the fourth factor. If we interpret that
factor as a purely nominal factor, then this suggests that policy discretion is not
its source. On the other hand, st depends significantly on the second and third
factors, but in the opposite direction to GDP growth, which suggests a smooth-
ing role for discretion. This two-factor structure is consistent with the findings of
Gürkaynak, Sack, and Swanson (2005b), who exploit high-frequency data around
FOMC announcements to measure changes in st directly, which they then relate to
high-frequency movements in asset-pricing factors.

To get a sense of the sign and the magnitude of these policy shocks, the upper panel
of Figure 2 plots the Taylor rule with and without the discretionary shock st. Notice
how much smoothness policy discretion imparts to the short rate relative to the target
rate. In addition, we observe large and persistent discretionary tightening prior to the
last three recessions, followed by large and persistent discretionary easing after those
recessions. The zero lower bound shows up as large positive discretionary tightening
in 2009-2010, followed by persistent discretionary easing over the subsequent post-
crisis years of our sample.

How exactly does our identification strategy separate the observable effects of iRt and
st? Our numerical estimates may help clarify this natural question. Consider two
models, the first has no policy discretion so that it = τ̂0 + τ̂ππt + τ̂ggt. The implied
values are τ̂π = 2.5590 and τ̂g = 0.8371 (using d2 and d3), which are not unreasonable
but imply a more aggressive policy than most central banker’s would likely admit to.
The second model has discretion policy, but it looks just like the policy rule itself,
st = dππt + dggt, so that it = τ0 + (τπ + dπ)πt + (τg + dg)gt. Obviously, without
further structure, the two models are identical. To separate the effect of dπ and dg
from τπ and τg, we also assume that the policy maker wants the nominal interest-rate
risk created by their discretion to be uncorrelated with the levels of the long-run
real economy. That means we need to impose the two linear restrictions given by
equations (10) and (14) on this second model. This results in parameters for this
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theory of policy discretion of dπ = 0.9360 and dg = 0.1838, which in turn imply our
estimates for the policy rule, τπ = 1.6230 and τg = 0.6532. The policy maker’s
discretion amplifies the response to inflation and output growth of a less aggressive
policy rule, but in a limited way that insures that the long-run risk for the levels of
the real economy are unaffected.

Is this simple example a good structural model of policy discretion? Almost certainly
not since it implies that the short rate is spanned by inflation and output growth,
which is easy to reject. But more generally, we don’t take a stand on those kinds
of questions. Building deeper structural models of policy discretion is beyond the
scope of this paper, as is building a deeper structural model of our reduced-form
parameters for the pricing kernel, output growth, and inflation. Nonetheless, by
identifying the reduced-form parameters of policy discretion using restrictions that
are consistent with a wide range of different theories, we have provided an important
first step in this broader research program. We know that to be consistent with term-
structure evidence, any structural model of preferences must result in a marginal rate
of intertemporal substitution that looks like our estimated affine pricing kernel. Now
we also know that to be consistent with the evidence, any structural model of policy
discretion must have a reduced-form that looks like our estimate of d.

6 Implications of monetary policy shocks

Since we have identified the parameters of the target rate and the policy disturbance
as part of a dynamic macro term-structure model, we can use that model to get a
better understanding of how policy shocks are related to the rest of the economy.
We consider both unconditional moments and dynamic correlations. We also use
our identification of the discretionary shock to shed light on some historical policy
conundrums.

6.1 Unconditional moments

Equation (3) provides us a simple way to decompose the nominal term premiums into
a target-rate component and a discretionary policy component. Note that the factor
loading for the short rate satisfies the restriction a = aR + d, where aR = τπb + τgc
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is the policy rate factor loading attributable to the target rate, iRt . Therefore, the
expected value of the forward premium can be written as

E[fp
(h)
t ] = (aR)>A∗(h)A∗0 − (aR)>A∗(h)BB>A∗(h)>(aR)/2

+ d>A∗(h)A∗0 − d>A∗(h)BB>A∗(h)>d/2
− (aR)>A∗(h)BB>A∗(h)>d.

(15)

The first line in equation (15) is the part of the average forward premium that is
attributable to the target rate, the second line is attributable to policy discretion,
and the third line captures their interaction through the “convexity” term.8

The blue line in Figure 3 is the fraction of the expected value of the forward premium
that we can attribute to policy discretion. You can see that it is very small for
short-maturity bonds. Almost all of the average premium for short bonds seems to
be associated with the the target rate. This share rises steadily, however, before
settling down at approximately 20% for long maturity bonds.

We can do a similar exercise for the unconditional variance of the forward premium.
Equation (3) implies that the variance of the forward premium can be written as

Var[fp
(h)
t ] = (aR)>(A∗h − Ah)Vx(A∗h − Ah)>(aR)

+ d>(A∗h − Ah)Vx(A∗h − Ah)>d
+ 2(aR)>(A∗h − Ah)Vx(A∗h − Ah)>d,

(16)

where once again we interpret the first term in equation (16) as the part of the
variance of the forward premium attributable to the target rate, the second term is
the part attributable to policy discretion, and the third term captures the covariance
between iRt and st.

The red line in Figure 3 plots the share of the variance of the forward premium that
we can attribute to policy discretion. It is at more than 15% for all maturities and
rises to approximately 20% around one-year maturities. In other words, a nontrivial
fraction of the volatility we see in nominal risk premiums is associated with volatility
in discretionary policy.

8Following Campbell and Ammer (1993), we apportion the conditional covariance that appears
in the “convexity” term of the unconditional mean of the forward premium equally across the two
variables. We do the same for the unconditional variance of the forward premium in equation (16).
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6.2 Dynamic properties

Our model has a VAR structure, so it is tempting to consider impulse response
functions as a way to track marginal dynamic responses to specific shocks. However,
our identifying assumptions do not create an orthogonal system of shocks. Rather,
the identified policy shocks are potentially affected by the entire vector of innovations,
wt, as are the other variables in the model.

Therefore, we measure the average dynamic response of an endogenous variable, say
zt, with a factor loading of, say β, i.e., zt = β>xt, to a shock to monetary policy,
it+1 − Etit+1, as the dynamic covariance:

Covt(zt+j, it+1 − Etit+1) = β>Aj−1BB>a,

for j ≥ 1. In fact, given our separate identification of the target rate, iRt , from the
policy discretion term, st, we can say even more. To measure the average dynamic
response of an endogenous variable to a shock to the target rate, iRt+1 − EtiRt+1, we
can calculate the dynamic covariance:

Covt(zt+j, i
R
t+1 − EtiRt+1) = β>Aj−1BB>(aR).

Likewise, to measure the average dynamic response of an endogenous variable to a
shock to policy discretion, st+1 − Etst+1, we can calculate the dynamic covariance:

Covt(zt+j, st+1 − Etst+1) = β>Aj−1BB>d.

By substituting the appropriate factor loadings for output growth, inflation, bond
yields, etc., in place of β in these formulas, we can get a sense of how the different
sources of monetary policy shocks are related to different aspects of the economy. To
control for scale we report these covariances as correlation coefficients. And again we
caution the reader not to interpret these as impulse responses. Even though they are
similar in appearance, as bivariate correlations, they contain different information.

In Figure 4, we plot these dynamic correlations for the two macro variables in our
empirical model, inflation and real output growth. The top panels display the com-
bined effect of a policy shock. The lower panels decompose that shock into its two
components, with the blue line representing a shock to the target rate and the red
line representing a shock to policy discretion. (Dashed lines represent 2-standard
deviation confidence bounds.)
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We find that an unexpected shock to the policy rate is positively correlated with
unexpected inflation. The correlation is large and persistent remaining significantly
different from zero out to about 3 years. That is, inflation today is still correlated
with policy shocks from three years ago. The two components of the policy shock
have similar effects, but policy discretion is less correlated and that correlation is
less persistent. Our model fails to find much of a relationship between unexpected
shocks to real output growth and unexpected shocks to the policy rate. However, that
appears to be the result of offsetting effects of the two components of that policy
shock. A shock to the target rate is positively correlated with shocks to output
growth, whereas an unexpected shock to policy discretion is negatively correlated.
Both of these are significant, but neither is very persistent becoming indistinguishable
from zero after 2 or 3 quarters.

To summarize, unexpected easing through the target rate tends to coincide with
good macroeconomic news on inflation and bad news on growth. This is almost a
necessary feature of the model given the structure of the Taylor rule. Discretionary
easing also tends to coincide with good news on inflation, but in contrast to the
target rate, it coincides with good news on growth. And as discussed in Section
4, although our identifying assumptions necessarily places a restriction across the
parameters of the macro term-structure model and the discretionary shock, they do
not dictate either the size or the sign of these correlations. Rather these correlations
are implications of the data.

In Figure 5 we repeat this exercise for the short rate, i.e., the policy rate, and the five-
year bond yield. The response of the short rate to a policy shock is obviously perfectly
correlated with itself, but it is also persistently correlated with future interest rates
remaining significant beyond 3 years. And echoing the behavior we saw for inflation,
the response of the short rate is similar for shocks coming from either source, with
the correlation of policy discretion being both smaller and less persistent.

On the right side of Figure 5 we see that an unanticipated shock to the policy
rate is positively correlated with shocks to the long end of the yield curve measured
here with the 5-year bond yield. And that correlation is also quite persistent. This is
consistent with evidence that motivates the search for additional sources of monetary
policy shocks as in Boyarchenko, Haddad, and Plosser (2017), Gürkaynak, Sack,
and Swanson (2005a), and Hanson and Stein (2015). What we see from the lower
panel, however, tells a very different story depending on the source of the policy
shock. Shocks to the long bond yield are not correlated with discretionary policy
shocks. The relationship between a policy-rate shock and shocks to long bond yields
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is attributable entirely to the correlation with the shock to the target rate. Once
again, this is not a feature of the model or the way we identify the policy discretion
term. In principle our model has the freedom to take on virtually any correlation
pattern with any variable. This outcome is strictly a feature of monetary policy as
reflected through our data.

We can also think of these patterns in terms of the customary level and slope factors
of empirical term-structure models. A monetary policy easing originating in a shock
to the target rate tends to coincide with an unexpected decrease in the level of the
yield curve since its behavior is similar at both the long and short ends of the curve.
Discretionary policy easing, however, tends to coincide with an unexpected increase
in the slope of the yield curve since it is only related to movements at the short end
of the curve. These correlations are depicted in Figure 6.

Long-term bond yields embed forecasts of future interest rates as well as risk pre-
miums. We have already observed that policy-rate shocks from both sources have
persistent positive correlations with future interest rates. But what about risk pre-
miums? Nominal forward premiums given in equation (3) provide a clean decompo-
sition of these two effects. Figure 7 plots dynamic correlations of forward premiums
shocks with policy-rate shocks for short-maturity forward rates of 3 months and long-
maturity forward rates of maturity 5 years. The top panels suggest that nominal risk
premium shocks may have a small and short-lived negative correlation with policy-
rate shocks. However, once again, this is masking two very different and offsetting
effects for each of the sources of the policy-rate shock. The correlation of risk premi-
ums at the very short end of the maturity structure with a shock to policy discretion
is positive but short-lived. The correlation of risk premium on long-maturity bonds,
on the other hand, are negative and more persistent (significant out to about one
year). In contrast, the correlation with shocks to the target rate are negative for both
long and short maturities, but the lagged correlation becomes significantly positive
for long maturities. In other words, the risk characteristics of monetary policy shocks
depends very much on the source of those shocks.

To summarize, an unanticipated easing originating with the target rate tends to be
associated with bad news about financial conditions summarized by higher-than-
expected risk premiums on nominal bonds of both long and short maturities. On the
other hand, an unanticipated easing of discretionary policy tends to coincide with
good news in the form of lower-than-expected risk premiums on short-term nominal
bonds, but bad news in the form of higher-than-expected risk premiums on long-term
nominal bonds.
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6.3 Policy conundrums

Without a structural model of the fundamental source for policy discretion we can
only speculate on the cause of the correlations we find. However, these results do
cast some light on the so-called conundrum that has puzzled policy makers in the
past: long nominal bond yields often move in ways that appear disconnected from
discretionary policy as depicted in Figure 5. Alan Greenspan (1994) attributed the
increase in long yields in early 1994 to expectations of increases in future values of gt
and πt: “In early February, we thought long-term rates would move a little higher as
we tightened. The sharp jump in [long] rates that occurred appeared to reflect the
dramatic rise in market expectations of economic growth and associated concerns
about possible inflation pressures.” What our results and Figure 2 suggest is that
the policy tightening through the tightening of the target rate was larger than the
overall increase in the policy rate and that discretionary easing continued until 1995.
As we’ve seen, target rate shocks tends to coincide with increases in the level of
long bond yields, whereas discretionary easing is unrelated to those yields. In other
words, this particular combination of target-rate and discretionary policies tends to
coincide with both an increase in the level of the yield curve and and increase in its
slope, which seems to be what Chairman Greenspan found puzzling.

A decade later Greenspan (2005) once again voiced puzzlement regarding the behav-
ior of long yields: “Long-term interest rates have trended lower in recent months even
as the Federal Reserve has raised the level of the target federal funds rate by 150 ba-
sis points. Historically, even distant forward rates have tended to rise in association
with monetary policy tightening... For the moment, the broadly unanticipated be-
havior of world bond markets remains a conundrum.” What our findings and Figure
2 suggest is that much of the tightening of the target rate in the years prior to this
episode was undone through the discretionary part of policy. Discretionary easing
had averaged about 200 basis points in the previous three years. Discretionary tight-
ening then averages more than 200 basis points in the subsequent three years. In
this case, this particular combination of target-rate and discretionary policies tends
to coincide with not just an increase in the level of the yield curve as Chairman
Greenspan expected, but also a decrease in its slope.

To get a visual image of these correlations, the lower panel of Figure 2 plots the
discretionary shock, st, along with a standard measure of the slope of the yield curve,
the 5-year forward spread, f

(20)
t − it. The negative correlation between shocks to

discretionary monetary policy and the slope of the yield seems to be a fairly consistent
pattern throughout this time period, not just during Greenspan’s conundrums.
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7 Conclusion

We estimate a macro term-structure model and use it, along with long-run restric-
tions that are consistent with a wide-variety of both new-Keynesian and classical
monetary models, to arrive at a novel identification of shocks to discretionary mone-
tary policy. We explore the properties of discretionary shocks through their dynamic
correlations with shocks to macroeconomic and financial market conditions. To ar-
rive at a deeper understanding of the causes and consequences of the empirical facts
we uncover, the challenge we now face is to develop plausible structural models of
the fundamental sources of discretionary shocks that are capable of accounting for
the strong connection we see in the data between these shocks and financial-market
conditions.

The value we derive from integrating asset-pricing models with time-varying risk pre-
miums into the identification and estimation of monetary policy was foreshadowed by
Backus and Wright (2007). They concluded that analyzing monetary policy through
the narrow lens of constant risk premiums was problematic: “We follow a long line
of work in suggesting that expectations-hypothesis intuition, based on constant term
premiums, is likely to be misleading.” They saw a need for research that connected
monetary policy to fundamental shocks and ultimately to risk premiums embedded
in interest rates: “The next step, in our view, should be to develop models in which
macroeconomic policy and behavior can be tied more directly to the properties of
interest rates.” We believe the findings summarized in this paper demonstrate the
value of this insight, and that future work in this area will continue to benefit from
the integration of models of macroeconomic policy with models of asset pricing.
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Table 1. GMM estimation

I. State dynamics

A B
0.9169 0.2825 0.2617 0.6601 0.0022 0 0 0

(0.0400) (0.0459) (0.0588) (0.1311) (0.0002)

0.4680 0.5501 -0.0713 -0.9401 -0.0056 0.0110 0 0
(0.1885) (0.0623) (0.0354) (0.4700) (0.0030) (0.0048)

-0.4394 0.1510 0.7531 0.6428 0.0042 -0.0111 0.0022 0
(0.1676) (0.0766) (0.0686) (0.4458) (0.0031) (0.0051) (0.0002)

0.0028 -0.0668 -0.0570 0.4147 -0.0004 0.0010 -0.0010 0.0014
(0.0036) (0.0215) (0.0287) (0.0722) (0.0003) (0.0005) (0.0003) (0.0001)

II. Term-structure model

A∗ λ0 b c
0.9961 0 0 0 -0.0625 0.4947 0.0158

(0.0006) (0.0053) (0.0060) (0.0071)

0 0.8814 0 0 -0.1421 0.4243 -0.1025
(0.0020) (0.0191) (0.0126) (0.0379)

0 0 0.8348 0 -0.0128 0.4751 -0.2578
(0.0035) (0.0355) (0.0169) (0.0438)

0 0 0 0.3638 -0.5803 0.5927 0.0311
(0.0102) (0.0777) (0.0181) (0.1221)

III. Taylor rule

τπ τg d>

1.6230 0.6532 0.1868 0.3783 0.3973 0.0177
(0.3122) (0.2164) (0.1549) (0.1471) (0.1939) (0.1732)

Note. Based on moment restrictions in equations (22) and (23) for a sample period 1980Q3 to

2019Q4. Asymptotic standard errors are in parentheses. State dynamics: xt+1 = Axt + Bwt+1.

Macro term-structure model: it = a0 + a>xt, πt = b0 + b>xt, gt = c0 + c>xt, hy
(h)
t = B(h)0 +B(h)xt,

and B(h) = a>(I−A∗)−1(I−A∗h), B(h)0 = a0+B(h−1)0 −B(h−1)Bλ0−B(h−1)BB>B(h−1)>/2. Policy:

it = τ0 + τππt + τggt + d>xt. The state variable xt is 4-dimensional, it is the short interest rate

(1 quarter), y
(h)
t is the yield on a discount bond of maturity h = 4, 12, 20, 40 (quarters), πt is the

inflation rate, gt is the growth rate of real GDP, and a> = [1 1 1 1]. Values for intercepts are fixed

at their sample means. The absolute value of the eigenvalues of A are 0.9775, 0.6705, 0.6705, and

0.3180.
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Figure 1. US GDP growth, CPI inflation, and yields

85Q1 90Q1 95Q1 00Q1 05Q1 10Q1 15Q1
-10

-5

0

5

10
g

85Q1 90Q1 95Q1 00Q1 05Q1 10Q1 15Q1

0

5

10

15 i

y(20)

y(40)

Note: The time period is 1980Q3 to 2019Q4. Real GDP growth is from the NIPA and CPI
inflation is from the BLS, both downloaded from FRED. The short rate is from Fama and Bliss
(available from CRSP), and yields are from Gürkaynak, Sack, and Wright (2007). (Along with
these 3 maturities, we also used a 12-quarter yield in our estimation, which is not plotted to avoid
making the graph too dense.) All variables are percentages, continuously compounded at annual
rates.
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Figure 2. Target-rate and discretionary policy shocks
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Note: The top panel plots the policy rate including the discretionary shock, i.e., the short rate,
and excluding the shock, i.e. the target rate, iRt = τ0 + τππt + τggt using estimated parameter
values for τ0, τπ, and τg from Table 1. The difference is the value of the shock, st, plotted in the

lower panel along with the 5-year forward spread, f
(20)
t − it, i.e., a long forward rate minus the

current interest rate.

35



Figure 3. Forward premium share of discretionary policy
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Note: The blue line plots the fraction of the unconditional mean of the forward premium that is
attributable to the discretionary policy shock. The red line plots the fraction of the unconditional
variance of the forward premium that is attributable to the discretionary policy shock.
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Figure 4. Dynamic correlations: Macro variables
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Note: The top panels plots the dynamic correlation with a shock to the policy rate for inflation
and real output growth. The lower panels decompose this into the two sources for a policy shock,
with the blue line representing a shock to the target rate and the red line representing a shock to
policy discretion. Dashed lines represent 2-standard-deviation confidence bounds.
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Figure 5. Dynamic correlations: Interest rates
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Note: The top panels plots the dynamic correlation with a shock to the policy rate for the short
rate and the 5-year bond yield. The lower panels decompose this into the two sources for a policy
shock, with the blue line representing a shock to the target rate and the red line representing a
shock to policy discretion. Dashed lines represent 2-standard-deviation confidence bounds.
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Figure 6. Dynamic correlations: Level and slope factors
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Note: The top panels plots the dynamic correlation with a shock to the policy rate for the the level
and slope factors calculated from the first two principal components of the variance of a vector of
forward rates for maturities 1 to 5 years. The lower panels decompose this into the two sources for a
policy shock, with the blue line representing a shock to the target rate and the red line representing
a shock to the policy disturbance. Dashed lines represent 2-standard-deviation confidence bounds.
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Figure 7. Dynamic correlations: Risk premiums
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Note: The top panels plots the dynamic correlation with a shock to the policy rate for the forward
risk premiums at horizons of 3-month and 5-years. The lower panels decompose this into the two
sources for a policy shock, with the blue line representing a shock to the target rate and the red
line representing a shock to the policy disturbance. Dashed lines represent 2-standard-deviation
confidence bounds.
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Appendix

A Equilibrium term structure

Given the nominal pricing kernel in equation (2) and the linear transition equation

(1), the absence of arbitrage implies that the date-t price, q
(h)
t , of a default-free

pure-discount bond that pays $1, at date t+ h, h > 0, is log-linear in the state:

− log q
(h)
t = B(h)

0 + B(h)xt.

where

B(h) = a>A∗(h)

B(h)
0 = ha0 +

( h−1∑
j=1

B(j)
)
A∗0 −

h−1∑
j=1

B(j)BB>B(j)>/2

A∗(h) = (I − A∗)−1(I − A∗h)
A∗ = A−Bλ
A∗0 = −Bλ0,

and q
(0)
t = 1 implies the initial conditions B(0)

0 = 0 and B(0) = 0. A∗0 is referred to
as the risk-neutral mean of xt, and A∗ is referred to as the risk-neutral persistence
of xt associated with the pricing kernel m$

t+1. That is, if the dynamics of the state
variable were given by the risk-neutral process xt = A∗0 + A∗xt−1 + Bwt, then the
date-t price of any arbitrary random future nominal payoff, say F (xt+1), would be
given by e−itE∗t [F (xt+1)], where E∗ denotes the expected value using the risk-neutral
process.

B Lack of identification in macro models

Cochrane’s example showing the lack of identification of Taylor rule parameters ex-
tends to models with more macroeconomic structure. Demonstrating this for a num-
ber of standard models is instructive both for understanding the general identification
problem and our particular identification strategy.

41



B.1 A structural real pricing kernel

Consider a model in which the real interest rate is endogenous and correlated with
real output growth as in Gallmeyer, Hollifield, Palomino, and Zin (2007). A simplified
version of the log of the real pricing kernel that is commonly used in structural macro
models is

−mt+1 = δ0 + δgt+1,

where δ0 and δ are structural parameters. Assume, for the sake of simplicity, that δ0
and δ are known. we maintain the usual notation for the state variable’s dynamics,
xt = Axt−1 +Bwt, and gt+1 = c0 + c>xt+1, and assume that c0, c, A, and B are also
known. The log of the nominal pricing kernel is given by in (2),

−m$
t+1 = δ0 + δgt+t + πt+1

= δ0 + δc0 + b0 + (δc+ b)>Axt + (δc+ b)>Bwt+1.

This model is equivalent to the more general affine model in (2) with the added
parameter restrictions

a> = (δc+ b)>A

λ = 0

a0 = δ0 + δc0 + b0 − (δc+ b)>BB>(δc+ b)/2

λ>0 = (δc+ b)>B.

(17)

None of these restrictions involve τ0, τπ, τg, or d, hence, even though they serve to
over-identify the parameters of the macro term-structure model, they play no role in
identifying the Taylor rule. The system of equations in (9) is now

b> = [d> + c>(τgI − δA)](A− τπI)−1

b0 = [τ0 + (τg − δ)c0 − δ0 + (δc+ b)>BB>(δc+ b)/2]/(1− τπ),
(18)

which is a system of n + 1 equations in n + 3 unknown policy parameters, τ0, τπ,
τg, and d. Even with this additional economic structure, the policy rule is still
under-identified.

B.2 A model with a Phillips curve

A similar result holds for models that introduce a correlation between inflation and
real output growth through a Phillips curve, as in Gallmeyer, Hollifield, and Zin
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(2005), and many others. For example, consider adding to Cochrane’s pricing kernel
a simple Phillips curve given by

πt = κπEtπt+1 + κggt,

where κπ and κg are structural parameters. Assume again, for the sake of simplicity,
that κπ and κg are also known. We now have a two-dimensional rational expectations
model in the forward-looking endogenous variables πt and gt. Maintaining the same
notation, we can denote the solutions for these variables as πt = b0 + b>xt and
gt = c0 + c>xt. The Phillips curve imposes a restriction across these two processes

c> = b>(I − κπA)/κg

c0 = b0(1− κπ)/κg.

which then alters the interest rate solution

b> = d>[(1 + κπτg/κg)A− (τπ + τg/κg)I]−1

b0 = (τ0 − r)/[1− τπ − τg(1− κπ)/κg].
(19)

The restrictions in (19) are different in form than those in (9) or (18), but they share
the same unavoidable under-identification: n + 1 equations with n + 3 unknowns.
Unless additional restrictions that involve the policy parameters are imposed on the
model, monetary policy remain unidentified. And this is in the best-case scenario in
which there are no identification issues with any other parameters of the model.

B.3 A forward-looking Taylor rule

Many specifications of the Taylor rule include a forward-looking expected inflation
term, such as

it = τ0 + τππt + τggt + deEtπt+1 + st,

where de is a constant parameter. There are two ways to view this addition. In
our terminology, the expected-inflation component could be considered part of the
“rule” or it could be considered policy “discretion”. This distinction is irrelevant for
the solution of the model, but we will return to it later so that we can better align
this example with the approach of our empirical model.

Assume that the log of the real pricing kernel is given by an AR(1) as in the first
example above,

−mt+1 = δ0 + δc0 + δc>Axt + δc>Bwt+1.
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Given the policy rule and the real pricing kernel, we can solve for the inflation
process consistent with an equilibrium nominal short rate. Once again, we guess a
linear solution,

πt = b0 + b>xt,

so that expected future inflation is given by

Etπt+1 = b0 + b>Axt.

Once again, the log of the nominal pricing kernel combines the log of the real kernel
with the inflation rate:

−m$
t+1 = −mt+1 + πt+1

= δ0 + δc0 + b0 + (δc+ b)>Axt + (δc+ b)>Bwt+1,

which implies a nominal interest rate,

it = − logEte
m$

t+1

= a0 + (δc+ b)>Axt.

Therefore, the inflation process consistent with an equilibrium short rate must satisfy
the equation

a0 + (δc+ b)>Axt = τ0 + τππt + τggt + deEtπt+1 + st.

The factor loading, therefore, must satisfy

(δc+ b)>A = τπb
> + τgc

> + deb
>A+ d>,

which implies
b> = [d> + c>(τgI − δA)][(1− de)A− τπI]−1,

which reduces to (18) when de = 0. There are three things to note about this
equilibrium. Firstly, the parameter de affects the factor loadings for inflation and
the nominal interest rate and, hence, their means and volatilities. But de does
not affect the dynamics of either process: their autocorrelation functions are still
determined solely by the matrix A. Secondly, augmenting the Taylor rule to include
a forward-looking expected inflation term did not change the basic identification
problem. Even if de were known with certainty, τπ and τg are still unidentified. And
if de is also unknown, the lack of identification is even worse: we would need yet
another restriction on the model to separately identify de beyond the restrictions
that we need to identify τπ and τg. Finally, note that our empirical analysis is
consistent with this interest-rate rule. The policy discretion term absorbs the effect
of forward-looking policy and the factor loadings for discretion are [deb

>A+ d>].
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B.4 A Taylor rule with a lagged interest rate

Popular applications of the Taylor rule often include a lagged interest-rate term,
presumably to capture the central bank’s desire to smooth interest-rate changes. To
see how this interest-rate smoothing behavior is captured by the policy discretion
term in our abstract state-space representation, it is instructive to work out a simple
example.

We continue with an AR(1) representation for the log of the real pricing kernel:

−mt+1 = δ0 + δc0 + δc>xt+1.

The Taylor rule now includes a lagged interest rate to capture discretionary smooth-
ing:

it = τ0 + τππt + τggt + dsit−1 + st,

where ds is a constant parameter. Evidently, for this equation to hold, the equilibrium
nominal interest-rate process must be an infinite-order distributed lag in πt, gt and
st, which suggests that to solve for the equilibrium, we need to work with a state
space that defines the infinite-order MA representation of xt,

{Bwt, Bwt−1, Bwt−2, . . .}.

We then guess a linear process for the equilibrium inflation rate that can accommo-
date this infinite-order distributed lag structure,

πt = b0 + γ>0 Bwt + γ>1 Bwt−1 + γ>2 Bwt−2 + . . . ,

where b0 and γj, j = 0, 1, 2, . . . are to be found. The log of the nominal pricing kernel
combines the log of the real kernel with the inflation rate as before:

−m$
t+1 = −mt+1 + πt+1

= δ0 + δc0 + b0 +
∞∑
j=0

(δc>Aj + γ>j )Bwt+1−j,

which implies a nominal interest rate,

it = a0 +
∞∑
j=0

(δc>Aj+1 + γ>j+1)Bwt−j.
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Therefore, the inflation process consistent with an equilibrium short rate must satisfy
the equation

a0 +
∞∑
j=0

(δc>Aj+1 + γ>j+1)Bwt−j = τ0 + τππt + τggt + dsit−1 + st

= τ0 + τπb0 + τgc0 + dsa0

+ τπ

∞∑
j=0

γ>j Bwt−j + τg

∞∑
j=0

c>AjBwt−j

+ ds

∞∑
j=0

(δc>Aj+1 + γ>j+1)Bwt−1−j +
∞∑
j=0

d>AjBwt−j.

Aligning terms we have

γ>0 = [c>(δA− τgI)− d>]/τπ + γ>1 /τπ

γ>j = [c>(δA− (τg + dsδ)I)− d>]Aj/(τπ + ds) + γ>j+1/(τπ + ds), j ≥ 1.

If A/(τπ + ds) is a stable matrix, we can solve these recursions to obtain

γ>0 = [d> + c>(τgI − δA)][A− (τπ + ds)I]−1(τπ + ds)/τπ + dsδc
>A[A− (τπ + ds)I]−1/τπ

γ>1 = [d> + c>((τg + dsδ)I − δA)][A− (τπ + ds)I]−1A

γ>j+1 = γ>j A, j ≥ 1,

which implies that inflation is a vector ARMA(1,1) process. This in turn, implies
that the nominal pricing kernel also follows a vector ARMA(1,1) process. On the
other hand, since

δc>Aj+1 + γ>j+1 = (δc>A+ γ>1 )Aj, j ≥ 0,

the nominal interest rate, it, is still an AR(1) with ds affecting only its factor load-
ings through γ1. In other words, the smoothing parameter ds affects the mean and
variance of the interest rate, but perhaps counter-intuitively, not its autocorrelation
function which is still governed solely by A.

There are a two things to note about this equilibrium. Firstly, the parameter ds
clearly affects the dynamics of the model: when ds = 0, inflation and the log of the
nominal pricing kernel exhibit the same AR(1) dynamics as the original state variable,
but when ds 6= 0, both of these processes become ARMA(1,1). In both cases, the
nominal interest rate has the same AR(1) dynamics as the original state variable,
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hence, the dynamics of interest rates do not identify the value of ds. Secondly,
augmenting the Taylor rule to include an interest-rate smoothing term did not change
the basic identification problem. Even if ds were known with certainty, τπ and τg are
still unidentified. And if ds is also unknown, the lack of identification is even worse:
we would need yet another restriction on the model to separately identify ds beyond
the restrictions that we need to identify τπ and τg.

In the context of our basic state-space model, the presence of a lagged endoge-
nous variable in the Taylor rule via interest-rate smoothing is reflected in a higher-
dimensional AR(1) state variable – the abstract state variable would now need to
have a dimension 2n where n is the dimension of xt. For example, we could define
the abstract state variable as

x̂t =

[
Bwt∑∞

j=0A
jBwt−1−j

]
which will have a VAR(1) representation

x̂t = Âx̂t−1 + B̂ŵt, where Â =

[
0 0
I A

]
, B̂ =

[
B 0
0 0

]
,

and ŵt = [wt 0]>. Expressed as linear functions of this new state variable, the factor
loadings for the nominal interest rate, inflation, and the discretionary policy shock
are given by

â> = [δc>A+ γ>1 (δc>A+ γ>1 )A]

b̂> = [γ>0 γ>1 ]

d̂> = [d> d>A+ ds(δc
>A+ γ>1 )].

C Entropy of the real pricing kernel

The log real pricing kernel is given by

mt+1 = m$
t+1 + πt+1

= (b0 − a0) + (b>A− a>)xt − λ>t λt/2 + (b>B − λ>t )wt+1.

The conditional entropy of the real pricing kernel is

Lt
(

exp{mt+1}
)

= logEt
(

exp{mt+1}
)
− Et

(
mt+1

)
= b>BB>b/2 + b>A∗0 + λ>0 λ0/2 + [b>(A∗ − A) + λ>0 λ]xt + x>t λ

>λxt/2,
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which has an unconditional expected value

ELt
(

exp{mt+1}
)

= b>BB>b/2 + b>A∗0 + λ>0 λ0/2 + tr(λVxλ
>)/2,

where we’ve used the result E[x>t λ
>λxt] = tr[Var(λxt)] = tr(λVxλ

>).

The conditional mean of the real pricing kernel is

Et exp{mt+1} = exp{(b0 − a0) + b>A∗0 + b>BB>b/2 + (b>A∗ − a>)xt},
which has an unconditional entropy of

L
(
Et exp{mt+1}

)
= logE

(
Et exp{mt+1}

)
− E log

(
Et exp{mt+1}

)
= (b>A∗ − a>)Vx(A

∗b− a)/2.

Combine these two components to calculate the unconditional entropy of the real
pricing kernel

L
(

exp{mt+1}
)

= ELt
(

exp{mt+1}
)

+ L
(
Et exp{mt+1}

)
= b>BB>b/2 + b>A∗0 + (b>A∗ − a>)Vx(A

∗b− a)/2

+ λ>0 λ0/2 + tr(λVxλ
>)/2.

We can do comparable calculations for the the permanent component of the real
pricing kernel whose log is given by

mP
t+1 = −(b+ k)>BB>(b+ k)/2− (b+ k)>A∗0 − λ>t λt/2

+ [b>A− a> − k>(I − A)]xt + (b>B − λ>t + k>B)wt+1.

where k> = (b>A∗ − a>)(I − A∗)−1.

The conditional entropy is given by

Lt
(

exp{mP
t+1}

)
= (b> + k>)BB>(b+ k)/2− (b+ k)>Bλ0 + λ>0 λ0/2

+ [−(b+ k)>B>λ+ λ>0 λ]xt + x>t λ
>λxt/2,

which has an unconditional expected value

ELt
(

exp{mP
t+1}

)
= (b> + k>)BB>(b+ k)/2− (b+ k)>Bλ0 + λ>0 λ0/2 + E[x>t λ

>λxt]/2

= (b∗ − a∗)>BB>(b∗ − a∗)/2 + (b∗ − a∗)A∗0 + λ>0 λ0/2 + tr(λVxλ
>)/2,

where (b∗ − a∗)> = (b− a)>(I − A∗)−1.

The conditional mean of the permanent component is equal to 1 by construction, so
it’s unconditional entropy is 0 by construction. Therefore, the unconditional entropy
of the permanent component is simply the unconditional mean of its conditional
entropy

L
(

exp{mP
t+1}

)
= (b∗ − a∗)>BB>(b∗ − a∗)/2 + (b∗ − a∗)>A∗0 + λ>0 λ0/2 + tr(λVxλ

>)/2.
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D Estimation details

D.1 Term-structure moment restrictions

We assume that four bond yields for h = 1, 4, 12, 20, where maturity is measured in
quarters, can be used to identify the n = 4 dimensions of the state. Stack these 4
variables into the vector z1t = [it y

(4)
t y

(12)
t y

(20)
t ]>. It will be important to keep in

mind when interpreting our empirical results that we are not replacing our original
state variable, xt, with this vector of yields, z1t. Rather we are exploiting the equilib-
rium relationship between these yields and the latent factors to solve for each factor
as a particular linear combination of yields as implied by our arbitrage-free model.
Therefore, factor loadings and risk prices will retain their original interpretation as
responses to the latent state variable xt. In that spirit, we can rewrite the dynamics
for the state as

z1t = R0 +Rxt = R0 +R(Axt−1 +Bwt)

= R̃0 + Ãz1t−1 + B̃wt,
(20)

where R0 = [a0 B(4)
0 /4 B(12)

0 /12 B(20)
0 /20], R = [a B(4)/4 B(12)/12 B(20)/20]>,

Ã = RAR−1, R̃0 = (I − Ã)R0, and B̃ = RB. Recall that the parameters B(h)
0 and

B(h) are functions of the parameters A∗, A∗0 and B. This rotation of the state space
eliminates the need for Kalman filtering the unobserved state.

A 3 × 1 vector of the two macro variables along with the long bond yield, z2t =
[πt gt y

(40)
t ]>, is also linear in the state variable:

z2t = G0 +Gxt + ut

= G̃0 + G̃z1t + ut,
(21)

where ut ∼ iid N (0, σ2
uI) is interpreted as measurement error with variance σ2

u.

The parameters before the rotation of the state space are G0 = [b0 c0 B(40)
0 /40]>,

G = [b> c> B(40)>/40]>, and the parameters B(40)
0 and B(40) are functions of A∗, A∗0

and B. The parameters after the rotation are G̃ = GR−1 and G̃0 = G0 − G̃R0.

We can now write the one-step-ahead conditional distribution for the full system:

zt+1|zt ∼ N (C0 + Czt, DD
>),

where zt = [z1t z2t]
>, C0 = [R̃>0 G̃0 + G̃R̃0]

>, and

C =

[
Ã 0

G̃Ã 0

]
, D =

[
B̃ 0

G̃B̃ σuI

]
.
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This 7-variable system has 45 parameters: 16 in A, 10 in B, and 4 each in A∗,
b, c, and λ0, plus the unrestricted intercept parameters, a0, b0, and c0. We begin
by estimating these parameters using a just-identified GMM estimator that exactly
matches 45 moment restrictions implied by equations (20) and (21):

E(z1t − R̃0 − Ãz1t−1) = 0

E(z1t − R̃0 − Ãz1t−1)z>1t−1 = 0

E(z2t − G̃0 − G̃z1t) = 0

E(z2t − G̃0 − G̃z1t)z>1t = 0

E(z1t − R̃0 − Ãz1t−1)(z1t − R̃0 − Ãz1t−1)> = B̃B̃>.

(22)

Estimation of asymptotic standard errors uses the parameter estimates from these
restrictions and the correlation structure implied by the model which we detail below.
To improve the efficiency of this estimator, we then impose additional over-identifying
restrictions based on the time-series independence of the shocks, wt,

E(z1t − R̃0 − Ãz1t−1)z>1t−2 = 0

E(z1t − R̃0 − Ãz1t−1)z>1t−3 = 0,
(23)

which adds 32 more moment restrictions. To avoid the numerical issues associated
with solving a system of 77 nonlinear equations in 45 parameters, we adopt a one-
step-efficient GMM estimator as in Newey (1985) detailed in the next section.

D.2 GMM estimation

Stack the p true values of the parameters of the model in the vector θ0, and write
the N moment restrictions in equations (22) and (23) as

ηT (θ0) =
1

T

T∑
t=1

η(zt, θ0).

The structure of the model implies a central limit theorem so that as T →∞,

V
−1/2
T T 1/2ηT (θ0) ∼a N(0, I),

where ∼a denotes the asymptotic sampling distribution and

VT = Var
(
T 1/2ηT (θ0)

)
=

1

T
Var
( T∑
t=1

η(zt, θ0)
)
,
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which simplifies for the iid case, VT = V .

For the over-identified case, N > p, the GMM estimator, θ̂T , is the minimum of a
quadratic form of the moment restrictions and a N ×N positive-definite matrix, ΩT ,

ηT (θ)>ΩTηT (θ),

which implies
ηθT (θ̂T )>ΩTηT (θ̂T ) = 0,

where ηθT (θ) is the matrix derivative of ηT with respect to θ. Note that a linear
combination of the mean-value expansion of ηT (θ̂T ) around θ0 is equal to zero,

0 = ηθT (θ̂T )>ΩTηT (θ̂T ) = ηθT (θ̂T )>ΩTηT (θ0) + ηθT (θ̂T )>ΩTηθT (θ̄T )(θ̂T − θ0),

where θ̄T is between θ̂T and θ0. This implies

T 1/2(θ̂T − θ0) = −[ηθT (θ̂T )>ΩTηθT (θ̄T )]−1ηθT (θ̂T )>ΩTV
1/2
T V

−1/2
T T 1/2ηT (θ0).

As before, combine these results to show that

T 1/2(θ̂T − θ0) ∼a N
(
0, [ηθ(θ0)

>Ωηθ(θ0)]
−1ηθ(θ0)

>ΩV Ωηθ(θ0)[ηθ(θ0)
>Ωηθ(θ0)]

−1) ,
where Ω is the limit of ΩT . The estimator with the smallest asymptotic covariance
matrix, θ̂∗T , uses a consistent estimator, VT , of that matrix V , as the weighting matrix,
i.e., ΩT = VT , which implies

T 1/2(θ̂∗T − θ0) ∼a N
(
0, [ηθ(θ0)

>V ηθ(θ0)]
−1) .

Newey (1985, Lemma 4) shows that if the minimization of ηT (θ)>V −1T ηT (θ) begins
at a consistent estimator, say θ̃T , then the first step of a Gauss-Newton algorithm
has the same asymptotic distribution as the minimizer. That is, the estimator

θ̃∗T = θ̃T − αT [ηθT (θ̃T )>VTηθT (θ̃T )]−1ηθT (θ̃T )>VTηT (θ̃T ),

is asymptotically equivalent to θ̂∗T , so that the asymptotic sampling distribution of
θ̃∗T is

T 1/2(θ̃∗T − θ0) ∼a N
(
0, [ηθ(θ0)

>V ηθ(θ0)]
−1) ,

for an appropriate choice of step size, αT , that converges to 1 as T →∞.

Our estimation starts with a just-identified estimator, θ̃T , that is the solution to
ηT (θ̃T ) = 0 where ηT (θ) is defined in equations (22). We also use θ̃T to estimate
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the matrix V . Values of the estimates at this round are tabulated at the end of this
Appendix.

We have parameters γ0 that are continuous and differentiable functions of the other
parameters of the model, γ0 = f(θ0), where fθ has full rank. The continuous mapping
theorem implies that γ̂T = f(θ̂T ) will be a consistent estimator when θ̂T is a consistent
estimator. The asymptotic distribution of γ̂T follows from a mean-value expansion
of f(θ̂T ) around θ0,

f(θ̂T ) = f(θ0) + fθ(θ̄T )(θ̂T − θ0),
which implies

fθ(θ̄T )−1(γ̂T − γ0) = θ̂T − θ0.

Given the asymptotic sampling distribution for θ̂T , we have

T 1/2(γ̂T − γ0) ∼a N
(
0, fθ(θ0)[ηθ(θ0)

>V −1ηθ(θ0)]
−1fθ(θ0)

>) .
D.3 Covariance-matrix estimation

It is convenient to partition the moment restrictions in equations (22) and (23) into
7 blocks with their dimensions listed on the right:

η1t = z1t − R̃0 − Ãz1t−1 = B̃wt n× 1

η2t = z1t−1 ⊗ η1t = z1t−1 ⊗ B̃wt n2 × 1

η3t = z1t−2 ⊗ η1t = z1t−2 ⊗ B̃wt n2 × 1

η4t = z1t−3 ⊗ η1t = z1t−3 ⊗ B̃wt n2 × 1

η5t = z2t − G̃0 − G̃z1t = ut (m+ 1)× 1

η6t = z1t ⊗ η5t = z1t ⊗ ut (m+ 1)n× 1

η7t = Lvec
(
η1tη

>
1t − B̃B̃>

)
= Lvec

(
B̃wtw

>
t B̃
> − B̃B̃>

)
n(n+ 1)/2× 1,

where n = 4, m = 2, and L is an elimination matrix of zeros and ones that selects
the n(n+ 1)/2 unique elements of the vectorized symmetric covariance matrix.

We need to solve for the N × N covariance matrix, Var( 1
T

∑T
t=1 ηt), where T is

the sample size and E[ηt] = 0 are the N × 1 moment restrictions. We begin by
finding the N × N matrix V = Var(ηt) = E[ηtη

>
t ]. Recall z1t = R0 + Rxt, so

Ez1t = R0 and Ez1tz
>
1t = R0R

>
0 + RVxR

>, Ez1tz
>
1t−1 = R0R

>
0 + RAVxR

>, and
Ez1tz

>
1t−2 = R0R

>
0 + RA2VxR

>, where Vx solves Vx = AVxA
> + BB>. Apply the
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restrictions of the model to the variances and covariances of the 7 blocks of ηt defined
above:

Var(η1t) = E[η1tη
>
1t] = E[B̃wtw

>
t B̃
>] = B̃B̃>

Cov(η2t, η1t) = E[z1t−1 ⊗ B̃wtw>t B̃>] = E[z1t−1]⊗ B̃B̃> = R0 ⊗ B̃B̃>

= Cov(η1t, η2t)
>

Cov(η3t, η1t) = E[η3tη
>
1t] = E[(z1t−2 ⊗ B̃wt)w>t B̃>]

= E[z1t−2 ⊗ B̃wtw>t B̃>] = E[z1t−2]⊗ B̃B̃> = R0 ⊗ B̃B̃>

= Cov(η1t, η3t)
>

Cov(η4t, η1t) = E[η4tη
>
1t] = E[(z1t−3 ⊗ B̃wt)w>t B̃>]

= E[z1t−3 ⊗ B̃wtw>t B̃>] = E[z1t−3]⊗ B̃B̃> = R0 ⊗ B̃B̃>

= Cov(η1t, η4t)
>

Cov(η5t, η1t) = E[η5tη
>
1t] = E[utw

>
t B̃
>] = 0

= Cov(η1t, η5t)
>

Cov(η6t, η1t) = E[η6tη
>
1t] = E[(z1t ⊗ ut)w>t B̃>] = E[z1t ⊗ utw>t B̃>] = 0

= Cov(η1t, η6t)
>

Var(η2t) = E[η2tη
>
2t] = E[(z1t−1 ⊗ B̃wt)(z>1t−1 ⊗ w>t B̃>)]

= E[z1t−1z
>
1t−1 ⊗ B̃wtw>t B̃>]

= [R0R
>
0 +RVxR

>]⊗ B̃B̃>
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Cov(η2t, η3t) = E[η2tη
>
3t] = E[(z1t−1 ⊗ B̃wt)(z>1t−2 ⊗ w>t B̃>)]

= E[z1t−1z
>
1t−2 ⊗ B̃wtw>t B̃>]

= [R0R
>
0 +RAVxR

>]⊗ B̃B̃>

= Cov(η3t, η2t)
>

Cov(η2t, η4t) = E[η2tη
>
4t] = E[(z1t−1 ⊗ B̃wt)(z>1t−3 ⊗ w>t B̃>)]

= E[z1t−1z
>
1t−3 ⊗ B̃wtw>t B̃>]

= [R0R
>
0 +RA2VxR

>]⊗ B̃B̃>

= Cov(η4t, η2t)
>

Cov(η2t, η5t) = E[η2tη
>
5t] = E[(z1t−1 ⊗ B̃wt)u>t ] = 0

= Cov(η5t, η2t)
>

Cov(η2t, η6t) = E[η2tη
>
6t] = E[(z1t−1 ⊗ B̃wt)(z>1t ⊗ u>t )]

= E[z1t−1z
>
1t ⊗ B̃wtu>t ] = 0

= Cov(η6t, η2t)
>

Var(η3t) = E[η3tη
>
3t] = E[(z1t−2 ⊗ B̃wt)(z>1t−2 ⊗ w>t B̃>)]

= E[z1t−2z
>
1t−2 ⊗ B̃wtw>t B̃>]

= [R0R
>
0 +RVxR

>]⊗ B̃B̃>

Cov(η3t, η4t) = E[η3tη
>
4t] = E[(z1t−2 ⊗ B̃wt)(z1t−3 ⊗ B̃wt)>]

= E[z1t−2z
>
1t−3 ⊗ B̃wtw>t B̃>]

= [R0R
>
0 +RAVxR

>]⊗ B̃B̃>

= Cov(η4t, η3t)
>
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Cov(η3t, η5t) = E[η3tη
>
5t] = E[(z1t−2 ⊗ B̃wt)u>t ] = 0

= Cov(η5t, η3t)
>

Cov(η3t, η6t) = E[η3tη
>
6t] = E[(z1t−2 ⊗ B̃wt)(z>1t ⊗ u>t )]

= E[z1t−2z
>
1t ⊗ B̃wtu>t ] = 0

= Cov(η6t, η3t)
>

Var(η4t) = E[η4tη
>
4t] = E[(z1t−3 ⊗ B̃wt)(z>1t−3 ⊗ w>t B̃>)]

= E[z1t−3z
>
1t−3 ⊗ B̃wtw>t B̃>]

= [R0R
>
0 +RVxR

>]⊗ B̃B̃>

Cov(η4t, η5t) = E[η4tη
>
5t] = E[(z1t−3 ⊗ B̃wt)u>t ] = 0

= Cov(η5t, η4t)
>

Cov(η4t, η6t) = E[η4tη
>
6t] = E[(z1t−3 ⊗ B̃wt)(z>1t ⊗ u>t )]

= E[z1t−3z
>
1t ⊗ B̃wtu>t ] = 0

= Cov(η6t, η4t)
>

Var(η5t) = E[η5tη
>
5t] = E[utu

>
t ] = σ2

uI(3×3)

Cov(η6t, η5t) = E[η6tη
>
5t] = E[(z1t ⊗ ut)u>t ]

= E[z1t ⊗ utu>t ] = E[z1t]⊗ σ2
uI(3×3) = R0 ⊗ σ2

uI(3×3)

= Cov(η5t, η6t)
>

Var(η6t) = E[η6tη
>
6t] = E[(z1t ⊗ ut)(z>1t ⊗ u>t )]

= E[z1tz
>
1t ⊗ utu>t ] = [R0R

>
0 +RVxR

>]⊗ σ2
uI(3×3).

For the remaining variances and covariances involving η7t, we need to expand the
vec(·) operator:

vec
(
η1tη

>
1t − B̃B̃>

)
= vec

(
B̃wtw

>
t B̃
> − B̃B̃>

)
= vec

(
B̃wtw

>
t B̃
>)− vec

(
B̃B̃>

)
= (B̃ ⊗ B̃)vec(wtw

>
t )− vec

(
B̃B̃>

)
= CWt −D,

where C = B̃ ⊗ B̃, D = vec
(
B̃B̃>

)
, and Wt = vec(wtw

>
t ). We can rewrite η7t =

LCWt − LD, so that

Var(η7t) = E[η7tη
>
7t] = E

[
(LCWt − LD)(W>

t C
>L> −D>L>)

]
= LCE[WtW

>
t ]C>L> + LDD>L> − LDE[W>

t ]C>L> − LCE[Wt]D
>L>,
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which requires us to first calculate the first two moments of the vector Wt: W̄ =
E[Wt] and H = E[WtW

>
t ]. We can simplify these expectations using independence

and properties of the standard normal, Ewjt = 0, Ew2
jt = 1, Ew3

jt = 0, and Ew4
jt = 3,

to get exact expressions for W̄ and H – appropriate arrangements of the values 0, 1,
and 3 – which we can then use to calculate the variance of η7t as

Var(η7t) = L(B̃ ⊗ B̃)H(B̃ ⊗ B̃)>L> + Lvec(B̃B̃>)vec(B̃B̃>)>L>

− Lvec(B̃B̃>)W̄>(B̃ ⊗ B̃)>L> − L(B̃ ⊗ B̃)W̄vec(B̃B̃>)>L>.

Note that since E[Wtw
>
t ] = 0, and since wt and ut are independent, there are no

other non-zero covariances:

Cov(η7t, ηit) = Cov(ηit, η7t)
> = 0,

for 1 = 1, 2, . . . , 6.

Finally, given the independence of wt and ut across time, there are no nonzero auto-
covariances, E[ηtη

>
t−j] = 0 for j > 0. Therefore, we have

Var
( 1

T

T∑
t=1

ηt
)

=
1

T 2

T∑
t=1

Var
(
ηt
)

=
1

T
V.

The covariance matrix of the moment equations for the just-identified model is cal-
culated in a similar fashion.

E Additional empirical results
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Just-identified GMM estimation (4-Factor Model)

I. State dynamics

A B
0.8373 0.4066 0.3323 0.8918 0.0031 0 0 0

(0.0936) (0.0820) (0.0847) (0.2484) (0.0004)

0.5795 0.4529 -0.0231 -1.1433 -0.0059 0.0094 0 0
(0.8142) (0.2622) (0.2658) (2.0181) (0.0094) (0.0169)

-0.4688 0.1350 0.6377 0.6642 0.0033 -0.0092 0.0021 0
(0.8023) (0.2569) (0.3328) (1.9049) (0.0096) (0.0173) (0.0003)

-0.0029 -0.0716 -0.0532 0.3696 -0.0002 0.0007 -0.0010 0.0014
(0.0287) (0.0558) (0.0910) (0.1058) (0.0004) (0.0003) (0.0006) (0.0001)

II. Term-structure model

A∗ λ0 b c
0.9961 0 0 0 -0.0759 0.4945 0.0171

(0.0011) (0.0561) (0.0060) (0.0101)

0 0.8817 0 0 -0.0865 0.4244 -0.1016
(0.0337) (0.2693) (0.0337) (0.1218)

0 0 0.8338 0 -0.0477 0.4758 -0.2592
(0.0546) (0.2726) (0.0614) (0.1578)

0 0 0 0.3634 -0.5820 0.5939 0.0316
(0.1062) (0.2796) (0.0196) (0.1696)

III. Taylor rule

τπ τg d>

2.1219 0.4570 -0.0571 0.1460 0.1089 -0.2747
(0.5947) (0.3107) (0.2926) (0.2763) (0.3684) (0.3447)

Note. Based on moment restrictions in equations (22) for a sample period 1980Q3 to 2019Q4.

Asymptotic standard errors are in parentheses. State dynamics: xt+1 = Axt + Bwt+1. Macro

term-structure model: it = a0 + a>xt, πt = b0 + b>xt, gt = c0 + c>xt, hy
(h)
t = B(h)0 + B(h)xt, and

B(h) = a>(I − A∗)−1(I − A∗h), B(h)0 = a0 + B(h−1)0 − B(h−1)Bλ0 − B(h−1)BB>B(h−1)>/2. Policy:

it = τ0 + τππt + τggt + d>xt. The state variable xt is 4-dimensional, it is the short interest rate

(1 quarter), y
(h)
t is the yield on a discount bond of maturity h = 4, 12, 20, 40 (quarters), πt is the

inflation rate, gt is the growth rate of real GDP, and a> = [1 1 1 1]. Values for intercepts are fixed

at their sample means. The eigenvalues of A are 0.9729, 0.6258, 0.5820, and 0.1167.
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Just-Identified GMM Estimation (3-Factor Model)

I. Term-Structure Model

A∗ λ0 b c
0.9899 0 0 -0.0962 0.4491 0.1240

(0.0010) (0.0266) (0.0215) (0.0532)

0 0.8941 0 -0.1103 0.4068 -0.0384
(0.0097) (0.0852) (0.0488) (0.1211)

0 0 0.4380 -0.5066 0.5876 -0.0410
(0.0955) (0.2113) (0.1207) (0.2880)

A B
1.0123 0.1221 0.2914 0.0021 0 0

(0.0183) (0.0402) (0.1171) (0.0002)

-0.0032 0.8862 0.8862 -0.0016 0.0021 0
(0.0275) (0.0555) (0.1628) (0.0002) (0.0002)

-0.0627 -0.0942 0.3894 0.0002 -0.0011 0.0014
(0.0180) (0.0004) (0.0824) (0.0002) (0.0022) (0.0001)

II. Taylor Rule

τ0 τg τπ d>

-0.0076 0.5510 1.8932 0.0815 0.2510 -0.0899
(0.0078) (1.3558) (0.3759) (0.1548) (0.1398) (0.0934)

Note: Just-identified GMM estimation of the model: xt+1 = Axt + Bwt+1, it = a0 + a>xt,

πt = b0 + b>xt, gt = c0 + c>xt, hy
(h)
t = B(h)0 + B(h)xt, and B(h) = a>(I − A∗)−1(I − A∗h),

B(h)0 = a0 + B(h−1)0 − B(h−1)Bλ0 + B(h−1)BB>B(h−1)>/2. Policy: it = τ0 + τππt + τggt + d>xt.

The state variable xt is 3-dimensional, it is the short interest rate (1 quarter), y
(h)
t is the yield on

a discount bond of maturity h = 4, 12, 20, 40 (quarters), πt is the inflation rate, gt is the growth

rate of real GDP, and a> = [1 1 1 1]. Values for a0, b0, and c0 are fixed at their sample means.

The sample period is 1980Q3 to 2019Q4. Asymptotic standard errors are in parentheses.
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GMM Estimation (3-Factor Model)

I. Term-Structure Model

A∗ λ0 b c
0.9899 0 0 -0.0969 0.1241 0.4491

(0.0001) (0.0024) (0.0006) (0.0004)

0 0.8942 0 -0.1028 -0.0383 0.4068
(0.0006) (0.0102) (0.0012) (0.0008)

0 0 0.4381 -0.4779 -0.0409 0.5876
(0.0054) (0.0299) (0.0032) (0.0028)

A B
1.0166 0.1154 0.2996 0.0021 0 0

(0.0182) (0.0409) (0.0929) (0.0001)

0.0054 0.9004 0.0792 -0.0015 0.0023 0
(0.0202) (0.0521) (0.1145) (0.0002) (0.0001)

-0.0484 -0.0910 0.4389 0.0002 -0.0010 0.0015
(0.0158) (0.0350) (0.0791) (0.0001) (0.0001) (0.0001)

II. Taylor Rule

τ0 τg τπ d>

-0.0078 0.5827 1.8918 0.0782 0.2528 -0.0877
(0.0064) (0.8765) (0.0723) (0.1406) (0.0072) (0.0102)

Note: Over-identified GMM estimation of the model: xt+1 = Axt + Bwt+1, it = a0 + a>xt,

πt = b0 + b>xt, gt = c0 + c>xt, hy
(h)
t = B(h)0 + B(h)xt, and B(h) = a>(I − A∗)−1(I − A∗h),

B(h)0 = a0 + B(h−1)0 − B(h−1)Bλ0 + B(h−1)BB>B(h−1)>/2. Policy: it = τ0 + τππt + τggt + d>xt.

The state variable xt is 3-dimensional, it is the short interest rate (1 quarter), y
(h)
t is the yield

on a discount bond of maturity h = 4, 20, 40 (quarters), πt is the inflation rate, gt is the growth

rate of real GDP, and a> = [1 1 1 1]. Values for a0, b0, and c0 are fixed at their sample means.

The eigenvalues of A are 0.9892, 0.8861, and 0.4806. The sample period is 1980Q3 to 2019Q4.

Asymptotic standard errors are in parentheses.
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