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In his seminal work on myopia and dynamic inconsistency, Strotz (1955) posed the fol-
lowing question about an individual choosing “a plan of consumption for a future period of
time”: “If he is free to reconsider his plan at later dates, will he abide by it or disobey it?” A
fundamental intuition arising from his work is that individuals who do not discount future
consumption at a constant rate will have time-inconsistent preferences and often choose to
revise their consumption plans. For example, individuals might exhibit present focus, as in
the quasi-hyperbolic discounting model, and thus revise their plans toward more immediately
gratifying alternatives over time (e.g., Laibson, 1997, O’Donoghue and Rabin, 1999).

This raises a natural question. Consider an analyst who observes individuals who tend
to revise their consumption plans in a certain systematic direction, while being subject to
random taste shocks, such as ex-ante unpredictable variation in time constraints, appetite,
fatigue, or additional consumption opportunities. When can the analyst infer that the
individuals are time-inconsistent, and when can the analyst quantify the degree of time
inconsistency?

A number of influential empirical studies that utilize what we call revision designs have
assumed that the presence of any type of systematic choice reversal implies time inconsis-
tency. A classic example is the study by Read and van Leeuwen (1998), which is often cited
as “a canonical example of a preference reversal” (Ericson and Laibson, 2019). Read and van
Leeuwen find that when planning a week in advance, approximately 50 percent of individu-
als choose a healthy over an unhealthy snack, but this fraction declines to approximately 20
percent when individuals are given a surprise opportunity to revise their plans a week later.
The implicit assertion in the conclusions drawn by Read and van Leeuwen is that if indi-
viduals systematically revise their plans toward some types of alternatives over others, then
they must have time-inconsistent preferences. Especially in the last ten years, economists
and psychologists have since conducted numerous revision design studies, often with richer
choice sets, in domains such as intertemporal allocation of work, entertainment choice, fi-
nancial plan-making, opioid use, and nutrition.1,2 In contrast to standard experiments on
take-up of commitment contracts and other more qualitative tests of time inconsistency, a
key motivation for revision designs has been the important goal of obtaining point estimates

1Work allocation: Augenblick et al. (2015), Abebe et al. (2021), Andreoni et al. (forthcoming), Barton
(2015), Corbett (2016), Imas et al. (2022), Kölle and Wenner (2023), Augenblick and Rabin (2019), Fedyk
(forthcoming), see Imai et al. (2021) for a review; Financial plan-making: Kuchler and Pagel (2021); Enter-
tainment: Read et al. (1999), Milkman et al. (2009), Bartos et al. (2021); Opioid use: Badger et al. (2007);
Nutrition choice: Sadoff et al. (2019).

2Typical designs elicit preferences from an identical choice set at two different points in time by in-
forming individuals that their initial preferences and revised preferences both have a positive probability of
determining their outcomes. Which preference is implemented is determined after both are elicited. This is
incentive compatible for expected utility preferences that are linear in probabilities.
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of time-preference parameters.3 Additionally, revision designs were intended to identify time
inconsistency without the assumption that people are fully aware of it.4

This paper provides formal results about the choice patterns in revision designs that can
and cannot reject time consistency. In the first part of the paper, we show that rejecting time
consistency typically requires much more stark patterns of choice than perhaps previously
appreciated by the literature. We illustrate this with numerical examples that capture several
types of prominent designs concerning food choice and allocation of effort or consumption
over time. In these examples, we show that inferences about time inconsistency are highly
sensitive to assumptions about how information is revealed to the agent over time. In the
second part of the paper, however, we show that a subset of revision designs—namely, those
that monetize valuations for different consumption opportunities, as in Augenblick and Rabin
(2019), Carrera et al. (2022), and several other papers—can provide robust estimates of time
inconsistency under plausible assumptions.

Our model considers a data set of an agent’s revealed ordinal preferences over a finite
set of alternatives at two different points in time: an advance choice stage (time 0) and a
revision stage (time 1). To encompass the different empirical designs used in practice, we
allow the analyst to observe different amounts of information about the agent’s preferences.
For example, in some designs, researchers elicit only the most preferred alternative; in other
designs agents choose from different budget sets, which gives researchers more information.
At time 1, the agent’s preferences are state-dependent; e.g., the agent’s rankings over different
food items might depend on their level of hunger. To consider a best-case scenario for
identification, we suppose that the data set includes the exact distribution of the agent’s time-
1 preferences.5 We say that an agent’s choices can be rationalized by time-consistent expected
utility maximization (TC-EU) if there is an information structure and utility function that
rationalizes the observed distribution of the agent’s time-1 preferences, and the agent’s time-0
ranking of alternatives is consistent with the (objective) expectation of time-1 utilities.6

3See, e.g., Augenblick et al. (2015), Andreoni et al. (forthcoming), Augenblick and Rabin (2019), Au-
genblick (2018). See also Halevy (2015) for a critical discussion.

4Empirical work estimating both time inconsistency and people’s sophistication about it typically finds
that people are partially, but not fully, aware of their time inconsistency. See, e.g., DellaVigna and Mal-
mendier (2006), Acland and Levy (2015), Augenblick and Rabin (2019), Chaloupka et al. (2019), Bai et
al. (2021), Carrera et al. (2022). The preferences-over-menu elicitations that are proposed in the decision
theory literature (e.g., Gul and Pesendorfer, 2001, Dekel and Lipman, 2012, Ahn and Sarver, 2013), however,
implicitly require full sophistication.

5In practice, data sets do not have more than several observations of an individual’s propensity to revise
their choices. A typical assumption that facilitates identification is that individuals who make the same
choice in time 0 are homogeneous in their preferences and economic environments, and any differences in
time-1 choices are due to independent realizations of time-1 taste shocks.

6To be clear, belief-based biases that generate behavior resembling time inconsistency, such as the plan-
ning fallacy (Kahneman and Tversky, 1982, Buehler et al., 2010, Brunnermeier et al., 2008), overoptimism
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Our Theorem 1, which formalizes and generalizes the numerical examples in Sections
1.1 and 1.2, shows that when the choice set is single-dimensional, time-1 preferences are
single-peaked, and when at least the time-0 preference is completely observed, the data
can be rationalized by TC-EU as long as there is no sure direct preference reversal—i.e.,
alternatives x1 and x2 such that x1 is preferred to x2 in time 0, but where x2 is preferred
to x1 with probability 1 at time 1. In the general case where preferences are incompletely
observed, Theorem 1 states that the data can be rationalized by TC-EU under the more
general requirement that there is no sure indirect preference reversal—i.e., a collection of
alternatives x1, . . . , xk such that xj+1 is preferred to xj either at time 0 or with probability
1 at time 1, and such that also x1 is preferred to xk either at time 0 or with probability 1 at
time 1. Theorem 2 shows that under the additional assumption that the analyst knows the
utility functions to be strictly concave in both time 0 and time 1, the data are consistent
with TC-EU if and only if there is no sure direct preference reversal and the time-0 ranking
of alternatives is single-peaked.

As neither of these patterns are empirically observed, Theorems 1 and 2 imply that,
in line with our numerical examples, most existing data sets can not reject the hypothesis
that the agent is a time-consistent expected utility maximizer. Our findings caution against
the use of revision designs to identify time-consistency if the environment does not admit
additional structural properties that facilitate identification, which we discuss in Section 5.

We view Theorems 1 and 2 as our main results that cover a range of environments of
economic interest. In addition, we provide results for preferences that are not single-peaked.
We show by example that TC-EU can be rejected for non-single-peaked preferences even
when there are no sure indirect preference reversals. The reason is that there may be sure
lottery preference reversals—which we define to be the case where lottery L is revealed to
stochastically dominate lottery L′ according to time-1 preferences, but where L′ stochasti-
cally dominates L according to time-0 preferences. Proposition 1 shows that a data set is
consistent with TC-EU if and only if there are no sure lottery preference reversals. Propo-
sition 3 generalizes this result to the case where the analyst obtains (or assumes) additional
cardinal information by directly observing (or assuming) an agent’s preferences over a set
of lotteries. Additionally, we provide sufficient conditions for when data sets do not exhibit
sure lottery preference reversals.

In Section 5 we present a set of conditions under which the degree of time inconsistency
can be identified, formalizing the numerical examples in Section 1.3. Roughly speaking, point

(Browning and Tobacman, 2015, Breig et al., 2024) or other misperceptions of the time-1 decision environ-
ment (Sadoff et al., 2019), are violations of TC-EU in our framework as the time-0 preference is not derived
by taking the (correct) expectation over time-1 utilities. Our results thus imply that such biases can also
not be identified from revision designs.
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identification can be obtained augmenting standard designs to elicit the agent’s valuations of
different alternatives using a numeraire commodity, such as future money. The key condition
on this numeraire is that the agent’s beliefs about the marginal utility of consuming the
numeraire do not change between time 0 and time 1. This condition makes it possible
to make cardinal comparisons about the strength of the agent’s preferences across different
states of the world, or, in effect, to monetize the taste shocks. This, in turn, makes it possible
to more precisely differentiate between how much of the difference in the agent’s choices
between time 0 and time 1 is due to taste shocks versus time inconsistency. Recent designs
that make use of this strategy include both laboratory studies (Augenblick and Rabin, 2019,
Augenblick, 2018, Fedyk, forthcoming) and field studies (Acland and Levy, 2015, Chaloupka
et al., 2019, Carrera et al., 2022, Allcott et al., 2022).

We end Section 5 by discussing several practical considerations for utilizing revision de-
signs in experimental work. First, we discuss how to quantitatively evaluate the prevalence
of random taste shocks, and show that recent empirical work suggests that these are quanti-
tatively very meaningful. Second, we also address tests the attempts to differentiate between
time preferences and random taste shocks by utilizing augmented designs that link choice in
revision designs to decisions about take-up of commitment contracts. We show that combin-
ing revision design data with commitment contract take-up decisions can be a useful source
of evidence, but it does not fully mitigate the non-identification issues.

Related Literature There seems to be fairly broad agreement that the identification
of time inconsistent preferences (in the lab or in the field) poses a formidable challenge.
Echenique et al. (2020), Blow et al. (2021), Echenique and Tserenjigmid (2023) consider
the identification of exponential discounting and quasi-hyperbolic discounting from observed
choice over consumption streams. Levy and Schiraldi (2020) present conditions for which
time preferences are identified in dynamic discrete choice problems with history-dependent
choice sets.7 In the context of optimal stopping problems, Heidhues and Strack (2020) show
that time preferences can not be identified from observing the distribution of times when
an agent completes a task. Oliveira and Lamba (2023) characterize, for general dynamic
decision problems, what sequences of choices can be rationalized by EU preferences if the
analyst knows the agent’s utility function. They find that a distribution over actions can be
rationalized if and only if the agent could not improve their expected payoff by deviating
and changing their actions.

7Our paper is also broadly related to the which literature focuses on econometric techniques for identifying
“behavioral” models. Barseghyan et al. (2013) and Barseghyan et al. (2021) develop techniques for identifying
risk preferences in the presence of probability distortions and limited consideration. Rees-Jones and Wang
(2022) develop techniques for identifying reference points.
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While the focus of this paper is on dynamic preference reversals, there is also an im-
portant literature on static preference reversals, where participants choose between rewards
at different points in time, and the research question is how the discount rate between two
periods t and t+ 1 changes with t (see, e.g., Cohen et al. 2020 for a review). Halevy (2015)
clarifies that such studies test the stationarity assumption, while revision designs test the
time invariance assumption. There is also an active conversation about the potential con-
founding role of uncertainty in these designs (Halevy, 2005, 2008, Andreoni and Sprenger,
2012, Chakraborty et al., 2020).

Another active literature studies how (non-exponential) time discounting may arise from
biases arising from perceptual and cognitive mechanisms (e.g., Gabaix and Laibson, 2022,
Enke and Graeber, 2023, Enke et al., forthcoming). Many of these models imply that choice
is noisy, which further complicates identification. Data sets that we show reject TC-EU could
instead be due to these alternative mechanisms, rather than actual time-inconsistent pref-
erences. In fact, to the extent that these alternative models of noisy perception lead people
to have time-0 and time-1 information sets that are consistent with our baseline assump-
tions, our results provide a general characterization of how such models could rationalize
time-inconsistent-like behavior.

Propositions 1 and 3 are related to existing results in the literatures on social choice,
dynamically-consistent preferences over acts, and random utility models. Our main results
in Theorems 1 and 2 do not, to our knowledge, resemble existing mathematical results. In
Online Appendix C we flesh out connections to technical results in the literatures on social
choice, random utility models, and dynamically consistent preferences over acts.

The rest of this paper proceeds as follows. Section 1 presents numerical examples that
illustrate our main results, both about the difficulty of identifying time inconsistency and
about paths forward. Section 2 presents the formal model. Section 3 presents our main
results about the types of data sets that are consistent with TC-EU, and Section 4 sketches
the proof of the main results. Section 5 presents results about economic environments where
it is possible to identify the degree of time inconsistency. Section 6 concludes. Proofs are
relegated to the Appendix.

1 Motivating Examples
In this section, we provide a series of examples that illustrate the main ideas of our paper.
The first two examples illustrate the difficulty of identifying time inconsistency. The last
two examples illustrate the types of designs that can be used to identify time inconsistency.
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1.1 Intertemporal Allocation of Consumption

To illustrate the difficulty of identifying time inconsistency from a revision design, consider
the following stylized example based on research designs that study people’s intertemporal
allocation of effort.8 The insights from this example apply equally to empirical work on
intertemporal allocation of consumption.

An agent has to complete a task that requires one unit of effort. They can decide what
fraction of effort x ∈ [0, 1] to complete at time 1 and what fraction of effort 1−x to complete
at time 2. The agent is first asked to decide on the division of effort at time 0 and then given
the chance to revise their decision at time 1. With expected utility preferences, truth-telling
is incentive-compatible at both times because each decision is implemented with positive
probability, as is typical in such experimental designs (e.g., Imai et al., 2021). At time 0 and
time 1, respectively, the agent chooses x to minimize:

Time 0: E0 [βθ1c(x) + βθ2c(1− x)]

Time 1: E1 [θ1c(x) + βθ2c(1− x)]

where Et[·] denotes the expectation given the agent’s time-t information. These preferences
correspond to the commonly-assumed quasi-hyperbolic preferences.9

The analyst observes that the agent divides the effort equally between the two periods
when deciding at time 0. However, at time 1 the agent instead allocates an average of 0.45
to period 1, with a standard deviation of 0.. The observed distribution of the ratio of efforts
x/(1 − x) follows a log-normal distribution.10 The analyst knows that the cost of effort is
c(x) = xγ, for a known value of γ > 1. Assuming that the analyst knows the cost of effort
facilitates identification, but we show that nevertheless little can be inferred about the time
inconsistency parameter β.

The challenge for identification arises because there are multiple plausible assumptions
about how information is revealed to the agent, and they all fit the data exactly. In Table
1 below, we consider seven different assumptions about information revelation, all of which
perfectly match the analyst’s data set, but which produce significantly different estimates of
the present focus parameter β.11

8For experimental studies using similar designs see, e.g., Augenblick et al. (2015), Barton (2015), Corbett
(2016), Kölle and Wenner (2023), Andreoni et al. (forthcoming), Abebe et al. (2021), Imas et al. (2022); and
Imai et al. (2021) for a review.

9We normalize the “exponential discount factor” δ to 1, which is without loss of generality as it can be
included in θ2.

10The allocations of 50 and 45 percent, respectively, are roughly in line with the data in Augenblick et
al. (2015).

11Online Appendix B provides formal mathematical calculations for each of these different sets of as-
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Rows 1 and 2 consider the case where both θ1 and θ2 are independently and identically
distributed, and are both revealed at time 1. Rows 3 and 4 consider the independent case
where θ1 is known at time 0 and θ2 is learned only at time 1. Rows 5 and 6 instead consider
the case where θ2 is known at time 0 the information obtained between time 0 and time
1 is θ1. Rows 7 and 8 consider the case where θ1 and θ2 are distributed independently,
with nothing learned at time 0 and only θ1 learned at time 1. Rows 9 and 10, like rows 1
and 2, assume that θ1 and θ2 are learned at time 1, but make the alternative assumption
that their joint distribution follows a multiplicative random walk, where θ2 = θ1 × ε, with
ε log-normally distributed and independent of θ1. Rows 11-14 make the same assumptions
as rows 7 and 8 about when θ1 and θ2 are learned, but instead assume that their joint
distribution follows a multiplicative AR(1) process, where log(θ2) = α log(θ1) + log(ε) and ε

is log-normally distributed and independent of θ1.

Distribution of shocks
Information

γ
Estimated

time 0 time 1 β

1 iid θ1, θ2 2 0.82
2 iid θ1, θ2 3 0.67
3 independent θ1 θ1, θ2 2 0.93
4 independent θ1 θ1, θ2 3 1.11
5 independent θ2 θ1, θ2 2 0.72
6 independent θ2 θ1, θ2 3 0.41
7 independent θ1 2 0.72
8 independent θ1 3 0.41
9 mult. random walk θ1, θ2 2 0.93
10 mult. random walk θ1, θ2 3 1.11
11 mult. AR(1), α=1.5 θ1 2 1.53
12 mult. AR(1), α=1.5 θ1 3 8.17
13 mult. AR(1), α=0.5 θ1 2 0.56
14 mult. AR(1), α=0.5 θ1 3 0.15

Table 1: Implied time inconsistency under different information revelation assumptions

Table 1 shows that inferences about β are highly sensitive to equally-plausible assump-
tions about the agent’s learning process. Existing empirical work analyzing data sets analo-
gous to this example utilizes a reduce-form regression model—sometimes referred to as the

sumptions about information revelation.
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“intertemporal Euler equation” (Augenblick et al. 2015, Imai et al. 2021)—that corresponds
to the assumptions in rows 1 and 2. Table 1 makes clear that the assumptions in rows 1 and
2 cannot be used to obtain either lower or upper bounds on β. Other assumptions can lead
to significantly lower values of β, or to significantly higher values of β consistent with future
focus.12 While this example is stylized, our formal results show that the inability to identify
time inconsistency is not a consequence of any of the special features of this example, but a
general feature of revision designs.

1.2 Food Choice

Inspired by the experiment of Read and van Leeuwen (1998) and related studies,13 consider
an agent who chooses between a healthy and an unhealthy snack at time 0, to be delivered
at time 1 (after seven days). Then, at time 1, participants are given a surprise opportunity
to revise their time-0 choice. On average (collapsing across individuals and conditions),
subjects at time 0 choose the healthy snacks approximately 50 percent of the time, but at
time 1 choose healthy snacks approximately 20 percent of the time.14

To rationalize the results of Read and van Leeuwen with time-consistent preferences,
consider agents with the following preference: At time 1, the agents feel gorged with proba-
bility 20%, in which case they crave healthy food, so that the utility difference between the
unhealthy and healthy snack equals −5. With probability 80% the utility difference between
the unhealthy and healthy snack equals 1. At time 0 it is thus optimal for the agents to
choose the healthy snack if they do not know the time-1 state, as 0.8× 1 + 0.2× (−5) < 0.
Now suppose that 38% of the agents do not know the time-1 state at time 0, while the
remaining 62% already know the state at time 0. Thus, 0.38 + 0.62 · 0.2 = 50% choose the
healthy snack at time 0. However, only 20% choose the healthy snack at time 1. Moreover,
the direction of revisions is asymmetric: 38%× 0.8 = 30% switch from choosing the healthy
snack at time 0 to choosing the unhealthy snack at time 1, but no one switches from choosing
the unhealthy snack to choosing the healthy snack.

12In Appendix B, Augenblick et al. (2015) consider the alternative assumption that there is uncertainty
on the curvature of the cost of effort functions, and that the shocks to time 1 and 2 cost of effort functions
are perfectly correlated. Under these assumptions, they find that uncertainty generates moderate upward
bias in their estimate of the present focus parameter β.

13Empirical designs with similar structures include the food-delivery field experiment of Sadoff et al.
(2019), Read et al.’s (1999) study of choice between high-brow and low-brow video rentals, and Milkman et
al.’s (2009) quasi-experimental extension of Read et al. (1999).

14These summary statistics are reported in Cohen et al. (2020).
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1.3 Identifying Time Inconsistency Using Willingness-to-Pay De-
signs

We now provide two examples, the first one hypothetical, and the second one based on recent
experiments, where time inconsistency can be identified and quantified. The approach in
both examples is to “price out” the utility from each alternative.

Example 1 (Read and van Leeuwen with Money). As in the example in Section 1.2, suppose
that the agent chooses between a healthy snack and an unhealthy snack. As before, the agent
either feels normal (with probability 80%) or gorged (with probability 20%). But suppose
now that the experimenter elicits—both at time 0 and at time 1—the maximal amount of
money (to be received later at “time 2”) that a person is willing to forego to receive their
preferred option.15 Given the small amounts of money involved, the experimenter assumes
that the agent’s preferences are (approximately) quasi-linear in the monetary amounts varied
in the experiment, and that the marginal utility from money does not vary with the hunger
state. Under these assumptions, a time-consistent expected utility maximizer should have a
WTP for the healthy snack at time 0 the equals the average WTP at time 1.

Concretely, suppose that the agent has a WTP of $1 for the healthy snack over the
unhealthy snack at time 0. At time 1, the agent prefers the unhealthy snack by $1 with
probability 0.8, and prefers the healthy snack by $5 with probability 0.2. Thus, because the
agent has an average WTP for the healthy snack of 0.2× 5− 0.8× 1 = $0.20 < $1 at time 1,
their behavior is inconsistent with TC-EU. Relative to the healthy snack, the agent values
the unhealthy snack more at time 1 than at time 0, which might be explained by the pull of
immediate gratification, as arising from models such as quasi-hyperbolic discounting.

Example 2 (Augenblick and Rabin 2019, Augenblick 2018, Fedyk forthcoming). Augenblick
and Rabin (2019) elicit willingness to work for various amounts of money. Suppose that
preferences follow the quasi-hyperbolic discounting model and are given by

Time 0: E0 [−βθc(x) + βz]

Time 1: − θc(x) + βz

where c(x) is the cost of x units of effort and z is monetary compensation for this work,
paid out later. Here, the analyst assumes that the marginal utility of money is independent
of the marginal costs of effort in the experiment. Also, given the small stakes, the analyst

15For the purpose of this example, assume that both time-0 and time-1 decisions concern time-2 money, to
eliminate any potential issues with money discounting. As we discuss later, the assumptions of this example
are most likely to be satisfied when time 2 is reasonably far away from time 1.
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assumes that utility is quasi-linear in money.16

Now suppose that at time 0, the agent requires at least $10 to commit to 5 units of work,
while at time 1 the average minimum payment to perform 5 units of work is $15. Then the
modeling assumptions imply that

β · E0[θc(5)] = β · 10

E0[θc(5)] = β · 15

from which it immediately follows that β = 2/3.

Examples 1 and 2 illustrate that one strategy to obtain point identification is to monetize
agents’ preferences over different consumption bundles, when the following conditions plau-
sibly hold: (i) preferences are separable over money and these consumption bundles, (ii) the
marginal utility of money does not vary with shocks to utility from the different consumption
bundles, and (iii) the analyst can estimate a utility function over money, either by assuming
quasi-linearity or by using preferences over lotteries to estimate curvature. Although this
set of conditions is restrictive, it is possible to plausibly approximate these conditions in the
field, as has been done by Acland and Levy (2015), Chaloupka et al. (2019), Carrera et al.
(2022) and Allcott et al. (2022).

More generally, identification is possible when there is a numeraire commodity that sat-
isfies the three conditions listed above for money. For example, another form of a numeraire
commodity might be consumption or effort that is at least one year in the future, while
the time difference between time-0 and time-1 choices is only one week. In this case, it is
plausibly that information received between time 0 and time 1 is unlikely to alter the agent’s
expected utility from the numeraire commodity in a year.

Interestingly, while fungibility of money makes identification of time preferences more
difficult in designs where people choose between monetary amounts in different points in
time (Ericson and Laibson, 2019), it does not create problems for the designs presented in
Examples 1 and 2. In fact, to the extent that fungibility helps justify the assumptions made
about utility from money in those examples, it aids identification.

16This is not crucial. Alternatively, the analyst could gather additional data on preferences over monetary
lotteries to estimate a nonlinear utility function over money.

10



2 Model
There is an agent who has a preference over a finite set of alternatives X at time 0 and time
1.17 Their preference at time 0 is deterministic and denoted by ⪯0. Their preference ⪯1 at
time 1 is a random draw from (⪯1

1, . . . ,⪯1
n), with n < ∞. We denote by (f1, . . . , fn) the

strictly positive probabilities (or frequencies) associated with each realization. A data set

(⪯0,⪯1
1, . . . ,⪯1

n, f1, . . . , fn)

consists of a time-0 preference ⪯0 and a probability distribution over time-1 preferences,
which we compactly write as (⪯1, f).

In practice, different types of revision designs provide different amounts of information
about the agent’s preferences. We leave our model general enough to cover a range of
what the analyst can observe. Formally, this amounts to assuming that the preferences can
be either complete, i.e. the ranking of any two alternatives is observed, or incomplete.18

We assume that if two alternatives x, y ∈ X are related by the (potentially incomplete)
preference ⪯, then the analyst observes whether the agent is indifferent or prefers one of the
alternatives strictly; i.e., either x ∼ y, or x ≺ y, or y ≺ x.19 Note that if strict preferences
cannot be observed, then any data set is trivially consistent with TC-EU, where the utility
function assigns the same value to each alternative.

The stochasticity in observed time-1 preferences might result from the agent receiving
information at the beginning of time 1 about payoff-relevant aspects of the decision—such as
how busy they will be in the future or whether they crave sweet or savory foods—that is not
resolved until time 1. The analyst does not observe these states directly and only observes
the distribution over the different rankings that result from variation in time-1 states. In
practice, it is not possible to fully observe a given agent’s distribution over rankings. Such a
possibility corresponds to either the limit cases where the analyst either observes the same
agent’s behavior in exactly the same situation infinitely often, or to the limit case where
the analyst observes infinitely many agents with identical preferences in the exactly same
informational environment (but with independent realizations of states at time 1). Empirical
work typically attempts to approximate one of these limit cases, usually by imposing some

17We make the assumption that the choice set is finite to avoid technicalities and streamline the presen-
tation. We put no bound on the size of the choice set. In empirical applications the choice set is necessarily
finite.

18We do not require ⪯0 or any of the ⪯1
j to relate the same pairs of alternatives, or even the same number

of alternatives.
19Formally, ⪯ is a preorder where we interpret x ⪯ y and y ⪯ x as indifference x ∼ y, and x ⪯ y but

not y ⪯ x as a strict preference for y over x. The preference between x,y is unobserved if neither x ⪯ y nor
y ⪯ x. If the ranking of any two alternatives is observed then ⪯ is a complete preorder.
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type of homogeneity assumption. Of course, identification can only become more difficult if
the distribution over rankings cannot be fully observed. Thus, the homogeneity assumptions
are also crucial for identification.20

To formally model taste shocks that give rise to randomness over rankings, we consider a
time-consistent expected-utility (TC-EU) agent who evaluates alternatives according to the
utility function

u : X × Ω → R

that depends on the chosen alternative x ∈ X and state ω ∈ Ω. The states capture taste
shocks or information that arrives between time 0 and time 1, and the agent does not know
the state at time 0, but observes it at time 1. Our convention is to denote the state by a
subscript and the alternative as an argument, so that uω(x) denotes the utility of alternative
x in state ω.

Without loss, we can assume that there are as many states as realizations of the time-1
preference, with each realization of the time-1 preference corresponding to a state, so that
Ω = {1, . . . , n}.21 The TC-EU agent prefers alternative x over y in state ω at time 1 if and
only if x has a higher associated utility; i.e., for all x, y ∈ X, ω ∈ Ω,

y ⪯1
ω x ⇔ uω(y) ≤ uω(x) . (1)

At time 0 the TC-EU agent prefers x over y if and only if the expected utility of x exceeds
the expected utility of y; i.e., for all x, y ∈ X,

y ⪯0 x ⇔
∑
ω∈Ω

fωuω(y) ≤
∑
ω∈Ω

fωuω(x) . (2)

Definition 1 (Consistency with TC-EU). A data set (⪯0,⪯1, f) is consistent with TC-EU
if there exists a utility function u : X × Ω → R that satisfies (1) and (2).

In words, consistency with TC-EU means that there exists a state-dependent utility
function that is consistent with the observed time-1 preference ⪯1

ω in each state ω, and such
20In practice, because the validity of the time inconsistency estimates requires all of the theoretical

assumptions to hold, empirical estimates of time inconsistency could in principle be biased even in cases
where our theoretical results show that identification is possible.

21To see that assuming that each state corresponds to an observed preference profile is without loss, note
that if we have a TC-EU representation (u,Ω, F ), consisting of a utility u, a state space Ω, and a prior F
that is consistent with the ordinal preferences (⪯0,⪯1), then without loss of generality we can associate each
set Ωk of states that leads to a preference profile ⪯1

k with the newly defined state k. We define a utility
function on this new state space as the conditional expectation ũk(x) =

∫
Ωk

uω(x)dF∫
Ωk

dF
and obtain a new EU

representation with the desired state space {1, . . . , n}.
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that the expectation of this utility function is consistent with the observed time-0 preference
⪯0. Our definition of TC-EU requires the agent to correctly understand the distribution
of states. Thus, time-inconsistent behavior generated by belief-based biases such as the
planning fallacy22 or other forms of overoptimism23 is not compatible with our definition of
TC-EU.24

3 Rejecting Time Consistency

3.1 General Preferences

We first consider the case where we impose no further restrictions on the agent’s preferences.
Recall that a complete ordinal preference ⪯ over X induces an incomplete preference over
lotteries through first-order stochastic dominance. Formally, denote by L(x) the probability
assigned to x by the lottery L ∈ ∆(X). For the preference ⪯, which orders elements in
ascending order x1 ⪯ x2 ⪯ . . . ⪯ x|X| the lottery L is dominated by L′ if for all r ∈
{1, . . . , |X|},

r∑
s=1

L(xs) ≥
r∑

s=1

L′(xs) .

Strict dominance—denoted by ≺—holds if dominance holds, but not equality. We generalize
the stochastic dominance order to incomplete preferences: L ⪯ L′ if and only if first-order
stochastic dominance holds for all completions of the incomplete preference.

Definition 2 (Sure Lottery Preference Reversal). A data set (⪯0,⪯1, f) exhibits a sure
lottery preference reversal if there exist lotteries L,L′ ∈ ∆(X) such that L ⪯0 L′, L′ ⪯1

ω L

for all ω ∈ Ω and either L ≺0 L′ or L′ ≺1
ω L for some ω ∈ Ω.

The absence of a sure lottery preference reversal is necessary for a data set to be consistent
with TC-EU, as otherwise the analyst knows that the agent prefers a lottery L over L′ at
time 0, but at time 1 always prefers the lottery L′ over L which can never happen under TC-
EU preferences. Our next result establishes that absence of sure lottery preference reversals
is also sufficient and thus characterises TC-EU preferences.

Proposition 1 (Consistency with TC-EU). A data set (⪯0,⪯1, f) is consistent with TC-EU
if and only if it exhibits no sure lottery preference reversals.

22See e.g. Kahneman and Tversky (1982), Buehler et al. (2010), Brunnermeier et al. (2008).
23See e.g. Browning and Tobacman (2015), Breig et al. (2024).
24Our assumption of deterministic time-0 preferences is without loss: if the analyst observes the time-1

choices conditional on the agent’s time-0 choice, our results apply to the conditional choice distribution.
If the analyst observes only the marginal distributions of preferences, she has strictly less information and
identification of time-inconsistency becomes harder, which means that all our non-identification results apply.
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Proposition 1 is “folk-wisdom” and similar results have appeared in other contexts, such
as social choice.25 The result of the proposition is, however, difficult to use to reject TC-EU
because the space of possible lotteries is large. To obtain sharper results we will thus study
environments that satisfy additional economically plausible restrictions.

3.2 Single-Peaked Preferences

We next consider the case where the alternatives are real numbers X ⊂ R, and the time-1
preferences are single-peaked, defined as follows:

Definition 3 (Single-Peaked Preference). A potentially incomplete preference ⪯ is single-
peaked if for any alternatives x < y < z either x ≺ y or z ≺ y.

The random preference ⪯1 is single-peaked if each possible realization (⪯1
ω)ω∈Ω is single-

peaked. The single-peaked property is natural in environments where agents choose how to
allocate consumption or effort over time, as in the numerical example in Section 1.1. If the
utility from leisure is concave in each period, then the agent’s utility function will be concave
and thus single-peaked in the share of work done in time 1. The single-peaked property also
mechanically applies to binary choice sets, as in the example in Section 1.2. We consider the
slightly stronger assumption of concavity in the next subsection.

Our definition of single-peaked preferences applies to incomplete preferences. For exam-
ple, suppose that it is known that an agent’s most preferred alternative is some x∗ ∈ X.
The single-peakness implies that moving further left or right of x∗ leads to less attractive
alternatives, but it provides no information about how the agent compares alternatives to
the left of x∗ against those to the right of x∗.

A natural requirement on a data set is that the agents’ preferences do not directly con-
tradict themselves: if at time 1 the agent always prefers some alternative over another then
they should also prefer that alternative at time 0. The next definition formalizes this idea.

Definition 4 (Sure Direct Preference Reversal). A data set (⪯0,⪯1, f) exhibits sure direct
preference reversals if there exist x, y ∈ X such that x ⪯0 y, y ⪯1

ω x for all ω ∈ Ω, and either
x ≺0 y or y ≺1

ω x for some ω ∈ Ω.

For example, if the analyst observes that the agent always prefers the unhealthy over the
healthy snack at time 1, then the agent should also prefer the unhealthy snack at time 0 if

25For example, the ordinal efficiency welfare theorem (McLennan, 2002, Carroll, 2010) states that for any
lottery that is Pareto efficient given a vector of ordinal preferences, there exist utility functions consistent with
the ordinal preferences such that this lottery maximizes the sum of utilities. This result is mathematically
equivalent to the special case of Proposition 3 where the analyst only observes the most preferred time-0
alternative. Specifically, this is the case for the more general version stated by Carroll (2010). The original
version stated by McLennan (2002) imposes a more special structure.
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they are time-consistent. It follows immediately from the definition that any data set that
is consistent with TC-EU cannot exhibit sure direct preference reversals. Theorem 1 below
presents a converse of that statement when the time-0 preference is complete and the time-1
preference is single-peaked.

We also introduce a generalization of sure direct preference reversals to provide a more
general characterization of incomplete preferences. To simplify notation, we denote by ⪯1

∗

the preorder that is generated by agreement of the agent’s preferences in all states ω: x ⪯1
∗

y ⇔ x ⪯1
ω y for all ω.

Definition 5 (Sure Indirect Preference Reversal). A data set (⪯0,⪯1, f) exhibits sure in-
direct preference reversals if there exists a sequence of alternatives x1, x2, . . . , xk that are
alternatingly ranked by the orders ⪯0,⪯1

∗,

x1 ⪯0 x2 ⪯1
∗ x3 ⪯0 . . . ⪯0 xk ⪯1

∗ x1,

with at least one relation strict.26

Clearly, a sure direct preference reversal is a sure indirect preference reversal with a cycle
of length 2. And as Lemma 3 in Appendix A.1 shows, sure indirect preference reversals
imply sure direct preference reversals when the time-0 preference is complete. In general,
however, data sets can exhibit sure indirect preference reversals without exhibiting sure
direct preference reversals (see Example 3 below). The absence of a sure indirect preference
reversal is trivially necessary for a data set to be compatible with TC-EU and our next result
shows that it is indeed sufficient.

Theorem 1 (Consistency with TC-EU). Consider X ⊂ R and let (⪯0,⪯1, f) be a data set
with strict and single-peaked time-1 preferences.

(i) The data set is consistent with TC-EU if and only if it exhibits no sure indirect
preference reversals.

(ii) If ⪯0 is complete, then the data set is consistent with TC-EU if and only if it exhibits
no sure direct preference reversals.

Theorem 1 implies that it could be difficult to reject TC-EU using revision designs. For
example, if at time 0 the agent chooses to allocate a fraction x = 1/2 of resources to time 1

26We only need to consider cycles where the order is generated between alternations between ⪯1
∗ and ⪯0

because due to transitivity we can always remove elements that are bounded from above and below in the
same order. Any such cycle has an even number of elements.
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(and the remainder x = 1/2 to time 2), then TC-EU is rejected if and only if at time 1 the
agent always revises to allocate more resources to time 1, i.e. x > 1/2.

How demanding of a test this is depends on the randomness of taste shocks at time 1.
In a deterministic environment (i.e., |Ω| = 1) with a rich choice set, an agent with dynam-
ically inconsistent time preferences will often sure direct preference reversals. However, the
more variability there is in an agent’s time-1 preference, the more unlikely sure preference
reversals become, even if the agent does have dynamically inconsistent time preferences.
Thus, Theorem 1 suggests that while revision designs can provide discerning tests of time
inconsistency in deterministic environments, they may be uninformative about whether an
agent is time-consistent or time-inconsistent when there is significant stochasticity in time-1
choices.27 We are not aware of any revision design studies where the data contain a sure
direct or sure indirect preference reversal.

Remark 1. The consistency conditions in Theorem 1 do not involve the probabilities f .
Thus, Theorem 1 also applies to the case where the analyst simply knows that each time-1
preference profile ⪯1

j occurs with positive probability. An analogous comment applies to the
other theorems in this section.

Remark 2. An immediate conclusion obtained by combining Theorems 1 and Proposition 1
is the following equivalence: A data set (⪯0,⪯1, f) with strict single-peaked time-1 and either
complete or single peaked time-0 preferences admits a sure lottery preference reversal if and
only if it admits a sure direct preference reversal. Thus, intuitively, data sets composed of
single-peaked preferences cannot violate dynamic consistency in a complicated way without
also violating it in a simpler way.28

To illustrate the importance of the conditions in our Theorem 1, we end this section
with an example of a data set with incomplete preferences that admits an indirect but not
sure direct preference reversal, and an example of a data set where preferences are not
single-peaked, where there is a sure lottery, but not a sure indirect preference reversal.

27Theorem 1 and related results about ordinal preference data sets can be generalized from TC-EU to
recursive preferences that nest TC-EU, such as the Epstein and Zin (1989) preferences. To see this, let ⪯0

be complete and note that any time-0 preference that is a monotonic (but not necessarily linear) function
of time-1 utilities cannot generate sure direct preference reversals. Conversely, as TC-EU is a recursive
preference, any data set consistent with TC-EU is also consistent with recursive preferences. Theorem 1
thus implies that if a strict, single-peaked data set is consistent with some monotone recursive preference it
is also consistent with TC-EU, and hence TC-EU imposes little restrictions on the data. We thank Yoram
Halevy and Faruk Gul for pointing this out.

28We thank Xiaosheng Mu and Pietro Ortoleva for pointing out this equivalence as an alternative per-
spective on our results.
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Example 3. There are four alternatives X = {1, 2, 3, 4} and only one state, with single-
peaked time-1 preference ⪯1 in that state. The time-1 (incomplete) preference is 1 ≺1 2

and 4 ≺1 3, while the time-0 (incomplete) preference is 2 ≺0 4 and 3 ≺0 1. Since each
preference relates a different pair of alternatives, there is no sure direct preference reversal.
However, no utility function is consistent with both the time-0 and time-1 preferences, as
the time-1 preference would imply that u(1) < u(2), the time-0 preference would imply that
u(2) < u(4), the time-1 preference would also imply that u(4) < u(3), which would then
imply that u(1) < u(3), violating the time-0 preference. The sure indirect preference reversal
is 1 ≺1 2 ≺0 4 ≺1 3 ≺0 1.

A natural question is whether a sure indirect preference reversal is necessary for a data
with non-single-peaked preferences that is not consistent with TC-EU. The example below
shows that they do not.

Example 4. There are 6 alternatives X = {1, 2, 3, 4, 5, 6} and two states Ω = {1, 2}. All
preferences are strict and given by

1 ≺0 2 ≺0 3 ≺0 4 ≺0 5 ≺0 6

2 ≺1
1 3 ≺1

1 6 ≺1
1 1 ≺1

1 4 ≺1
1 5

4 ≺1
2 1 ≺1

2 2 ≺1
2 5 ≺1

2 6 ≺1
2 3 .

It is easy to check that the preferences exhibit no sure direct or sure indirect preference
reversals. However, the preferences are not consistent with TC-EU. In both states, the
time-1 preference implies that the individual strictly prefers a uniform lottery over {1, 3, 5}
to a uniform lottery over {2, 4, 6} in each state, since the former first-order stochastically
dominates the latter. However, the time-0 preference implies that the individual strictly
prefers a uniform lottery over {2, 4, 6} to a uniform lottery over {1, 3, 5}.29

3.3 Concave Utilities

An additional plausible restriction is that the agent’s time-1 utility is concave in each state.
For example, it is natural to assume that each period, the utility from consumption is concave,

29Example 4 is minimal in the following sense: For all data sets with two states (|Ω| = 2) and fewer than 6
alternatives (|X| < 6), consistency with TC-EU is ensured when there are no sure direct preference reversals
(i.e., the conclusion of Theorem 1 holds for non single-peaked data with |Ω| = 2, |X| < 6). Furthermore,
Example 4 is the only data set (up to relabeling of the states) with |Ω| = 2, |X| = 6 where Theorem 1 does
not hold. We verified this using a computer program that checks for each configuration of preferences if
there is a sure direct preference reversal and solves the linear programming problems that corresponds to
checking if there is an TC-EU representation. But there are many other examples of data sets not consistent
with TC-EU and not exhibiting sure direct preference reversals when |Ω| > 2 or |X| > 6.
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or that the cost of effort is convex. If the agent decides what share of resources x to allocate
to time 1, and what share 1− x to allocate to time 2, and if uω(x) = v1ω(x)+ v2ω(1− x), with
v1 and v2 both concave, then uω will be concave as well. We say that a data set is consistent
with concave TC-EU if it is consistent with TC-EU for a strictly concave utility function.

It is immediate that any concave utility function leads to single-peaked preferences. More-
over, because the expectation of a strictly concave function is itself strictly concave, it follows
that the time-0 utility must be concave whenever all time-1 utilities are concave. This im-
mediately implies that a necessary condition for a data set to be consistent with concave
TC-EU is that the time-0 preference must be single-peaked. Our next result shows that
this condition, together with no sure direct preference reversal, is also sufficient, and thus
provides a complete characterization of all data sets that are consistent with concave TC-EU.

Theorem 2. If X ⊂ R, a data set (⪯0,⪯1, f) is consistent with concave TC-EU if and only
if (i) time-0 and time-1 preferences are single-peaked and (ii) the data exhibit no sure direct
preference reversals.

We note that the additional restriction that the time-0 preference is also single-peaked
implies that the lack of sure direct preference reversals is enough to guarantee consistency
with TC-EU; it is not necessary to consider sure indirect preference reversals more generally
in this case.30

3.4 Preference Data Consistent with Stochastic Choice

Designs where the elements are not naturally ordered are often analyzed with convenient
parametric models of stochastic discrete choice, such as the Luce model. Below, we provide
a sufficient (but not necessary) condition that may be easier to check in some applications
than the necessary and sufficient condition in Proposition 1—and that speaks directly to a
key property of commonly used discrete choice models. The sufficient condition extends our
sure preference reversal condition to a consistency condition over sets.

Proposition 2. The data set (⪯0,⪯1, f) is consistent with TC-EU if one of the following
holds:

(i) For each x there is a ω such that for all y ⪰0 x we do not have x ⪰1
ω y.

(ii) For each x there is a ω such that for all y ⪯0 x we do not have x ⪯1
ω y.

30In Example 3, the time-0 preference is not single-peaked, because single-peakness would require that
1 ⪯0 2 and 2 ⪯0 3 if 2 ≺0 4, which is inconsistent with 3 ≺0 1.
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As an illustration, suppose that each alternative is the most preferred alternative with
positive probability—a positivity condition that holds for many standard stochastic discrete
choice models. Positivity holds, for example, in models with a random effect that follows
a Type-1 extreme value distribution. In this case, all alternatives that are lower-ranked
according to the time-0 preference will also be lower-ranked according to the preferences in
the state where it is the most preferred alternative. Thus, the second sufficient condition of
the above proposition holds.

3.5 Cardinal Preferences Data

Proposition 1 can be generalized to a more general result that applies to cases where some
cardinal information is known about time-0 or time-1 preferences. For example, some cardi-
nal information can be acquired by observing preferences over a set of lotteries, allowing the
analyst to draw some conclusions about the curvature of the utility functions. Some types of
cardinal information might also be assumed. For example, the analyst might use supplemen-
tary data on risk aversion, the elasticity of labor supply, or the elasticity of intertemporal
substitution to decide what is a “reasonable” degree of curvature.

Formally, we associate each cardinal preference with a vector uω ∈ R|X|. We consider a
data set (U0, U1) where it is known that the time-1 cardinal preferences in state ω satisfy
uω(·) ∈ U1

ω ⊆ R|X|, and we set U1 ⊆ R|X|×|Ω| to be the product of the sets U1
ω. We make

three assumptions about U1: (i) U1
ω is convex; (ii) U1

ω is open relative to its affine hull;
(iii) if uω ∈ U1

ω then λ0 + λ1 uω ∈ U1
ω for all λ0 ∈ R and λ1 ∈ R++. Assumption (iii)

corresponds to the fact that cardinal information about utility functions can only be learned
up to monotonic linear transformations. Assumption (ii) is an innocuous technical condition.
Assumption (i) is arguably the strongest.

All three of these assumptions are satisfied for sets U0 and U1 of utility functions that
represent the ordinal relations ⪯0 and ⪯1, respectively (see Lemma 7 in the Appendix). The
following definition generalizes consistency with TC-EU.

Definition 6 (Consistency with TC-EU). A data set (U0, U1, f) is consistent with TC-EU
if there exist utility functions u1 ∈ U1 and u0 ∈ U0 such that for all x ∈ X,

u0(x) =
∑
ω∈Ω

fωu
1
ω(x) .

Intuitively, U0 captures the information that the analyst has about time-0 preferences
and U1 captures the information that the analyst has about time-1 preferences. A data set
(U0, U1, f) is consistent with TC-EU if there is a way of picking a utility function consis-
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tent with the time-1 information such that the induced time-0 expected utility function is
consistent with the information the analyst has about time-0 utility.

To characterize the preferences that are consistent with TC-EU, it will be necessary to
consider lotteries over the alternatives, as we have done in the previous subsection. For any
lottery L ∈ ∆(X) and utility function u : X → R, we define the associated expected utility
u(L) =

∑
x∈X L(x)u(x).

Definition 7 (Dominance with Respect to U1). We say that L′ weakly dominates L if
u1
ω(L

′) ≥ u1
ω(L) for all u1 ∈ U1 and ω ∈ Ω. We say that L′ strictly dominates L if it weakly

dominates L for each u1 ∈ U1, and there exists ω such that u1
ω(L

′) > u1
ω(L).

The above definition is equivalent to first-order stochastic dominance whenever U1
ω is the

set of all utility functions consistent with a given ordinal preference ⪯1
ω. We generalize our

definition of sure lottery preference reversals accordingly.

Definition 8. A data set (U0, U1, f) exhibits sure lottery preference reversals if there exist
lotteries L,L′ ∈ ∆(X) such that for every u0 ∈ U0 either

(i) L′ weakly dominates L with respect to U1 and u0(L) > u0(L′), or
(ii) L′ strictly dominates L with respect to U1 and u0(L) ≥ u0(L′).

This definition facilitates the following generalization of Proposition 1:

Proposition 3. A data set (U0, U1, f) is consistent with TC-EU if and only if it exhibits no
sure lottery preference reversals.

4 A Sketch of the Proof of Our Main Results
We next sketch a proof of Theorems 1 and 2. To simplify exposition, we focus on the case
where all preferences are complete and strict, and skip over some technical details. Complete
proofs for the general case can be found in the Appendix. Recall that we define U0 ⊂ R|X|

to be the set of utilities consistent with ⪯0, and we define Ū1 ⊂ R|X| to be the closure of the
set of expected utilities consistent with the random preference ⪯1.

By Proposition 1, there exists two lotteries L,L′, represented by vectors of probabilities
of the corresponding alternatives, such that p · u0 ≥ 0 ≥ p · u1 for p = L − L′ and all
u0 ∈ U0, u1 ∈ Ū1, with one of the inequalities strict. Because the entries of p sum to zero, a
sure direct preference reversal corresponds to a vector p ∈ R|X| where only two of the entries
are non-zero.
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Figure 1: Illustration of the preferences in state ω, ω′.

Thus, if there are only two alternatives to choose from, i.e. |X| = 2, the existence of a
sure lottery preference reversal implies the existence of a sure direct preference reversal. We
prove the result by induction over the number of alternatives in |X|.

Denote by x† the worst alternative at time 0: x† ≺0 x for all x ̸= x†. If x† ≻1
ω x for all

ω, then there is a sure direct preference reversal. Thus, it is without loss to focus on the
case where x† does not dominate any other alternative according to the time-1 preference.
Denote by x, x, respectively, the smallest and largest elements of X according to the natural
order on the reals. For this argument, suppose that x† is not equal to x or x. As x† does
not dominate x or x at time 1, there exists at least one state ω where x† ≺1

ω x and at least
one state ω′ where x† ≺1

ω′ x̄.
As preferences are single peaked, that implies that the peak s of ≺1

ω must be to the left
of x† in state ω and the peak s′ of ≺1

ω′ must be to the right of x†. This is illustrated in
the left panel of Figure 1. The right panel illustrates another utility representation of the
ordinal (single-peaked) preferences in states ω, ω′ given by

u1
ω(x) = −ϵ|x− s| − δ1{x ≥ x†}

u1
ω′(x) = −ϵ|x− s′|+ δ1{x > x†} .

The sum of these utility functions is given by

u1
ω(x) + u1

ω′(x) = −ϵ(|x− s|+ |x− s′|)− δ1{x = x†} .

Because Ū1 is the closure of expected utilities consistent with ⪯1, and we can choose ϵ

arbitrarily small, it follows that −δ1{x = x†} ∈ Ū1.
At the same time, if u0 ∈ U0, then so is u0 − δ1{x = x†} for any δ ≥ 0, because x† is the

least preferred element at time 0. Consequently, for any u0 ∈ U0, u1 ∈ Ū1 and any δ ≥ 0 we
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have that the separating hyperplane p satisfies

p · u0 − δp(x†) ≥ 0 ≥ p · u1 − δp(x†) .

This equation can only be satisfied for all δ ≥ 0 if p(x†) = 0. Thus, because p(x†) = 0 we
have found a separating hyperplane which involves only |X| − 1 elements and we can thus
remove x† from the problem and the resulting data set with |X| − 1 alternatives will still
not be compatible with TC-EU preferences.

Finally, if x† is either x or x, it follows from the same argument that p(x†) = 0 as x†

must already be the least preferred option in some state at time 1. We have thus completed
the induction step.

5 Estimating Time Inconsistency
In the prior section we have shown that many patterns of choice—including those previously
described as evidence of time inconsistency—can, in fact, be rationalized with time consistent
preferences. In this section, we formalize the identification approaches illustrated by the
examples in Section 1.3.

5.1 Data Sets with Identification of Time Inconsistency

To formalize our results about identification, we start with two definitions.

Definition 9. Preferences (⪯0,⪯1, f) on X ⊆ Y ×Z have an additively separable represen-
tation (h0, h1, g0, g1) if there exist h0, h1

ω : Y → R and g0, g1ω : Z → R such that for all states
ω,

u0(y, z) = h0(y) + g0(z)

u1
ω(y, z) = h1

ω(y) + g1ω(z)

are consistent with ⪯0 and ⪯1
ω, respectively.31

Definition 10. A preference ⪯ over X is responsive if there exists a reference alternative y◦

such that for every pair (y, y◦) ∈ Y 2 there exists a pair (z, z◦) ∈ Z2 such that (y, z) ∼ (y◦, z◦).
An agent’s preferences in a data set (⪯0,⪯1, f) are responsive if ⪯0 and ≺1

ω are responsive
for all ω, with the same reference alternative y◦.

31To be clear, we use h1 = (h1
ω)ω∈Ω and g1 = (g1ω)ω∈Ω to denote vectors of possible time-1 utilities.
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Examples 1 and 2 illustrated how the the assumptions of separability and responsiveness
correspond to the case where the agent’s preference for receiving an alternative y ∈ Y instead
of y◦ ∈ Y can be “priced out” in units of Z.32 The key additional assumption needed to use
the priced-out valuations to point identify time preferences is that g is state-independent;
i.e., the agent’s valuations of alternatives in Z are state-independent. In the context of
Example 1, this assumption amounts to the assumption that the agent’s marginal utility of
money does not vary with their appetite. The proposition below formalizes the general case.

Proposition 4. If preferences in the data set (⪯0,⪯1, f) are responsive, additively separable,
and g ≡ g0 ≡ g11 ≡ . . . ≡ g1|Ω| is known, then the following is point-identified:

h0(y)− h0(y◦)∑
ω fω[h

1
ω(y)− h1

ω(y
◦)]

=
g(z◦0,y)− g(z0,y)∑

ω fω[g(z
◦
ω,y)− g(zω,y)]

, (3)

where (y, z0,y) ∼0 (y◦, z◦0,y) and (y, zω,y) ∼1
ω (y◦, z◦ω,y) for all ω ∈ Ω.

The right-hand-side of (3) is observable in the data set because g is known and the
alternatives z0,y, z0,y◦ , zω,y, zω,y◦ that make the agent indifferent between y and y◦ are observed
in a responsive data set. Intuitively, the ratio on the right-hand-side captures how the agent’s
valuation of alternatives in Y , measured in units of Z, changes over time (on average). For
a TC-EU agent, h0(y) =

∑
ω fω h

1
ω(y) for all y, and thus the expression in (3) must equal 1.

To see how this proposition generalizes Example 2, take g(z) = βz, h0(y) = −βE[θω]c(y),
and h1

ω(y) = −θωc(y). The reference level of effort is y◦, and y = y◦ +5 is 5 additional units
of work. At time 0, the agent requires z0,y−z◦0,y money to complete this additional effort, and
at time 1, in state ω, the agent requires zω,y − z◦ω,y money to complete this additional effort.
The goal is to identify β = h0(y)−h0(y◦)∑

ω fω [h1
ω(y)−h1

ω(y
◦)]

. This is given by the ratio of the willingness to
accept money for effort at time 0, g(z◦0,y)− g(z0,y) = 10, to the average willingness to accept
money for effort at time 1,

∑
ω fω[g(z

◦
ω,y)− g(zω,y)] = 15. Thus, β = 2/3.

5.2 Partial Identification of Quasi-hyperbolic Discounting

Importantly, additive separability and responsiveness are not by themselves enough to achieve
point identification, even with additional parametric assumptions about the nature of time
inconsistency and taste shocks. This illustrates that having a state-independent numeraire
commodity, as in Proposition 4, is crucial for point identification.

32Practically, a responsive data set can be easily generated using standard multiple price list or Becker–
DeGroot–Marschak (BDM) techniques. The analyst simply needs to elicit how much money an agent is
willing to forego to obtain their preferred option, and ensure enough range in monetary amounts to elicit
the agent’s maximum willingness to pay.
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Specifically, we focus on the quasi-hyperbolic discounting model with multiplicative taste
shocks, which generalizes our example in Section 1.1.

Definition 11 (Quasi-hyperbolic Discounting with Multiplicative Shocks). A data set
(⪯0,⪯1, f) is consistent with quasi-hyperbolic discounting with multiplicative taste shocks
if it is consistent with utilities of the form

u0(y, z) = β
∑
ω∈Ω

fω
(
θ1ωh(y) + θ2ωg(z)

)
u1
ω(y, z) = θ1ω h(y) + β θ2ω g(z) .

(4)

This captures the Section 1.1 example if h corresponds to time-1 effort cost and g corre-
sponds to time-2 effort cost.

To obtain intuition for the types of inferences that can be made about the parameter
β given data consistent with quasi-hyperbolic discounting with multiplicative taste shocks,
consider an identification strategy that (wrongly) assumes no taste shocks and assumes
instead that all differences in time 1 are due to variation in the time-preference parameter
β. That is, if at time 0 the agent is indifferent between (y, z0,y) ∼0 (y◦, z◦0,y) and at time 1 is
indifferent between (y, zω,y) ∼1

ω (y◦, z◦ω,y), then

h(y) + g(z0,y) = h(y◦) + g(z◦0,y)

h(y) + β̂ωg(zω,y) = h(y◦) + β̂ωg(z
◦
ω,y) .

Rearranging these equations yields that

β̂ω =
g(z◦0,y)− g(z0,y)

g(z◦ω,y)− g(zω,y)
. (5)

We use the “hat” notation in the definition above because β̂ω can also be thought of as a
“noisy” estimate of the true present focus parameter β, which is a common statistic to report
in empirical studies.

An immediate corollary of Proposition 4 is that if utility over the Z dimension is state-
independent, then β is point-identified and given by

β =
1∑

ω∈Ω fωβ̂−1
ω

. (6)

Without the state independence assumption, the range of the distribution of β̂ω identifies the
range of possible values of β consistent with the data. This result, formalized in Proposition
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5, provides a generalization of the numerical examples in Section 1.1.
To state the proposition, we note that if preferences can be represented as in (4), then

there exists an additively separable representation (h0, h1, g0, g1) (as in Definition 9) of the
preferences where the function g1 does not depend on the state and equals g0. To obtain
this representation, simply set h0 ≡

∑
ω fωθ1ω∑
ω fωθ2ω

h, h1
ω ≡ θ1ω

βθ2ω
h, g0 = g and g1 = βg.

Proposition 5. A responsive data set (⪯0,⪯1, f) is consistent with quasi-hyperbolic dis-
counting with multiplicative taste shocks if and only if

(i) it has an additively separable representation (h0, h1, g0, g1) where for all ω ∈ Ω, g0 =

g1ω = g and h1
ω(y)

h0(y)
is non-negative and constant in y ∈ Y , and

(ii) β ∈
(
minω β̂ω,maxω β̂ω

)
for β̂ω =

g(z◦0,y)−g(z0,y)

g(z◦ω,y)−g(zω,y)
.

The range of β̂ω is estimable, and is frequently reported in experiments, which facilitates
the application of Proposition 5. In practice, because many experiments feature only one
revision observation per person, β̂ω is obtained as an individual-level estimate of present
focus. Thus, Proposition 5 suggests a different way of treating individual-level estimates
of β̂ω than is typically done in experiments. Instead of interpreting the distribution of β̂ω

literally as the distribution of time preferences, Proposition 5 illustrates that this distribution
can instead be consistent with a homogeneous present focus parameter β that can take on
any value in the support of the distribution of β̂ω.

5.3 Practical Considerations for Experimental Designs

5.3.1 Quantifying the Importance of Taste Shocks

Our theoretical results clarify that taste shocks tend to impede identification of time incon-
sistency. Both intuition and evidence suggest that taste shocks are quantitatively important.
For example, Read and van Leeuwen (1998) experimentally show that variation in individ-
uals’ satiation has a large effect on their preferences for healthy versus unhealthy foods at
time 1.

One way of quantifying the relevance of taste shocks is to estimate individuals’ time-0
and time-1 preferences on two (or more) separate occasions, j ∈ {1, 2}. If on both occasions
the analyst obtains an identical measure of time preference for each individual (e.g., β̂1

i = β̂2
i

for each agent i in the quasi-hyperbolic discounting model), then that suggests that there
are no taste shocks. In that case, the β̂i can be interpreted as individual-level estimates of
the present focus parameter. On the other hand, a low correlation between β̂1

i and β̂2
i is

consistent with prevalent taste shocks.
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5.3.2 Commitment

Although demand for choice set restrictions cannot be used to point identify time-preference
parameters (see, e.g., Carrera et al., 2022),33 in some cases it serves as a useful correlate
of time preferences that can help refine their set identification. For example, Augenblick
et al. (2015) find that their measure of demand for commitment relates negatively to their
estimates of the present-focus parameter β, and thus provides evidence of some stable indi-
vidual differences in time preferences. Such additional covariates can be productively used in
conjunction with Proposition 5 in the following simple way: apply the Proposition to the set
of people choosing a commitment contract and separately to the set of people not choosing
the commitment contract. This should refine the identified sets.

5.3.3 Heterogeneity

Our results concern a data set in which the analyst observes an agent’s time-0 preference
and the full distribution of time-1 preferences. In practice, data sets are less rich, which
implies that our results are a “best case” for identification. A more typical data set consists
of a large population of individuals who each make a single choice at time 0 and at time 1.

One approach to analyzing such data sets is to assume that all individuals who make the
same time-0 choice are homogeneous both in preferences and the economic environment, and
consequently treat variation in time-1 decisions as due to realization of uncertainty. Under
this assumption, the set of all individuals who make the same time-0 choice constitutes the
kinds of data sets that we study in this paper. Even without this homogeneity assumption,
however, most of our key results still apply, as we discuss in Online Appendix A.

6 Conclusion
Our mathematical and numerical results show that in typical revision designs, it is difficult
to identify the degree of time inconsistency. The difficulty arises from random taste shocks
or other arrival of information, which are particularly plausible in more complex and econom-
ically consequential field settings. However, we have also provided guidance on the types of
economic environments where the assumptions required for point identification are plausible.
Thus, while identification of time inconsistency may be more difficult than initially intuited,
it is certainly theoretically and empirically feasible.

33Commitment take-up is a coarse measure that might lead to false negatives in tests of time inconsistency
because uncertainty and thus demand for flexibility reduce demand for choice set restrictions (Heidhues and
Kőszegi, 2009, Laibson, 2015, Carrera et al., 2022), and can also deliver false positives because of noise in
take-up decisions (Carrera et al., 2022).
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The identification challenge posed by taste shocks and learning might also offer a poten-
tial explanation for several empirical regularities that have been extensively examined in the
time preference literature (e.g., Cohen et al., 2020). Evidence suggests that individual esti-
mates of time preference parameters exhibit significant heterogeneity, domain-specificity, and
correlations with personal characteristics such as age and cognitive ability. Moreover, some
studies have shown that time preference parameters estimated in non-monetary domains
tend to be smaller than those estimated in monetary domains. Some of these regularities
might be due to how the prevalence of taste shocks varies across individuals and domains,
which is a potentially fruitful avenue for additional empirical investigation.

Of course, our results do not imply that nothing can be learned from data sets where we
show that it is not possible to formally reject time consistency. For example, it is unlikely to
be mere coincidence or file-drawer bias that in most circulated papers, the systematic rever-
sals tend to be toward more immediately gratifying options.34 Just as proper Bayesian scien-
tists reservedly update about causal relationships from all well-measured associations—even
when the associations are not produced by experimental or quasi-experimental techniques—
we think it is appropriate to carefully update from all revision design data. Correlational
analyses that link choice revisions to supplementary proxies of time inconsistency or observ-
able determinants of taste shocks (e.g., Augenblick et al., 2015, Sadoff et al., 2019) can bolster
the updating. At the same time, by formally studying identification in a general theoretical
framework, this paper clarifies just how strong the assumptions for (point) identification of
time inconsistency have to be, and helps identify the most theoretically robust designs. We
hope that this will help further the important agenda of measuring time inconsistency.

34Based on their meta-analysis, Imai et al. (2021) suggest that selective reporting is modest in revision
designs studying effort allocation tasks using the convex time budget approach.
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A Appendix
The appendix proceeds as follows: Section A.1 derives several results on the aggregation
of incomplete preorders. Section A.2 derives several results on the separation of finite-
dimensional cones generated by sets of utility functions. In Section A.3 we use these results
to formalize the proof sketches in the body of the paper.

A.1 Results on Aggregating Incomplete Preorders

Recall that we defined a new preorder ⪯1
∗ that ranks one alternative y weakly higher than

an alternative x if the agent ranks that alternative higher in all states ω

x ⪯1
∗ y ⇔ x ⪯1

ω y for all ω ∈ Ω .

We thus denote by ⪯1
∗ the preorder that is generated by agreement of the preorders ⪯1

ω in
the different states ω. We define another binary relation �∗ such that y is weakly preferred
to x if it is either preferred according to the time-0 preference or according to all time-1
preferences

x�∗ y ⇔ x ⪯0 y or x ⪯1
∗ y . (7)

We define �∗ to be the asymmetric component of �∗. We note that �∗ need not to be
transitive and define � to be the smallest transitive closure of �∗. We define ∼� to be the
symmetric part of �, and � to be the asymmetric part of �.

Lemma 1. If the data set admits no sure direct preference reversals then

x�∗ y ⇔ x ≺0 y or x ≺1
∗ y.

Proof. We first note that x�∗ y if x�∗ y and neither y ⪯1
∗ x nor y ⪯0 x. We furthermore

note that if there is no sure direct preference reversal, then x ≺0 y implies that we do not
have y ⪯1

∗ x, and x ≺1
∗ y implies that we do not have y ⪯0 x. Hence, x ≺0 y or x ≺1

∗ y

implies x�∗ y.
To see that the converse direction also holds, note that x�∗ y implies that neither y ⪯0 x

nor y ⪯1
∗ x, and either x ⪯0 y or x ⪯1

∗ y, which together implies that either x ≺0 y or
x ≺1

∗ y.

We next translate the condition of no sure indirect preference reversals in the data set
(⪯0,⪯1, f) into a condition on the induced order �∗.
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Definition 12 (Only Weak Cycles). We say that �∗ admits only weak cycles if x1 �
∗ · · ·�∗

xn �
∗ x1 implies that x1 ∼�∗ · · · ∼�∗ xn.

Lemma 2. The following are equivalent:
(i) The data set has no sure indirect preference reversal.

(ii) The data set has no sure direct preference reversal and �∗ satisfies the only weak cycles
condition.

Proof. (ii) ⇒ (i): Suppose that the elements x1, . . . , xk constitute a sure indirect preference
reversal. Without loss we can assume that the first inequality is strict (otherwise reorder the
elements) and according to the time-0 order (the argument for the time-1 order is identical)

x1 ≺0 x2 ⪯1
∗ x3 ⪯0 . . . ⪯0 xk ⪯1

∗ x1 .

If there is no sure direct preference reversal, then Lemma 1 implies that

x1 �
∗ x2 �

∗ x3 �
∗ . . .�∗ xk �

∗ x1 ,

and thus a violation of the only weak cycles condition.
(i) ⇒ (ii): Suppose (ii) does not hold. If the data set has a sure direct preference

reversal it also has a sure indirect preference reversal, as any sure direct preference reversal
is a sure indirect preference reversal with a cycle of length 2. Thus, suppose that there is no
sure direct preference reversal but that there is a non-weak cycle in �∗ involving x1, . . . , xk.
Without loss, assume that xk �

∗ x1. Then Lemma 1 implies that there exist alternatives
x1, . . . , xk such that:

(i) For all j ≤ k − 1, either xj ⪯0 xj+1 or xj ⪯1
∗ xj+1

(ii) Either xk ≺0 x1 or xk ≺1
∗ x1

Now if xj ⪯0 xj+1 ⪯0 xj+2, then xj ⪯0 xj+2, and thus there is a non-weak cycle over the
set {x1, . . . , xk} \ {xj+1}. A similar statement applies to three adjacent alternatives in a
cycle related by ⪯1

∗. Thus, any non-weak cycle can be reduced to a non-weak cycle where no
three adjacent alternatives are in increasing order according to ⪯0 or according to ⪯1

∗; this
non-weak cycle amounts to a sure indirect preference reversal.

Lemma 3. If ⪯0 is complete and the data set (⪯0,⪯1, f) exhibits sure indirect preference
reversals then there exists a sure direct preference reversal.

Proof. We prove this result by contraposition. Assume that there is no sure direct preference
reversal. Then �∗ preserves the asymmetric part of ⪯0 by Lemma 1. As ⪯0 is by assumption

34



complete, �∗ must be complete as well. As ⪯0 is transitive, �∗ can only admit weak cycles.
But then Lemma 2 implies that there is no sure indirect preference reversal.

Lemma 4. Suppose that �∗ satisfies the only weak cycles condition. Then x�∗ y ⇒ x� y.

Proof. Suppose that x�∗ y. Then the only way for y�x is if there is a cycle in �∗ involving
x and y. Since x�∗ y, this cycle is not a weak cycle.

Lemma 5. Suppose that ⪯0 and ⪯1 are single-peaked, and that there are no sure direct
preference reversals. Then there exists a nonempty set X∗ ⊆ {minX,maxX} such that
x � x∗ does not hold for any x ∈ X \X∗ and x∗ ∈ X∗, and such that minX ∼� maxX if
X∗ = {minX,maxX}.

Proof. Consider the set of alternatives that is not strictly better than any other alternative
according to the preorder �

X = {x ∈ X : there does not exist y ∈ X with y � x} .

We first argue that X ∩ {minX,maxX} ̸= ∅. If not, then there would exist y ∈ X such
that either minX ≻0 y or minX ≻1

∗ y. Suppose first that minX ≻0 y. Single-peakness
implies that if y ̸= maxX then minX ≻0 y ⪰0 maxX, so that minX ≻0 maxX. Thus,
minX ≻0 maxX if minX /∈ X . Now if maxX /∈ X , then a similar argument shows that
minX ≺1

∗ maxX (since minX ≺0 maxX is impossible by transitivity), which implies a
sure direct preference reversal. Thus, if minX ≻0 y, then there is a sure direct preference
reversal. A symmetric argument also shows that minX ≻1

∗ y implies a sure direct preference
reversal.

Next, pick a maximal subset of X , X∗, such that X∗ ∩ {minX,maxX} ̸= ∅, and such
that x ∼� x′ for all x, x′ ∈ X∗. Without loss, assume that minX ∈ X∗. We now argue
that X∗ ⊆ {minX,maxX}. If not, then there is a y ∈ X \ {minX,maxX} such that
y ∼�∗ minX. Then, because we assumed no sure direct preference reversals, either

(i) there is some y ∈ X \ {minX,maxX} such that either y ∼0 minX or y ∼1
∗ minX, or

(ii) minX and y are part of a cycle in �∗ that is not a weak cycle

To see why (ii) must hold if (i) does not, note that if minX were part of a weak cycle that
relates it to y through ∼�∗ , and condition (i) did not hold for any y′ ∈ X \ {minX,maxX},
then there would need to be sure direct preference reversals to generate the indifferences in
the weak cycle.
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We next argue that in both cases (i) and (ii) above, either minX ≻0 maxX or minX ≻1
∗

maxX. We then show that neither possibility is inconsistent with there being no sure direct
preference reversals.

Case (i) If y ∼0 minX then single-peakness implies that y ≻0 maxX and thus minX ≻0

maxX. An identical argument shows that y ∼1
∗ minX implies that minX ≻1

∗ maxX.
Case (ii) If minX is part of a cycle in �∗ that is not a weak cycle, then there is some

y ∈ X\{minX,maxX} such that either (i) y ∼0 minX or (ii) y ∼1
∗ minX or (iii) y ≺0 minX

or (iv) y ≺1
∗ minX. In the first two cases, we have already shown that minX ≻0 maxX

or minX ≻1
∗ maxX. In the second two cases, the first paragraph of this proof shows that

either minX ≻0 maxX or minX ≻1
∗ maxX.

Thus, if X∗ ⊆ {minX,maxX} does not hold, then either minX ≻0 maxX or minX ≻1
∗

maxX, and thus maxX �minX. But since minX ∈ X∗, the definition of X∗ requires that
minX ∼� maxX, and thus that maxX ∈ X∗. Moreover, since either minX ≻0 maxX or
minX ≻1

∗ maxX, the only way for minX ∼� maxX to hold in the absence of sure direct
preference reversals is if there is a non-weak cycle involving both minX and maxX. But
then, reasoning identical to Case (ii) above implies that we must have maxX ≻0 minX or
maxX ≻1

∗ minX, which implies a sure direct preference reversal.

A.2 Results on the Cones Generated from Sets of Utility Func-
tions

As there are only finitely many alternatives we will throughout identify utilities with vectors
in R|X|.

For any sets A and B, we define the Minkowsky sum A + B := {a + b | a ∈ A, b ∈ B}.
We say that a set A ⊂ Rn is constant shift invariant if a ∈ A implies that a+(λ, . . . , λ) ∈ A

for all λ ∈ R.

Lemma 6 (Cone Separation Lemma). Suppose that A,B ⊂ Rn are convex cones that are
open relative to their affine hull and constant shift invariant with A ∩ B = ∅. Then there
exists a vector p ∈ Rn with p ̸= 0 and

∑n
i=1 pi = 0, such that for all a ∈ A, b ∈ B

p · a ≥ 0 ≥ p · b

and one of the inequalities is strict for all a ∈ A and b ∈ B.

Proof. As A,B are disjoint they can be properly separated by a hyperplane; i.e., there
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exists p ∈ Rn with p ̸= 0 and c ∈ R such that for all a ∈ A, b ∈ B

p · a ≥ c ≥ p · b

with at least one inequality strict. As A is constant shift invariant, a + (λ, . . . , λ) ∈ A if
a ∈ A, which implies that for all λ ∈ R

p · a+ λ

n∑
i=1

pi ≥ c .

The above inequality can only hold for all λ ∈ R if
∑n

i=1 pi = 0, which thus must hold.
Similarly, as A is a cone, a ∈ A implies that λa ∈ A for all λ > 0 and hence

λ(p · a) ≥ c .

Taking the limit λ → 0 yields that 0 ≥ c. Applying the same argument using that B is a
cone yields that c ≥ 0 and hence we have that c = 0.

By the proper separation there exists either a ∈ A such that p · a ̸= 0 or b ∈ B such that
p · b ̸= 0. Consider the first case and assume that a1 ∈ A with p · a1 > 0. If no a2 ∈ A exists
with p · a2 = 0 we have established that p · a > 0 for all a ∈ A and thus completed the proof.
If a2 ∈ A exists with p · a2 = 0 consider another point a3 = a2 + ϵ(a2 − a1). As A is open
relative to its affine hull, a3 ∈ A for ϵ small enough. However, note that

p · a3 = (1 + ϵ)(p · a2)− ϵ(p · a1) = −ϵ(p · a1) < 0 .

This contradicts that p · a ≥ 0 for all a ∈ A and thus implies that no a2 ∈ A with p · a2 = 0

can exist. Hence, we have established that p · a > 0 for all a ∈ A.
The proof for the case where there exists a b ∈ B with p ·b < 0 is analogous. This implies

that one of the inequalities is always strict for all a ∈ A and b ∈ B. This completes the
proof.

Lemma 7. The set of utility functions consistent with a given (potentially incomplete)
preference relation is open relative to its affine hull.

Proof. Fix two utility functions u, v consistent with ⪯ and fix ϵ > 0 such that

ϵ <
miny,y′ : u(y)>u(y′) u(y)− u(y′)

maxy,y′ : v(y)>v(y′) v(y)− v(y′)
.
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We have that u(x) > u(x′) and v(x) > v(x′) implies that

[u(x) + ϵ(u(x)− v(x))]− [u(x′) + ϵ(u(x′)− v(x′))] ≥ [u(x)− u(x′)]− ϵ[v(x)− v(x′)] > 0 .

Similarly, u(x) = u(x′) and v(x) = v(x′) implies that

u(x) + ϵ(u(x)− v(x)) = u(x′) + ϵ(u(x′)− v(x′)) .

Hence, the utility u(x) + ϵ(u(x)− v(x)) is also consistent with the preference ⪯ for every ϵ

small enough and the set of utilities consistent with ⪯ is open relative to its affine hull (c.f.
Aliprantis and Border, 2006, page 277).

Lemma 8. The set of strictly concave utility functions is open.

Proof. A utility function u is strictly concave if for all x, y, z ∈ X

y − z

y − z
u(x) +

z − x

y − z
u(y) < u(z) .

Note that if v ∈ Bϵ(u) (i.e., an ϵ ball around u) we have that[
y − z

y − z
v(x) +

z − x

y − z
v(y)

]
− v(z) ≤

[
y − z

y − z
u(x) +

z − x

y − z
u(y)

]
− u(z) + 2ϵ .

Thus we have that the utility v is strictly concave for

ϵ <
1

2
min

x,y,z∈X

∣∣∣∣[y − z

y − z
u(x) +

z − x

y − z
u(y)

]
− u(z)

∣∣∣∣ .
We also make use of the following straightforward properties of Minkowski sums of sets

of utilities in our proofs. Define Ū1 =
∑

ω U
1
ω and note that Ū1 is convex and open relatively

to its affine hull if all (U1
ω)ω are convex and open relative to their affine hull. Note also

that if each of the U1
ω are cones and constant shift invariant, then so is Ū1: if ū ∈ Ū , then

(λ0, · · · , λ0) + λ1ū ∈ Ū , for any λ1 > 0 and any real λ0. Finally, note that v =
∑

ω fωuω for
some choices of uω ∈ U1

ω if and only if v =
∑

ω uω for some choices of uω ∈ U1
ω.

Lemma 9. Let U1 denote all utility functions consistent with the single-peaked time-1 pref-
erences. Fix an alternative m ∈ {minX,maxX} such that for every x ̸= m there exists
ω such that x ⪯1

ω m does not hold. Then for every v ∈ U1 there is u ∈ U1 such that
E [uω(x)] = E [vω(x)]− 1x=m∆ .

Similarly, if U1 denotes all concave utility functions consistent with the single-peaked time-
1 preferences, then for every v ∈ U1 there is u ∈ U1 such that E [uω(x)] = E [vω(x)]−1x=m∆ .
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Proof. Without loss, assume that m = minX. By assumption, there exists at least one
state ω′ such that maxX ⪯1

ω′ m does not hold. For this ω′, it is then more generally true that
x ⪯1

ω′ m does not hold for any x ̸= m by the definition of single-peaked preferences. To see
this, note that if x ̸= maxX and x ⪯1

ω′ m, then single-peakness requires that maxX ⪯1
ω′ x,

and thus that maxX ⪯1
ω′ minX.

Now define
uω(x) = vω(x)− 1x=m and ω=ω′

∆

fω′
.

By construction, uω is identical to vω in all states ω ̸= ω′. Moreover, because m is not weakly
preferred to any other alternative x ̸= m in state ω′, it follows that if vω′ is consistent with
⪯1

ω′ then subtracting a positive constant from v′ω(m) still preserves consistency with ⪯1
ω′ as

well as single-peakness. Thus, v ∈ U1 if u ∈ U1, and E [uω(x)] = E [vω(x)] − 1x=m∆ by
construction.

Finally, note that if vω is concave for all ω, including ω = ω′, then subtracting a positive
constant from vω′(m) also preserves concavity. This establishes the last part of the Lemma.

Lemma 10. Assume that time-1 preferences are single-peaked and have no indifferences.
Let U1 denote all single-peaked utility functions with no indifferences that are consistent with
the time-1 preferences. Fix an alternative m /∈ {minX,maxX} such that for every x ̸= m

there exists ω such that x ≺1
ω m does not hold. Then for every v ∈ U1 there is u ∈ U1 such

that E [uω(x)] = E [vω(x)]− 1x=m∆ .

Proof. By definition, there exist states ω′ and ω′′ such that minX ≺1
ω′ m and maxX ≺1

ω′′ m

do not hold. We will show that u : X × Ω → R defined as below belongs to U1 if v ∈ U1:

uω(x) =


vω(x) + ∆ if ω /∈ {ω′, ω′′}

vω(x)− 1x≥m
∆
fω′

+∆ if ω = ω′

vω(x)− 1x≤m
∆
fω′′

+∆ if ω = ω′′

.

First, note that if minX ≺1
ω′ m does not hold, then y ≺1

ω′ m cannot hold for any y <

m. Otherwise, if y ≺1
ω′ m, then minX ≺1

ω′ y by definition of single-peakness, and thus
minX ≺1

ω′ m. Similarly, m ≺1
ω′ x cannot hold for any x > m. We now argue that y ≺1

ω′ x

cannot hold for y < m < x. If it did, then m ≻1
ω′ y by single-peakness. But we have already

shown that this cannot hold.
Together, this implies that y ≺1

ω′ x cannot hold for any x ≥ m and y < m (and indiffer-
ence cannot occur by the assumption of the lemma). Thus, subtracting a constant from vω′

for all alternatives x ≥ m leads to another utility function compatible with the preference
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⪯1
ω′ . A symmetric argument implies that subtracting a constant from vω′′ for all alternatives

x ≤ m leads to another utility compatible with the preference ⪯1
ω′′ .

Thus, the utility function u defined above belongs to U1 if v ∈ U1 (where we also us the
obvious fact that adding ∆ to the utility from all elements preserves inclusion in U1).

Observe that

E [uω(x)] = E [vω(x)]− E [1ω=ω′ ]1x≥m
∆

fω′
− E [1ω=ω′′ ]1x≤m

∆

fω′′
+∆

= E [vω(x)]− 1x≥m∆− 1x≤m∆+∆

= E [vω(x)]− 1x=m∆ ,

which completes the proof.

Lemma 11. Let L1, L2 ∈ ∆(|X|) be two lotteries over outcomes.
(i) L2 dominates L1 with respect to U1 if and only if ū(L2) ≥ ū(L1) for all ū ∈ Ū1.

(ii) L2 strictly dominates L1 with respect to U1 if and only if ū(L2) > ū(L1) for all ū ∈ Ū1.

Proof. If L2 weakly dominates L1 then uω(L2) ≥ uω(L1) for all ω ∈ Ω, u ∈ U1. Thus,∑
ω uω(L2) ≥

∑
ω uω(L1) for all u in U1 and hence weak dominance implies ū(L2) ≥ ū(L1)

for all ū ∈ Ū1. The argument for strict dominance is analogous.
For the opposite direction observe that ū(L2) ≥ ū(L1) for all ū ∈ Ū1 implies that for

all u ∈ U1 we have
∑

ω uω(L2) ≥
∑

ω uω(L1) . Note that if uω ∈ U1
ω then αωuω ∈ U1

ω for all
αω > 0. Thus, for all α ∈ R|Ω|

++, we have that∑
ω

αωuω(L2) ≥
∑
ω

αωuω(L1) .

Choosing αω = 1ω=ω̃ + ϵ1ω ̸=ω̃ for ϵ > 0 yields that

uω̃(L2)− uω̃(L1) ≥ ϵ

(∑
ω ̸=ω̃

uω(L1)− uω(L2)

)
.

Taking the limit ϵ → 0 yields that for each state ω̃ we have that uω̃(L2) ≥ uω̃(L1), and thus
that L2 weakly dominates L1. This establishes part (i) of the Lemma. Furthermore, note
that if ū(L2) > ū(L1), and if uω(L2) ≥ uω(L1) for all ω, then the inequality must be strict
for at least one ω, which establishes part (ii) of the Lemma.
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A.3 Proofs of Theorems and Propositions in the Paper

To simplify exposition we will say that a set is relatively open if it is open relative to its
affine hull.

Proof of Theorem 1. Let Ū1 =
∑

ω U
1
ω be the set of all utility functions that can be

rationalized as sums of single-peaked utility functions representing the time-1 preferences
⪯1

ω. Let U0 be the set of all utility functions that are consistent with ⪯0. We will show
that if U0 and Ū1 do not intersect and the data set exhibits no violation of the only weak
cycles condition, then there is a sure direct preference reversal. By Lemma 2 this implies a
sure indirect preference reversal; hence, if U0 and Ū1 do not intersect, there must be a sure
indirect preference reversal.

Because the set of all utility functions consistent with a given (potentially incomplete)
preference relation is relatively open by Lemma 7, the set of single-peaked utility functions
is relatively open, and the intersection of relatively open sets is relatively open, it follows
that U0 and each U1

ω are relatively open. Because the Minkowski sum of relatively open sets
is relatively open it follows that Ū1 is relatively open.

By Lemma 6 there exists a separating hyperplane p ∈ R|X| with p ̸= 0 and
∑

x∈X px = 0

(throughout, we denote by px the entry of p corresponding to alternative x ∈ X) such that
for all u0 ∈ U0, u1 ∈ Ū1

p · u0 ≥ 0 ≥ p · u1 (8)

and at least one of the inequalities is strict for all u0, u1.
We next argue that this implies the existence of another hyperplane p̃ ∈ R|X| that satisfies

the same properties and only two non-zero entries, which is equivalent to the existence of
a sure direct preference reversal and thus the statement of the theorem. We prove this by
induction, showing that if the statement holds for a set with |X| − 1 objects then it holds
for a set with |X| objects.

Induction hypothesis We first prove the result for two alternatives |X| = 2. In this case,
by definition p is either (+α,−α) or (−α,+α) for some α > 0, and thus the result holds.

Induction step We next prove the induction step. Assume that the result holds whenever
the number of alternatives is not more than |X| − 1. We consider the preorder � defined
above.

Consider the set of alternatives the is not strictly better than any other alternative
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according to the preorder �

X = {x ∈ X : there does not exist y ∈ X with y � x}.

Note that |X | > 0 because � is by construction transitive. Clearly, the elements in X are
either related by indifference ∼� or unrelated. Pick a maximal subset of this set X∗ such
that x ∼� x′ for all x, x′ ∈ X∗. By definition for all x′ /∈ X∗ and x ∈ X∗ we have that x′ � x

can not hold as otherwise there exists an element y � x′ � x which contradicts that x ∈ X∗

as � is transitive.
Fix any x∗ ∈ X∗. As x ⪯0 x∗ implies x �∗ x∗, and thus x � x∗ we have that x ⪯0 x∗

implies x ∈ X∗. By the same argument x ⪯1
∗ x

∗ implies x ∈ X∗.
Thus, if x∗ ∈ X∗ and x /∈ X∗, either x∗ ≺0 x, or x is unrelated to x∗ by ⪯0. Thus, if

u0 ∈ U0 then u0 − λ1x∈X∗ ∈ U0 for all λ ≥ 0, as we can always make alternatives that are
either least preferred or unranked relative to others worse without violating the ranking of
the alternatives implied by ⪯0. Thus, for every u0 ∈ U0 we have that

0 ≤ p · (u0 − λ1x∈X∗) = p · u0 − λ
∑
x∈X∗

px .

Taking λ → ∞ implies that ∑
x∈X∗

px ≤ 0. (9)

Because time-1 preferences are strict, it follows that if there are no sure direct preference
reversals, then for any x ∈ X∗ and any x′ ∈ X, there is a state ω′ such that x ⪰1

ω′ x′ does not
hold. Otherwise it would have to be that x′ ⪯1

∗ x, which implies x′ ≺1
∗ x because we rule out

indifference; thus Lemma 1 implies x′ �∗ x, and Lemma 4 x′ � x, which contradicts x ∈ X∗.
If there is a sure direct preference reversal then we have reached our desired contradiction.
So assume that there is not, so that for any x ∈ X∗ and any x′ ∈ X, there is a state ω′ such
that x ⪰1

ω′ x′ does not hold.
Then, Lemmas 9 and 10 imply that if x∗ ∈ X∗ and u1 ∈ Ū1, then u1 − λ1x=x∗ ∈ Ū1 for

all λ ≥ 0. Thus, for every u1 ∈ Ū1 we have that

0 ≥ p · (u1 − λ1x=x∗) = p · u1 − λ1x=x∗px∗ .

Taking λ → ∞ implies that px∗ ≥ 0 for every x∗ ∈ X∗. Together with (9), this implies that
px∗ = 0.

Thus, there exists a vector p ∈ R|X|−|X∗| such that
∑

x∈X\X∗ px = 0 with p ̸= 0 such that
(8) is satisfied on the set X \X∗. As the preferences are single-peaked on X \X∗ and this set
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contains only |X|− |X∗| alternatives, there exists a vector p ̸= 0 with
∑

x∈X px = 0 and only
two non-zero entries, satisfying (8) on that set of alternatives. As this vector corresponds to
a sure direct preference reversal this completes the proof.

Proof of Theorem 2. As in the proof of Theorem 1, we will show that if U0 and Ū1 do not
intersect, then there must be a sure direct preference reversal. Because the set of all utility
functions consistent with a given (potentially incomplete) preference relation is relatively
open by Lemma 7, the set of strictly concave utility functions is relatively open by Lemma 8,
and the intersection of relatively open sets is relatively open, it follows that U0 and U1

ω are
relatively open. Because the Minkowski sum of relatively open sets is relatively open it
follows that Ū1 is relatively open.

By Lemma 6 there exists a separating hyperplane p ∈ R|X| with p ̸= 0 and
∑

x∈X px = 0

such that equation (8) is satisfied for all u0 ∈ U0, u1 ∈ Ū1, with at least one of the inequalities
strict. As in the proof of Theorem 1, we show that this implies the existence of another
hyperplane p̃ ∈ R|X| that consists of only two non-zero entries, which is equivalent to the
existence of a sure direct preference reversal and thus the statement of Theorem 2. We prove
this by induction, showing that if the statement holds for a set with |X| − 1 objects then it
holds for a set with |X| objects.

As in the proof of Theorem 1, the statement holds trivially when |X| = 2. We next prove
the induction step and assume that the result holds whenever the number of alternatives is
less than |X|−1. If there is a sure direct preference reversal then the statement of the theorem
holds. If there is not, then Lemma 5 implies that there exists a set X∗ ⊆ {minX,maxX}
such that if x ∈ X \X∗ and x∗ ∈ X∗, then x � x∗ cannot hold, and such that x ∼� x′ for
x, x′ ∈ X∗.

As in the proof of Theorem 1, if u0 ∈ U0 then u0 − λ1x∈X∗ ∈ U0 for all λ ≥ 0, as we can
always make alternatives that are either least preferred or unranked relative to others worse
without violating the ranking of the alternatives implied by ⪯0.

Now for every u0 ∈ U0 we have that

0 ≤ p · (u0 − λ1x∈X∗) = p · u0 − λ
∑
x∈X∗

px .

Taking λ → ∞ implies that ∑
x∈X∗

px ≤ 0. (10)

We divide the remainder of the proof into five cases. We rely on the induction step in the
last three cases, which imply a vector p ∈ R|X|−|X∗| such that

∑
x∈X\X∗ px = 0 with p ̸= 0

such that (8) is satisfied on the set X \X∗.
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Case (i): Suppose that X∗ = {minX,maxX} and either minX ≺1
∗ maxX or maxX ≺1

∗

minX. In the first case, this implies that maxX ⪯0 minX; otherwise, we would have
minX � maxX, which violates the assumption that X∗ = {minX,maxX}. However, if
maxX ⪯0 minX and minX ≺1

∗ maxX, then there is a sure direct preference reversal,
which establishes the claim. The second case follows analogously.

Case (ii): Suppose that X∗ = {minX,maxX}, minX ∼1
∗ maxX and the time-0

preference relates minX and maxX. Then as the time zero preference relates minX and
maxX it must also be that minX ∼0 maxX if there is not a sure direct preference reversal.

Thus, we can just identify the alternatives minX and maxX with each other to arrive
at a problem with |X| − 1 alternatives. Formally, for any p satisfying (8), note that p′ given
by p′minX = 0 and p′maxX = 2pmaxX also satisfies (8) but belongs to R|X|−1. By the induction
hypothesis, there must thus exist a sure direct preference reversal on X \ {minX}.

Case (iii): Suppose that X∗ = {minX,maxX}, minX ∼1
∗ maxX and the time-0

preference does not relate minX and maxX. Note that by construction, if x ∈ X \X∗ and
x∗ ∈ X∗, then either x∗ ≺0 x or x∗ is unrelated to x. Thus, if the time-zero preference does
not relate minX and maxX, then for any x∗ ∈ X∗ and any x ̸= x∗, x ⪯0 x∗ cannot hold.
Because of this, u0 ∈ U0 implies that u0 − λ1x=x∗ ∈ U0 for all λ ≥ 0 and each x∗ ∈ X∗,
as we can always make alternatives that are either least preferred or unranked relative to
others worse without violating the ranking of the alternatives implied by ⪯0. Thus, for every
u0 ∈ U0 and x∗ ∈ X∗ we have that

0 ≤ p · (u0 − λ1x=x∗) = p · u0 − λ1x=x∗px∗

and taking λ → ∞ implies that px∗ ≤ 0 for each x∗ ∈ X∗.
Now because minX ∼1

∗ maxX and they do not dominate any other alternative in X, we
can identify them with each other in Ū1, and thus Lemma 9 implies that if u1 ∈ Ū1 then

u1 − λ1x∈X∗ ∈ Ū1

Thus, for every u1 ∈ Ū1 we have that

0 ≥ p · (u1 − λ1x∈X∗) = p · u1 − λ
∑
x∈X∗

px .

Taking λ → ∞ implies that
∑

x∈X∗ px ≥ 0, which implies that px = 0 for each x ∈ X∗.
Case (iv): Suppose that X∗ has only one element x∗. Since x ⪯1

∗ x∗ cannot hold for
any x ̸= x∗, Lemma 9 implies that if u1 ∈ Ū1 then u1 − λ1x=x∗ ∈ Ū1 for all λ ≥ 0. Thus, for
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every u1 ∈ Ū1 we have that

0 ≥ p · (u1 − λ1x=x∗) = p · u1 − λ1x=x∗px∗ .

Taking λ → ∞ implies that px∗ ≥ 0 for every x∗ ∈ X∗. Together with (10), this implies that
px∗ = 0.

Case (v): Suppose that X∗ = {minX,maxX}, and that neither minX ⪯1
∗ maxX nor

maxX ⪯1
∗ minX. Then application of Lemma 9 as in Case (iv) implies that px∗ ≥ 0 for

each x∗ ∈ X∗. Together with (10), this again implies that px∗ = 0 for all x∗ ∈ X∗.
Completing the proof in Cases (iii), (iv), and (v): In all of these cases, there exists

a vector p ∈ R|X|−|X∗| such that
∑

x∈X\X∗ px = 0 with p ̸= 0 such that (8) is satisfied on
the set X \X∗. As the preferences are single-peaked on X \X∗ and this set contains only
|X|− |X∗| alternatives, there exists a vector p with |px| = 1 or px = 0 ∀x ∈ X, satisfying (8)
on that set of alternatives. As this vector corresponds to a sure direct preference reversal
this completes the proof.

Proof of Proposition 2. First note that we can restrict to the case where preferences
are complete. This is because if the preferences are incomplete and satisfy one of the two
conditions, then there exist completions of the preferences that satisfy one of the conditions.
And the incomplete preferences can of course be rationalized by TC-EU if their completions
can be.

We shall prove the proposition under the assumption that condition 1 holds. The proof
for condition 2 uses identical arguments that start with the most preferred time-0 alternatives
rather than the least preferred time-0 alternatives.

As in the proof of Theorem 1, Lemma 7 implies that U0, U1
ω and Ū1 can be shown to

be relatively open. We shall show that under the conditions of the Proposition, if p ∈ R|X|

satisfies (i)
∑

x∈X px = 0 and (ii) p · u0 ≥ 0 ≥ p · u1 for all u0 ∈ U0, u1 ∈ Ū1, then p ≡ 0.This
then implies that U0 ∩ Ū1 ̸= ∅, which is the statement of the Proposition.

We shall prove this by induction, showing that if the statement holds for a set with no
more than |X| − 1 objects, then it holds for a set with |X| objects.

Let X∗ denote the set of least preferred elements of the time-0 preference. Observe that if
u0 ∈ U0 then u0−λ1x∈X∗ ∈ U0 for all λ ≥ 0: we can always make least preferred alternatives
worse without changing the ranking of the alternatives. Thus, for every u0 ∈ U0 we have
that

0 ≤ p · (u0 − λ1x∈X∗) = p · u0 − λ
∑
x∈X∗

px . (11)

Taking λ → ∞ implies that
∑

x∈X∗ px ≤ 0.
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Now by the assumption of the proposition, for each x∗ ∈ X∗ there exists a state ω∗ in
which x∗ is the least preferred element. We have that if u1 ∈ U1 then u1− λ

fω∗
1x=x∗ and ω=ω∗ ∈

U1 for all λ > 0. This implies that if u ∈ Ū1 then u− λ1x=x∗ ∈ Ū1 for all λ ≥ 0. Thus, for
every u ∈ Ū1, we have that

0 ≥ p · (u− λ1x=x∗) = p · u− λpx∗ .

Taking λ → ∞ implies that px∗ ≥ 0. Together with the condition that
∑

x∈X∗ px ≤ 0, this
implies that px∗ = 0 for all x∗ ∈ X∗.

Now when |X| = 2, the above implies that at least one of the elements of p must equal
0, which implies that all elements of p must equal zero by the condition that

∑
x∈X px = 0.

When |X| > 2, the above implies that at least one of the elements of p must equal
0. Say that this element corresponds to an element x∗, and note that the condition of the
proposition still applies to preferences on the set X \ {x∗}. Thus, if the result holds for sets
of size |X| − 1 ≥ 2, it must hold for sets of size |X|.

Proof of Proposition 3. Assume that U0 ∩ Ū1 = ∅ and the data set can thus not be
rationalized by TC-EU. By Lemma 6, there exists p ∈ R|X| with p ̸= 0 and

∑
x∈X px = 0

such that p · u0 ≥ 0 ≥ p · u for u0 ∈ U0 and all u ∈ Ū1, such that at least one inequality is
strict for all u0 ∈ U0 and u ∈ Ū1. Define L1, L2 ∈ R|X|

L1(x) =
max{px, 0}∑
x̃∈X max{px̃, 0}

and L2(x) =
max{−px, 0}∑
x̃∈X max{−px̃, 0}

.

Note that by definition, the entries of L1, L2 are non-negative and sum up to one, which
implies that L1, L2 are well-defined lotteries over the alternatives X. Furthermore, we have
that

0 =
∑
x̃∈X

px̃ =
∑
x̃∈X

max{px̃, 0} −
∑
x̃∈X

max{−px̃, 0} .

This implies that

L1(x)− L2(x) =
max{px, 0}∑
x̃∈X max{px̃, 0}

− max{−px, 0}∑
x̃∈X max{−px̃, 0}

= px
1∑

x̃∈X max{px̃, 0}
.

Thus, p ·u0 ≥ 0 implies that u0(L1) ≥ u0(L2), and p ·u0 > 0 implies that u0(L1) > u0(L2).
Similarly, p ·u ≤ 0 for all u ∈ Ū implies that ū(L2) ≥ ū(L1) for all u ∈ Ū and p ·u < 0 for all
u ∈ Ū implies that ū(L2) > ū(L1) for all u ∈ Ū . Thus, by Lemma 11, for all u0 ∈ U0, either
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(i) u0(L1) ≥ u0(L2) and L2 strictly dominates L1 with respect to U1 or (ii) u0(L1) > u0(L2)

and L2 weakly dominates L1 with respect to U1. Hence, according to Definition 8, the data
set exhibits a sure lottery preference reversal if U0 ∩ Ū1 = ∅; i.e., if the data set (U0, U1, f)

is inconsistent with TC-EU then it exhibits a sure lottery preference reversal.
The opposite direction is immediate: Suppose that the data set is consistent with TC-EU

and for u0 ∈ U0, u1 ∈ U1

u0(x) =
∑
ω∈Ω

fωu
1
ω(x) .

Then, u1
ω(L2) ≥ u1

ω(L1) for all ω implies that u0(L2) ≥ u0(L1), and thus the data set cannot
exhibit dominance violations.

Proof of Proposition 4. As preferences are responsive, there exists zω,y and z◦ω,y known
to the analyst such that

(y, zω,y) ∼1
ω (y◦, z◦ω,y) .

As preferences are additive, this means that

h1
ω(y) + g(zω,y) = h1

ω(y
◦) + g(z◦ω,y) .

This implies that h1
ω(y)− h1

ω(y
◦) = g(z◦ω,y)− g(zω,y) for each ω, and thus that∑

ω

(
h1
ω(y)− h1

ω(y
◦)
)
=
∑
ω

(
g(z◦ω,y)− g(zω,y)

)
.

By the same argument, there exist z0,y and z◦0,y such that

h0(y)− h0(y◦) = g(z◦0,y)− g(z0,y) .

Dividing the terms yields that

h0(y)− h0(y◦)∑
ω fω(h

1
ω(y)− h1

ω(y
◦))

=
g(z◦0,y)− g(z0,y)∑
ω fω(z

◦
ω,y − zω,y)

.

As all terms on the right-hand side are observable to the analyst, it follows that the left-hand
side is point-identified.

Proof of Proposition 5. We first argue necessity of the conditions. Revealed additive
separability is implied by additive separability, by simply setting h0 ≡ θ1ω

θ2ω
h and h1

ω ≡ θ1ω
βθ2ω

h.
To see that the condition on β is necessary, observe that for any representation (h, g) of
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preferences consistent with (4)

β =
(
∑

ω fωθ
1
ω)(h(y)− h(y◦))∑

ω fωθ
1
ω
1
β
(h(y)− h(y◦))

=
(
∑

ω fωθ
1
ω)/(

∑
ω fωθ

2
ω)(h(y)− h(y◦))

(
∑

ω fωθ
2
ω)

−1(
∑

ω fωθ
1
ω
1
β
(h(y)− h(y◦)))

=
g(z◦)− g(z0,y)

(
∑

ω fωθ
2
ω)

−1
∑

ω fωθ
2
ω(g(zω,y)− g(z◦ω,y))

=
g(z◦)− g(z0,y)∑

ω αω(g(zω,y)− g(z◦ω,y))

∈
(
min
ω

g(z◦)− g(z0,y)

g(zω,y)− g(z◦ω,y)
,max

ω

g(z◦)− g(z0,y)

g(zω,y)− g(z◦ω,y)

)
= (min β̂ω,max β̂ω) ,

where we define αω = fωθ
2
ω/(
∑

ω′ fω′θ2ω′).
We next prove sufficiency. By the assumptions of the proposition there exist weights

α ∈ ∆|Ω| such that
β =

1∑
ω∈Ω αωβ̂−1

ω

.

We define θ1ω = αω

fω
β̂−1
ω , θ2ω = αω

fω
. We note that as h1

ω(y)
h0(y)

= h1
ω(y

◦)
h0(y◦)

by the assumptions of the
proposition,

β̂ω =
g(z◦0,y)− g(z0,y)

g(z◦ω,y)− g(zω,y)
=

h0(y)− h0(y◦)

h1
ω(y)− h1

ω(y
◦)

=
h0(y)− h0(y◦)

h0(y)h
1
ω(y)

h0(y)
− h0(y◦)h

1
ω(y

◦)
h0(y◦)

=
h0(y◦)

h1
ω(y

◦)
.

We thus have that

h1
ω(y) + g(z) = h0(y)

h1
ω(y

◦)

h0(y◦)
+ g(z) = h0(y)β̂−1

ω + g(z) = h0(y)
θ1ω
θ2ω

+ g(z) .

Consequently, the utility
θ1ωh

0(y) + θ2ωg(z)

represents the preference ⪯1
ω. Finally, we have that

∑
ω

fωθ
1
ωh

0(y) = h0(y)
∑
ω

αωβ̂
−1
ω =

1

β
h0(y)∑

ω

fωθ
2
ωg(z) = g(z)

∑
ω

αω = g(z) ,

which completes the proof.
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Online Appendix

Table of Contents
A Heterogeneity 1

B Mathematical Details for Section 1.1 2

C Relation to Other Technical Results 6

A Heterogeneity
Theorems 1 and 2 and Propositions 1 and 3 continue to hold verbatim when it’s possible to
observe the joint distribution of time-0 and time-1 preferences. Because the only pattern that
rejects time consistency with homogeneous preferences is a (stochastic) dominance violation,
and because such a violation cannot be explained by heterogeneous preferences, a data set is
consistent with TC-EU under homogeneous preferences if and only if it is consistent with TC-
EU under heterogeneous preferences. To see this, fix a time-0 preference profile, allowing
for individuals to be heterogeneous conditional on this time-0 preference. If the analyst
observes a dominance violation (simple for Theorems 1 and 2, or stochastic for Propositions
1 and 3), then the analyst must conclude that all agents with that time-0 preference are
time-inconsistent. If the analyst does not observe a dominance violation, then Theorems 1
and 2 and Propositions 1 and 3 imply that the data can be rationalized with a homogeneous
time-consistent EU agent.

Our identification results in Propositions 4 and 5 are also straightforward to generalize to
give a measure of average time inconsistency when there is some unobserved heterogeneity.
To give a concrete example of applying Proposition 4 to a heterogeneous population, suppose
that there there is a finite number of agent types making the same time-0 choice, with agents
of each type having the same preferences and receiving independent draws from the same
distribution of taste shocks. Suppose the analyst observes only a single realization of the
time-1 preference for each agent. Then, the logic of Example 1 is still identical (under the
maintained assumptions of that example): In expectation, the average time-1 WTP for the
healthy over the unhealthy snack must equal the average time-0 WTP for the unhealthy over
healthy snack.
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B Mathematical Details for Section 1.1
Denote by var0(logE1[θ2]/θ1) the variance of logE1[θ2]/θ1 conditional on time 0 information.

Lemma 12. Suppose that the agent choose the allocation x0 = 1/2 at time 0 and the
(random) allocation x1 at time 1. Suppose that log(x1/(1− x1)) is normally distributed with
mean m and variance v. Then

E0[θ2] = E0[θ1]

(γ − 1)m = E0

[
log

E1[θ2]

θ1

]
+ log(β)

(γ − 1)2v = var0
(
log

E1[θ2]

θ1

)
.

(12)

Proof. Taking first order conditions yields that the optimal effort at time 0 is

(γ − 1) log
x0

1− x0
= log

E0[θ2]

E0[θ1]
.

The optimal effort at time 1 satisfies

(γ − 1) log
x1

1− x1
= log

E1[θ2]

θ1
+ log(β) .

As x0 = 1− x0, we have that E0[θ2] = E0[θ1]. Taking expectations yields that

(γ − 1)m = (γ − 1)E0

[
log

x1

1− x1

]
= E0

[
log

E1[θ2]

θ1

]
+ log(β) .

Furthermore, we have that

(γ − 1)2v = var0
(
log

E1[θ2]

θ1

)
.

With this Lemma in hand, we now provide calculations for how β is identified under the
different structural assumptions listed in Table 1.
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Rows 1 and 2: Independent θ2, θ1, revealed at t = 1 Suppose that θ1, θ2 are indepen-
dent and log(θ1) ∼ N (µ1, σ

2
1), log(θ2) ∼ N (µ2, σ

2
2). Then (12) becomes

exp(µ1 + σ2
1/2) = E0[θ1] = E0[θ2] = exp(µ2 + σ2

2/2)

(γ − 1)m = E0[log(θ2/θ1)]− log(β) = µ2 − µ1 + log(β)

(γ − 1)2v = σ2
1 + σ2

2 = σ2
1(1 + σ2

2/σ
2
1) .

The first equation and third equation imply that

µ2 − µ1 = 0.5(σ2
1 − σ2

2) = 0.5σ2
1(1− σ2

2/σ
2
1) = 0.5(γ − 1)2v

1− σ2
2/σ

2
1

1 + σ2
2/σ

2
1

.

Plugging into the second equation yields

log(β) = (γ − 1)m− 0.5(γ − 1)2v
1− σ2

2/σ
2
1

1 + σ2
2/σ

2
1

.

In the case of i.i.d. taste shocks, this reduces to

log(β) = (γ − 1)m.

The analyst’s estimate thus depends σ2
2/σ

2
1 which captures what the analyst assumes about

how well informed the agent is at time 0 about their time 2 taste-shock relative to their time
1 taste-shock. This ratio captures both the variance of the agents’ taste shocks as well as the
quality of the information about the agents’ taste shocks. Setting σ2

2/σ
2
1 = ∞ captures the

case where the analyst assumes that the agent is uninformed about the time 1 preference
at time 0. Setting σ2

2/σ
2
1 = 0 captures the case where the analyst assumes that the agent

is uninformed about the time 2 preference at time 0 (and recovers the result we obtained
before). If the agent knows equally much about their time 1 and time 2 preferences at time
0, i.e. σ2

2/σ
2
1 = 0, we get that

log(β) = (γ − 1)m.

Rows 3 and 4: θ1 learned at t = 0 and θ2 learned in t = 1 If θ1 is learned at time 0
but θ2 is not, then θ1 must always take on the value θ1 = E1θ2. Then (12) becomes

θ1 = E0[θ2] = exp(µ2 + σ2
2/2)

(γ − 1)m = E0[log(θ2/θ1)]− log(β) = µ2 − log(θ1) + log(β)

(γ − 1)2v = σ2
2 .
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The first equation and third equation imply that

µ2 − log(θ1) = −0.5σ2
2 = −.5(γ − 1)2v .

Plugging this into the second equation yields that

log(β) = .5(γ − 1)2v + (γ − 1)m

Rows 5 and 6: θ2 learned in t = 0 and θ1 learned in t = 1 If θ2 is learned at time 0
but θ1 is not, then θ2 must always take on the value θ2 = E1θ1. Then (12) becomes

θ2 = E0[θ1] = exp(µ1 + σ2
1/2)

(γ − 1)m = E0[log(θ2/θ1)]− log(β) = log(θ2)− µ1 + log(β)

(γ − 1)2v = σ2
1 .

The first equation and third equation imply that

µ1 − log(θ2) = −0.5σ2
1 = −.5(γ − 1)2v .

Plugging this into the second equation yields that

log(β) = −.5(γ − 1)2v + (γ − 1)m

Rows 7 and 8: θ1 learned in t = 1 and θ2 learned after t = 1 Assume that log(θ1) is
Normally distributed with mean µ and variance σ2, and assume, without loss of generality,
that E[θ1] = 1. By assumption we have that E0[θ2] = E1[θ2] and hence (12) becomes

1 = E0[θ1] = exp(µ1 + σ1/2)

(γ − 1)m = log(E0[θ2])− E0 [log(θ1)] + log(β)

(γ − 1)2v = var0(log(θ1)) = σ2
1 .

The first and third equation together imply that µ = −σ2/2 = −0.5(γ − 1)2v and hence

log(β) = (γ − 1)m− [µ+ σ2/2] + µ = (γ − 1)m− σ2/2 = (γ − 1)m− 0.5(γ − 1)2v .

Rows 9 and 10: Multiplicative random walk with θ1, θ2 both learned in t = 1

Formally, θ2 = θ1 · ϵ1, where log(ϵ1) ∼ N(µ, σ) is log-Normally distributed and θ1, θ2 are
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learned by the agent only at the beginning of time 1. Then (12) becomes

1 = E0[ϵ1] = exp(µ+ σ2/2)

(γ − 1)m = E0[log(ϵ1)]− log(β) = µ− log(β)

(γ − 1)2v = σ2 .

The first and third equation together imply that µ = −σ2/2 = −0.5(γ − 1)2v and hence

log(β) = (γ − 1)m+ 0.5(γ − 1)2v .

Rows 11-14: Mulitplicative AR(1), with θ1 learned in t = 1 and θ2 learned after
t = 1 Suppose that log(θ2) = α log(θ1) + log(ε), where log(θ1) ∼ N(µ1, σ

2
1) and log(ε) ∼

N(µε, σ
2
ε). That is, log(θ1) and log(θ2) form an AR(1) process. The agent learns θ1 at time 1

and ε at time 2. The scalar α can be regarded as a parametrization of how much is learned
at about time-1 versus time-2 shocks at time 1. For example, α = 0 means that nothing is
learned about time-2 shocks at time 1, while α → ∞ captures the case where at time 1 the
agent mostly learns about time-2 shocks.

Under this process, we have that log θ2|θ1 ∼ N(α log θ1 + µε, σ
2
ε) and E1[log θ2|θ1] =

αθ1 + µε + σ2
ε/2. Thus, (12) becomes

exp(µ1 + σ2
1/2) = E0[θ1] = E0[θ2] = exp(αµ1 + α2σ2

1/2 + µε + σ2
ε/2)

(γ − 1)m = E0[α log θ1 + µε + σ2
ε/2− log θ1] + log β = (α− 1)µ1 + µε + σ2

ε/2 + log β

(γ − 1)2v = (α− 1)2σ2
1 .

The first equality implies that

(α2 − 1)µ1 + µε + σ2
ε/2 = (1− α2)σ2

1/2.

The third equality implies that

σ2
1 = (γ − 1)2v/(α− 1)2

and thus that
(1− α2)σ2

1/2 = 0.5(γ − 1)2v
1− α2

(α− 1)2
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Plugging this into the expression for (γ − 1)m yields

log β = (γ − 1)m− 0.5(γ − 1)2v
1− α2

(α− 1)2

= (γ − 1)m+ 0.5(γ − 1)2v
1 + α

α− 1

Now when α > 1, β becomes arbitrarily large as α converges to 1 from the right. When
α < 1, β becomes arbitrarily small as α converges to 1 from the left.

C Relation to Other Technical Results
Social Choice. The ordinal efficiency welfare theorem (McLennan, 2002, Carroll, 2010)
states that for any lottery that is Pareto efficient given a vector of ordinal preferences,
there exist utility functions consistent with the ordinal preferences such that this lottery
maximizes the sum of utilities. This result is mathematically equivalent to the special case
of Proposition 3 where the analyst only observes the most preferred time-0 alternative.35

The sharper and more interesting characterizations that we provide for single-peaked and
concave preferences in Theorems 1 and 2 do not, to our knowledge, relate to any known
results in the social choice literature—although they of course have implications for that
literature. For example, they imply that for complete single-peaked preferences, it is not
necessary to consider lotteries: an alternative is a maximand of some social welfare function
as long as it is not Pareto dominated by any other alternative. Example 4 shows that this
stronger conclusion fails for social choice problems without the single-peaked property.36

Dynamically Consistent Preferences over Acts. A literature in decision theory has
studied the question of when preferences over acts are consistent with EU (e.g. Chapter 8.2
in Strzalecki, 2021). In this literature the analyst observes any decision-relevant state as well
as preferences over acts. This contrasts with our setting where states are unobserved and
only preferences over actions—i.e., constant acts—are observed by the analyst. For example,
in the context of food choices, the assumption made in this literature would correspond to
the analyst observing how hungry the agent is, what type of meal he had last, and whether
or not it is a warm day, as well as preferences over strategies that specify at time 0 what the
agent will eat in each of these observable states. Notably, such a data set—where states and

35Specifically, this is the case for the more general version stated by Carroll (2010). The original version
stated by McLennan (2002) imposes a more special structure.

36It is perhaps also worth clarifying that to our knowledge and understanding, our results do not have a
mathematical connection to the literature on aggregation of time preferences (e.g., Jackson and Yariv, 2015,
Millner, 2020).
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preferences over strategies are observable—is much richer than the data sets collected in the
preference reversal literature, which are our objects of study. This decision literature refers
to the analogue of our no sure direct preference reversals condition on acts as “dynamic
consistency” (Axiom 8.6 in Strzalecki, 2021). Imposed over acts this condition is much
more restrictive and (together with consequentialism) implies that there is a subjective EU
representation of the preference (Theorem 8.10 and Theorem 8.24 in Strzalecki, 2021 and
Ghirardato, 2002). This is in contrast to our setting where we show that “no sure direct
preference reversal” is, without the restriction to single-dimensional choice sets and single-
peaked preferences, not sufficient to ensure the existence of an EU representation.

Random Utility Models. In the literature on random utility models, the analyst observes
the distribution of optimal choices from all choice sets at a single point in time (comparable
to our time-1 data (⪯1, f)). The question is what can be learned about the agent’s mean
utility for the different alternatives. By contrast, we assume that the analyst observes the
distribution of preferences over a choice set. This data can not be reconstructed from the
optimal choices (Fishburn, 1998). The data sets we study, which are based on the types
of experimental data collected in practice, are therefore richer. Allowing the analyst to
observe the distribution over a complete ranking of all alternatives is equivalent to allowing
the analyst to observe a joint distribution of preferred alternatives from all subsets in the
random utility literature.37 While our time-1 data is always consistent with EU, one needs
additional conditions to ensure consistency with EU when only the marginal distribution of
choices from subsets, but not the joined distribution is observed. A focus of the random
utility literature has been to identify such conditions (Block et al., 1959, McFadden and
Richter, 1990, Clark, 1996, Gul and Pesendorfer, 2006).

A second difference is that the random utility literature typically makes the “positivity”
assumption that each alternative is the most preferred one with positive probability. This
is a strong assumption when combined with the assumption of single-peaked preferences,
which are the main focus of our paper. Positivity and single-peakness together imply that
the agent ranks the alternatives both in increasing and decreasing order with positive prob-
ability. Furthermore, a corollary of our Proposition 1 implies that this assumption is highly
consequential, as it implies that the average utility cannot be identified without imposing
additional structure on the preference shocks.38 This generalizes the insight from Alós-Ferrer

37Formally, when observing the distribution f over strict rankings, one can infer the probability of choosing
x from the set M ⊆ X as

∑
ω fω1x⪰1

ωy∀y ̸=x.
38There is also a thematic, but not mathematical, connection to identifying time preferences in dynamic

discrete choice models. See, e.g., Magnac and Thesmar (2002), Abbring and Daljord (2020), Levy and
Schiraldi (2020), Mahajan et al. (forthcoming).
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et al. (2021) who highlight a related identification issue in a setting where the analyst has
less information and only observes the marginal distribution of preferences over binary choice
sets. They propose to resolve it by inferring cardinal information from response times, which
is similar to the additional choice dimension we propose in Section 5.2.39

39The literature on dynamic random utility (e.g. Fudenberg and Strzalecki, 2015, Frick et al., 2019) studies
questions that are further removed from ours. We are interested in settings where the agent makes the same
choice repeatedly, while that literature studies when a sequence of dynamic choices can be rationalized if the
agent’s utility function and choice set can change over time. An exception is the case of Bayesian evolving
beliefs discussed in Section 6.2 of Frick et al. (2019). Their Proposition 6 concerns a special case of their
model which is similar to a special case of our Proposition 3 where preferences over some set of lotteries are
observable. Similarly, our model is different from those analyzed in the literature on preferences for flexibility
due to taste uncertainty, as in Ahn and Sarver (2013), where the agent chooses a menu at time-0 and then
chooses from that menu at time-1.
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