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This paper uses a technique that we call Constrained Asset Share Estimation (CASE) to test
the conditional mean-variance efficiency (MVE) of the U.S. atock market. The technique is useful
in time-series tests of simple asset pricing models because it allows estimated expected returns to
vary in an unresiricted way. It waas first applied in a macroeconomié context in which the “market”
portfolio included not only equities, but also money, bonds and resl estate.’ It has since been
applied more widely to other portfolios and has been extended to allow for variation in conditional
second as well as first moments, as in an autoregressive-conditional-hetercskedasticity (ARCH)
model 2

There is still a need for a clear statement of the advantages of the CASE method over earlier
tests of the MVE hypothesis for the stock market. Briefly, these advantages are of three sorts.
First, the technique does not impose the condition that expected returns are constant over time,
or even that they change in a slowly moving way. Rather it allows expected returns to vary
freely, as they must, for example, whenever new information which may not be observed by the

econometrician becomes available to the invester. In addition, in some of the testa below we allow

15ee Frankel (1963, 1085a), Frankel and Dickena {1584), Frankel and Engel {1884), and Wills {1582).

2 Ferson, Kande! and Stambaugh (1987) and Rayner {1986) test the constant-variance version on stock portfolias. Bedurtha
and Mark (1988), Bollerslev, Engle and Wooldridge (1987) and Engsl and Rodrigum (1689), test s version which aliows for
changing ¢onditional second moments on portfolion, respectively, of 'to:h domastic bonds, and short-term bills denominated
in different currendes.

*In the tests below, expected excess retums sre allowed uwary inn letaty | way aa functions of the naset sheres,
requiring only that m nt of preference parameters consistent with the Hars dm of utility functions remain constant.

1



second moments to vary according to an ARCH process.* Allowing for such variation in conditional
morments is essential for a properly specified test of MVE. In fact, there is considerable evidence
that both the conditional expectation and conditional variance of excess returns contain important
predictable components.®

The second advantage of this method is that, by allowing the CAPM betas to evolve along
with the characteristics of the underlying assets, longer time series can be used to test MVE. In
the past, tests of unconditional MVE coped with changing conditional moments by using short
test periods, usually 5 years or less. There are two problems with this procedure. First, there
appears to be a substantial amount of conditional variation in both first and second moments over
forecast horizona of much less than 5 years.® Second, while limiting time-series samples to 5 years
makes the assumption of constant conditional moments more believable, it also reduces the power
of tests of MVE, Low power can potentially explain the lack of any measured relationship between
risk and return in tests of MVE.? The use of longer time seriea also reduces the need to develop
small-sample test statistics, such as that suggested by Shanken (1987). With large time-series
samples, the distributions of conventional test statistics are likely to be closer to their asymptotic
approximations.

The third advantage implicit in the CASE method is that-it nests MVE in a more general,
but economically meaningful, theory of portfolic determination. In contrast, most tests of the null
hypothesis of MVE have no clear alternative hypothesis. This feature is particularly important
because many tests do in fact reject MVE; when one rejects the null hypothesis it is crucial to
have some idea of what the alternative is. In some of the tests below, the alternative to MVE is
that investors’ portfolio shares are linearly related to expected returns, and possibly to conditional

variances as well, but that investors do not compute covariances with the market portfolio in the

4The ARCH procees doee not allow second momente to vary freely howaever. It in mnalogous to estimating the firat moments
by an ARIMA process, in which this periad’s expectation is related to recent realisations, rather than by the CASE technigue,
in which expectations can vary freely.

58ee, for example, Fama and French (1988) end Poterba and Summers (1987) for evidence on the predictability of atock
market returns, end Bollersley {1985} and Bollerslev, Engle and Wooldridge (1988) for evidence on the predictability of con-
ditional variances of excess returna. These findings coupled with the results of Hansen and Richard (1987), who show lhat
the conditionally and unconditionally mean-variance efficient frontiets are generally differenl, suggest that auch variation in
conditional moments is importani for testsa of MVE.

® Fama and French (1988) document substantisl mean reverion ot forecast horisons of 3-5 years. Pindyck (1984) and Foterha
snd Summets [1986) fird evidence of high-frequency variation in conditicnal stock-market veriancer.

7 See, for example, Schwert (1983), Gibbons, Ross and Shanken (1986, MacKinlay (1987), and Gibbons and Shanken (1987},



preciee way that MVE would imply they should.®

Our tests below emphasize the nested nature of the hypotheses we congider. We pay special
attention to the importance of ARCH ve. MVE va. the asset shares themseives in explaining risk
premia. The broad findings can be summarized as follows. First, we find that stock-market shares
by themselves have statistically significant explanatory power in predicting monthly excess stock
returns. This is what we would expect if the stock market is mean-variance efficient and if required
returns change over time. However, we reject the restrictions implied by constant-variance MVE.
Moreover, the ability of asset shares to forecast future excess returns disappears once the MVE
restrictions are imposed. Something very different than MVE appeara to be responsible for asset
shares’ ability to predict stock returns. Indeed, for a majority of the portfolics we construct, higher
conditionally expected returns are associated with Jower value shares.

One might conjecture that MVE holds and that these results are an artifact of the maintained
agsumption that conditional variances are constant. Indeed, we find that the data reject the hy-
pothesis that the market is mean-variance efficient with a constant variance againat the alternative
that the market is mean-variance efficient with a conditional covariance matrix that evolves ac-
cording to an ARCH process. Time-varying second moments therefore move the mean-variance
efficient frontier closer to the market portfolic. This is good news for ARCH, but not for MVE: we
cannot reject the hypothesis that the ARCH-MVE model can explain no portion of excess returns.
Nevertheless, the data produce a sensible estimate of the coefficient of relative risk aversion of 2,
with a standard error of about 1.5, so that, while we cannot reject the hypothesis that investors
are risk neutral, we can reject hypotheses that they are strongly risk loving or risk averse.

Finally, we test a generalized ARCH specification, which does not impose MVE, against the
null hypothesis that the market is conditionally mean-variance efficient and that conditional vari-
ances evolve according to an ARCH process. Once again we reject the restrictions imposed by by
¢onditional MVE.

The paper is structured as follows. Sections 1 and 2 briefly deacribe the model and the data,
respectively. Section 3 tests for constant-variance MVE, We introduce our ARCH specification in

section 4, and test an unrestricted model as well as an ARCH-MVE system. Section 5 summarizes

% One possibility is that the managers of pension funds and the other funda shat hold most equities are cancerned only with
minimising the variance of their own performance, rather than computing <ovariances with the aggregate portiolios held by
individuale aa they in theory should.



our general nesting procedure for the hypotheses of interest and offers our conclusions.

1. The model

Mean-variance efficiency implies that the vector of conditional risk premia is a linear combina-
tion of the asset shares in the portfolio, with the weights proportional to the conditional variance
of asset returns:

Ei(rir1) = prlleds, (1)

where Ei(r;,) is the expected excess return above the riskless rate on an N x 1 vectar of assets
conditional on all information available at time t, {; is the conditional variance of returns between
tand t-+ 1, A; is the N x 1 vector of portfolio weights, with )::";1 A =1, and p is & preference
parameter - the coefficient of relative risk aversion. If the aggregate stock portiolic is the “market”
portfolic, MVE is equivalent to the CAPM. To see this, note that the right-hand side of (1) is

equivalent to the risk-adjusted conditional expected return on the aggregate (or market) portfolic

Eilreyi) = BeElmes1) = BidiEilresn),

where
_ A cov (M1, Mi41)
/\;ng/\g B V&l‘(mu.]_)

B

This expression makes it clear that the vector of sub-portfolic fs varies both with the shares c
assets in the portfolio, A¢, and the conditional covariance matrix, 1y, and thus may move substan
tially over short time intervals. Also, note that given preferences and {Yy, (1) is 8 complete model c
expected excess returns: MVE implies that asset shares are sufficient statistica for optimal forecast
of excess returns.

Under rational expectations, we can replace the vector of expected excess returns with th

actual returns by including a prediction error that is orthogonal to all information at time t:
rern = peflede + €t (:

where €41 = ry1 — Ei{risa). The insight in Frankel {(1982) wes that information about tl

conditional covariance matrix of returns can be obtained from the error terms. since under MV!

Q= Et(fwlf:“)- (
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MVE therefore imposes a set of restrictions that are highly nonlinear ia ‘hat they constitute pro-
portionality between the coefficient matrix and the variance-covariance matrix of the arror term in
(2)-

To evaluate (3), we must take s position on whether f1; is constant over time, In sections 3 and
4 below, we assume that {3; is constant and that it follows an ARCH process, respectively. We test
the hypotheses that MVE holds against more general alternatives in which investors forecast excess
returns as a function of asset shares and past prediction errors. The exact specifications for the
alternative hypotheses are discussed in sections 3 and 4. We also test the MVE hypotheses above,
as well as the more general alternatives, against an even more restrictive null hypothesis: that
investors expect conditional excess returns to be zero. The results of these tests are also discussed
in sections 3 and 4. Section 5 presents & diagram which makes it easy to see the results of our

nested hypothesis tests.

2. The data

Our tests use monthly stock returns from the New York and American Stock Exchanges from
January 1955 to December 1984. Because of the computational difficulties in estimating (2) we
were forced to reduce the size of the cross section.” In the teatas below we aggregate stocks into
N = 11 (and scmetimes 7) industry portiolios.

Table 1 describes the aggregation of atocks into industry portfolios. The returns for each
portfolio are value-weighted average returns. The N X 1 vector of portfolio shazes, Ay, is the value
of the stocks in the portfolios as a fraction of the total value of all stocks. Because it is desirable
to group together equities that have highly correlated returns, we tried to put similar industries
into the same portfolio.!® Stambaugh (1982) aggregates into 20 industries, roughly by type of final
output. We further aggregate into 11 industries, combining some of Stambaugh’s catagories. Table
1 shows Stambaugh’s 20 industries, as well as the 11-industry sggregation that we use to perform
our maximum likelihood tests of MVE. Table 1 also reports a 7-industry aggregation that we use

for the ARCH estimation in section 4.

®)f there nre N assets, the computakion invoives a parsmeter matrix of dimension N[N — 1)/2 x N{N - 1)/2 that must be
repeatedly inverted. Engel and Rodrigues (1988) offer s Wald test version of the CASE test that gets around this problem, and
asllows one to consider larger vectors of assets. We apply it in Section 3 below.

100n the other hand, we would not want ko include together the suppliers of intarmediate products and the producers of
final output in the same industry. When ateel prices rise, the cost of producing sutos increases so that it is possible that steel
producers' profite rise when suto manufsacturers profits decline,

5



The value shares, A, are used to predict excess returns between time ¢ and ¢ + 1. The share
are measured monthly from the last day of January 1955 to the last day of November 1984 (35
observations), while the returns are calculated as the dividend plus appreciation aver the previou
month beginning the last day of February 1955 and ending the last day of December 1984. A
returns are nominal excess returns above the return on one-month Treasury bills recorded b

Ibbotson Associates (1986).

3. Tests of MVE with constant conditional variances.
If relative risk aversion and the return covariance matrix are constant, gi{l; = pf1, we cz
write demands for assets as a function of their own rate of return and returns on all other equitie

We would have,

A = BEi(ris1), (

where B i& an N x N matrix of coefficients. By inverting the system of equations in (4), we obta

a measure of expected excess refurns,
Ey(rp1) = AXy, {

where A = B~1, This system of equations is a generalization of a static model of MVE. MY
imposes the restriction that the matrix of coefficients A be proportional to the variance of t

forecast error, £,41. Using ez post returns, (5) can be written:
rip1 = Al 4 €y {

Although the values of the equities are endogenous variables in an econcmic sense, they are s
uncerrelated with the prediction errors, which under rational expectations are uncorrelated w
all information availp.ble at time t. (Under the null hypothesis that MVE holds precisely, predicti
errors are the only source of errors that enter the equation.!’ } Thus the system in (6] can
estimated consistently using ordinary lesst squares, equation by equation.'?

Table 2 reports the results from estimating the unconstrained system of equations (6). Few

the coefficients individually are significantly different from zero. Unsurprisingly, the R?s are |

11 For example, Enge! end Rodrigues (1989) show how iid measurement errot in the rates of return could be included in
residual, €41.

13Note that the N nsaet sharee, Aj. ... A,.n, are perfectly collinear because they sum te 1. This does not pose & problen
the estimation of (7}, however, becaune the equations do not include & conatant term.
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very high, and none exceeds .i0. We can reject at the 95 percent izvsi the hypothesia that the
asset sharea have no explanatory power for excess stock returns. The log-likelibood value for the 11
equation system is 8700.35. The log-likelihood when all 121 coefficient are cornstrained to be zero is
8502.57. Twice the difference is distributed as x};,. The value of the statistic ia 283.56 compared
with & critieal value of 147.39.1914

There is mixed support for one of our assumptions - that forecasts are rational. This assump-
tion implies that there is no serial correlation in forecast errors, We performed Breusch-Godfrey
tests for serial correlation from orders 1 to 20. We report the chi-square statistics only for the
tests of the existence of 20th order autoregressive or moving average errors. In only four of the
regressions can we reject the null hypothesis of no serial correlation up to 20th t;rder at the 95
percent level.

Under the MVE hypothesis, this unconstrained system of inverted asset demand equations is
not estimated efficiently. If we impose more structure on the system we can hope to improve the
precision of our parameter estimates. So we will estimate the system of equations in (6) imposing

the MVE constraints: -

rop1 = pPOA + €41,y (7

so that A = p3. The N equation system (7} must be estimated by maximum likelihood techniques,
imposing an unusual cross-equation restriction — between the matrix of coefficients in the regressions
and the variance matrix of the regression errors. Note that the assumption that {1 is constant is
not the same as the usual assumption in MVE tests of constant betas and expected returns. As
we saw in the previous section, even with a constant covariance matrix, the betas, and hence the
expected returns on all securities including the aggregate or “market” portfolio, will vary over time
in a general, unrestricted way.!®

Table 3 reports the maximum likelihood results of (7). The log-likelihood value is necessarily
lower than the log-likelihood for (6) because (7) is a restricted form of (T): 8593.68 (as compared to

the unrestricted log-likelihood of §709.35). We also report a chi-square statistic for the restrictions

13 The 89 percent critical value is 169.32.

14 The only prior beliefs we have sbout the coefficients in that the return on asset j should be positively related to the share
of maset § in the total portiolio. If we think of the market portfolio ma comprised only of stocks, then in equilibrium inveators
will demand a higher tetum from a given stock portfolio the more of it they are reguired to hold. Tabie 2 shows that in 8 out
of the 11 regreasions this own-coefficient is negative (and significantly negative for industdies 2 and 7). It is not significantly
poeitive in any of the regressions. - .

15Franhel (1986a)



implied by (8). We impose 120 restrictions on the unconstrained system (121 coefficients are
constrained to be proportional to their correspanding elements in the variance matrix). The test
statistic is distributed x%,,, and its value is 231.34. We can easily reject the hypothesis of MVE
at the 69 percent level. Comparing the results from table 3 to table 2, it is easy to see the source
of the rejection. When the coefficients are constrained, they are much smaller than when they are
unconstrained. Under the MVE constraints, an increasé in the share of an asset has a much smaller
impact on risk premia.

If one were willing to accept the MVE estimates on the basis of prior beliefs, they yield in some
ways much more plausible asset pricing equations. We noted that in the unconstrained regressions
we frequently found that an increase in an asset share would actually decrease that asset’s expected
return. That is not possible with the constrained MVE estimates.

Also, the point estimate of the coefficient of relative risk aversion, p, is very plaugible — 2.03.
It is very close to the “Samuelson presumption” of a likely value for average risk aversion. The
coefficient is not estimated precisely, however, a8 it is not statistically different from zero at the 95
percent level. But its 95 percent confidence interval ranges only up to about 5.3 — still a believable
estimate for average risk aversion.

On the other hand, the constrained model does a very poor job of predicting excess returns.
The failure to reject the hypothesis that p = 0 implies that asset shares provide no statistically
significant explanatory power for risk premia under the MVE restrictions, because the coefficients
on tﬁe shares are all multiples of p. Above we mentioned that the log-likelihcod when the coefficients
are all constrained to be zero is 8592.57. The likelihood under the MVE restrictions is only B503.68
- a meager increase of 1.11. MVE vitiates the predictive power of the asset shares alone.

The estimates reported in Tables 2 and 3 calculate the shares as a fraction of total equity
investment. If, however, there are positive net holdings of the riskless asset, then the shares should
properly be calculated as a fraction of total equity investment plus the total net value of the riskless
asset. The riskless asset could have a positive net value if the government issues riskless short-term
bonds, and investors consider government bands to be additions to net wealth (so that they do no
fully discount future tax liabilities) or if the government issues money. We estimated the mode

under the assumption that the relevant measure of the net supply is the value of all governmen



bonds {which are calculated by Cox, 1985), and again under the assumption that the value of
outstanding Treasury bills measure the net supply of the riskleas msset. In both cases, there was
almost no change in the est-imates.

We considered two other formulations for the coefficient of relative risk aversion, besides as-
surning that it is constant. In the first, we assumed constant absolute risk aversion. In that case,
2o = bW, where b is the coefficient of absolute risk aversion and W; is the value of all equities at
time t. Tn the second, we considered a more general formulation consistent with the Hara class of
utility functions, p, = & + bW,. H & = 0 we have the constant relative risk aversion case, and if
a = 0 we have constant absolute risk aversion. Again, however, these versions of the model failed

to improve the constrained model’s performance.?®

3.1. A wald test of MVE with constant condltional variances.

Maxirmum likelihood estimation of MVE is a difficult task. The constraints between the coef-
ficients and the variance cause grave problema in finding the maximum of the likelihood function.
The estimation is expensive and time consuming. The entire aystern must be estimated simultane-
ously, which in the case of the 11-asset system means simultaneously estimating 122 coefficients.
The complexity of the problem increases with the square of the number of equations and assets.
If we were to estimate the model even for all 20 of Stambaugh’s original partfolios, it would mean
maximizing a very messy function over 401 parameters. l

If we are interested in testing MVE, but not in actually obtaining the constrained coefficient
estimates, we do not need to estimate the constrained set of equations. A Wald test can be per-
formed using only the unrestricted model. In this case, the unconstrained model {6) is particularly
easy to estimate, because it requires only equation-by-equation ordinary least squares. Engel and
Rodrigues (1988) provide an expression for the Wald statistic for the MVE restrictions.

The Wald statistic is not difficult to 'cumput.e even for large collections of assets. We can test
the MVE resttictions for the entire set of 20 industry portfolios composed by Stambaugh. We again
reject the MVE restrictions easily. The test statistic is distributed X35, and has a value of 58.99,

well above the 99 percent level.)”

1£1n order to save space, wa do not report these resulta.

17The comparable Wald test for the 11-aaset aggregation yields a statistic distributed a8 X} equal to 22.76. This alno rejects
the MVE reatrictions nt the 99 percent leval, These particular Lests restrict only the diagonal elements of the return covariance
matrix, and yet they reject easily.



The estimates of this section provide little support for MVE of the stock market. In all of
the tests performed, the restrictions that MVE places on a more general asset demand model are

strongly rejected.

4. Tests of MVE with ARCH conditional variances.

In the estimates reported in section 3, we assumed that return covariance matrix, {};, was
constani over time. Because it has become clear in recent years that conditional variances show a
considerable amount of variation, we turn to a model of time-varying conditional variances.

" In simple regression models, the presence of hetercskedasticity often does not affect the con-
sistency of the coefficient estimates, although it does cause standard calculations of test statistics
to be inconsistent. When the MVE restrictions are imposed, however, changes in variances imply
changes in coefficient estimates, which in turn imply changes in expected excess returns. The coef-
ficient on the asset shares in the constrained model must move over time if (1, does, sc holding {1;
constant leads to inconsistent coefficient estimates.

Inspection of (2) makes it easy to see why it is important to allow for variation in {1;. There
are two possible sources of variation in expected returns if the measure of relative risk aversion
is constant: changes in asset shares, ), and changes in f1;. Suppose, for example, that favorable
news about a stock is announced. One could easily think of cases in which the price is pushed up,
increasing the stock’s share in the aggregate portfolio, even though its expected return is now lower
with the news. If the market is mean-variance efficient, this can happen when the riskiness of the
asset declines — its own variance falls, or its variance with other assets declines. But, for the jth
asset, this is exactly a change in the jth row of {;.

The burgeoning econometric literature that proposes general corrections for heteroskedasticity
is not applicable to this model. That literature relies generally on procedures in which consistent
estimates of the residuals are obtained before any heteroskedasticity correction is made, and those
estimated residuals are used to construct heteroskedasticity-consistent statistics. In our MVE tests
we must correct for time-varying variances when we estimate the regression coefficients because the
coefficients move with the variance. In order to do this, we need an explicit model of the variance
process.

Of course, our model is partial equilibrium in the sense that it does not indicate the nature o
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the exogenous variables that determine asset prices. It takes the stochastic processes of returns as
given, and computes the mean-variance efficient portfolio from these. In particular, it gives us no
indication of how variances should ¢change over time.

We chooee to model variances empirically following Engle's (1982) ARCH process. The ARCH
takes the conditional variance of this period’s forecast error to be a function of past forecast errors.
It is not based on any theoretical notion of how the general equilibrium of the economy works. It
is an ad hoc model that seemns to work well in practice.

The univariate representation of a first-order ARCH would be of; = o + 7¢];. The variance
of the forecast error of the ith stock between time ¢ and t + 1 is given by of,, and €}, is the
square of the forecast error made between time t — 1 and ¢. This equation states that if we make
a large forecast error in one period, the variance of our forecast for the next period will be greater
(nssuming -y > 0).

In this section, we apply a multi-equation version of ARCH to the MVE problem. Because
of the difficulty in estimating large ARCH systems, we bave further aggregated the assets into
the 7 portfolios described in table 1. Even with only 7 equationa to estimate, the dimension of
the ARCH problem can be quite large. For example, even if we restrict ourselves to first-order
ARCH in which the variances and covariances this period are related only to the squares and cross-
products of forecast errors from the previous period, the problem is unmanageably large. There are
28 independent elements in the covariance matrix. H each element were linearly related to the 28
lagged aquares and cross products of the forecast errors, there would be 812 variables to estimate.
More general forms of ARCH would relate the variance to more than one lag of the cross-products
of forecast errare, or to lagged variances (as in Bollerslev's (19868) GARCH).

Given the complexity of estimating the MVE-ARCH syatem, and given the limited amount of
data, it is helpful to lower the number of ARCH coefficients. Our test of MVE uses a parsimonious

version of ARCH, in which the model,

Ei(res1) = iy, {8)

has return variance given by:
= PP+ GeelG.
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We treat as parameters the upper triangular matrix P, and the diagonal matrix G. Under thi
formulation, each elernent of [ is linearly related to its corresponding component in the matri
of cross-products of lagged forecast errors. There are only 35 coefficients to estimate. A furthe
advantage of the ARCH in (9] is that it enforces positive semi-definiteness on the cavariance matri
£1;. This turns out to be helpful in estimating the constrained model by maximum likelihood.

The unrestricted form of the inverted system of asset demand equations is given by:
Ei(rie1) = Adhs (€

MYVE imposes the restriction that A; = pfl;, where {1; is the conditional variance of repr. 1
practic.e, if MVE ie to be nested in the general system of asset demands, then the elements of A, |
the general system might be related to the same variables that f1; is assumed to be related to, b
in an arbitrary way. More specifically, we assume that in the unrestricted model, the coefficie
matrix A; evolves according to:

A, =Q'Q+ Feée,F, (1
where @ is upper triangular and F is diagonal, and the conditional covariance matrix of reture
{l;, ia given by (8). The MVE constraint, that A, = p{l;, imposes 34 additional constraints on t
unconstrained asset demand equations in (9). -

For our restricted ARCH-MVE mode! in (8), the log-likelihood for observation £ is given by
£ = —(7/2)la(2x) — (1/2)i0] — (1/2)(res1 — pOAN QY {rees — PR, (1

where {1, is defined in (8], and & = ry — pfl_1 A_y. Maximization of (11) is difficult for sever
reasons, Firat is the comstraint between coefficients and variances. Second is the recursive natt
of the problem (so that the likelihood at 2, defined abave, depends on al! observations from 1 to
Third is the large number of parameters to estimate simultaneously. We estimated the system
a modified version of a maxinum likelihood program available in the Gauss programming packa
1t uses a technique based on the Berndt, Hall, Hall and Hausman (1974) algorithm.

Before turning to the results of the ARCH estimation, it is useful first to examine the c
strained MVE estimates on the 7 equation system when {2, is constrained to be constant, as in {
previous section. Tahble 4 shows that the 7-equation system petforms much like its 11-equaticn co

terpart. The estimate of the relative risk aversion parameter is close to 2.0. However, it is still
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statistically different from zero, which indicates that the asset share data with the MVE constrai:
imposed do & poor job of explaining expected returns. The log-likelihood with MVE impoaed
5558.56. This compares to a log-likelihood of 5603.56 for the corresponding constant-coefficie
unconstrained system of asset demand equations. In this case, MVE imposes 27 constraints on f
general system. The test statistic is distributed xg-,, with a size of 70.00. The MVE constrai
can be rejected strongly at the 99 percent level.

Table 5 reports the results of the MVE restrictions imposed on the ARCH system. There .
two hypotheses to teat here. The frst asks whether we can reject the constant-variance MYE mo
in favor of the ARCH-MVE. A rejection would imply that time-vatying variances atatistically red:
the distance between the stock-market portfolio and the mean-variance efficient frontier. Suc
rejection would lead us to the other interesting hypothesis: can we reject the restrictions imp!
by MVE on the unrestricted ARCH system in {9) and (10)? This would involve a test of
hypothesis that @ = P and F = G.

The log-likelihood for the ARCH-MYE madel in (9) is 5573.97. The constant variance vers
of MVE is a special case of this ARCH model, in which the G matrix from (9) is constrained tc
zera. This imposes 7 constraints on the ARCH system. Our test statistic is 30.82 and is distribu
x%: we reject the constant-variance restrictions at the 99 percent level. ARCH therelore impr«
significantly on the constant-variance form of MVE,

Four of the 7 ARCH coefficients {elements of the G matrix) are significantly different £
zerc at the D5 percent level. These coefficients are all quite small in magnitude. The squar
each element gives the coefficient relating the variance in each equation to its own lagged squ:
forecast error. Only one of the squared componenta of G is greater than .10.

The point estimate of p is 1.91 — again close to the Samuelson value of 2.0. Once again,
estimate is not statistically different from zero at the 95 percent level {although it is now signifi
at the B0 percent level]. The most important question is whether the ARCH-MVE model is
restrictive relative to the general ARCH system given in (9) and (10). This system will praot
a log-likelihood value at least as large as the value we reported above — 5603.56 — for the ver
of the unconstrained model in which A, is constant. But even if its likelihood was no larger -

this, the size of the test statistic (distributed x2,) for testing the MVE constraints on the Al
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model would be 58.18. MVE would therefore be rejected at the 99 percent level. So we do not evex
need to estimate the unconstrained asset-pricing equations with A; varying over time to know thas
MVE iz rejected.

We conclude that while Jetting the variance change over time is important in improving the
explanatory power of MVE, it does not improve it encugh relative to an unconstrained system of

nsset-demand equations.
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5. Summary and Conclusions

Figure 1 provides a graphical summary of our nested hypothesis tests. At the top of the figure
is the moat unrestricted model we consider, the unrestricted ARCH model in equations {9) and
(10}. At the bottom of the figure is the most restrictive model, that aaset shares are of no help in
explaining required returns, or equivalently, that risk aversion is zero. For each pair of models, the
line connecting them reporte the results of a test of whether the lower model {the null hypothesis]
can be rejected in favor of the upper model (the alternative hypothesis). It is easy to see that both
of the MVE formulations — the constant-variance case in equation {7) and the ARCH case in (8]
— are rejected when compared with any more general alternative hypothesis. Worse, there is nc
evidence in favor of these MVE models even when they are pitted as alternative hypotheses agains
the straw-man model in which asset sheres don't matter at all (A; = 0 in equation (9}).

Thete are several ways to rationalize these results. One would be that the true asset pricin
mode! is not the CAPM, but rather the APT, a version of the intertemporal CAPM, or even th
one-period CAPM plus some other omitted variable. A second explanation for the results woul:
rely on the Roll (1977) critique. If the stock market is very unlike the true “market” portiolio, w
would not expect to find MVE, even if the CAPM holds.*®

Indeed, under this explanation, the asset shares and ARCH processes cannot be accuratel
observed. A third explanation of the resulta would be that the residuals in {2) lead to poor measure
of the conditional variances. If “peso problems” affect stock market returns, the estimated residual
will be biased. Imposing the MVE restrictions only compounds the problems. For example, it i
well known that in the five yenrs following the stock-market boom of August 1982, the market ros
at an average annual rate of 22 percent. Few would argue in retrospect that it is possible to obtai
from this period er post, valid measures of ez ante expected risk and return. Thus if the mod
in (8) were true we would expect that unconstrained asset shares and ARCH would predict exce
returns, but this could be erased by imposing the MVE restrictions which are not exactly satisfic

in our sample.

18 Gimilar results were found, howaver, when money, bonds, and real astate were allowed into the portfolio (Frankel, 10B5:
and Frankel and Dickens, 1984) and when foreign assets were allowed {Franke!, 1882, and Frankel and Engel, 1984).
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Table 1
Industry Portfolios and 8.E.C. Codes

Industry S.E.C. Codes

. Mining 10, 11, 12, 13, 14
2. Food end Beverages 20

3., Textile and Apparel 22, 23

4. Paper Products 26

5. Chemical 28

6. Petroleum 29

7. Stone, Clay and Glass 3z

8. Primary Metals 33

9. Fabricated Metals 34

10. Machinery 35

11. Appliances, Elec. Egquip. 36

12. Transportation Equipment 37

13. Misc., Manufacturing 38, 39

14. Railroads 40

15, Other Transportation 41, 42, 44, 45, 47
16, Utilities 49

17. Department Stores 53

18. Cther Retail Trade a0-52, 54-59

19. Bank., Fin., Real Estate BO-67
20. Miscellaneous 1,4,15-17,21,24,25,27,30,31,46,48,70,

73,75,78,79,80,82,89,99

11 Portfeolios (Qombinations of the 20 portfolies)

Portfolio Industry Portfolios
1 1, 20
2 2, 3, 4
3 3
i 6
] 7.8, 9
8 10
7 11
8 12-15
g 16

10 17, 18
11 19

7 Portfolios (Combinaticns of the 20 portfolios:

Porifolio Industry Portfolios
1 1, 2. 3, 4, 20
p 3, 7, &, 9
3 5
1 10. 1l
B 12-15
16

-1 T

1i-1y



Teble 2

Estimated Coefficients from Unconstrained OLS Regressions

Dependent Variahle:
Independent Variables:

Excess rate of return on asset

Shares of asset ;i in total portfolio

1 \2 % \4 .5 \6 J X X ,10 411
Equation 1
_0.14  ©.19 0.26 -0.06 -0.11 0.14 -0.70 0.08 0.21 =0.35 0.26
(0.12) (0.82) (0.30) {0.26) (0.32) {0.25) (0.44) {0.22) 10.32) (0.25) (0.44}
RZ = .023 Breusch-Godfrey statistic (20 lags: = 42.?9‘
Egquation 2
b 3 x
—0.11 -z.29% 0.4 —u.29 -0.28 0.44 -1.12° 0.16 0.59 0.83 2.06
(0.13) (0.86) (0.32) (0.271 (0.34) (0.26) (0.46) (0.23) (0.22) (0.57) (1,24)
RS = .050 Breusch-Godfrey statistic (20 lags) = 23,38
Equation 3
* .
Z0.20 -1.05 ©.12 -0.04 -0.3z 0.14 -1.20° —0.02 ©0.46° 1.16  2.05
(0.13) (0.89) (0.33) {0.28) (0.35) (0.27} (0.47) (0.24) (0.23) (0.59) 11.29)
R = .047 Breusch-Godfrey statistic (20 lags) = 16.99
Equation 4
0.15 -0.55  0.74 -0.82% -0.81% 0.14 -1.0L 0.4 -0.01 -0.60 2.79
(0.16) £1.09) (D107 (0.34) (0.433 (0.33) (0.58) (0.29) (0.28) (0.72) (1.57)
RS = Lo27 Breusch-Godfrey statistic (20 lags) = 21.74
Equation 3
* 3 5
0,25 -1.00 o0.83t —0.25 -0.81 0.18 -1.68" 0.50 ©.41 -0.02 .20
(0,161 (1.071 (L.39) {0.33) (0.42) 0.331 (0.57) (0.29) 10.28} (.71) (1.35)
Ri = G044 Breusch-Godfrey statistic {20 lags) = 30.71
Equation &
CULIU =0.19 U B -G 40 =0.6B -0.43 -0.Z8 0.37T  U.18 -0.06 1.
(0,150 11.047 (0.3 (0023 {0.41; (00520 10,968 {0.28) (0,270 (U.89) (1.5]
H; = LUin Breusch-Godfrey statistic 120 lags) = 20,41



Table 2 {continued!}

. . T Y LT a8 49 410 41l

Equation 7

.17 -2.72% o0.83% -0.26 0.71 0.44 -2.13° 0.37 0.75° 1.21 3.15

(0.17) (1.13) 10.41) (0.36) (0.44) (0.35) {0.60) (0.30) (0.29) (0.75} {1.63)
Rz = 066 Breusch~-Godfrey statistic {20 lags) = 17.38

Eguation 8

.14 -0.85 0.25 -0.10 -0.43 0.08 -1.41% -0.04 0.62 0.94 1.80

(0.14) (0.93) {0.34) 10.29) (0.36) (0.29) (0.49) (0.25) (0.24) (0.62) (1.34)
R = .067 Breusch-Godfrey statistic 120 lags) = 21.10

Egquation 8

~0.09 -0.77 0.50 -0.10 -0.12 ©0.18 -0.64 -0.04 0,30 0,07 0.82

(0.12) {0.80) (0.30) (0.25) {0.31) 10.25) (0.43) (0.21) (0,21) (0.53) (1.16)
RY = .03z Breusch-Godfrey statistic (20 lags) = 35.07"

Equation 10

~0.11 -0.38 1.20 -0.10 =-0.27 0.01 -0.56 0.06 0.41 -0.02 1.05

(0,167 (1.08) (0.39} (0.33) (0.42) (0.33) (0.56) (0.28) (0.28) (0.70) (1.53)
kS = 027 Breusch-Godfrey statistic (20 lags) = 44.68"

Equation 11 '

_0.04 <6.25 0.13  0.19  ©0.09 0.24 ©0.13 0.1 0.54 -0.20 =-1.31

(0.14) 10.95) (0.35) (0.30) (¢.37) (0.29) (C.50) (0.25) (0.25) (0.83) (1.37)
e - .0z Breusch-Godfrey statistic (20 lags) = 42.42"

Fs significant at 95% level

tatandard errors 1n parentheses)



Table 3

CAPM Estimation, constant ¢, 11 mssets

= ! X 3
Teap TP E0n
Vart(8t+1) = PP
L3 31 Log Likelihood = -B593.684711

The estimate of the coefficient p:

2.0319
{1.6130)

The estimate of the upper triangular matrix P:
,0398  .0322 .0334 ,0385 .0411 .0346 .0404 .0331 .
(.0018)(.00211(.00231(.0028)(.0026)(,0026}(.0030)(.0025}1.

L0274 .0197 -.0033 .0166 0198 .0223 .0189 .
1.001%)(.0015)(.,0023)(.0019}{.0025)(.0022)(.001911.

0204 .0042 0044 0097 .0087 .0078 -.
.0008) ¢ .0024)1.0015)1(,0019)(.0019)¢.0014)¢.

L0360 -.0029 -.0019 -.0032 -.0017 .
(.0014)(, 0016} (.0028) 1. 0019} (.0015) L.

.0276 .0058 .0102 .0090 -.
(.0011)1.0019}3(.0019)(.0013) (.

.0304 .0068 .0050 -.
LU0113t.00163{.0015)¢(.

0272 .0063 .
1.1J0131(,001410¢.
L0214 .
{.001M (.,

(.

LeTandars errore 1 parentheses B

0257 .0316 .0374
0022)(.00291(.00231

0089 ,0252 .00AT
0017)¢(.0025)1.0015)

0046 .0015 .0000
0018)1.0018)(.0018)

0018 -.0073 .0125
0018)¢.0019)1.0016}

0046 .0003 .0051
0017)1.0017)¢(.0016}

00256 0021 -.0009
00171¢.,00183¢.0011)

0000 .0063 .0020
00171 (.0019)(.0017)

0020 .0094 .0027
00183}{.0018)(.0017)

027z .0032 .0050
0011)¢.00173(.0014!

L0287 0006
{.0013}(,0013

L0218
{0007



Table 4

CAPM Estimation, Constant €, 7 assets

= [ ! b} 3
Tyl AP P t + Ft+1
Vart(€t+1: = PP
¥ix Log Likelihood = -555B8.561247 x%x

The estimate of the coefficient p.

2.02778
(1.46639}

The estimate of the upper triangular matrix P:

.03842 03935 03711 .04015 .03640 .52695 .03782
(.00150) (.00185) (.00246) (.00213} (.00208) (.00190} (.00197)

02075 -.00471 01708 .01571 -.00389 .00485
(.00075) (.00225) {.00140) (,00149) (.00153) (.00123)

.03757 -.00296 -.00242 -.00033 .00140
{.00115) (,00143) (.00120) (.00166) (.0Q117)

.02435 .00762 -.00136 .00342
(,00092) (.00137) 1.00158) (.00117)

.02206 .00269 .00735
{.QD0BT) (.00149) (.00108)

02801 .00408
(.00103) (.00109)

.02034
(.00075}

istandard errors in parentheses)



Table 5

CAPM Estimation, ARCH, 7 assets

= X £
Teap TP

var (€ ) = Q

£ a1 g TEP GG

t

LR 3 Log Likelihood =  -5573.969787

The estimate of the coefficient f:

1.91212
{1.47683)

The estimate of the upper triangular matrix P:

.03714 .03883 .03364 .04036 .03738 .02700
(.00152) (.00189) (.00274) {.00213) (.00204) {.00191}

.02050 -.00278 .01648 .01486 -.00395
(.00077) (.0023%) (.00130) (.00158) {.00160}

.03541 -.00285 -.00127 00084
{.00116) (.00157} (.00124} (.00182)}

. 02405 .00687 -.00140
{.00085) (.00138) (.00160)

.02118 .00253
{,00096) (.00158}

02779
(.00109)

The estimates of the diagonal elements of G
19819 13305 L31874 LUBZ26T  -.03718 . 15481
U.0395% (.04684; (LuBLBEZ) {.04317) 1.04355) (.0984%)

cetancard errors 1n parentheses)

L 24

.03700
{ .00200)

.00494
(.00130}

00082
{.00128)

.00308
{.00122)

00747
{.00109)

.00391
(.00112})
01971
1.00682})

17706
(.04668)
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