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1. Introduction  
 

In recent decades, private equity (PE) has become an important asset class for investors.  

A recent survey of institutional investors finds that 88% are invested in private equity, with nearly 

a third having an allocation greater than 10% (Whyte (2017)).  In the early 2000s, a secondary 

market developed in which limited partners (LPs) can transact their stakes in private equity funds.1 

Since data on secondary market prices are not publicly-available, investors and academics have 

been limited to using data on cash-flows to evaluate the risk and return of private equity. As much 

as half of the variation for public equity returns, however, is driven by news about discount rates 

(Campbell (1991).  Further, all variation in dividend price ratios for public equity corresponds to 

variation in discount rates, not variation in expected cash flows (Campbell and Shiller (1989), 

Campbell (2011)).  

These findings naturally lead to four important questions to consider.  First, under what 

conditions might performance measures based on cash flows overlook risk that arises from 

variation in discount rates? After all, asset prices are not arbitrary and should ultimately be 

determined by the properties of the underlying cash flows.  Second, to what extent do discount 

rates for private equity vary?  The marginal PE investor may very well differ from the marginal 

investor in other asset classes in terms of preferences, sophistication, sentiment, and risk aversion 

that are all important determinants for discount rates. Moreover, the organizational structure of 

private equity may generate unique risk dynamics. Third, how does variation in PE discount rates 

impact standard performance measures such as CAPM alpha and beta, relative to other measures 

of performance based on cash flows?  And fourth, what kind of investor cares about variation in 

PE discount rates?   

To answer the first question, we explore the relationship between the GPME of Korteweg 

and Nagel (2016) and the standard one-period Euler condition that depends on market prices.  The 

GPME is unique among PE performance evaluation measures in that it is well grounded in asset 

pricing theory.  We highlight that it represents a first order condition for optimal asset allocation 

and is equivalent to the net present value (NPV) of cash flows over the life of the investment. We 

illustrate that the implicit beta in the discount factor for GPME, however, is a cash flow yield beta 

                                                        
1 While secondary market liquidity was limited in the nascent years of the secondary market, liquidity has grown 
substantially over the past decade. 
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with the growth in investor marginal utility. In contrast, the standard Euler equation represents the 

one-period NPV using market prices, in which the implicit beta is a total return beta.  We further 

show that if discount rates vary over time, then GPME generally reflects the unconditional one-

period NPV plus a term representing PE discount rate risk: the covariance of PE discount rates 

with the growth in investor marginal utility. Such risk impacts the one-period NPV, but not the 

GPME.  

  We then turn to the second and third questions mentioned above to investigate variation 

in private equity discount rates and determine the impact of this form of discount rate risk on 

performance evaluation measures. To do so we use data obtained from a large intermediary in this 

market to evaluate the risk and return of private equity funds in a similar manner to the way in 

which investors regularly use public equity markets to understand the risk and return of publicly 

traded companies. Using these data, we construct market-based indices for buyout funds. By 

comparing the performance of our indices with that of standard NAV-based indices and an index 

based on listed private equity companies, we obtain new insights about the performance of private 

equity. In contrast to much of the existing literature, our transaction-based indices suggest that 

buyout funds do not outperform public markets on a risk-adjusted basis.2   

 A difficulty in constructing an index using our secondary market data for private equity is 

accounting for the facts that no fund trades in every period, and many funds do not trade at all. In 

the subsample of funds that could be matched with cash flow data from the Preqin database, there 

are 839 buyout transactions for 287 unique funds from 2006 through 2018, implying that the 

average fund trades 2.9 times in our sample, conditional trading at all. Moreover, the funds that do 

trade are not randomly chosen, and sample selection could potentially affect inferences from 

empirical analysis if not controlled for econometrically.  

 We explicitly account for the possibility that specific types of funds may trade more often 

than others by using the approach of Heckman (1979). On a large sample of buyout funds, we 

estimate the parameters of an econometric model using observed transaction prices. We use this 

model each period to create an inferred price for every fund in our population every period, 

including those that do not transact. We then construct our transactions-based index from these 

                                                        
2 For example, current evidence suggests buyout funds outperform on a risk-adjusted basis (Higson and Stucke (2012), 
Harris, Jenkinson, and Kaplan (2014), and Robinson and Sensoy (2016)).. 
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inferred prices.3  When estimating index parameters, we account for non-synchronicity in prices 

we observe using the approach of Dimson (1979).   

We estimate the beta of our main secondary market PE index to be 1.79 As emphasized by 

Axelson, Sorensen and Strömberg (2014), the return on a buyout fund is essentially the return on 

a portfolio of highly levered firms. If the portfolio firms prior to the buyout have unlevered betas 

around 1, doubling their leverage, as was typically done in buyouts during our sample period 

(2006-2018), should lead to a portfolio beta around 2.4  The benchmark beta of 1 in this calculation 

is a total return beta, and produces a total return beta for PE consistent with the total return betas 

we estimate using our indices.  In contrast, others in the literature have measured beta for PE using 

cash flows data only, an approach which is likely to overlook the influence of variation in discount 

rates on betas. For our main index we document an alpha of -2% annually. This also contrasts with 

the vast majority of the literature that in general finds that buyout funds outperform on a risk-

adjusted basis.  

We find that log book-to-market ratios vary considerably for our secondary market PE 

index. Using regressions motivated by the Campbell Shiller (1988) identity, we find that all 

variation in log book-to-market ratios for private equity can be explained by variation in market 

discount rates. A similar phenomenon has been documented for other asset classes including public 

equities, treasuries, credit, foreign exchange, and sovereign debt.5 From these regressions we find 

the standard deviation of long-run private equity discount rates to be about 0.36. Cochrane (2011) 

estimates the standard deviation of discount rates at similar horizons for public equity to be 0.29.  

Our estimates suggest that discount rates for private equity vary about as much, if not somewhat 

more, than those for public equity. In contrast, the implicit long-run discount rates in NAVs exhibit 

a standard deviation of about 0.10. NAVs are too smooth, not only because they reflect stale 

information, but also because they fail to reflect variation in market PE discount rates. 

In contrast to our index alpha, the GPME for funds in our main index is relatively large at 

about 0.27, and is comparable to that of venture funds pre-1998, a period of strong performance 

for venture funds (Korteweg and Nagel (2016)).  An explanation for the discrepancy we find 

                                                        
3 Other indices based on secondary markets have also incorporated some type of interpolation to infer the prices of 
non-traded assets. Bond indices, for instance, often employ “matrix pricing” to infer the prices of non-traded bonds. 
4 This calculation assumes that the debt beta equals zero. In fact, estimates of buyout debt betas are positive, which 
would lead the fund-level beta in this example to be less than 2 (see Kaplan and Stein (1990)). 
5 Cochrane (2011) provides a summary of the literature.   



4	
	

between the GPME for funds in our main index, and the alpha of the index itself is that 

performance measures based on secondary market prices, such as alpha, depend on variation in 

market discount rates for PE while performance measures based on cash flows do not.  Other 

reasons, however, might explain the difference in these results that are specific to PE secondary 

markets, transaction costs, or the manner in which we construct our PE secondary market indices.  

To rule out such explanations, we evaluate a group of investments in public equities where 

valuations and portfolio construction are transparent, and where transaction costs are relatively 

low.  We construct the cash flows for a series of synthetic funds that invest in size-decile portfolios 

of public equities. For these synthetic funds we find the estimated GPMEs to be large and 

statistically significant, but standard CAPM alphas to be slightly negative.  These results help 

bridge the divide between the large estimated GPME for funds in our index and the estimated 

index alpha that is slightly negative, and suggest that the gap is not driven by explanations specific 

to our index or PE secondary markets. Rather, the divide appears to be differences in how these 

performance measures account for PE discount rate risk.  

To address the fourth question presented above, we provide some discussion that considers 

the kind of investor for whom PE secondary market prices are relevant.  Many PE investors do not 

often engage in PE secondary markets and simply collect the cash flows. It is similarly common 

for investors who buy corporate bonds to avoid trading in secondary markets and collect the 

coupons. Many bond investors, however, regularly optimize and rebalance their portfolios in 

markets for credit and interest-rate swaps, which are facilitated by the existence of secondary 

market prices for bonds. Just as the factor exposures of coupon or interest payments do not capture 

the full risk exposure of bond investors, the factor exposures of PE cash flows do not capture the 

full risk exposure of PE investors with a variety of objectives.  We further add to this discussion 

below.  

 Finally, what role do liquidity discounts play in our results? The returns of all asset classes 

in secondary markets are influenced to some degree by transaction costs. In secondary markets for 

private equity, most transaction costs appear to be borne by sellers.  Buyers earn a small premium 

as market makers if positions are held to the end of a fund’s life (Nadauld, Sensoy, Vorkink, and 

Weisbach, (2019), NSVW hereafter). Our index returns reflect returns from buying and selling at 

secondary market prices. To the extent that buyers earn a premium for market making, this 

premium is largely canceled out when the position is sold three months later.   
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Our paper is organized as follows. In Section 2 we discuss various approaches the literature 

has taken to measure risk in private equity. Section 3 provides a conceptual framework motivating 

our study of discount rate risk vs cash flow risk. Section 4 describes the methodology used to 

create a private equity index using secondary market prices. Section 5 summarizes our data. 

Section 6 presents estimates of the model used to create the index and subsequent PE alphas, betas, 

and other performance metrics arising from the index. Section 7 describes empirical measures of 

discount rate risk n private equity and its influence on standard performance measures. Section 8 

concludes.      

2.  Prior Work Measuring Private Equity Risk and Return 

For most asset classes, investors rely on secondary market transaction-based indices to 

measure performance, in which case risk can be appropriately characterized as the covariance of 

total return with a relevant stochastic discount factor. Because such secondary markets did not 

exist for many years in private equity, alternative approaches were developed to measure and 

assess risk and return in this market. Korteweg (2018) provides a thorough survey of the PE 

performance literature.  Here we review a few highlights. We classify prior studies of PE 

investment performance into six groups which vary depending on the recommended approach.  

First, a number of studies estimate the CAPM alpha and beta of private equity using book 

returns based on the net asset value specified by the general partner (see Anson (2007), Woodward 

(2009) and Ewens, Jones and Rhodes-Kropf (2013)). Because the portfolio companies often have 

no observable market price, marked values often do not reflect the most recent information in 

public markets.  To accurately measure systematic risk, these authors project book returns on 

current and lagged market returns and then sum up the estimated coefficients to obtain an estimator 

for beta as in Dimson (1979). These studies find beta for buyout companies to be in the range of 

0.70 to 1.0 with alphas ranging from 3.2% to 4.8% annualized.     

A second group of studies evaluate private equity performance by estimating the public 

market equivalent, or PME, of Kaplan Schoar (2006) using cash flows paid to and received by 

limited partners. Recent studies that use net-of-fee fund-level cash flow data find the PME	for 

buyout funds to be in the range of 1.19-1.23, suggesting that buyout funds outperform public equity 

markets even after adjusting for fees (see Higson and Stucke (2012), Harris, Jenkinson, and Kaplan 

(2014), and Robinson and Sensoy (2016)).  Kortegweg and Nagel (2016) develop the GPME to 
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relax restrictions on the stochastic discount factor implicit in the PME and study the performance 

of venture companies.6   

A third group of studies evaluate PE performance by estimating factor alphas and betas 

from regressions of log IRR’s on the contemporaneous IRRs	of the public equity market and other 

factor portfolios.  Most papers that take this approach estimate fund log IRRs from cash flows 

between private equity funds and their portfolio firms (see Frazoni, Nowark, and Philippou (2012) 

and Axelson, Sorensen, and Strömberg (2014).)  These papers find buyout betas to be in the range 

of 0.90 to 2.4 with alphas in the range of 8.6% to 9.3%.7   

A fourth group of studies evaluate the performance of private equity by creating mimicking 

portfolios of publicly traded securities that are similar to PE in terms of portfolio company 

characteristics (Groh and Gottschalg (2011) and Stafford (2017)). In a related approach, Gupta and 

Van Nieuwerburgh (2020)) create synthetic strips to match the cash flows paid to and from limited 

partners using a variety of exchange traded securities.  The market prices of these strips cannot be 

observed and are evaluated using a no-arbitrage pricing model.   These studies find buyout betas 

in the range of 1.4 to 1.8 and alphas in the range of 8.4% to 11.8% annualized.   

A fifth group of studies develop methods to estimate PE buyout risks by imposing a model 

on systematic cash flow risks across funds and through time (Buchner and Stucke (2014), Driessen, 

Lin, and Phalippou (2011), and Ang, Chen, Goetzmann, and Phalippou (2018)).  These papers find 

buyout betas in the range of 1.3 to 2.7 and alphas from -4.8% to 4.5% annualized.    

Finally, a sixth group of studies develop approaches to evaluate private equity based on the 

returns to publicly traded private equity securities (Jegadeesh, Kraussl, and Pollet (2015) and 

McCourt (2018)).  These studies estimate betas for buyout funds to be in the range of 0.7 to 1.1 

with alphas from 1.2% to 7.2% annualized.  

Overall, the vast majority of evidence in the literature suggests that buyout funds tend to 

outperform on a risk-adjusted basis using data on PE cash flows.  But valuation and performance 

                                                        
6Whereas the PME is the ratio of discounted distributions to discounted capital takedowns, the GPME is the difference, 
or NPV based on a stochastic discount factor.  When capital calls are stochastic, asset pricing theory makes no clear 
predictions about the expected ratio because of a Jensen’s inequality effect (see Kortegweg and Nagel (2016)).  If we 
define the PME as discounted distributions minus contributions, then the GPME nests the PME with the SDF defined 
as the inverse public market return.   
7 In contrast to our work, studies based on cash flows between private equity funds and their portfolio firms estimate 
risk and return gross of fees. Carried interest, which is similar to a short call position from the perspective of the 
investor, causes the net-of-fee beta to be lower than the gross-of-fee beta if the fund itself covaries positively with the 
market. Kaplan and Schoar (2005) run similar regressions using IRRs estimated from cash flows paid to and received 
by limited partners.   
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measurement based on cash flow data can, in general, only account for cash-flow risk exposures. 

Factor exposures measured in much of the existing work are “cash flow betas” that measure the 

covariance between the stochastic discount factor (SDF) and cash flows of the underlying PE 

investment.8 These estimates miss risk exposures coming from co-movement of the SDF with 

valuations associated with changes in PE discount rates. Without data on actual secondary market 

prices, it is impossible to understand the magnitude of this risk and the impact it may have on PE 

performance and standard metrics such as alpha and beta.  

Some studies evaluate PE performance using either PE NAVs or exchange traded asset 

returns. The well-known excessive “smoothness” of NAVs has been attributed to the use of stale 

information by general partners.  But the impact of stale information can be accounted for using 

standard statistical techniques such as those proposed by Dimson (1979). Any excess smoothness 

in NAVs after appropriately accounting for the use of stale information should emerge from 

different causes. We provide evidence that variation in NAVs fails to account for dynamics in 

market PE discount rates.  

To the extent that discount rates are correlated, market prices of other exchange traded 

products could reflect some of the variation in PE discount rates, but other assets are clearly not 

perfect substitutes for PE. The marginal investor in private equity is likely to differ from the 

marginal investor for other asset classes, such as public stocks, in terms of preferences and 

sophistication. Dynamics in sentiment and risk aversion and their impact on discount rates may 

differ for private equity than for other assets classes. Moreover, the organizational structure of 

private equity may also generate unique properties in private equity risk.   

Listed private equity securities, in particular, mostly represent publicly traded funds of 

funds and the equity shares of general partners who have listed publicly. Their returns are likely 

to be correlated with those received by limited partner returns in private equity funds but are also 

likely to be different for at least four reasons. First, the cash flows of publicly traded securities of 

private equity firms reflect cash flows of the general partners, whose claim is the present value of 

future fees and carried interest earned by the fund, rather than the cash flows of the limited partner 

                                                        
8They are cash flow betas in a different sense than in Campbell and Vuolantenaho (2004). These authors define the 
cash flow beta as the covariance between the total return of the asset being evaluated and the component of the SDF 
attributable to news about aggregate cash flows.  The factor exposures and SDF covariances behind performance 
measures using PE cash flows in the existing PE literature represent covariances between the cash flows of the asset 
being evaluated and the total SDF.   
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in a particular fund.  Second, large, publicly traded buyout firms such as Blackrock and KKR hold 

a variety of investments other than private equity, including hedge funds, real estate, advisory 

services, etc. Third, some of the publicly traded private equity funds are funds of funds that charge 

an extra layer of fees (that varies with performance) in addition to the fee collected by the managers 

of the unlisted funds in which funds of funds invest.  Finally, there is potential for sample selection 

in the types of funds that choose to list public shares.   

3. Performance Evaluation Based on Cash Flows versus Transaction Prices 

In this section we present a conceptual framework that connects cash-flow measures of 

performance with traditional performance measures in asset pricing. In doing so, we characterize 

the way in which an investor should use information in secondary market prices to make optimal 

capital allocation decisions. 

3.1.  Two First-Order Conditions  

The standard Euler equation that defines optimal allocation to asset "	is given by 

 #$ %$:$'( )*,$'( + -*,$'( − -*,$ = 0 (1) 

where )*,$'( represents cash flows paid by the asset at time 1 + 1, -*,$'( is the value of the asset 

at time 1 + 1, and %$:$'3 represents the investor’s discounted growth in marginal utility from 1 to 

1 + 4, 

 %$:$'3 = 53
67 8$'3

67 8$
 (2) 

where 5 is the subjective discount factor. After scaling by -$ the left side of (1) is alpha relative to 

%$:$'3. Numerous asset pricing studies test the null that unconditional alpha is zero relative to 

various specifications for %$:$'3. When the objective is asset allocation and evaluating the 

expected welfare gains from tilting towards an investment the investor need not be the 

representative investor, and although we follow Korteweg and Nagel (2016) in referring to %$:$'3 

as the investor’s stochastic discount factor (SDF), %$:$'3 is not necessarily an equilibrium pricing 

kernel. The investor’s SDF is typically expressed as a negative function of the return on the 

investor’s portfolio.  This interpretation of the Euler condition given in (1) is analogous to the 

standard interpretation of performance measures in the mutual fund and hedge fund literatures. 

Equation (1) characterizes optimal allocation to the asset for both a one-period investor, 

and a long-term investor that maximizes expected utility over multiple periods and expects to 
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rebalance optimally in future periods.  To highlight this point and connect equation (1) to cash-

flow measures of performance in private equity, consider a long-term individual investor who is 

able to invest in private equity fund "	that makes capital calls and provides distributions. At time 1 

the investor chooses the number of additional units of private equity to acquire, where each unit 

provides a series of stochastic cash flows, )*,$'3, that arrive at times 1 + 4 for 4 = 1, . . :, where 

)*,$'3 can be positive, negative or zero. Assume the investor makes this choice to maximize the 

expected utility of consumption over : periods, 

 ;$ = #$ 536 8$'3 ,

<=$

3>?

 (3) 

where, as usual, 6 ⋅  represents utility of consumption. The individual investor’s first order 

condition, subject to standard budget constraints, is 

 #$ )*,$'3%$:$'3 − -*,$ = 0

<=$

3>(

. (4) 

The price of an additional PE unit, -*,$ is zero if the first capital call is made after time 1.  The left 

side of equation (4) is the expected GPME developed by Korteweg and Nagel (2016), conditional 

on time 1 information.  For clarity, we refer to the left side of (4) simply as “GPME”.  If GPME is 

positive, then the investor can increase expected utility by acquiring additional private equity units, 

which lowers the covariance between %$:$'3 and )*,$'3. To maximize expected utility, the 

individual investor acquires additional units until (4) holds.  Korteweg and Nagel (2016) test the 

null hypothesis that (4) is zero for a sample of venture capital funds using an SDF that is a negative 

function of the return on the public stock market portfolio.   

If the individual investor optimizes via secondary markets next period such that (4) holds 

at time 1 + 1 then the first order condition given by (4) collapses to the standard Euler equation 

given by (1).  The Euler condition recognizes that the investment decision is dynamic, and that 

future secondary market prices convey information about how the investor’s portfolio and 

marginal utility (and their relation to future cash flows) will likely evolve over time as the investor 

optimally responds to changing market conditions. 

Rebalancing frequency in the real world is endogenously determined by investor objectives 

and transaction costs. The most salient of such costs may be the liquidity discount.  As a seller-

motivated market, buyers make a small premium for providing liquidity to sellers.  NSVW (2019) 
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document that these costs amount to a 5% annualized performance loss for the seller and a 5% 

performance gain for the buyer on average.   In a round-trip transaction these gains and losses 

mostly cancel out. Other costs, however, can still prevent an LP from directly engaging in PE 

secondary markets. For example, an LP can potentially harm relationships with GPs that may 

preclude the LP from future deals if the LP sells PE stakes in the secondary market.  LPs also face 

costs to acquire sufficient expertise and/or key relationships to overcome asymmetric information 

problems in these markets.  When investors hold assets with high transaction costs, they generally 

optimize their portfolios dynamically using correlated assets with greater liquidity. For example, 

swap markets exist to enable corporate bond investors to hedge and rebalance their exposure to 

interest-rate and credit risk. In this section we assume the existence of an individual investor who 

chooses to rebalance each period, and highlight the relationship between the GPME and Euler 

equations for such an investor.  

The left side of the Euler condition given in (1) is the one-period net present value (NPV), 

expressed in terms of a stochastic discount factor. Notationally we refer to the one-period NPV as 

A*,$. We can rearrange the terms of (1) to express NPV in terms of a deterministic discount factor, 

a known constant as of time 1, that is a linear function of the total return beta with the SDF. To 

see how, note that: 

 

A*,$ ≡ #$ %$:$'( )*,$'( + -*,$'( − -*,$	

=
#$ )*,$'( + -*,$'(

CD,$:$'( + E$F*$
− -*,$ 

(5) 

where E$ = GHI$(%$:$'()/#$ %$:$'( , CD,$:$'3 denotes the risk-free rate from 1 to 1 + 4 and  F*,$ is 

the beta of the total return for the asset.9 In particular if C*,$'( = )*,$'( + -*,$'( /(-*,$ + A*,$) 

denotes the total return from purchasing at the zero-NPV price then,   

 F*,$ =
MNO$ C*,$'(,%*,$:$'(

GHI$ %$:$'(

. (6) 

 In contrast, deterministic discount factors implied by GPME are linear functions of cash-

flow-yield betas with the SDF.  To see this, divide up the cash flows paid by the asset into 

                                                        
9Here we assume the risk-free asset represents a zero NPV investment so that CD,$:$'( = 1/#$ %$:$'( .  If P*,$ =
)*,$'( + -*,$'(, then #$ %$:$'(P*,$'( = #$ %$:$'( #$ P*,$ + MNO$ %$:$'(, P*,$'(  which implies #$ P*,$'( =

#$ %$:$'(P*,$'( − MNO$ %$:$'(, P*,$'( /#$(%$:$'(). Dividing #$ P*,$'(  by the right side of the previous equation 
and multiplying both sides by #$ %$:$'(P*,$'(  implies #$ %$:$'(P*,$'( = #1 P*,$ / CQ,1:1+1 + E1F"1 . 
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dividend strips, and let RG*,$($'3) denote the present value of dividend strip 1 + 4	that pays cash 

flow )*,$'3 so that the GPME is equal to the sum of RG*,$ $'3 	over all 4.   The implied betas in 

GPME can be understood by noting that  

 

RG*,$ $'3 ≡ #$ %$:$'3)*,$'3 	

=
#$ )*,$'3

CD,$:$'3 + S$ $'3 F*,$ $'3
T  

(7) 

where S$($'3) = GHI$(%$:$'3)/#$ %$:$'3 ,  and F*,$ $'3
T  represents the beta of the asset’s cash-flow 

yield.10 In particular, if we let U*,$'3 = )*,$'3/RG*,$ $'3  represent the cash flow yield based on the 

zero-NPV market value for dividend strip 1 + 4, then     

 F*,$ $'3
T =

MNO$ U*,$'3,%*,$:$'(

GHI$ %$:$'(

. (8) 

Equations (5) and (7) highlight that performance measures such as one-period NPV and 

alpha account for covariation between prices and the SDF, while other measures based on cash 

flows do not.  Under what conditions do these differences matter?  In the special case that the SDF 

of the individual investor represents an equilibrium pricing kernel, both the one-period NPV and 

the GPME are equal to zero.  Otherwise, each performance measure may point to a different 

optimal allocation strategy.  For example, it is possible at time 1	for NPV to be zero even though 

the GPME is positive.     

To see this, if the final cash flow is paid out at time 1 = :, then -< = 0 and the one-period 

NPV at time : − 1 is given by 

 A*,<=( = #<=( %<=(:<)< − -<=(. (9) 

If we solve (9) for -<=(, substitute this definition of -<=( into A*,<=V, and continue in like manner 

iterating backwards, we can express the GPME for fund " in terms of one-period NPVs instead of 

cash flows, 

 #$ WR%#* = #$ %$:$'3A*,$'3	

<=$=(

3>?

. (10) 

Equation (10) is a simple accounting identity that shows WR%# is equivalent to the sum of 

stochastically discounted one-period NPVs over the life of the fund based on the individual 

                                                        
10 We again assume that the risk-free asset is zero NPV so that CD,$:$'3 = 1/#$ %$:$'3  .  The rest of the derivation 
closely follows footnote 10. 
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investor’s SDF.  Relative to the GPME defined in (4), we essentially add the stochastically 

discounted price each period, #$ %$:$'3-*,$'3 , and subtract it out in the subsequent period to arrive 

at (10). 

The terms of equation (10) can be rearranged as 

 #$ WR%#* = #$[A*,$'3]#$[%$:$'3]

<=$=(

3>?

+ MNO$(%$:$'3

<=$=(

3>(

, A*,$'3). (11) 

If the risk-free security represents a zero-NPV investment based on the investor’s SDF, then 

#$[%$:$'3] = 1/CD,$:$'3.  The first summation on the right of (11) may therefore be interpreted as 

the risk-neutral discounted sum of expected one-period NPVs over the life of the fund, based on 

marginal utilities given the investor’s current portfolio.  If expected NPV is constant over the life-

cycle of the fund, #$[A*,$'3] = #$[A*,$'Z] for any 4 and [, then this first component may be 

considered a rough approximation of :× NPV, to the extent that risk-free rates are close to one.  

To provide an intuitive interpretation for the second summation on the right of (11), 

suppose an equilibrium pricing kernel exists given by the SDF of the representative investor, 

%],$:$'3, such that 

 #$ %],$:$'( )*,$'( + -*,$'( − -*,$ = 0. (12) 

If the risk-free security represents a zero-NPV investment relative to both SDFs, then 

 A*,$ = MNO$ %$:$'(, )*,$'( + -*,$'( − MNO$ %],$:$'(, )*,$'( + -*,$'( . (13) 

Equation (13) illustrates that one-period NPV from the perspective of the investor can naturally 

arise, even when prices are in equilibrium, from differences in how future payoffs are discounted. 

Such differences may naturally reflect, for example, a missing factor in %$:$'( relative to %],$:$'(.  

For example, it is standard in asset management to evaluate the performance of investments based 

on their ability to nudge the Sharpe ratio of the market portfolio higher as indicated by the CAPM 

alpha, even though the CAPM does not represent an equilibrium pricing model. 

From (13) we can see that when A*,$ is high, the representative investor “excessively 

discounts” the future PE payoff relative to the preferences of the individual investor.11 We 

therefore interpret the second summation term in equation (11) as a unique measure of PE discount 

rate risk, which captures the covariance between the investor’s SDF and movements in discount 

                                                        
11 In the marginal utility framework, a low negative covariance with %$:$'3

]  denotes a high discount rate.  
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rates.  When this covariance is positive, prices tend to fall right when the investor’s marginal utility 

is high.  Such positive covariance lowers the one-period NPV, but not the GPME.  To relate the 

GPME to the one-period NPV, therefore, this extra term must be added on the right of equation 

(11). 

The covariance term on the right of (11) is non-zero only if one-period NPVs (or 

conditional alphas) are stochastic.  When this covariance is positive, GPME may be positive even 

though the expected one-period NPV is zero. Even when an investment looks like a great deal 

based on cash flows, for example, expected utility can sometimes be enhanced by choosing to wait 

for an opportunity to get in on the investment when market discount rates are relatively high, prices 

are low, and the one-period NPV is positive. By getting in immediately, the investor is simply 

acquiring a position that loses market value right when capital resources are needed the most. 

3.2.  For Whom are Secondary Market Prices Relevant? 

Because cash-flow data are readily available, it is easier to estimate cash-flow based 

measures of performance than others. Given that data on secondary market prices are available 

however, investors can achieve greater ability to optimally allocate capital to PE and other asset 

classes. Besides benefitting investors that engage in PE secondary markets to optimally rebalance, 

information in PE secondary market prices can also help investors that typically buy and hold their 

PE stakes to make better capital allocation decisions.  

As discussed above, transaction costs and objectives endogenously determine optimal 

rebalancing frequency. (See, for example, Dimmock, Wang and Yang (2019)).  Private equity 

investors who face large transaction costs may optimally hold their private equity positions for 

several periods without rebalancing, and simply collect the cash flows.  It is similarly common for 

investors who buy corporate bonds to avoid trading in secondary markets and collect the coupons, 

and for banks to hold loans on their balance sheets and collect interest payments.  Secondary 

markets for bonds and bank loans exist, but they are rather illiquid.  Banks and corporate bond 

investors, however, still regularly optimize and rebalance their portfolios in relatively deep, liquid 

markets for credit and interest-rate swaps.  Observing movements in secondary market prices for 

corporate bonds and securitized bank loans, regardless of whether such movements are driven by 

variation in discount rates or news about future cash flows, enables such investors to know how to 

optimally rebalance.  Just as factor exposures and SDF covariances relative to coupon payments 

do not capture the full risk exposure of corporate bond investors, factor exposures and SDF 
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covariances relative to PE cash flows do not capture the full risk exposure of PE investors. 

Secondary market PE indices can enable PE investors to increase expected utility by trading in 

correlated market products, even if secondary market transaction costs cause investors to generally 

hold the PE position until liquidation.  

Moreover, investors that assign a zero probability to states of the world in which it is 

optimal to rebalance in secondary markets after transaction costs risk misallocating their capital.  

States of the world exist in which even investors that face high transaction costs will find it optimal 

to rebalance their actual PE holdings.  For example, during the 2008 Financial Crisis some 

normally buy-and-hold private equity investors were hit with severe losses and found it optimal to 

sell their R# stakes in secondary markets to avoid liquidity shortfalls from impending capital calls.  

Such conditions represent particularly bad states of the world in which marginal utility is especially 

high (states with high risk-neutral probability), making them among the most important 

considerations when allocating capital to both private equity and other correlated asset classes.  

Ignoring such states can lead to misallocations, unintended correlations, and unwanted risk 

exposures. A better understanding of PE market valuations and their relation to risk factors can 

help PE investors avoid liquidity shortfalls, smooth consumption, and hedge against states in which 

assets with high transaction costs must be sold. 

4. Creating an Index 

Relative to creating indices on exchange-traded securities such as stocks, creating a market-

based private equity index is challenging because every fund does not transact every period and 

those that do transact are not selected randomly. Our approach to creating an index of private 

equity returns relies on three key components: two first-order approximations and the estimation 

of a Heckman (1979) sample selection model.  We first lay out the basic intuition of our approach, 

and then provide additional details. 

4.1 Intuition of Index Construction 

To construct an index of returns, suppose we observe quarterly returns for ^ assets, 

I(, … , Ì .  The equal-weighted portfolio return for the quarter, Ia, is the cross-sectional average, 

 Ia =
1

^
I*

`

*>(

. (15) 

If we project returns on a set of characteristics, bc, that includes an intercept,   
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 I* 	= bc
7d + e*, (16) 

then we can recover the true realized equal-weighted portfolio return as, 

 Ia = b7d (17) 

where b is the cross-sectional average value of bc across all ^ funds.  In the linear projection given 

by equation (16), both e* and bce* average out exactly to zero across the ^ funds in our population. 

These residual properties hold, and we can recover the true realized portfolio return, for any bc we 

choose, provided that bc contains an intercept. The purpose of equations (16) and (17) is to 

calculate the realized portfolio return, not to estimate the parameters of a model we hope is relevant 

outside our population of ^ funds.  The standard approach to calculate realized portfolio returns 

given by equation (15), in fact, represents a special case of (16) with bc equal to one.  

We do not observe I* for the full population of ^	funds, but only for a sample of funds in 

a given quarter. If we were to estimate d using only the observations for which we have data on 

both I* and bc then the OLS estimate of d will be inconsistent unless the subset of funds that 

transact are chosen randomly. NVSW (2019) document, however, that larger and more established 

funds are more likely to transact in this market, and hence, the funds that do transact do not appear 

to be randomly selected. 

 We therefore use a selection model to consistently estimate d, based on the approach of 

Heckman (1979).  While we do not observe I* for every fund, we do observe bc for every fund. 

Using our estimate of d we calculate the index return as the average predicted return each quarter 

as in (17) using all ^ funds in the population. We thus obtain consistent estimates of index returns 

each quarter based on the private equity secondary-market transactions we observe.   

4.2. Inferring Index Returns from Book-to-Market Ratios 

While the preceding discussion outlines the basic approach to index construction, we now 

explain further details. Funds do not often transact in adjacent quarters, and as such, the number 

of individual fund transactions and market value is much greater than the number of observed 

individual quarterly fund returns. We therefore infer index returns from observed log book-to-

market ratios in adjacent quarters using the Campbell Shiller (1988) identity. Doing so enables us 

to take advantage of all transactions in our sample, regardless of whether the same funds transact 

in adjacent quarters or not. Besides enabling us to estimate returns for our private equity index, 

our approach is convenient for understanding variation in PE discount rates, since all variation in 
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log book-to-market ratios must be associated with either variation in market discount rates, 

variation in book-discount rates, or variation in future book-to-market ratios.  

Let the quarterly log portfolio market return for R# fund " from 1 to 1 + 1 be defined as 

 I*,$'( = ln
R*,$'( + )*,$'(

R*,$
, (18) 

where R*,$'( is the market value of the fund at time 1 + 1, and )*,$'( represents total distributions 

minus capital calls for the portfolio from 1 to 1 + 1.12  Similarly, define the log-book return based 

on net asset values as 

 h*,$'( = ln
^iG*,$'( + )*,$'(

^iG*,$
, (19) 

where ^iG*,$'( is the net asset value (book value) of the fund at time 1 + 1. Our approach relies 

on two first-order approximations. The first is similar to an approximation of Vuolteenaho (2002) 

based on the Campbell Shiller (1988) identity and is further developed in Appendix A. This 

approximation provides a natural approach to adjust book returns to reflect market returns, 

 I*,$'( = h*,$'(−j*,$'(	k*,$'( + k*,$, (20) 

where k*,$ is the-log book-to-market ratio of the fund, 

 k*$ = ln ^iG*,$ − ln R*,$ , (21) 

and j*,$'( is an approximation parameter that can take on one of three values. If )*,$'(is positive 

(negative) then j*,$'( is slightly below (above) one.  When )*,$'(is zero, then j*,$'( is identical to 

one and (20) holds exactly (See Appendix A for further details).  Book values are likely to be 

among the most informative variables that we can observe regarding the future cash flows of the 

fund. Since we observe book-returns for every fund in our index each period, our market-based 

returns, I*,$'(, contain all pricing information embedded in book values. The adjustment 

−j*,$'(	k*,$'( + k*,$ accounts for any omitted cash flow or discount rate news omitted in the book 

return relevant for the market return.    

To aggregate individual fund returns to index returns, we rely on a second first-order 

approximation in which the average log return is approximately the log average return (see 

Appendix B).  We cannot consistently estimate k*,$ for funds that are missing given a set of 

characteristics, bcl, only  #[k*,$| bcl].  We can, however, consistently estimate the cross-sectional 

                                                        
12 When merging cash-flow data with market values we normalize to a $1 commitment.  
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average value of the log return each quarter, even if k*,$ is missing for some funds. Intuitively, the 

true residual vanishes in the average.    

To illustrate, suppose that we do observe k*$ and a set of characteristics, bcl, across all 

funds in each quarter.  If we project k*$ on a panel of characteristics, bcl, that includes time fixed-

effects,  

 k*$ = bcl
7 d + e*$, (22) 

then we can recover the true average value of k*$ in each quarter as 

 k*$ = bl
7d, (23) 

for any choice of bcl, where bl denotes the average value of bcl across funds in quarter 1.  Since 

we do not observe k*,$ for all funds, we consistently estimate d under the model specification and 

assumptions of Heckman (1979). Section 4.3 below provides additional details. Let d∗ represent a 

consistent estimate of d, and define I*,$'( as 

 I*,$'( = h*,$'( − j*,$'(	bcl'o
7 d∗ + bcl

7 d∗ (24) 

While we do not observe k*$ for every fund in our index, we do observe h*,$'(, bcl'o7 , and j*,$'( 

for the full population. Given our consistent estimate, d∗, it then follows that the cross-sectional 

average value of I*,$'( across funds in each quarter is a consistent estimate of I$'(, the average 

value of I*,$'( as defined in (20), representing the log return for the index.13 

4.3 Two-Step Heckman Approach 

To estimate d in (22) we follow the two-step approach of Heckman (1979).  In the first 

step we estimate the parameters of a selection equation, 

 p*$ = 1 qcl
7 r + 6*$ > 0  (25) 

where p*$ is a dummy variable that equals 1 when fund " transacts at time 1, and qcl represents a 

vector of fund characteristics observable across all funds in the index.  A consistent estimator of 

the parameter vector r is available from a first-stage probit estimation of the selection equation 

using all funds in the portfolio. We then estimate the inverse Mills ratio, E*$, as 

 E*$ =
t qcl

7 r

Φ qcl
7 r

 (26) 

                                                        
13 Note that j*,$bcl7 d = j*,$ kc,l − e*,$  and that the approximation parameter, j*,$, does vary slightly across funds in 
our application.  To ensure that the average value of j*,$e*$ across funds in each quarter is zero we can appropriately 
include j*,$ as one of the characteristics in bcl. In practice, however, this makes very little difference in results.   
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where t ⋅  is the normal distribution function and Φ ⋅  is the cumulative normal distribution 

function. The second step is to estimate the equation specified in (22) by OLS after including E*$ 

as an additional explanatory variable, 

 k*$ = bcl
7 d + E*$v + e*,$. (27) 

The estimate of d in (27) will be consistent under the following four assumptions: (1) qcl, bcl, and 

p*$ are observed for every fund in the portfolio and k*$ is observed whenever p*$ = 1, (2) e*$ and 

6*,$ are independent of both qcl and bcl with zero mean, 6*,$	 is distributed Normal(0,1), and (4) 

# e*,$ 6*$ = 56*$ where 5 is a constant.  (For example, see Wooldridge (2010), p. 803.)  Robust 

identification that does not rely on assumption (3) requires an exclusion restriction: a variable in 

the selection equation that is uncorrelated with the book-to-market ratio.  To help ensure that 

assumption (2) holds, all other characteristics in qcl are sometimes included in bcl in practice.        

Our approach differs somewhat from traditional hedonic techniques to estimate price 

indices (e.g., Gatzlaff and Haurin (1998) and Hwang, Quigley, and Woodward (2005)).  The 

objective in estimating a traditional hedonic model is to understand price changes for a set of 

differentiated goods conditional on observed attributes such as quality or specific features. To 

mirror the typical portfolio definition of an index, we instead define a population of assets and 

seek to understand changes in the value of the aggregate population for which attributes, such as 

those related to expected cash flows and discount rates, change over time.  An alternative approach 

to building price indices involves using repeat sales (e.g, Peng (2001)). Repeat sales are too 

infrequent in our transactions data to consider this approach.    

4.4. Explanatory Variables 

The key variables in the pricing equation are time-fixed effects, or state variables that 

represent time fixed effects, to ensure that the mean residual is zero within each quarter across all 

funds in the population. If funds were selected at random, time-fixed effects would be the only 

variables needed in our pricing equation to consistently estimate the average log book-to-market 

ratio across our population of funds.  Because we are estimating the parameters of a sample 

selection model, any explanatory variables in the selection equation given in (25) that may be 

correlated with log book-to-market ratios, for whatever reason, can be useful to include in the 

pricing equation to help ensure that the pricing residual is independent of all explanatory variables 

in the selection equation (see assumption (2) in Section 4.3 above).  Our primary objective is 
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simply to estimate the average value of k*,$, not to forecast the value of k*,$ for individual funds 

or to understand how k*,$ relates to specific characteristics. We demonstrate that our results are 

robust to the inclusion of either state variables or time fixed effects, with or without the additional 

fund-specific characteristics in the pricing equation in Appendix Table 1.   

4.5 Estimating Index Parameters 

We estimate index parameters (such as alphas and betas) for our private equity index. We 

compare our estimated parameters against those estimated for other indices, including a Preqin 

NAV-based index built using the same funds that are in our market price index, the Burgiss index 

which is also a NAV-based index, and the S&P Listed Private Equity Index. 

So far, we have described a process to estimate the quarterly log return for our index.  It is 

well-known that the intercept in a regression of excess log returns on excess market returns cannot 

be interpreted as alpha.  A common solution is to estimate the intercept using annualized log 

returns, and then adjust under the assumption that log returns are normally distributed (for 

example, see Cochrane (2004) and Axelson, Sorenson, and Stromberg (2014)). To estimate 

parameters for the Preqin, Burgiss, and S&P indices mentioned above we use simple quarterly 

returns.  To follow suit, we exponentiate our estimate of the quarterly index log return, the cross-

sectional average value of I*,$'( given in (20), to arrive at a consistent estimate of the simple return 

for our index before calculating index parameters.  We obtain similar results if we run regressions 

using excess log returns and adjust the intercept based on the normal assumption as others have 

done. These results are given in Panel A of Appendix Table 1. 

The transactions in the private equity secondary market upon which we build our index are 

highly non-synchronous, occurring at various times throughout the quarter. Standard measures of 

alpha, beta, and volatility using non-synchronous data are in general, inconsistent. We therefore 

follow Dimson (1979) to estimate index betas by regressing returns on contemporaneous and 

lagged values of the market return, for an appropriate number of lags, and summing the slope 

coefficients.  We estimate alpha as 

 w = Ia,$'( − ID,$'( − F(Ix,$'( − ID,$'() (28) 

where Ia,$'( represents our average estimated index return across quarters, ID,$'( is the average 

return on short-term t-bills, Ix,$'( is the average public market return, and F represents our Dimson 
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adjusted beta. We obtain consistent estimates of volatility, Sharpe ratios, and correlation, under 

the model of Dimson (1979) as outlined in Appendix C. 

5.  Data on Transactions in the Private Equity Secondary Market  

In this section we briefly describe the data and variables used to estimate the index.   Our 

transaction data come from a large intermediary in the private equity secondary market, extending 

the data used by NSVW (2019). These data identify the fund that is sold, the total capital 

committed by the seller, the amount unfunded by the seller, the purchase price, and the transaction 

date for all transactions consummated through this intermediary from January of 2006 through 

December of 2018. We clean the data as detailed in Appendix D and pull the most recent 

transaction for each fund each calendar quarter for funds with a total commitment greater than 

$500 million.  

We obtain data on other fund characteristics, such as calls, distributions, ^iG, fund yR 

type, and size, from Preqin, from January 2006 through June of 2018, and clean these data as 

detailed in Appendix D.    Preqin is built from a variety of sources including public filings and 

reports, submissions by GPs, and FOIA requests. While there are other data sets that may be more 

representative of the entire fund universe, Preqin is the only database that provides fund names, 

thus making it possible to merge in our secondary market transaction data.     

Within each calendar quarter we sum all contributions and distributions for a given fund.  

We then merge transactions data with the Preqin sample, some of which is done by hand (see 

Appendix D for details). After this process, we end up with a sample of 596 funds for which we 

have fund-level data. We observe 839 transactions on 287 of these funds between the first quarter 

of 2006 and the second quarter of 2018.  

We propose using eight explanatory variables in our selection equation: the log size of each 

fund, two age dummies, fund PME, the fraction of limited partners for each fund that are pension 

funds, and three state variables that proxy for quarter fixed-effects.  For our main results we use 

state variables rather than quarter fixed effects to conserve power and because there is little 

economic insight to be gleaned from the coefficients on the fixed effects themselves.  We 

demonstrate that our results are robust to this decision by replacing the three state variables with 

time fixed effects. We also illustrate that our results are robust to whether or not we include 

additional explanatory variables in the pricing equation along with state variables, or time fixed-

effects.  We report these results in Appendix Table 1.   
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We measure size as total commitments by limited partners to the fund.  The first age 

dummy equals one if the fund age (calculated in years relative to the vintage year) is less than 4 

years, and zero otherwise. The second age dummy equals one if the fund age is greater than 9 

years, and zero otherwise. We also use the Kaplan-Schoar (2005) PME for each fund-quarter, 

measured using cash flows from Preqin and using NAV at the end of the quarter as terminal value. 

The fraction of limited partners for each fund that are pension funds comes from Preqin.  

Fund size and age are likely to be associated with asymmetric information about the fund 

or GP, and therefore the likelihood that a deal agreeable to both parties can be reached. Fund age 

is also directly related to the period over which fixed transaction costs can be amortized, suggesting 

that younger funds may be less likely to transact.  PME captures information about the performance 

of funds that may be associated with supply and demand. Pension fund objectives are likely to 

differ from those of other investors making PE funds with high pension ownership less likely to 

be sold (further discussed below).    

The three state variables we use include the log-value-weighted book-to-market ratio for 

small cap stocks, the TED spread, and a measure of total assets under management for the PE 

industry.  We measure the small-cap book-to-market ratio using stocks with share code 10 and 11 

in CRSP with less than $500 million in market cap.  We obtain the TED spread from the St. Louis 

Federal Reserve calculated as the spread between three-month LIBOR based on U.S. dollars and 

three-month treasury yields. We measure these two state variables at the end of the month prior to 

the fund’s transaction date for funds that transact, and at the end of the second month of each 

quarter for funds that do not. Finally, we measure total assets under management, obtained from 

Bloomberg, at the end of the prior quarter and scale by the total number of firms in the U.S. with 

between 20 and 500 employees, obtained from the U.S. Census, measured at the end of the prior 

year.  

We use the fraction of LPs invested in a fund that are pension funds, Rz*$, as an instrument. 

The investment objectives of pension funds differ from those of other investors: pension funds 

manage investment cash flows to match the timing of their liabilities but face unique regulatory 

incentives to refrain from dynamically hedging short-term liability risks (van Binsbergen and 

Brandt (2015)).  As such, pension funds may be less likely to engage in PE secondary markets 

than other investors, such as a fund-of-funds. Consistent with this idea, NSVW (2019) document 
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that empirically, pension funds sell their private equity stakes much less frequently than other 

investors.  

To be a valid instrument, Rz*,$ must be uncorrelated with log book-to-market ratios after 

controlling for other observables.  Book-to-market ratios are well known to predict stock returns, 

suggesting that they largely proxy for risk or mispricing in the cross section. Evidence on the 

relation between pension ownership and mispricing is somewhat mixed. Lerner, Schoar, and 

Wongsunwai (2007) document that pension funds outperform other LPs (other than endowments) 

in their PE reinvestment decisions, but their result does not replicate out of their 1990s sample, 

which does not overlap with our sample period (see Sensoy, Wang, and Weisbach (2014)).14  

  Table 1 reports summary statistics.  Consistent with prior findings, funds on average 

transact at a discount relative to NAV (see NSVW (2019)).  The overall average log-book-to-

market-ratio is 0.23, roughly corresponding with a 20% discount (1/exp 0.23 = 0.80) and the 

median is 0.11 corresponding with a 10% discount.  

The deviation between a fund’s NAV and its market price will depend, in large part, on 

how the market discounts future expected cash flows relative to the GP.  Hence, a trade for less 

than NAV is not necessarily reflective of a liquidity discount. The economic discount or premium 

at which a transaction occurs should be measured relative to the (unobservable) underlying value 

of the fund’s assets, not the NAV.15  

Funds that transact in the secondary market tend to be larger and older than average. The 

average log fund size for funds that transact is about 21.94 (corresponding with a size of $3.4 

billion) compared to an average log fund size for funds that do not transact of about 21.28 

(corresponding with a size of $1.7 billion).  The average age of all transacting funds is 8.7 years, 

and 6.4 years for non-transacting funds.  In addition, funds that transact display slightly higher 

average PMEs in the range of 1.16 compared to 1.13 for non-transacting funds.  For the average 

fund in our sample, about 53% of the limited partners are pension funds, as indicated by the 

summary statistics on Rz*$.  

                                                        
14 Others find that pension funds make poor investment decisions relative to other institutions (see Hochberg and 
Rauh (2012), and Andonov, Hochberg, and Rauh (2017)). 
15 NSVW (2019) develop this issue further. They argue that a second measure of a trade’s discount relative to 
fundamental value is the difference in returns between buyers and sellers. If transactions always occurred at 
fundamental values and expected returns do not change over time, then buyer and seller expected returns should be 
approximately the same.  Instead, these authors find that buyers of LP stakes outperform sellers, suggesting that, on 
average, transaction prices tend to be lower than fundamental values. 
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Figure 1 reports the number of transactions per quarter for the full sample, of which there 

are 839 transactions. The figure highlights the rapid growth in the secondary market. The years 

2017 and 2018 report almost five times the number of transactions as occurred in 2006 and 2007.  

6.  Estimates of Secondary Market Based Private Equity Indices 

6.1. Selection and Pricing Equations 

Table 2 reports estimates of the parameters for the selection and pricing equations specified 

in (25) and (27). Columns (1) through (4) report results for the Heckman model, while columns 

(5) and (6) report basic OLS estimates of the pricing equation without the inverse Mills ratio.  For 

both approaches we calculate bootstrapped standard errors clustered by time that account for the 

inverse Mills ratio being a generated regressor. 

The estimates presented in columns (1) and (2) suggest that a number of variates are 

associated with fund selection. First, our proposed pension fund instrument does predict selection 

into the transaction sample even after controlling for other variables. Pension funds appear to be 

substantially less likely to sell than their institutional investor counterparts. In addition, funds are 

more likely to transact in quarters with a higher TED spread and in quarters with higher total 

industry assets under management. Among the fund-specific variables, larger and older funds are 

more likely to transact than smaller and younger funds, consistent with the idea that larger and 

older funds may be associated with less asymmetric information or lower relative transaction costs. 

Four to nine-year-old fund transactions are the most common age type in our data in terms of 

absolute number but the percentage of four-to-nine-year-old funds that transact is smaller than the 

percentage of older funds that transact. Table 2 also indicates that transacting funds tend to have 

lower average PMEs at the time of the transaction after controlling for other variates. This finding 

suggests that sellers tend to bring lower performing funds to market, all else equal.   

Columns (3) and (4) of Table 2 report Heckman (1979) estimates of the parameters for the 

pricing equation given in (27), with the log-book-to-market ratio, k*$, as the dependent variable. 

A Campbell-Shiller (1989) decomposition indicates that higher values of k*$ is associated with 

either higher market discount rates, lower book discount rates, or higher future book-to-market 

ratios.  We illustrate this decomposition and show empirically that all variation in k*$ is associated 

with variation in long run market discount rates in Section 7.1.   
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Column (3) of Table 2 indicates that k*$ tends to be higher when the log-book-to-market 

ratio for public equities is high, with the coefficient on log É%$  equaling 0.79 (t-statistic = 3.8). 

The estimates imply that a one standard deviation shock to log É%$  leads to an expected change 

in k*$ of 0.18, approximately 1/3 of the standard deviation of k*$. Our index tends to have higher 

future expected returns when the public book-to-market ratio is high, i.e., when prices for public 

equities are relatively low. Another important explanatory variable in the pricing equation is the 

overall industry assets under management (Ñi;%$). The coefficient on Ñi;%$ is -0.20 with a 1-

statistic of -2.4. A one standard deviation shock to Ñi;%$ is associated in a change in k*$ of -0.19, 

again, approximately 1/3 of the standard deviation of k*$.  Future expected returns for our index, 

as indicated by a higher book-to-market ratio, tend to drop with PE assets under management. This 

finding is similar to that of Pastor, Stambaugh, and Taylor (2015), who find empirical evidence 

for decreasing returns to scale in active mutual fund management at the industry level.     

The coefficient on the inverse Mills ratio in the pricing equation is not significantly 

different from zero, with a point estimate of 0.06 and a t-statistic of 0.3. After controlling for our 

chosen economy-wide and firm-specific characteristics, innovations in price and selection appear 

to be uncorrelated.  In this case, even OLS estimates of the pricing equation are consistent. In fact, 

the OLS estimates of the pricing equation (columns (5) and (6)), are very close to those of the 

Heckman estimates of the pricing equation.   

6.2.  Private Equity Indices over Time 

 We create two equally-weighted market PE indices, one using funds of all ages, and a 

second using only funds that are 4-9 years old. Figure 2 graphs our private equity indices over the 

2006-2018 sample period on a log scale. For comparison we also present the performance of the 

public equity market (from Ken French’s website), two equally-weighted indices based on Preqin 

reported NAVs, (one using funds of all ages and another using only funds that are four to nine 

years old), the Burgiss index, and the S&P Listed Private Equity Index.  We create the Preqin 

indices using the same population of funds that we use to create the secondary market PE indices 

and measure the return as the cross-sectional average of exp h*,$'( − 1 where h*,$'( is the log 

return defined in (19).  Our Preqin indices are quite similar to the Burgiss index. The correlation 

between our Preqin index (all ages) and the Burgiss index is 0.97, while the correlation between 

our Preqin index (4-9 years) and the Burgiss index is 0.95.     
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  Figure 2 illustrates that the two market PE indices are more volatile than the three NAV-

based indices (Preqin (all ages), Preqin (4-9 years), and Burgiss).  The well-known excessive 

“smoothness” of NAVs is generally attributed to the use of stale information by general partners.  

It is also possible that NAVs may not fully reflect variation in market discount rates.  We further 

explore this issue in Section 7.1. The only sharp decline in equity markets during our sample period 

occurred during the 2008 Financial Crisis. During this period, the NAV indices declined somewhat 

because assets were written down, but did not decline nearly as much as public equity markets.  In 

contrast, the decline in the market PE indices over 2008 is similar to that in public equity markets. 

Over 2008 the public equity market index declined 37%, the S&P Listed Private Equity Index 

declined 64%, while the secondary market PE index (all ages) declined 60%.  Our Preqin NAV-

based index (all ages), on the other hand, only fell by 25%, and the Burgiss NAV-based index 

dropped by only 27% during 2008.  Even though private equity NAVs were written down by nearly 

one quarter of their value during the 2008 Crisis, their actual value most likely declined similar to 

public equity markets at that time.  

6.3. Risk and Return of Private Equity Indices 

 In this section we report estimates of expected returns, beta, alpha, volatility, and Sharpe 

ratios for the secondary market PE indices of buyout funds. To implement the Dimson (1979) 

adjustment, we report regressions of index returns on lagged market returns in Table 3. The first 

column reports estimates for the secondary market PE indices, while the remaining columns 

contain estimates for the S&P Listed Private Equity Index, Preqin, and Burgiss indices.  We 

compute standard errors by GMM using the Newey West (1987) estimate of the spectral density 

matrix.16  

Each of the NAV-based indices loads significantly on lagged market returns through three 

lags. The S&P Listed Private Equity Index appears to be uncorrelated with lagged market returns. 

We find that the secondary market PE indices load significantly on lagged market returns through 

only one lag. The estimates in Table 3 suggest that when applying adjustments based on Dimson 

(1979), we should account for cross-autocorrelation with market returns at one lag for the 

                                                        
16 The secondary market  PE indices contain measurement error that is reasonably independent of the actual index 
return. Since this measurement is reflected in the dependent variables of our regressions, it is absorbed in the 
regression residuals. 
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secondary market PE indices, at three lags for the NAV-based indices, and zero lags for the S&P 

Listed Private Equity Index.   

Table 4 reports index parameter estimates for the various indices including the secondary 

market PE indices. For this table we compute GMM standard errors using the Newey West (1987) 

spectral density matrix along with the delta method, as needed. Consistent with Figure 2, the 

estimates in Table 4 indicate that buyout funds have performed well over our sample period. The 

average return for the secondary market PE index using funds of all ages is 14% and using funds 

that are 4-9 years old is 22%. In contrast, NAV-based index returns have averaged from 11-14%, 

while the S&P Listed PE Index averaged a return of only 9% over our sample period.  

The betas for our secondary market PE index using funds of all ages ais 1.79, and using 4-

9 year-old funds is 1.76.  These estimates are larger than most betas reported in prior literature.  

As discussed above in previous sections, betas estimated using cash flow data are unlikely to pick 

up variation in PE discount rates that are manifest in actual market prices for PE.  To understand 

the magnitude of our estimate, recall that private equity funds are portfolios of equity positions in 

leveraged buyouts. Since buyouts tend to be much more highly levered than public firms, 

Modigliani-Miller Proposition 2 implies that buyouts should have substantially higher betas than 

public firms. For example, Axelson, Jenkinson, Strömberg, and Weisbach (2013) report a mean 

debt-to-total-capital ratio of 70% in their sample of 1,157 LBOs, with mean leverage closer to 50% 

during our 2006-2018 sample period. In contrast, typical large publicly traded firms have 

approximately a 20-25% debt-to-total-capital ratio. If the firms experiencing buyouts have asset 

betas equal to 1, that reflect both discount-rate and cash-flow effects, and debt betas are positive 

but relatively small, the equity portion of the LBO should nonetheless have a beta close to 1.60-

1.80, which is consistent with our estimates.17   

For the secondary market PE index using funds of all ages, we document an alpha of -2% 

annually.  The vast majority of the literature finds that buyout funds outperform after accounting 

for risk manifest in PE cash flows.  Our alpha accounts for both the covariance of cash flows with 

the SDF, as well as the covariance of discount rates with the SDF.  The alpha of the secondary 

market PE index using 4-9 year-old funds is estimated to be relatively high at 6% annualized 

(though insignificant). It’s possible that funds may tend to perform better as they acquire assets, 

though we cannot reject the null that the alpha for 4-9 year-old funds is zero.  

                                                        
17 See Axelson, Sorensen, and Strömberg (2014) for more discussion. 
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Using log returns we find betas of 1.94 using funds of all ages and 1.85 using 4-9 year-old 

funds.  The adjusted alphas under the normal assumption for both indices are both very close to 

zero.  We report these results together with those of other robustness tests in Appendix Table 1.  

The S&P Listed Private Equity Index produces a beta of 1.74, which is similar to that of 

our secondary market PE indices. Average returns and alphas, however, are quite different. The 

S&P Listed PE index earned an average a return of 9% (t-statistic of 1.0) and an alpha of -7% over 

our sample period (t-statistic of -2.7). 

Relative to other indices in Table 4, the estimated volatilities and betas for the NAV indices 

are quite low. These results suggest that NAV-based indices, even after Dimson adjusting, fail to 

capture important dynamics in private equity that are related to public equity markets, such as 

variation in discount rates.  We further explore this issue in Section 7.1. Adding more lags to the 

Dimson adjustment does cause the betas of NAV-based indices to become more similar those of 

the transaction-based indices or the S&P Listed Private Equity Index.18  In addition, there is a large 

difference in volatility between the secondary market PE indices (about 34%) and the NAV-based 

indices (ranging from 14% to 20%).  The volatility of the S&P Listed Private Equity Index (30%) 

is also larger than the NAV-based indices.  We provide evidence in Section 7.1 that NAV-based 

indices do not fully account for variation in market PE discount rates, which represents another 

cause for NAV smoothness above and beyond stale information.  

7. Discount Rate Risk in Private Equity 

In this section we address two questions. First, how much do private equity discount rates 

vary over time? Second, to what degree does variation in discount rates create a wedge between 

standard and cash-flow-based measures of performance? To answer the first question, we run 

regressions of long-run private equity secondary market returns on log book-to-market ratios 

motivated by the Campbell-Shiller (1988) present value identity.  To answer the second question, 

we empirically investigate the relative importance of the two components of GPME in the 

decomposition of equation (11), discounted one-period NPVs and PE discount rate risk.   

                                                        
18 Even if we include seven lags in the Dimson adjustment as suggested by Metrick and Yasuda (2010), we find that 
NAV-based betas over our sample period are only 0.73 to 0.85. 



28	
	

7.1.  Variation in Book-to-Market Ratios and Discount Rates  

 In this section we explore how much private equity discount rates vary over time.  Equation 

(20) shows that the difference in log market returns and log-book returns can be written as a linear 

function of book-to-market ratios to a first-order approximation (Vuolanteenaho (2002)). Taking 

a cross-sectional average of the relation specified in (20) across funds, we obtain 
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, (29) 

which can be written as  

 h$'( − I$'( = j$'(	k$'( −	k$ + 8ÖÜ,$'(, (30) 

where 8ÖÜ,$'( denotes the empirical covariance between j*,$'( and k*,$'( in the cross section across 

funds, Other parameters are self-explanatory. As explained in Section 4.2 and Appendix A, the 

approximation parameter, j*,$'(, can only take on one of three values, all close to 1.0. Not 

surprisingly, we empirically find time series variation in j$'( to be trivially small, with a quarterly 

standard deviation of about 0.01 over our sample. Further, the mean value of j$'( across time is 

statistically indistinguishable from 1.0.  We therefore motivate the empirical exercise of this 

section by setting j$'( = 1 in each quarter.      

 Iterating on (30) through time 1 + [ after setting j$'( = 1 and taking expectations 

conditional on information at time 1	we obtain, 

 k$ = #$[I$'3] −	

Z

3>(

#$[h$'3]

Z

3>(

+ #$ á$'Z  (31) 

where á$'Z represents a variable given by 

 á$'Z = 8ÖÜ,$'3	

Z

3>(

+ k$'Z.	 (32) 

Equation (31) says that variation in the average log book-to-market ratio, k$, must be associated 

with variation in market PE discount rates, #$[I$'3], variation in book discount rates used to 

compute NAV, #$[h$'3], or variation in #$ á$'Z .  We can better understand this variation by 

regressing long-run market returns, long run book returns, and long run values of á$'Z on k$ in 

three separate regressions.  
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(33) 

							á$'Z = Hã + Fãk$ + âã,$'Z	 

Given the relation provided in (31) it follows that  

 1 = Fà + Fä + Fã. (34) 

We can interpret the slope coefficients, Fà, Fä, and Fã as the fraction of variation in k$ associated 

with variation in market PE discount rates, book PE discount rates, and #$ á$'Z  (Cochrane 

(2011)).      

 In Table 5 we report results for the slope coefficient for the three regressions given in (33).  

Panel A reports results for [ = 1 quarter. These results are for non-overlapping regressions of 

quarterly realizations of I$'3, h$'3, and á$'Z on lagged values of k$.  Panels B and C report results 

for overlapping regressions where [ = 4 (1 year) and [ = 20 (5 years). We compute Hansen-

Hodrick (1980) standard errors that account for the overlapping returns in our regressions, taking 

the estimated book-to-market ratios from our index as given.   

In Panel A we see that at the quarterly horizon, about 89% of the variation in book-to-

market ratios is associated with variation in #[á$'Z].  The value of  Fã in Panel A is estimated to 

be 0.89, is highly significant, and the R-squared for this regression is 75%. This result is driven by 

covariation between current and lagged book-to-market ratios.  Regressing 8ÖÜ,$'( alone on k$ 

produces an insignificant slope coefficient of 0.0002.  

In Panel B of Table 5 we see that at longer horizons, more variation in book-to-market 

ratios is explained by variation in market discount rates.  In the regression of annual returns on 

book-to-market ratios one year prior given in Panel B, the estimated value of  Fà is 0.45, is highly 

significant, and the R-squared is 7%.  Still in Panel B, most of the variation in book to-market 

ratios is associated with variation in á$'Z.  The estimated value of Fã in Panel B is 0.83 and the R-

squared for this regression is 41%.   

In Panel C of Table 5, the estimated value of Fà for the regressions of 5-year returns on 

book-to-market ratios five years prior is 1.65, is highly significant, and the R-squared is 54%. In 

contrast, estimates of Fä and Fã are insignificant in Panel C.  In fact, estimates of Fä are 
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insignificant in all panels, and in Panel C, the point estimate of Fä is negative. The negative 

coefficient on Fä is consistent with the hypothesis that book discount rates respond weakly to and 

are positively correlated with market discount rates.19   

Expected long-run returns in (31) are given by Fàk$, and an estimate of the variation in 

long-run expected PE returns is given by FàVGHI k$ .	We estimate GHI(k$) to be 0.048, implying 

that the standard deviation of long-run expected returns is 0.36.  Cochrane (2011) estimates the 

standard deviation of long run expected public equity returns over a five-year horizon to be 0.29, 

implying that PE discount rates vary about as much as those for public equity, if not slightly more. 

In contrast, the standard deviation of book discount rates is only 0.10.  NAVs are too smooth, not 

only because they reflect stale information, but also because they fail to reflect variation in market 

discount rates for PE. 

 The primary implication of Table 5 is that variation in PE book-to-market ratios for private 

equity is attributable to variation in long run market-discount rates.  None of the variation 

significantly corresponds to variation in long run book-discount rates or variation in expected 

future book-to-market ratios. This is a pervasive phenomenon that has been documented for other 

asset classes including public equities, treasuries, credit, foreign exchange, and sovereign debt.20  

The results of this paper highlight the fact that performance measures based on cash flow data are 

unlikely to adequately account for variation in prices driven by variation in discount rates.   

7.2 Decomposing GPME  

We estimate the unconditional expected GPME using funds in our market private equity 

index using funds of all ages,  

 # WR%#* = # %$:$'3)*,$'3

<=$

3>(

, (35) 

as a simple average of the “realized” GPME, %$:$'3)*,$'3
<=$
3>( , across funds where )*,$'( and  )*,< 

represent the first capital call and last distribution for fund ", and %$:$'3 is the realized SDF over 

                                                        
19 Consider a regression of negative book returns on market returns, − h$'3

Z
3>( = S? + S( I$'3

Z
3>( + ç$'Z.  Then 

MNO − h$'3
Z
3>( , k$ = 	 S(MNO I$'3

Z
3>( , k$ + MNO ç$'Z, k$  and Fä = S(Fà + Fé	where  Fé is the slope 

coefficient in a regression of ç$'Z on k$.  In this case, Fä may be less than zero if S( is sufficiently negative 
(implying a positive relationship between book and market returns) and Fé is sufficiently small.  For five-year 
returns we estimate S( to be -0.39 and Fé to be 0.20. A similar explanation illustrates why Fà is above 1.0.  
20 Cochrane (2011) provides a summary of the literature.   
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the corresponding time period. We build our market private equity index using funds with recorded 

cash flows in Preqin from 2006 through 2018.  The vintages of these funds span from 1988 through 

2018.  We scale all cash flows to a $1 commitment and use NAV as a terminal value for funds not 

yet liquidated by the end of our sample. 

Our approach to estimate GPME and to conduct inferences is identical to that in Korteweg 

and Nagel (2016),21 and here we highlight only a few details. We define the SDF as, 

 %$:$'3 = exp H?4 + H(Ix,$:$'3  (36) 

where Ix,$:$'3 is the log market return from 1 to 1 + 4, and H? and H( are parameters chosen to 

price two benchmark funds created for each PE fund such that average benchmark GPMEs across 

funds are both equal to zero.  The two benchmark funds for PE fund " invest all capital in either 

the public market index or short-term t-bills, and the timing of their capital calls and distributions 

mimic the timing of flows to PE fund " in the sample. To conduct inferences, we compute a GMM 

ê-statistic for the test that GPME pricing errors across all funds are zero.   

We find the GPME for our funds in our index to be 0.270 with a ê-statistic p-value of 0.31.  

Korteweg and Nagel (2016) report the GPME for venture capital funds of pre-1998 vintage to be 

0.423 and of post 1998 vintage to be 0.048. Our point estimate of the GPME for buyout funds in 

our index is about two-thirds that of venture funds pre-1998, a period of strong performance for 

venture funds.  Although economically meaningful, the point estimate is not statistically 

significantly different from zero, highlighting the general difficulty of precisely measuring GPME 

with short samples and overlapping cash flows.  We also find the average annualized IRR for the 

funds in our index to be 14.42%.   

In contrast, the annualized unconditional CAPM alpha for our secondary market PE index 

is −2%	(reported in Column 1 of Table (4)), or about −50 basis points per quarter, and is not 

statistically significantly different from zero.  As equation (11) shows, performance measures 

based on secondary market prices, such as one-period NPV and alpha, depend on variation in 

market discount rates for PE, while GPME does not, and can justify the disparity we find between 

the positive GPME using funds in our index and the negative alpha of the index itself.  

Other reasons, however, might explain the difference in these results that are specific to PE 

secondary markets, transaction costs, or the manner in which we construct our PE secondary 

                                                        
21 We thank Arthur Korteweg for supplying us with Matlab code to estimate the GPME and to conduct inferences. 
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market indices.  To rule out such explanations, we evaluate a group of investments in public 

equities where valuations and portfolio construction are transparent, and where transaction costs 

are relatively low.  We create the cash flows for a series of synthetic PE funds that make capital 

calls and invest in size decile portfolios from 1980 to 2018.  To create these synthetic funds, we 

adopt the same methodology of Korteweg and Nagel (2016) to create benchmark funds.  The 

timing of cash flows for our synthetic funds mimic those of a “representative fund” created by 

averaging cash flows across all funds in our index after aligning them in fund-inception time.  A 

new fund begins with a capital call every six months, invests capital in its assigned decile portfolio, 

makes calls and distributions in subsequent years, and liquidates after 10 years.   We relegate 

further details of creating our synthetic funds to Appendix E.  The end result is a series of 

overlapping cash flows for 590 synthetic funds that each make capital calls and invest all capital 

in one of the size decile portfolios, 59 funds for each decile. Our results are conservative in that 

our synthetic funds are unlevered.   

Table 6 reports results for our set of synthetic funds. Column (1) reports the decile in which 

the funds invest called capital. In column (2) we report the average IRR for each set of synthetic 

funds, which range from 12% to 25%.  In column (3) we report the estimated unconditional 

expected GPME as in (35) for each of the size decile portfolios, and in column (4) we report the 

p-value of the ê-statistic.  All synthetic funds we create exhibit significantly positive GPME except 

funds that invest in the largest decile of stocks, for which the GPME is significantly negative.  Our 

test statistics have greater power than those for the GPME of funds in our index because the cash 

flows for our synthetic funds span a longer time sample and exhibit less-overlap.   The GPME for 

funds in our index (reported above) is 0.27 and is somewhat comparable to that of our synthetic 

funds that invest in small cap stocks, even though our synthetic funds lack any leverage. In Table 

6 the GPME for the smallest decile is 0.512 with a ê-statistic p-value near zero, and for the second 

smallest decile is 0.205 with a p-value of 0.03.   

Similar to equation (11) which provides a decomposition for the conditionally expected 

GPME, we can decompose the unconditionally expected GPME given above in equation (35) into 

two components22 

                                                        
22 Let A*,$'(]  denote realized NPV at time 1 + 1,  A*,$'(] = %$:$'( )*,$'( + -*,$'( − -*,$. Starting from the definition 
of A*,<	]  and iterating backwards, we can write the realized GPME as %$:$'3)*,$'3

<=$
3>( = %$:$'3

<=$=(
$>? A*,$'3'(

] . 
Taking unconditional expectations and rearranging gives (37), noting that by definition, A*,$ = #$ A*,$'(

] . 
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A*,$'3] + MNO(%$:$'3, A*,$'3)

<=$=(

$>?

. (37) 

For each set of synthetic funds, we estimate the first component on the right side of (37), the sum 

of discounted one-period NPVs (DNPV).  Discount factors to measure DNPV, # %$:$'3 , are the 

unconditional expectations of the SDF given in (36), for 4 = 1,… , :.  We have low degrees of 

freedom in the time series to estimate these expectations as simple averages at long horizons.  

Hence, we use a second order Taylor series approximation around # Ix,$:$'3 = 4# Ix,$:$'( ,  to 

estimate the expected discount factor. We have greater degrees of freedom to estimate the expected 

value of the log quarterly market return, # Ix,$:$'( , as a simple average. In particular, our estimate 

of the discount factor # %$:$'3 , is  

  # %$:$'3 = exp 4(H? + H(Ix,$) + 0.5H(
V exp 4 H? + H(Ix,$ 4ìx,$

V , (39) 

where Ix,$ and ìx,$V  represent the average and variance of the quarterly market return. For each 

group of funds that invests in a given decile, we use the same SDF parameters, H? and H( that we 

use to estimate the GPME for funds in that decile. Over our sample, we estimate Ix,$ to be 

2.7%	and ìx,$V  to be 0.69%.    

 Let A$'3'(] = )*,$'3'( + -*,$'3'( − -*,$'3 denote the realized one-period NPV. By 

definition, A$'3 = #$'3 A$'3'(
] , and it follows by iterated expectations that # A$'3'(

] = #[A$'3]. 

For each fund we therefore estimate the unconditional expected sum of discounted one-period 

NPVs, DNPV, as an average of ó^RG* across funds, 

 ó^RG* = # %$:$'3 A$'3'(
]

<=$=(

3>?

 (40) 

We estimate the GMM ê-statistic recommended by Korteweg and Nagel (2016) to test the null that 

the average discounted one-period NPVs across all funds ais zero, taking estimated discount 

factors as given.       

   As reported in Table 6, DNPVs are insignificant for all deciles except decile 1.  The point 

estimate for DNPV is also largest for funds that invest in decile 1, at 0.317 with a ê-statistic p-

value near zero. This result is consistent with a small-cap premium over our sample, which extends 

from 1980 to the present. Since the GPME for decile 1 is 0.512, the discount-rate risk component 

of (37) comprises about half of the GPME for funds that invest in this decile.  For other small-cap 
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deciles DNPVs are relatively close to zero and insignificant.  For these deciles, virtually all of the 

GPME is due to the PE discount rate risk component of (37), not large one-period NPVs.  The 

potential welfare gains of tilting towards PE implied by the GPME measure disappear after 

accounting for small-cap discount rate risk.  For larger deciles, point estimates for DNPV get 

progressively larger, but are insignificant from zero, and are not as relevant for comparing with 

our results for buyout funds that, for the most part, invest in small cap firms.   

 Finally, for each decile portfolio we also estimate the standard one-period alpha as the 

intercept of the regression 

 Iò,$ − ID = wò + Fò Ix,$ − ID . (41) 

This is the primary parameter of interest for investors holding the market portfolio that seek to 

maximize the Sharpe ratio. We estimate GMM standard errors using the Newey West (1987) 

estimator of the covariance matrix and convert t-statistics to p-values for consistency with other 

results in the table. Standard alphas reported in column (7) for each decile portfolio are all 

insignificant and very close to zero for all deciles, except decile 1.  The alpha for the decile 1 

portfolio is 0.023 with a p-value of 0.01 again, consistent with a small-cap premium over our 

sample.  The alphas for most other deciles are slightly negative.   

In summary, our results indicate that GPME can reflect CAPM alpha when it exits, but that 

GPME can also be rather large and positive even when CAPM alpha is zero or even negative.  

These findings are based on unlevered synthetic funds. Applying leverage would further amplify 

our results and widen the gap between GPME and CAPM alpha.  These results help bridge the 

divide between our estimated GPME for funds in our index of 0.27 and an estimated annualized 

alpha of  -0.02.  Comparing these results from those of Table 6, it appears unlikely that other 

reasons specific to PE secondary markets, transaction costs, or the manner in which we construct 

our PE secondary market indices can explain the disparity between the large positive GPME we 

find for funds in our index, and the negative alpha we document for the index itself.  The low alpha 

appears to reflect discount rate effects on prices that are not accounted for by GPME which only 

accounts for the covariation of realized cash flows with the SDF.  

8. Conclusion 

Measuring the performance of private equity investments has historically only been 

possible using cash-flow data. However, in recent years, a secondary market has developed in 
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which investors in private equity funds can trade their stakes. Prices from this market provide a 

source of data useful for measuring the risk and return of private equity funds in a similar manner 

to that commonly used to measure returns for other securities.    

We construct indices of buyout performance using a proprietary database of secondary 

market prices of private equity stakes between 2006 and 2018. Analysis of the index indicates that 

discount rates in private equity vary considerably, an insight that is not readily available from cash-

flow based measures of private equity performance.  This result is confirmed in multiple empirical 

analyses. First, we decompose the Korteweg and Nagel (2016) GMPE framework into two 

components. The first reflects the risk-neutral discounted sum of one-period NPVs in each period 

over a funds life, and the second captures the covariance of the investor’s marginal utility with PE 

discount rates. We find evidence that PE outperformance based on cash-flow based measures such 

as GPME are driven almost entirely by the covariance of the investor’s marginal utility with 

discount rates, not large one-period NPVs. We also show in simple Campbell-Shiller 

decomposition regressions that all of the variation in log book-to-market ratios can be explained 

by variation in market discount rates, as opposed to book discount rates.  The implication of these 

results is that buy-and-hold private equity investors might be exposed to unidentified risk when 

making capital allocation decisions.  

Our estimates indicate that the secondary market PE indices of buyout funds track public 

equity much more closely than NAV-based indices we consider. The hedonic buyout indices we 

construct have market betas in the 1.79 range, consistent with the notion that buyouts with 

increased leverage have higher betas, in marked contrast to the NAV-based indices, whose 

Dimson-adjusted betas are estimated to be around 0.8. Even after adjusting for known staleness in 

NAV’s, estimated betas from NAV-based indices likely understate the extent to which private 

equity returns depend on market-wide factors.  

 The buyout indices we construct have a number of potential uses for investors. Better 

estimates of private equity risk and return should affect the optimal portfolio decisions of investors 

when deciding on the allocation to private equity in their portfolios. In addition, the indices can be 

used to provide more accurate valuations of stakes in private equity funds that investors hold in a 

manner similar to the “matrix pricing” approach commonly used to price illiquid bonds.  Appendix 

F describes such an approach and provides annual estimates of market values for 2002-2014 

vintage funds. Our estimates suggest that the use of NAV for valuation as is done by most LPs can 
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be misleading, and that NAVs often substantially misstate the value of an investor’s private equity 

holdings. For example, the market-to-book ratios of funds during the financial crisis reached as 

low as 0.60 and were as large as 1.4-1.5 in the years coming out of the crisis.  Improving these 

valuations is likely to affect investors’ decisions about both the portfolio allocations and the 

amount they spend from their invested assets. 

 Undoubtedly, there are uses for the indices we have not discussed in this paper.  For 

example, one could design derivative contracts based on an index of private equity returns. These 

derivatives could potentially be useful to investors or GPs who wish to hedge risks in their 

portfolios, or to speculate on the performance of the buyout sector.  Better indices of private equity 

performance such as the ones presented here clearly have much to offer the private equity 

community. 
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 Appendix 

 Appendix A.  Returns from Book-to-Market Ratios 

In this appendix we demonstrate the derivation of Equation (20) of the paper.  Let the log 

return on a given PE fund be defined as 

 I$'( = ln
R$'( + )$'(

R$
 (A.1) 

where R$ is the market value of the portfolio at time 1, and )$ represents cash flows (total 

distributions minus capital calls) for the portfolio from 1 − 1 to 1.  Equation (A.1) is for a single 

fund but here we omit fund-level subscripts for notational ease.  Note that )$ may be positive, 

negative, or zero. Similarly, define the log ^iG-based return as 

 h$'( = ln
^iG$'( + )$'(

^iG$
. (A.2) 

If )$'( ≠ 0 then it follows that the difference in these two return measures can be written as 

 
h$'( − I$'( = ln

^iG$'( + )$'(

)$'(
− ln

R$'( + )$'(

)$'(
− k$	

= ln exp öä,$'( + S$'( − ln exp öà,$'( + S$'( − k$ 
(A.3) 

where 

 

öä,$'( = ln
^iG$'(

)$'(
,	

öà,$'( = ln
R$'(

)$'(
,	

		k$ = ln
^iG$

R$
, 

(A.4) 

and  

 S$'( = ±1,  

where the sign of S$'( depends on the sign of )$'(. Vuolteenaho (2002) derives a similar 

approximation scaling by dividends. Since cash flows for private equity can be negative, unlike 

common stock dividends, we scale by the absolute value of net cash flows, otherwise öä$ and öà$ 

are not well defined.  A first-order Taylor series approximation of (A.3) centered around ö?	implies 

 
h$'( − I$'( ≈ j$'( öä$'( − öà$'( − k$	

= j$'(k$'( − k$, 
(A.5) 

where the constant of approximation j$'( is given by 
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 j$'( =
exp ö?

exp ö? + S$'(
. (A.6) 

Alternatively, if )$'( = 0 then the second row of (A.5) holds exactly at j$'( = 1.	 Hence, we 

allow the constant of approximation to change depending on whether cash flows are positive, 

negative, or zero. Equation (A.5) implies 

 I$'( ≈ h$'( − j$'( öä$'( − öà$'( + k$ (A.7) 

which is equation (20) of the paper.  

The median value of  öä$ across all funds/quarters in our sample is about 2.68, 

corresponding with 

 j$'( =
0.94	for	S$'( = 1						

1.07	for	S$'( = −1.			
 (A.8) 

Our results are quite robust to this specification and are markedly similar if we specify j$'( to be 

any value in the range from 0.90 to 0.99 for observations with S$'( = 1, and in the range from 

1.01 to 1.10 for observations with S$'( = −1. For our main results we specify j$'( as in (A.8). 

 

 Appendix B. Log Returns 

  In this appendix we demonstrate that the realized log return on an equally-weighted 

portfolio is the average log return across assets in the portfolio to a first-order approximation.  

Let C(, …, C` denote the gross returns on ^ assets over a given period. The realized log equally-

weighted portfolio return is 

Ia = ln
1

^
C*

`

*>(

= ln eàü

`

*>(

− ln	(^) 

where I* = ln C* .  Given that I( = ⋯ = Iä = 0, then Ia = 0 and 

°Ia

°I* àü>?

=
1

^
. 

Hence, to a first-order approximation around the point I( = IV = ⋯ = Ì = 0, 

Ia ≈
1

^
I*

`

*>(

.	
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  Appendix C. Dimson Adjusted Volatility 

In this Appendix we present a method to bias-adjust volatility when observed returns can 

be characterized by the model of Dimson (1979), who presumes that securities trade intermittently 

at the ends of specified periods.  Similar to Dimson (1979), assume that observed index returns, 

I$, may be written as 

 I$ = E3I$=3

¢

3>?

+ 6$ (C.1) 

where I$ represents the i.i.d. “true” portfolio return based on end of quarter values and 6$ is a mean 

zero i.i.d. error term.  From (D.1) it follows that  

 
MNO I$, I$=( = E3E3=(

¢

3>(

GHI I$  

 

(C.2) 

or rather,  

 GHI I$ =
MNO I$, I$=(

E3E3=(
¢
3>(

. (C.3) 

Let H and F denote the parameters of a linear projection of I$ on the contemporaneous market 

return, Ix,$. We can then write 

 I$ = 8 + £3Ix,$=3

¢

3>?

+ á$ (C.4) 

where  8 is a constant, £3 = E3F and á$ = §$=3 + 6$
¢
3>?  is i.i.d. and mean zero.  Dimson (1979) 

assumes E3
¢
3>( = 1, which implies £3 = F¢

3>( .		To estimate the variance us in (D.3) we jointly 

estimate MNO I$, I$=( 	and £?,… , £x by GMM.  We then estimate E3 as E3 = £3/ £3
¢
3>?   and 

compute the variance by scaling the auto-covariance as in (D.3).  We use this volatility adjustment 

when computing Sharpe raios and correlation as well.  We compute standard errors for GHI I$  

from the GMM covariance matrix of estimated parameters via the delta method. 
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 Appendix D. Data Details 

In this appendix we describe how we clean our data. From the transactions data we first 

pull all records for which their “detailed strategy” is classified as “Buyout”.  We then identify 

unique funds by their fund names, hand checking fund names that appear similar.  We omit funds 

labeled as parallel funds, feeder funds, annex funds, sub funds, top-up funds, duplicate funds, co-

investment funds, supplemental funds, and side-cars. We then clean the transactions data as 

follows: 

1)  Eliminate all funds with a total commitment less than $500M. 

2) Eliminate transactions with a price less than zero. 

3) Eliminate transactions with a NAV less than zero.   

4) Eliminate transactions that have the same price for every fund in the portfolio transaction.   

6) Eliminate transactions for which the total amount committed by the seller minus the 

unfunded commitment is less than zero. 

7) Eliminate transactions for which the total capital committed is less than or equal to zero. 

8) Eliminate transactions for which the fund name is missing. 

9) If multiple transactions occur on the most recent transaction date for a given fund/quarter, 

use only the transaction based on the highest total commitment.   

10) If multiple transaction records exist with the same fund name and commitment on the 

most recent transaction date for a given fund/quarter, choose one of these transactions at 

random as the transaction that represents the end-of-quarter transaction price.  

12) Eliminate all remaining transactions for which the price, as a percent of NAV, is greater 

than 3 standard deviations away from the mean price across funds for a given quarter.   

 

After pulling data from Preqin for funds with a “category_type”  equal to “Buyout”, we clean the 

data as follows: 

1) Eliminate any fund-quarters for which ^iG*,$=( = 0, or the NAV-based return is 

otherwise missing.  Note that we retain records for which ^iG*,$ = 0. Once NAV hits 

zero, however, we no longer include the fund in the sample. 

2) Eliminate stale NAVs, those with a report date prior to 30 days before the end of each 

quarter. 
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3) Identify fund-quarters for which the NAV-based return is greater than 3 standard 

deviations from the mean across all funds for a given quarter.  These returns appear to be 

inconsistent with reported IRRs from Preqin.  

 

We then merge our Preqin data with the explanatory variables described in Table 2, and 

then merge these data with the cleaned transactions dataset. To merge the transaction and cash-

flow data, we first identify funds with identical fund names in the two databases and designate 

these as a match.  We then identify fund names in the transaction and Preqin data that are 

“similar” and that also have the same vintage.  Fund names A and B are considered similar if 

fund name A contains the first 5 characters of fund name B anywhere in the fund name string or 

vice-versa.   We then hand check this list to determine which funds match.  After merging we 

have data on 703 unique funds, 355 of which account for 955 transactions during our sample 

period from March of 2006 through June of 2018.   

 

 Appendix E.  Synthetic Funds that Invest in Public Equities 

  To create synthetic PE funds that invest in public equities, we first identify the timing of  

flows for a “representative fund” that includes all funds in our secondary market-based PE index. 

The index includes funds with recorded cash flows in Preqin from 2006 through 2018 with 

vintages spanning from 1988 through 2018.  Using this population of funds, we scale all fund 

flows to a $1 commitment, align flows in fund-inception-time (as if they all made their initial 

capital call at the same moment) and calculate the average net flows across funds each quarter 

from fund inception to liquidation.  We use NAV as a terminal value for funds not-yet liquidated 

by the end of the sample, and eliminate funds with an initial capital call after December 31 2016.  

These average flows represent the flows of our representative fund and are illustrated in Appendix 

Figure E1.  The initial capital call in our sample averages about 9 cents and average drawdowns 

in subsequent quarters fall in the range of 3 to 5 cents. Average net flows first turn positive in 

quarter 14 when funds are almost 4 years old, and climb to a peak of 5.02 cents at quarter 28 when 

funds are almost 7 years old.  Net flows then slowly decline to zero.  The longest lasting fund in 

our sample paid out its last distribution in the 87th quarter following its initial capital call.  The 

average fund in our sample lasts between 9 and 10 years.   
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 Using the flows of the representative fund, we then use the approach of Korteweg and 

Nagel (2016) to create the cash flows for a series of replicating funds that invest in public equities.  

These authors develop this methodology to create benchmark funds to use in estimating SDF 

parameters when calculating GPME.  We initially use the same methodology for a different 

purpose, to create the cash flows of synthetic funds that we wish to evaluate and price.   

We first sort stocks into size deciles each month, and for each decile, create the cash flows 

for 59 artificial funds that make capital calls and invest the acquired capital into the assigned size 

decile portfolio.  Funds start with a cash flow of zero at the end of June or December of their given 

initial year, peHI*, and respectively make their first capital call at the end of September of peHI* 

or March of peHI* + 1.  For example, fund 1 makes its first capital call at the end of March, 1980, 

fund 2 makes its first capital call at the end of September, 1980, and so forth, with the last fund, 

fund 59, making its first capital call March of 2009.  Following the algorithm, capital calls each 

quarter are identical to those of the representative fund in fund-inception time.  If the representative 

fund makes a payout at the end of quarter • in fund-inception time, the artificial funds also make 

payouts at the end of quarter • equal to the sum of two components.  The first component is equal 

to the return accumulated since the last quarter in which a call or distribution was made.  The 

second component is equal to a fraction, Q¶, of the remaining capital under management with         

 Q¶ = min
• − -

40 − -
, 1  (5) 

where  - is the time of the most recent payout prior to quarter •, measured in fund-inception time 

quarters.  If the payout at quarter • is the fund’s first payout, then - = 0. This assumption sets the 

life of each artificial fund to 10 years, and for our setup implies that the 59th fund pays its final 

distribution December of 2018.  We proceed in this manner to create the overlapping cash flows 

for 59 artificial funds that invest capital in their assigned size-decile portfolio, and then repeat this 

exercise for all 10 deciles. 

 

 Appendix F. An Application: “Matrix Pricing” of Private Equity Funds 

 Most funds are valued by limited partners at the NAV, which can deviate substantially 

from the best available estimate of the fund’s underlying value.  These valuations are used for a 

number of purposes by investors in funds, including portfolio allocation decisions across asset 
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classes, and spending decisions, which are usually set by investors as a fixed percentage of a 

portfolio’s assessed value.  Examples of this policy approach include universities and 

foundations.  More accurate pricing of limited partner stakes in private equity funds may 

improve the ability of investors to make investment decisions since it may lead to portfolio 

allocations and spending rules corresponding to better estimates of the underlying values of an 

institution’s private equity investments.  

One possible approach to value stakes in private equity funds more accurately is to follow 

a procedure similar to “Matrix Pricing,” commonly used to price bonds, by which the prices of 

bonds that do not trade are determined based on the prices of bonds that do. The idea is that the 

same fundamentals affect similar bonds in the same manner, so prices of bonds that do not trade 

likely move approximately the same amount as prices of similar bonds that do trade.  Since private 

equity funds that invest in one type of asset are likely affected by a number of the same shocks to 

their fundamentals, they can be priced using comparable methods with transactions-based indices. 

For any fund, the fund’s history of quarterly cash inflows and outflows can be combined 

with the quarterly returns of the hedonic indices to calculate market values. Beginning at the end 

of some chosen quarter 1 we set fund value for fund ", G*,$, equal to ^iG.  Then for all subsequent 

quarters we estimate fund value as  

 G*,$ 	= G*,$=((1 + I$) + M*,$ − ó*,$, (F.1) 

where M$ and ó$ denote capital calls and distributions between times 1 and 1 + 1,	and I$ represents 

the simple return on our market-based index.    

We perform this calculation for each fund in our sample for every quarter in our sample 

period (2006 to 2018).  One version of our market-based index is formed using transactions from 

funds that are between four and nine years old and we use this version of the index to calculate 

market values for four-to-nine-year-old funds. Following the procedure described above, we set 

market value equal to NAV at the end of the fourth year following each fund’s vintage year and 

iterate forward to identify market values at the end of subsequent quarters.23 We report year-end 

aggregate market-to-book ratios by vintage in Appendix Table F1 by summing year-end market 

                                                        
23 For the 2005 vintage, we set NAV equal to market value at the end of year three due to irregularities in reported 
NAVs associated with the financial crisis.  
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values for each fund for a given vintage and dividing by the sum of year-end NAVs for the same 

set of funds.24  

Aggregate market-to-book ratios for each vintage across time are reported in the bottom of 

Appendix Table F1. The average ranges from a low of 0.90 for the 2002 vintage of funds to high 

of 1.16 for 2004 vintage. Market-to-book ratios are considerably lower during the Financial Crisis, 

ranging between 0.67 and 0.79 in 2008 for the 3 vintages that were old enough for our hedonic 

estimation. Funds that invested out of 2007 and 2008 vintage funds did so at lower valuations, and 

therefore have high average market-to-book ratios in subsequent years when markets recovered. 

For example, these estimates indicate that by the end of 2015, a 2007 buyout fund has a NAV that 

is understated by 14% relative to its market value. 

Individual funds could mark their values to market using the approach in one of two ways. 

The most accurate approach would be to generate fund-specific market values using the estimated 

coefficients from the pricing models applied to the fund’s attributes. A simpler approach, but one 

that nonetheless represents a substantial improvement over using NAVs, is to multiply the NAV 

of each of LP’s investments by the average market-to-book ratio of the industry. For example, an 

LP would multiply the NAV of each four-to-nine-year-old fund in his or her portfolio by the 

appropriate ratio from Appendix Table F1. For younger funds, the deviation between NAVs and 

market value is likely to be smaller but could be estimated using the coefficients from the pricing 

model. Tail-end funds will have only a few portfolio companies left and their values will vary 

depending on the fortunes of these particular investments. As such, this approach is likely to be 

less useful for valuing these funds.

                                                        
24 The 2018 market-to-book ratio is reported as of Q2 because of data availability.  



 

 Figure 1.  
Number of Transactions per Quarter 

 
 
 
 
 
 
 



Figure 2. Transactions-Based Buyout Index Over Time 
 

This figure illustrates the value of investing $1 in an index at the beginning of 2006 in each buyout index as labeled. “Market PE Index All Ages” 
and “Market PE index 4-9 Yrs” represent the indices we build based on PE secondary market transactions.  The “Public Market” index represents 
the public market return as posted on Ken French’s website.  “Preqin All Ages” and “Preqin 4-9 Yrs” represent the indices we build using NAVs as 
reported in Preqin for the exact same funds that are in our PE market-based indices. The Burgiss index is a NAV-based buyout index.  The S&P 
Listed Private Equity Index is an index comprised of publicly traded private equity funds. The chart uses a log scale for the vertical axis. 

 

 

 



Table 1. Summary Statistics 

This table reports summary statistics for the variables used in our Heckman regression.  The first column reports statistics 
for the sample of funds that transact.  The second column reports statistics for the sample of funds that do not transact. !"# 
is the log book-to-market ratio of fund $ at time %,  &'("# is the age of fund $ at time %,  log()$*("#)	is the log of total capital 
committed for fund $ at time %, -./",# is the public market equivalent of Kaplan and Schoar (2006) for fund $ at time %, 
-1",# is the fraction of LPs that are pension funds for fund $ at time %, log 5.#  is the log value-weighted average book-to-
market ratio measured at the end of the month prior to the transaction calculated using stocks with a market cap less than 
$500 million and share code 10 or 11 in CRSP at time %,  6&7.# is total assets under management in by the PE industry at 
time %	scaled by the total number of firms that have between 20 and 500 employees as of the end of the prior year as reported 
by the US Census, 8/9# is the TED-spread at time % measured as the spread between 3-month LIBOR based on US dollars 
and 3-month treasury yields. N  per Quarter is the number of observations each quarter in the sample.  “Mean” “Median” 
and “Stdev” represent the average, median and standard deviation across time and across all funds (if applicable), “Q1” is 
the 25th percentile, and “Q3” is the 75th percentile.   

 



Table 2. Heckman Model Estimates 
 
This table reports the estimates of the Heckman (1979) sample selection model.  Columns (1) and (2) reports estimates of parameters for the selection 
equation while columns (3) and (4)  reports estimates for the pricing equation.  “Heckman” refers to the sample selection model, while “OLS” 
indicates the pricing model is estimated by simple OLS with no selection equation or inverse Mills ratio.  Variables are described in the heading for 
Table 1.  We estimate the standard errors of model parameters using a panel bootstrap clustering by time. Significance at the 1%, 5%, and 10% 
levels is indicated, respectively, by “***”, “**”, and “*”. 
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Table 3. Predicting Index Returns Using Lagged Market Returns 

This table reports estimates from regressions of index returns on contemporaneous and lagged market returns. The transaction index returns are 
generated using the Heckman model to control for sample selection and are equal-weighted.  We build the Preqin indices based on NAVs reported 
in Preqin using funds in the market-based PE indices. The Burgiss index is a NAV-based buyout index.  The S&P Listed Private Equity Index is an 
index comprised of publicly traded private equity funds.     
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Table 4. Index Parameters 

This table reports index parameters for buyout indices using data from 2006-2018. Column (1) reports results for our transactions-based indices 
using funds of all ages, column (2) reports results for our transactions-based indices using funds that are 4-9 years old, column (3) reports results for 
the S&P listed index, columns (4) and (5) report results for our Preqin NAV-based indices using funds that are in the transaction-based indices. 
Moments of indices are Dimson adjusted using x lags based on results from Table 3.  We estimate standard errors for index parameters by GMM 
using the approach of Newey and West (1987) to estimate the spectral density matrix and the delta method. Significance at the 1%, 5%, and 10% 
levels is indicated, respectively, by “***”, “**”, and “*”. 
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Table 5. Campbell-Shiller Regressions 
 

This table reports the slope coefficient in Campbell-Shiller regressions as described in the paper. In Panel A the dependent variables are measured 
at a quarterly (non-overlapping) horizon.  In Panel B, dependent variables are measured at an annual horizon, and in Panel C, dependent variables 
are measured at a five-year horizon. We compute Hanson-Hodrick (1983) standard errors to account for overlapping data.  Significance at the 1%, 
5%, and 10% levels is indicated, respectively, by “***”, “**”, and “*”. 
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Table 6. Performance Metrics for Unlevered Synthetic Funds that Invest in Small-Cap Stocks 
 

This table reports performance metrics for the set of synthetic funds we create.  We sort stocks into size deciles each month and create the flows for 
a set of synthetic funds using the algorithm of Korteweg and Nagel (2016) that separately invest capital in one of the size decile value-weighted 
portfolios.  For each decile, we create a set of funds that make initial capital calls at the end of June and December of each year from December 
1979 through December 1984.  Each fund invests the acquired capital into their assigned size decile portfolio. For each set of funds, column (2) 
reports the average IRR, and column (3) reports the GPME of Korteweg and Nagel (2016).  Column (5) reports the average risk-neutral discounted 
abnormal profits across funds in each set. Column (7) reports the standard CAPM alpha for each decile portfolio.  Significance at the 1%, 5%, and 
10% levels is indicated, respectively, by “***”, “**”, and “*”. 
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 Appendix Figure 1. Cash Flows for the Representative Fund 
 

This figure illustrates the cash flows of the representative fund we use to create synthetic funds that invest in stock deciles. These cash flows are the 
average cash flows of all funds in our index based on fund-inception time. We build our index using funds with recorded cash flows in Preqin from 
2006 through 2018 with vintages spanning from 1988 through 2016.  We scale all fund flows to a $1 commitment, align flows in fund-inception-
time (as if they all made their initial capital call at the same moment) and calculate the average net flows across funds each quarter from fund 
inception to liquidation.  We use NAV as a terminal value for funds not-yet liquidated by the end of the sample. 
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 Appendix Table 1. Robustness Checks 

In this table we report main index parameters of interest for different versions of the model and for different methods 
of estimating index parameters.  All expected returns and alphas are annualized. In Panel A we report index parameters 
for log returns after adjusting alpha as in Cochrane (2005) and Axelson, Sorensen, and Stromberg (2014)¸ ! = # +
(1/2)*+, − (1/2)*., + /(1 − /) 	 where # denotes the intercept in a regression of log excess index returns on log 

excess market returns, *+, denotes the Dimson-adjusted index variance (see Appendix C), *.,denotes the market 
variance, and / denotes the Dimson-adjusted index beta using one lag.  All other panels report results using simple 
(exponentiated) returns after Dimson adjusting as discussed in the text and Appendix C.  In Panel B we eliminate 
insignificant variables from the pricing equation as reported in Columns (3) and (4) of Table 2 before constructing the 
index and estimating index parameters. In Panels C and D we replace state variables in both the pricing and selection 
equation with quarterly fixed effects. In Panel C we use the estimated FE from the prior quarter for the two quarters 
with no transactions (Q3/2007 and Q1/2013).  In Panel D we delete the two quarters with missing transactions. This 
causes use to lose four index return observations.  In Panels E and F we replace state variables in both the pricing and 
selection equation with quarterly fixed effects and eliminate all other variables from the pricing equation. In Panel E 
we use the estimated FE from the prior quarter for the two quarters with no transactions.  In Panel F we delete the two 
quarters with missing transactions.  Standard errors are estimated by GMM using the Newey West (1987) estimate of 
the spectral density matrix, along with the delta method.  Significance at the 1%, 5% and 10% level of significance is 
indicated by “***”, “**”, and “*” respectively.                   
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 Appendix Table 2. Aggregate Market-to-Book Ratios of Private Equity Investments 
 
 
This table reports year-end average market-to-book ratios.  Market values for each fund are calculated using the following procedure. We begin by assuming that 
the market value of the fund is equal to NAV in years one through four of the fund’s life. We then calculate the market value each quarter from years 5-9 for fund 
i using the following formula: 

!",$ 	= !",$'((1 + ,-,$) + /",$ − 1",$, 
 
where !",$ is equal to the 23! of fund i at time t. /$ and 1$ denote capital calls and distributions between times 4 and 4 + 1,	and ,-,$ represents the return on our 
hedonic transaction-based index.  For the first quarter in year five, we use NAV as the preceding quarter’s market value.  The aggregate market-to-book ratio 
reported in this table is calculated as the sum of the individual fund’s market value within each quarter divided by the sum of the individual fund’s NAV in each 
quarter. We report the resultant market-to-book ratio for Q4 of each year, with the exception of 2018, where we report values as of Q2 due to data limitations.   
 
 

 
 
 

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
2006 1.07 -- -- -- -- -- -- -- -- -- -- -- --
2007 0.83 0.93 -- -- -- -- -- -- -- -- -- -- --
2008 0.59 0.60 0.76 -- -- -- -- -- -- -- -- -- --
2009 0.98 0.82 1.02 0.78 -- -- -- -- -- -- -- -- --
2010 1.16 0.95 1.28 1.11 1.10 -- -- -- -- -- -- -- --
2011 1.35 0.95 1.32 1.31 1.06 0.98 -- -- -- -- -- -- --
2012 -- 1.11 1.73 1.34 1.19 1.13 1.01 -- -- -- -- -- --
2013 -- -- 2.59 1.71 1.49 1.39 1.22 1.04 -- -- -- -- --
2014 -- -- -- 2.58 1.51 1.28 1.07 0.86 0.88 -- -- -- --
2015 -- -- -- -- 1.44 1.30 1.02 0.70 0.79 0.95 -- -- --
2016 -- -- -- -- -- 1.81 1.28 0.77 1.05 1.20 0.97 -- --
2017 -- -- -- -- -- -- 1.60 0.70 1.14 1.30 0.96 1.14 --
2018 -- -- -- -- -- -- -- 0.67 1.40 1.42 0.95 1.16 0.99

Average 1.00 0.89 1.45 1.47 1.30 1.31 1.20 0.79 1.05 1.22 0.96 1.15 0.99

Vintage Year




