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“[. . . ] changes in sulfur emission management, primarily due to the Federal
Clean Air Act, have significantly reduced the amount of sulfur released into the
atmosphere. While a good thing for the environment in general, these stricter
laws have created some severe shortages of sulfur for farmers already struggling
to grow crops on marginal lands.”

(“Sulfur deficiency cutting yields in sandy Southeast soils, 2012”)

In 1995, the Acid Rain Program (ARP) regulated sulfur dioxide (SO2) emissions from

coal power plants across the Midwest and Eastern United States (US). Environmental Pro-

tection Agency (EPA) reports credit the ARP and associated reductions in “acid rain” with

protecting forests, lakes, and rivers from dangerously high soil and water acidity (Clean Air

Markets Division, 2006), and reduced mortality (Barreca, Neidell and Sanders, 2017). A

recent hypothesis among the agricultural science community suggests the ARP fundamen-

tally altered a decades-old contribution to agricultural inputs, reducing beneficial regional

sulfur deposition. Burning coal increases atmospheric sulfur flows, and sulfur is a key nutri-

ent in the cultivation of modern high-yield crops. We present evidence that reducing sulfur

pollution from power plants removed a source of nutrients for crops, presenting a rare case

where pollution removal itself imposed a negative externality on a sector of the economy.

The worldwide magnitude of coal-fired plants and the importance of agriculture for societal

welfare make this an important finding.

Our study makes two contributions to the environmental policy and agricultural literature

at large. First, we test the causal link between ambient sulfur pollution and agricultural

output in a large-scale, real world application using a quasi-experimental framework. While

prior randomized experiments tested the importance of sulfur as a nutrient in controlled

settings, various factors make it difficult to use results from these experiments to infer a

priori effects of SO2 emissions and the ARP across the U.S. For example, soil drainage and

rainfall rates both alter the returns to ambient sulfur. Simple cross-sectional or time series

correlations between ambient sulfur pollution and agricultural output in the real world could

be biased by confounders, like climatic conditions or business cycles. The end effect of an
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atmospheric change is also uncertain unless one can predict the responses of producers —

research shows agricultural producers do not always optimally adapt to changes in sulfur

needs (Weil and Mughogho, 2000; Harou et al., 2019). Our empirical approach exploits the

installation of sulfur control technologies at ARP-regulated plants, with treatment intensity

determined by an atmospheric transport model, to test for changes in county agricultural

yields over time.

Second, we examine the adaptability of agriculture in the face of a structural shift in

environmental conditions. Agents can adjust in response to a changing environment lead-

ing to smaller long-run costs.1 Economic concerns over climate change makes forecasting

the scope for adaptation in different settings a critical direction for research (Schlenker and

Roberts, 2009; Feng, Oppenheimer and Schlenker, 2012; Fisher et al., 2012; Deschenes and

Greenstone, 2007), but applied studies using structural shocks remain limited. Some ex-

amples include Hornbeck (2012) showing farmers were slow to adapt to new soil conditions

after the 1930’s Dust Bowl, and Burke and Emerick (2016) examining gradual temperature

shifts over 20 years. The sulfur-agriculture link is an important case in adaptation since soil

sulfur levels are costly to monitor at the individual farm level and agricultural yields vary

significantly from year to year, making it difficult to identify sulfur deficiencies.

Our empirical approach uses a continuous difference-in-differences strategy comparing

within-county changes in agricultural yields based on exposure to changes in ARP-regulated

plants. The height of coal plant smoke stacks means SO2 pollution travels large distances.

We construct treatment intensity based on an atmospheric transport model, power plant

SO2 output, and ARP-driven technological upgrades to coal plants intended to reduce sulfur

emissions. To quantify impacts on crop agriculture, we examine annual yields for corn and

soybean, the two largest crops in the US by acreage and revenues and the crops with the most

1For example, Barreca et al. (2013) show long-run technological innovation greatly reduced the health
costs of extreme temperatures.
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widely-available longitudinal data. As a measure of financial losses net of crop substitution or

other such unobservable adjustment, we investigate impacts on farm income, crop revenues,

and land value directly, as well as collections on crop insurance as a potential offsets to losses.

Our regression results indicate ARP-associated air improvements decreased receipts for

corn and soybean by $1-1.5 billion a year, and decreased agricultural land values by an

average of 7%, or approximately $1.4 billion. These additional social welfare costs are small

compare to the $120 billion in estimated annual benefits of the program, most of which

accrue to human health (Chestnut and Mills, 2005), and the ARP remains a large social

net positive. But these costs represent a substantial share of overall program costs, which

the EPA had formerly estimated at approximately $3 billion per year.2 This shows SO2-

abatement policies have unusual and previously undocumented distributional impacts on

agriculture. Anecdotal evidence suggests this spillover is not unique to US agriculture. SO2

levels in China decreased by 75% from 2007 to 2017 (Li et al., 2017). At the same time,

sulfur deficiencies in China became more of a concern within the industry.3 Future policy

programs designed to reduce ambient sulfur should consider these additional spillovers into

the agricultural sector.

We provide evidence yield decreases and financial losses from sulfur shortages persist al-

most 20 years after the ARP. We cannot rule out that our results are net of some adaptation;

but back-of-the-envelope calculations suggest producers are adapting at a suboptimal level.

Based on sulfur usage by crop type and average fertilizer prices, we estimate the cost to fully

replace lost sulfur via fertilizer would be $40-60 million for corn and soybean, a relatively

small adaptation cost compared to the losses in yields. Using literature from agricultural

2Acid Rain Program Benefits Exceed Expectations, www.epa.gov/capandtrade/documents/benefits.
pdf.

3Taken from The Sulfur Institute (TSI) report for the Fertilizer Industry Round Ta-
ble (FIRT), Agricultural Demand for Sulphur — The Challenges, The Future, downloaded
from http://www.firt.org/sites/default/files/TFI\%20FIRT\%20Outlook\%20-\%20Agricultural\

%20Demand\%20for\%20Sulphur\%20-\%20TSI.pdf and accessed on May 4, 2018.
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extension centers and field publications, we show suggestive evidence that the industry re-

mained unaware of the ARP’s impact on yields for a decade.4 The slow pace of adaptation

was likely driven by complications in sulfur testing at individual producer level. Aggregated

information available to regional extension centers helped the industry better understand

the proper response. This case highlights the important role of centralized institutions in

consolidating information when signals of productivity are noisy.

1 The Acid Rain Program

Acid rain concerns in the 1970s spurred the Acid Deposition Act of 1980, a 10-year program

to monitor ambient SO2, precipitation acidity, and sulfur deposition. Lessons from the Acid

Deposition Act led to the Acid Rain Program, a provision of the Clean Air Act Amendments

of 1990. The ARP had two phases. Phase I began in 1995, regulating the 110 US power

plants with the highest SO2 emissions. In 2000, Phase II further constrained emissions and

added over 900 additional plants to the program. Both phases used an SO2-emission cap

and trade system, and all plants were subject to regulation regardless of age. We focus

on Phase I in our analysis since firms could bank permits from year to year and smooth

emissions across Phase II, but not Phase I. As a result, there is relatively little change in

SO2 emissions at the start of Phase II (Siikamäki et al., 2012; Ellerman et al., 2000).

The EPA distributed SO2 allowances to 263 power generation units at the 110 plants

based on baseline (1985-1987) “heat input” (Stavins, 1998).5 “Heat input” is the heat used

to produce a given amount of electricity, expressed in British Thermal Units (BTUs), and

the EPA calculates the value by multiplying the quantity of fuel burned by the heat rate of

the fuel. The generation units chosen all corresponded to an average annual emissions rate of

over 2.5 pounds of SO2 per million BTUs, and permits granted were designed to get plants

4David, Gentry and Mitchell (2016) notes decreased sulfate levels in samples taken from agricultural
watersheds from lowered sulfur deposition potentially from the ARP, which also supports this finding.

5Additional allowances were available under special provisions. See Stavins (1998) and Joskow and
Schmalensee (1998) for details on the political economy of the SO2 trading program.
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to reduce average emissions to 2.5 pounds of SO2 per million BTUs (Carlson et al., 2000).

Regulated plants report emissions to the EPA each year, ideally holding permits for each

ton of SO2 produced. Plants can bank unused permits, and sell or transfer permits across

years. For plants polluting in excess of held permits, the EPA assigns a fine adjusted for

inflation (initially $2,000) per ton of overage and, in addition, requires eventual accounting

for overages by purchasing sufficient permits at market price.6 The EPA reports the ARP

achieved close to full compliance, with large decreases in wet sulfate deposition (sulfates

transferred through rain, snow, and fog) and ambient sulfur dioxide. Much of the reduction

came from a transition to sulfur scrubbers, shutting off older and less efficient boilers, and

adoption of low-sulfur coal (Siikamäki et al., 2012).

We primarily consider the role of the ARP in SO2 emissions in this paper, but the ARP-

induced changes in other pollutants that could also shift crop yields. The ARP regulated

nitrogen oxides (NOx) to a lesser degree, and despite no specific ozone (O3) controls, NOx

reductions may alter the O3 formation process. NOx can alter soil acidity and nitrogen

levels (EPA, 1999). O3 can negatively affect yields by directly damaging plants: two recent

papers directly consider the role of ground level O3 is damage to corn and soybean yields,

Boone, Schlenker and Siikamäki (2013) and McGrath et al. (2015). The ARP had smaller

effects on these other correlated pollutants — the majority of NOx emissions in the United

States are from transportation, so the relative effect of the ARP on NOx (and subsequent

O3) levels is smaller than the effect on SO2. Regardless, in later analysis we control for such

alternate pollutants, and show that the weight of the change in crop yields falls on shifts in

ambient sulfur. The following section presents the scientific baseline for this finding.

6The EPA gave plants a 60-day grace period to buy additional permits from other firms needed to avoid
the fines. Over much of the program, the nominal cost of an SO2 permit fluctuated between $100 and $200
per ton. Costs increased in 2004, with price peaking over $1,200 per ton, as firms began banking additional
permits in anticipation of the Clean Air Interstate Rule, which took effect in 2005. A series of lawsuits
threatening the Clean Air Interstate Rule and additional policies caused prices to fall rapidly in 2006, with
prices below $1 in 2012. See Schmalensee and Stavins (2013) for in-depth discussion of SO2 markets.
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2 Airborne SO2, Sulfates, and Agriculture

Sulfur pollution reductions from the ARP could affect agricultural output through pure

sulfur (S) and three sulfur compounds: SO2, sulfuric acid (H2SO4), and sulfate (SO4). SO2

is a byproduct of fossil fuel combustion emitted from power plant smokestacks. Sulfuric acid,

sometimes called hydrogen sulfate (H2SO4), is the main determinant of “acid rain,” forming

when SO2 combines with oxygen (forming SO3) and water (H2O) in the troposphere. Sulfate

(SO4) is a residual from dilution of H2SO4 in water, and a common byproduct of H2SO4

deposition. Sulfur (S) is the base chemical element.

These all have potentially disparate impacts on crop output, making the a priori effect of

airborne SO2 reduction ambiguous.7 SO2 and H2SO4 may damage leaves, and H2SO4 may

raise soil acidity. However, soil acidity in itself is less of a concern with field crops than in

forest areas, given regular fertilizer use helps “buffer” the detrimental effects.8 Conversely,

ground-level S and SO4 plays a fundamental role in crop growth. Field crops consume soil

sulfur as part of the germination process, and extreme cases of insufficient soil sulfur levels

at key points in the growth process cause yield reductions up to 75%.9

7For an extensive review of the agricultural science literature on the role of sulfur, see EPA (2008).
Experimental research under controlled field conditions found direct exposure to H2SO4 on field crops caused
little damage. Irving and Miller (1981) tested differential effects from sulfur deposition via exposure to
H2SO4 versus exposure to airborne gaseous SO2. When administered alone, gaseous SO2 accelerated aging
and increased leaf fall in soybean. Exposure to acid rain alone did not significantly impact soybean yields,
but did improve seed growth, which the authors hypothesized was due to the beneficial effect of additional
sulfur and nitrogen absorption. Exposure to gaseous SO2 and acid rain simultaneously had no net effect.

8articles.chicagotribune.com/1987-12-28/news/8704060486_1_acid-rain-soybeans-crops.
See also the EPA discussion of acid rain and soil damages, available online at http://www3.epa.gov/

acidrain/effects/forests.html, accessed February 18, 2016.
9From an article published in the Southeast Farm Press in August of 2012 (“Sulfur deficiency cutting

yields in sandy Southeast soils”), “Yield losses from sulfur deficiency, especially in corn, can be catastrophic,
if the problem isn’t addressed quickly. Research has shown that for each day sulfur is deficient, past the first
21 days after corn emerges from the soil, there is a loss of 1-2 bushels per day. If sulfur is deficient when
corn is in the silking stage, yields could be reduced by as much as 75 percent.”
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3 Data

Our crop data are from two sources: crop data are from the United States Department of

Agriculture (USDA), and land value and expenditure data are from the bi-decadal Census of

Agriculture (COA), taken in years ending in 2 and 7. With our primary sample, we include

three COAs before the ARP (1982, 1987, and 1992) and three after (1997, 2002, and 2007).

We end our primary sample in 2007 to minimize confounding from the Clean Air Interstate

Rule, which took effect in 2006, and biofuel subsidies, which began in 2007.10 Crop data

include all years between 1982 and 2007, not just COA years. Following Schlenker and

Roberts (2009), we focus on counties east of the 100-degree meridian since this area covers

almost all corn- and soybean-growing counties, and Phase I did not regulate plants west of

the 100th degree. We only include counties for which we have a non-missing county/year

observation for 1982 and 2007. In cases with missing data between those years, we use linear

imputation, and include a regression where we add a fixed effect indicator for imputed years.

As a further robustness check, we also consider the persistence of effects through 2017.

There are several years with droughts that had drastically different effects across regions.

As these shocks could correlate with geography and thus potentially with treatment exposure

(see Appendix B), we run several robustness checks where we (1) include more flexible region-

by-time fixed effects and (2) split the sample years into drought and non-drought years. We

also explore standard errors that allow for various degrees of geographic correlation to address

potential for regionally common shocks.

Crop yield data: Crop data come from surveys conducted by the U.S. Department of

Agriculture (USDA) National Agricultural Statistical Service (NASS). We construct log

county-level yields per acre using yield in bushels divided by planted acres.11 Given the

10The Clean Air Interstate Rule introduced additional regulator consideration to address downwind states,
which may shift the importance of general plant proximity. Biofuels subsidies could incentivize farmers to
expand corn and soybean planting to more marginal lands, which could pull down mean yield per acre — if
regions near treated plants have different acreage availability, this could correlate with ARP treatment.

11We have also run results using yield per acre as reported in the data, which is yield per harvested acre.
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NASS survey is voluntary, some county/year cells have missing data. Conversations with

NASS data specialists at the USDA indicate they mask some yearly data when there are too

few farmers reporting, causing privacy concerns, or when neighboring counties have privacy

concerns.

Weather : In the chance local weather fluctuations correlate with both the timing of the

ARP and location of regulated plants, we control for temperature and rainfall using data

from the PRISM climate group.12 As in Schlenker and Roberts (2009), we focus on weather

during the optimal growing season (March-August). We control for the number of days the

maximum temperature falls in 3 degree Celsius bins and the number of days the minimum

temperature falls in 3 degree bins.13 We also control for a quadratic in cumulative rainfall

over the growing season.

Coal plant data: We obtain a list of all ARP power plants from EPA Air Markets Program

Data. Prior to the ARP, plant-level SO2 emissions are available every 5 years, in years ending

in 0 or 5 (1980, 1985, 1990). These data include boiler-level information on SO2 output,

which we use to construct our atmospheric concentration measures. The data also list the

specific year of installation for any sulfur reduction technology.14 It is this final piece of

information that we use to construct our measure for ARP-related ambient airborne sulfate

levels.15

Pollution data: We use two sources of pollution data. Our primary method uses EPA

daily monitor-level pollution data to test effects on SO2, O3, and NO2, reported in ppb or

ppm (parts per million) depending on the pollutant. We construct county-year measures

The two could differ due to crop losses that alter harvestable acres, but sign and magnitudes of all results
are robust to using either measure.

12The ARP could have an impact on weather due to changes in atmospheric pollution. Controlling for
weather affects the interpretation of the reduced-form parameter.

13We group all temperatures below 0 degrees Celsius into a single bin, and use the temperature range of
27-30 degrees Celsius as the omitted group for each.

14The data list the year of installation even if it is not the reporting year. For example, the 1995 data
will list installations that occur in 1994, noting the relevant date.

15See http://ampd.epa.gov/ampd/.

8



of pollution by calculating the distance between each monitor and each county centroid,

then collapsing monitor data to the county-by-year level using inverse distance weights for

distances up to 50 miles. As with crop output, we use data from counties in which we have at

minimum observations in 1982 and 2007, and impute missing years. As an alternate source

that expands the number of counties, we use a Land-Use Regression model provided by the

Center for AIR, Climate, & Energy Solutions (CACES)16. This model uses information on

monitor emissions, combined with known pollution sources and local conditions, to generate

an annual airborne concentration estimate for all three pollutants. Because these are modeled

results, data are available in all years and for all counties. This allows us to expand our

sample at the cost of using largely imputed data for many counties with no true pollution

monitors.

We build anticipated annual county-level airborne sulfates using data on ARP-plant SO2

emissions and the second iteration of the Air Pollution Emission Experiment and Policy

Analysis (APEEP) model (Muller, 2014). This model takes as input SO2 emissions in a

given county and, by taking into account local factors such as topography, wind direction,

and dispersion patterns, estimates how that SO2 results in changing airborne sulfate levels in

all other counties in the United States. Here, airborne sulfates refers to both basic “sulfate”

(SO4) and ammonium sulfate ((NH4)2SO4) combined. Ideally, we would examine direct

changes in soil deposition as an additional test of the policy mechanism. However, deposition

data are limited. Data are available from the EPA Clean Air Markets Division, Clean Air

Status and Trends Network (CASTNET) Total Deposition data, but at only 130 monitor

points and not across all years.17 Using these limited data, we show changes in airborne

sulfates line up very well with changes in H2SO4 deposition. When matching predicted

county-level sulfur levels to county-matched deposition monitors, our sulfate measure and

16https://www.caces.us/data.
17Deposition data are available at www.epa.gov/castnet. Date accessed: January 11, 2016.
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H2SO4 deposition have a correlation coefficient of approximately 0.90; Appendix Figure A-1

illustrates this relationship visually.18

Other variables : We use a number of county-level economic variables from the Bureau of

Economic Analysis (BEA) Regional Economic Accounts Local Area Personal Income dataset.

Using these data, we calculate employment rate (total wage employment divided by total

population), farm and nonfarm income per capita, and fertilizer expenditures per acre of

cropland. Fertilizer expenditure data are based on questions from the COA. The BEA

interpolates fertilizer usage data at the county level between non-COA years by incorporating

year-to-year variation in available state-level data.19 We calculate average fertilizer expenses

per acre by dividing by each county’s total acreage for crops.20 For variables involving dollar

values we adjusted to 2017 dollars using annual Consumer Price Index data from the Bureau

of Labor Statistics.

An additional confounder is the expansion of crop insurance in the United States. A

policy change increased the fraction of crops covered by crop insurance in 1995, the same

time as the first enforcement of the ARP. We use data from the USDA Risk Management

Agency (RMA) to examine the number of insurance policies claimed by crop and total dollar

value of insurance collections by crop.

Summary statistics : Appendix Figure A-2 shows all counties in our analysis with data

available for SO2 (1,215 counties), sulfates (2,490 counties), corn (1,614 counties), and soy-

bean (1,344 counties) — pollution and crop data are not available for a fully matching set

of counties, and as such the number of counties used to derive estimates varies by outcome.

Panel A of Table 1 shows means for county-level airborne SO2, sulfate particulates, soybean,

and corn yields per acre, as well as soybean and corn acreage. Columns 1 and 2 split means

18The figure shows sulfur deposition (in kilograms per hectare) versus ambient sulfates (in µg/m3).
19See Local Area Personal Income Methodology, available online at http://www.bea.gov/regional/pdf/

lapi2016.pdf, (accessed January 14, 2016) .
20We linearly interpolate total acreage at the county level in the non-COA years.
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into the 1982-1994 and 1995-2007 periods, or pre- and post-ARP. Average contemporaneous

SO2 levels across the period are 7.8 ppb before the ARP, down to 4.4 ppb after. Airborne

sulfates move similarly, starting at 7.1 µg/m3 and dropping to 4.6 µg/m3 in the later period.

Both average corn and average soybean bushels per acre are increasing over time. Average

corn yield is 80.5 bushels per acre prior to the ARP, and 101.0 after. Country acreage dedi-

cated to corn also increases across the period, from an average of 42,062 acres pre-ARP to

44,101 acres post-ARP. Average soybean yield is 29.4 bushels per acre prior to the ARP, and

34.6 after. Growth in soybean acreage was more drastic, rising from an average of 44,029

acres per county to 51,152.21

4 Method

The ARP was split into two phases: Phase I and Phase II.22 Phase I began in 1995, with

additional power plants added in Phase II in 2000. Much of the reductions in SO2 occurred

after Phase I, which we make the focus of our analysis. We employ a pollution transport

model that predicts county sulfate levels based on SO2 emissions throughout the United

States. We first obtain a list of all ARP plants and their associated boilers from the EPA

Air Markets Program Data, which includes the location of each plant. We use data on SO2

emissions at the plant level as inputs into the APEEP atmospheric transport model to predict

sulfate concentrations for each county throughout the region. The APEEP model takes SO2

emissions from a given county, and, after accounting for factors such as topography, wind

direction, and average source type, predicts how this SO2 converts into airborne sulfates for

all other counties (as well as the emitting county).

For example, a Phase I power plant exists in the county of Franklin County, MO (FIPS

code 29071). According to the atmospheric transport matrix, the conversion rate between a

21In calculation of our yield per acre here, we do not weight by county-level crop-specific acreage as we
do in regressions.

22We follow an identification strategy very similar to Barreca, Neidell and Sanders (2017). As a result,
much of this section mirrors text from that work.
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ton of SO2 produced in Franklin County, MO and a microgram per cubic meter of sulfates

in the same county is 0.0000209. The conversion for nearby St. Louis, MO county (FIPS

29189) is 0.00000125, and for further away Wayne County, MI (FIPS 26163) is 0.000000665.

Thus, 100,000 tons of SO2 produced in Franklin County, MO would predict an additional

2.09 micrograms per cubic meter of PM2.5 in Franklin County, MO, 0.125 additional units

in St. Louis County, MO, and 0.0665 units in Wayne County, MI.

Our model premise is that, in response to the ARP, coal power plants reduced SO2

emissions from pre-ARP levels, which then led to reductions in ambient sulfates across not

only the county in which the plant resides but also, to varying degrees, all other counties.

Our measure of sulfates does not describe the total levels in a given county, but rather the

contribution to levels in a given county from ARP-associated power plants. EPA data on

plant-level emissions are available annually beginning in 1995. Prior to that, measures are

provided every 5 years: 1980, 1985, and 1990. To estimate boiler-level emissions for the

years with missing data, we assume constant emissions from the last year of available data

(e.g., we assign 1980 levels to 1981-1984, 1985 levels to 1986-1989, and 1990 levels to 1991-

1994). Based on the limited changes in SO2 emissions between 1980 and 1985, and 1985 and

1990, we view this as an appropriate approximation. If plants lower emissions in 1994 in

anticipation of the ARP, this may inflate the change in predicted emissions between 1994 and

1995. Other data sources, such as monitor-level data for county-level SO2 concentrations,

supports the assumption that the most substantial change in emissions occurred in 1995.

Our empirical approach exploits plant-level timing of the installation of sulfur-control

technologies, such as Flue Gas Desulfurization, that collect SO2 before being released out

of stacks.23 We define our treatment variable, new sulfur controls (SC), as the exposure to

23Installation of sulfur control technology results in rapid and lasting reductions in plant-level SO2 emis-
sions, with reductions from 50% to 98%, obtained from ”Air Pollution Control Technology Fact Sheet” EPA
document EPA-452/F-03-034.
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sulfur control installations that accounts for the transport of emissions from these boilers:

SCc,t = f(Phase I Sulfur Controlsi,t) ∗ 100, 000, (1)

where SCc,t is the measure of exposure to boiler sulfur control installations, f() is the at-

mospheric transport model, and sulfur controls addresses the sum of all Phase I boilers with

sulfur-controlling technology installed in the specified year in a given county. We multiply

this by 100,000 for ease of reading coefficients.

Returning to our prior example, we now illustrate the treatment intensity Franklin

County, MO would receive from the top three outside county contributors with upgrades

present by 1995: Gibson, IN (FIPS 18051), Carroll, KY (FIPS 21041), and Warrick, IN

(FIPS 18173). In practice, emissions from multiple counties contribute, but we focus on

these for illustrative purposes. The conversion matrix assigns the following receiving weights:

0.000000395 for Gibson, IN; 0.000000312 for Carroll, KY; and 0.000000303 for Warrick, IN.

Gibson, IN and Carroll, KY each had one Phase 1 sulfur control in 1995, while Warrick,

IN had two. If we based SCc,t on only these three outside counties, Franklin County would

receive a value of:

100, 000 ∗ (1 ∗ 0.000000395 + 1 ∗ 0.000000312 + 2 ∗ 0.000000303) = 0.1313.

Figure 1 illustrates how the policy affected plant behavior, and how we operationalize

this to address data limitations. Panel A shows the running tally of installed controls on

Phase I boilers, by month and year. The majority of Phase I control installs occurred either

just before, during, or shortly after 1995, and remain largely stable after that. This supports

our assumption of assigning 1990 emissions to the years 1991-4, and shows the sharp impact

of the ARP on these plants response to the policy.

To understand the impact of these sulfur control installations on emissions, Panel B shows
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an event study of boiler-level emissions, where the relevant treatment year (0) is the year in

which plants install sulfur control technology. We control for boiler and year fixed effects,

and assign all power plants that do not install control technology in our period a period of

0. The model shows that a Phase I boiler with such technology installed saw reductions

of an average of around 40,000 tons of SO2 annually (we cluster standard errors at the

boiler level). This suggests installation of sulfur-controls is a strong predictor of plant-level

emissions changes. While Phase II control installations also reduce boiler-level emissions,

the effects are much smaller.

Panel C shows the trends in total boiler emissions by year and plant Phase, which also

illustrates that (1) the majority of reductions appear in 1995, and (2) all reductions are due

to Phase I plant behavior. On net, Phase I plants reduced SO2 output by around 50 million

tons in 1995, while Phase II plants saw largely no change, and even small increases early on.

Our model approach assumes each sulfur control installation reduces pollution by the same

amount. We favor this approach from further weighting by baseline boiler emission level for

simplicity of exposition. We also explore models in which we further weight installed sulfur

controls by baseline emissions, and show results are consistent.

Appendix Figure A-3 illustrates the county-level values of our upgrade exposure in the

first year in our sample (1982), the first year of the ARP (1995), and the last year in our

primary sample (2007). The figure highlights several important factors. First, the exposure

to upgraded Phase I plants is zero in the beginning of our sample, with substantially higher

levels across the country in 1995. Second, from 1995 to 2007, there is little change in county-

level exposure to upgraded plants, as most of the large upgrades occurred in the first year

of the ARP. Finally, if upgrades reduce emissions, we expect the majority of the pollution

benefits from the ARP to play out in the Midwest and Northeast, which projects the largest

treatment effects due to location of Phase I ARP plants and atmospheric dispersion patterns.

Figure 2 illustrates that predicted sulfate changes line up with our measure of treatment
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intensity. Graphs show the ARP-associated sulfate predicted by the APEEP model in 1982,

1995, and 2007. As with our measure of upgrade exposure intensity, we see large changes in

predicted sulfate in the Midwest and Northeast between 1985 and 1995, but little additional

change by 2007.

Our reduced form regression model is:

outcomec,t = βSCc,tXPostt + ωc,t + λt + γc + φc ∗ year + ηc,t , (2)

where outcomec,t is our outcome in county c in year t, SCc,t is each counties weighted sum

of exposure to Phase I plant upgrades in a given year, and Post is an indicator for years

t greater than or equal to 1995. We include a vector of weather controls for temperature

and rainfall, ω, and year and county fixed effects (λ and γ, respectively) — see Section 3 for

a detailed description of weather variables. We also control for county-specific time trends

to address potential confounders such as increasing agricultural yields over time. For corn

and soybean, we weight regressions using annual county crop-specific acreage, and for all

COA-based variables we weight by annual county total crop acreage. In robustness checks,

we weight each observation by the county’s average pre-ARP acreage values as a check on

the concern that total acreage is endogenous to the policy. We do not weight pollution

regressions. We cluster all standard errors at the level of crop reporting district (CRD).

CRDs are made up of multiple contiguous counties, divided into areas of approximate similar

size, with similar soil types and growing conditions. This allows for common errors within

contiguous counties classified as similar in agricultural makeup. We also explore clustering

by state, using spatially-correlated Conley standard errors, and bootstrapped errors cluster-

sampled by year.

This model compares the change in outcomes for counties by relative exposure to up-

graded Phase I plants, after controlling for general differences in geography, weather, and
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production trends. Our treatment measure, SCc,t, captures that while boiler upgrades uni-

versally decreased SO2 emissions, the impact of those reductions varied across space due to

wind patterns, topography, and geography.

To help explore the mechanism of the ARP’s effects, we also use (2) as a first stage

regression in estimating the marginal impact of airborne sulfates on our relevant outcomes.

Our ordinary least squares (OLS) and second stage IV model is:

outcomec,t = βsulfates+ ωc,t + λt + γc + φc ∗ year + ηc,t , (3)

where all other controls are as above. This estimates the marginal effect of an additional

unit of airborne sulfates. Interpretation of marginal changes in ambient sulfates is in some

ways less complex than the reduced form marginal change of weighted atmospheric transport

values, and allows for a direct calculation of replacement costs of lost atmospheric sulfates.

5 Results

As a demonstration of our reduced form model, we split counties by “high” and “low”

upgrade plant exposure as of 1995, the first year of the ARP and the year with the largest

number of single plant controls installed. We define “high exposure” counties as those above

the median of our SCc,t measure as of 1995, and “low exposure as those at or below the

median measure of SCc,t in 1995.

The first graph of Figure 3 shows annual average ambient SO2 across these two groups.

Both experienced declining pollution levels prior to the ARP’s implementation, potentially

due to deregulation of railroads in the early 1980s and related reductions in the cost of

transporting and adopting low-sulfur coal (Ellerman and Montero, 1998). “High exposure”

counties experienced a sharp decline in SO2 in the first year of the ARP of almost 2 parts

per billion (ppb). There is a much smaller decline in SO2 in “low exposure” counties.
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The second graph shows a similar pattern for projected airborne sulfates. Counties with

greater exposure to sulfur controls saw airborne sulfate drops of almost 4 µg/m3, while

counties with lower exposure saw effectively no change. Effects are more drastic for sulfates

than SO2, likely due to determining our sulfate measure using only ARP-related power

plants, while SO2 data are from air monitors and cover all possible SO2 sources.

The third and fourth graphs of Figure 3 show log yield per acre for corn and soybean

in the period of our analysis.24 Yields just before the ARP were particularly variable —

Appendix B provides background on changes in the agricultural sector around this time as

well as discussion of relevant regional weather shocks. Our identification strategy mitigates

the noise and potential biases from these general trends by focusing on changes in yields

by level of exposure to sulfur control upgrades, while also controlling for area-specific time

trends. The graphs suggest high treatment counties saw relative decreases in average yields,

with a timing that corresponds to the beginning of the ARP.

The final graph in Figure 3 shows trends in log of crop receipts per acre. These data

cover all crops, and thus represent changes in receipts beyond the corn and soybean outputs

we consider. They also allow for prices to change across time, so in that sense represent a

greater overall impact on producers. In this case, low exposure counties appear to be gaining

crop receipts across time, while high exposure counties remain largely flat after the ARP.

5.1 Event Study Analysis

To explore different pre-trends by treatment exposure while controlling for weather, county,

and year fixed effects, we next show basic event studies. This provides a visual test for time

differences correlated with treatment exposure. Given our empirical model relies on contin-

uous treatment intensity, we show the marginal effects across time rather than differences

across binary treatment and control groups.

24We show the average of log yields for each group for consistency with our main regressions. The log of
the average for each group has the same basic pattern.
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Figure 4 shows annual estimates for marginal effects, with 95% confidence intervals. To

approximate a standard event study with a singular change in treatment, we interact each

year with the level of treatment each county receives in 1995. Figure 1 shows that the

majority of airborne sulfate changes happened in 1995 alone. We treat 1994 as the baseline

year, so each coefficient represents the marginal effect as compared to 1994. For example,

a negative coefficient in 2002 indicates the regression-adjusted impact of our SCc,t measure

was more negative in 2002 than it was in 1994.25 Results for SO2 indicate no clear pre-trend

across treatment exposure. There is a stark decline in SO2 in 1995. Sulfate levels follow a

similar pattern but with a more drastic transition.

Crop yield results are noisier given substantial variation in annual yields. In a study of

distribution of crop yields, Just and Weninger (1999) note, “Farm-specific randomness may

be caused by errors in management, farm-specific resource constraints, and farm-specific

weather and pest conditions. For example, the impact of floods depends on elevation, slope,

and soil density while drought effects depend on soil depth and quality”. This makes year-

by-year inference difficult. However, there is a downward shift in average yields after 1995

for both crops. For both corn and soybean, not a single estimate from 1995 onward is above

1994 levels. Crop receipts follow a similar pattern, with a decrease after 1995.

1993 is an outlier due to a confluence of bad events, including freezes, unusual rainfall,

a Midwestern flood, a drought, and insects (see Appendix B). The large positive coefficient

suggests that areas with that saw higher levels of our SCc,t measure by 1995 were compara-

tively less harmed by the confluence of these shocks. Given treatment is spatially correlated

and the bad events are spatially correlated, it raises the possibility that random deviations

are correlated with levels of treatment. We address the potential for spatial correlation in

a series of robustness checks. Another possibility is that sulfur can buffer against negative

shocks and that the treatment area had a higher baseline level of sulfur in the soil.26 In later

25With all graphs we weight in the same manner as done in our regressions (see Section 4).
26“Sulfur (S) is an important secondary macronutrient that interacts with several stress metabolites to
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regressions, we explore the interactive effects of drought and sulfates, and show that drought

damages are more extreme in areas that also face reduced ambient sulfates.

To better quantify the ARP’s impact, we next use our regression model in (2). Table 2

presents main specification results for ambient sulfate levels, corn yield per acre, and soybean

yield per acre, with different sets of controls. Our model has variation across two dimensions:

time and intensity: time allows the effect to vary across years, particularly before and after

the ARP, and intensity allows for the post-1995 effects of the ARP to vary by exposure to

ARP-related sulfur controls.

The estimated effect of the ARP is negative for all three outcomes, and in each case is

economically significant and statistically significant at 1 or 5%. In our most basic specifi-

cation (Column 1) controlling for only year and county fixed effects, we find exposure to

an additional weighted unit of sulfur control (approximately 86% of a post-ARP standard

deviation) correlates with a reduction in airborne sulfates of 1.6 µg/m3, a reduction in corn

yield of 3.6%, and soybean yield by 1.7% . Controlling for weather (Column 2) does little to

change the results.

The addition of county trends (Column 3) does little to change the estimate for sulfates,

but does increases the magnitude of the effects for both corn and soy. In our full model, an

additional unit of treatment exposure correlates with a reduction sulfates of 1.2 µg/m3, with

an associated decrease in corn and soybean yields of 5.8% and 4.8%, respectively. Given

the long-run general trend in increased agricultural output across this period, controlling for

regional background trends matters for proper identification.

improve performance of food crops under various environmental stresses including drought. Increased S
supply influences uptake and distribution of essential nutrients to confer nutritional homeostasis in plants
exposed to limited water conditions. (Usmani et al., 2020)
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6 Estimates per Unit of SO2 and Sulfates

Thus far our focus has been the reduced form effect of the installation of sulfate control

technology. To better investigate the role of sulfur, we next consider the effects of airborne

sulfates directly. We begin with an OLS analysis, and then expand to an IV setting, using

our reduced form measure of treatment exposure as an instrument airborne sulfate levels —

our first stage F-statistics are always greater than 10.

Table 3 Panel A shows OLS results for corn yields. We find a statistically and economi-

cally significant increase in yields of 2.4-5.5% per µg/m3 of sulfates. Panel B shows sulfate

estimates are largely unchanged, ranging from 2.6-6.3%. Results for soybean follow a simi-

lar pattern. After controlling for county trends, the sulfate estimates are significant at 1%

and range from 1.6-4.3%. In the IV, sulfate estimates are largely unchanged, ranging from

1.7-6.5% and remain significant at 1%.

7 Robustness Checks and Extensions

Table 4 explores sensitivity of our IV results to different control variables and samples.

Appendix Table A-1 repeats this using our reduced form results.27 Column 1 adds an

indicator equal to 1 for each imputed observation. Columns 2-4 alter the choice of time

controls. Column 2 expands county trends to quadratic. Column 3 replaces county trends

with Crop Reporting District trends. Column 4 adds state-by-year fixed effects to adjust

for state-level policy changes and regional changes in farming technologies. For example,

genetically modified (GMO) strains for various crops first appeared in 1996, and state-by-

year effects adjust for policies that either encourage or discourage adoption of GMOs. State-

by-year fixed effects cause the largest change by reducing estimate magnitudes, particularly

27We also examined models with varied weighting assumptions. One model, omitting weights, ignores
relative county crop magnitudes but is less sensitive to shifts in planting behavior. Another, weighting by the
average crop acreage of the pre-ARP period, avoids post-policy endogeneity from planting behavior. Both
caused effectively no change to our main results.
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in the reduced form, which is also expected given treatment has a geographically correlated

component. In all three cases the sign remains negative and statistically and economically

significant. In Column 5, we drop all counties with Phase I or Phase II plants located within

their borders. If economic effects of regulation, or effects of changes in copollutants, are

largely local effects, what remains with our estimate is the isolated effect of transmitted

sulfur.

Column 6 adds additional controls for O3. Prior research (Boone, Schlenker and Si-

ikamäki, 2013; McGrath et al., 2015) suggests O3 can damage both corn and soybean. While

the ARP did not regulate O3, it did generate the potential to change local O3 levels through

two primary channels. First, SO2 can serve as a source of light refraction, and its removal via

the ARP could increase O3 formation due to increased ground-level light. Second, the ARP

had some impacts on NO2, a precursor pollutant to O3. The findings in Boone, Schlenker

and Siikamäki (2013) suggests nonlinearities in O3, with particular sensitivity once hourly

values exceed 77 ppm. As a control, we approximate this using the number of days in a

year where county O3 average 8-hour readings exceed 77 ppm (which is more extreme).

This reduces our coefficients somewhat, but effects remain statistically and economically

significant.

Columns 7 and 8 separately consider effects for drought and non-drought years.28 Our

results support the idea of sulfur buffering stressful crop conditions; effects in drought years

are 2-3 times as large for the reduced form and 4-10 times larger in the IV.

We also investigate the robustness of our results to alternative measures of treatment

intensity. Similar to our main specification, in each of these tests we interact a measure of

upgrades to ARP plants with an indicator for Post, though we now add additional weighting

metrics. Appendix Table A-2 shows our results. Column 1 replicates our main results, while

Column 2 adds an additional instrument that allows for Phase II plant upgrades interacted

28Drought years in our main sample include 1983, 1988, 1993, 1999, 2002, and 2005.
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with a Post indicator as well. Columns 3 and 4 mirror 1 and 2, but weight results by the

amount of SO2 each boiler released in 1985, the period used for calculation of initial permit

allocations. Columns 5 and 6 mirror 3 and 4, but replace 1985 SO2 with 1985 heat output.

In each case, our IV results are effectively unchanged. Given the robustness to different

measures of exposure, we focus on our original model for ease of discussion.

As a further consideration, we explore various modeling assumptions for our standard

errors. Our main analysis clusters by crop reporting district, an area made up of multiple

contiguous counties. In Appendix Table A-3, we try alternate models. Column 1 replicates

our main result. Column 2 omits weights as a comparison baseline, as we omit weights in

the Conley and bootstrapped errors for computational simplicity. Weighting does little to

change our main results. The following columns explore clustering at the state level, using

geospatial (Conley) standard errors with a radius of 200 miles29, and bootstrapped standard

errors (stratified on years with replacement) with 10,000 replications. In all models results

remain significant at 1-5%.

7.1 Pollutant Expansions

We test for alternative pollution mechanisms, but analysis by specific pollutant carries two

challenges. First, data are limited by the availability of air monitor data. Second, many

pollutants correlate with each other, and each could play a role in crop yields, which means

considering independent pollution effects could induce bias. Appendix Figure A-4 shows

raw trends and event studies for NO2 and O3, two other pollutants that could also impact

crop yields. While transitions across the ARP are less drastic, there is suggestive movement,

particularly with NO2, that may correlate with the ARP.

In Appendix Table A-4, we attempt to address both these concerns. To deal with limited

monitor data, we expand pollution data to include the Land Use Regression (LUR) data,

29This process uses the Stata ado file “ols spatial HAC” from Hsiang (2010).
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provided by the Center for Air, Climate and Energy Solutions (CACES). To address the issue

of multiple pollutants, we run several separate OLS models (given our single instrument, we

do not use the IV in multi-pollutant models). Using LUR data, we first show that controlling

for LUR-estimated SO2, NO2, and O3 does little to change the coefficient on sulfates. We

then repeat the exercise using a much more restricted data set on monitor-based measures.

Restricting to a sample of counties with nonmissing data for all three pollutants cuts our

sample to approximately 1/10th the size. This sample change decreases the magnitude of

our sulfate estimate and, in the case of soybean, removes statistical significance. However,

conditional on this lower estimate, adding the other pollutants does not change the estimate

on sulfates. This evidence jointly suggests that the mechanism for our effect is airborne

sulfates, which also aligns with the agricultural science.

8 Testing for Industry Adjustment

Given the observed reductions in yields, one consideration is whether this outcome is net of

adjustment behavior on behalf of producers. Based on our investigation of the agricultural

science literature, we do not find references to Clean Air Act-related sulfur loses until 10 or

so years into the program. Further, we found several articles (see Appendix B that suggests

that early on, producers confused sulfur shortages for nitrogen issues or were otherwise

unaware of the link between air pollution, ambient sulfates, and ground sulfur levels. We

test for industry-level responses to the ARP by examining a variety of additional outcomes.

For ease of discussion, we compare our IV models, but results are similar in net effect when

using the reduced form.

We first use planted acres as an outcome — farms may shift land to more productive

uses as the ARP reduced yields. In Table 5, we show no economically significant change

in reported acreage differences for corn or soybean. We also construct a measure of total

crop acreage based on information from the agricultural census, interpolated for all non-ag
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census years, and see no economically or statistically significant changes. We next consider

changes in the probability of reporting any harvested acres for corn or soybean to test for

more drastic reductions in acreage. We find no change in the difference in the probability of

a county reporting corn or soybean by treatment exposure.

We estimate reported spending on fertilizer expenditures per acre, using data from the

REIS. In Appendix B we provide anecdotal evidence agriculture extension groups eventually

proposed changes in baseline sulfur flows as a cause of recent increases in crop deficiencies, so

to the extent producers already adapted by using more sulfur-based fertilizer (e.g., elemental

sulfur and sulfate compounds such as calcium sulfate and ammonium sulfate), our welfare

calculations underestimate the costs of the ARP. For example, a report from the “Corn

and Soybean Digest” in 2009, shortly after our initial sample ends, notes adding sulfur was

giving higher yields in some parts of Iowa, and suggested sulfur sales had jumped 30%30.

The sulfur scrubbing process generates synthetic gypsum (calcium sulfate), which private

companies sell as an additive marketed to improve soil drainage. If producers increased use

of synthetic gypsum after the ARP, this might partially offset productivity losses. We find

no statistically or economically significant effect on fertilizer expenditure per acre. This is a

rough measure of fertilizer usage with imputed acreage for non-COA years, and it includes

within it changes in prices, particular fertilizer mix choices, and quantities, so this result

alone cannot verify there was no change in fertilizer mix or behavior.

In sum, we observe little behavioral response by producers in the first decade or so

following the ARP. The structural shifts in productivity may have been hard to observe

from the perspective of producers, especially in the context of the time trends. Agricultural

yields were increasing over time, so any simple comparison between before and after the

ARP’s implementation would falsely suggest the ARP helped yields. Even if producers did

30“Does Sulfur Pay?”, Corn and Soybean Digest, Feb 1 2009, available online at http://

cornandsoybeandigest.com/does-sulfur-pay.

24



identify the shift in productivity, singling out sulfur deficiency as the causal mechanism

would have been difficult. Sulfur deficiencies are often confused with nitrogen deficiencies

(and vice versa), and soil tests for sulfur are more complex and less precise than tests for

other minerals.31 This highlights a role for institutions as disseminators of information in

situations where subtle environmental shifts are difficult to detect on an individual level.

8.1 Expansion of Crop Insurance

The expansion of crop insurance in the United States is a potential confounder in identifying

a link between sulfur reductions and losses in yields. As a result of the 1994 Federal Crop

Insurance Reform Act, participation in crop insurance increased substantially around the

same time as the passage of the ARP. If changes in the take-up of crop insurance: (1)

result in changes in yields, (2) correlate with proximate intensity of SO2 emissions from

Phase I plants, and (3) potentially alter producer responses to production shocks (Annan

and Schlenker, 2015), this could be a source of bias in our results. To test for such effects,

we examined data on crop insurance indemnities collected by county/year/crop cell. These

data are available from the USDA Risk Management Agency (RMA), which the government

created in 1996 to help with crop risk and insurance in US agriculture.32 We consider two

primary outcome variables: a binary indicator for any insurance indemnity claim in a given

county/year/crop cell, and the log of crop-specific indemnity claims per acre, in 2017 dollars,

(plus 1, to address the issue of zeros) in a county/year/crop cell. Given crop insurance had

31An article on sulfur deficiency in Northeast Iowa notes, “The soil test for S (measures sulfate-S) is not
an effective means to determine S needs for crops. The estimated available S in a 6 to 8-inch soil core sample
does not correlate to crop yield responses relative to S fertilizer applications. This is because the subsoil
can also provide various amounts of S to crops, S mineralization can quickly change plant-available sulfate
in the soil, potential S mineralization is not measured by the test, and that plant available sulfate-S can
leach from the surface sample depth.” (Dealing with Sulfur Deficiency in Northeast Iowa Alfalfa Production,
presented at the 2006 Integrated Crop Management Conference. November 29-30, 2006, p. 225-235. Iowa
State University, Ames, IA.)

32Timing information for this section comes from the “History of the Crop Insurance Program” informa-
tion section of the USDA website (https://www.rma.usda.gov/aboutrma/what/history.html, accessed
April, 2018).
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major reforms in 1988, we begin our sample there.

Table 6 and Appendix Figure A-5 both show insurance take-up shifts around the ARP

in ways that correlate with changes in ambient sulfates. Our results suggest that for every

additional unit of airborne sulfates, the probability of filing an indemnity claim decreases by

8.4 percentage points for corn and 6.0 percentage points for soy. However, pure dollar value

changes are small on average. An additional unit of sulfates means a decrease in indemnity

claims of $1.23 per acre for corn and $1.76 per acre for soy. Collections are not evenly

distributed: for example, in 1995 the median county collected $10.40 per acre, while the

90th percentile was approximately $20 per acre. However, given the price of corn in 1994

was approximately $140 (adjusted to 2017$) per ton, there was an estimated 39.4 bushels per

ton, and the pre-ARP average yield was approximately 80 bushels per acre, our estimated

6.3% reduction in corn yields would be a loss of around $18 per acre. It appears indemnity

payments were not nearly large enough to shield producers from losses.

8.2 Estimated Economic Effects

Our yield results, combined with the crop insurance results, suggest producers should have

seen substantial economic losses as a result of reduced ambient sulfates. In Table 7, we test

for changes in a variety of outcomes to see if yield losses translated into other economic

effects. Our main outcome is atmospheric sulfate, so positive coefficients indicate the ARP

had a negative effect, as it lowered atmospheric sulfate levels. Columns 1 and 2 look at log of

farm and nonfarm income. We see that each additional unit of ambient sulfates raises farm

income by 4.5%, a result that is statistically significant at 10%. We also see a smaller 1%

increase in nonfarm income, which could be a spillover effect into other parts of the economy.

There is a 0.2% increase wage employment over population, suggesting small employment

effects. While overall farm costs per acre are unaffected by sulfate levels, farm labor expenses

increase by 1.4% per µg/m3, and crop receipts increase by 5.7%. Not surprisingly, there is a
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decrease in government payments per acre of 3.1%, suggesting regions with higher ambient

sulfates receive less government farm assistance, all else held constant. Farm assistance in

this case includes disaster payments, conservation payments, price supports, and other such

programs. In dollar terms, this is a reduction of $0.98 per acre for each unit of ambient

sulfates, making it similar in value to our prior crop indemnity payments estimate and still

a very small share of overall losses.

Given the visible economic effects, a natural question is whether or not the shift in

ambient sulfates changed agricultural land values. Theory suggests the value of agricultural

land should be a function of its expected return, which it itself a function of profitability.

Whether or not producers knew why yields were dropping, we would expect the reduction in

revenues to translate to a loss in land values, all else held constant. Assuming producers base

land values somewhat on expectations, this also informs whether or not the market viewed

these revenue reductions as transitory or permanent. Using data from every 5 years in the

agricultural census, we test for changes in the log of land values. We find that each unit of

ambient sulfates raises land values by 7%. Assuming 1992 land values and agricultural crop

acreage, this works out to a decrease of approximately $1.4 billion after the ARP.

8.3 Longer-term Results

As an expansion, we consider effects further into the future, up through the most recent COA

in 2017. Three main confounders exist with the 2007-2017 period. First, major changes in

SO2 regulation with the Clean Air Interstate Rule caused substantial price fluctuations in

sulfur permits, which may weaken the link between our measure of initial treatment and

current emissions levels. Second, expansions of ethanol subsidies were a potential source of

bias in terms of expanded acreage for corn. Finally, like 1993, 2012 was a very unusual year

for crop yields due to regional droughts.

We illustrate longer-term trends visually in Appendix Figure A-6 by extending our event
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studies to 2017. The first and second panels show results for corn and soybean yields,

respectively. Even extending into 2017, both corn and soybean yields appear lower than

prior to the ARP. Crop receipts follow a similar pattern (panel 3). Panel 4 shows that

sulfate levels dropped even more in the later 2000/2010s, suggesting some adaptation by

producers at this point: while sulfate levels dropped substantially, yields largely plateaued

at lower post-ARP levels.

8.4 Counterfactual Losses and Costs of Sulfur Replacement

Our evidence suggests no statistically discernable adaptation response in the years imme-

diately following the ARP, but we cannot rule out some level of adaptation. To infer the

size of the adaptation response, we conduct a back-of-the-envelope estimate of the expected

yield losses assuming no adaptation and extrapolating from experiments on the effects of

sulfur on crop yields. Our estimates suggest the average county lost 0.91 µg/m3 of ambient

sulfates due to the ARP. Using data from ground monitors, we estimate this translates to

0.55 pounds of sulfate deposition per acre.33 Based on data from the agricultural extension

and professional literature, corn extracts 0.5 lbs of sulfur per 10 bushels/acre. Soybean is

more intensive at 1.7 lbs per 10 bushels/acre. This suggests the sulfate losses should reduce

corn yields by 11 bushels per acre, and soybean by 3.3 bushels per acre, each of which is

around 10% of 1994 yields. We observe that the average county saw losses closer to 5%,

which suggests producers may have employed some form of mitigation, and our estimates

are net of such effects.

With this information we can also ask how expensive it would be to fully “replace” the

lost sulfates. Using fertilizer price data from the USDA, we estimate the replacement cost

purchasing ammonium sulfate. Since ammonium sulfate is approximately 24% sulfur, one

ton of ammonium sulfate yields 480 lbs. of sulfur. Based on ammonium sulfate prices, which

33We regress ground SO4 on our measure of estimated ambient sulfates, controlling for county and year
fixed effects as well as county linear trends.
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range from $237− 622 (in $2017), crop acreage, and our estimated sulfur loses, it would cost

a total of around $40-60 million in 2017 dollars per year to replace all ARP-driven sulfate

losses. This is small compared to the substantial losses from corn and soybean. Using our

estimates on bushels lost, price data from the IMF, and regional crop acreage, we estimated

revenue losses ranging up to $1-1.5 billion a year for corn and soybean nationwide. While

our back of the envelope calculations suggest producers offset reductions somewhat, the level

of adaptation was suboptimal. We provide an in-depth description of our calculations, as

well as relevant data sources for all values, in Appendix C.

9 Conclusion

The Acid Rain Program produced large reductions in ambient SO2 levels, which improved

human health and reduced environmental harm to old growth forests, rivers, and lakes.

Agricultural science suggests it also imposed unexpected costs on agricultural producers

by altering atmospheric sulfate levels, fundamentally changing the transfer of production

inputs for high-yield crops like corn and soybean. We test this hypothesis and consider, more

broadly, the adaptability of the agricultural sector to shifting environmental conditions. Our

results present an unusual case where pollution can generate a positive externality.

We find annual crop revenue losses for corn and soybean total $1-1.5 billion, and as-

sociated losses in all agricultural land value of $1.4 billion. We observe little evidence of

adjustment to the crop losses in the decade following the ARP, suggesting individuals and

industries can be slow to adapt to environmental shifts. The delayed adjustment could be

explained by difficulty with testing ground-level sulfur levels, while annual fluctuations in

yields confound the ability of any one producer to draw inference about changing conditions.

The “signal vs. noise” issue is not be unique to agriculture: research shows environmental

factors have subtle impacts on human health and labor productivity, both difficult to detect

at the level of the individual firm (Graff Zivin and Neidell, 2012; Chang et al., 2015). This

29



highlights a continuing role for institutions, in our case extension centers, in collecting and

disseminating information regarding changing environmental conditions.

Using back of the envelope calculations based on plant-specific sulfur take-up, we estimate

the observed crop reductions are below those predicted given the observable reduction in

sulfates. We take this as some indication of producer adjustment behavior, though the level

of adaptation is suboptimal. We estimate the total cost of replacing lost sulfur at $40-60

million a year. This is less than 1/10th of the estimated crop revenue losses we calculate for

corn and soybeans.

While the reduction in yields is a previously unaccounted cost of the Acid Rain Program,

it hardly affects the net social benefits of coal regulation — previously estimated benefits

of the ARP dwarf costs, largely due to avoided mortality. But it raises important distri-

butional impacts of coal regulation. Various European countries and China are pursuing

SO2 controls. Countries with larger agricultural sectors may incur larger costs of regulation,

and countries with high levels of subsistence farming or extreme poverty might experience

greater inequities. Providing fertilizer subsidies, alleviating credit constraints, supporting

shifts to less sulfur-intensive crops, and increasing information networks to help identify and

detect sulfur shortages are all potential policy tools to help offset the agricultural costs of

coal regulation.

There remain important related issues for future research. Our analysis focuses on corn

and soybean, but other crops could experience different outcomes depending on their sen-

sitivity to soil acidification, leaf damage, and changes in ground-level sulfur. Further, our

results are in the context of the United States, where pollution levels are modest by historical

and cross-country comparison. In countries with greater levels of pollution, reductions may

have different impacts on even the same crops. Present efforts to reduce greenhouse gas

emissions around the world and move away from coal-generated power motivate a need to

study the pollution-agricultural relationship in other settings.
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Table 1
Summary Statistics

1982-1994 1995-2007

Panel A: Pollution and Crop Outcomes

Airborne SO2 (ppb) 7.48 4.33
Airborne Sulfates (µg/m3) 7.07 4.54
Corn (Bushels per Acre) 80.45 101.03
Corn Acres 42,062.14 44,101.73
Soybean (Bushels per Acre) 29.44 34.55
Soybean Acres 44,028.99 51,152.35
Weighted Sulfur Controls 0.05 0.84

Note: We base SO2 measures on monitor-level readings aggregated to county. Airborne
sulfate is predicted by the APEEP atmospheric transport model using ARP-regulated
power plant-level SO2 emissions as inputs. Crop yield per acre is total yield per acre
divided by planted acres in that county-year. Weighted Sulfur Controls is a measure of
county-level exposure to plant upgrades, which is determined by the APEEP
atmospheric transport model (see Section 4).
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Table 2
Relationship Between Phase 1 Plant Upgrades, Atmospheric Sulfates, and Crop Outcomes

(1) (2) (3)

Panel A: First Stage for Sulfates
SC X Post -1.580 -1.577 -1.234

(0.244) (0.248) (0.262)

Clusters 235 235 235
Observations 64,740 63,622 63,622

Panel B: Reduced Form for Corn
SC X Post -0.036 -0.032 -0.050

(0.011) (0.010) (0.014)

Clusters 211 211 211
Observations 41,964 41,964 41,964

Panel C: Reduced Form for Soybean
SC X Post -0.017 -0.019 -0.048

(0.007) (0.008) (0.016)

Clusters 175 175 175
Observations 34,944 34,944 34,944

County FE Yes Yes Yes
Year FE Yes Yes Yes
Weather No Yes Yes
Linear County Trends No No Yes

Note: We cluster standard errors at the crop reporting district level. We weight crop regressions
by annual county-level acreage, and do not weight pollution regressions. Outcome for corn and
soybean is log of crop yield per planted acre. We derive airborne sulfate measures from the
APEEP atmospheric transport model using ARP-regulated power plant-level SO2 emissions as
inputs. Crop yield per acre is total yield per acre divided by planted acres. SC X Post refers to
an indicator for all years 1995 onward interacted with the count of ARP-regulated boilers with
installed sulfur controls, weighted by the APEEP model to calculate a county-level measure (see
Section 4).
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Table 3
OLS and IV Estimate of Airborne Sulfate on Crop Yields

(1) (2)

Panel A: OLS for Corn
Sulfates (µg/m3) 0.025 0.055

(0.003) (0.007)

Clusters 211 211
Observations 41,964 41,964

Panel B: IV for Corn
Sulfates (µg/m3) 0.026 0.063

(0.004) (0.008)

First Stage F 24.570 16.784

Clusters 211 211
Observations 41,964 41,964

Panel C: OLS for Soybean
Sulfates (µg/m3) 0.016 0.043

(0.002) (0.007)

Clusters 175 175
Observations 34,944 34,944

Panel D: IV for Soybean
Sulfates (µg/m3) 0.017 0.065

(0.003) (0.008)

First Stage F 18.994 14.741

Clusters 175 175
Observations 34,944 34,944

County FE Yes Yes
Year FE Yes Yes
Weather Yes Yes
Linear County Trends No Yes

Note: We cluster standard errors at the crop reporting district level. We weight crop regressions
by annual county-level acreage. Outcome for corn and soybean is log of crop yield per planted
acre. We derive airborne sulfate measures from the APEEP atmospheric transport model using
ARP-regulated power plant-level SO2 emissions as inputs. Crop yield per acre is total yield per
acre divided by planted acres. The first stage of IV regressions corresponds to the model in Panel
A of Figure 2 — different samples and crop weights explain variation in F-statistics.
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Table 5
IV Estimate of Adaptive Responses

(1) (2) (3) (4) (5) (6)
Corn Soybean Total Grow Grow Fertilizer
Acres Acres Acres Corn Soybean Expenses

Sulfates (µg/m3) 0.001 0.008 -0.001 -0.005 -0.011 0.001
(0.005) (0.010) (0.002) (0.008) (0.009) (0.004)

First Stage F 17.768 13.387 22.030 37.210 38.307 19.278

Clusters 211 175 235 148 164 214
Observations 42,250 34,944 62,764 26,962 32,318 43,966

Note: We cluster standard errors at the crop reporting district level. We weight crop regressions
by annual county-level acreage. The first stage of IV regressions corresponds to the model in
Panel A of Figure 2 — different samples and crop weights explain variation in F-statistics.
Column headers describe variation in outcomes, which Section 8 describes in detail.

Table 6
IV Estimate of Payouts and Collection of Crop Insurance (Per Acre)

(1) (2) (3) (4)
Corn Soybean Log Soybean Log Corn
Prob. Prob. Claim (Dollars) Claim (Dollars)

Sulfates (µg/m3) -0.084 -0.061 -1.240 -1.775
(0.029) (0.019) (0.716) (0.448)

First Stage F 14.763 14.461 14.763 14.461

Clusters 208 187 208 187
Observations 29,659 25,965 29,659 25,965

Note: We cluster standard errors at the crop reporting district level. We weight crop regressions
by annual county-level acreage. The first stage of IV regressions corresponds to the model in
Panel A of Figure 2 — different samples and crop weights explain variation in F-statistics.
Outcomes are probability of any crop insurance collection and average dollar value per acre of
crop insurance collection. Section 8.1 describes outcomes in detail.
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Figure 1
Installation of Sulfur Controls and Boiler Emissions

Panel A: Monthly Running Count of
Phase I Boilers with Sulfur Control
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Note: All figures based on data from the EPA Clean Air Markets Acid Rain power plant data set.
Panel A shows the running total of upgraded Phase I boilers by month. Panel B shows the change
in boiler-level SO2 emissions leading up to and following a sulfur control update, by phase
category, and includes any plants without installed sulfur upgrades as controls set to relative time
zero. Panel C shows the sum total of all SO2 emissions from Phase 1 and Phase 2 plants, by year.
Dashed vertical line indicates the beginning of enforcement of the Acid Rain Program. Thick
dashed lines indicate 95% confidence intervals.
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Figure 2
County-Level Variation in Sulfates from ARP Plant Sources
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Note: We generate predicted sulfate levels using the APEEP atmospheric conversion matrix
which uses boiler-level SO2 emissions to estimate sulfates, which include sulfate and ammonium
sulfate. See Section 4 for details.
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Figure 3
Trending Effects by Treatment Intensity
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Note: Each figure shows outcome trends split by above vs. below the median level of treatment
intensity in 1995 for all available counties east of the 100th degree meridian. SO2 data are from
EPA air quality monitors, which we aggregate to the county level. We derive atmospheric sulfate
projections using the APEEP transport model. Corn and soybean outcomes are log of yield per
planted acre from the USDA NASS. Crop receipts are from BEA data and are divided by total
crop acreage from the Census of Agriculture. We linearly impute crop acreage at the county-level
between COA years.
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Figure 4
Event Studies by Treatment Intensity
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Note: Event studies show the annual marginal effect of an additional unit of our treatment
measure as we describe in Section 4. We use 1994, the year prior to the enforcement of the ARP,
as baseline for comparison, and assign 1995 upgrade counts to 1995 and all following years. All
estimates include 95% confidence intervals, where we cluster standard errors by crop reporting
district. SO2 data are from EPA air quality monitors, which we aggregate to the county level. We
derive atmospheric sulfate projections using the APEEP transport model. Corn and soybean
outcomes are log of yield per planted acre from the USDA NASS. Crop receipts are from BEA
data and are divided by total crop acreage from the Census of Agriculture. We linearly impute
between-COA crop acreage at the county-level.
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Table A-3
Reduced Form Estimates With Alternate Standard Errors

(1) (2) (3) (4) (5)
Baseline Unweighted State Cluster Conley Bootstrap

Panel A: Corn
SC X Post -0.050 -0.056 -0.056 -0.056 -0.056

(0.014) (0.011) (0.014) (0.016) (0.026)

Panel B: Soybean
SC X Post -0.048 -0.050 -0.050 -0.050 -0.050

(0.016) (0.016) (0.017) (0.014) (0.017)

Note: We weight crop regressions by annual county-level acreage. Outcome for corn and soybean
is log of crop yield per planted acre. We derive airborne sulfate measures from the APEEP
atmospheric transport model using ARP-regulated power plant-level SO2 emissions as inputs.
Baseline model in Column (1) corresponds to Column (3) of Table 2. Column (2) omits weights.
Column (3) clusters standard errors at the level of state. Column (4) uses geospatially correlated
Conley standard errors, using a radius of 200 miles. Column (5) uses bootstrapped standard
errors with 10,000 replications, stratified on years with replacement.
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Table A-4
Expanded Pollutants

(1) (2) (3) (4) (5)
LUR Data Monitor Data

Panel A: Corn
Sulfates (µg/m3) 0.055 0.023 0.026

(0.007) (0.005) (0.005)
Airborne SO2 (LUR) 0.004 0.004 0.001

(0.002) (0.002) (0.002)
Airborne NO2 (LUR) -0.006 -0.006

(0.003) (0.003)
Airborne O3 (LUR) -0.003 -0.003

(0.001) (0.001)
Airborne SO2 (Monitor) -0.008

(0.003)
Airborne NO2 (Monitor) 0.004

(0.002)
Airborne O3 (Monitor) -1.107

(1.420)

Clusters 211 211 211 96 96
Observations 41,964 41,964 41,964 11,180 11,180

Panel B: Soybean
Sulfates (µg/m3) 0.042 0.013 0.013

(0.007) (0.004) (0.004)
Airborne SO2 (LUR) 0.002 0.003 -0.000

(0.002) (0.002) (0.002)
Airborne NO2 (LUR) 0.002 0.001

(0.002) (0.002)
Airborne O3 (LUR) -0.004 -0.004

(0.002) (0.001)
Airborne SO2 (Monitor) -0.001

(0.003)
Airborne NO2 (Monitor) 0.000

(0.001)
Airborne O3 (Monitor) -5.276

(1.433)

Clusters 175 175 175 73 73
Observations 34,944 34,944 34,944 8,320 8,320

Note: We weight crop regressions by annual county-level acreage. Outcome for corn and soybean
is log of crop yield per planted acre. We derive airborne sulfate measures from the APEEP
atmospheric transport model using ARP-regulated power plant-level SO2 emissions as inputs.
Monitor pollutant measures come from air monitor data we aggregate to the county level. Land
Use Regression (LUR) data are from the Center for Air, Climate and Energy Solutions (CACES).
See Section 7.1 for details.
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Figure A-1
Correlation Between Airborne Sulfates and Sulfur Deposition
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Note: We generate predicted sulfate levels using boiler-level SO2 emissions and the APEEP
atmospheric conversion matrix which takes as inputs SO2 and provides as output estimated
sulfates, which include sulfate and ammonium sulfate. Sulfur deposition data are from the Clean
Air Markets Division, Clean Air Status and Trends Network (CASTNET). Data shows raw values
across multiple sensors and multiple years with a simple correlation. We match deposition
monitors to atmospheric sulfates using county of monitor.
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Figure A-2
Analysis Counties by Outcome

SO2 Sulfates

Corn Soy

Note: Graphs shade counties used in our main regressions for each noted outcome east of 100
degrees longitude. See Section 3 for details.
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Figure A-3
County-Level Variation in Weighted Number of ARP Plants With Technology Upgrades
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Note:.Our measure of treatment is the number of sulfur control boiler upgrades installed at
ARP-treated power plants, weighted by the APEEP atmospheric dispersion matrix for SO2
emissions to ambient sulfates, and multipled by 100,000 for ease of reading. See Section 4 for
details.
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Figure A-4
Trends and Event Studies in Other Pollutants
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Note: Event studies show the annual marginal effect of an additional unit of our treatment
measure as we describe in Section 4. We use 1994, the year prior to the enforcement of the ARP,
as baseline for comparison, and treatment levels in 1995 as our measure of marginal treatment
intensity. All estimates include 95% confidence intervals, where we cluster standard errors by crop
reporting district. Emissions data are from EPA air quality monitors, which we aggregate to the
county level.
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Figure A-5
Trends and Event Studies in Corn and Soybean Indemnity Collections
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Note: Trend figures show outcome trends split by above vs. below the median level of treatment
intensity in 1995 for all available counties east of the 100th degree meridian. Event studies show
the annual marginal effect of an additional unit of our treatment measure as we describe in
Section 4. We use 1994, the year prior to the enforcement of the ARP, as baseline for comparison,
and treatment levels in 1995 as our measure of marginal treatment intensity. All estimates
include 95% confidence intervals, where we cluster standard errors by crop reporting district.
Insurance indemnities are from the USDA REIS data.
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Figure A-6
Extended Outcomes

Sulfates
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Note: Event studies show the annual marginal effect of an additional unit of our treatment
measure as we describe in Section 4. We use 1994, the year prior to the enforcement of the ARP,
as baseline for comparison, and treatment levels in 1995 as our measure of marginal treatment
intensity. All estimates include 95% confidence intervals, where we cluster standard errors by crop
reporting district. We derive atmospheric sulfate projections using the APEEP transport model.
Corn and soybean outcomes are log of yield per planted acre from the USDA NASS. Crop
receipts are from BEA data and are divided by total crop acreage from the Census of Agriculture.
We linearly impute between-COA crop acreage at the county-level.
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Appendix B Sulfur as an Input and the Marginal Product

Despite its importance in the growth process, prior to the ARP testing yielded little gains

from the use of sulfur fertilizers, potentially because the sulfur deposition vector provided

sufficient baseline levels. Morrison (2009) notes research in the 1970s and 80s showed little

gains to application of additional sulfur, suggesting sulfur as an input had a low marginal

product. Figure B-1 illustrates a basic model for the marginal productivity of sulfur. If, after

sufficient ground sulfur, additional application yields no gains, the marginal productivity of

sulfur eventually zero and yields are unchanged even with additional application. After the

ARP, the sulfur flow decreased due to lower deposition, pushing the marginal product up

into a region of positive gains.

Appendix B.1 Sulfur Deficiencies and Agricultural Productivity Before the

Acid Rain Program

Agricultural science suggests both the stock and flow of sulfur are important. Crops draw soil

sulfur, which needs replenishment to maintain high growth yields. Sulfur loss can also occur

through water drainage and irrigation, which can be more of a problem in high drainage soils.

Productive regions may start with large amounts of ground sulfur, but absent replenishment,

could lose productivity over time due to sulfur deficiencies. Such deficiencies appear as

stunted growth and yellowed leaves due to a lack of chlorophyll coloring (Sawyer, 2004;

Stevens et al., 2002).

While there is no consensus regarding the association between the ARP and sulfur de-

ficiencies, a 2007 North Carolina State University report from the College of Agricultural

and Life Sciences, SoilFacts: Sulfur Fertilization of North Carolina Crops, specifically notes,

“Today [sulfur] deficiency may be more of a concern due to several factors that farmers may

not have considered: 1) tighter air quality standards for atmospheric emissions mean less
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sulfur falls onto the landscape [. . . ]”.34 Through this channel, in the absence of adaptive

behavior, ARP-associated reductions in soil-level sulfur flows may lead to reduced output.

Research from the 1970s and 1980s found little benefit to using sulfur fertilizer (Mor-

rison, 2009). By the mid-2000s, experiments suggested a newly-found positive relationship

between additional sulfur and yields for most crops studied (Camberato, Maloney and Cas-

teel, 2012), presenting a shift from prior findings that sulfur levels were sufficiently high

without additional fertilizers (Sawyer et al., 2009). In addition to the ARP, a number of

industry changes could explain shifts in baseline sulfur flows. Adoption of newer fertilizer

and pesticide technologies, both with decreased sulfur content compared to older versions,

removed a common flow of ground sulfur over time. Field burning, now less common, was

another potential mechanism for returning sulfur to the soil for the following season.35

Sulfur flow also came in the form of acid raid and general sulfuric deposition, which

decreased substantially with the CAAA. As of yet, there is little work on how the CAAA,

and specifically the ARP, affected agricultural through this channel. The EPA considered

the effect the program had via benefits of O3 reductions, and estimated gains in crop yields

between 1990 and 2010 valued at approximately $7.5 billion due to reductions in O3 (see the

Appendix of EPA (1999)). In a follow-up 2008 report, the EPA further discussed theoretical

effects of sulfur and oxides of nitrogen on plants, but did not expand models to the assessment

of the ARP due to a lack of valuation studies linking said pollutants to the productivity of

agricultural land (EPA, 2008). Extension literature began writing of a potential link between

the ARP and sulfur deficiencies during the late 2000s. The following quotes (from reports

by the Purdue University Department of Agronomy, the Cornell University Cooperative

Extension, and North Carolina State University) show a recent move to the hypothesis of a

potential link between the ARP and reduced sulfur:

34Extension report E07-50255 , available online at http://www.soil.ncsu.edu/publications/

Soilfacts/AG-439-63W.pdf.
35“The Skinny of Sulfur”, Agronomy Insider, 3/05/2015.
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Sulfur deficiency of corn and other crops may be becoming more prevalent because
less [sulphur] is deposited from the troposphere to the soil due to reductions in
power plant [sulphur] emissions. (“Sulfur Deficiency in Corn”, 2012)36

Since the Clean Air Act was passed in 1970, emissions of sulfur dioxide have
decreased dramatically resulting in reduced sulfur deposition in many parts of
the state. (“Sulfur for Field Crops”, 2007))37

There are several factors that have resulted in the increasing number of cases
where sulfur is being diagnosed as deficient or limiting in young corn plants.
First, there is the fact that we have had an extended period of frequent and
intense rainfall events starting in the fall of 2002 and continuing through the
spring of 2003. Since sulfur is a mobile nutrient and is water soluble, this sulfur
in the upper soil profile (top 2 to 4 inches) has been leached into the lower rooting
zone. The reduction in sulfur emissions brought about by the clean air act means
that these same rainfall events are not replacing the sulfur leached [. . . ] (“Sulfur
Deficiency Symptoms in Emerging Corn, 2003)38

Yellow striping on corn leaves is more prevalent this year than in the past, possibly
because of sulfur deficiency in the soil, says a Purdue Extension soil fertility
specialist.

Yellow, green-yellow or yellow-white striping on the leaves of corn plants can
indicate a variety of nutrient deficiencies or other damage, said Jim Camberato.
Analysis of soil and tissue samples shows that many cases of striping are due to
sulfur deficiency.

“We used to get quite a bit of sulfur from rainfall. The power plants would burn
coal that had sulfur in it, so sulfur would be deposited in rainfall or absorbed
directly from the air by the soil,” Camberato said. “But over the last 20-25
years, these emissions have been reduced, so perhaps now the amounts in rainfall
and atmosphere deposition are low enough that plants are not getting enough
that way anymore.” (“Soil fertility specialist says yellow striping in corn may be
linked to sulfur deficiency”, 2016)

Appendix B.2 Trends in Agriculture Around the Time of the ARP

Figure B-2 shows the long-run trend in both corn and soybean output across time — in

both cases, yields per acre have been regularly increasing. Around the time of the ARP,

36Camberato, Maloney and Casteel (2012)
37Place et al. (2007)
38http://www.ces.ncsu.edu/plymouth/cropsci/docs/sulfur.html.
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productivity and prices were volatile both nationally and globally. Figure B-3 shows the

global price of corn and soybean across time (in 2015 dollars). Weather drove supply losses

and price spikes in the 1990s, as did sharp changes in demand on global markets. China

left the corn export market in 1994, leading to speculative price increases. By early 2000,

prices had returned to 1994 levels (Stevens, 1999). Our research design controls for these

confounders to the extent they affect all areas in a similar fashion over time. There was

a drought in 1991 and a combination of freezes, unusual rainfall, a Midwestern flood, a

drought, and insects in 1993 (Kliesen, 1994; Lott, 1994). A high-production year followed in

1994, but yields fell again in 1995 due to heat waves and late planting seasons. Starting in

1996, yields stabilized, followed by a number of consistently high-yield years (Stevens, 1999).
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Figure B-1
Potential Model of Sulfur Inputs
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Note: Panel A shows potential relationship between the marginal product of sulfur inputs and
sulfur levels from both applied fertilizers and provision via deposition. Panel B shows potential
relationship between the output and sulfur levels from both applied fertilizers and provision via
deposition. “Pre-ARP” and “Post-ARP” present potential levels corresponding with pre- and
post-regulatory soil sulfur levels in a field.
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Figure B-2
Historical Log Annual Crop Yield
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Note: Historic crop data are in log yield per planted acre. Data come from the U.S. Department
of Agriculture’s National Agricultural Statistical Service.
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Figure B-3
Historical Global Prices for Corn and Soy
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Note: Global price data come from the International Monetary Fund historic primary commodity
data and are inflated to 2015 dollars.
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Appendix C Cost Calculations

Our primary independent variable is airborne sulfates as predicted using the APEEP at-

mospheric transport model. This includes both SO4 and (NH4)2SO4. To convert this to a

measure of ground deposition of SO4, we use data from the EPA Clean Air Markets Divi-

sion, Clean Air Status and Trends Network (CASTNET) Total Deposition data. We merge

ground deposition monitors to air sulfate measures using monitor county information. We

then run the following regression, which includes year fixed effects, county fixed effects, and

a county-specific linear year trend:

SO4 = βsulfates+ δyear + λ1county + λ2countyXtrend.

We find β = 0.6835, which implies each additional µg/m3 of airborne sulfates correlates with

an additional 0.68 pounds of ground SO4 deposition.

To convert this reduced SO4 to reduced crop yields, we use data on how much sulfur each

crop removes from the soil — our assumption is that removing S deposition is equivalent to

preventing crop take-up of the required sulfur. The Purdue University Soil Fertility Update

(July 11, 2017) notes that soybean removes about 0.17 pounds of sulfur per bushels of grain,

and corn grain is around 0.05 pounds per bushel. This suggests that each µg/m3 of airborne

sulfates lost reduces yields per acre by:

0.68/0.05 = 13.6 corn bushels per acre

0.68/0.17 = 4 soybean bushels per acre

To calculate replacement costs, we use data on fertilizer use and price from the Economic

Research Service in the United States Department of Agriculture. While they do not have
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direct data on pure sulfur costs, they do track ammonium sulfate, which is 24% sulfur.

We assume to replace a pound of sulfur, producers must purchase 4.17 (1/0.24) pounds of

ammonium sulfate. To find average cost per county to replace lost sulfur, we multiply the

price of ammonium sulfate by the lost sulfur per acre by the number of acres for each relevant

crop. This provides us with an approximate county-level measure of the replacement cost of

lost sulfur.

To calculate lost crop receipts, we first repeat our primary reduced form regressions using

levels of corn and soybean yields per acre. We find a per-unit reduction of 3.99 corn bushels

per acre and 1.61 soybean bushels per acre. As pricing data are often in tons, we convert

our bushel measure to tons: data suggest approximately 40 bushels per ton for corn and 37

bushels per ton for soybean. This implies the average county lost approximately 0.04 tons

of corn yield per acre and 0.02 tons of soybean yield per acre. To obtain total lost revenues,

we multiply these values by the price per ton in a given year and the number of acres in a

given county-year.
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