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1 Introduction

Theoretical and empirical analyses of supply in differentiated product markets usually as-

sume that firms have complete information (CI) and set prices to maximize their current

profits. If an alternative is considered, it is typically tacit collusion with repeated CI stage

games, which, in the empirical literature is often modeled using a “conduct parameter”

(Bresnahan (1982), Lau (1982), Nevo (1998)) where each firm uses a standard CI Nash

first-order conditions except that some weight is placed on the profits of its rivals. These

CI formulations are tractable and, under appropriate assumptions, they are econometrically

identified (Berry and Haile (2014)).

However, assuming that firms have CI about all factors that may affect their rivals’

pricing choices is a strong assumption. Public companies closely guard information about the

profitability of individual product lines and government agencies presume that information on

revenues, costs and margins is competitively sensitive and highly confidential during antitrust

investigations even while they use models that assume CI to model market outcomes. There

is also surprisingly little evidence that CI oligopoly models accurately predict qualitative or

quantitative changes in pricing behavior after structural changes in market conditions, such

as the consummation of a merger.

It is clearly important to know whether predictions would change, in a material way, if

the CI assumption is relaxed. A natural assumption for an economist is that, when firms

have privately-observed state variables, a firm will try to learn from its rivals’ choices (i.e.,

their prices) about those variables, in order to try to more accurately predict how those

rivals will price in the future. If this happens, then firms may also have incentives to distort

2



their prices in order to affect what their rivals will expect.

We develop models where this logic applies. Specifically, we will assume that each firm has

a payoff-relevant state variable, such as its marginal cost, which is positively but imperfectly

serially-correlated and unobserved by rivals. Prices are perfectly observed. We will consider

fully separating equilibria where, in equilibrium, a firm’s chosen price perfectly reveals its

current cost, and beliefs have a simple form. In these equilibria, all firms that do not have

the lowest possible marginal cost set prices above static best response levels to credibly

signal this information to their rivals. This can, in turn, cause static best response prices to

increase, and signaling prices to rise further, a positive feedback that can raise equilibrium

prices significantly above static CI Nash levels even when there is limited uncertainty about

costs, as well as generating significant price volatility. We provide examples where private

information about 1% of marginal costs, which applied economists would likely view as small

enough to ignore, leads to prices 10% higher than they would be under complete information.

While Mailath (1989) shows that our mechanism can raise prices in a two period model, we

believe that we are the first to show these effects may be large (in a two period model they

are typically small), and the first to take this type of model to data.

We apply our model to horizontal mergers. When an oligopoly market becomes more

concentrated, the incentives of all firms to invest in raising their rivals’ prices by signaling

tend to become stronger. This leads our model to typically predict larger price increases

than the CI Nash models that are currently used for quantitative merger analysis. We find

large effects when all firms are symmetric, and when the merging firms are different to rivals.

We calibrate our model using data from the U.S. beer market around the time of the

2008 Miller-Coors (MC) joint venture (JV). After the JV, MC and its larger domestic rival
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Anheuser-Busch (AB) increased prices by similar amounts. Miller and Weinberg (2017)

(MW) show that this is inconsistent with static CI Nash behavior, which would predict that,

if the merging parties raise their prices, non-merging firms would respond with smaller price

increases. MW use the observed price changes to estimate a conduct parameter, interpreted

as reflecting post-merger tacit collusion by domestic brewers, and Miller, Sheu and Weinberg

(2020) (MSW) use the price change to calibrate a model of price leadership, in which the

JV raises prices by relaxing incentive compatibility constraints.

Our calibration takes a different approach. We calibrate the parameters of our model

using only pre-JV data, and show that it predicts how much AB and MC’s prices increase

after the JV, as well as several qualitative changes in price dynamics. We are not aware

of previous retrospectives that have considered changes in price dynamics. If we assume

that brewers have private information about the “per mile” efficiency of their distribution

networks, then our model can also explain significant, and newly identified, changes in cost

pass-through by the domestic brewers after the JV. In contrast, CI models, with or without

changes in conduct, fail to match several patterns in the data.

The novelty of our analysis leads to several limitations which future work may relax.

First, we assume that each firm has exactly one privately-known state variable and can send

exactly one signal per period. This restricts the types of mergers that we can consider,

although our assumptions are reasonable in our application. Second, we only consider fully

separating equilibria, even though we also find that these may not exist for some parameters.

Sweeting et al. (2022) consider pooling equilibria in a game where the merging parties have

private information about a synergy. Third, while we present evidence against particular

collusive models, collusion cannot be rejected more generally because folk theorems imply
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that some collusion model is likely to be able to explain any observed change in pricing.

However, we can conclude that tacit collusion is not a necessary ingredient of an explanation

for what happened in the beer data.

After a review of the related literature, Section 2 presents our model and equilibrium

concept. Section 3 presents examples and illustrates the implications for merger analysis.

Section 4 provides our empirical application. Section 5 concludes. Several Appendices,

intended for online publication, detail our computational algorithms, additional examples,

proofs of existence and uniqueness for a model with linear demand, our data and additional

empirical analyses.

Related Literature. Shapiro (1986) and Vives (2011) examine how equilibrium prices and

welfare change when marginal costs are private information in one-shot oligopoly models.

Most of our focus will be on models where marginal costs lie in quite narrow intervals and

the static effects that these papers identify are very small. A large theoretical literature has

considered one-shot signaling models where only one player has private information. The

classic Industrial Organization example is the Milgrom and Roberts (1982) limit pricing

model, where an incumbent monopolist may lower its first period price to deter entry in a

two-period game. Sweeting, Roberts and Gedge (2020) (SRG) develop finite and infinite-

horizon versions of this model where an incumbent monopolist’s type changes over time, as

we will assume in this paper.1 They calibrate the model and show that it can explain why

incumbent airlines dropped prices by as much as 15% when Southwest threatened entry on

monopoly routes.

1Kaya (2009) and Toxvaerd (2017) analyze one-sided, dynamic signaling games where the informed firm’s
type is fixed, and, in equilibrium, the informed firm signals until its reputation is established.
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There are important differences between this paper and SRG, despite the common interest

in signaling. Price effects are large in SRG because (i) marginal costs are estimated to be

very persistent, (ii) entry causes a large permanent decrease in profits, and (iii) the assumed

entry process implies that successful deterrence in one quarter can be expected to preserve

monopoly for several years. The current paper considers a more common setting (price-

setting oligopoly) and a more policy relevant application (mergers). In equilibrium, a signal

in one period only raises its rivals prices in the next period. Instead, we obtain quite

large price effects, even with parameters that imply limited correlation in costs, because of

feedbacks that exist when rivals are simultaneously signaling. These feedbacks are absent in

SRG.

The literature on games where multiple players signal simultaneously is limited.2 Mailath

(1988) identifies conditions under which a separating equilibrium will exist in an abstract

two-period game with continuous types, and shows that the conditions on payoffs required for

the uniqueness of each player’s separating best response function are similar to those shown

by Mailath (1987) for models where only one player is signaling (Mailath and von Thadden

(2013) generalize these conditions). Mailath (1989) applies these results to a two-period

pricing game where differentiated firms have static linear demands and marginal costs that

are private information but fixed. Firms raise their prices in the first period in order to try to

raise their rivals’ prices in the second period. We rely on Mailath’s results to characterize best

response signaling pricing functions, and we will focus on the magnitude, empirical relevance

and implications of the equilibrium effects in multi-period settings with more standard forms

2Bonatti, Cisternas and Toikka (2017) analyze linear signaling strategies in a continuous-time Cournot
game where each firm’s marginal cost is private information and fixed, but firms cannot perfectly observe
the quantities that their rivals choose. We will assume that prices are perfectly observable.
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of differentiated product demand.3 Mester (1992) extends this approach to a three-period

quantity-setting model where marginal costs change over time, and she shows that signaling,

which leads to increased output in this case, happens in the first two periods.

Fershtman and Pakes (2012) and Asker et al. (2020) take an alternative approach to

dynamic games with asymmetric information. Assuming discrete states and actions, they

reduce the computational burden using the concept of Experience-Based Equilibrium (EBE)

where firms have beliefs about their payoffs from different actions rather than rivals’ types.4

Our equilibrium concept is more standard, and the computational burden is reduced by

focusing on fully separating equilibria in continuous action games.

Our paper is partly motivated by the horizontal merger retrospectives that often identify

price increases after consummated mergers (Ashenfelter, Hosken and Weinberg (2014)) and

that merger simulations and other calculations that assume CI Nash, such as pricing pressure

indices, predict poorly (Peters (2009) and Garmon (2017)).5 This leads naturally to the

question of whether alternative models can do better at explaining the effects of mergers.

3Caminal (1990) considers a two-period linear demand duopoly model where firms have private informa-
tion about the demand for their own product, and also raise prices to signal that they will set higher prices
in the final period.

4The rest of the literature on dynamic games, following Ericson and Pakes (1995) and Pakes and McGuire
(1994), has assumed that players observe all state variables, apart from iid shocks to the payoffs from different
actions, eliminating any role for signaling.

5Ashenfelter, Hosken and Weinberg (2014) note that retrospectives have not typically found price in-
creases in banking. Interestingly, the Mester (1992) analysis of a Cournot oligopoly model with asymmetric
information was explicitly motivated by a desire to explain why, contrary to the predictions of Nash and
tacit collusion models, concentration appeared to lead to more competitive behavior in banking.

7



2 Model

2.1 Specification.

A fixed set of N risk-neutral firms play a discrete time game with periods, t = 1, ..., T , where

T ≤ ∞. The discount factor is β = 0.99 unless otherwise stated. If a firm sells multiple

products, we will assume that they have identical demands and realized marginal costs,

and are sold at a single price. There may be commonly known differences in demand and

marginal costs across firms, but exactly one dimension of a firm’s type is private information.

All firms observe current and past prices.

We will consider two different formulations of types which we will use for different pur-

poses. Our explanation of the model, our empirical application and several examples will

assume that a firm’s type can take any value on a known compact interval [θi, θi]. We will use

a model where types can take two discrete values, θi and θi, when we want to explore what

happens for many different parameters or different numbers of firms as the computational

burden is lower. In both cases, types evolve exogenously, and independently according to

a first-order Markov process, ψi : θi,t−1 → θi,t. This assumption is consistent with most

treatments of productivity changes in the structural production function literature following

Olley and Pakes (1996).

Within-Period Timing. In each period t of the game, timing is as follows. Firms enter

period t with their t − 1 types, which then evolve according to ψi. Firms observe their

own new types, but neither the previous nor the new types of other firms.6 Each firm

6Our fully separating equilibria would be unchanged if t− 2 types were revealed.
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simultaneously chooses and commits to its price, pi,t, with no menu costs. Demand is static

and time-invariant, and one period profits are πi(pi,t, p−i,t, θi,t) and we assume that ∂πi
∂p−i,t

> 0

for all −i.

Assumptions. For the continuous type game, we make the following assumption which

implies types are positively, but not perfectly, serially correlated, in the sense that the

likelihood of a higher type increases in the previous period’s type.

Assumption 1 Type Transitions for the Continuous Type Model. The conditional

pdf ψi(θi,t|θi,t−1)

1. has full support, so that the type can transition from any value on the support to any

other value in a single period.

2. is continuous and differentiable (with appropriate one-sided derivatives at the bound-

aries).

3. for any θi,t−1 there is some θ′ such that
∂ψi(θi,t|θi,t−1)

∂θi,t−1
|θi,t=θ′ = 0 and

∂ψi(θi,t|θi,t−1)

∂θi,t−1
< 0 for

all θi,t < θ′ and
∂ψi(θi,t|θi,t−1)

∂θi,t−1
> 0 for all θi,t > θ′.

We will consider fully separating equilibria where each firm will have a correct belief

about each rival’s previous period type. For convenience, we assume that beliefs about types

in t = 1 have the same structure.

Assumption 2 Initial Period Beliefs. Firms know what their rivals’ types were in a

fictitious prior period, t = 0.
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2.2 Fully Separating Equilibrium in a Finite Horizon and Contin-
uous Type Game.

We now describe the equilibrium for a game with two ex-ante symmetric single-product

duopolists.

Final Period (T ). In the final period, firms use Bayesian Nash Equilibrium (BNE) strate-

gies that maximize their expected payoffs given their own types, their beliefs about their

rival’s type and their rival’s strategy. If firm j believes that firm i’s period T − 1 type was

θ̂ji,T−1 and j’s period T pricing function is Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1)

7, then a type θi,T i will set

a price

p∗i,T (θi,T , θj,T−1, θ̂
j
i,T−1) = argmax

pi,T

∫ θj

θj

π(pi,T , Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1), θi,T )ψ(θj,T |θj,T−1)dθj,T .

Earlier Periods (1, .., T − 1). In earlier periods, i may choose not to set a static best

response price in order to affect j’s belief about its type. The equilibrium concept that we

use is symmetric Markov Perfect Bayesian Equilibrium (MPBE) (Toxvaerd (2008), Roddie

(2012)). An MPBE specifies period-specific pricing strategies for each firm i as a function

of its current type and beliefs, where the strategy maximizes i’s payoff given the current and

future pricing strategy of its rivals. It also specifies how beliefs are formed given observed

pricing histories, and, on the equilibrium path, beliefs should be consistent with Bayes Rule

and equilibrium pricing strategies. If there are multiple rivals, they should have consistent

beliefs given an observed history. While only current types and prices are directly payoff-

7This notation reflects the fact that we are assuming that player j used an equilibrium strategy in T − 1
that revealed its type (θj,T−1), but we are allowing for the possibility that firm i may have deviated so that
j’s beliefs about i’s previous type are incorrect.
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relevant, history can matter in this Markovian equilibrium because of how it affects beliefs.

We will only consider fully separating MPBEs where, in every period, a firm’s equilibrium

pricing strategy perfectly reveals its current type, and j’s belief about i’s current type will

come from inverting i’s pricing function.

Characterization of Separating Pricing Functions in Period t < T . We character-

ize fully separating pricing functions by defining a firm i’s period-specific “signaling payoff

function”, Πi,t(θi,t, θ̂
j
i,t, pi,t), following Mailath (1989) who shows how to apply the results in

Mailath (1987) to this problem. Πi,t is the present discounted value (PDV) of firm i’s ex-

pected current and future payoffs when its current type is θi,t, it sets price pi,t and j believes,

at the end of period t, that i has type θ̂ji,t. Π
i,t is assumed to be continuous and at least twice

differentiable in its arguments. It is implicitly conditional on (i) j’s period t pricing strategy,

which will depend on j’s beliefs about t− 1 types, and (ii) both players’ strategies in future

periods. As j’s end-of-period t belief about i’s type enters as a separate argument, pi,t only

affects Πi,t through period t profits. Given conditions on Πi,t that will be listed in a moment,

the fully separating best response function of firm i, which is also implicitly conditioned on

j’s current pricing strategy and beliefs about previous types, can be uniquely characterized

as follows (see Appendix C for a restatement of the Mailath (1987) theorems): i’s pricing

function will be the solution to a differential equation where

∂p∗i,t(θi,t)

∂θi,t
= −

Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

) > 0, (1)
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and a boundary condition. The subscript n in Πi,t
n denotes the partial derivative of Πi,t with

respect to the nth argument. Assuming that lower types want to set lower prices (e.g., a

type corresponds to the firm’s marginal cost), the boundary condition will be that p∗i,t(θi) is

the solution to

Πi,t
3

(
θi, θ̂

j
i,t, pi,t

)
= 0, (2)

i.e., the lowest type’s price maximizes its static expected profits given j’s pricing policy.

The numerator in (1) is i’s marginal future benefit from raising j’s belief about θi,t, and the

denominator is the marginal effect of a price increase on i’s current profit. For prices above

a static best response price, the denominator will be negative, and the pricing function will

slope upwards in the firm’s type.

This characterization of a separating best response will be valid under four conditions on

Πi,t, in addition to continuity and differentiability,

Condition 1 Shape of Πi,t with respect to pi,t. For any (θi,t, θ̂
j
i,t), Π

i,t
(
θi,t, θ̂

j
i,t, pi,t

)
has

a unique optimum in pi,t, and, for all θi,t, for any pi,t where Πi,t
33

(
θi,t, θ̂

j
i,t, pi,t

)
> 0, there is

some k > 0 such that
∣∣∣Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

)∣∣∣ > k.

Condition 2 Type Monotonicity. Πi,t
13

(
θi,t, θ̂

j
i,t, pi,t

)
̸= 0 for all (θi,t, θ̂

j
i,t, pi,t).

Condition 3 Belief Monotonicity. Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
is either > 0 for all (θi,t, θ̂

j
i,t) or

< 0 for all (θi,t, θ̂
j
i,t).

Condition 4 Single-Crossing.
Πi,t

3

(
θi,t,θ̂

j
i,t,pi,t

)
Πi,t

2

(
θi,t,θ̂

j
i,t,pi,t

) is a monotone function of θi,t for all θ̂ji,t

and for (θi,t, pi,t) in the graph of p∗i,t(θi,t, θj,t−1).
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To interpret these conditions, assume that types correspond to marginal costs. The first

condition will be satisfied if, for any marginal cost and distribution of prices that the rival

may set, a firm’s expected current period profit is quasi-concave in its own price. This will

hold for common forms of differentiated product demand such as the multinomial and nested

logit models. Type monotonicity requires that, when a firm increases its price, the profit

that it loses will be lower if it has higher marginal costs. This will hold for constant marginal

costs. Belief monotonicity requires that a firm’s expected future profits should increase when

rivals believe that it has a higher cost, holding its actual cost fixed. This condition may fail

(Appendix B.1.2 analyzes a two-type example). Single-crossing requires that a firm with a

higher marginal cost should always be more willing to raise its price, reducing its current

profits, in order to raise its rivals’ beliefs about its marginal cost. This condition can also fail.

For completeness, we also need to define beliefs that a firm will have if the rival sets a price

that is outside the range of the pricing function (i.e., a price that is not on the equilibrium

path). When types correspond to marginal costs, we will assume that when a firm sets a

price below (above) the lowest (highest) price in the range of the pricing function, it will be

inferred to have the lowest (highest) possible cost type.

Existence and Uniqueness of a Fully Separating Equilibrium. These conditions

guarantee the existence and uniqueness of fully separating best responses with continuous

types, but they are not sufficient for the existence or uniqueness of a fully separating MPBE

in the whole game. When marginal costs are private information, Mailath (1989) does prove

existence and uniqueness in a two-period duopoly game with linear demand. Appendix C

extends this result to a multi-period finite horizon game, assuming that the marginal cost
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interval (θ−θ) is small enough so that a single-crossing condition holds when prices rise. No

proofs are available in infinite horizon games. In our empirical application, we will assume

nonlinear demand and, to reduce the computational burden, an infinite horizon. We will

therefore proceed without proofs of existence or uniqueness. Appendix A details how we

compute equilibrium strategies, and verify belief monotonicity and single-crossing as part of

the algorithm. We will discuss examples where we cannot find any separating equilibrium

below. However, we have only ever found a single equilibrium in finite horizon games and

infinite horizon games with continuous types.

In a two-type model, even best responses may not be unique. Our two-type examples

therefore apply, during computation, a refinement by solving for the strategies that achieve

separation at the lowest cost to the signaling firm. This is consistent with the type of

“intuitive criterion” (Cho and Kreps (1987)) refinement that has been widely used in one-

sided signaling models with two types. However, even with the refinement, we have found

examples of multiplicity in infinite horizon games with two types, so our results may be

dependent on the algorithm that we use.8

3 Examples

This section uses examples to illustrate the equilibrium effects of signaling, and how equilib-

rium prices change with the number of firms, mergers, discount factors and asymmetries.

8In infinite horizon examples where we have found multiplicity, our computational algorithm appears to
consistently identify an equilibrium that is the limit, as the number of periods grows, of the equilibrium in
the early periods of a finite-horizon game.

14



3.1 Equilibrium Strategies in a Finite Horizon, Continuous-Type
Duopoly Example.

Specification. Two ex-ante symmetric single-product firms play a finite horizon game

with T = 25 periods. There is nested logit demand, with both products in one nest, and

the outside good in its own nest. Consumer c’s indirect utility from buying product i is

ui,c = 5 − 0.1pi + σνc + (1 − σ)εi,c where pi is the dollar price, εi,c is a draw from a Type I

extreme value distribution, σ = 0.25, and νc is an appropriately distributed draw for c’s nest

preferences. For the outside good, u0,c = ε0,c. We will set market size equal to 1, so that our

welfare numbers have a “per-potential consumer” interpretation.

Firm marginal costs are private information. For each firm, ci,t lies in the interval [c, c] =

[$8, $8.05] and evolves according to an independent and exogenous truncated AR(1) process

ci,t = ρci,t−1 + (1− ρ)
c+ c

2
+ ηi,t, (3)

where ρ = 0.8 and ηi,t ∼ TRN(0, σ2
c , c − ρci,t−1 − (1 − ρ) c+c

2
, c − ρci,t−1 − (1 − ρ) c+c

2
).

σc = $0.025. TRN denotes a truncated normal distribution, whose arguments are the mean

and the variance of the untruncated distribution, and the lower and upper truncation points.

We note two features of this parameterization. First, marginal costs are restricted to a

narrow range (diverging by less than 0.32% from mean value) and the probability that a

firm will switch from a relatively high cost to a relatively low cost within the range between

periods is quite high (the probability that a firm with cost c has a cost less than c+c
2

in the

next period is 0.32). This limits what can be inferred about a firm’s next period marginal

cost from any signal. Even though this limits signaling incentives, we find large equilibrium
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Table 1: Equilibrium Prices and Welfare in the Duopoly Game

Expected Welfare Measures
Per Market Size Unit

Nature of Mean Std. Dev. Cons. Producer Total
Period Equilibrium Price Price Surplus Surplus Welfare
T-24 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-13 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-10 MPBE $24.75 $0.47 $30.92 $15.95 $46.87
T-7 MPBE $24.68 $0.45 $30.98 $15.89 $46.88
T-4 MPBE $24.25 $0.36 $31.40 $15.51 $46.91
T-2 MPBE $23.38 $0.17 $32.23 $14.74 $46.97
T-1 MPBE $22.88 $0.06 $32.71 $14.29 $47.00
T BNE $22.62 $0.01 $32.96 $14.05 $47.01

Infinite Stationary $24.76 $0.47 $30.91 $15.96 $46.87
Horizon MPBE

Notes: except for the last row, all prices are based on equilibrium strategies in a
finite horizon model with parameters described in the text. The last line reports
results for the stationary strategies in an infinite horizon model with the same pa-
rameters.

effects. Second, the assumed demand parameters imply high margins and limited diversion

to the outside good in both static and dynamic equilibria. We will discuss how these features

contribute to the existence of a fully separating equilibrium with large price effects below.

Equilibrium Outcomes and Strategies. Table 1 shows expected price levels, the stan-

dard deviation of prices and various welfare measures when we simulate data using equi-

librium strategies in different periods of the finite horizon game. For comparison, expected

joint-profit maximizing prices and static Nash equilibrium prices under CI (given average

costs) are $45.20 and $22.62, with small standard deviations ($0.007 and $0.011). Signaling

MPBE prices are higher and more volatile than Nash prices in periods before T−1, although

prices never approach joint-profit maximizing levels.

Figure 1(a) shows four static BNE period T pricing functions for firm 2, for different
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Figure 1: Period T and T − 1 Pricing Strategies in the Finite Horizon, Continuous Type
Signaling Game

values of firm 1’s period T −1 marginal cost (c1,T−1), assuming that both firms know/believe

that c2,T−1 = $8. Firm 2’s price increases with c1,T−1 as firm 1’s expected period T price rises

with c1,T−1. However, the variation in firm 1’s prior cost affects firm 2’s price by less than

one cent, and, averaging across all possible cost realizations, average prices and welfare are

almost identical to outcomes with CI.9 Therefore the existence of asymmetric information

in the static period T game does not generate quantitatively interesting effects.

In period T −1 a firm has incentive to signal to affect its rival’s period T price. Assuming

9Expected producer and consumer surplus differ by less than $0.0001 across these models.
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Figure 2: Expected T − 1 Period Profit Function: c1,T−1 = $8.025 and c1,T−2 = c2,T−2 = $8
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Notes: the profit function is drawn “per potential consumer” for a firm assumed to have a marginal

cost of $8.025, and with a rival using the static BNE pricing strategy when both firms’ previous

period marginal costs were $8.

both firms’ period T − 2 costs were $8, Figure 1(b) shows firm 1’s signaling pricing function

(found by solving the differential equation (1) given the boundary condition (2)) if it expected

that firm 2 was using its period T strategy. We reproduce the period T pricing strategy for

comparison. The pricing functions intersect for c1,T−1 = $8, but signaling may lead firm 1

to raise its price by as much as 20 cents for higher costs. At first blush, this large increase

may seem surprising given that we know a signal can only affect firm 2’s T price by a small

amount. However, assumed demand implies that firm 1’s profit function, shown in Figure

2, is sufficiently flat that, if c1,T−1 = $8.025, the expected reduction in T − 1 profit from

using a signaling price of $22.76, rather than the statically optimal price, is only $0.00070

per consumer, which is less than the expected period T gain ($0.00079) from being viewed

as a firm with c1,T−1 = $8.025 rather than c1,T−1 = $8.0001, which would be firm 2’s belief

if firm 1 set the static price.

Figure 1(b) assumed that firm 2 was using its period T strategy with no signaling.
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Figure 3: Equilibrium Pricing Functions for Firm 1 in the Infinite Horizon Game and Various
Periods of the Finite Horizon Game.
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Notes: all functions drawn assuming that firm 1’s perceived marginal cost in the previous period

was $8.

Figure 1(c) shows firm 2’s best signaling response when firm 1 uses the strategy in Figure

1(b) (repeated in the new figure as a comparison). As firm 1’s expected price has increased,

firm 2’s static best response pricing function shifts upwards. Of course, this positive feedback

will cause firm 1’s pricing function to rise as well. Figure 1(d) shows the equilibrium period

T −1 pricing functions. The increase in the slope and the dispersion of the pricing functions

means that period T − 1 prices will be higher and more volatile than period T prices.

The increased vertical spread also means that period T − 1 prices are more sensitive to

perceived period T−2 costs which increases period T−2 signaling incentives. Figure 3 shows

a selection of equilibrium pricing functions for period T − 2 and earlier periods. The pricing
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functions become more spread out and the level of prices increases, although by successively

smaller amounts, in earlier periods. Further back than period T − 15 equilibrium pricing

functions and average prices barely change. The figure also plots the stationary pricing

strategies that we compute for an infinite horizon game with the same parameters. They are

indistinguishable from the strategies in the early periods of the finite horizon game.10

3.2 Cost Assumptions, Signaling Incentives and the Existence of
Separating Equilibria.

As noted, signaling incentives in the previous example are relatively weak because of the

limited correlation in marginal costs across periods. Increasing the AR(1) parameter or

c − c, or reducing σc, tends to increase signaling incentives and raise equilibrium prices.

However, when price increases are too large, the conditions for characterizing best responses

can fail and we may not be able to find a separating equilibrium.

The first six columns of Table 2 show, for different periods, the baseline average prices and

average prices when signaling incentives are strengthened. Small parameter changes raise

prices, but larger changes cause failures in our ability to find best response pricing functions.

Pooling or partial pooling equilibria may exist, but we do not know how to characterize

them. Appendix B.1.2 uses a two-type example to explain the failure of the conditions,

including belief monotonicity. The final column illustrates that we can sustain separating

equilibria if c − c and σc increase simultaneously, leaving the probability that a cost goes

from one extreme of the support to the opposite half of the support unchanged at 0.32. This

is relevant for our application, where the calibrated values of c − c and σc are much higher

10We have consistently found this convergence except in cases when the conditions required for separation
are violated or are very close to being violated in which case the infinite horizon strategies may not converge.
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Table 2: Equilibrium Pricing in a Finite Horizon Game with Alternative Cost Specifications

Reduce Expand Range

Baseline Expand Range Std. Deviation & Increase Std. Dev.

[c, c] ($) [8,8.05] [8,8.075] [8,8.15] [8,8.3] [8,8.05] [8,8.05] [8,8.50]
σc ($) 0.025 0.025 0.025 0.025 0.02 0.01 0.25

T-24 $24.76 $26.51 - - $25.71 - $24.90
T-10 $24.75 $26.59 - - $25.70 - $24.89
T-9 $24.74 $26.59 fails - $25.69 fails $24.89
T-8 $24.72 $26.57 $28.48 - $25.66 $28.58 $24.89
T-7 $24.68 $26.50 $29.17 fails $25.60 $28.76 $24.87
T-6 $24.61 $26.37 $29.35 $30.40 $25.49 $28.65 $24.85
T-1 $22.88 $23.05 $23.42 $23.93 $22.93 $23.05 $23.55
T $22.62 $22.63 $22.67 $22.74 $22.62 $22.62 $22.84

∞-Horizon $24.76 $26.50 fails fails $25.71 fails $24.90

Notes: values in all but the last line are based on the duopoly, continuous type, finite horizon model with
demand parameters described in the text (cost parameters indicated in the table). The last line reports
results for the stationary strategies in the infinite horizon model with the same parameters. “Fails” indi-
cates that the belief monotonicity or single-crossing conditions fail so that we cannot calculate signaling
best response pricing functions.

than in our baseline example.

Table 2 assumes that the cost parameters are the same for both firms. We have also solved

examples where duopolists have different cost parameters, finding that changes in average

prices typically depend on the parameters of the firm that has the narrowest cost interval

or the least correlated costs. For example, holding our other parameters fixed, when both

firms have ranges [8, 8.05] average equilibrium prices with signaling are $24.76. If we drop

the range of firm 2 to [8,8.01] then the average prices of both firms drop to close to $22.69

(the difference between their average prices is less than one cent), approximately 10 cents

above complete information prices. These prices are almost the same as when both firms

have intervals of [8,8.01]. We will return to this result in the context of cost pass-through in

our empirical application.
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3.3 Effects of the Number of Firms, Discount Factors and Asym-
metries on Equilibrium Prices.

We also investigate how the difference between complete information and signaling prices

varies with the number of firms and demand asymmetries.

Number of Firms. Figure 4(a) shows the average prices predicted by our signaling model

and a CI model as we vary the number of firms from 2 to 7. We use the two-type model, and

each firm has a single product. We assume the same demand system as previously. Each

firm’s marginal cost state is either 8 or 8.05, and changes between periods with probability

0.3. We present results using a finite horizon model, solving backwards for at least 30 periods,

adding additional periods until the strategies converge.11 This guarantees that there will be a

unique equilibrium in the CI game. We test whether our results are sensitive to the assumed

discount factor by considering four lower values (0.5, 0.8, 0.9 and 0.95) as well as 0.99.

When N = 1, static monopoly pricing is always optimal so all specifications predict

identical prices. When N = 2, average prices with signaling are 15.3% above CI Nash levels

when β = 0.99, and 9.4% higher when β = 0.8, illustrating how discount factors consistent

with annual, or even less frequent, pricing can generate significant effects. As N increases,

signaling effects diminish, as an individual firm’s incentive to signal is reduced when its price

will have smaller effects on the future pricing choices of other firms, and the cost of signaling

is increased as the firm’s demand become more elastic. However, at least until N = 6, price

effects are not trivial: for example, when N = 4 and β = 0.95, signaling prices are 2% higher

than CI prices.12

11Convergence is defined as a maximum difference in the pricing strategies across periods of less than 1e-4.
12We have also calculated average joint-profit maximizing prices under CI, and the critical discount factor
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Figure 4: Equilibrium Average Prices with Different Numbers of Firms and Alternative
Discount Factors in a Two-Type Model, and the Effect of Demand-Side Asymmetries with
Three Firms.

(a) Average Prices with Symmetric Single-Product Firms.

(b) Increase in Share-Weighted Average Prices Relative to CI Nash in a Three Firm Model with
Demand Asymmetries.
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Demand Asymmetries. We use a three firm, two-type model to compare signaling and

CI Nash prices when firms have asymmetric demand. We keep our previous assumptions

about costs. The nesting and price demand parameters are unchanged, but we choose the

firm-specific indirect utility intercepts so that, with average marginal costs for each firm and

static CI Nash prices, the three firms have specific shares of sales and 97.5% of potential

consumers make a purchase, implying limited substitution to the outside good.

Figure 4(b) shows the increase in the share-weighted average price relative to CI Nash,

with the circle areas indicating the magnitudes that are also written in the figure, where

the share of the largest firm and the split of the shares of the other firms are represented

on the axes. The price increase in the symmetric 3-firm model is 4.6% (bottom-left circle).

The percentage increases are largest when the industry is closest to an effective duopoly, but

they are significant in other cases as well. For example, when the CI shares of total sales are

{0.68, 0.24, 0.08}, average signaling prices are 5.3% higher than average CI Nash prices. In

this example, it is the firm with the second largest share that increases its average price the

most, in both dollar and percentage terms (10.0%).

3.4 Mergers and Merger Analysis.

The previous results show that signaling leads to larger price increases when there are fewer

firms. We therefore consider the effects of horizontal mergers in more detail, also motivated

by how the merger simulation and pricing pressure methods used by agencies assume CI

Nash pricing.

that would sustain collusion with Nash reversion trigger strategies if the game had an infinite horizon. For
example, with N = 4, joint-profit maximizing prices of over 49 could be sustained if β > 0.62.
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Figure 5: Effects of an Unanticipated Merger in a Two-Type Model.

(a) Increases in Average Prices with Symmetric Single-Product Firms Before and After the Merger.

(b) Increases in Average Prices in a Four Firm Model where Merged Firm Has Two Products after
the Merger and Benefits from the CI CMCR. Missing values indicate that a separating equilibrium
was not found before or after the merger.
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Figure 5(a) reports the increase in average firm prices after an unanticipated merger of

two firms which eliminates a product without generating synergies, using the same symmetric

firm specifications as Figure 4(a). As signaling has no effect on monopoly prices, CI Nash

predicts the largest price increase under a merger to monopoly. Outside of this case, the

signaling model predicts larger absolute post-merger price increases in all cases, and larger

percentage price increases when the discount factor is large enough.

It is more common to assume that a merged firm will continue to sell both products

after a merger, and that synergies are possible. As tractability requires that the merged

firm’s products will have identical prices and marginal costs after a merger, we will consider

mergers between symmetric single product firms, but allows rivals to be asymmetric. We

will also assume that the width of the cost interval and the evolution process for costs remain

the same, even if marginal cost levels change due to a synergy.

Figure 5(b) shows how signaling increases share-weighted average prices (across all firms)

after mergers in asymmetric 4-firm industries. The pre-merger model extends the example

used for Figure 4(b) to an additional firm. The x-axis indicates the combined (CI Nash)

market share of the two symmetric merging firms before the merger (so 0.5 means that each

firm makes 25% of sales), while the y-axis shows the split of the remaining CI sales between

the two remaining firms. We assume that the merged firm’s average marginal costs decrease

by the Compensating Marginal Cost Reduction (CMCR) implied by a CI Nash model, so

that, under that model, equilibrium prices would not change. The price increases in the

figure would therefore be unanticipated by an agency using a CI Nash analysis.

After a merger in a symmetric four-firm industry, signaling increases prices by 3.13%.

The size of the price increase is much larger when one of the non-merging firms has a much
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Table 3: Post-Merger Prices and Required Synergies in an Infinite Horizon Continuous-Type
Model. Firms are symmetric before the merger, and the merged firm sells two products after
the merger.

4-to-3 Merger 3-to-2 Merger

Pre-Merger Average Prices $18.25 $19.79

Post-Merger Average Price of Merged $21.53 (+18.0%) $27.18 (+37.3%)
Firm if No Marginal Cost Synergy

Post-Merger Average Price of Non- $19.12 (+4.8%) $23.59 (+19.2%)
Merging Firm if No Marginal Cost Synergy

CI CMCR $4.95 $10.08

Merged’s Firm Post-Merger Average Price with $18.85 (+3.2%) $23.00 (+16.2%)
CI CMCR Synergy in Signaling Equilibrium

Marginal Cost Reduction Required to Keep Merged $5.76 $19.94
Firm’s Average Price from Rising in Signaling Equilibrium

Notes: parameterization described in the text. Note that the CI CMCR is the marginal cost reduction that an
analyst would compute using the true demand system, observed (signaling) pre-merger signaling prices and a
CI Nash assumption.

larger market share (the upper rows in the figure). The intuition is that, when the prices of

the merging products become more sensitive to both the merged firm’s costs and the prices

set by rivals, the prices of a dominant rival will also become significantly more sensitive,

creating a feedback that can lead to substantial equilibrium price effects. A feature of our

model is that, after a merger with a synergy, the prices of non-merging firms can rise as

much or more than those of the merging firms, which will not happen in a static CI Nash

model where the static best response functions have slopes less than one. For example,

if pre-merger sale shares are {0.325,0.325,0.33,0.02}, the equilibrium average prices of the

merging products rise by 10.6%, and the large rival increases its average price by 12.9%. The

small rival’s average price increases by 1%.

These patterns also imply that, if firms use signaling strategies, synergies may need to
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be much larger than the CMCRs to prevent average prices from rising.13 We illustrate by

extending our infinite horizon continuous-type model to allow for up to four firms, with our

previous demand and cost assumptions. Firms are symmetric before the merger, but, after

the merger, the merged firm has two products. Table 3 shows the effects of 4-to-3 and 3-to-2

mergers. With no synergy, either merger leads to both the merging firms and the non-merging

firms increasing their prices substantially. Very large synergies are required to prevent the

merged firm’s price from rising. For a 3-to-2 merger, the merged firm’s average marginal

cost would have to fall from $8.025 to -$11.915, i.e., an essentially impossible reduction.

3.5 Additional Examples.

Appendix B describes additional examples. For instance, Appendix B.1.1 uses the two-type

duopoly model to examine the relationship between the existence of separating equilibria,

the effects of signaling on prices, the serial correlation of costs and the extent to which, when

a firm’s price rises, demand is diverted to the outside good. The results suggest that the

degree of diversion to the outside good is critical to both the existence of signaling equilibria

and the magnitude of signaling effects.

Appendix B.2 shows that price effects can also be substantial when each firm’s marginal

cost is fixed and known, but some other state variable that affects payoffs is unobserved and

serially correlated (e.g., a feature of demand or the weights that a manager places on firm

profits and revenues). Our results therefore extend beyond the case of uncertain marginal

costs.

13In a CI Nash model, CMCR synergies will keep the prices of all firms at their pre-merger levels. With
signaling, even if a synergy keeps the average prices of the merged firm at their pre-merger level, the prices
of the non-merging rivals may increase. In the example we consider here, we just focus on the average prices
of the merged firm.
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4 Empirical Application: The MillerCoors Joint Ven-

ture

In this section, we test whether our model can explain changes in price levels, and price

dynamics in the U.S. beer industry around the time of the 2008 MC JV, which was an

effective merger of the second- and third-largest US brewers.14 Section 4.1 motivates our

analysis of this setting, and Section 4.2 explains our calibration of our model, and a CI

alternative, using only pre-JV data. Section 4.3 compares our calibrated model’s predictions

to changes observed after the JV. In order to keep our discussion focused on our model,

details of the data, which is the same as used by MW, demand estimation and additional

analysis of CI collusive supply models are contained in Appendix D.

4.1 Motivation.

We choose the MC JV as our application for two broad reasons. First, key features are

consistent with the assumptions that we have to make for tractability. Specifically, we

model competition between AB, Miller and Coors, as firms selling single products before the

JV, with Miller and Coors having symmetric demands, and we assume Miller and Coors have

identical costs and prices after the JV. These three firms dominated the “subpremium” and

“premium” segments of the beer industry, and there is no empirical evidence that post-JV

retail price increases for the domestic brands caused significant substitution to higher-priced

imported or craft beer alternatives (Appendices D.3 and D.5). The leading merging brands,

Miller Lite (ML) and Coors Light (CL), had very similar national market shares and retail

14Anheuser-Busch was purchased by InBev in 2008. Throughout this section and the Appendices, we will
use AB to refer to Anheuser-Busch before 2008 and Anheuser-Busch InBev afterwards, and we will assume
that this transaction had no effect on AB’s pricing incentives.
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Figure 6: Average Prices for Flagship Brand 12-Packs in Three Markets. Panels (a)-(c) show
nominal weekly average prices for 48 months around the JV, excluding sales at temporary
price reductions.

prices before the JV (Appendix D.3), and, while the largest brewers sell many products, their

retail prices tend to be highly correlated (Appendix D.6). After the JV, MC produced ML

and CL in the same breweries, and, in most markets, their prices were more correlated than

before the JV, as can be seen in Figure 6(a)-(c) (see Appendices D.6 and D.7 for alternative

measures).

Second, there are several features of the price data that our model can potentially explain,

some of which are inconsistent with the tacit collusion models that have been applied to this

data. The first feature, identified by MW, is the similar increase in the real prices of all

domestic brands, including AB’s, after the MC JV despite plausible efficiencies (Ashenfelter,

Hosken andWeinberg (2015)) that a CI analysis would have expected to offset price increases.

Regressions in Appendix D.4 quantify these price increases to lie between 40 cents and a
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dollar per 12-pack, or 3%-6%, depending on the specification.15 As discussed in Section 3.4,

our model can explain why non-merging firms increase their prices as much, or more, than

non-merging firms. Of course, a model of collusion could also explain this fact, but, as we

discuss below, there are features of the data that the specific collusion models considered in

the literature cannot explain.

The second and third features are serial correlation and volatility in average retail prices

both before and after the JV. Figure 6(a)-(c) show monthly average nominal retail prices

(calculated as dollar sales divided by units sold) for Bud Light (BL), ML and CL 12-packs

in two local markets and nationally. We present nominal prices so that the picture is not

distorted by the drop in the CPI deflator (footnote 15). Sales at prices indicated as temporary

price reductions are excluded when calculating the series, as these may create volatility

that does not reflect changes in wholesale prices. Appendix D.7 presents alternative price

measures. Appendix Figure D.6 shows that the marginal cost residuals implied by MW’s

preferred CI supply model are also volatile and serially correlated. In our model, some

volatility in marginal costs can lead to significantly greater volatility in prices, as well as an

increase in price levels and volatility after the JV. In contrast, tacit collusion models tend

to imply price rigidity (Athey, Bagwell and Sanchirico (2004)).

The fourth feature is an apparent change in the rate of pass-through of transportation

costs after the JV. Suppose that distribution costs equal trucking distance multiplied by

a “per mile” measure of distribution network efficiency, reflecting, for example, average

capacity utilization in each truck, which is private information and evolves over time. Our

15The interpretation of this price increase is potentially complicated by a fall in the CPI-U deflator,
from 220.0 in July 2008 to 210.2 in December 2008, that occurred simultaneously with the merger being
consummated.
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model would predict that, after a merger that strengthens signaling incentives, the prices

of all signaling firms may increase more in markets that are located further from breweries.

This signaling effect could counteract efficiencies created by the JV reducing transportation

distances for some markets.

Table 4 reports price regressions that we use to measure changes in pass-through. The

sample, which includes 13 brands made by domestic brewers and two importers, Grupo

Modelo and Heineken, is the same as the one used in MW’s Tables II and III, except that we

include additional pack sizes (18- and 36-packs, which account for more than 20% of domestic

brewer sales by volume) and we exclude the June 2008-May 2009 period, which MW exclude

in their Table II, in all regressions. Observations are at the brand-size-market-month level

and the dependent variable is the real price (in dollars) per 12-pack equivalent, and, for

comparison purposes, it is useful to keep in mind that the JV increased real domestic prices

by 40 cents to one dollar per 12-pack. Appendix D.10 shows that the results are similar

using a log price specification. All specifications include date fixed effects, and various

combinations of product and market fixed effects, but measure distances in different ways.

The first column estimates how the brewery-to-market trucking distance, measured in

thousands of miles, affects retail prices before and after the JV, controlling for pre-/post-JV

product (i.e., brand-size) fixed effects, market fixed effects and date fixed effects. We estimate

pre- and post-JV distance coefficients for imported products and each domestic brewer. The

coefficients show that domestic prices were significantly more sensitive to distance after

the JV, while this is not the case for imported products. The coefficients are also quite

large given that, for example, the average post-JV distance for Miller is 316 miles with

standard deviation 269 miles, and a range of over 1,000 miles. As there is little evidence
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Table 4: Distance Pass-Through Regressions: Real Price Per 12-Pack for all Pack Sizes

(1) (2) (3) (4) (5) (6) (7)
Distance Own Own × Own Min. - Own Min.
Measure Diesel Domestic Domestic

Distance Measure ×
AB -0.319 -0.059

(0.180) (0.068)
Imports 0.470 0.109

(0.185) (0.043)
Coors 0.194 0.109

(0.067) (0.021)
Miller -0.143 0.008

(0.102) (0.038)
Post-JV × Own Distance ×
AB 0.629 0.197 0.569 0.868 0.290 0.635

(0.314) (0.102) (0.313) (0.232) (0.304) (0.275)
Imports -0.198 -0.064 -0.132 0.305 -0.221 0.076

(0.189) (0.042) (0.160) (0.249) (0.168) (0.277)
Coors 0.560 0.156 0.718 0.789 0.611 0.538

(0.144) (0.047) (0.134) (0.200) (0.133) (0.246)
Miller 0.796 0.233 0.785 0.905 0.686 0.662

(0.149) (0.042) (0.152) (0.228) (0.137) (0.266)
Post-JV ×
Reduction Coors Distance -0.377 -0.443 -0.360

(0.201) (0.196) (0.212)
Mkt HHI Increase Due to JV 2.327 2.330 2.147

(2.731) (2.652) (2.810)
Post-JV × Domestic ×
Reduction Coors Distance -0.078 0.126 0.047

(0.133) (0.137) (0.144)
Mkt HHI Increase Due to JV 3.019 2.633 1.810

(2.554) (2.401) (2.179)

Fixed Effects Pre/Post× Pre/Post× Product× Product× Product× Product× Product×
Product Product Market Market Market Market Market
Market Market Pre/Post× Pre/Post× Pre/Post× Pre/Post × Pre/Post×

Product Product Product Product Product

Observations 191,909 191,909 191,909 191,909 191,909 191,909 191,909
R-squared 0.927 0.926 0.957 0.957 0.957 0.957 0.957

Notes: standard errors, clustered on the market, in parentheses. See text for discussion of the sample. Date
fixed effects in all specifications.
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of significant demand substitution to imported products, we view the imported brands as

providing a comparison group whose signaling incentives may not have changed after the

JV. We interpret the coefficients as being consistent with the domestic firms engaging in

signaling about network efficiency, with incentives to signal becoming stronger after the JV.

In column (2), we use distance multiplied by the real price of diesel as the distance

measure. Average real diesel prices in the two years before and after the JV were very

similar. While the scale of the coefficients changes, the pattern remains the same. The

remaining columns use distance-only based measures, although the results are qualitatively

similar using the distance×diesel price variable.

Column (3) includes product-market fixed effects, and the post-JV distance coefficients

should be interpreted as reflecting how post-JV price increases vary with trucking distances.16

Even though there are no distance changes for AB products after the JV, and for only a

small number of markets for Miller products, the coefficients imply that the size of price

increases are related to trucking distances for these firms, and not for imports.

As noted in Section 3.2, price increases in the signaling model are often most sensitive to

the smallest range of cost uncertainty for the firms playing the game. Column (4) therefore

uses the smallest trucking distance for the domestic brewers as the distance measure. The

magnitude of the AB coefficient increases in size and significance.

MW estimate regressions where post-JV price increases depend on the JV-induced truck-

ing distance reduction for Coors products and the increase in market HHI (measured between

0 and 1). The values of the HHI are higher in our analysis because we include additional

16In the MW data there are handful of small distance changes for markets before the JV, and the post-JV
distance coefficients are unchanged if additional pre-JV distance coefficients are estimated.
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pack sizes that are primarily sold by the domestic brewers. Specification (5) show that these

variables are correlated with price changes for all products, although these effects are not

systematically different for domestic and imported products. Specifications (6) and (7) re-

peat specifications (3) and (4), but including these variables. Five out of six domestic own

and minimum distance coefficients continue to be significant.

One might ask whether the increased sensitivity of pricing to own distance could be ex-

plained by a model of tacit collusion, as well as our model. For instance, more collusive

conduct might potentially change the rate of cost pass-through. We investigate this possi-

bility by taking the marginal costs implied by MW’s supply-side conduct model estimates

(specifically their monthly RCNL-1 model in Table VI), and regressing them on post-JV dis-

tance measures for each brewer with brand-size-market, brand-size-post JV and date fixed

effects. The specification is therefore similar to Table 4 col. (3), except that the dependent

variable is implied marginal costs (in real dollars), rather than real retail prices. If changes

in conduct determined the change in distance pass-through then the post-JV×distance co-

efficients should now be zero. Instead, the Miller, Coors and AB coefficients are 0.433 (s.e.

0.171), 1.414 (0.466) and 0.430 (0.394) respectively. Therefore, MW’s estimated change in

conduct is not sufficient to explain the change in pass-through.

One can also show that other features of the MW conduct model and MSW’s price

leadership model can be rejected. For example, Appendix D.12 extends MW’s supply-side

analysis to provide evidence against MW’s assumption of Nash pricing before the MC JV and

MSW’s assumption of incentive-compatible domestic supermarkups. Of course, a different

collusive model might explain the changes in pass-through and the changes in price dynamics

that we describe below. One might also argue that only a collusive model is consistent with
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remarks, cited by the Department of Justice (DOJ), in AB’s Conduct Plan that describe its

pricing as aiming to create “consistent and transparent competitive response” and to achieve

the “highest level of followership.”17 We do not agree with this interpretation. In our model,

price signals are motivated by a desire to affect rivals’ future prices, and signaling relies on

rivals interpreting and responding to signals appropriately. It is notable that there is no

mention of the Conduct Plan discussing the types of threatened punishments that collusive

models rely on.

4.2 Calibration of the Dynamic Asymmetric Information Model.

We calibrate an infinite horizon, continuous marginal cost three-firm/product version of our

model to match several moments in the pre-JV data. We also calibrate a CI model that

assumes that firms use static Nash pricing strategies. We limit the computational burden by

treating local markets as different repetitions of the same game, rather than as games with

different cost and demand primitives.18

Products. We model the pricing of three brands, which we label BL, ML and CL. We cali-

brate the cost parameters to match the prices and price dynamics of these flagship products,

but the prices of brands within a firm’s portfolio (e.g., Budweiser and BL) are highly corre-

lated (Appendix D.6) so one can interpret the products are representing domestic brewers’

portfolios. Products of other brewers are included in the outside good.19

17See https://www.justice.gov/atr/case-document/file/486606/download.
18Computationally light two-step approaches, which are often used to estimate dynamic games, require

that all serially-correlated state variables, which in our setting would include beliefs, are observed by the
researcher.

19In an earlier version of this paper we calibrated a model that included imports as a non-signaling fringe
in a separate nest. The calibrated model predicted that their prices changed by around 1 cent when the JV
raised domestic prices by 70 cents or more.
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Demand. We assume static, time-invariant nested logit demand, with the three brands

in the same nest. For our baseline specification, the four parameters (the nesting and price

parameters, and the mean utility intercepts of BL and ML/CL) are chosen so that, at average

real pre-JV prices ($10.09 for BL and $9.95 for ML/CL), the market shares of BL and ML/CL

are 28% and 14%, the average own price elasticity is -3 and, when a brand’s price increases,

85% of the demand that it loses is diverted to the two remaining brands.20 The implied

nesting and price parameters are 0.772 and −0.098, and the BL and ML/CL mean utilities

are 1.044 and 0.863 respectively. We will also calibrate specifications with alternative price

elasticities and diversions, but Appendix D.11 presents estimates from richer demand models

that are consistent with our assumed baseline values.

Marginal Costs. The marginal costs of brand i, ci,t, are assumed to lie on an interval

[ci, ci + c′] and to evolve according to an AR(1) process

ci,t = ρci,t−1 + (1− ρ)
ci + ci + c′

2
+ ηi,t (4)

where ηi,t ∼ TRN(0, σ2
c , ci − ρci,t−1 − (1 − ρ)

ci+ci+c
′

2
, ci + c′ − ρci,t−1 − (1 − ρ)

ci+ci+c
′

2
). σc

is the standard deviation of the untruncated innovation distribution. We calibrate the five

parameters cBL, cML/CL, c
′, ρ and σc. We have also fitted a model where ρ, σc and c

′ vary

across BL and ML/CL, but this only improves the fit slightly.

Objective Function, Matched Statistics and Identification. We calibrate the cost

parameters using indirect inference (Smith (2008)). For a given guess, we solve the model

20These assumed shares overstate the share of BL relative to ML and CL, but understate the share of AB,
relative to Miller and Coors, in the beer market and the light beer segment.
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(see Appendix A.2) and simulate time-series of prices to calculate six statistics/regression

coefficients that we match to equivalent statistics from the data. The objective function

to be minimized is g(θ)′Wg(θ). g(θ) is a vector where each element k has the form gk =

1
M

∑
m τ

data
k,m − τ̂k(θ) where τ

data
k,m is the statistic estimated from the observed data and τ̂k(θ)

is its simulated data equivalent. Our reported results use identity weighting matrices W ,

although, because we match all of the moments almost exactly, alternative W s give similar

calibrated parameters. Minimization uses fminsearch in MATLAB (version 2018a), which

takes between 12 and 24 hours. Standard errors are calculated treating different markets

before the JV as independent observations on the same game.

The six data statistics are calculated using series of average prices from each geographic

market from January 2001 to the announcement of the JV in October 2007. Our baseline

specification uses weekly data and the five most common pack sizes (6, 12, 18, 24 and 30-

packs).21 Market-week-brand-size average real prices per 12-pack equivalent are calculated

excluding temporary store price reductions, and using only market-weeks where we observe

more than five stores. The first two statistics that we match are prices for BL and ML,

averaged across pack sizes and weeks. The third statistic is a measure of the dispersion

of BL prices, calculated as the interquartile range of the market-specific residuals from a

regression where we regress average BL market-week-size prices on dummies for the specific

set of stores observed in the market-week (interacted with pack size), to control for fixed

cross-store differences in retail prices, and week-size fixed effects, to control for national

promotions.

21Our model does not have different pack sizes, market heterogeneity, varying sets of stores or time trends,
so the regressions using simulated data do not control for these factors. See Appendix D.2 for a discussion
of the sample selection.
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Table 5: Pre-JV AR(1) Price Regressions Using Prices for All Pack Sizes for Flagship Brands,
Excluding Temporary Price Reductions

(1) (2) (3)
Dep. Var pBL,t pML,t pCL,t

pBL,t−1 0.451 0.056 0.043
(0.033) (0.017) (0.010)

pML,t−1 0.030 0.409 0.016
(0.011) (0.036) (0.014)

pCL,t−1 0.027 0.021 0.461
(0.012) (0.015) (0.040)

Mean Price ($) 10.08 9.95 9.94
SD Residuals ($) 0.184 0.221 0.197

Observations 36,659 36,670 36,700
R-squared 0.979 0.972 0.978

Notes: include time period×pack size interactions and fixed effects for the set of stores in the sample. De-
pendent variable is the market-week average average price for a specific pack size (sizes containing volumes
equivalent to 6, 12, 18, 24 and 30 12 oz. containers included). Data from January 2001 to the announcement
of the JV. Standard errors, clustered on the market, are in parentheses. The “SD Residuals” statistic is the
standard deviation of the residuals from the regression.

The remaining statistics are coefficients from market-brand-specific regressions where

weekly brand-size prices are regressed on the lagged prices of all three brands, dummies for

the specific set of stores observed in the market-week (interacted with pack size) and a linear

time trend. We match the averages of ρML,ML
m and ρCL,CLm , ρBL,CLm and ρBL,ML

m , and ρML,CL
m

and ρCL,ML
m .

Table 5 shows the coefficients from a similar regression that pools data from all markets

for our baseline sample (weekly, 5 pack sizes, excluding temporary price reductions). The

serial correlation own-price coefficients are between 0.41 and 0.46, while the cross-product

coefficients are positive but smaller. We will also calibrate our model using alternative

samples (see Appendix D.8 for the corresponding regressions). If we include temporary price

reductions, the own-price coefficients fall, consistent with many price reductions lasting only

one week, and the coefficients are larger if we use only 12-packs. When we use monthly data
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we can no longer include fixed effects for the specific set of stores in the sample, so we instead

use market fixed effects. This causes the correlation coefficients to increase, which leads, as

we note later, to our calibrated model implying stronger signaling incentives. Appendix D.8

also shows that when we estimate market-specific coefficients, we tend to estimate larger

own- and cross-product coefficients in markets where the three largest domestic firms have a

larger combined share of the beer market. While our calibration ignores this variation, this

pattern is consistent with our model as serial correlation in simulated data tends to increase

when there is less substitution to the outside good, as one would expect when the signaling

firms have higher market shares.

Assuming that our model has a unique equilibrium, the intuition for the identification

of the cost parameters is straightforward.22 Given the assumed demand parameters and the

observed price levels, the mark-ups implied by the model will identify the lower bounds on

brand marginal costs. The AR(1) coefficients and the dispersion of prices will identify the

range of costs and the parameters of the cost innovation process. We will compare additional

statistics that are not targeted to understand the fit of the model. We also calibrate the

cost-side parameters of a model where firms use CI Nash strategies using the same procedure

and moments.

22The possibility that our game has multiple equilibria may create two issues for estimation. First, the
objective function may be hard to minimize if our solution algorithm jumps between different sections
of the equilibrium correspondence. In practice, we can match our moments almost exactly across many
alternative parameterizations. Second, another equilibrium supported by different parameters might give
similar predictions to the equilibrium that our algorithm finds. This is essentially a potential identification
problem. Here we have to rely on the fact that we have never found multiple equilibria in continuous-type
games, although we suspect that they may exist for some parameters.
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Table 6: Calibrated Parameters for Seven Specifications.

(1) (2) (3) (4) (5) (6) (7)
Model Signal Signal Signal Signal Signal Signal CI Nash
Data Frequency Week Week Week Week Week Month Week
Sizes All 12 only All All All All All
Temp. Price Red. Excl. Excl. Incl. Excl. Excl. Excl. Excl.
Mean Brand Price Elasticity -3 -3 -3 -2.5 -3.5 -3 -3
Mean Flagship Diversion 85% 85% 85% 90% 80% 85% 85%

Lower Bound Cost for BL $5.259 $5.278 $4.845 $4.248 $5.973 $4.616 $5.439
(cBL) (0.222) (0.048) (0.046) (0.043) (0.026) (0.127) (0.010)
L.B. Cost for ML/CL $6.426 $6.528 $5.984 $5.786 $6.874 $5.711 $6.631
(cML/CL) (0.094) (0.014) (0.022) (0.024) (0.017) (0.020) (0.058)

Width Cost Interval $0.600 $0.752 $1.246 $0.556 $0.672 $1.793 $0.672
(ci−ci) (0.043) (0.021) (0.018) (0.102) (0.026) (0.037) (0.097)
Cost AR(1) Parameter 1.178 0.939 0.850 1.222 0.959 0.742 1.088
(ρ) (0.028) (0.011) (0.026) (0.013) (0.012) (0.025) (0.038)
SD Cost Innovations $0.262 $0.278 $0.566 $0.260 $0.270 $0.400 $0.278
(σc) (0.031) (0.001) (0.050) (0.104) (0.026) (0.052) (0.086)

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Standard errors in parentheses. The data
specifications using weekly data include group-of-store fixed effects when calculating the data statistics. For
the monthly specification, the regression using the data only include market fixed effects. Flagship diversion
refers to the proportion of lost demand that switches to the other two products when the price of one of the
product increases.

4.3 Calibration Estimates and Counterfactuals

Parameter Estimates and Model Fit. Table 6 reports the calibrated parameters for

six signaling models, where different demand parameters are assumed or different price series

are matched. Column (1) is our baseline signaling model specification and column (7) shows

the calibrated parameters for a CI specification that uses the same inputs. The estimated

σc in column (1) implies that the probability that a firm may transition from the highest

marginal cost to below the mean cost is 0.24, which is similar to the 0.32 we used in our

examples, even though the width of the cost support is wider. As the CI Nash model does not

have the feature that signaling exaggerates what cost volatility implies for price volatility,

the estimated CI model has a wider calibrated support for costs and slightly more volatile
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Table 7: Model Fit for Three Specifications Using Weekly Data, Average Brand Price Elasticity
of -3 and Flagship Diversion of 85%

Data Freq. Week Week
Pack Sizes All 12-Packs Only
Temp. Price Red. Excluded Excluded

Data Signal. Model CI Model Data Signal Model

Targeted Moments

Mean pBL $10.09 $10.09 $10.09 $10.30 $10.30
Mean pML $9.96 $9.96 $9.96 $10.22 $10.22
Mean ρML,ML, ρCL,CL 0.402,0.413 0.408 0.407 0.468,0.450 0.444
Mean ρBL,ML, ρBL,CL 0.082,0.066 0.074 -0.000 0.102,0.056 0.076
Mean ρML,CL, ρCL,ML 0.051,0.036 0.046 0.005 0.065,0.026 0.035
IQR pBL $0.189 $0.189 $0.189 $0.185 $0.212

Non-targeted Moments

Mean pCL $9.95 $9.97 $9.97 $10.20 $10.23
ρBL,BL 0.444 0.403 0.412 0.442 0.418
Mean ρML,BL, ρCL,BL 0.059,0.0.42 0.038 -0.002 0.065,0.040 0.038
SD of BL Res. $0.177 $0.107 $0.111 $0.136 $0.122
SD of ML/CL Res. $0.204,$0.189 $0.156 $0.139 $0.161,$0.149 $0.179
IQR pML, pCL $0.222,$0.210 $0.273 $0.250 $0.228,$0.206 $0.316
Skewness of BL Res. -0.361 -0.353 -0.005 -0.307 -0.314

ML/CL Res. -0.100,-0.329 -0.331 -0.004 -0.296,-0.201 -0.297

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. SD = standard deviation. Res. = residuals
from the AR(1) regressions. The calculation of the data statistics is explained in Section 4.2, with the model
predictions based on simulating 10,000 periods of data. For the data we report separate values for the statis-
tics for ML and CL, but, because the model assumes that ML and CL are symmetric, and so predicts identical
statistics (ignoring simulation error), we match the average of these values during estimation and report a sin-
gle prediction.

cost innovations. As one would expect, when we assume more elastic demand, the levels of

calibrated marginal costs increase, and, when we include temporary price reductions in our

price series, calibrated costs become more volatile.

Table 7 reports the fit of the model for the column (1), (2) and (7) specifications. The

upper half of the table shows the targeted moments, which the signaling models match

accurately. The CI model predicts that the cross-brand ρs should be close to zero. The

lower half reports non-targeted moments, including the skewness of the innovations from the

AR(1) regression, which is higher-order than the targeted moments. The signaling models
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Table 8: Predicted Average Prices Before and After the MC JV For Signaling
Model

(1) (2) (3) (4) (5) (6)
Frequency Week Week Week Week Week Month
Sizes All 12 only All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl.
Brand Elasticity -3 -3 -3 -2.5 -3.5 -3
Flagship Diversion 85% 85% 85% 90% 80% 85%

Pre-JV Mean Prices
BL $10.09 $10.30 $9.81 $10.09 $10.09 $10.09
ML/CL $9.96 $10.22 $9.68 $9.96 $9.96 $9.95
Assumed ML/CL Marginal -$1.18 -$1.20 -$1.14 -$1.50 -$0.94 -$1.17
Cost Change
Post-JV Mean Prices
BL $10.62

(+5.3%)
$10.90
(+5.7%)

$10.17
(+3.7%)

$10.98
(+8.7%)

$10.42
(+3.3%)

fails

ML/CL $10.48
(+5.2%)

$10.79
(+5.8%)

$10.02
(+3.5%)

$10.82
(+8.5%)

$10.27
(+3.1%)

fails

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. For the data we report sep-
arate values for the statistics for ML and CL, but, because the model assumes that ML and
CL are symmetric, and so predicts identical statistics (ignoring simulation error), we report
a single prediction.

match all of the moments well, apart from some underprediction of the standard deviation of

price equation residuals for BL. The CI model fails to match the skewness of price innovations,

as well as the ρML,BL and ρCL,BL coefficients.

Predicted Effects of the JV and Comparison to Observed Outcomes. We re-solve

our model assuming that the JV benefits from a synergy that would keep its average prices

from rising in a CI Nash model, as this appears consistent with the DOJ’s expectation, and

that its owns two brands that it can produce with an identical marginal cost, and which it

sells at the same price. We assume that cBL, ρ, c
′ and σc do not change.

Table 8 shows the predicted prices for each brand before and after the JV for the six

signaling model specifications. Our synergy assumptions mean that our CI model would

predict no price changes. Consistent with what was observed, the price increases in columns
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Figure 7: Bud Light Equilibrium Pricing Strategies (for estimates in column (1) of Table 6).

Notes: the strategies shown assume that cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (lower line) and

cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (upper line). Therefore, for each type of equilibrium, the

maximum range of BL’s prices spans from the lowest point on the bottom line to the highest point

on the upper line.

(1)-(5) are above 3% and they are similar for the merging brands and BL. We have also found

that these predicted changes are robust to alternative assumptions about the discount factor,

as these alternatives also change the calibrated parameters.23 The conditions required for

separating strategies are violated in the monthly data counterfactual because the parameters,

which are calibrated to price series that do not control for cross-store differences in retail

pricing, imply stronger signaling incentives.

Figure 7 compares, based on the column (1) parameters, BL’s equilibrium pricing strate-

gies for the static Bayesian Nash 3-firm model, the estimated signaling 3-firm model and the

counterfactual post-JV model. Even though BL’s costs are unchanged, the greater respon-

siveness of ML/CL pricing causes BL’s prices to rise and become more volatile. The change

23For example, we recalibrated and recomputed column (1) assuming a weekly β = 0.998, rather than
β = 0.99, consistent with an annual discount factor of around 0.9. The predicted post-JV prices are within
1 cent of those reported in Table 8.
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Table 9: Observed and Predicted Changes in Price Dynamics for Calibrated Signaling Model
(Table 6, col 1) and the Calibrated CI Model (Table 6, col 7) with a Conduct Parameter
(θ = 0.15) to Predict the Same Change in Average Prices.

Calibrated CI Model
Data Calibrated Signaling Model with Conduct

Pre-JV Post-JV Change Pre-JV Post-JV Change Pre-JV Post-JV Change

IQR of Prices

BL $0.189 $0.241 +0.052 $0.189 $0.368 +0.180 $0.188 $0.220 +0.032
ML $0.222 $0.256 +0.034 $0.273 $0.369 +0.096 $0.249 $0.216 -0.033
CL $0.210 $0.244 +0.034 $0.273 $0.369 +0.096 $0.249 $0.216 -0.033
AR(1) Regression Coefficients

ρBL,BL 0.444 0.524 +0.080 0.403 0.440 +0.037 0.412 0.409 -0.002
ρML,ML 0.402 0.483 +0.081 0.408 0.439 +0.031 0.407 0.413 +0.006
ρCL,CL 0.413 0.453 +0.040 0.408 0.439 +0.031 0.407 0.413 +0.006
ρBL,ML 0.082 0.092 +0.010 0.074 0.149 +0.068 -0.000 0.002 +0.003
ρBL,CL 0.066 0.095 +0.029 0.074 0.149 +0.068 -0.000 0.002 +0.003
ρML,BL 0.059 0.087 +0.028 0.046 0.154 +0.108 0.004 -0.000 -0.005
ρCL,BL 0.042 0.080 +0.038 0.046 0.154 +0.108 -0.002 -0.000 +0.002

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. The calculation of the data statistics is ex-
plained in Section 4.2, with the model predictions based on simulating 10,000 periods of data. Pre-JV averages
are calculated for 45 markets, and post-JV averages are calculated for 44 markets, as one market does not have
at least 5 stores observed in consecutive weeks after the JV. The CI Model simulations use the parameter esti-
mates from Table 6, column 7, which assumes CI Nash pricing before the JV, but that after the JV the firms
use a conduct parameter of 0.15. These assumptions predict average BL and ML prices of post-JV $10.62 and
$10.46, which are almost identical to those predicted by the signaling model for the same demand system.

in the slope of the pricing functions is also consistent with a significant increase in the rate

of cost pass-through. After the JV, a 60 cent increase in BL’s unobserved cost raises BL’s

expected price by around 85 cents, compared to 40 cents before the JV.

We can also compare predicted and observed changes in price dynamics. Table 9 compares

the cross-market averages of the IQR and ρ parameter statistics before and after the JV in the

data, and the values predicted by the column (1) model. We also report the predicted values

for the CI model when we assume that, after the JV, the firms use first-order conditions with

a “conduct parameter” weight of 0.15 on the profits of their rivals. This weight is chosen so

that the CI model predicts the same increase in BL and ML/CL price levels as the signaling

model. The signaling model correctly predicts the sign of the changes in each of the reported
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statistics (i.e., more post-JV variation in prices and more own-brand and cross-brand serial

correlation), which is an encouraging result given that the calibration uses no post-JV data.

On the other hand, the CI-conduct model, which was also unable to match the cross-brand

ρs in the pre-JV data, predicts that the dispersion of prices for BL and ML/CL should move

in opposite directions, and that the AR(1) coefficients should hardly change at all.

5 Conclusion

Mailath (1989) showed that when duopolists have private information about marginal costs in

a two-period model, first period equilibrium prices can rise as they simultaneously signal. The

subsequent empirical and antitrust literatures have ignored how this mechanism can affect

prices, likely because it has been presumed that the small amounts of private information

could only have small effects on prices. This presumption is flawed, because of feedback

loops, where, within a period, signaling by one firm can cause rivals to raise their prices

even more, and where it becomes more attractive to invest in signaling when rivals will

be signaling in the next period. We find that, in multi-period and infinite horizon games,

the price effects of even small amounts of private information can be large in concentrated

industries, and that they could lead to mergers being much more harmful for consumers than

a CI Nash model would predict.

In the context of the beer industry, we find that our model can explain observed changes

in price levels after the MillerCoors joint venture, and that it can also explain changes in price

dynamics and cost pass-through which proposed models of collusion or changes in conduct

cannot. An important direction for future empirical research is to understand whether other
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mergers have been accompanied by changes in dynamics and pass-through, which could

provide a new window into testing different models of post-merger behavior.

As we focus on merger analysis, it is natural to ask how our model relates to the types of

“coordinated” and “unilateral” effects described in the Horizontal Merger Guidelines. The

Guidelines’ discussion of unilateral effects, and the types of upward pricing pressure and

merger simulation analyses that it suggests, considers the pricing incentives of the merged

firm when it takes rivals’ prices as fixed, and, when modeling equilibrium effects, it assumes

that rivals remain on their pre-merger best response functions. In our model, a merger

changes how non-merging firms set prices because their strategy choices depend, in part, on

how they expect the merged firm to respond.

While coordinated effects are often interpreted as referring only to explicit or tacit collu-

sion (Porter (2020)), Baker and Farrell (2019) and Farrell and Baker (2021) offer a broader

definition that includes “non-purposive” theories, such as the non-collusive CI Markov Per-

fect model of Maskin and Tirole (1988) where asynchronous price-setting leads to prices

that differ from Nash. Our model is also in this spirit, although it departs from CI and

is consistent with firms changing prices simultaneously. Importantly, these types of models

suggest that it may sometimes be appropriate to believe that a CI Nash model will under-

predict how much prices will rise after a merger even when an industry has no history of

explicit collusion, it does not have all of the features that are often listed as supporting tacit

collusion (Ivaldi et al. (2003)), and no documents discuss the types of “off-the-equilibrium

path” punishment threats that support higher prices in collusive models.
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