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1 Introduction and Literature Review

Return predictability remains a hotly debated topic. In the early financial economics literature, the

fact that short-horizon equity-index returns are largely unpredictable and return innovations highly

volatile was seen as a manifestation of a no-arbitrage condition, consistent with no predictability and

efficient markets; see, e.g., Fama (1970). This view started to change in the 1980’s with the recognition

that the relevant risk factors may vary over time and across the business cycle, implying that expected

stock returns must exhibit time-variation to retain an equilibrium risk-reward trade-off.

Theoretically, dynamic present value models stipulate that valuation ratios, such as the price-

earnings, dividend-price, or book-to-market ratios predict future equity returns; see, e.g., Lettau &

Ludvigson (2010) and Campbell (2018, Chapter 5). Similarly, equilibrium asset pricing models such

as the long-run risk model (Bansal & Yaron 2004), dynamic disaster model (Gabaix 2012) or regime-

switching CCAPM (Lettau, Ludvigson & Wachter 2008) suggest that returns are predictable by per-

sistent state variables, such as the mean and volatility of consumption growth or the time-varying

disaster recovery rate; see Neuhierl & Varneskov (2021). Nonetheless, the reliability of the empirical

findings and the design of appropriate econometric methodology remain highly contentious. For ex-

ample, the large-scale empirical study of Welch & Goyal (2008) concludes that skepticism regarding

genuine out-of-sample predictability is warranted. From a methodological perspective, the primary

complication is that many candidate regressors display a very high degree of persistence, inducing

severe finite-sample biases under standard regularity conditions. These problems are only recently

being addressed in a comprehensive manner, and the research continues unabated in the search for

techniques that deliver better finite-sample performance and improved robustness.

This section first highlights the pitfalls that arise when applying standard regression inference for

return predictions with persistent regressors, before reviewing potential solutions that have adopted

local-to-unity and related asymptotic settings. Finally, we explain how these ideas map into the long

memory framework developed in this paper and clarify what our main contributions are.

1.1 Standard Regression Inference

To illustrate the key methodological points in a concise manner, we follow Phillips (2015) by initially

considering the simplest form of a predictive regression, relating the future asset returns, yt, to a single

lagged predictor, xt−1, through a linear regression without an intercept,

yt = B xt−1 + υt , t = 1, . . . , n, (1)

where the innovations, υt, follow a martingale difference sequence (mds) with respect to the filtration

generated by the past observables in the system.1 Importantly, note that the notation and model

1These assumptions simplify the exposition. Nothing of essence changes, if returns are allowed to exhibit weak dependence
or to have an intercept. The mds assumption for the error term is consistent with the intuition that simple profitable
strategies, unrelated to systematic risk exposures, should be absent in liquid financial markets. Weakly dependent return
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specifications in this section are entirely expository. We will formalize our setting in Section 2.

If one invokes standard assumptions, including weak dependence and stationarity of the returns and

regressor, it is straightforward to test for return predictability via the ordinary least squares (OLS)

estimator B̂OLS =
∑n

t=1 ytxt−1/
∑n

t=1 x
2
t−1. The null hypothesis of no predictability implies B = 0,

and a regular t-test for significance will apply. However, many relevant predictors are inherently

stochastic and persistent. The impact of these features is studied by Stambaugh (1986), who amends

the predictive regression with an AR(1) representation for the regressor dynamics, so that the inference

problem is embedded within a closed system. In Stambaugh (1999), this approach is utilized to analyze

predictive return regressions. Specifically, ignoring the intercept, the regressor obeys,

xt = ϕnxt−1 + wt , t = 1, . . . , n, (2)

for a fixed initial value x0, where (υt , wt)
′ is an mds with E[υ2t ] = σ2υυ,E[w2

t ] = σ2ww, and E[υtwt] = συw.

Often, xt is assumed stationary, ϕn = ϕ < 1, even if the series is close to featuring a unit root.2

Invoking results of Kendall (1954) and Marriott & Pope (1954), Stambaugh (1986) establishes the

presence of a finite-sample bias, whenever the return and regressor innovations are correlated, that is,

συw ̸= 0. Marriott & Pope (1954) show that this endogeneity bias asymptotically (n → ∞), to first

order, equals −(συw/σ
2
ww)(1 + 3ϕ)/n, if the mean of xt is unknown a priori.3 For common predictors

like the dividend-price or the price-earnings ratio, the covariance συw is inevitably non-trivial due to

the joint dependence of y and x on the price innovation, while, as noted previously, ϕ is often close to

unity. Finally, because the return innovations are typically substantially larger than the innovations

in the regressor, inflating (συw/σ
2
ww), the bias may be substantial. This motivates Stambaugh (1986)

to implement a bias-correction, which is applied frequently in the subsequent literature.

Whether this endogeneity correction ensures satisfactory inference hinges on the quality of the

asymptotic approximation to the distribution for the regression coefficient, B̂OLS. In this regard,

the strong persistence of many candidate regressors points towards a potential “spurious regression”

problem, although the absence of strong return correlation may alleviate this concern. Still, under the

alternative hypothesis, B ̸= 0, the mean return inherits the persistence of the (true) regressor, even if it

likely will be disguised by the large return innovations. The theoretical justification for predictability

implies we should pay close attention to this scenario. Indeed, through extensive simulations under

carefully calibrated, strictly stationary, alternatives, Ferson, Sarkissian & Simin (2003) demonstrate

that a spurious regression problem is present, if the mean return is strongly persistent.4 Moreover, by

design, these simulations exclude correlations among the innovation series, so endogeneity and spurious

regression features may constitute separate confounding challenges for inference in practice.

innovations, uncorrelated with past innovations to the regressor, may be accommodated through a one-sided long-run
covariance correction term for most of the discussion below.

2The subscript n in the autoregressive coefficient ϕn is merely introduced for convenience at this point. It will be utilized
in the exposition below, however, when we move beyond the strictly stationary setting.

3Alternatively, if the mean is known (zero in our setting), the bias is given by the smaller quantity, −(συw/σ
2
ww)(2ϕ)/n.

4They further demonstrate that the spurious regression problem is absent under the null hypothesis of no predictability.
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The presence of a highly persistent mean return has implications beyond the need to adapt the

finite-sample inference accordingly. On the one hand, it improves our ability to identify the true

predictive relationship, as the signal-to-noise is enhanced, when we examine the “correct” regressor.

On the other hand, the concern about misleading inference is exacerbated by the high correlation

among many candidate regressors. If one is found significant, a number of others are also likely to

display predictive ability. This implies that a significant regressor does not necessarily capture the

“true” conditional mean dynamics of the returns, and the associated predictive relation should, at

best, be viewed as providing an “imperfect” or a noisy indicator for the conditional mean, which can

be interpreted as an omitted regressor problem. In the parlance of Pastor & Stambaugh (2009), we

have an imperfect predictor. It constitutes another feature we should seek to accommodate in the

design of suitable inference techniques. An additional implication, stressed by Ferson et al. (2003),

is that the existing evidence for predictability based on conventional inference procedures is subject

to a substantial “data mining” problem. Because many potential regressors have been examined and

there is a potentially significant inferential bias, many such predictors may appear significant – and

by extrapolation, so will many other regressors with which the original predictor is correlated.

A common response to the problems noted above is to turn towards longer-horizon regressions, as-

suming the persistent signal would be more readily identified in that setting. However, the same issues

surface in this setting, along with additional complications introduced by the use of overlapping obser-

vations. In fact, Boudoukh, Richardson & Whitelaw (2008), and more recently Kostakis, Magdalinos

& Stamatogiannis (2015), find that no significant gains are obtained through this approach.

1.2 The Local-to-Unit Root Approach

The inferential problems associated with persistent regressors under the alternative, B ̸= 0, have

spurred a large literature on techniques for improved asymptotic approximation schemes. A general

representation enabling an analysis for autoregressive coefficients near unity takes the form,

ϕn = 1 −
Cϕ

nδϕ
, Cϕ ≥ 0, 0 < δϕ ≤ 1. (3)

In particular, for Cϕ = 0, we obtain the regular unit root model, ϕn = 1, while Cϕ > 0 and δϕ = 1

yields the local-to-unit-root (LUR) specification, ϕn = 1 − Cϕ/n, which ensures that the asymptotic

distribution captures the effect of having a root in the vicinity of unity, irrespective of sample size.

The LUR representation for autoregressions is first analyzed in depth by Phillips (1986), while early

developments for the predictive regression setting are provided by Cavanagh, Elliott & Stock (1995)

and Valkanov (2003), with the latter focusing on applications in financial economics.

The LUR approximation to the asymptotic distribution in the near unit root scenario for the pre-

dictor has two important implications. First, the rate of convergence of B̂OLS increases to n, reflecting

the enhanced signal-to-noise ratio associated with unit root-style regressions. Second, inference gen-

erally becomes non-standard. Specifically, if συw ̸= 0, the interaction between the persistent regressor
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and the lagged return residual generates a random endogeneity bias that depends on Cϕ. Under the

LUR specification, the deviation of the autoregressive root ϕn from unity shrinks at the same speed as

the rate of convergence, rendering consistent inference for this coefficient infeasible. This implies that

Cϕ is an unidentified nuisance parameter, and the asymptotic distribution for B has a discontinuity

around unity, relative to the stationary case (ϕn = ϕ < 1), complicating inference in the absence of

prior knowledge about the underlying strength of the regressor persistence.

Various techniques have been developed to handle the inference problem above within the univariate

regression setting. The most common procedure is the construction of Bonferroni bounds, combining

the confidence intervals obtained across a range of relevant values for Cϕ, as explored systematically

by Campbell & Yogo (2006). The main shortcoming of this approach, as noted in Phillips (2014),

is the lack of robustness to the stationary scenario, ϕn = ϕ < 1. The latter scenario will entail

spurious rejections of the null hypothesis of no predictability with probability approaching one, as

the sample size increases. Instead, Phillips (2014) advocates reliance on the usual (asymptotically

centered) estimate for the autoregressive coefficient under stationarity in the construction of the LUR

Bonferroni bounds, as Mikusheva (2007) shows this leads to uniformly valid confidence intervals for

ϕn under a broad set of conditions. Moreover, the induced confidence bands are asymptotically valid

and provide a good approximation to the ones obtained under stationary asymptotics.5

However, even if the robust Bonferroni approach provides sensible inference in the case of highly

persistent regressors in univariate predictive regressions, it falters for multivariate predictive regres-

sions due to the complications associated with the handling of multiple distinct localizing coefficients.

Moreover, this limitation is shared by many of the other alternative inference techniques for univariate

predictive regressions, as reviewed by Phillips (2015). Consequently, in the next section, we turn to

an approach that has proven successful, also for cases involving multiple predictors.

1.3 The IVX Approach

A tractable approach to multivariate predictive return regressions with highly persistent regressors and

potential endogeneity was obtained only following the developments of Magdalinos & Phillips (2009),

who introduce endogenous instrumentation designed to eliminate the nonstandard asymptotics arising

from the choice of δϕ = 1 for the autoregressive coefficient in the regressor dynamics. This is achieved

by ensuring the instrument induces less persistence than the LUR and unit root scenarios, yet retains

a sufficiently high degree of time series dependence to annihilate the potentially severe finite-sample

endogeneity bias and to secure a relatively fast convergence rate, as explained below.

1.3.1 Univariate IVX Estimation

We continue to illustrate the main points within the univariate setting for brevity, noting, however,

that all aspects of the discussion may be extended to multivariate systems. The key deviation in this

5For another procedure to obtain near optimal tests in the univariate setting, see Elliott, Müller & Watson (2015).
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section is that prior knowledge about the nature of the persistence of the regressor is not assumed,

as the IVX framework allows the regressors to contain a unit root, a LUR representation, moderate

integration (Cϕ > 0, 0 < δϕ < 1), and stationarity (Cϕ > 0, δϕ = 0). Specifically, in this setting, the

IVX procedure obtains valid inference by generating an instrument for xt =
∑ t

s=1∆xs directly from

the series itself through a filter that ensures a mild reduction in the degree of persistence,

z̃t =
t∑

s=1

ϕt−snz ∆xs, ϕnz = 1− Cz
nβz

, 0 < βz < 1, Cz > 0. (4)

When βz is chosen below, but near, unity, z̃t is at most mildly integrated, and its dynamics is governed

exclusively through deliberate choices of Cz and βz, which may, thus, be designed to generate a desir-

able limit distribution.6 The IVX estimator is, then, simply the standard IV estimator, with z̃t serving

as instrument, B̂IVX =
∑n

t=1 ytz̃t−1/
∑n

t=1 xt−1z̃t−1. In the unit root and LUR scenarios, the estimation

error for OLS,
∑n

t=1 υt xt−1/
∑n

t=1 x
2
t−1 will have asymptotically dependent numerator and denomi-

nator, generating a non-standard limiting distribution. In contrast, the lower degree of dependence

associated with the moderately integrated IVX instrument is sufficient to ensure asymptotic indepen-

dence and a tractable limit distribution, as shown in Phillips & Magdalinos (2007). Specifically, letting

the errors obey a mds, then, under suitable regularity conditions, n(1+βz)/2(B̂IVX−B) D−→MN(0, σ2IVX).

The asymptotic variance, σ2IVX, is generally stochastic, if the IVX instrument is moderately integrated,

but a feasible, consistent estimator may readily be constructed using the standard linear regression

approach, as detailed in Phillips (2015), and a standard t-test may be constructed. Consequently, the

IVX instrumentation restores standard inference for return regressions, in cases where the predictor

possesses an unknown degree of integration and may be an I(1) or LUR process.

The main cost of the IVX approach is the lower rate of convergence, n(1+βz)/2, compared to n for

the I(1) or LUR scenarios. This suggests picking a value for βz near unity, while still ensuring a finite

sample performance, that avoids mimicking the nonstandard unit root asymptotics. The extensive

simulation evidence in Kostakis et al. (2015) demonstrates that picking βz = 0.95 is sufficient to

ensure reliable inference and induce good power properties in many typical settings.

1.3.2 Multivariate IVX Estimators

As noted previously, the IVX methodology can be generalized to return regressions with multiple

predictors. However, this does require the imposition of additional assumptions. For example, Kostakis

et al. (2015) provide theory for the multivariate regressor case, but impose that the unknown localizing

coefficient is identical for all regressors. That is, they can display memory characteristics ranging from

strictly stationary to non-stationary unit root processes, but they all possess the identical degree of

persistence. Given the range of predictors used in empirical work, including near-unit root valuation

6To see this, note that z̃t = zt − (Cϕ/n
δϕ)

∑t
s=1 ϕ

t−s
nz xs−1, where zt = ϕnzzt−1 + wt, implying z̃t equals zt, except for

a term that is asymptotically negligible. The notion of moderate deviation from unity was introduced by Phillips &
Magdalinos (2007) to capture slightly wider deviations from a unit root than accomplished through LUR specifications.
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ratios, macroeconomic variables, lagged returns, and realized volatility measures, it is a very strong

requirement. Phillips & Lee (2016) show that results can be obtained for mixed localization coefficients

on the regressors, including the presence of both moderately integrated and moderately explosive

regressors, but their general setting does require imposition of various bounds on the size of the IVX

parameter βz relative to the set of (unknown) localizing coefficients for the regressors, which does

not include the strictly stationary case. Likewise, non-trivial conditions must be imposed on the

specification of the linear set of restrictions imposed on the autoregressive coefficient matrix for the

usual multivariate Wald test. Although their findings, combined with the Monte Carlo results in

Kostakis et al. (2015), suggest that the IVX ultimately can deal with multiple regressors possessing

mixed and wide ranging degrees of persistence and long run properties, a fully unified theory is still

not established, as explicitly discussed in the concluding section of Phillips & Lee (2016).

Besides these caveats, Xu (2020) points to the issue of potential cointegration among the multiple

regressors employed within a predictive return regression. This can easily arise, especially if more

than one of the typical valuation ratios are used, as they all represent scaled versions of the stock

price level.7 Xu (2020) proceeds to show that the Kostakis et al. (2015) approach can be robust to an

unknown degree of cointegration among the regressors, but it requires a strong assumption, namely

that the regressors are “perfect” in the sense of Pastor & Stambaugh (2009).

1.3.3 Extensions and Related Inference Principles

The IVX principle induces tractable inference procedures within highly persistent regression systems

through the use of instruments that proxy the original predictors, but are engineered to display a

lower degree of persistence. This bears a resemblance to prior insights, noting that asymptotic normal

inference will obtain for parameters expressed as coefficients on stationary regressors, even within

I(1) systems, see, e.g., Park & Phillips (1989) and Sims, Stock & Watson (1990). The same line of

reasoning inspired the idea of adding lagged regressors and/or regressands to linear regression systems

in settings, where there is uncertainty about the orders of integration among the variables. For

example, if a specific regressor is assumed to have a root close to unity, one may include an additional

lag of this persistent regressor or, alternatively, its first difference, as an additional regressor.8

The idea of variable addition has been adopted for predictive regressions with unknown degrees of

persistence for either the regressand, the regressors or both. Breitung & Demetrescu (2015) compare

the size and power properties of IVX and related variable addition techniques in a LUR setting; Ren,

Tu & Yi (2019) adopt a similar setting with potentially strongly dependent regressors and add an extra

lag of all regressors to obtain the slower, standard rate of convergence,
√
n, along with χ2-distributed

7In fact, Lettau & Ludvigson (2001) directly employ a theoretically motivated cointegrating relation to generate a predic-
tive regressor, the so-called cay variable, involving aggregate consumption, income and wealth.

8The point is illustrated in Hamilton (1994, Chapter 18) for scenarios subject to potential spurious regression issues in a
unit root setting, while Choi (1993) explores inference in AR systems with I(1) processes. These procedures are studied
more broadly for inference in possibly (co-)integrated VAR systems by, e.g., Toda & Yamamoto (1995) and Dolado
& Lütkepohl (1996). Moreover, Bauer & Maynard (2012) show how an infinite order VAR system can accommodate
unknown strong persistence in an additional set of forcing variables via the same type of variable augmentation.
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Wald tests. Likewise, Liu, Yang, Cai & Peng (2019) consider univariate predictive regressions, where

the regressand cannot be stationary under the alternative of predictability, if the regressor is strongly

dependent. They augment the regression with the first-differenced predictor and an additional lagged

predictor, and then conduct inference through an empirical likelihood approach, obtaining standard χ2

distributed test statistics. This particular method is, however, quite unwieldy in multivariate settings.

Moreover, Lin & Tu (2020) study the univariate regression case, where the regressand is strongly

persistent, while the (persistent) predictor is imperfect, so that the persistence spills over into the

regression residuals. They propose a robust inference strategy by including both a lagged regressand

and predictor as extra regressors. Not surprisingly, this generates the usual rate of
√
n convergence

for the slope coefficient, allowing for regular inference procedures. Their results also hold if the system

displays (“perfect”, in the sense of Pastor & Stambaugh (2009)) cointegration. Finally, Georgiev,

Harvey, Leybourne & Taylor (2020) develops a fixed regressor wild bootstrap test for whether the

predictive regression is invalid in a setting where the regressors are persistent and, possibly, imperfect

such that the persistence spills over to the residuals, leading to potential spurious inference.

1.4 Final Observations: Bridging the Gap to LCM

In summary, a variety of econometric issues continue to complicate the analysis of multivariate predic-

tive return regressions. The predictors may possibly be “imperfect”, and they may display unknown

and differing degrees of persistence. The issue of imperfect predictors looms particularly large, as this

feature, intuitively, provides a realistic characterization of the type of scenario encountered in practice.

To alleviate this issue, it is tempting to include a large set of regressors to maximize the ability to

span the most persistent conditional mean component of the regressand. However, currently, there is

no uniform approach that can handle inference for the multivariate, imperfect predictor case.

In our previous work Andersen & Varneskov (2021a), we develop a different asymptotic framework

for analyzing predictive regressions within persistent systems. Specifically, we assume that all variables

are fractionally integrated of potentially different orders, and that the regression may, or may not,

feature cointegration. Let L and (1−L)d be the usual lag and fractional differencing operators, then,

drawing parallels to the predictive systems (1)-(4), we stipulate a predictive relation of the form,

yt = B(1− L)dx−dyxt−1 + υt, (1− L)dxxt−1 = ut−1, (5)

where ut−1 ∈ I(0) is weakly dependent, and υt ∈ I(dy − b) with 0 ≤ b ≤ dy captures the possibility of

cointegration (when b > 0).9 As a result, it follows that yt ∈ I(dy) and xt−1 ∈ I(dx) may exhibit either

weak or strong dependence by allowing their fractional integration orders to fall within a wide range

0 ≤ d < 2, for d = {dy, dx}. Importantly, the framework in Andersen & Varneskov (2021a) is not

confined to univariate predictive regressions (with trivial means or initial values), but accommodates

diverse persistence (i.e., d’s) among the predictors, thus providing a flexible setting to analyze systems

9As usual, we use the notation I(d) to signify that a variable is integrated of exact order d.
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with various financial and macroeconomic variables. This feature corresponds to having different lo-

calization coefficients in the LUR setting (3). Andersen & Varneskov (2021a) propose a two-step Local

speCtruM (LCM) approach that delivers asymptotically Gaussian inference, regardless of persistence

of the variables and cointegration in the predictive relation, by first stripping the persistence of the

variables using a consistent estimate of their integration orders and subsequently applying a medium

band least squares (MBLS) estimator. However, while tackling the issue of “spurious” inference in

persistent systems, they do not consider scenarios where the predictors may be “imperfect”.10

In this paper, we extend the framework in Andersen & Varneskov (2021a) to allow for imperfect

regressors (in the spirit of Pastor & Stambaugh (2009)) that may exhibit general forms of endogeneity,

which is similar to treating a omitted regressor problem, with the latter allowed to be persistent.

That is, we tackle empirically relevant scenarios where the regressors may be imperfect, persistent and

endogenous, for which, as discussed above, there is currently no uniform solution in the literature.

However, the LCM procedure relies critically on consistent estimation of the fractional integration

orders of the variables, which is particularly difficult for return regressions, because the signal-to-

noise ratio of the conditional mean return to its innovations is too “low” for standard univariate time

series techniques to detect (strong) serial dependence in finite samples. We overcome this issue by

developing: (i) a new feasible inference procedure, which holds irrespective of whether the regressors

are “imperfect” or “perfect”; an LCM-bias (LCMB) approach to persistence estimation for returns,

which leverages biased regression slopes at lower frequencies and converges at a sufficiently fast rate to

invoke MBLS in a second step; and (iii) a preliminary significance test for (a subset of) the regressors,

which does not have asymptotic impact on our feasible inference.

We label the combination of (i)-(iii) the LCMB-augmented inference procedure and establish its

theoretical properties in an endogenous, imperfect, and persistent regressor setting, demonstrating

that the asymptotic distribution theory is Gaussian, regardless of the inference scenario; stationary

versus non-stationary persistence and perfect versus imperfect predictors. Moreover, we examine the

finite sample properties of predictability tests using OLS, IVX and LCM procedures. Specifically, we

find that OLS and IVX may suffer from considerable size distortions in our long memory setting, thus

providing “spurious” inference, as well as substantial bias in the coefficient estimates. Importantly,

and in contrast, we show that our LCMB-augmented procedure displays a desirable combination of

correct size, non-trivial power and bias robustness in general settings.

Finally, in an empirical application to monthly S&P 500 return prediction, we find corroborating

evidence that returns contain a fractionally integrated conditional mean component. In addition, by

applying the LCMB-augmented procedure, we find key state variables, such as the default spread and

treasury interest rates, to possess significant predictive power for future returns.

The paper proceeds as follows. Section 2 introduces the setting, draws parallels to the imperfect

regressor model of Pastor & Stambaugh (2009) and describes the LCM procedure. Section 3 provides

10These issues are not treated in our companion paper Andersen & Varneskov (2021b) either, which consider testing for
parameter instability in persistent predictive relations, adopting the setting of Andersen & Varneskov (2021a).
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asymptotic limit theory and feasible inference, conditional on being able to estimate the return persis-

tence. Section 4 introduces our LCMB approach to persistence estimation and preliminary significance

tests. Section 5 contains the simulation study, and Section 6 provides the empirical analysis of return

predictions. Finally, Section 7 concludes. The Appendix contains additional theory and proofs.

2 Predictive Returns Regressions with Persistent Variables

This section introduces a predictive regression framework for asset returns, where all the variables

may exhibit fractional integration of potentially different orders. The framework is inspired by the

persistent economic systems studied by Andersen & Varneskov (2021a) as well as the predictive system

for expected returns with imperfect predictors developed by Pastor & Stambaugh (2009). Finally, we

motivate and review the Local speCtruM (LCM) approach, introduced by the former.

2.1 Predictive System and Assumptions

Suppose we observe a (k + 1) × 1 vector Zt = (yt,X ′
t−1)

′ at times t = 1, . . . , n, where yt is the asset

returns and X t−1 is a vector of candidate predictors, which are stipulated to have a multi-component

structure,

X t−1 = xt−1 + ct−1, xt ⊥⊥ cs, for all t, s, (6)

with xt−1 capturing the most persistent signal, and ct−1 ∈ I(0) being mean-zero and collecting either

measurement errors, additional weakly dependent components embedded in the variables, or both.

Moreover, let us define zt = (yt,x
′
t−1)

′, which is assumed to obey a Type II fractional model,

D(L)(zt − µ) = vt 1{t≥1}, (7)

where µ is a (k+1)× 1 vector of nonrandom, unknown finite numbers, capturing either the means or

initial values of zt, the vector process vt = (et,u
′
t−1)

′ is weakly dependent, and,

D(L) = diag
[
(1− L)d1 , . . . , (1− L)dk+1

]
, with (1− L)d =

∞∑
i=0

Γ(i− d)

Γ(i+ 1)Γ(−d)
Li, (8)

where Γ( · ) is the gamma function.11 In this setting, in which all variables may exhibit high degrees

of persistence, the predictive relation between yt and the observable regressors X t−1 will be defined

through the weakly dependent components of the unobservable persistent signals xt−1. Specifically,

we assume,

et = φt−1 + η
(b)
t , φt−1 = B′ut−1 + ξt−1, ut ⊥⊥ ξs, for all t, s, (9)

11Formal assumptions on the components of the system are stated below.

9



where η
(b)
t = (1 − L)bηt for some constant b ≥ 0 and ηt ∈ I(0), and with ξt−1 ∈ I(0). By combining

the relations (7) and (9), this is tantamount to a balanced prediction model for asset returns,

yt = a+B′Q(L)xt−1 + ξ
(−d1)
t−1 + υt, t = 1, . . . , n. (10)

where Q(L) = Dx(L)(1− L)−d1 , with Dx(L) being the k × k lower-right submatrix of the fractional

filtering matrix D(L), a = µy −B′Q(L)µx for µ = (µy,µ
′
x)

′ as well as the innovations,

υt = (1− L)b−d1ηt ∈ I(d1 − b) and ξ
(−d1)
t−1 = (1− L)−d1ξt−1 ∈ I(d1).

Unfortunately, as discussed in detail below, this regression is latent, with three nonstandard layers

disguising the predictive relation. First, we observe X t−1, not the persistent signals xt−1 nor the

measurement errors ct−1. Second, the error ξt−1 cloaks the conditional mean, similarly to an omitted

regressor. Third, the persistence of the variables, measured by D(L), is unknown a priori.

Despite these challenges, and assuming a latent predictive relation, it is important to realize that

the system (6)-(10) encompasses most multivariate fractionally integrated systems in the literature. To

see this, suppose ct−1 = 0 and ξt−1 = 0, ∀t, as well as 0 ≤ b ≤ d1, then the most persistent components

of the explanatory variables, captured by xt−1, are directly observable, the predictive relation is well-

defined and balanced, and the system may (b > 0) or may not (b = 0) feature (fractional) cointegration.

By relaxing these restrictions, however, the system more accurately describe the inferential issues

surrounding return regressions. In particular, ct−1 is included to accommodate endogeneity, multiple

components and measurement errors in the regressors, rendering their signals latent, φt−1 captures the

possibility that the predictors may imperfectly describe the conditional mean, and, by letting b = d1,

the return regression have a weakly dependent innovation that may dominate the persistent signal in

finite samples. Moreover, the regression model is balanced, regardless of the forecasting prowess of the

regressors, that is, yt ∈ I(d1) under both H0 : B = 0 and HA : B ̸= 0. The null hypothesis, H0, allows

for the scenario, where the regressors imperfectly span the conditional mean, i.e., φt−1 = ξt−1 ̸= 0.

Under the alternative, HA, the fractional filter adjusts the persistence of the “latent” signals, xt−1, to

ensure regression balance. This allows d1 to differ from the persistence of the observable candidate

predictors, {d2, . . . , dk+1}. However, under HA, we implicitly think of the predictive relation as being

between yt and a “persistence transformed” signal, x̃t−1 ≡ Q(L)xt−1 rather than xt−1. Of course, in

the special case, where Q(L) = Ik, a k-dimensional identity matrix, this adjustment is negligible.

In the next section, we discuss these points, provide examples and draw parallels to the extant

literature, particularly Pastor & Stambaugh (2009) and Andersen & Varneskov (2021a). Before pro-

ceeding, however, we impose some formal structure on the system. The regularity conditions mirror

those imposed by Andersen & Varneskov (2021a) and the assumptions for the semiparametric frac-

tional cointegration analyses in, e.g., Robinson & Marinucci (2003), Christensen & Nielsen (2006)

and Christensen & Varneskov (2017), but with subtle differences due to the distinct model features.

To this end, let “∼” signify that the ratio of the left- and right-hand-side tends to one in the limit,
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element-wise. We then impose assumptions in terms of qt = (u′
t−1, ηt)

′ and ζt−1 = (c′t−1, ξt−1)
′ rather

than vt, when exploring the asymptotic properties for the LCM procedure below.

Assumption D1. The vector process qt, t = 1, . . . , is covariance stationary with spectral density matrix

satisfying fqq(λ) ∼ Gqq as λ→ 0+, where Gqq is finite with non-random elements, the upper left k×k
submatrix, Guu, has full rank, and the (k + 1)th element of the diagonal is Gηη > 0. Moreover, there

exists a ϖ ∈ (0, 2] such that |fqq(λ)−Gqq| = O(λϖ) as λ → 0+. Finally, let Gqq(i, k + 1) be the

(i, k + 1)th element of Gqq, which has Gqq(i, k + 1) = Gqq(k + 1, i) = 0 for all i = 1, . . . , k.

Assumption D2. qt is a linear process, qt =
∑∞

j=0Ajϵt−j, with coefficient matrices
∑∞

j=0 j
1/2∥Aj∥ <

∞, the innovations satisfy, almost surely, E[ϵt|Ft−1] = 0 and E[ϵtϵ′t|Ft−1] = Ik+1, and the matrices

E[ϵt ⊗ ϵtϵ′t|Ft−1] and E[ϵtϵ′t ⊗ ϵtϵ′t|Ft−1] are nonstochastic, finite, and do not depend on t, with Ft =
σ(ϵs, s ≤ t). There exists a random variable ζ such that E[ζ2] < ∞ and, for all c and some C,

P[∥qt∥ > c] ≤ CP[|ζ| > c]. Finally, the periodogram of ϵt is denoted by J(λ).

Assumption D3. For A(λ, i), the i-th row of A(λ) =
∑∞

j=0Aje
ijλ, its partial derivative satisfies

∥∂A(λ, i)/∂λ∥ = O(λ−1∥A(λ, i)∥) as λ→ 0+, for i = 1, . . . , k + 1.

Assumption C. Suppose ζt−1 = ζt−11{t≥1} is a mean-zero (k + 1) × 1 vector satisfying conditions

equivalent to those imposed by Assumption D1-D3 on qt. These assumptions are formally stated in

Appendix A.1 for brevity. Moreover, the following, additional, conditions are required:

(a) The co-spectrum between ζt−1 and ηt satisfies fζη(λ) ∼ Gζη, as λ → 0+, where the finite and

non-random vector Gζη may have non-zero entries.

(b) ut ⊥⊥ ζs for all t, s ≥ 1.

(c) If the i-th element of ζt−1 is trivial, i.e., if ζt−1(i) = 0 for all t ≥ 1, then the co-spectrum

condition Gζη(i) = Gζζ(i, g) = Gζζ(g, i) = 0 for g = 1, . . . , k + 1, is naturally also required.

Assumption M. Let 0 ≤ d1 ≤ 1 and 0 ≤ di ≤ 2 for all i = 2, . . . , k + 1. Define dx = min(di; 2 ≤ i ≤
k + 1), d = min(d1, dx), d̄x = max(di; 2 ≤ i ≤ k + 1), and let dx > 0 and b = d1.

Assumptions D1-D3 are standard in the literature studying fractional (co-)integration. Specifically,

D1 and D3 impose a rate of convergence for the spectral density fqq(λ) as λ→ 0+, which depends on

the smoothness parameter ϖ ∈ (0, 2]. In addition, D1 requires locally full rank of ut−1 and it being

locally exogenous to ηt as λ→ 0+, but not global exogeneity. Finally, condition D2 specifies linearity,

martingale and moment conditions for qt, allowing for general multivariate dependence among the

variables, thus accommodating flexible lead-lag and predictive structures.12

12Note that Assumption D2 implicitly restricts elements of the lower k× (k+1) submatrix of A0 to be equal to zero since
the weakly dependent predictor components, ut−1, do not depend on the lead-one innovation sequence, ϵt. Moreover,
the summability condition in D2 is slightly stronger than the square summability condition in Andersen & Varneskov
(2021a), which is necessary to derive the asymptotic properties for our new LCM-bias estimator in Section 4.
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Whereas D1 allows the latent predictive signals, xt−1, to exhibit mild endogeneity (as λ → c > 0)

through ut−1, Assumption C lets the observable explanatory variables exhibit stronger forms of en-

dogeneity, that is, to display non-trivial correlations with the innovations to asset returns. These

correlations are captured via the co-spectrum between the less persistent component (and/or measure-

ment errors) ct−1 and the innovations ηt, and these may, furthermore, both be non-trivially correlated

with the “conditional mean errors” from the, possibly, imperfect predictors, ξt−1. This treatment of

endogenous predictors is similar in spirit to Stambaugh (1999) and Pastor & Stambaugh (2009).

Assumption M imposes a mild structure on the memory of the system. Specifically, we restrict the

persistent component of returns to maximally exhibit unit root persistence, whereas the observable

variables can be explosive, di > 1. However, as explained above, if the persistence of the regressors

deviate from d1, this will require a transformation such that their unobservable persistent signals

x̃t−1 ≡ Q(L)xt−1 comply with balance of the predictive relation (10). In general, the assumptions

accommodate flexible persistence among the variables; if 0 < di < 1/2, the variable is (asymptotically)

stationary with long memory; if di ≥ 1/2, the variable is non-stationary, but has a well-defined mean

for di < 1. This flexibility is particularly useful for characterizing the properties of multivariate

predictive systems, whose components are very persistent, yet display different degrees of persistence,

which is often the case for applications involving multiple financial and macroeconomic variables.

Finally, we impose b = d1, which implies υt = ηt and, consequently, that the return prediction model

exhibits (fractional) cointegration, if ξt−1 = 0 for all t. Hence, we equip returns with a persistent

conditional mean and weakly dependent innovations. This is consistent with a vast literature that

finds limited serial correlation in return innovations; see, e.g., the introduction for references.

Remark 1. Assumption M stipulates that dx > 0, i.e., that all predictors have long memory. This

condition is necessary, when the requisite elements of ct−1 are non-trivial. That is, we obtain iden-

tification of the persistent predictive signals through differences in memory relative to their weakly

dependent components (and by using the LCM approach). We can accommodate cases, where di = 0,

when ct−1(i) = 0, ∀t ≥ 1, which is analogous to assuming exogeneity in OLS settings. Our assumption

is reminiscent of the approach in Pastor & Stambaugh (2009), who also, as will be explained below,

utilize memory differentials to identify the conditional mean properties of asset returns, but within a

more standard weakly dependent setting. Importantly, our empirical application in Section 6 illustrates

that popular return predictors from recent macro-finance models, e.g., Bansal, Kiku, Shaliastovich &

Yaron (2014) and Campbell, Giglio, Polk & Turley (2018), exhibit strong persistence and may be

characteristized as either stationary or non-stationary fractionally integrated processes. Hence, de-

spite Assumption M deviating from the literature by requiring fractional integration, rather than weak,

local-to-unity or I(1) dependence, this assumption has a genuine empirical foundation.

Remark 2. The endogenous, weakly dependent measurement errors ct−1 ∈ I(0) are of strictly lower

order than xt−1, since dx > 0. However, this does not imply that they are irrelevant for the asymp-

totic analysis. They will, in fact, distort the inference, unless we impose strict bounds on the tuning

parameters for the LCM estimator. In fact, our limit theory developed below dictates a scaling of these
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by a function of the sample size, n. However, when dx > 0 is small, the wedge between the signal

and the noise is small and, since fζη(λ) ∼ Gζη by Assumption C, the endogeneity bias will dominate

the Gaussian limit theory, unless appropriately accounted for. We discuss sufficient conditions for

eliminating the endogeneity bias, as we develop the theoretical analysis.

2.2 Return Regressions: Dynamics and Implications

The predictive system (6)-(10) has several distinct features. First, the interaction between persistence

and regression balance warrants additional discussion. Specifically, the mapping between the latent

persistent components of the observable predictors, xt−1, and the corresponding modified signal, x̃t−1

ensures that the predictor signal is transformed to match the persistence of the (latent) conditional

mean. To appreciate the mechanics of the filter Q(L), consider a scenario where the conditional mean

component has d1 = 0.8 If we observe a single candidate regressor, whose predictive signal xt−1 has

dx = 1.8, a regular linear specification is incompatible with the conditional mean dynamics. However,

our framework accommodates a well-defined predictive relation between yt and the dampened (first-

differenced) signal x̃t−1 = Q(L)xt−1 = (1 − L)xt−1 with memory dx̃ = dx − 1 = 0.8. In other words,

we may think of Xt−1 = xt−1+ ct−1 as the observable – raw – predictor, for which a predictive relation

may exist between yt and X̃t−1 = (1−L)Xt−1 via x̃t−1.
13 Importantly, the transformation of the signal

persistence required to be compatible with the conditional mean dynamics need not be known a priori,

but is instead implemented automatically as an integral part of the LCM procedure.

Second, under the alternative hypothesis, HA, where the regressors, or a subset thereof, exhibit

significant predictive power for yt, these may be imperfect, that is, ξt−1 may be non-trivial. This

captures a scenario, where the predictors contain information about the conditional mean component,

but fail to fully span its variation. For example, this arises when a significant regressor has been

omitted from X t−1. In contrast, if the predictors are “perfect”, we have φt−1 = B′ut−1.

Third, the system accommodates endogenous regressors through, ct−1, which is independent of the

persistent signal, xt−1. To motivate this model feature, let us draw a parallel to the long-run risk

model of Bansal & Yaron (2004), where persistent shocks to the mean and volatility of consumption

growth determine the conditional equity premium. In our setting, the persistence of the risk factors is

captured by fractionally integrated processes rather than a persistent first-order autoregressive (AR)

system with half-lives stipulated to exceed 52 months (coefficients of 0.979 and 0.987). Moreover,

Bansal & Yaron (2004) assume, that these shocks are independent of the innovations to consumption

growth. In contrast, we accommodate a second component in both factors, which is less persistent, but

may exhibit non-trivial correlation with the return innovations. These components are not informative

13More generally, our setting accommodates different and fractional persistence among the signals xt−1, which, as a result,
necessitates different adjustments via Q(L). However, common for all is that they must match the persistence of the
conditional mean, i.e., have fractional integration order d1 after transformation. Note that also includes cases with
dx < d1, whose persistence needs to be “enhanced”. For example, if dx = 0.2 and d1 = 0.6, the signal must be aggregated
with weights given by the fractional memory differential d1 − dx.
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about the conditional equity premium, but they facilitate richer system dynamics.14

Fourth, the model facilitates non-trivial correlation between unspanned component of the condi-

tional mean, ξt−1, and the observable explanatory variables (again, through ct−1) as well as with the

innovations to asset returns, υt = ηt. This allows for endogeneity through different channels.

Finally, the model allows for asset returns to possess a weakly dependent component ηt, which

may be “highly volatile” relative to the persistent conditional mean, thereby generating a “low” signal-

to-noise ratio in the return regression and rendering predictability hard to detect empirically. This

feature is consistent with a comprehensive literature that finds limited return serial correlation, yet

predictive power from highly persistent financial and macroeconomic variables; see, e.g., Welch & Goyal

(2008), Lettau & Ludvigson (2010) and the references therein. Likewise, many prominent asset pricing

theories, e.g., the present value, long-run risk and dynamic disaster models, stipulate the existence of

a persistent conditional mean return with a “low” signal-to-noise ratio.

Altogether, these features mimic the qualitative implications of the predictive system for asset

returns in Pastor & Stambaugh (2009), despite arising in our fractionally integrated setting rather

than their first-order AR economy. The following remark outline these similarities.

Remark 3. Pastor & Stambaugh (2009) analyze an asset return system with imperfect predictors, whose

components follow stationary AR(1) processes. Adapted to our notation, it takes the form,

yt = φt−1 + ηt, φt−1 = aφ + B′X t−1 + ξt−1 ,

φt = (1− ϕ)µφ + ϕφt−1 + wt, X t = (Ik −A)µX + AX t−1 + ut ,

where 0 < ϕ < 1, the eigenvalues of A are inside the unit circle, and the innovation vector (ηt, wt,u
′
t)
′

is i.i.d. Gaussian. The system features return predictability via the conditional mean (since ϕ > 0),

endogenous regressors, and it accommodates imperfect predictors, when φt−1 ̸= aφ+B′X t−1. Moreover,

if the predictors are imperfect, this generates unspanned return persistence, as captured in our setup via

the inclusion of ξ
(−d1)
t−1 in equation (10). Finally, their key identifying assumption for B is 0 < ϕ < 1,

allowing the persistent conditional mean to be disentangled from the noise. If this assumption fails,

they require exogenous regressors. It is analogous to assuming dx > 0 in Assumption M.

The model (6)-(10) features four competing hypotheses for the return dynamics:

(i) B = 0 and ξt−1 is trivial, ∀t = 1, . . . , n; returns are not predictable.

(ii) B = 0 and ξt−1 non-trivial, ∀t = 1, . . . , n; returns are not predictable by X t−1.

(iii) B ̸= 0 and ξt−1 non-trivial, ∀t = 1, . . . , n; returns are predictable, and X t−1 is “imperfect”.

(iv) B ̸= 0 and ξt−1 is trivial, ∀t = 1, . . . , n; returns are predictable, and X t−1 is “perfect”.

14A multi-component structure of the conditional mean of consumption growth is consistent with the dynamic decomposi-
tion in, e.g., Ortu, Tamoni & Tebaldi (2013), who show that consumption growth has a very persistent component with
low volatility as well as a less persistent “error” component with high volatility. Moreover, multi-factor volatility models
are used extensively in financial econometrics; see, e.g., Andersen & Benzoni (2012) and many references therein.
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Hypotheses (i) and (ii) imply that X t−1 possesses no predictive power for returns, but they have

distinct dynamic implications; namely, returns are I(0) and I(d1), respectively. Moreover, the first

hypothesis stipulates that returns are not predictable by any strongly dependent regressor, whereas the

second allows for predictability through a strongly persistent regressor, but a “wrong” or “incomplete”

set of predictors is being examined. The extensive empirical and theoretical literature on return

predictability suggests that, in many settings, we should focus on the null hypothesis (ii) rather than

(i), especially if examining a set of predictors sequentially in single-regressor models, where issues with

omitted regressors loom large. Hypotheses (iii) and (iv) also carry distinct dynamic implications. Both

imply yt ∈ I(d1), but (iii) has regression errors comprised of ξ
(−d1)
t−1 ∈ I(d1) and ηt ∈ I(0) processes,

while (iv) describes a fractional cointegration model with I(0) innovations.

The hypotheses imply different inference regimes for persistent variables, for which standard OLS

delivers spurious inference; see, e.g., Granger & Newbold (1974), Phillips (1987), and Tsay & Chung

(2000). Of course, if we knew that yt and X t−1 = xt−1 form a fractionally cointegrated system – i.e.,

the signals are significant, observable and “perfect” – we may apply inference procedures explicitly

designed for such systems with strongly persistent variables, see, e.g., Robinson & Marinucci (2003),

Robinson & Hualde (2003), Christensen & Nielsen (2006) and Johansen & Nielsen (2012). However,

generally, we do not know, a priori, which of the hypotheses capture the given inference scenario, i.e.,

whether the regressors are endogenous and/or the predictors are “perfect”, and we must estimate the

persistence of zt, which is hampered by the “low” signal-to-noise ratio for the returns.

As discussed in Remark 3 and Section 1, related issues have been examined in different predic-

tive settings, assuming stationary first-order AR dynamics, (near) local-to-unity, unit root or locally-

explosive persistence. In contrast, we assume a flexible long memory system with similar qualitative

features, and we analyze the return predictability via the LCM approach. Compared with Andersen

& Varneskov (2021a), we allow for “imperfect” predictors and the joint presence of endogeneity and

cointegration.15 Hence, all subsequent results are new.

2.3 The Local Spectrum Approach

The basic motivation behind the LCM inference and testing procedure is readily conveyed by consider-

ing decompositions of the spectral density for the observable regressors, X t−1, and their co-spectrum

with the asset returns, yt. Specifically, since fxc(λ) ∼ 0, as λ→ 0+, we may write,

fXX (λ) ≃ Λ−1
xx GuuΛ

−1
xx + Gcc , (11)

fXy(λ) ≃ Λ−1
xx GuuBΛ

−1
yy + f

(−d1)
xξ (λ) + fxη(λ) + Gcξ Λ

−1
yy + Gcη , (12)

15Andersen & Varneskov (2021a) study the asymptotic properties of LCM approach in a general predictive setting. However,
when examining the the effect of regressor endogeneity on the inference, they rule out cointegration.
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for λ close to zero, where Λyy and Λxx are the complex conjugates of Λyy and Λxx, defined as,

Λyy = (1− eiλ)d1 , Λxx = diag
[
(1− eiλ)d2 , . . . , (1− eiλ)dk+1

]
.

These decompositions are intuitive. First, fXX (λ) shares the multi-component structure of the ob-

servable regressors X t−1, with the spectral density of the persistent signal dominating the frequencies

in the vicinity of the origin. However, the speed of divergence may differ across elements, depending

on the fractional integration orders of the regressors. Second, fXy(λ) contains information about the

forecasting prowess of the regressors through B, and this effect, captured in the first term, dominates

the remaining ones at lower frequency ordinates, i.e., as λ → 0+. Third, Gcξ Λ
−1
yy and Gcη capture

endogeneity-induced bias terms. They stem from the potentially non-trivial co-spectra between the

regressor measurement errors, ct−1, and then ξt−1 and ηt, respectively, denoting the conditional mean

(imperfection) errors and return innovations. Since the conditional mean component may be persistent

(when d1 > 0), the first bias term may diverge, as λ → 0+, but at a slower rate than the first term,

since dx > 0. Finally, the co-spectra f
(−d1)
xξ (λ) and fxη(λ) introduce sampling errors for estimators of

B, with their respective asymptotic orders differing due to ξ
(−d1)
t−1 ∈ I(d1) and ηt ∈ I(0).

In general, the (co-)spectral densities in equations (11) and (12) diverge at rates depending on the

integration orders of the predictors and asset returns. In contrast, the co-spectral densities for the

unobserved weakly dependent components of the predictive system, ut−1 and et, are,

fuu(λ) ≃ Guu and fue(λ) ≃ GuuB + fuξ(λ) + f (d1)
uη (λ), (13)

which both are asymptotically bounded, yet convey equivalent information about B. This suggests that

inference based on the stationary components, ut−1 and et may circumvent issues regarding balance,

degeneracy of point estimates and spurious inference, motivating Andersen & Varneskov (2021a) to

introduce the LCM procedure, consisting of two main steps. First, the procedure fractionally filters

the observed variables Zt = (yt,X ′
t−1)

′ to obtain an estimate of vt = (et,u
′
t−1)

′. Second, it uses

medium band least squares (MBLS) estimation for robust inference. These steps are detailed next,

together with additional subtleties created by the specific problem of predicting asset returns.

Step 1: Fractional Filtering. To retain flexibility by allowing for different estimators of the fractional

integration orders, we abstain from dedicating a specific estimator and, instead, assume to have one

available, d̂i for i = 1, . . . , k + 1, that satisfies mild consistency requirements.

Assumption F. Let md ≍ nϱ be a sequence of integers where 0 < ϱ ≤ 1, then, for all i = 1, . . . , k + 1

elements of zt, we assume to have an estimator with the property,

d̂i − di = Op
(
1/
√
md

)
, and we then let, D̂(L) = diag

[
(1− L)d̂1 , . . . , (1− L)d̂k+1

]
.

Assumption F is very mild, essentially only requiring the existence of an estimator which, under

appropriate assumptions on equation (7), is consistent. However, since we accommodate both (asymp-
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totically) stationary and non-stationary variables in Assumption M, the estimator must apply for a

wide range of di. Examples include the semi-parametric exact local Whittle (ELW), see Shimotsu &

Phillips (2005) and Shimotsu (2010), the trimmed ELW (TELW) by Andersen & Varneskov (2021a),

and parametric (long) fractional ARIMA(p, d, q) models using information criteria to determine the

short-memory dynamics; see, e.g., Hualde & Robinson (2011) and Nielsen (2015).

Once we obtain the filtering matrix, D̂(L), the estimates for vt are,

v̂ ct ≡ ( êt, (û
c
t−1)

′ )′ = D̂(L)Zt, (14)

where û ct−1 = ût−1 + ĉt−1, with ût−1 = D̂x(L)xt−1 and ĉt−1 = D̂x(L) ct−1.
16 Similarly, we define

v̂t ≡ (êt, û
′
t−1)

′, which is the equivalent (albeit, unobservable) estimate of vt, without an endogenous

component in the regressors. Using frequency domain techniques, we may then extract asymptotically

similar information from v̂t and v̂
c
t . Moreover, we leave the mean, or initial value, of the variables

unspecified at the filtering stage. Instead, we account for their residual impact on the mean in a

Type-II fractional model, D̂(L)µ1{t≥1}, in a unified manner during second stage estimation.

Step 2: Medium band least squares estimation. We estimate and draw inference about B using a

frequency domain least squares estimator and v̂ ct . To define the former, we let ht and kt be generic

(and compatible) vector time series, λj = 2πj/n denote the Fourier frequencies, and write

wh(λj) =
1√
2πn

n∑
t=1

ht e
itλj , wk(λj) =

1√
2πn

n∑
t=1

kt e
−itλj , Ihk(λj) = wh(λj)wk(λj), (15)

for discrete Fourier transforms (DFTs) and their corresponding cross-periodogram, respectively. More-

over, we define the trimmed discretely averaged co-periodogram (TDAC), using the real part of the

cross-periodogram, indicated by ℜ(Ihk(λj)), as,

F̂hk(ℓ,m) =
2π

n

m∑
j=ℓ

ℜ(Ihk(λj)), 1 ≤ ℓ ≤ m ≤ n, (16)

where ℓ = ℓ(n) and m = m(n) comprise the trimming and bandwidth functions, respectively. Hence,

we may write the TDAC of ûct−1 as F̂ c
ûû(ℓ,m) and, similarly, of ûct−1 and êt as F̂

c
ûê(ℓ,m). Finally,

these are used to define the medium band least squares (MBLS) estimator,

B̂c(ℓ,m) = F̂ c
ûû(ℓ,m)−1 F̂ c

ûê(ℓ,m), (17)

for which ℓ,m → ∞ and ℓ/m + m/n → 0, as n → ∞. The MBLS estimator has some distinct

advantages for predictive inference and testing with persistent variables. Specifically, by combining

sample-size-dependent trimming with a bandwidth m/n→ 0, equation (17) turns out to be first-order

16Consistent with the Type II nature of the fractional model in (7), the operator D̂(L) uses all available observations.
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equivalent to,

B̂(ℓ,m) = F̂ûû(ℓ,m)−1 F̂ûê(ℓ,m), (18)

that is, the corresponding estimator based on v̂t. In other words, trimming and a local bandwidth

suffice to annihilate biases resulting from endogenous regressors. Intuitively, this follows from the

MBLS estimator utilizing frequencies, that are asymptotically “close” to the origin, which, as shown

by the decompositions (11) and (12), are dominated by information about B, whereas the higher

frequencies are more prone to endogenous regressor biases. Moreover, the trimming and bandwidth

sequences aid in asymptotic elimination of the residual impact from the filtered mean component (mean

slippage contamination), occurring at lower frequencies, and first-stage estimation errors from the

filtering procedure, occurring at higher frequencies. This suggests that LCM procedure, particularly

the second step, should be well-suited to draw inference regarding return predictability.

The main obstacle for using LCM to analyze return regressions is the fractional filtering step.

It is challenging due to the low signal-to-noise ratio of the conditional mean relative to the weakly

dependent innovations; the return serial dependence is limited, although some highly persistent series

often provide significant predictive power for the returns. This suggest that we cannot draw inference

about d1 in finite samples using standard univariate time series techniques and, in fact, we verify

this conjecture in both our simulation study and the empirical analysis below. Consequently, the

next section develops (feasible) inference theory for LCM that holds uniformly for the four model

hypotheses (i)-(iv), conditional on Assumption F being satisfied, thus tackling the issues surrounding

imperfect regressors. Subsequently, in Section 4, we provide a new LCM-bias approach to estimating

d1, that relies on regression slopes and, in the process, develop a pre-test for regressor significance,

which circumvents the need to estimate d1 and has no asymptotic impact on the inference.

3 Limit Theory for LCM when d̂1 is Consistent

This section derives asymptotic limit theory for LCM, assuming Assumption F applies. That is, we

consider a scenario, where a well-behaved consistent estimator for the persistence of the conditional

mean component in asset returns is available. The theory extends Andersen & Varneskov (2021a) by

allowing for “imperfect” predictors and the simultaneous presence of endogeneity and cointegration.

Moreover, we introduce a new feasible inference procedure that works uniformly across all competing

hypothesis (i)-(iv), without prior knowledge of which scenario applies to the inference problem.

3.1 Asymptotic Central Limit Theory

Our development of the LCM inference procedure below focuses mostly on the scenarios (ii)-(iv), but

applies equally well to model (i). The main distinction is, then, between the imperfect regressor case,

models (ii)-(iii), versus the perfect regressor case, model (iv). Moreover, although Assumption M

imposes b = d1, we state the conditions on the tuning parameters in terms of b to facilitate comparison
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with Andersen & Varneskov (2021a).

Finally, we let “≍” signify that the ratio of two terms converges to a positive constant and then

summarize the main constraints on the trimming and bandwidth parameters as follows.

Assumption T. Let the bandwidth m ≍ nκ, ℓ ≍ nν , and md ≍ nϱ with 0 < ν < κ < ϱ ≤ 1. Moreover,

recall that the parameter ϖ ∈ (0, 2] measures smoothness of the spectral density in Assumption D1.

The following cross-restrictions are assumed to apply for ℓ, m, md and n, as n→ ∞,

m1+2ϖ

n2ϖ
+

ℓ1+ϖ+b

nϖm1/2+b
+

n1/2+b

m
1/2
d mb ℓ

+
n1−2d+b

m1/2−2d+b ℓ2
+

nb

m1/2+b
+
m1/2+dx−b

ndx−b ℓ
→ 0.

The restrictions in Assumption T are mild. The first term is standard for semiparametric estimation

in the frequency domain, see, e.g., Robinson (1995) and Lobato (1999), while the remaining conditions

are specific to the second-stage MBLS estimator, adopted in the LCM procedure. Specifically, condition

two, implying ν < (ϖ+κ(1/2+b))/(1+ϖ+b), restricts the information loss from frequency trimming;

three, (1 − ϱ)/2 + b(1 − κ) < ν in conjunction with 0 < ν < κ < ϱ ≤ 1, eliminates errors from

estimating the integration orders; four, (1− κ/2− (2d− b)(1− κ))/2 < ν, alleviates the low-frequency

bias from mean-slippage following fractional filtering; five, b/(1/2 + b) < κ imposes a mild bound on

the bandwidth; six, κ/2− (1− κ)(dx − b) < ν eliminates the endogeneity bias.17

If we consider the empirically relevant vector ARFIMA process (with ϖ = 2) and select κ close to

its upper bound 4/5, conditions two and four imply (3/5− (2d− b)/5)/2 < ν < 4/5. The lower bound

is strictly decreasing in 2d − b ≥ 0 (as assumed below), implying that its most restrictive scenario is

obtained when d = 0, equaling 3/10. The third condition is (essentially) trivial, if we adopt a para-

metric first-stage estimator with ϱ = 1 and κ close to 4/5. If the estimator is semiparametric, however,

and we select κ < ϱ as well as ϱ arbitrarily close to 4/5, the additional lower bound requirement on

the trimming rate becomes 1/10 + b/5 ≤ 3/10 < ν. Finally, if the regressors are endogenous and we

select κ close to 4/5 for efficiency, we require 2/5 − (dx − b)/5 < ν, with most conservative bound

being obtained when dx− b = 0. Intuitively, we require stronger trimming to alleviate the endogeneity

bias and obtain the same asymptotic efficiency in the presence of endogenous regressors, if the excess

persistence of the system is small. As detailed in Remark 2, this occurs when the wedge between the

asymptotic orders of the persistent signals and endogenous measurement errors is small.

Theorem 1. Suppose Assumptions D1-D3, C, M, F and T hold as well as the conditions 0 < d1 ≤ 1,

b ≤ d, n1/2/m→ 0, and max(0, (1− 3κ/2)/(1 + κ/2)) < ϖ ≤ 2, then,
√
m
(
B̂c(ℓ,m)−B

)
D−→ N

(
0,G−1

uuGξξ/2
)
, under models (ii) and (iii),

√
mλ−bm

(
B̂c(ℓ,m)−B

)
D−→ N

(
0,G−1

uuGηη/(2(1 + 2b))
)
, under model (iv).

17We note that the trimming and bandwidth functions in Assumption T are mutually consistent for all values of 0 < dx < 2
and 0 ≤ d1 ≤ 1, if the (implied) condition max(0, (1− 3κ/2)/(1 + κ/2)) < ϖ ≤ 2 holds.
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When consistent estimation of d1 is feasible, Theorem 1 proves that the LCM procedure is asymp-

totically Gaussian for the predictive models with imperfect regressors, (ii) and (iii), as well as the

cointegration model, (iv). The asymptotic distribution theory differs, however. When the regressors

are“imperfect”, ξt−1 is an asymptotic order larger than ηt and drives the limit theory. The convergence

rate is
√
m, in line with well-known results for semiparametric estimators in the frequency domain,

e.g., Brillinger (1981, Chapters 7-8), Robinson (1995) and Shimotsu & Phillips (2005). In contrast,

if the regressors are “perfect”, ξt−1 is absent, and the limit theory is determined by ηt. The rate is
√
mλ−bm ≍

√
m(n/m)b and the asymptotic variance is scaled by 1/(2(1 + 2b)). Hence, cointegration

improves the efficiency of the MBLS estimator, in analogy with super consistency properties.

Despite the different limit theory for models (ii)-(iii) versus (iv), it remains Gaussian, regardless of

whether the variables are (asymptotically) stationary or non-stationary, whether there is cointegration,

and irrespective of the cointegration being weak (b < 1/2) or strong (b ≥ 1/2). This is unique within

a fractional cointegration context. Similar uniformity does not apply for OLS, the narrow band least

squares (NBLS) estimator, or maximum likelihood inference in fractionally cointegrated VAR models,

where inference exhibits varying forms of non-Gaussianity in non-stationary cases; see Robinson &

Marinucci (2003), Christensen & Nielsen (2006) and Johansen & Nielsen (2012).18 Likewise, the

Gaussian limit theory for the MBLS estimator without fractional filtering in Christensen & Varneskov

(2017) holds only for stationary systems with weak cointegration. Intuitively, the Gaussian limits in

Theorem 1 are due to the fractional filtering, rendering the approach, after eliminating various errors

and biases through trimming, reminiscent of the ELW inference in Shimotsu & Phillips (2005).

Moreover, the limiting theory of the LCM procedure is correctly centered, and thus free from biases

induced by persistent and endogenous regressors, detailed by Stambaugh (1999), Pastor & Stambaugh

(2009) and Phillips & Lee (2013). Interestingly, since the fractional filtering lowers the asymptotic

order of the weakly dependent innovations, ηt, regardless of the inference scenario, the LCM procedure

may also provide finite sample improvements by alleviating attenuation biases.

An additional advantage of the Gaussian limit theory is that feasible inference and testing is stan-

dard, once we obtain a consistent estimator of the asymptotic variance in the requisite inference

scenario. Importantly, this can be achieved without prior knowledge of the scenario, that describes

the system and without pre-testing. We introduce such a feasible procedure in the following section.

Remark 4. We impose 0 < d1 ≤ 1 in Theorem 1, but we can accommodate d1 = 0, with appropriate

changes to the asymptotic variance for both models (ii)-(iii) and (iv). In particular, for the former,

we must replace Gξξ with Gξξ + Gηη. Moreover, since cointegration no longer features in model (iv),

given b = d1 = 0, the result is readily obtained by setting b = 0 in the limit theory, implying a lower

convergence rate. Similar comments apply to all subsequent results.

18Such methods generally do not accommodate non-trivial means, or initial values, as well as strong endogeneity among
the regressors, that may or may not be “perfect”. Moreover, the limit theories for these alternatives rely on the presence
of cointegration. Finally, as demonstrated by Andersen & Varneskov (2021a, Theorem 5), the LCM procedure can
accommodate regressors, that are generated from pre-estimated fractional cointegration residuals. Consequently, the
LCM procedure remains desirable in this context, delivering added robustness along with a fast convergence rate.
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Remark 5. The condition d−b ≥ 0 is equivalent to the“balanced cointegration” requirement in Andersen

& Varneskov (2021a, Eq. (8)), implying that the fractional cointegration cannot be stronger than the

persistence of the regressors. This condition is not truly required, but it simplifies the tuning parameter

restrictions imposed on ℓ and m in Assumption T considerably.

3.2 Feasible Inference

This section provides a feasible inference procedure, which is uniformly valid across scenarios (ii)-(iv)

where, as shown by Theorem 1, we obtain a different asymptotic limit theory depending on whether

the system features cointegration in model (iv) or not. Feasible inference requires consistent estimators

of the long-run covariance matrix Guu and either Gξξ for models (ii)-(iii) or Gηη/(1 + 2b) for model

(iv). Similarly, we must account for the different rates of converge in the distinct inference regimes.

The main challenges are, first, that we observe v̂ ct instead of either v̂t or vt . Second, the residual

components ξt−1 and η
(b)
t are latent, and we must estimate them, after estimation of B, as,

η̂
(b,c)
t = êt − B̂c(ℓ,m)′ û ct−1. (19)

Importantly, and unlike Andersen & Varneskov (2021a), we do not rely on a separate, consistent

estimator of b, but rather utilize the different asymptotic orders in the two sources of error. Specifically,

if the regressors are “imperfect,” as in models (ii)-(iii), the contribution from ξt−1 will dominate that

from η
(b)
t , b = d1 > 0, asymptotically and we may, thus, use η̂

(b,c)
t to estimate Gξξ. In contrast, for

model (iv), we recover information about the long-run variance of η
(b)
t , since ξt−1 = 0, ∀t.

Once the error process η̂
(b,c)
t is estimated, we use a class of trimmed long-run covariance estimators

to obtain the asymptotic variance components. In particular, for a generic vector ht, we adopt,

Ĝhh(ℓG,mG) =
1

mG − ℓG + 1

mG∑
j=ℓG

ℜ (Ihh(λj)) , (20)

with bandwidth and trimming functions, mG = mG(n) and ℓG = ℓG(n). This class of long-run

covariance estimators is used for inference and testing in Andersen & Varneskov (2021a), but with the

regression errors η̂
(b,c)
t defined differently, and it is akin to those in Christensen & Varneskov (2017).

If we restrict ℓG = 1, the estimator also resembles those employed by Robinson & Yajima (2002) and

Nielsen & Shimotsu (2007) to design semiparametric tests for fractional cointegration rank in LW and

ELW settings, respectively. However, we face additional challenges due to the, possibly, endogenous

regressors, fractional filtering induced mean-slippage, and estimation errors as well as the lower-order

filtering error η
(b)
t , when we seek to recover information about ξt−1 in models (ii)-(iii).

Specifically, the components of the respective asymptotic variances in Theorem 1 for models without

cointegration (ii)-(iii) and the corresponding model with cointegration (iv) are computed using equation

(20) with either the fractionally filtered regressors, û ct−1, or the estimated residuals, η̂
(b,c)
t . These
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estimates, denoted by Ĝc
ûû(ℓG,mG) and Ĝ

(b,c)
η̂η̂ (ℓG,mG), are, then, combined to form,

ÂVAR(ℓG,mG) = Ĝc
ûû(ℓG,mG)

−1 Ĝ
(b,c)
η̂η̂ (ℓG,mG)/(2m) , (21)

which, importantly, is identical for all models (ii)-(iv). We need to impose (mild) conditions on its

tuning parameters, similarly to those for the LCM coefficient estimator in Assumption T.

Assumption T-G. Let the bandwidth mG ≍ nκG and ℓG ≍ nνG, with 0 < νG < κG < ϱ ≤ 1, and define

mn = md ∧mb ∧m. Then, m = mG and the following cross-restrictions are imposed,

n

mG ℓ 2G
+

n2

mG ℓ 2Gmn

+

(
n

mG

)b 1
√
md

→ 0, as n→ ∞.

Whereas the first two regularity conditions mirror those imposed by Andersen & Varneskov (2021a,

Assumption T-G), the restriction mG = m and the third condition are unique to our asymptotic

variance estimator. They are necessary for our feasible inference in model (iv), as we must estimate

the long-run variance Gηη/(1+2b) and recover information about the scale λ2bm, arising from the faster

rate of convergence of LCM in this scenario. In principle, we only need the restriction mG = m for

Ĝ
(b,c)
η̂η̂ (ℓG,mG), but we maintain it for both components to limit the number of tuning parameters.

Theorem 2. Suppose Assumption T-G and the conditions of Theorem 1 hold, thenm ÂVAR(ℓG,mG)
P−→ G−1

uu Gξξ/2 , under models (ii) and (iii) ,

mλ−2b
m ÂVAR(ℓG,mG)

P−→ G−1
uu Gηη/(2(1 + 2b)), under model (iv).

Importantly, the estimator converges to the correct asymptotic variance in both inference regimes.

Hence, feasible inference and testing for the LCM procedure follows by applying Theorems 1 and 2 in

conjunction with the continuous mapping theorem and Slutsky’s theorem:

Corollary 1. Suppose the conditions of Theorems 1 and 2 hold, then

ÂVAR(ℓG,mG)
−1/2

(
B̂c(ℓ,m)−B

)
D−→ N

(
0, Ik

)
, under models (ii)-(iv).

Our feasible inference procedure is uniformly valid across scenarios (ii)-(iv), without prior knowledge

of the which scenario describes the system and without pre-testing, as long as Assumption F holds

and we can estimate d1 consistently. Hence, it is not subject to the model selection and pre-testing

critique of Leeb & Pötscher (2005), despite carrying out estimation in two steps.

Remark 6. We provide a model selection procedure in Appendix A.2 to determine, asymptotically,

whether the regressors are imperfect or perfect, that is, whether models (i)-(iii) or (iv) describes the

predictive system. While this may be of separate interest, we reiterate that our feasible inference is

uniformly valid across the model (ii)-(iv).
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4 An LCM-Bias Approach to Estimating d1

This section introduces a new LCM-bias (LCMB) approach to estimation of the fractional integration

(persistence) parameter for asset returns. We emphasize, however, that it applies more generally to

problems where a persistent conditional mean is cloaked by a high noise-to-signal ratio. The approach

is inspired by the following observations. Assumption F is arguably violated, when applying standard

univariate time series techniques to returns, generating estimates d̂1 ≃ 0. At the same time, a large

literature finds predictability using very persistent state variables, suggesting that the mean returns

contain a highly persistent component. As an alternative, we propose a new multivariate approach,

where we “borrow” an estimate of the fractional integration order from the regressors and impose it

on the returns. Importantly, this estimate need not be correct. Instead, we take advantage of LCM

and the frequency domain analysis to quantify the bias from having imposed the (possibly, wrong)

integration order and, subsequently, utilize this bias to quantify how incorrect our initial guess is. This

allows us to back out an estimate of d1. Hence, our procedure relies on LCM coefficient estimates,

rather than univariate techniques. In addition, we provide new LCM-based significance tests for biased

coefficient estimates, which are asymptotically valid, even without estimating the return persistence.

4.1 A Slightly Modified Framework

In order to develop our multivariate LCMB estimator for d1, we impose some additional mild structure

on the estimation problem by modifying Assumptions M and F:

Assumption M-d1. In addition to Assumption M, suppose a subset of the regressors, denoted by Sx,
with dimension 1 ≤ kx ≤ k has 0 ≤ di ≤ 1, for i ∈ Sx. Moreover, define γx = maxi∈Sx(di) and suppose

that b = d1, 0 < b < 1 and b ≤ γx.

Assumption F-d1. Suppose Assumption F holds for elements i = 2, . . . , k+1 of Zt, i.e., the regressors.

Furthermore, we have an estimator for which γ̂x − γx = Op
(
1/
√
md

)
.

The additional restrictions in Assumption M-d1 are rather innocuous; they are satisfied when

a “sensible” set of regressors have been chosen, with persistence spanning a realistic range for the

conditional mean return. Moreover, Assumption F-d1 only requires that we are able to estimate

the persistence of the regressors and a function there-off; namely, the maximal persistence on the

unit interval for the subset Sx. We shall subsequently utilize γ̂x as the initial “guess” for the return

persistence but, importantly, do not require that γx = d1. Instead, we define,

ψ = γx − d1, such that 0 ≤ ψ ≤ γx . (22)

Thus, ψ quantifies the distance between our initial guess and the true persistence of the conditional

mean return. The memory restrictions imply 0 < dx ≤ γx ≤ 1 which, in conjunction with 0 < b < 1,

is critical for obtaining the Gaussian central limit theory. We conjecture the condition b ≤ γx may be

relaxed, but this may impact the limit theory, as discussed in the following remark.
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Remark 7. The condition ψ ≥ 0 greatly simplifies the asymptotic analysis, especially the tuning param-

eter restrictions. However, inspired by the analyses of NBLS and MBLS in stationary fractional cointe-

gration settings by Christensen & Nielsen (2006) and Christensen & Varneskov (2017), we conjecture

that a Gaussian limit theory can be obtained, if our initial persistence guess γ̂x implies ψ > −1/2.

Similarly, the study of NBLS in non-stationary environments by, e.g., Robinson & Marinucci (2001,

2003) suggests that having −1 ≤ ψ ≤ −1/2 will induce a non-Gaussian limit theory. Thus, we may be

able to entertain other initial guesses for the return persistence. We do not investigate such choices

theoretically here, but we explore alternative selections through simulation in Section 5.

4.2 Multivariate LCMB Limit Theory

The main idea behind the LCMB approach is to compare the relative bias of two LCM coefficient

estimates with different bandwidths using γ̂x as an initial benchmark value for the return persistence.

To this end, we define a constant κ > 1, such that m̃ = m/κ > ℓ. The bandwidth m̃ diverges at the

same rate as m, but letting κ > 1 enables us to asymptotically identify ψ. We further define,

B̂c(ℓ,m, γ̂x) = F̂ c
ûû(ℓ,m)−1 F̂ c

ûě(ℓ,m), where ět = (1− L)γ̂x yt , (23)

as the LCM estimator implemented using γ̂x as the value for d1, and equivalently write B̂c(ℓ, m̃, γ̂x).

Besides the additional structure imposed on the estimation problem in Assumptions M-d1 and F-d1,

we also require some strengthening of the regularity conditions on the tuning parameters.

Assumption T-d1. Suppose the conditions of Assumption T hold as well as

m1+2(ϖ−2)

n2(ϖ−b) +
ℓ1+ϖ+ψ

m1/2+b+ψnϖ−b +
1

ℓ

(( n
m

)1/2+b
+
( n
m

)1/2+γx−dx)
+

m1/2

ℓ2

( n
m

)((m
n

)dx−b
+
(m
n

)2dx−γx) → 0, as n→ ∞ .

The regularity conditions in Assumption T-d1 tighten the corresponding restrictions one through

four in Assumption T, especially if b is large. To see this, note that condition one in Assumption T-d1

and five in Assumption T imply b/(1/2 + b) < κ < 2(ϖ − b)(1 + 2(ϖ − b)), thus inducing a tight

bound around the bandwidth selection κ = 2/3, if ϖ = 2 and b is close to one. This explains why

we require b < 1, and why we impose 2b < ϖ for Assumptions D1, T and T-d1 to be consistent with

Theorem 3 below. Hence, if b is high, yet below one, the conditions suggest to select 0.65 < κ < 0.75.

In contrast, conditions two and four of Assumption T-d1 provide no meaningful strengthening of the

trimming restrictions. However, condition three may be binding. For example, if we set κ = 0.70, the

condition implies 0.30(1/2 + b) < ν, which may bind for b close to one.
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Finally, we write c(ψ) = cos(πψ/2)/(1 + ψ) to characterize the LCM bias and, similarly,

V(η, γx) = G−1
uu

Gηη
2(1 + 2γx)

, Φ(κ, γx) =

(
1 κγx−1/2

κγx−1/2 κ2γx−1

)
, (24)

with V(ξ, ψ) and Φ(κ, ψ) defined analogously, to decompose the asymptotic variance.

Theorem 3. Suppose Assumptions D1-D3, C, M-d1, F-d1 and T-d1 hold along with the conditions

0 < b < 1, b ≤ d, n1/2/m→ 0, and max(0, (1− 3κ/2)/(1 + κ/2), 2b) < ϖ ≤ 2, then,

(a) In the imperfect regressor models (ii) and (iii), we have,

√
mλ−ψm

(
B̂c(ℓ,m, γ̂x)− λψmc(ψ)B
B̂c(ℓ, m̃, γ̂x)− λψm̃c(ψ)B

)
D−→ N

(
0, V(ξ, ψ)⊗Φ(κ, ψ)

)
.

(b) In the cointegration model (iv), it holds that,

√
mλ−γxm

(
B̂c(ℓ,m, γ̂x)− λψmc(ψ)B
B̂c(ℓ, m̃, γ̂x)− λψm̃c(ψ)B

)
D−→ N

(
0, V(η, γx)⊗Φ(κ, γx)

)
.

Theorem 3 provides some interesting findings. First, the asymptotic properties of the LCM coeffi-

cient estimates are similar to those described following Theorem 1; the distribution is asymptotically

Gaussian irrespective of regressor endogeneity, imperfection and persistence. However, the conver-

gence rate now depends on ψ for models (ii)-(iii) and γx for the cointegration model (iv). Second, the

estimates are inconsistent, unless ψ = 0, that is, unless our initial guess for d1 is correct. Indeed, if

ψ = 0, we recover a multivariate version of Theorem 1. Third, the relative efficiency of B̂c(ℓ,m, γ̂x)

and B̂c(ℓ, m̃, γ̂x) depends on whether the system is stationary in the respective modeling regimes. For

example, under model (iv), the asymptotic variance of B̂c(ℓ,m, γ̂x) is smaller than the corresponding

one for B̂c(ℓ, m̃, γ̂x), when γx > 1/2, and vice versa for γx < 1/2. This feature is reminiscent of NBLS

being more efficient than OLS, when estimating non-stationary cointegration models, which is due to

the signal being stronger at lower frequencies; see, e.g., Robinson & Marinucci (2001).

Finally, and importantly, the LCM coefficient estimates shrink towards their limits at different

rates, depending on the bandwidths m and m̃. This is the feature, which allows us to recover ψ and

subsequently d1. Specifically, this type of asymptotic degeneracy suggests that we may extract such

estimates from the ratio of biased LCM coefficients. To this end, let L be a k×1 vector, which is

used to linearly transform B̂c(ℓ,m, γ̂x) and, thus, asymptotically λψm c(ψ)B to a scalar. We will, then,

first assume that L′B ̸= 0 to construct our ratio estimator for ψ. However, this assumption may be

tested prior to implementation, and we propose a pre-test in the next subsection, that has no impact

on the final (conservative) convergence rate of the estimator. This pre-test is a valid significance test,

implemented using our benchmark γx for the return persistence. Hence, our procedure requires at least

one of the regressors to have predictive power for returns, i.e., if all selected regressors are insignificant,
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we cannot detect return persistence via the LCMB approach. This will, however, asymptotically, be

revealed by the pre-test. Since numerous asset pricing theories imply that the conditional mean return

is driven by, e.g., valuation ratios, discount rates, volatility, etc., these should be included among the

regressors to ensure that L′B ̸= 0, indeed, is satisfied, with high probability.

Now, assuming L′B ̸= 0 holds, our ratio estimator of ψ is defined as,

ψ̂(L) =
lnR(L)
ln(κ)

, where R(L) =
L′B̂c(ℓ,m, γ̂x)

L′B̂c(ℓ, m̃, γ̂x)
, (25)

motivated by the structure of the asymptotically degenerate coefficient estimates. Further letting,

S(L, η, γx) = L′V(η, γx)L , Θ(κ, ψ, γx) =
(
1− κψ+γx−1/2

)2
/
(
c(ψ)L′B

)2
,

and defining S(L, ξ, ψ) and Θ(κ, ψ, ψ) analogously, we may thus establish a limit theory for ψ̂(L).

Theorem 4. Suppose the conditions of Theorem 3 and L′B ̸= 0 hold. Then,
√
m
(
ψ̂(L)− ψ

) D−→ N
(
0, S(L,ξ,ψ)Θ(κ,ψ,ψ)

ln(κ)2

)
, in models (ii)-(iii), when ψ ̸= 1/4 ,

√
mλ−bm

(
ψ̂(L)− ψ

)
D−→ N

(
0, S(L,η,γx)Θ(κ,ψ,γx)

ln(κ)2

)
, in model (iv), when ψ + γx ̸= 1/2 .

Theorem 4 shows that our LCMB estimator for ψ = γx − d1 inherits its desirable asymptotic

properties from the LCM procedure, including its rate of convergence. Specifically, for the imperfect

regressor models (ii)-(iii), we obtain the semiparametric rate ψ̂(L)− ψ = Op
(
1/
√
m
)
, when ψ ̸= 1/4,

and ψ̂(L) − ψ = op
(
1/
√
m
)
, when ψ = 1/4. Moreover, for the cointegration model (iv), the rate

is improved to ψ̂(L) − ψ = Op
(
1/
√
mλbm

)
, when ψ + γx ̸= 1/2, and ψ̂(L) − ψ = op

(
1/

√
mλbm

)
, if

ψ+γx = 1/2, in analogy with super consistency. Since we have γ̂x−γx = Op
(
1/
√
md

)
by Assumption

F-d1, Theorem 4 shows that d̂1(ψ) ≡ γ̂x − ψ̂(L) obtains a conservative rate d̂1(ψ)− d1 ≤ Op
(
1/
√
m
)
.

Critically, if our LCMB persistence estimator is implemented with a preliminary bandwidth mp ≍ nκp ,

where κ < κp < ϱ ≤ 1, it follows that our original Assumption F is satisfied, our central limit theory in

Theorem 1 holds, and that we may use the feasible inference procedure from Corollary 1 for hypothesis

testing on B. The one remaining caveat is pre-testing the assumption L′B ̸= 0.

4.3 Preliminary Significance Testing

As a final step, this section provides an asymptotically valid significance test for L′B ̸= 0, when the

LCM procedure is implemented using γ̂x as benchmark value for d1. Importantly, this test does not

require knowledge of the return persistence, and the rate of convergence is fast enough to retain a

conservative convergence rate d̂1(ψ) − d1 ≤ Op
(
1/
√
m
)
. Therefore, Assumption F is satisfied, if a

preliminary bandwidth with κ < κp is adopted. Hence, we are able to implement the second (MBLS)

step of the LCM procedure following our pre-testing as well as LCMB estimation of d1, without being
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subject to the Leeb & Pötscher (2005) model selection critique. As before, we define,

η̌
(b,c)
t = ět − B̂c(ℓ,m, γ̂x)

′ û ct−1, Ĝη̌η̌(ℓG,mG) =
1

mG − ℓG + 1

mG∑
j=ℓG

ℜ
(
I
(b,c)
η̌η̌ (λj)

)
, (26)

as well as the asymptotic variance estimator,

ÂVAR(ℓG,mG, γ̂x) = Ĝc
ûû(ℓG,mG)

−1 Ĝ
(b,c)
η̌η̌ (ℓG,mG)/(2m). (27)

While the intuition and motivation behind the estimator (27) is similar to the one in equation (21),

their asymptotic properties differ, as evidenced by the following theorem.

Assumption T-G-d1. Suppose Assumption T-G and (n/mG)
ψ/

√
mG → 0 hold.

Theorem 5. Suppose Assumption T-G-d1 and the conditions of Theorem 3 hold, then

mλ−2ψ
m ÂVAR(ℓG,mG, γ̂x)

P−→


V(ξ, ψ) , under model (ii),

V(ξ, ψ) + G−1
uu

(
1

1+2ψ − c(ψ)2
)
B′GuuB, under model (iii),

G−1
uu

(
1

1+2ψ − c(ψ)2
)
B′GuuB, under model (iv).

The result for model (ii) in Theorem 5 is the same as in Theorem 2, but the remaining parts

are different. Specifically, when B ̸= 0 under the alternative hypothesis, HA, the inconsistency of

the LCMB coefficient estimator B̂c(ℓ,m, γ̂x) spills over to the residual estimate, η̌
(b,c)
t , with a rate

inherited from the degeneracy rate of the coefficient estimate in Theorem 3. In model (iii), this bias

is of the same asymptotic order as ξ
(γx−d1)
t−1 after fractional filtering, explaining the decomposition of

terms. In model (iv), it dominates η
(γx)
t and, thus, generates the first-order limit. This implies that

our asymptotic variance estimator is inconsistent in models (iii) and (iv). However, it is still useful for

testing L′B ̸= 0 and, thus, the significance of B more generally. To see this, define,

T̂(L) =
L′ B̂c(ℓ,m, γ̂x)√

L′ ÂVAR(ℓG,mG, γ̂x)L
, where T̂(L) D−→ N(0, 1), (28)

under model (ii), by Theorems 3(a) and 5, the continuous mapping theorem and Slutsky’s theorem.

Moreover, T̂(L) = Op
(√
m
)
in both models (iii) and (iv), as the λψm scaling cancels. Hence, the test

T̂(L) has asymptotic power to detect the significance of the regressors without any actual estimate for

the return persistence. However, this robustness likely comes with a loss of finite sample power, as

Theorem 5 shows ÂVAR(ℓG,mG, γ̂x) is inflated for model (iii), and the rate of divergence is strictly

slower than the rate
√
mλ−bm , achieved by LCM in Theorem 1, for model (iv). Nonetheless, importantly,

using T̂(L) for the pre-test, if indeed L′B ̸= 0, we preserve a conservative convergence rate,

d̂1(ψ,P)− d1 = Op
(
1/
√
m
)
, for d̂1(ψ,P) = d̂1(ψ)× P

(
T̂(L) ̸= 0

)
, (29)
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To summarize, we recommend the following recipe for implementing the LCM procedure for return

regressions. First, carry out a significance test T̂(L) for the regressor(s) using a preliminary guess γ̂x

for the return persistence and a bandwidth mp satisfying m/mp → 0, as n → ∞. If we fail to find

any significant regressor(s), we cannot estimate d1. Thus, we terminate the procedure, and conclude

that our finding is consistent with models (i) or (ii), because T̂(L) is asymptotically valid, even in the

absence of an estimate for d1. In contrast, if we conclude that T̂(L) ̸= 0, we go on to implement the

LCMB estimator for d1. Using the resulting estimate, we then carry out the LCM analysis in Section

3, as all requisite assumptions are satisfied. We refer to this as the LCMB-augmented procedure.

Remark 8. While the LCMB persistence estimator in (29) exhibits a sufficiently fast rate of convergence

to satisfy the consistency requirements in Assumption F, even following pre-testing, it is important

to note that we cannot readily use Theorem 3 to draw inference on d1, if we carry out pre-testing.

Specifically, since T̂(L) = Op
(√
m
)
, the pre-testing errors for P

(
T̂(L) ̸= 0

)
are either of the same

order as the sampling errors for d̂1(ψ) in Theorem 4(a), or it dominates the errors in Theorem 4(b).

Therefore, this inference problem is subject to the Leeb & Pötscher (2005) critique. In contrast, when

choosing κ < κp for our second-stage MBLS estimator and feasible inference, the errors from the

filtering estimates are ameliorated by suitable selection of the bandwidth and trimming function.

5 Monte Carlo Evidence

This section illustrates some of the key inferential problems surrounding return regressions in a trans-

parent numerical setting. In particular, we explore the effects of increasing the noise-to-signal ratio of

the return regressions for estimates of its fractional integration order as well as the size properties of

predictability tests relying on either OLS, IVX or LCM inference. In particular, test size is assessed

within an imperfect predictor specification. Moreover, we examine the bias and RMSE of the coeffi-

cient estimates for the three methods. Finally, we study the finite-sample properties of the LCM, with

and without applying the LCMB procedure for estimation of the return persistence.

5.1 Simulation Setting

We study inference problems for return regressions in a setting reminiscent of the one in Hong (1996)

and Shao (2009), albeit allowing the variables to exhibit non-stationary fractional integration. To

render the analysis manageable, we assume B and X t−1 are univariate (written as B and Xt−1, respec-

tively) and stipulate that Xt−1 = xt−1, which ensures the signal of the persistent regressor is directly

observable and excludes endogeneity. Then, we generate fractional ARMA(0, 0) processes as,

(1− L)d1(yt − µy) = φt−1 + η
(d1)
t , φt−1 = But−1 + Bξξt−1 , (1− L)d2(xt−1 − µx) = ut−1 , (30)

and η
(d1)
t = (1− L)d1ηt , where ζt ∼ i.i.d.N(0, σ2ζ ) for ζt ∈ {ηt, ξt−1, ut−1}. Moreover, to highlight the

impact of the noise-to-signal ratio for drawing inference about return persistence and predictability,
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we set µy = µx = 1/2 and, without loss of generality, σξ = σu = 1, while varying the volatility of the

return innovations, ση. This ensures that the dynamic properties of the predictive system are captured

solely by (d1, d2), (B,Bξ) and ση. We consider four distinct long-memory scenarios,

(d1, d2) ∈
{
(0.00, 0.45), (0.45, 0.45), (0.00, 0.80), (0.80, 0.80)

}
,

with different dynamic implications. In two cases, the data generating processes (DGPs) produce a

balanced regression setting, with the regressor exhibiting the same persistence as the (latent) condi-

tional mean return. In the first of these, we have an asymptotically stationary mean and in the other a

non-stationary, yet mean-reverting, conditional mean process. In addition, we analyze two alternative

DGPs, where the conditional mean is considerable less persistent (d1 = 0) than the observed regres-

sor. They are included to assess the impact of “overdifferencing,” when wrongly imposing an initial

integration order, γ̂x, for the LCMB approach as well as to examine alternative specifications, when

returns are weakly dependent. The magnitudes of the integration orders are inspired by our empirical

study in the next section, with d = 0.45 corresponding to our realized volatility predictor and d = 0.80

being close to the estimated persistence for the conditional mean return using the LCMB approach

(we obtain d̂1(ψ,P) ≃ 0.7676). As ση ∈ [0, 25] varies, the degree of noise in the predictive relation

changes, possibly rendering the persistence of the conditional mean undetectable in finite samples.19

Initially, we entertain univariate predictions using xt−1, but fix (B,Bξ) = (0, 1.2) in equation (30),

implying that asset returns has a persistent mean, but the empiricist employs an irrelevant “imper-

fect” predictor, so that the persistence “spills over” into the residuals. In this scenario, we assess if and

when ση is sufficiently large to induce “incorrect” inference regarding the fractional integration order

of the returns, d̂1 ≃ 0, as is generally found empirically. Moreover, we examine the size properties of

predictability tests with, seemingly, I(0) returns using either OLS, IVX or LCM inference. Further-

more, we consider several different implementations of the LCM procedure: One based on “standard”

univariate time series estimates of d1 as in Andersen & Varneskov (2021a); an “oracle” version where

(d1, d2) is treated as known; and four versions of the LCMB-augmented procedure with initial persis-

tence values γ̂x = {0, 1/2, 1, d̂2}, thereby encompassing the approach advocated in Section 4 and fixed

alternatives, as discussed in Remark 7. In addition, we study the case (B,Bξ) = (1.2, 0), corresponding

to a “perfect” predictor scenario, to assess the bias and RMSE properties of the respective estimators

and the power of the LCM-based significance tests.20 We emphasize that, in the latter scenario, OLS,

IVX and the standard LCM estimators are all “misspecified,” in the sense that OLS and IVX inference

generally does not apply to fractionally integrated systems, as discussed in the introduction, whereas

LCM is implemented with the “wrong” fractional integration order for the returns.

We implement IVX with parameters CIVX = 1 and βIVX = 0.95 to construct the self-filtered

19We have run similar experiments with ARMA(1, 0) short-run dynamics and/or (d1, d2) = (0.45, 0.80). The corresponding
results, when allowing for mild autoregressive dynamics as well as alternative long memory configurations, are almost
identical to those presented in Figures 1-8 and are, thus, omitted for brevity.

20We also considered DGPs with B = 1.2 and Bξ = 1.2, which deliver similar, and therefore omitted, results.
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instrument, an additional deterministic instrument sin((t − 1)π/n), t = 1, . . . , n, and Eicker-White

standard errors, in line with the recommendations in Breitung & Demetrescu (2015) and Kostakis et al.

(2015). Similarly, we employ Eicker-White inference for OLS.21 Moreover, we implement the standard

LCM, oracle LCM and first-tage LCMB estimates of d1 using trimming and bandwidth parameters

(ν, κ) = (0.20, 0.70). These are similar to the ones considered in Andersen & Varneskov (2021a) and

reflect the dynamic properties of returns and, especially, the persistent predictor variables in Section

6. Specifically, the bandwidth is chosen locally (m/n → 0) to avoid placing excessive weight on the

higher-frequency errors stemming from ηt, and we select κ = 0.70 due to the tight bounds derived

for LCMB estimator, when d1 = b is high. Likewise, the trimming parameter reflects condition three

in Assumption T with d1 = 0.80, inspired by our estimate from the empirical analysis. Furthermore,

for the standard LCM coefficient estimator and the LCMB approach, we obtain initial estimates of

d1 and d2 using the TELW estimator of Andersen & Varneskov (2021a), with corresponding trimming

and bandwidth parameters ℓd = ⌊n0.3⌋ and md = ⌊n0.75⌋. The LCMB persistence estimate is, then,

constructed using κ = 4/3, thereby letting m̃ be 75% of m, as,

max
(
d̂1(ψ,P), d̂1(TELW)

)
,

that is, with a preliminary significance test for Xt−1 using Theorems 4 and 5 which, as detailed in

Section 4.3, satisfy Assumption F with rate
√
m. Hence, when using the LCMB approach to extract

information about d1, we implement the second-stage MBLS regression with (ν, κ) = (0.20, 0.69)

for comparable asymptotic efficiency and to satisfy the requisite bandwidth conditions. We further

note that, importantly, the results are qualitatively robust to varying the tuning parameters ν ± 0.10

and κ ± 0.05 for both the standard LCM procedure and our LCMB-augmented approach. For the

bandwidth, the tight bound is due to the LCMB persistence estimate in the first stage; the oracle

version of LCM is robust to this selection. The significance tests for LCM and the LCMB-augmented

procedure are carried out using the feasible inference in Section 3.2, where the consistent spectrum

estimator of the asymptotic variance is implemented with νG = ν and κG = κ. Our main analysis

examines a sample size n = 650, mimicking the one for the empirical analysis (n = 661), but we

also examine the limiting properties of our LCMB-augmented procedure using n = 2000. Finally, we

consider a 5% nominal test size and rely on 1000 replications.

5.2 Simulation Results

Figure 1 shows the estimated integration order of returns as a function of ση for the baseline sample

size n = 650 using either the TELW estimator (top panels) or the LCMB approach (middle panels).

Moreover, we provide corresponding LCMB estimates in the bottom panel for the larger sample size,

n = 2000. Several features are noteworthy. One, the estimated persistence decreases as a function of

21We have also carried out OLS-based testing for return predictability using Newey & West (1987) standard errors. The
results are almost identical to those presented and, thus, left out for ease of exposition.
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ση, eventually implying failure to reject d1 = 0. This occurs, not surprisingly, more rapidly for the

weaker signal, d1 = 0.45, compared to the stronger signal, d1 = 0.80, confirming that a persistent mean

return component may be difficult to identify using standard univariate time series techniques. Two,

the LCMB approach delivers sizable finite-sample improvements over TELW for a wide range of ση,

except when adopting γ̂x = 1 as the initial persistence value. Three, whereas the persistence estimates

from the TELW estimator barely changes, when increasing the sample size, the LCMB approach

improves noticeably and is able to recover important information about d1 for a considerably larger

range of ση, corroborating the advantages of adopting a multivariate, frequency domain regression

approach to persistence estimation within high noise-to-signal ratio settings.

Given that standard univariate time series techniques cannot identify the fractional integration

order of the returns for a wide range of ση, we now examine the size implications. Figure 2 provides

results for OLS, IVX, standard LCM and oracle LCM in its left panels and for the LCMB-augmented

procedures in the right panels. Notably, OLS and IVX are oversized for a wide range of ση, if the

conditional mean return is persistent, d1 = {0.45, 0.80}, even when the estimated fractional integration

order, incorrectly, suggests that the return series is I(0). This is akin to the spurious inference problem

arising, when applying least squares to fractionally integrated processes, e.g., Tsay & Chung (2000),

and the size distortions for return regressions, when applying persistent AR(1) predictors, e.g., Ferson

et al. (2003). We thus find that similar problems arise for return regressions with“imperfect”predictors

in fractionally integrated settings for empirically relevant scenarios. For example, the bottom left panel

features a regressor with a lower persistence than obtained, in Section 6, for common return predictors

like the default spread, price-earnings ratio, and 3-month T-bill rate. Moreover, serious size distortions

also arise for IVX, although this procedure, otherwise, is equipped to handle local-to-unity regressors.

In contrast, the size properties of all LCM-based tests are close to the nominal 5% level.

Figures 3 and 4 depict the bias properties of the estimators under the null hypothesis (B,Bξ) =

(0, 1.2) and alternative (B,Bξ) = (1.2, 0). None of the estimators exhibit any notable bias under the

null. However, under the alternative HA : B ̸= 0, we observe that OLS and IVX are severely downward

biased, when d1 = 0, that is, when the conditional mean return is less persistent than the regressors.

Conversely, the standard LCM estimator is upward biased when d1 = {0.45, 0.80}. These patterns are
intuitive. For OLS and IVX, the asymptotic order of the denominator (i.e., the predictor variance)

is larger than numerator (the predictor-return covariance), causing the regression slope to be biased

towards zero. We label this a persistence bias, which also features in our unreported results for the

long memory configuration (d1, d2) = (0.45, 0.80), as it is generated by the wedge between d1 and d2,

not their absolute magnitudes. Similarly, for the standard LCM estimator, the downward bias in the

TELW estimates (eventually, obtaining d̂1 ≃ 0) causes the fractional filtering of yt to be insufficient,

leaving the numerator of higher asymptotic order than the denominator, where ûct−1 has been filtered

“correctly”, and, thus, blows up the estimate, since B > 0. This pattern is not visible for the oracle

implementation of LCM. Hence, we refer to this as a fractional filtering bias.

Turning to the LCMB-augmented procedures, we obtain mixed results depending on the selection
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of γ̂x. Choosing γ̂x = 0, the subsequent coefficient estimates are (almost) unbiased, when d1 = 0,

but produces only small improvements over the standard LCM estimator, when d1 = {0.45, 0.80}.
In contrast, if choosing γ̂x = 1, the patterns are reverse, providing strong bias reduction when d1 =

{0.45, 0.80}, but being downward biased for d1 = 0. Hence, the selection γ̂x = 0 makes the LCMB-

augmented procedure reminiscent of the standard LCM estimator, and γ̂x = 1 generates similarities

with OLS and IVX. The advocated selection γx = d̂2, in turn, performs well in all cases; it is almost

unbiased for d1 = 0 and generally displays a reduced bias for d1 = {0.45, 0.80}.
Finally, we compare the standard LCM estimator and our new LCMB-augmented procedure in

terms of size and power in Figure 5 as well as bias and root-mean-squared error (RMSE) in Figure

6, with the LCMB selection γx = d̂2 throughout. Moreover, the corresponding results for the larger

sample size, n = 2000, are provided in Figures 7 and 8. Whereas the size and power results are similar

for the two procedures, major differences arise between their respective bias and RMSE properties,

when d1 = {0.45, 0.80}, as the LCMB-augmented procedure improves the finite sample performance

for a wide range of ση. Perhaps more important, Figure 8 demonstrates that the former improves

with sample size, further ameliorating its bias and lowering the RMSE, whereas the properties of

the standard LCM procedure worsen, due to its fractional filtering bias. Hence, overall, the LCMB-

augmented procedure displays a desirable combination of correct size, non-trivial power and bias

robustness in finite samples. In contrast, OLS and IVX are either oversized, when the conditional

mean is persistent, d1 = {0.45, 0.80}, or suffers from a persistence bias when d1 is smaller than d2.

6 Empirical Illustration: Forecasting Equity Market Returns

This section explores predictive regressions for monthly S&P 500 equity index returns involving popular

macro-finance variables using OLS, IVX and LCMB-augmented procedures. Specifically, we examine

the predictive content of the regressors in Bansal et al. (2014) and Campbell et al. (2018).

6.1 Data Description

We use monthly log-return and realized volatility (RV) series for the S&P 500 index over March

1960-March 2015, yielding n = 661 observations. As in, e.g., Andersen & Bollerslev (1998), Barndorff-

Nielsen & Shephard (2002), and Andersen, Bollerslev, Diebold & Labys (2003), RV is constructed as

the square-root of the cumulative daily squared returns each month. Following Campbell et al. (2018),

we then include the default spread (DS), three-month U.S. Treasury bills (TB), and price-earnings ratio

(PE) as additional regressors. They have all been deemed successful predictors of equity returns; see,

e.g., Lettau & Ludvigson (2010) and Campbell (2018, Chapters 5.3-5.4). The DS equals the difference

between the log-percentage yields on Moody’s BAA and AAA bonds; TB is log-transformed; and PE

is the log-ratio of the S&P 500 index to the ten-year trailing moving average of the aggregate S&P 500

constituent earnings. The DS and TB data are from the Federal Reserve Bank of St. Louis (FRED),

while the PE data stem from the website associated with Shiller (2000).
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6.2 LCMB Analysis of Return Predictability

First, we estimate the fractional integration order of the returns and the four state variables; RV, DS,

TB and PE. We adopt the TELW estimator of Andersen & Varneskov (2021a) and the exact local

Whittle (ELW) estimator with a correction for the mean, or initial value, of Shimotsu & Phillips (2005)

and Shimotsu (2010).22 The results, reported in Table 1, show that the returns are, seemingly, I(0),

RV is stationary and fractionally integrated, and the remaining three state variables are non-stationary

long-memory processes. However, as argued earlier, these results do not preclude returns from having

a hard-to-identify “latent” persistent conditional mean component.

Second, we proceed by implementing the LCMB approach to estimate d1 and undertake prelimi-

nary significance testing. Specifically, we adopt the procedure in Section 4 with γ̂x = maxi=2,...,5 =

d̂i(TELW) = 1.0356, since the latter is insignificantly different from one, and tuning parameters

ν = νG = 0.20, κp = κG = 0.70 and κ = 4/3, similarly to the simulation study. Moreover, since we

want to avoid imposing ex-ante significance of the form L′B ̸= 0, we carry out a preliminary multi-

variate LCM regression with γ̂x as our initial guess for the conditional mean persistence. The results,

reported in the top part of Table 2, show that DS is the only individually significant predictor among

the regressors in the pre-test. Hence, we subsequently implement the LCMB estimator in (29) using

univariate LCM regressions with DS, obtaining an estimate d̂1(ψ,P) = 0.7676. This finding corrobo-

rates the hypothesis that asset returns contain a fractionally integrated conditional mean component,

which we cannot identify using standard univariate time series techniques. The estimate implies a

conditional mean process that is a strongly persistent, non-stationary, yet mean-reverting.

Next, we carry out a second-stage, multivariate MBLS analysis with κ = κG = 0.69 and the same

trimming parameters and LCMB persistence estimate, d̂1(ψ,P) as above. The results are included

along with corresponding for OLS and IVX results, using, again, Eicker-White inference, in the bottom

part of Table 2. There are several interesting observations. First, neither OLS nor IVX indicate any

significant predictability, and their coefficient estimates, standard errors and Wald tests are similar.

Second, using the LCMB-augmented procedure, we find similar (insignificant) coefficient estimates for

RV and PE. However, we also find that DS and TB are significant at a 1% and 5% level, respectively,

and the regressors are jointly significant at the 1% level. The positive coefficient sign for the former

is consistent with a risk-return trade-off, and the negative for the latter aligns with return-valuation

theory (Campbell 2018). Fourth, these results are confirmed by univariate regressions in Table 3,

where the LCMB-augmented procedure deliver estimates that are similar in terms of sign, magnitude

and significance, demonstrating robustness towards imperfect, or omitted, regressor bias.

These findings are considerably more incisive than usual for predictive return regressions, especially

at short horizons, e.g., Welch & Goyal (2008), Lettau & Ludvigson (2010), Campbell (2018, Chapter

5) and references therein. We attribute this to the advantages of our LCMB-augmented procedure.

First, uncovering the persistence of the conditional mean via our multivariate regression approach, we

22The TELW estimator, similarly to the mean-corrected ELW of Shimotsu (2010), is more robust to the mean, or initial
value, of the process. Both estimators are valid for stationary and non-stationary fractionally integrated processes.
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may adequately filter returns, reducing the impact of the “large” contemporaneous innovations, thus

mitigating their asymptotic and finite sample effects. Second, by letting ℓ/m +m/n → 0 as n → ∞,

we further reduce the impact of the error ηt ∈ I(0) by sampling in a part of the spectrum, where

the signal-to-noise ratio is larger. Finally, as discussed in Section 2.2, the LCM procedure is robust

to endogenous innovations, which tend to generate severe biases, e.g., Stambaugh (1999), Pastor &

Stambaugh (2009) and Phillips & Lee (2013). These LCM features all mitigate critical attenuation

biases, consistent with the larger coefficient estimates for DS and TB from the LCMB-augmented

procedure than from OLS and IVX in Tables 2 and 3. In contrast, Andersen & Varneskov (2021a)

find (standard) LCM to provide robust and reliable inference for return volatility forecasting, and to

negate prior claims of auxiliary forecast power for a number of macro-finance variables. The critical

distinction across these applications is the much stronger signal-to-noise ratio for the RV measures,

which alleviates concerns regarding unidentifiable integrated components in the return volatility series.

7 Conclusion

This paper studies the properties of predictive regressions for asset returns in economic systems gov-

erned by persistent vector autoregressive dynamics and considers robust estimation and inference. In

particular, the dynamic properties of the state variables are captured by fractionally integrated pro-

cesses, potentially of different orders, and returns have a latent persistent conditional mean, whose

memory cannot be consistently estimated in finite samples. The latter feature is consistent with the

typical findings in empirical studies, for which standard time series techniques almost invariably indi-

cate only weak dependence in the return dynamics. We further allow for the regressors in the system

to be endogenous and “imperfect”. In this setting, we show that the LCM procedure is consistent and

delivers asymptotically Gaussian inference, if we can estimate the persistence of the conditional mean

return, d1. Furthermore, we provide a new LMCB estimator of d1 that leverages biased slopes from

(multivariate) regressions as well as new LCM-based tests for significance of (a subset of) the predic-

tors, which are valid even without estimating the return persistence. By combining these parts into the

LCMB-augmented procedure, we are able to estimate the return persistence, coefficient estimates and

draw feasible inference in general settings. Simulations are used to illustrate the theoretical arguments

as well as demonstrate favorable finite sample properties of the LCMB-augmented procedure. Finally,

in an empirical application to monthly S&P 500 return predictions, we find consistent evidence, that

returns contain a (latent) fractionally integrated conditional mean component. Moreover, by applying

the LCMB-augmented procedure, we find strong predictive power for key economic state variables

such as the default spread and treasury interest rates.
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Figure 1: Fractional integration estimation. The top panels provide estimates of d1 and d2 as a function of the

standard deviation of the weakly dependent component of returns, ση. Moreover, 95% confidence intervals are

provided for d̂1. The estimates are constructed using the TELW estimator with tuning parameters ℓd = ⌊n0.3⌋
and md = ⌊n0.75⌋. The dotted vertical line highlights the value of ση where the empirical (unrestricted) estimate,

d̂1, is no longer significantly different from zero. The middle panels provide corresponding estimates based on the

LCMB approach, leveraging biased coefficient estimates and the ratio ψ̂(L), as described in Sections 4-5, and uses

a trimming parameter ν = ⌊n0.20⌋ as well as a preliminary bandwidth mp = ⌊n0.70⌋. The LCMB procedure is

implemented with one of the persistence guesses γ̂x = {0.0, 0.5, 1.0, d̂2} and indicated by “dpsi” in the figures. The

top and middle panels consider a sample size n = 650. The bottom panel is similar to the middle panel, but consider

a larger sample size n = 2000. Finally, the simulations is implemented with 1000 replications.
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Figure 2: Size properties. The left panels provide the size of OLS, IVX, the LCM estimator of Andersen & Varneskov

(2021a) and an oracle version of LCM, where (d1, d2) is treated as known. The right panels provide results for LCM

estimators that use different LCMB estimates of d1 in the fractional filtering, as described in Sections 4-5. The

LCMB estimates are implemented with γ̂x = {0.0, 0.5, 1.0, d̂2}, as indicated by the parenthesis; see Section 5 and

Figure 1 for details. Finally, we consider a sample size n = 650, a 5% nominal test size and use 1000 replications.
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Figure 3: Bias properties: Null hypothesis. The left panels provide the bias of OLS, IVX, the LCM estimator of

Andersen & Varneskov (2021a) and an oracle version of LCM, where (d1, d2) is treated as known. The right panels

provide results for LCM estimators that use different LCMB estimates of d1 in the fractional filtering, as described

in Sections 4-5. The LCMB estimates are implemented with γ̂x = {0.0, 0.5, 1.0, d̂2}, as indicated by the parenthesis;

see Section 5 and Figure 1 for details. Finally, we consider a sample size n = 650 and use 1000 replications.
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Figure 4: Bias properties: Alternative hypothesis. The left panels provide the bias of OLS, IVX, the LCM estimator

of Andersen & Varneskov (2021a) and an oracle version of LCM, where (d1, d2) is treated as known. The right panels

provide results for LCM estimators that use different LCMB estimates of d1 in the fractional filtering, as described

in Sections 4-5. The LCMB estimates are implemented with γ̂x = {0.0, 0.5, 1.0, d̂2}, as indicated by the parenthesis;

see Section 5 and Figure 1 for details. Finally, we consider a sample size n = 650 and use 1000 replications.
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Figure 5: Size and power properties: Impact of LCMB. The left panels provide the size of LCM using either the

LCMB approach with γ̂x = d̂2 to estimate d1 or the standard implementation in Andersen & Varneskov (2021a).

The right panels provide corresponding power results. See Sections 4-5 for implementation details. Size is for the

parameterization (B,Bξ) = (0, 1.2), and power is for (B,Bξ) = (1.2, 0). Finally, we consider a sample size n = 650,

a 5% nominal test size and use 1000 replications.

39



Bias: (d1, d2) = (0.00, 0.45) RMSE: (d1, d2) = (0.00, 0.45)

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sigma(eta)

bi
as

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

sigma(eta)

rm
se

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

Bias: (d1, d2) = (0.45, 0.45) RMSE: (d1, d2) = (0.45, 0.45)

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sigma(eta)

bi
as

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

sigma(eta)

rm
se

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

Bias: (d1, d2) = (0.00, 0.80) RMSE: (d1, d2) = (0.00, 0.80)

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sigma(eta)

bi
as

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

sigma(eta)

rm
se

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

Bias: (d1, d2) = (0.80, 0.80) RMSE: (d1, d2) = (0.80, 0.80)

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sigma(eta)

bi
as

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

sigma(eta)

rm
se

LCM_H0
LCM(d2)_H0
LCM_H1
LCM(d2)_H1

Figure 6: Bias and RMSE properties: Impact of LCMB. The left panels provide the bias of LCM using either the

LCMB approach with γ̂x = d̂2 to estimate d1 or the standard implementation in Andersen & Varneskov (2021a).

The right panels provide corresponding RMSE results. See Sections 4-5 for implementation details. Moreover, the

subscript with H0 indicates (B,Bξ) = (0, 1.2), and H1 similarly denotes (B,Bξ) = (1.2, 0). Finally, we consider a

sample size n = 650 and use 1000 replications.
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Figure 7: Size and power properties: Impact of LCMB and sample size. The left panels provide the size of LCM using

either the LCMB approach with γ̂x = d̂2 to estimate d1 or the standard implementation in Andersen & Varneskov

(2021a). The right panels provide corresponding power results. See Sections 4-5 for implementation details. Size is

for the parameterization (B,Bξ) = (0, 1.2), and power is for (B,Bξ) = (1.2, 0). Finally, we consider a sample size

n = 2000, a 5% nominal test size and use 1000 replications.
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Bias: (d1, d2) = (0.00, 0.45, 2000) RMSE: (d1, d2, n) = (0.00, 0.45, 2000)
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Figure 8: Bias and RMSE properties: Impact of LCMB and sample size.The left panels provide the bias of LCM

using either the LCMB approach with γ̂x = d̂2 to estimate d1 or the standard implementation in Andersen &

Varneskov (2021a). The right panels provide corresponding RMSE results. See Sections 4-5 for implementation

details. Moreover, the subscript with H0 indicates (B,Bξ) = (0, 1.2), and H1 similarly denotes (B,Bξ) = (1.2, 0).

Finally, we consider a sample size n = 2000 and use 1000 replications.
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Temporal Dependence and Rank

Returnst RVt−1 DSt−1 PEt−1 TBt−1

Mean 0.0055 0.0396 0.1346 0.0290 0.0468

Std. Dev. 0.0429 0.0239 0.0567 0.0042 0.0294

Skewness -0.6833 3.9095 2.4834 -0.3293 0.5800

Kurtosis 5.5338 30.4239 12.5860 2.5694 3.7378

ACF(1) 0.0527 0.6468 0.9663 0.9955 0.9887

TELW 0.0789
(0.0500)

0.4227
(0.0500)

0.9982
(0.0500)

1.0356
(0.0500)

0.9388
(0.0500)

ELWM 0.0804
(0.0500)

0.4306
(0.0500)

0.9230
(0.0500)

1.1372
(0.0500)

0.9273
(0.0500)

Table 1: Descriptive statistics. This table displays statistics describing the unconditional and temporal dependence
properties of returns and the four candidate predictors: RV, DS, PE and TB. Specifically, for the latter, we provide
estimates of the first-order autocorrelation function (ACF), trimmed exact local Whittle (TELW) estimator of the
fractional integration order (Andersen & Varneskov 2021a) as well as exact local Whittle (ELWM) estimates with
correction for the mean, or initial value, (Shimotsu 2010). The ELW estimators are implemented with bandwidth
⌊n0.71⌋ and, for TELW, trimming ⌊n0.1⌋ to reduce sensitivity to the mean. Finally, the sample of monthly observa-
tions spans March 1960 through March 2015 (n = 661).

Multivariate Return Predictions

RVt−1 DSt−1 TBt−1 PEt−1 Wald P-Wald

LCM(γx) 0.1003
(0.0980)

0.2144
(0.1016)

−0.3679
(0.3021)

−2.8461
(1.5459)

17.0281 0.0019

LCM(dψ) −0.1638
(0.1167)

0.3065
(0.1158)

−0.6771
(0.3352)

−1.2283
(1.7696)

14.0414 0.0072

OLS −0.1684
(0.1103)

0.0276
(0.0512)

−0.0885
(0.0969)

−0.8801
(0.6343)

6.4354 0.1689

IVX −0.1646
(0.1178)

0.0268
(0.0509)

−0.0817
(0.0983)

−0.7462
(0.6493)

4.5776 0.3334

Table 2: Multivariate regressions. This table provides coefficient estimates, standard errors in parentheses and joint
significance tests based on Wald statistics (and associated P-values) for three different methods; OLS, IVX and
LCM. Specifically, LCM is either implemented using γ̂x = maxi=2,...,5 di = 1.0356 from the TELW estimates in

Table 1 for the return persistence, corresponding to the LCMB approach, or d̂1(ψ) = 0.7676. This is indicated by
γx and dψ parentheses. The LCMB approach is implemented with ν = νG = 0.2 and κp = 0.70, and the subsequent
LCM procedure with κ = 0.69. In both cases, κG is equal to the requisite bandwidth rate. Inference for OLS and
IVX employs Ecker-White standard errors. IVX is implemented with two instruments as in Section 5. Finally, the
sample of monthly observations spans March 1960 through March 2015 (n = 661).
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Univariate Return Predictions

RVt−1 DSt−1

OLS IVX LCM(dψ) OLS IVX LCM(dψ)

B̂c -0.1360 -0.1465 0.0163 0.0236 0.0200 0.2406

Wald 1.6690 1.7157 0.0241 0.3203 0.2326 5.6043

P-Wald 0.1964 0.1902 0.8766 0.5714 0.6296 0.0179

PEt−1 TBt−1

OLS IVX LCM(dψ) OLS IVX LCM(dψ)

B̂c -0.4956 -0.3987 -0.7156 -0.0280 -0.0277 -0.8328

Wald 1.3162 0.8460 0.1731 0.2218 0.2098 6.3625

P-Wald 0.2513 0.3577 0.6774 0.6377 0.6469 0.0117

Table 3:Univariate regressions. This table provides coefficient estimates and significance tests based onWald statistics
(and associated P-values) for three different methods; OLS, IVX and LCM. Specifically, LCM is implemented using

LCMB persistence to obtain d̂1(ψ) = 0.7676, which is indicated by dψ in the parenthesis. The LCMB approach is
implemented with ν = νG = 0.2 and κp = 0.70, and the subsequent LCM procedure with κ = 0.69. In both cases,
κG is equal to the requisite bandwidth rate. Inference for OLS and IVX employs Ecker-White standard errors. IVX
is implemented with two instruments as in Section 5. Finally, the sample of monthly observations spans March 1960
through March 2015 (n = 661).
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A Additional Assumptions and Theory

This section includes additional assumptions and provides a fractional cointegration rank testing pro-

cedure that can be used to discriminate between the model hypotheses (i)-(iv).

A.1 Additional Assumptions

Assumption D1-ζ. The vector process ζt−1, t = 1, . . . , is covariance stationary with spectral density

matrix satisfying fζζ(λ) ∼ Gζζ as λ→ 0+, where Gζζ is finite with non-random elements. Moreover,

there exists a ϖ ∈ (0, 2] such that |fζζ(λ)−Gζζ | = O(λϖ) as λ→ 0+.

Assumption D2-ζ. ζt−1 is a linear process, ζt−1 =
∑∞

j=0Aζ,jϵζ,t−1−j, with coefficients matrices∑∞
j=0 j

1/2∥Aζ,j∥2 < ∞, the innovations satisfy, almost surely, E[ϵζ,t|Ft−1] = 0 and E[ϵζ,tϵ′ζ,t|Ft−1] =

Ik+1, and the matrices E[ϵζ,t⊗ϵζ,tϵ′ζ,t|Ft−1] and E[ϵζ,tϵ′ζ,t⊗ϵζ,tϵ′ζ,t|Ft−1] are nonstochastic, finite, and

do not depend on t. There exists a random variable ζ such that E[ζ2] <∞ and, for all c and some C,

P[∥ζt−1∥ > c] ≤ CP[|ζ| > c]. Finally, the periodogram of ϵζ,t is denoted by Jζ(λ).

Assumption D3-ζ. For Aζ(λ, i), the i-th row of Aζ(λ) =
∑∞

j=0Aζ,je
ijλ, its partial derivative satisfies

∥∂Aζ(λ, i)/∂λ∥ = O(λ−1∥Aζ(λ, i)∥) as λ→ 0+, for i = 1, . . . , k + 1.

A.2 LCM Rank Testing and Imperfect Regressors

This section provides a new rank selection procedure under fractional cointegration, which facilitates

discriminating between the model hypotheses (i)-(iv). Moreover, we establish the properties of the

approach requiring that Assumption F holds, similarly to the results in Section 3. Hence, we can

choose among several (semi-)parametric estimators of the integration orders for the regressors and the

LCMB persistence estimator for returns, as discussed extensively in Sections 3-5.

49



A.2.1 LCM Covariance Estimation: Central Limit Theory

Initially, to obtain intuition, suppose that the returns are equipped with a conditional mean, and we

know its fractional integration order, 0 ≤ d1 ≤ 1. Then our filtering, heuristically, implies,(1− L)d1yt ≃ B′ut−1 + η
(d1)
t under models (i) and (iv),

(1− L)d1yt ≃ B′ut−1 + ξt−1 + η
(d1)
t under models (ii) and (iii),

(A.1)

with, again, ξt−1 ⊥⊥ ut−1 by Assumption C. Hence, we can apply this decomposition to test for the

presence of ξt−1. The interpretation of our procedure, however, depends on the magnitude of d1. If

the returns do not feature a persistent mean component, d1 = 0, in line with scenario (i), then we

cannot distinguish ξt−1 and η
(d1)
t = ηt, which are both I(0). As noted in Remark 3, this corresponds

to identification failure (when ϕ = 0) in the imperfect predictor model of Pastor & Stambaugh (2009).

However, given the extensive empirical and theoretical evidence on return predictability, our primary

focus is on the persistent mean return case, d1 > 0, corresponding to scenarios (ii)-(iv). In these cases,

we may utilize the low-frequency spectrum to design a cointegration rank selection procedure for the

presence of ξt−1 using v̂ct = (êt, (û
c
t−1)

′)′. This design works, since η
(d1)
t is a lower-order residual and

has a degenerate spectral density for λ→ 0+, as discussed below equations (11) and (12).

Formally, to design the model selection procedure, we leverage insights from equation (A.1) and

use the fractionally filtered series, v̂ct . Hence, we must accommodate estimation errors from filtering,

mean-slippage, as well as bias and errors induced by regressor endogeneity, in analogy to the challenges

detailed for the second-stage MBLS in Section 2. To this end, we turn to the same trimmed long-run

covariance estimator used to design the asymptotic variance estimator in Section 3.2,

Ĝc
v̂v̂(ℓG,mG) =

1

mG − ℓG + 1

mG∑
j=ℓG

ℜ (Icv̂v̂(λj)) , (A.2)

where, again, we use separate bandwidth and trimming functions, mG = mG(n) and ℓG = ℓG(n).

Moreover, while Lemma B.1 in Appendix B and Theorem 2 establish consistency of the trimmed

estimator (20) for the covariance matrix Gψψ with ψt−1 ≡ (φt−1,u
′
t−1)

′, we now require an associated

central limit theory, covering models (ii)-(iv), to design a suitable rank test for (iv).23

Assumption T-G⋆. let the bandwidth mG ≍ nκG and ℓG ≍ nνG, with 0 < νG < κG < ϱ ≤ 1. Then,

for some arbitrarily small ϵ > 0, the following cross-restrictions are imposed on ℓG, mG, md and n,

m1+2ϖ
G

nϖ
+

n

ℓ2G
√
mG

(
1

√
mG

+
(mG

n

)d)
+

ℓG√
mG

+
(mG

n

)dx √
mG

ℓ1+ϵG

+ → 0, as n→ ∞.

The first condition in Assumption T-G⋆ is familiar from semiparametric frequency domain estima-

23Again, we use the definition ψt−1 ≡ (φt−1,u
′
t−1)

′ to indicate that weakly dependent return innovations have no asymp-
totic impact on the limit theory, when d1 > 0 in scenarios (ii)-(iv).
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tion, e.g., Robinson & Yajima (2002) and Nielsen & Shimotsu (2007). For the empirically relevant

vector ARFIMA process (with ϖ = 2), it requires κG < 4/5. In contrast, the last three conditions

impose joint bounds on the bandwidth and trimming rates. Specifically, two and four stipulate a

lower bound on the trimming to eliminate the bias from mean-slippage and regressor endogeneity,

respectively, and condition three restricts the loss of information. Taken together,

1− κG
2

∨ (1− κG)(1− d) + κG/2

2
∨ κG

2
− (1− κG)dx < ν <

κG
2
, (A.3)

These bounds are quite restrictive if 0 < d ≤ dx is small. Moreover, we require dx > 0 for ν to be

defined on an open interval, again, illustrating the importance of this identifying condition, when the

regressors are endogenous. The fourth restriction can be dispensed with if ct−1 = 0, ∀t = 1, . . . , n. It

is important to note that, if the conditional mean of returns and the regressors are strongly persistent,

e.g., d ≃ 1, the lower bound simplifies to (1− κG)/2 ∨ κG/4 ∨ 3κG/2− 1 < ν, which is very mild.

Theorem 6. Suppose Assumptions D1-D3, C, M, F and T-G⋆ hold, 0 < d1 ≤ 1, and n1/2/mG → 0.

Then, by letting G
(i)
ψψ be the i = 1, . . . , k + 1 column of Gψψ, it follows,

m
1/2
G vec

(
Ĝc
v̂v̂(ℓG,mG)−Gψψ

)
D−→ N

(
0,
(
Gψψ ⊗Gψψ +

(
Gψψ ⊗G(1)

ψψ, . . . ,Gψψ ⊗G(k+1)
ψψ

))
/2
)
.

Theorem 6 shows that the trimmed long-run covariance estimator attains asymptotic properties

mirroring those of Robinson & Yajima (2002, Propositions 2-3) and Nielsen & Shimotsu (2007, Lem-

mas 4-5). Hence, despite the additional challenges in the current environment, we may utilize their

procedures to study the (cointegration) rank of Gψψ and, thus, whether predictive model (iv) should

replace models (ii) or (iii). Moreover, the analysis simplifies, as we do not seek to determine an exact

cointegration rank of a system, but rather to assess the null hypothesis H̃0 : rank(Gψψ) = k + 1

against the specific alternative H̃A : rank(Gψψ) = k, because the spectral density matrix for the

(latent) regressors ut−1 is locally of full rank by Assumption D1 for frequencies λ→ 0+.

Remark 9. A result analogous to Theorem 6 still holds, if b = d1 = 0, as for scenario (i). Specifically,

we need to write ψt ≡ vt and Gψψ ≡ Gvv, since η
(b)
t = ηt and ξt−1 are both I(0). Moreover, we can

relax the second trimming condition in Assumption T-G⋆, which is required to eliminate the lower-

order error (when d1 > 0); namely, η
(d1)
t . In scenario (i), Gψψ will be of full rank, and this will be

indicated by our subsequent rank selecetion procedures with probability approaching 1. Hence, despite

being developed with models (ii)-(iv) and d1 > 0 in mind, our approach still applies for scenario (i).

Remark 10. The condition
√
n/m→ 0 and

√
n/mG → 0, as n→ ∞, in Theorems 1 and 6, respectively,

are not strictly binding, but are imposed for ease of exposition. Specifically, they are used to bound the
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endogenous regressor bias in auxiliary Lemmas B.1(a)-(d) (cf., Appendix B). Define,

f̄(m,n) ≡ 1 ∨ (m/n)dxn1/2/m, f̄G(m,n) ≡ 1 ∨ (mG/n)
dxn1/2/mG,

then the conditions can be relaxed to
√
n/(m1−ϵ√md) +

√
n/(m1−ϵ

G

√
md) → 0, for some small ϵ > 0,

if multiplying the bounds in Lemma B.1(a)-(b) and (c)-(d) with f̄(m,n) and f̄G(m,n), respectively.

A.2.2 LCM Rank Testing for Cointegration

Next, to estimate the rank, we let δi and δ̂i, i = 1, . . . , k + 1 denote the eigenvalues of the covariance

matrices Gψψ and Ĝc
v̂v̂(ℓG,mG), listed in descending order, 0 < δk < · · · < δ1, with 0 < δk+1 < δk and

δk+1 = 0 under H̃0 and H̃A, respectively. Then, for r = 0 and r = 1 indicating the rank reduction

under the two hypotheses, we follow Robinson & Yajima (2002) and Nielsen & Shimotsu (2007) and

estimate r as,

r̂ = argmin
ϱ∈{0,1}

L(ϱ), L(ϱ) = ϑ(n)(k + 1− ϱ)−
k+1−ϱ∑
i=1

δ̂i, (A.4)

for some ϑ(n) > 0, which is assumed to obey the conditions:

Assumption V. The sequence ϑ(n) satisfies ϑ(n) + 1
ϑ(n)

√
mG

→ 0 as n→ ∞.

Theorem 7. Suppose the conditions of Theorem 6 and Assumption V hold, then,

lim
n→∞

P(r̂ = r) = 1.

The rank selection procedure is consistent and, thus, facilitates discrimination between the pre-

dictive models (ii) or (iii) and the cointegration model (iv). Moreover, as discussed in, e.g., Phillips

& Ouliaris (1988), Robinson & Yajima (2002) and Nielsen & Shimotsu (2007), the rank selection

procedure may be implemented using the corresponding (trimmed) correlation matrix estimator,

P̂ c
v̂v̂(ℓG,mG) ≡ diag(Ĝc

v̂v̂(ℓG,mG))
−1/2 Ĝc

v̂v̂(ℓG,mG) diag(Ĝ
c
v̂v̂(ℓG,mG))

−1/2. (A.5)

In unreported simulations, using the numerical framework from Section 5, we find correlation-based

procedures to perform substantially better than ones based on covariance estimates. Moreover, we

have assessed alternative procedures based on feasible inference for the eigenvalues, inspired by Phillips

& Ouliaris (1988), Robinson & Yajima (2002) and Nielsen & Shimotsu (2007). Consistent with the

latter, we found these to perform strictly worse than model selection procedures in finite samples.

B Proofs

This section provides proofs of the main asymptotic results in the paper. Before proceeding, however,

we introduce some notation. For a generic vector V , let V (i) index the ith element, and, similarly, for
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a matrixM , letM(i, q) denote its (i, q)th element. Moreover, K ∈ (0,∞) denotes a generic constant,

which may take different values from line to line or from (in)equality to (in)equality. Sometimes the

(stochastic) orders refer to scalars, sometimes to vectors and matrices. We refrain from making dis-

tinctions. The following two subsections provide new technical lemmas, which may be of independent

interest. These are subsequently used to establish the main theoretical results.

B.1 Auxiliary Lemmas for Section 3 and Appendix A.2

This section provides two auxiliary lemmas that expand on Theorem 4 and Lemma A.4 in Andersen &

Varneskov (2021a), studying endogeneity-induced errors and asymptotic variance estimation, respec-

tively. We will henceforth refer to the latter as AV (2021) and, similarly, to their Online Appendix as

AVOA (2020). Specifically, the first auxiliary lemma provides bounds for the differences,

F̂ c
ûû(ℓ,m)− F̂ûû(ℓ,m), F̂ c

ûê(ℓ,m)− F̂ûê(ℓ,m), (B.1)

Ĝc
v̂v̂(ℓG,mG)− Ĝv̂v̂(ℓG,mG), Ĝ

(b,c)
η̂η̂ (ℓG,mG)− Ĝ(b)

η̂η̂ (ℓG,mG), (B.2)

where, as described in Section 3.2, η̂
(b,c)
t constitutes an estimate of the regression residuals when

implementing feasible inference. Hence, we provide asymptotic bounds to describe the errors arising

when using the fractionally filtered observations v̂ct rather than the unobservable v̂t when calculating

key measures and statistics, thus quantifying the impact of regressor endogeneity. The auxiliary lemma

differs from AV (2021, Theorem 4) by allowing for cointegration, b > 0, and imperfect regressors.

Lemma B.1. Suppose Assumptions D1-D3, C, M, F, T and T-G hold. Moreover, suppose that the

bandwidths satisfy n1/2/m→ 0, n1/2/mG → 0, then, for some arbitrarily small ϵ > 0, it follows,

(a) λ−1
m

(
F̂ c
ûû(ℓ,m)− F̂ûû(ℓ,m)

)
= Op((m/n)

dx/ℓ1+ϵ),

(b) λ−1
m

(
F̂ c
ûê(ℓ,m)− F̂ûê(ℓ,m)

)
= Op((m/n)

dx/ℓ1+ϵ),

(c) Ĝc
ûû(ℓG,mG)− Ĝûû(ℓG,mG) ≤ Op((mG/n)

dx/ℓ1+ϵG ),

(d) Ĝc
ûê(ℓG,mG)− Ĝûê(ℓG,mG) ≤ Op((mG/n)

dx/ℓ1+ϵG ),

(e) Ĝ
(b,c)
η̂η̂ (ℓG,mG)− Ĝ(b)

η̂η̂ (ℓG,mG) ≤ Op((mG/n)
dx/ℓ1+ϵG ) +Op((m/n)

dx/ℓ1+ϵ).

Proof. First, (a) and (c) follows directly from AV (2021, Theorems 4(a) and 4(c)), since the assump-

tions and specification of the regressors in this paper readily follows their framework.24

For (b), let us first define êt = ê
(1)
t + ê

(2)
t , where

ê
(1)
t ≡ (1− L)d̂1a+B′Q(L)(1− L)d̂1xt−1 + (1− L)d̂1ξ

(−d1)
t−1 , ê

(2)
t ≡ (1− L)d̂1ηt, (B.3)

24While AV (2021) state their results for d rather than dx to maintain notational simplicity in their framework, it is clear
that their results apply to dx as the parameter appears when applying the differencing operator to ut−1 and ct−1.
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for which the component ê
(1)
t is equivalent to the case without cointegration considered by AV (2021,

Theorem 4(b)) due to Assumptions D1-D3 and C. By applying the decomposition (B.3), we have

F̂ c
ûê(ℓ,m)− F̂ûê(ℓ,m) = F̂ c

ĉê(ℓ,m) = F̂
(c,1)
ĉê (ℓ,m) + F̂

(c,2)
ĉê (ℓ,m), (B.4)

where F̂
(c,1)
ĉê (ℓ,m) and F̂

(c,2)
ĉê (ℓ,m) are the TDACs between ĉt−1 and ê

(1)
t , respectively, ê

(2)
t . Now, by

applying AV (2021, Theorem 4(b)) and AVOA (2020, Lemma A.12(b)), we have

λ−1
m F̂

(c,1)
ĉê (ℓ,m) ≤ Op((m/n)

dx/ℓ1+ϵ) and wĉ(λj , i) = Op(λ
di
j ), (B.5)

for i = 2, . . . , k + 1. Moreover, we can write θ̂1 = d̂1 − d1 = Op(1/
√
md) and

ê
(2)
t = (1− L)d̂1−d1(1− L)d1ηt ≡ (1− L)θ̂1 ẽ

(2)
t , (B.6)

using Assumption F, such that by AVOA (2020, Lemmas A.8 and A.9(a)), it follows that,

w
(2)
ê (λj)) = w

(2)
ẽ (λj))

(
1 +Op

(
ln(n)/

√
md

)
+Op

(
ln(n)2/md

))
, with (B.7)

w
(2)
ẽ (λj) = λd1j e

−(π/2)id1wη(λj) +Op
(
λd1j ln(n)/j−1/2

)
+Op

(
n−d1−1

)
, (B.8)

and, furthermore, by AVOA (2020, Lemma A.12(b)) that w
(2)
ê (λj) = Op(λ

d1
j ) when ln(n)/j1/2 → 0.

Hence, since 0 < di ≤ d1 + di, i = 2, . . . , k + 1, we may further write

F̂
(c,2)
ĉê (ℓ,m) ≤ 2π

n

m∑
j=ℓ

Op(λ
dx
j ) ≤ 2πm1+dx

n1+dx

m∑
j=ℓ

Op

((
j

m

)dx 1

j1+ϵ

)
≤ Op

((m
n

)1+dx 1

ℓ1+ϵ

)
, (B.9)

for some arbitrarily small ϵ > 0, using |
∑m

j=ℓOp(j
−p)| ≤ Op(ℓ

−p) for some p > 1 by Varneskov (2017,

Lemma C.4). The stated result follows by combining bounds for F̂
(c,1)
ĉê (ℓ,m) and F̂

(c,2)
ĉê (ℓ,m).

For (d), by applying the same decomposition as for (b), we have

Ĝc
ûê(ℓG,mG)− Ĝûê(ℓG,mG) = Ĝ

c
ĉê(ℓG,mG) = Ĝ

(c,1)
ĉê (ℓG,mG) + Ĝ

(c,2)
ĉê (ℓG,mG), (B.10)

where, again, the DFT bounds in (B.5) apply to w
(2)
ê (λj) and wĉ(λj , i). Moreover, by AV (2021,

Theorem 4(c)), we have

Ĝ
(c,1)
ĉê (ℓG,mG) ≤ Op((mG/n)

dx/ℓ1+ϵG ). (B.11)

Next, using, again, 0 < di ≤ d1 + di, i = 2, . . . , k + 1, we may similarly write

Ĝ
(c,2)
ĉê (ℓG,mG) ≤

1

mG − ℓG + 1

mG∑
j=ℓG

Op(λ
dx
j )
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≤
Km

dx
G

ndx

mG∑
j=ℓG

Op

((
j

mG

)dx 1

j1+ϵ

)
≤ Op

((mG

n

)dx 1

ℓ1+ϵG

)
, (B.12)

using mG/(mG − ℓG + 1) ≤ K and Varneskov (2017, Lemma C.4). The stated result follows by

combining asymptotic bounds for Ĝ
(c,1)
ĉê (ℓG,mG) and Ĝ

(c,2)
ĉê (ℓG,mG).

For (e), recall η̂
(b)
t = êt − B̂(ℓ,m)′ût−1 and let us define

η̂
(b,1)
t = ê

(1)
t − B̂(ℓ,m)′ût−1, τ̂

(1)
t−1 = (B̂c(ℓ,m)− B̂(ℓ,m))′ûct−1, τ̂

(2)
t−1 = B̂(ℓ,m)ĉt−1, (B.13)

such that we can use êt = ê
(1)
t + ê

(2)
t to decompose η̂

(b)
t = η̂

(b,1)
t + ê

(2)
t and write

η̂
(b,c)
t = êt − B̂c(ℓ,m)′ûct−1 = η̂

(b,1)
t + ê

(2)
t − τ̂

(1)
t−1 − τ̂

(2)
t−1 = η̂

(b)
t − τ̂

(1)
t−1 − τ̂

(2)
t−1. (B.14)

The main difference between this decomposition and the corresponding in AV (2021, Theorem 4) is

the presence of ê
(2)
t and the fact that we have b ̸= 0 for η

(b)
t . Hence, we need to distinguish between

cases without cointegration in scenarios (ii) and (iii), where ξt−1 is driving the limit, and scenario

(iv), where ξt−1 = 0, ∀t. In both inference regimes, we have d1 = b > 0. In the first case, we have

fractionally differenced ξ
(−d1)
t−1 such that the resulting error process is ξt−1, asymptotically.

Before treating the subtleties of the two inference regimes, we provide bounds on the error terms

that are common to both. To this end, we use (B.14) and make the decomposition,

Ĝ
(b,c)
η̂η̂ (ℓG,mG)− Ĝ(b)

η̂η̂ (ℓG,mG) = Ĝ
(1,1)
τ̂ τ̂ (ℓG,mG) + Ĝ

(2,2)
τ̂ τ̂ (ℓG,mG) + 2Ĝ

(1,2)
τ̂ τ̂ (ℓG,mG)

− 2Ĝ
(b,1)
η̂τ̂ (ℓG,mG)− 2Ĝ

(b,2)
η̂τ̂ (ℓG,mG), (B.15)

where the first three terms are (trimmed) long-run (co)variance estimates for τ̂
(1)
t−1 and τ̂

(2)
t−1, and the

final two terms are their respective long-run covariances with η̂
(b)
t . Let us further write,

Ĝ
(b,i)
η̂τ̂ (ℓG,mG) = Ĝ

(b,i,1)
η̂τ̂ (ℓG,mG) + Ĝ

(b,i,2)
η̂τ̂ (ℓG,mG), i = 1, 2, (B.16)

to indicate the decomposition of η̂
(b)
t into η̂

(b,1)
t and ê

(2)
t . Now, since (a) and (b) yield,

B̂c(ℓ,m)− B̂(ℓ,m) ≤ Op
(
(m/n)dx/ℓ1+ϵ

)
, (B.17)

we may use equations (A.23), (A.26) and (A.31) in AVOA (2020) to show

Ĝ
(1,1)
τ̂ τ̂ (ℓG,mG) ≤ Op

((m
n

)2dx 1

ℓ2(1+ϵ)

)
×

(
1 +

(mG

n

)dx 1

ℓ1+ϵG

)
,

Ĝ
(2,2)
τ̂ τ̂ (ℓG,mG) ≤ Op

((m
n

)2dx 1

ℓ1+ϵ

)
,
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Ĝ
(1,2)
τ̂ τ̂ (ℓG,mG) ≤ Op

((m
n

)dx 1

ℓ(1+ϵ)

)
×

((mG

n

)dx 1

ℓ1+ϵG

)
,

where, again, the bounds are restated with dx rather than d as in AVOA (2020), since the parameter

appears when applying the fractional differencing operator to ut−1 and ct−1.

The case without cointegration. Here, ê
(1)
t will drive the asymptotic limit and ê

(2)
t will be a lower

order error term. Moreover, the former corresponds to the case considered by AV (2021, Theorem 4),

with ξt−1 acting as the (regression) error process. Hence, by invoking equations (A.27) and (A.30) of

AVOA (2020), it follows for the two long-run covariance terms involving η̂
(b,1)
t that,

Ĝ
(b,1,1)
η̂τ̂ (ℓG,mG) ≤ Op

((m
n

)dx 1

ℓ1+ϵ

)
,

Ĝ
(b,2,1)
η̂τ̂ (ℓG,mG) ≤ Op

((mG

n

)dx 1

ℓ1+ϵG

)
×
(
1 +m−1/2

)
.

This implies that in order to complete the proof, we need to establish corresponding asymptotic

bounds for the remaining terms, Ĝ
(b,1,2)
η̂τ̂ (ℓG,mG) and Ĝ

(b,2,2)
η̂τ̂ (ℓG,mG), i.e., the long-run covariances

involving ê
(2)
t . To this end, let us use the discrete Fourier transform bounds in (B.5) and (B.7)-(B.8),

B̂(ℓ,m) = Op(1), uniformly by AV (2021, Theorem 1), and 0 < di ≤ d1 + di to write,

Ĝ
(b,2,2)
η̂τ̂ (ℓG,mG) ≤

1

mG − ℓG + 1

mG∑
j=ℓG

Op(λ
dx
j ) ≤ Op

((mG

n

)dx 1

ℓ1+ϵG

)
, (B.18)

similarly to (B.12). For the last term, make the decomposition,

Ĝ
(b,1,2)
η̂τ̂ (ℓG,mG) = (B̂c(ℓ,m)− B̂(ℓ,m))′

(
Ĝ

(2)
ûê (ℓG,mG) + Ĝ

(c,2)
ĉê (ℓG,mG)

)
, (B.19)

where Ĝ
(c,2)
ĉê (ℓG,mG) ≤ Op((mG/n)

dx1/ℓ1+ϵG ) by (B.12). Moreover, for i = 2, . . . , k + 1, since

wû(λj , i) = wu(λj , i) +Op

(
n1/2−di

j1−di

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, wu(λj , i) = Op(1), (B.20)

by equations (A.8), (A.60), (A.65) and Lemma A.6(a) in AVOA (2020), we may write

Ĝ
(2)
ûê (ℓG,mG) ≤

K

mG

mG∑
j=ℓG

Op(λ
d1
j ) +

K

mG

mG∑
j=ℓG

Op

(
λ
d1+dx
j n1/2

j

)
+

K

mG

mG∑
j=ℓG

Op

(
λd1j ln(n)n1/2

m
1/2
d j

)

≤ Op(1) +Op

((mG

n

)dx n1/2

m1−ϵ
G ℓ1+ϵG

)
+Op

(
n1/2 ln(n)

m1−ϵ
G m

1/2
d ℓ1+ϵG

)
, (B.21)

for some arbitrarily small ϵ > 0, using d1 ≥ 0 and Varneskov (2017, Lemma C.4). Hence, by combining

56



bounds, n1/2/mG → 0, Lemmas B.1(a)-(b) in the absence of cointegration in conjunction with the

continuous mapping theorem, we have Ĝ
(2)
ûê (ℓG,mG) ≤ Op(1) and, thus,

Ĝ
(b,1,2)
η̂τ̂ (ℓG,mG) ≤ Op((m/n)

dx/ℓ1+ϵ). (B.22)

Consequently, by collecting bounds for all components in (B.16),

Ĝ
(b,1)
η̂τ̂ (ℓG,mG) + Ĝ

(b,2)
η̂τ̂ (ℓG,mG) ≤ Op((mG/n)

dx/ℓ1+ϵG ) +Op((m/n)
dx/ℓ1+ϵ), (B.23)

which, together with bounds for the remaining terms in equation (B.15), provides the requisite result

when cointegration is absent, that is, for the inference scenarios (ii)-(iii).

The case with cointegration. By (a) and (b), whose rates are independent of cointegration, there

are no difference between the treatment of the terms in (B.15) and (B.16) except for Ĝ
(b,1,1)
η̂τ̂ (ℓG,mG)

and Ĝ
(b,2,1)
η̂τ̂ (ℓG,mG), that is, the covariance terms involving η

(b,1)
t . Hence, let us define

ẽ
(1)
t = ê

(1)
t − (1− L)d̂1ξ

(−d1)
t−1 ≡ ê

(1)
t − ξ̂t−1, η̃

(b,1)
t = ẽ

(1)
t − B̂(ℓ,m)′ût−1, (B.24)

such that the triangle inequality delivers:

∣∣Ĝ(b,1,1)
η̃τ̂ (ℓG,mG)− Ĝ(b,1,1)

η̂τ̂ (ℓG,mG)
∣∣ ≤ Op

(
Ĝ

(b,1,1)

ξ̂τ̂
(ℓG,mG)

)
, (B.25)∣∣Ĝ(b,2,1)

η̃τ̂ (ℓG,mG)− Ĝ(b,2,1)
η̂τ̂ (ℓG,mG)

∣∣ ≤ Op

(
Ĝ

(b,2,1)

ξ̂τ̂
(ℓG,mG)

)
. (B.26)

This implies that the result with cointegration follows by from the result without cointegration as well

as establishing (and verifying) the bounds on the long-run covariance terms between ξ̂t−1 and the

errors τ̂
(1)
t−1 and τ̂

(2)
t−1. To this end, we may use AVOA (2020, Lemma A.12(b)) to write

w
ξ̂
(λj) = Op(1) +Op

(
n1/2−d1

j1−d1

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, (B.27)

w
(1)
τ̂ (λj) =

(
B̂c(ℓ,m)− B̂(ℓ,m)

)′
(wû(λj) +wĉ(λj)) , w

(2)
τ̂ (λj) = B̂(ℓ,m)′wĉ(λj), (B.28)

where the components in w
(1)
τ̂ (λj) and w

(2)
τ̂ (λj) are described by (B.5), (B.17) and (B.20). Hence, it

suffices to study Ĝ
ûξ̂
(ℓG,mG) and Ĝĉξ̂

(ℓG,mG). First, for the latter,

Ĝ
ĉξ̂
(ℓG,mG) ≤

K

mG

mG∑
j=ℓG

Op(λ
dx
j ) +

K

mG

mG∑
j=ℓG

Op

(
λ
d1+dx
j n1/2

j

)
+

K

mG

mG∑
j=ℓG

Op

(
λ
dx
j ln(n)n1/2

m
1/2
d j

)

≤ Op

((mG

n

)dx 1

ℓ1+ϵG

)
+Op

((mG

n

)dx n1/2

m1−ϵ
G ℓ1+ϵG

)
+Op

(
n1/2 ln(n)

m1−ϵ
G m

1/2
d ℓ1+ϵG

)
, (B.29)
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by the same arguments used for Ĝ
(2)
ûê (ℓG,mG) in (B.21). Similarly, we have

Ĝ
ûξ̂
(ℓG,mG) ≤

K

mG

mG∑
j=ℓG

Op(1) +
K

mG

mG∑
j=ℓG

Op

(
λ
d
j n

1/2

j

)
+

K

mG

mG∑
j=ℓG

Op

(
ln(n)n1/2

m
1/2
d j

)

+
K

mG

mG∑
j=ℓG

Op

(
n

j2

(
λ
d1+dx
j + λ

d
j ln(n)/

√
md + ln(n)2/md

))

≤ Op (1) +Op

(
n1/2

m1−ϵ
G ℓ1+ϵG

)
+Op

(
n1/2 ln(n)

m1−ϵ
G m

1/2
d ℓ1+ϵG

)

+Op

(
n

mG ℓ2G

((mG

n

)dx
+

ln(n)
√
md

+
ln(n)2

md

))
, (B.30)

which is Op(1) by Assumption T-G. Hence, by combining results, we have

Ĝ
(b,2,1)

ξ̂τ̂
(ℓG,mG) ≤ Op

((mG

n

)dx 1

ℓ1+ϵG

)
, Ĝ

(b,1,1)

ξ̂τ̂
(ℓG,mG) ≤ Op

((m
n

)dx 1

ℓ1+ϵ

)
, (B.31)

which, together with the remaining bounds for the case without cointegration, provides the requisite

result for the case with cointegration, i.e., scenario (iv), thereby concluding the proof.

The second auxiliary lemma establishes bounds and convergence results for Ĝ
(b)
η̂η̂ (ℓG,mG) in the

cases with and without cointegration. To this end, recall from the proof of Lemma B.1 that we have

the decomposition η̂
(b)
t = η̂

(b,1)
t + ê

(2)
t where η̂

(b,1)
t = ê

(1)
t − B̂(ℓ,m)′ût−1 and the terms (ê

(1)
t , ê

(2)
t ) are

defined in equation (B.3). Hence, we can equivalently write,

Ĝ
(b)
η̂η̂ (ℓG,mG) = Ĝ

(b,1)
η̂η̂ (ℓG,mG) + Ĝ

(2)
êê (ℓG,mG) + 2Ĝ

(b,1,2)
η̂ê (ℓG,mG), (B.32)

whose components will be analyzed separately in the following.

Lemma B.2. Suppose the conditions of Lemma B.1 hold. Then,

(a) λ−2b
mG

(
Ĝ

(2)
êê (ℓG,mG)−Gηη/(1 + 2b)

)
= op(1),

(b) The following convergence results hold,

Ĝ
(b,1)
η̂η̂ (ℓG,mG) =

Gξξ + op(1), under models (ii) and (iii),

op
(
λ2bmG

)
, under model (iv).

(c) The following convergence results hold,Ĝ
(b)
η̂η̂ (ℓG,mG)

P−→ Gξξ, under models (ii) and (iii),

λ−2b
mG
Ĝ

(b)
η̂η̂ (ℓG,mG)

P−→ Gηη/(1 + 2b), under model (iv).
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Proof. First, for (a), we may use d1 = b, (B.7) and (B.8) to write

w
(2)
ê (λj) = λbje

−(π/2)ibwη(λj) +Op
(
λbj ln(n)m

−1/2
d

)
+Op

(
λbj ln(n)j

−1/2
)
+Op

(
n−b−1

)
. (B.33)

Moreover, let us define the related long-run covariance measure,

G̃
(2)
êê (ℓG,mG) ≡

1

mG − ℓG + 1

mG∑
j=ℓG

λ2bj ℜ
(
wη(λj)w̄η(λj)

)
, (B.34)

and subsequently make the error decomposition,

Ĝ
(2)
êê (ℓG,mG)− G̃(2)

êê (ℓG,mG) ≤
K ln(n)

mG

mG∑
j=ℓG

Op
(
λ2bj
(
j−1/2 +m

−1/2
d

))
+

K

mGnb+1

mG∑
j=ℓG

Op(λ
b
j)

≤ ln(n)
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)2b( mϵ
G

m
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G

+
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m
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)
mG∑
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Op
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j
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)

+
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n

)b mϵ
G

n

mG∑
j=ℓG

Op
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j

mG

)b
j−(1+ϵ)

)

≤ Op

(
ln(n)

ℓ1+ϵG

(mG

n

)2b( mϵ
G

m
1/2
G

+
mϵ
G

m
1/2
d

))
+Op

((mG

n

)b mϵ
G

n ℓ1+ϵG

)
, (B.35)

for some arbitrarily small ϵ > 0, using Varneskov (2017, Lemma C.4) and that the remaining cross-

product error terms arising from the product of the decomposition in (B.33) are of strictly lower

asymptotic order by the tuning parameters being ℓG ≍ nνG , mG ≍ nκG and md ≍ nϱ, with 0 < νG <

κG < ϱ ≤ 1 in Assumptions F and T-G. Together with 0 ≤ b ≤ 1, this implies

λ−2b
mG

(
Ĝ

(2)
êê (ℓG,mG)− G̃(2)

êê (ℓG,mG)
)
≤ op(1). (B.36)

Hence, we continue by examining G̃
(2)
êê (ℓG,mG). By definition, we have

G̃
(2)
êê (ℓG,mG)−G̃(2)

êê (1,mG) =
−1

mG − ℓG + 1

ℓG−1∑
j=1

λ2bj ℜ
(
wη(λj)w̄η(λj)

)
=

−ℓGG̃(2)
êê (1, ℓG − 1)

mG − ℓG + 1
. (B.37)

Let l ∈ {ℓG − 1,mG} be either of the two generic sequences of integers, then we adopt exactly the

same arguments used to establish Christensen & Varneskov (2017, Equation (B.7)) (see also Robinson

& Marinucci (2003, p. 361) and the steps for Lobato (1997, Theorem 1)) to show

λ−2b
l

∣∣∣G̃(2)
êê (1, l)−Gηη/(1 + 2b)

∣∣∣ ≤ op(1), (B.38)

noting that G̃
(2)
êê (1, l) corresponds to λ

−1
m F

∗
zz(1,m) in their notation, and b to −di. Hence, by combining
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equations (B.37) and (B.38), we can establish the following bound:

λ−2b
mG

(
G̃

(2)
êê (ℓG,mG)− G̃(2)

êê (1,mG)
)
≤ Op

((
λℓG
λmG

)2b ℓG
mG

)
= op(1). (B.39)

The requisite result, thus, follows by combining results (B.37), (B.38) and (B.39).

Next, for (b), we will study the properties of Ĝ
(b,1)
η̂η̂ (ℓG,mG) under the scenarios (ii)-(iii) as well as

the cointegration setting (iv). To this end, let us write

η̂
(b,1)
t = η̂

(b,1,1)
t + η̂

(b,1,2)
t + η̂

(b,1,3)
t + η̂

(b,1,4)
t (B.40)

where, by addition and subtraction, the components are defined as,

η̂
(b,1,1)
t = (1− L)d̂1ξ

(−d1)
t−1 , η̂

(b,1,2)
t = B̂(ℓ,m)′

(
ut−1 − ût−1

)
, η̂

(b,1,3)
t =

(
B − B̂(ℓ,m)

)′
ut−1,

η̂
(b,1,4)
t = ê

(1)
t −B′ut−1 = (1− L)d̂1a+B′

(
Q(L)(1− L)d̂1xt−1 − ut−1

)
.

This resembles the decomposition in the proof of AVOA (2020, Lemma A.9(b)) (cf., their equation

(A.77)) and we rely on similar arguments. Next, we will establish results for the discrete Fourier

transforms of each term in the decomposition. First, by AVOA (2020, Lemma A.9(a)), we have

w
(b,1,1)
η̂ (λj) =

wξ(λj)
(
1 +Op

(
ln(n)/

√
md

))
under models (ii) and (iii),

0 under model (iv).
(B.41)

Second, by combining B̂(ℓ,m) = Op(1) and (B.20), we have

w
(b,1,2)
η̂ (λj) = Op

(
n1/2−dx

j1−dx

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
(B.42)

Third, by applying Theorem 1 and (B.20), we readily have

w
(b,1,3)
η̂ (λj) =

Op
(
1/

√
m
)

under models (ii) and (iii),

Op
(
λbm/

√
m
)

under model (iv).
(B.43)

Fourth, by applying equation (A.63) and Lemmas A.6(a)-(c) of AVOA (2020) (as on their page 32),

it follows that,

w
(b,1,4)
η̂ (λj) = Op

(
n1/2−b

j1−b

)
. (B.44)
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Hence, using b = d1 and d ≤ dx, we may combine results to show,

w
(b,1)
η̂ (λj) = wξ(λj) +Op

(
ln(n)/

√
md

)
+Op

(
1/
√
m
)
+Op

(
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j1−d

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
(B.45)

under models (ii)-(iii), and, similarly, that

w
(b,1)
η̂ (λj) = Op

(
λbm/

√
m
)
+Op

(
n1/2−d

j1−d

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
(B.46)

under model (iv). We are now ready to study the asymptotic properties of the long-run covariance

estimate Ĝ
(b,1)
η̂η̂ (ℓG,mG) in the two inference regimes, with and without cointegration.

The case without cointegration. The discrete Fourier transform in (B.45) allows us to write,

Ĝ
(b,1)
η̂η̂ (ℓG,mG)− Ĝξξ(ℓG,mG) ≤ Op
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md

)
+Op
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)
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+Op
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(B.47)

similarly to (B.30), for some arbitrarily small ϵ > 0, using, again, Varneskov (2017, Lemma C.4)

and that the remaining cross-product terms of the errors are of strictly lower order by the tuning

parameters satisfying ℓG ≍ nνG , mG ≍ nκG and md ≍ nϱ, with 0 < νG < κG < ϱ ≤ 1 in Assumptions

F and T-G. Next, as for equation (B.37), we have, by definition,

∣∣∣Ĝ(b,1)
ξξ (ℓG,mG)− Ĝξξ(1,mG)

∣∣∣ = ∣∣∣∣∣ℓGĜξξ(1, ℓG − 1)

mG − ℓG + 1

∣∣∣∣∣ ≤ Op
(
ℓG/mG

)
. (B.48)

Finally, since Christensen & Varneskov (2017, Lemma 6) provides |Ĝξξ(1,mG)−Gξξ| ≤ op(1), we can

combine this with (B.47), (B.48) and the triangle inequality to show |Ĝ(b,1)
η̂η̂ (ℓG,mG)−Gξξ| ≤ op(1).

The case with cointegration. The discrete Fourier transform in (B.46) allows us to write,

Ĝ
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+Op

(
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)2d
+

ln(n)2

md
+

ln(n)

m
1/2
d

(mG

n

)d))
, (B.49)

using the same arguments as for (B.47). Now, by d − b ≥ 0 in conjunction with the conditions in

Assumption T-G, we have λ−2b
mG
Ĝ

(b,1)
η̂η̂ (ℓG,mG) ≤ op(1), providing the requisite result.

For (c), since we have by the Cauchy-Schwarz inequality,∣∣∣Ĝ(b,1,2)
η̂ê (ℓG,mG)

∣∣∣ ≤√Ĝ(b,1)
η̂η̂ (ℓG,mG)Ĝ

(2)
êê (ℓG,mG), (B.50)

the convergence results follow by invoking (a) and (b), concluding the proof.

B.2 Auxiliary Lemmas for Section 4

This section establishes a sequence of lemmas that aid in proving the theoretical results in Section 4,

that is, for the LCM-bias (LMCB) approach to estimation of d1. To this end, let us define

ět = (1− L)γ̂xα+B′(1− L)γ̂x−d1ut−1 + (1− L)γ̂x−d1ξt−1 + (1− L)γ̂xηt ≡
4∑
i=1

ě
(i)
t . (B.51)

The first lemma collects DFT result for the four components in (B.51) from AVOA (2020).

Lemma B.3. Suppose Assumptions D1-D3, C, M-d1, F-d1, T-d1, T-G-d1 hold. Moreover, suppose that

the bandwidths satisfy n1/2/m→ 0, n1/2/mG → 0. Then, for j = 1, . . . ,m, it follows,

(a) w
(1)
ě (λj) = Op

(
(j/n)γxn1/2j−1

)
.

(b) w
(2)
ě (λj) = λψj e

−(π/2)ψiB′wu(λj) +Op
(
(j/n)ψn1/2j−1

)
+Op

(
ln(n)m

−1/2
d n1/2j−1

)
.

(c) w
(3)
ě (λj) = λψj e

−(π/2)ψiwξ(λj) +Op
(
(j/n)ψn1/2j−1

)
+Op

(
ln(n)m

−1/2
d n1/2j−1

)
.

(d) w
(4)
ě (λj) = λγxj e

−(π/2)ψiwη(λj) +Op
(
(j/n)γxn1/2j−1

)
+Op

(
ln(n)m

−1/2
d n1/2j−1

)
.

Proof. (a) follows by the Taylor expansion in equation (A.63) of AVOA (2020) in conjunction with

their Lemmas A.6(a)-(c), since γx > 0. (b)-(d) follow by Lemmas A.8 and A.9(a) in AVOA (2020).

The next lemma provide bounds on the endogenity bias for the LCM estimator, similarly to the

results in Lemma B.1, when the former is implemented with γ̂x imposed as the memory on yt. Specif-

ically, we complement Lemma B.1 by providing equivalent bounds on F̂ c
ûě(ℓ,m) and Ĝ

(b,c)
η̌η̌ (ℓG,mG).

Lemma B.4. Suppose the conditions of Lemma B.3 hold. Then, for some arbitrarily small ϵ > 0,

(a) λ−1
m

(
F̂ c
ûě(ℓ,m)− F̂ûě(ℓ,m)

)
≤ Op

(
(m/n)dx+ψ/ℓ1+ϵ

)
.

(b) Ĝ
(b,c)
η̌η̌ (ℓG,mG)− Ĝ(b)

η̌η̌ (ℓG,mG) ≤ Op
(
(m/n)2ψ+dx/ℓ1+ϵ

)
+Op

(
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(1+ϵ)/2
G

)
.
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Proof. First, for (a), we have by Lemma B.3 that

wě(λj) = Op
(
(j/n)ψ

)
+Op

(
(j/n)ψn1/2j−1

)
+Op

(
ln(n)m

−1/2
d n1/2j−1

)
, (B.52)

since ψ ≥ 0 and ψ ≤ γx. Hence, by (B.5), we can write F̂ c
ûě(ℓ,m) = F̂ûě(ℓ,m) + F̂ĉě(ℓ,m), where

F̂ĉě(ℓ,m) ≤ 2π
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+Op
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d n1/2ℓ1+ϵ

)
, (B.53)

which provides the requisite result, since the second and third asymptotic bound are dominated by

the first bound when
√
n/m→ 0, m/md → 0, dx ≤ 1 and ψ ≤ 1.

For (b). The proof proceeds similarly to that of Lemma B.1(e). First, let us write η̌
(b)
t = ět −

B̂(ℓ,m, γ̂x)
′ût−1, where B̂(ℓ,m, γ̂x) is defined in equation (B.68) and corresponds to B̂c(ℓ,m, γ̂x), but

free from endogeneity-related bias. Moreover, using the notation from (B.51), define

ĕ
(1)
t ≡ ě

(1)
t + ě

(2)
t + ě

(3)
t , ĕ

(2)
t ≡ ě

(4)
t , η̌

(b,1)
t = ĕ

(1)
t − B̂(ℓ,m, γ̂x)

′ût−1, η̌
(b)
t = η̌

(b,1)
t + ĕ

(2)
t , (B.54)

such that, with τ̆
(1)
t−1 = (B̂c(ℓ,m, γ̂x)− B̂(ℓ,m, γ̂x))

′ûct−1 and τ̆
(2)
t−1 = B̂(ℓ,m, γ̂x)ĉt−1, we have

η̌
(b,c)
t = ět − B̂c(ℓ,m, γ̂x)

′ûct−1 = η̌
(b,1)
t + ĕ

(2)
t − τ̆

(1)
t−1 − τ̆

(2)
t−1 = η̌

(b)
t − τ̆

(1)
t−1 − τ̆

(2)
t−1. (B.55)

Next, using these, we make the decomposition,

Ĝ
(b,c)
η̌η̌ (ℓG,mG)− Ĝ(b)

η̌η̌ (ℓG,mG) = Ĝ
(1,1)
τ̆ τ̆ (ℓG,mG) + Ĝ

(2,2)
τ̆ τ̆ (ℓG,mG) + 2Ĝ

(1,2)
τ̆ τ̆ (ℓG,mG)

− 2Ĝ
(b,1)
η̌τ̆ (ℓG,mG)− 2Ĝ

(b,2)
η̌τ̆ (ℓG,mG), (B.56)

where the first three terms are long-run (co)variance estimates for τ̆
(1)
t−1 and τ̆

(2)
t−1, and the final two

terms are their respective long-run covariances with η̌
(b)
t . Next, let us consider,

w
(1)
τ̆ (λj) =

(
B̂c(ℓ,m, γ̂x)− B̂(ℓ,m, γ̂x)

)(
wû(λj) +wĉ(λj)

)
≤ Op

(
(m/n)dx+ψ/ℓ1+ϵ

)
, (B.57)

using equations (B.5), (B.20) and (B.84). Hence, we readily have

Ĝ
(1,1)
τ̆ τ̆ (ℓG,mG) ≤ Op

(
(m/n)2(dx+ψ)/ℓ2(1+ϵ)

)
. (B.58)

Similarly, by Theorem 3 and (B.20), w
(2)
τ̆ (λj) ≤ Op

(
λψmλ

dx
j

)
such that, by m = mG from Assumption
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T-G-d1,

Ĝ
(2,2)
τ̆ τ̆ (ℓG,mG) ≤

λ2ψm K

mG

mG∑
j=ℓG

Op
(
λ
2dx
j

)
≤ Op
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(m/n)2(dx+ψ)mϵ/ℓ1+ϵG

)
. (B.59)

Next, since Ĝ
(b)
η̌η̌ (ℓG,mG) = Op

(
(mG/n)

2ψ
)
by Lemma B.9(c), the Cauchy-Schwarz inequality provides

Ĝ
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)
,

Ĝ
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(
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(1+ϵ)/2
G

)
,

Hence, since 0 < dx ≤ 1 and ψ ≥ 0, the dominant asymptotic bounds are provided by the covariance

terms Ĝ
(b,1)
η̌τ̆ (ℓG,mG) and Ĝ

(b,2)
η̌τ̆ (ℓG,mG), thereby establishing the requisite result.

The next lemma turns attention to the TDAC between ût−1 and ět without an endogenous com-

ponent in the regressors. Specifically, using the decomposition in (B.51), we can write,

F̂ûě(ℓ,m) ≡ F̂ (1)
ûě (ℓ,m) + F̂

(2)
ûě (ℓ,m) + F̂

(3)
ûě (ℓ,m) + F̂

(4)
ûě (ℓ,m),

and establish convergence results for each term separately. To this end, we further define
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ě (λj)
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corresponding, again, the TDACs for the different components in (B.51), albeit without the (higher-

order) terms that inducing approximation errors in the representations in Lemma B.3.

Lemma B.5. Suppose the conditions of Lemma B.3 hold. Then, for some arbitrarily small ϵ > 0,
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.
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Proof. First, for (a), we may combine (B.20) and Lemma B.3(a) to write,
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. (B.60)

Since the third term is dominated by the second as m/md → 0,
√
n/m→ 0 and dx ≤ 1, this gives the

requisite bound. Second, for (b), we may combine (B.20) and Lemma B.3(b) to write,
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+
(m
n

)ψ ln(n)
√
md

))
= Op

(
mϵ

n1/2ℓ1+ϵ

(m
n

)ψ)
+Op

(
1

ℓ2

(m
n

)ψ+dx)
(B.61)

using, similarly, m/md → 0,
√
n/m→ 0 and 0 ≤ ψ ≤ 1 for the final equality. This gives the requisite

bound. Finally, (c) and (d) follow by the same arguments as (b), concluding the proof.

Next, let us define

F̃
(2,1)
ûě (ℓ,m) ≡ λψm

cos(ψπ/2)

1 + ψ
F̂uu(ℓ,m)B, (B.62)

concentrate on the differences,

F̂
(2,1)
ûě (ℓ,m)− F̃ (2,1)

ûě (ℓ,m), F̂
(3,1)
ûě (ℓ,m)− F̂ (3,1)

ûě (1,m), F̂
(4,1)
ûě (ℓ,m)− F̂ (4,1)

ûě (1,m), (B.63)

and study the properties of F̂
(3,1)
ûě (1,m) and F̂

(4,1)
ûě (1,m).

Lemma B.6. Suppose the conditions of Lemma B.3 hold. Then, for some arbitrarily small ϵ > 0,

(a) λ−1−ψ
m

(
F̂

(2,1)
ûě (ℓ,m)− F̃ (2,1)

ûě (ℓ,m)
)
≤ Op

(
m−1

)
+Op

(
m−1/2λ

ϖ/2
m

)
+Op

(
λϖm
)
.

(b)
√
mλ−1−ψ

m F̂
(3,1)
ûě (1,m)

D−→ N
(
0,GuuGξξ/(2(1 + 2ψ))

)
, under models (ii) and (iii).

(c)
√
mλ−1−γx

m F̂
(4,1)
ûě (1,m)

D−→ N
(
0,GuuGηη/(2(1 + 2γx))

)
.
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Proof. First, for (a), recall that,

F̂
(2,1)
ûě (ℓ,m) =

2π

n

m∑
j=ℓ

λψj ℜ
(
e(π/2)ψiwu(λj)wu(λj)

)
B.

Hence, using ℜ
(
e(π/2)ψi

)
= cos(πψ/2), we seek to establish an error bound for the decomposition,

λ−1−ψ
m

(
F̂

(2,1)
ûě (ℓ,m)− F̃ (2,1)

ûě (ℓ,m)
)
=

cos(ψπ/2)

m

m∑
j=ℓ

ℜ
(
Iuu(λj)

)
B
((

j

m

)ψ
− 1

1 + ψ

)

=
cos(ψπ/2)

m

m∑
j=ℓ

GuuB
((

j

m

)ψ
− 1

1 + ψ

)

+
cos(ψπ/2)

m

m∑
j=ℓ

(
ℜ
(
Iuu(λj)

)
−Guu

)
B
((

j

m

)ψ
− 1

1 + ψ

)
≡ E1 + E2. (B.64)

First, for E1, we have

∥E1∥ ≤ K

∣∣∣∣∣∣ 1m
m∑
j=ℓ

((
j

m

)ψ
− 1

1 + ψ

)∣∣∣∣∣∣ ≤ O
(
m−1

)
, (B.65)

using Shimotsu & Phillips (2005, Lemma 5.4). Next, for E2, we may use Assumptions D1-D3 to invoke

Theorem 2 and Corollary 1 on Hannan (1970, pp. 248-249)25, providing,

E
[
ℜ
(
Iuu(λj)

)]
= ℜ

(
fuu(λj)

)
+O

(
n−1

)
, ∥fuu(λj)−Guu∥ = O(λϖj ),

V
[
ℜ
(
Iuu(λj)

)]
= ℜ

(
fuu(λj)⊗ fuu(λj)

)
+O

(
n−1

)
, Cov

[
ℜ
(
Iuu(λj),ℜ

(
Iuu(λk)

)]
= O

(
n−1

)
,

for j, k = 1, . . . ,m, m/n→ 0 and j ̸= k. Hence, we obtain the following bound,

E[E2] ≤
K

m

m∑
j=ℓ

∥∥Iuu(λj)−Guu

∥∥× ∣∣∣∣∣
(
j

m

)ψ
− 1

1 + ψ

∣∣∣∣∣ ≤ O
(
n−1

)
+O

(
λϖm
)
. (B.66)

Moreover, using the (co-)periodogram second moment results, we have

V[E2] = cos(πψ/2)2
1

m2

m∑
j=ℓ

((
j

m

)ψ
− 1

1 + ψ

)
m∑
k=ℓ

((
k

m

)ψ
− 1

1 + ψ

)
× E

[
(Iuu(λj)−Guu)⊗ (Iuu(λk)−Guu)

]
≤ K

(
1 +O

(
n−1

))∣∣∣∣∣ 1m
m∑
j=ℓ

((
j

m

)ψ
− 1

1 + ψ

)∣∣∣∣∣
2

+
1

m2

m∑
j=ℓ

∣∣∣∣∣
(
j

m

)ψ
− 1

1 + ψ

∣∣∣∣∣
2

O
(
λϖm(1 + λϖm)

)
25See also Parzen (1957, Theorem 4) and Brockwell & Davis (1991, Theorem 10.3.2) for similar results.
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≤ O
(
m−2

)
+O

(
m−1λϖm

)
. (B.67)

The moment results for E2 readily implies E2 ≤ Op
(
m−1

)
+Op

(
m−1/2λ

ϖ/2
m

)
+Op

(
λϖm
)
, which, together

with the asymptotic bound in equation (B.65), provides the requisite result.

Finally, (b) and (c) follow directly from AVOA (2020, Lemma A.3), concluding the proof.

Lemma B.7. Suppose the conditions of Lemma B.3 hold. Then, for some arbitrarily small ϵ > 0,

(a)
√
mλ−1−ψ

m

(
F̂

(3,1)
ûě (ℓ,m)− F̂ (3,1)

ûě (1,m)
)
≤ Op

(
ℓ1+ϖ/(m1/2nϖ)(ℓ/m)ψ

)
.

(b)
√
mλ−1−γx

m

(
F̂

(4,1)
ûě (ℓ,m)− F̂ (4,1)

ûě (1,m)
)
≤ Op

(
ℓ1+ϖ/(m1/2nϖ)(ℓ/m)γx

)
.

Proof. We have F̂
(i,1)
ûě (ℓ,m) − F̂ (i,1)

ûě (1,m) = −F̂ (i,1)
ûě (1, ℓ − 1), i = 3, 4. Hence, the results follow by

applying AVOA (2020, Lemma A.1(d)) for both (a) and (b).

Lemma B.8. Suppose the conditions of Lemma B.3 hold. Moreover, assume that the conditions 0 <

b = d1 < 1, b ≤ d, n1/2/m→ 0, and max(0, (1− 3κ/2)/(1 + κ/2), 2b) < ϖ ≤ 2 are satisfied, then,
√
mλ−ψm

(
B̂c(ℓ,m, γ̂x)− λψmc(ψ)B

)
D−→ N

(
0,V(ξ, ψ)

)
, under models (ii) and (iii),

√
mλ−γxm

(
B̂c(ℓ,m, γ̂x)− λψmc(ψ)B

)
D−→ N

(
0,V(η, γx)

)
, under model (iv).

Proof. First, recall that v̆t = (ĕt, û
′
t−1)

′, then, by invoking Lemmas B.1(a) and B.4(a) as well as the

continuous mapping theorem, while recalling that ψ = γx − b,

√
mλ−γxm

(
B̂c(ℓ,m, γ̂x)− B̂(ℓ,m, γ̂x)

)
≤ Op

(
(m/n)dx−b

√
m/ℓ1+ϵ

)
, (B.68)

for some arbitrarily small ϵ > 0, where B̂(ℓ,m, γ̂x) = F̂ûû(ℓ,m)−1F̂ûĕ(ℓ,m).Hence, we continue working

with the estimate without endogeneity, v̌t. Next, using the definitions in Lemma B.6, we have

√
mλ−1−γx

m

(
F̂ûĕ(ℓ,m)− F̃ (2,1)

ûě (ℓ,m)− F̂ (3,1)
ûě (ℓ,m)− F̂ (4,1)

ûě (ℓ,m)
)
=

6∑
i=1

Ai, (B.69)

where the asymptotic bounds on the right-hand-side error terms are,

A1 ≤ Op

(( n
m

)1/2+b mϵ

ℓ1+ϵ

)
, A2 ≤ Op

((m
n

)dx−b n

m1/2ℓ2

)
, A3 ≤ Op

(( n
m

)b 1

m1/2

)
,

A4 ≤ Op

((m
n

)ϖ/2−b)
, A5 ≤ Op

((m
n

)ϖ−b
m1/2

)
, A6 ≤ Op

(( n
m

)b( ℓ

m

)ψ ℓ1+ϖ

m1/2nϖ

)
.

using Lemma B.5 for A1 and A2; Lemma B.6 for A3, A4 and A5; and Lemma B.7 for A6. These are

67



all op(1) by Assumption T-d1, 0 < b < 1 and the mutual consistency condition. Moreover, we have

F̂ûû(ℓ,m)− F̂uu(ℓ,m) ≤ 2π

n

m∑
j=ℓ

Op

(
n1/2

j

(
λ
dx
j +

ln(n)
√
md

))

≤ 2π

n

m∑
j=ℓ

Op

(
n

j2

(
λ
2dx
j + λ

dx
j

ln(n)
√
md

+
ln(n)2

md

))

≤ Op

((m
n

)dx mϵ

n1/2ℓ1+ϵ

)
+Op

((m
n

)2dx 1

ℓ2

)
, (B.70)

using (B.20), dx ≤ 1, m/md → 0 and
√
m/n→ 0. Hence

√
mλ−1−γx

m

(
F̂ûû(ℓ,m)− F̂uu(ℓ,m)

)
≤ Op

(( n
m

)1/2+γx−dx mϵ

ℓ1+ϵ

)
+Op

((m
n

)2dx−γx n

m1/2ℓ2

)
,

which is op(1) using, again, the conditions in Assumption T-d1. Furthermore, we have λ−1
m F̂uu(ℓ,m)

P−→
Guu by AVOA (2020, Lemmas A.1 and A.2). Hence, we can combine results to write,

√
mλ−γxm

(
B̂(ℓ,m, γ̂x)− λψmc(ψ)B

)
=

√
mλ−γxm F̂uu(ℓ,m)−1

(
F̂

(3,1)
ûě (ℓ,m) + F̂

(4,1)
ûě (ℓ,m)

)
+ op(1).

The final results in (a) and (b) follow by applying Lemmas B.6(b) and (c) with scale factors
√
mλ−ψm and

√
mλ−γxm , respectively, to the right-hand-side terms. In models (ii) and (iii), the limit for F̂

(3,1)
ûě (ℓ,m)

dominates the corresponding for F̂
(4,1)
ûě (ℓ,m), which becomes a higher-order error. In contrast, in

model (iv), we have F̂
(3,1)
ûě (ℓ,m) = 0 and the limit is driven by F̂

(4,1)
ûě (ℓ,m). The requisite central limit

theorems, thus, follow by the continuous mapping theorem and Slutsky’s theorem.

Besides requiring additional tuning parameter restrictions in Assumption T-d1 as well as the con-

ditions 0 < b < 1 and 2b < ϖ, there are no differences between this and the corresponding treatment

of the mutual consistency condition in Theorem 1, concluding this proof.

The next lemma establishes bounds and convergence results for Ĝ
(b)
η̌η̌ (ℓG,mG) in the cases with and

without cointegration, similarly to Lemma B.2. To this end, recall from equation (B.51) and the proof

of Lemma B.4 that we have η̌
(b)
t = η̌

(b,1)
t + ĕ

(2)
t , where η̌

(b,1)
t = ĕ

(1)
t − B̂(ℓ,m, γ̂x)

′ût−1 and the two terms

(ĕ
(1)
t , ĕ

(2)
t ) are defined in equation (B.54). Hence, we can equivalently write,

Ĝ
(b)
η̌η̌ (ℓG,mG) = Ĝ

(b,1)
η̌η̌ (ℓG,mG) + Ĝ

(2)
ĕĕ (ℓG,mG) + 2Ĝ

(b,1,2)
η̌ĕ (ℓG,mG), (B.71)

whose components will be analyzed separately in the following.

Lemma B.9. Suppose the conditions of Lemma B.4 hold. Then,

(a) λ−2γx
mG

(
Ĝ

(2)
ĕĕ (ℓG,mG)−Gηη/(1 + 2γx)

)
= op(1),
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(b) The following convergence results hold,
λ−2ψ
mG

(
Ĝ

(b,1)
η̌η̌ (ℓG,mG)−Gξξ/(1 + 2ψ)

)
= op(1), in (ii),

λ−2ψ
mG

(
Ĝ

(b,1)
η̌η̌ (ℓG,mG)−Gξξ/(1 + 2ψ)−

(
1/(1 + 2ψ)− c(ψ)2

)
B′GuuB

)
= op(1), in (iii),

λ−2ψ
mG

(
Ĝ

(b,1)
η̌η̌ (ℓG,mG)−

(
1/(1 + 2ψ)− c(ψ)2

)
B′GuuB

)
= op(1), in (iv).

(c) The following convergence results hold,

λ−2ψ
mG

Ĝ
(b)
η̌η̌ (ℓG,mG)

P−→


Gξξ/(1 + 2ψ), in model (ii),

Gξξ/(1 + 2ψ) +
(
1/(1 + 2ψ)− c(ψ)2

)
B′GuuB, in model (iii),(

1/(1 + 2ψ)− c(ψ)2
)
B′GuuB, in model (iv).

Proof. First, (a) follows by the same arguments as Lemma B.2(a). Second, for (b), we follow the same

steps as in the proof of Lemma B.2(b), implying we will study the properties of Ĝ
(b,1)
η̌η̌ (ℓG,mG) under

the model scenarios (ii)-(iii) as well as the cointegration setting (iv). To this end, let us write

η̌
(b,1)
t = η̌

(b,1,1)
t + η̌

(b,1,2)
t + η̌

(b,1,3)
t + η̌

(b,1,4)
t (B.72)

where, by addition and subtraction, the components are defined as,

η̌
(b,1,1)
t = (1− L)γ̂x−γxξ

(ψ)
t−1, η̌

(b,1,2)
t = B̂(ℓ,m, γ̂x)

′(ut−1 − ût−1

)
,

η̌
(b,1,3)
t =

(
B − B̂(ℓ,m, γ̂x)

)′
ut−1, η̌

(b,1,4)
t = (1− L)γ̂xa+B′

(
(1− L)γ̂x−d1ut−1 − ut−1

)
.

The proof for the case ψ = 0 follows by the same arguments as Lemma B.2(b). Hence, we focus on the

case ψ > 0 and proceed by initially establishing results for the respective discrete Fourier transforms

of each term in the decomposition. First, by Lemma B.3(c), we have

w
(b,1,1)
η̌ (λj) =

λ
ψ
j e

−(π/2)ψiwξ(λj) +Op

(
n1/2−ψ

j1−ψ

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, in models (ii) and (iii),

0, in model (iv).
(B.73)

Second, by combining B̂(ℓ,m) = Op(λ
ψ
m) in Theorem 3 and (B.20), we have

w
(b,1,2)
η̌ (λj) = Op

(
λψm

n1/2−dx

j1−dx

)
+Op

(
λψm

ln(n)n1/2

m
1/2
d j

)
(B.74)
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Third, by applying Theorem 3 and (B.20), we have

w
(b,1,3)
η̌ (λj) =


Op
(
λψmm−1/2

)
, in model (ii),(

1− c(ψ)λψm
)
B′wu(λj) +Op

(
λψmm−1/2

)
, in model (iii),(

1− c(ψ)λψm
)
B′wu(λj) +Op

(
λγxmm−1/2

)
, in model (iv).

(B.75)

Fourth, by the same arguments as given when establishing Lemma B.2(a)-(b), we have

w
(b,1,4)
η̌ (λj) =


Op

(
n1/2−γx
j1−γx

)
, in model (ii),

−
(
1− λψj e

−(π/2)ψi
)
B′wu(λj) +Op

(
n1/2−ψ

j1−ψ

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, in (iii)-(iv).

(B.76)

Hence, in model (ii), it follows by 0 < dx < 1, ψ ≥ 0 and ψ ≤ γx,

w
(b,1)
η̌ (λj) = λψj e

−(π/2)ψiwξ(λj) +Op

(
n1/2

j

(
λψj + λ

dx
j λ

ψ
m +

ln(n)

m
1/2
d

))
+Op

(
λψm

m1/2

)
. (B.77)

Similarly, in model (iii), we have

w
(b,1)
η̌ (λj) = λψj e

−(π/2)ψiwξ(λj) +Op

(
n1/2

j

(
λψj + λ

dx
j λ

ψ
m +

ln(n)

m
1/2
d

))
+Op

(
λψm

m1/2

)
+
(
λψj e

−(π/2)ψi − c(ψ)λψm

)
B′wu(λj), (B.78)

and model (iv) exhibits a DFT on the same form, but having wξ(λj) = 0 as well as the error term

Op
(
λψmm−1/2

)
being replaced by one of order Op

(
λγxmm−1/2

)
, with ψ ≤ γx. Hence, we will explicitly

treat model (iii) in the following since the same arguments may readily be applied to establish the

corresponding results for models (ii) and (iv). To this end, define

G̃ξ̌ξ̌(ℓG,mG) =
1

mG − ℓG + 1

mG∑
j=ℓG

λ2ψj ℜ
(
Iξξ(λj)

)
,

B̃uu(ℓG,mG) =
1

mG − ℓG + 1

mG∑
j=ℓG

(
λ2ψj + c(ψ)2λ2ψm − 2λψj λ

ψ
m cos(πψ/2)c(ψ)

)
ℜ
(
B′Iuu(λj)B

)
,

Moreover, since Assumptions D1-D3 and M together with Theorem 2 and Corollary 1 on Hannan

(1970, pp. 248-249) imply E[Iuξ(λj)] = O(n−1) and V[Iuξ(λj)] = O(n−1), for j = 1, . . . ,m, we have,

Ĝ
(b,1)
η̌η̌ (ℓG,mG)− G̃ξ̌ξ̌(ℓG,mG)− B̃uu(ℓG,mG) ≤ Op

(
λ2ψm m−1/2

)
+Op

(
λ2ψm n−1/2

)
+
Kλψm
mG

mG∑
j=ℓG

Op

(
n1/2

j

(
λψm +

ln(n)

m
1/2
d

))
+

K

mG

mG∑
j=ℓG

Op

(
n

j2

(
λ2ψm +

ln(n)2

md
+

ln(n)λψm

m
1/2
d

))
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≤ Op

(
λ2ψm m−1/2

)
+Op

(
n1/2

m1−ϵ
G ℓ1+ϵG

(mG

n

)ψ ((mG

n

)ψ
+

ln(n)

m
1/2
d

))

+Op

(
n

mGℓ2G

((mG

n

)2ψ
+

ln(n)2

md
+

ln(n)

m
1/2
d

(mG

n

)ψ))
(B.79)

similarly to (B.30), for some arbitrarily small ϵ > 0, using, again, 0 < dx ≤ 1, ψ ≥ 0, Varneskov (2017,

Lemma C.4) and that the remaining cross-product terms of the errors are of strictly lower order by

the tuning parameters satisfying ℓG ≍ nνG , mG ≍ nκG and md ≍ nϱ, with 0 < νG < κG < ϱ ≤ 1 in

Assumptions F-d1 and T-d1. Hence, by invoking the latter, we have

λ−2ψ
m

(
Ĝ

(b,1)
η̌η̌ (ℓG,mG)− G̃ξ̌ξ̌(ℓG,mG)− B̃uu(ℓG,mG)

)
≤ op(1). (B.80)

Finally, by the definition c(ψ) = cos(πψ/2)/(1 + ψ) and the same arguments for Lemma B.2(a),

λ−2ψ
m

(
G̃ξ̌ξ̌(ℓG,mG)−Gψψ/(1 + 2ψ)

)
= op(1), (B.81)

λ−2ψ
m

(
B̃uu(ℓG,mG)−

(
1/(1 + 2ψ)− c(ψ)2

)
B′GuuB

)
= op(1). (B.82)

This delivers the requisite convergence result for model (iii), and equivalent arguments establish the

corresponding results for models (ii) and (iv), which appear as special cases of the limit.

For (c), since we have by the Cauchy-Schwarz inequality,∣∣∣Ĝ(b,1,2)
η̌ĕ (ℓG,mG)

∣∣∣ ≤√Ĝ(b,1)
η̌η̌ (ℓG,mG)Ĝ

(2)
ĕĕ (ℓG,mG), (B.83)

the convergence results follow by invoking (a) and (b), concluding the proof.

B.3 Proof of Theorem 1

First, recall that v̂t = (êt, û
′
t−1)

′, then, by invoking Lemmas B.1(a)-(b) and the continuous mapping

theorem,
√
mλ−bm

(
B̂c(ℓ,m)− B̂(ℓ,m)

)
≤ Op

(
(m/n)dx−b

√
m/ℓ1+ϵ

)
, (B.84)

for some arbitrarily small ϵ > 0. Hence, we may continue by working with the corresponding estimate

without regressor endogeneity, v̂t. As for the proof of Theorem 6, define Â(L) ≡ D̂(L)D(L)−1 and

at ≡ D(L)zt such that v̂t = Â(L)at, and further write at = µt + vt, where µt ≡ D(L)µ1{t≥1} and,

again, vt = (et,u
′
t−1)

′ with et = φt−1 + η
(d1)
t , d1 = b, and φt−1 = B′ut−1 + ξt−1. Finally, define

µ
(e)
t as the first element of the vector µt and µ

(u)
t as the remaining k × 1 subvector. Then, as in the

corresponding proof of AV (2020, Theorem 1), we can write by addition and subtraction,

B̂(ℓ,m)−B = F̂ûû(ℓ,m)−1F̂ (b)
uη (1,m) + F̂ûû(ℓ,m)−1F̂uξ(1,m)− C1 + C2 + C(b)

3 + C4, (B.85)
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where the four error terms, C1, C2, C(b)
3 , and C4 are defined as

C1 ≡ F̂ûû(ℓ,m)−1F̂
(u)
ûµ (ℓ,m)B, C2 ≡ F̂ûû(ℓ,m)−1F̂

(e)
ûµ (ℓ,m),

C(b)
3 ≡ F̂ûû(ℓ,m)−1

(
F̂

(b)
ûη (ℓ,m)− F̂ (b)

uη (ℓ,m) +D(b)
1

)
, D(b)

1 ≡ F̂ (b)
uη (ℓ,m)− F̂ (b)

uη (1,m),

C4 ≡ F̂ûû(ℓ,m)−1
(
F̂ûξ(ℓ,m)− F̂uξ(ℓ,m) +D2

)
, D2 ≡ F̂uξ(ℓ,m)− F̂uξ(1,m),

with the superscripts indicating µ
(u)
t and µ

(e)
t , respectively. Whereas the asymptotic properties of the

terms C1, C2, C(b)
3 and F̂ûû(ℓ,m)−1F̂

(b)
uη (1,m) are the same irrespective of the models (ii)-(iii) and

model (iv), the properties C4 and F̂ûû(ℓ,m)−1F̂uξ(1,m) depend on the inference regime.

Inference for model (iv): Since ξt−1 = 0, ∀t = 1, . . . , n, we have C4 = 0 and F̂uξ(1,m) = 0. Next,

by applying AVOA (2020, Lemma A.2), we have,

√
mλ−bm

(
C1 + C2 + C(b)

3 ) = op(1), λ−1
m F̂ûû(ℓ,m)

P−→ Guu. (B.86)

The result, then, follows by applying AVOA (2020, Lemma A.3) to
√
mλ−1−b

m F̂
(b)
uη (1,m) in conjunction

with (B.86), the continuous mapping theorem and Slutsky’s theorem.

Inference for models (ii) and (iii): Since F̂ûû(ℓ,m)−1F̂
(b)
uη (1,m) = Op(λ

b
mm

−1/2), with 0 < b =

d1 ≤ 1, and we may use AVOA (2020, Lemma A.2) to show
√
mC4 = op(1), despite ξt−1 being non-

trivial, the central limit theory follows by applying AVOA (2020, Lemma A.3) to
√
mλ−1

m F̂uξ(1,m) in

conjunction with (B.86), the continuous mapping theorem and Slutsky’s theorem.

The mutual consistency condition follows by the corresponding in AV (2020, Theorem 1) since it

is derived for the worst case bound d = b = 0 and, thus, applies to both inference scenarios.

B.4 Proof of Theorem 2

The result follows using Lemmas B.1(c) and (e) to eliminate the impact of endogeneity, Lemma

B.2(c) to establish the requisite convergence results for Ĝ
(b)
η̂η̂ (ℓG,mG), AVOA (2020, Lemma A.4(a)) to

establish an equivalent convergence result for Ĝûû(ℓG,mG) and the continuous mapping theorem.

B.5 Proof of Theorem 3

The result follows by Lemma B.8 in conjunction with the Cramér-Wold theorem. .

B.6 Proof of Theorem 4

First, define Bm = λψmc(ψ)B and the function g(x1, x2) = x1/x2, for x2 ̸= 0. Second, note that we can

write R(L) = g
(
L′B̂c(ℓ,m, γ̂x),L′B̂c(ℓ, m̃, γ̂x)

)
. Hence, using Theorem 3 and L′B ̸= 0, we may use

the delta method to establish the asymptotic distribution of R(L) and subsequently the distribution

of the estimator ψ̂(L). We provide the explicit steps of the proof for models (ii)-(iii), since identical

arguments deliver the corresponding result for model (iv). As an initial step, we compute the gradient
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vector as,

g′(L′Bm,L′Bm̃) =
λ−ψm̃

c(ψ)L′B

(
1

−κψ

)
(B.87)

implying that one component of the asymptotic variance becomes,

g′(L′Bm,L′Bm̃)
′Φ(κ, ψ)g′(L′Bm,L′Bm̃) = λ−2ψ

m̃ Θ(κ, ψ, ψ).

Hence, by invoking Theorem 3(a), we have

√
m
(
R(L)− κψ) D−→ N

(
0,κ2ψS(L, ξ, ψ)Θ(κ, ψ, ψ)

)
, (B.88)

when ψ ̸= 1/4. Next, we define another function h(x) = ln(x)/ ln(κ), with x > 0, whose gradient is

given by h′(κψ) = κ−ψ/ ln(κ). Hence, by another application of the delta method, it follows,

√
m
(
ψ̂(L)− ψ)

D−→ N
(
0,S(L, ξ, ψ)Θ(κ, ψ, ψ)/ ln(κ)2

)
, (B.89)

thus providing the distribution result for models (ii)-(iii), concluding the proof.

B.7 Proof of Theorem 5

The result follows using Lemmas B.1(c) and B.4(b) to eliminate the impact of endogeneity, Lemma

B.9(c) to establish the requisite convergence results for Ĝ
(b)
η̌η̌ (ℓG,mG), AVOA (2020, Lemma A.4(a)) to

establish an equivalent convergence result for Ĝûû(ℓG,mG) and the continuous mapping theorem.

B.8 Proof of Theorem 6

First, recall that v̂t = (êt, û
′
t−1)

′, then, by invoking Lemmas B.1(c)-(d), we have,

Ĝc
v̂v̂(ℓG,mG)− Ĝv̂v̂(ℓG,mG) ≤ Op

(
(mG/n)

dx/ℓ1+ϵG

)
, (B.90)

for some arbitrarily small ϵ > 0. Hence, we may continue by working with the corresponding estimate

without regressor endogeneity, v̂t. Next, define Â(L) ≡ D̂(L)D(L)−1 and at ≡ D(L)zt such that we

have v̂t = Â(L)at. Moreover, we may write at = µt+vt, where µt ≡D(L)µ1{t≥1} and vt = (et,u
′
t−1)

′

with et = φt−1+ η
(d1)
t and φt−1 = B′ut−1+ ξt−1. Finally, let us define ψt−1 = (φt−1,u

′
t−1)

′ and write,

Ĝv̂v̂(ℓG,mG)− Ĝψψ(1,mG) =
(
Ĝψψ(ℓG,mG)− Ĝψψ(1,mG)

)
+
(
Ĝvv(ℓG,mG)− Ĝψψ(ℓG,mG)

)
+
(
Ĝv̂v̂(ℓG,mG)− Ĝvv(ℓG,mG)

)
≡ U (G)

1 + U (G)
2 + U (G)

3 , (B.91)

Then, the following lemma provides asymptotic bounds for U (G)
1 , U (G)

2 and U (G)
3 as well as a central

limit theorem for Ĝψψ(1,mG). Hence, the stated limit theory follows by applying Assumption T-G⋆

to eliminate the sampling and trimming errors in conjunction with Slutsky’s theorem.
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Lemma B.10. Under the conditions of Theorem 6, the following uniform bounds hold:

(a) m
1/2
G U (G)

1 = Op
(
ℓG/

√
mG

)
.

(b) m
1/2
G U (G)

2 ≤ Op
(
(ℓG/

√
mG)(ℓG/n)

d1
)
+Op

(
(mG/n)

d1/
√
mG

)
.

(c) For some arbitrarily small ϵ > 0,

m
1/2
G U (G)

3 ≤ Op

(
n

√
mGℓ2G

(mG

n

)2dx)
+Op

(
n1/2
√
mG

(mG

n

)d mϵ
G

ℓ1+ϵG

)
+Op

(
ln(n)(mG/md)

1/2
)
.

(d) Let m1+2ϖ
G /nϖ for mG ≍ nκG and ℓ ≍ nνG, with 0 < νG < κG < ϱ ≤ 1, then

m
1/2
G vec

(
Ĝψψ(1,mG)−Gψψ

)
D−→ N

(
0,
(
Gψψ ⊗Gψψ +

(
Gψψ ⊗G(1)

ψψ, . . . ,Gψψ ⊗G(k+1)
ψψ

))
/2
)
.

Proof. For (a). First, by the cancellation of terms in the summation, U (G)
1 = −Ĝψψ(1, ℓG − 1). The

result, then, follows by Christensen & Varneskov (2017, Lemma 6).

For (b). First, define the (k + 1)× 1 vector c̆t ≡ (η
(d1)
t ,0′k)

′, such that vt −ψt = c̆t, and make the

decomposition,

U (G)
2 = Ĝc̆c̆(ℓG,mG) + Ĝψc̆(ℓG,mG) + Ĝc̆ψ(ℓG,mG) (B.92)

Next, as for the bounds in (B.5), we invoke AVOA (2020, Lemma A.12(b)) to show that w
(d1)
η (λj) =

Op(λ
d1
j ), when j ≍ nȷ, ∀ȷ > 0. Hence, uniformly,

Ĝc̆c̆(ℓG,mG) =
1

mG − ℓG + 1

mG∑
j=ℓG

Op

(
λ2d1j

)
≤
(mG

n

)2d1 K

mG

mG∑
j=ℓG

Op

((
ℓG
mG

)2d1
)
. (B.93)

Moreover, by applying Shimotsu & Phillips (2005, Lemma 5.4(a)), we have

1

mG

mG∑
j=ℓG

(
ℓG
mG

)2d1

=

∫ 1

ℓG
mG

x2d1dx+O
(
m−1
G

)
= O

(
(ℓG/mG)

1+2d1
)
+O

(
m−1
G

)
, (B.94)

and, as a result, Ĝc̆c̆(ℓG,mG) ≤ Op((ℓG/mG)(ℓG/n)
2d1) + Op((mG/n)

2d1/mG). Now, by combin-

ing Assumptions D1-D3, the same arguments and the Cauchy-Schwarz inequality, Ĝc̆ψ(ℓG,mG) ≤
Op((ℓG/mG)(ℓG/n)

d1) +Op((mG/n)
d1/mG), providing the result as ℓG/n+mG/n→ 0 and d1 > 0.

For (c). First, let us further decompose the error term as,

U (G)
3 =

(
Ĝaa(ℓG,mG)− Ĝvv(ℓG,mG)

)
+
(
Ĝv̂v̂(ℓG,mG)− Ĝaa(ℓG,mG)

)
≡ U (G)

31 + U (G)
32 .

74



Moreover, write at = ψt + µt + c̆t ≡ bt + c̆t and v̂t = Â(L)(bt + c̆t) ≡ ṽ(1)t + ṽ
(2)
t . Now, as,

U (G)
31 = Ĝµµ(ℓG,mG) +

(
Ĝψµ(ℓG,mG) + Ĝµψ(ℓG,mG)

)
+
(
Ĝc̆µ(ℓG,mG) + Ĝµc̆(ℓG,mG)

)
,

we may apply the same arguments as for AVOA (2020, Lemma A.4(a)) (cf., the error term G2) to

provide the following stochastic bounds,

U (G)
311 ≡ Ĝµµ(ℓG,mG) +

(
Ĝψµ(ℓG,mG) + Ĝµψ(ℓG,mG)

)
≤ Op

(
n

mGℓ2G

(mG

n

)2dx)
+Op

(
n1/2

mG

(mG

n

)dx mϵ
G

ℓ1+ϵG

)
, (B.95)

for some arbitrarily small ϵ > 0. Moreover, by w
(d1)
η (λj) = Op(λ

d1
j ) and Shimotsu (2010, Lemma B.2),

Ĝµc̆(ℓG,mG) ≤
K

mG

mG∑
j=ℓG

Op

(
n1/2j−1

)
×Op

(
λd1j

)
≤
Kmϵ

Gn
1/2

mG

(mG

n

)d1 mG∑
j=ℓG

Op(j
−1−ϵ), (B.96)

which, by Varneskov (2017, Lemma C.4), is uniformly Op(n
1/2mϵ−1

G (mG/n)
d1ℓ−1−ϵ

G ), implying

U (G)
31 ≤ Op

(
n

mGℓ2G

(mG

n

)2dx)
+Op

(
n1/2

mG

(mG

n

)d mϵ
G

ℓ1+ϵG

)
. (B.97)

Next, for the second term U (G)
32 , we may write,

Ĝaa(ℓG,mG) = Ĝbb(ℓG,mG) + Ĝc̆c̆(ℓG,mG) + Ĝbc̆(ℓG,mG) + Ĝc̆b(ℓG,mG),

Ĝv̂v̂(ℓG,mG) = Ĝ
(1)
ṽṽ (ℓG,mG) + Ĝ

(2)
ṽṽ (ℓG,mG) + Ĝ

(12)
ṽṽ (ℓG,mG) + Ĝ

(21)
ṽṽ (ℓG,mG).

Moreover, by applying AVOA (2020, Lemmas A.8-A.9(a), Equations (A.60) and (A.65)), we have

w
(1)
ṽ (λj , i) = wb(λj , i) +Op

(
ln(n)

m
1/2
d

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, wb(λj , i) ≡ wu(λj , i) +wµ(λj , i),

w
(2)
ṽ (λj) = wc̆(λj) +Op

(
λd1j ln(n)

j1/2

)
+Op

(
λd1j ln(n)

m
1/2
d

)
, wc̆(λj) = Op

(
λd1j

)
,

when j ≍ nȷ, ȷ > 0, for i = 1, . . . , k + 1. Now, the difference Ĝ
(1)
ṽṽ (ℓG,mG)− Ĝbb(ℓG,mG) has already

been considered in the proof of AVOA (2020, Lemma A.4(a)) (cf. the term G3). Hence, by letting,

f̄G(ℓG,mG, n) = 1 ∨
n1/2mϵ

G

mGℓ
1+ϵ
G

∨ n

mGℓ2G
, with f̄G(ℓG,mG, n) → 1, (B.98)
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as n→ ∞ by Assumptions T and T-G⋆ (condition two), we have, by their arguments,

Ĝ
(1)
ṽṽ (ℓG,mG)− Ĝbb(ℓG,mG) ≤ Op

(
ln(n)2

md
f̄G(ℓG,mG, n)

)
+Op

(
ln(n)
√
md

√
f̄G(ℓG,mG, n)

)
, (B.99)

and, thus, Ĝ
(1)
ṽṽ (ℓG,mG) − Ĝbb(ℓG,mG) ≤ Op(ln(n)/

√
md). Next, by applying the periodogram ap-

proximation error decomposition for w
(2)
ṽ (λj), we have

Ĝ
(2)
ṽṽ (ℓG,mG)− Ĝc̆c̆(ℓG,mG) ≤

K

mG

mG∑
j=ℓG

Op

(
λ2d1j ln(n)2

j

)
+Op

(
λ2d1j ln(n)2

j1/2m
1/2
d

)
+Op

(
λ2d1j ln(n)2

md

)

≤ Op

((mG

n

)2d1 (mϵ
G ln(n)2

mGℓ
1+ϵ
G

+
mϵ
G ln(n)2

ℓ1+ϵG

√
mGmd

+
ln(n)2

md

((
ℓG
mG

)1+2d1

+
1

mG

)))

for some arbitrarily small ϵ > 0, using (B.94) and the same arguments as for (B.95) and (B.96). Hence,

by Assumptions T and T-G⋆, Ĝ
(2)
ṽṽ (ℓG,mG)− Ĝc̆c̆(ℓG,mG) ≤ op(U (G)

311). Similarly,

Ĝ
(12)
ṽṽ (ℓG,mG)− Ĝbc̆(ℓG,mG) ≤

K

mG

mG∑
j=ℓG

(
Op

(
ln(n)2λd1j

m
1/2
d j1/2

)

+Op

(
ln(n)2λd1j

md

)
+Op

(
ln(n)2λd1j n

1/2

m
1/2
d j3/2

)
+Op

(
ln(n)2λd1j n

1/2

mdj

))

≤ Op

((mG

n

)d1 ( mϵ
G ln(n)2

ℓ1+ϵG

√
mGmd

+
ln(n)2

md

((
ℓG
mG

)1+d1

+
1

mG

)
+

ln(n)2n1/2

m
1/2
d mGℓ

3/2
G

+
n1/2 ln(n)2

ℓ1+ϵG m1−ϵ
G md

))
,

which, by Assumptions T and T-G⋆, similarly has Ĝ
(12)
ṽṽ (ℓG,mG)− Ĝbc̆(ℓG,mG) ≤ op(U (G)

311), and the

equivalent result for Ĝbc̆(ℓG,mG)−Ĝ(21)
ṽṽ (ℓG,mG) follows by symmetry. The final bound, thus, follows

by collecting results for U (G)
311 and Ĝ

(1)
ṽṽ (ℓG,mG)− Ĝbb(ℓG,mG).

For (d). The central limit theory follows by Nielsen & Shimotsu (2007, Lemma 5).

B.9 Proof of Theorem 7

The result follows by combining Theorem 6 and Robinson & Yajima (2002, Theorem 4).
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