
NBER WORKING PAPER SERIES

THE PRICE AND QUANTITY OF INTEREST RATE RISK

Jennifer N. Carpenter
Fangzhou Lu

Robert F. Whitelaw

Working Paper 28444
http://www.nber.org/papers/w28444

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2021

Many thanks for helpful comments and suggestions from Rob Engle, Matt Richardson, Alexi 
Savov, Yu Xu, and seminar participants at New York University. The views expressed herein are 
those of the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2021 by Jennifer N. Carpenter, Fangzhou Lu, and Robert F. Whitelaw. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



The Price and Quantity of Interest Rate Risk
Jennifer N. Carpenter, Fangzhou Lu, and Robert F. Whitelaw
NBER Working Paper No. 28444
February 2021
JEL No. G12,G15

ABSTRACT

Studies of the dynamics of bond risk premia that do not account for the corresponding dynamics 
of bond risk are hard to interpret. We propose a new approach to modeling bond risk and risk 
premia.  For each of the US and China, we reduce the government bond market to its first two 
principal-component bond-factor portfolios.  For each bond-factor portfolio, we estimate the joint 
dynamics of its volatility and Sharpe ratio as functions of yield curve variables, and of VIX in the 
US. We have three main findings.(1) There is an important second factor in bond risk premia. (2) 
Time variation in bond return volatility is as important as time variation in bond Sharpe ratios. (3) 
Bond risk premia are solely compensation for bond risk, as no-arbitrage theory predicts. Our 
approach also allows us to document interesting cyclical and secular time-variation in the term 
structure of bond risk premia in both the US and China.

Jennifer N. Carpenter
New York University
Stern School of Business
44 W 4th St Ste 9-190
New York, NY 10012-1126 
jcarpen0@stern.nyu.edu

Fangzhou Lu
Faculty of Business and Economics 
The University of Hong Kong 
Pokfulam Road
Hong Kong
lufz@hku.hk

Robert F. Whitelaw
New York University
Stern School of Business
44 West 4th Street, Suite 9-190
New York, NY  10012-1126
and NBER
rwhitela@stern.nyu.edu



1 Introduction

Understanding the risk and return of major asset classes is essential for optimal portfolio

choice and the calibration of reasonable equilibrium models. A vast literature studies the

relation between risk and return in the equity markets. The fixed income markets are even

bigger than the equity markets, but the literature on bond risk and return is still developing.

In particular, existing models do not adequately describe the data or the relation between

bond risk and bond risk premia. This paper proposes a new approach to the modeling and

estimation of the joint dynamics of the price and quantity of interest rate risk, which delivers

a number of new insights.

A key question that the existing term structure literature does not adequately address

is whether time variations in bond risk premia are attributable primarily to variation in

volatility or to variation in Sharpe ratios. But the portfolio and equilibrium implications of

these two alternatives are quite different. One strand of the literature, which includes Fama

and Bliss (1987), Cochrane and Piazzesi (2005), and Ludvigson and Ng (2009), focuses on

uncovering violations of the Expectations Hypothesis, documenting time variation in bond

risk premia, and identifying key predictor variables such as forward rates and macro factors.1

This literature is largely silent on the corresponding dynamics of bond risk. Since risk premia

can be levered arbitrarily, they are not very informative without an understanding of their

corresponding risk. Leverage-invariant Sharpe ratios are arguably more informative.

Another strand of the literature, which includes Ang and Piazzesi (2003), Duffee (2011),

Wright (2011), Lettau and Wachter (2011), Adrian, Crump, and Moench (2013), Joslin,

Priebsch, and Singleton (2014), Greenwood and Vayanos (2014), and Cieslak and Povala

(2015), works with Gaussian term structure models that imply bond prices have deter-

ministic volatility. Implicitly, these models force bond Sharpe ratios to do all the work of

accommodating stochastic variation in risk premia. However, a large literature inspired by

Engle, Lilien, and Robins (1987) provides evidence of systematic time variation in interest

rate volatility.2

More broadly, the class of affine term structure models (Duffie and Kan, 1996) has been a

popular framework for modeling the dynamics of bond returns. Unfortunately, affine models

of bond risk premia can only incorporate stochastic volatility in bond returns by imposing a

tight link between the functional forms of the price and quantity of risk (Dai and Singleton,

2000; Duffee, 2002; Cieslak and Povala, 2016). This link is too tight to accommodate essential

features of the data such as a price of risk that changes sign (Duffee, 2011). In addition,

1See also Campbell and Shiller (1991).
2See, e.g., Boudoukh, Downing, Richardson, Stanton, and Whitelaw (2010) and references cited therein.
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affine models imply that bond yields span all relevant information about bond risk premia,

except in knife-edge cases (Duffee, 2011; Joslin et al., 2014). Thus they generically rule out

unspanned stochastic volatility, such as that documented by Collin-Dufresne and Goldstein

(2002), and unspanned macro predictors of bond risk and return.3

This paper goes beyond the confines of affine term structure models and extends the

existing empirical literature on forecasting bond risk premia to develop and estimate a more

flexible model of the price and quantity of bond risk. We study bond markets in both the

US and China, which are, respectively, the largest and second largest bond markets in the

world. We begin by reducing each bond market to its two principal-component bond-factor

portfolios, which together explain about 98% of the variation in bond returns. Then we

estimate the joint dynamics of the volatility and Sharpe ratio of each bond-factor portfolio.

For both the US and China, we use traditional yield-curve variables to forecast the volatilities

and Sharpe ratios of the bond-factor portfolios. For the US bond returns, we also introduce

VIX as an important predictor variable, unspanned by yields.

We have three main findings with respect to the bond factors. First, we identify an

important second factor in bond risk premia, which accounts for the stylized fact that Sharpe

ratios of bonds decline in maturity in both the US and China. The similarity between the

factor structure of bond returns in the US and China is striking given that these are two

effectively segmented markets whose returns are relatively uncorrelated.

Second, for each bond-factor portfolio, both the conditional volatility and the conditional

Sharpe ratio vary stochastically, and the variation in volatility is as important as the variation

in the Sharpe ratio. In particular, the Gaussian models miss a central piece of the story.

For example, for the US Factor 1, which explains about 91% of the variation in US Treasury

returns, ignoring variation in volatility misattributes about 50% of the variation in risk

premia to variation in the Sharpe ratio.

Third, we find that bond risk premia are solely compensation for bond risk in both

countries, as no-arbitrage theory predicts. I.e., bond risk premia go to zero as bond volatility

goes to zero.

We also document interesting differences between risk premia in the US and China.

We find that the time-series correlation between each bond factor’s predicted volatility and

predicted Sharpe ratio is significantly positive in the US, as equilibrium models would predict

for risk factors that are correlated with aggregate consumption. In particular, both the

quantity and price of interest rate risk in the US spike up during NBER recessions. By

3There is an unresolved debate in the literature about whether macro factors have predictive power
incremental to that contained in the yield curve (Bauer and Hamilton, 2018). The resolution of this debate
is tangential to the main points we make in this paper.
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contrast, in China, the time-series correlation between each bond factor’s predicted volatility

and Sharpe ratio is significantly negative. For the first and largest factor in returns, this

result is driven primarily by large declines in volatility and increases in Sharpe ratios during

aggressive monetary policy interventions associated with two crisis periods: the financial

crisis of 2008 and the stock market crash of 2015.

Finally, we can recover the risk and return dynamics for the underlying zero-coupon

bonds from the dynamics of the factors and the loadings of the bonds on these factors. We

do so for two-year and ten-year zeroes for both the US and China. Risk premia in the US

exhibit interesting cyclical patterns and time trends. Specifically, the term structure of bond

risk premia is steeply upward sloping at the beginning of expansions, but declines over the

cycle to the point where it is flat. Over time, volatilities and Sharpe ratios of both factors

have declined to the point where risk premia are close to zero across bonds of all maturities.

A similar decline over time shows up in volatility in China, but since there is no evidence

of a decline in the price of risk of either factor, Sharpe ratios remain higher on shorter-term

zeroes in recent years. Interestingly, variation in China appears to be policy driven rather

than linked to economic fluctuations as it is in the US.

The paper begins by using data on key-maturity par rates for US Treasury (UST) bonds

from 1976 to 2019 from FRED and for Chinese government bonds (CGB) from 2004 to

2019 from Wind to construct monthly time series of excess returns on zeroes with annual

maturities from 1 to 10 years. We then use a principal components analysis (PCA) of the

monthly standardized excess returns on zero-coupon bonds to reduce each bond market to

two factor portfolios which together explain most of the variation in the zero returns. For

example, in the US bond market over the post-Volcker period 1990–2019, Factor 1 explains

91% of this variation and Factor 2 explains 7%. In China these proportions are 82% and

14%, respectively. We sign the factors so that their Sharpe ratios are positive. Consistent

with Litterman and Scheinkman (1991), movements in the first and second factor portfolios

correspond roughly to movements in the level and steepness of the yield curve. Interestingly,

this is true in both the US and China. In particular, unstandardized zeroes load on Factor 1

roughly in proportion to their duration. At the same time, short-term bonds load positively

on Factor 2 and long-term bonds load negatively on Factor 2, which explains the declining

term structure of unconditional Sharpe ratios of zeroes evident in both the US and China.

Next, we lay out a continuous-time model of nominal bond returns, in which we incorpo-

rate the two-factor structure of bond returns as well as the no-arbitrage condition that risk

premia are solely compensation for risk. The discrete-time analogue of this model guides our

empirical specification of monthly bond-factor returns, in which we take conditional factor

volatilities and Sharpe ratios to be functions of a set of predictor variables.
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Finally, as our main analysis, we perform a simultaneous generalized method of moments

(GMM) estimation of the joint dynamics of each bond factor’s conditional volatility and

Sharpe ratio processes. This estimation allows us to test hypotheses about the relation

between bond risk and risk premia and uncover the underlying economic structure of bond

returns.

Our paper is one of the first to provide evidence on the pricing of Chinese government

bonds.4 Although the time series of CGB yield data is still relatively short, China’s bond

market as a whole is already the second largest in the world, with a total market capitalization

of 17 trillion USD at the end of 2020, compared with 45 trillion USD for the US bond market.

CGB constitute a smaller fraction of this market than US Treasuries represent as a fraction

of the total US bond market, 18% vs. 38%, respectively, but they still represent an important

benchmark for pricing. In “Investors find new safe place to hide: Chinese bonds,” July 2020,

The Wall Street Journal reports that foreign holdings of CGB increased six-fold over the

last five years to over 200 billion USD (https://www.wsj.com/articles/investors-find-new-

safe-place-to-hide-chinese-bonds-11594632600?mod=hp lead pos5).

Our paper also relates to the stock market risk-return literature in that the same no-

arbitrage relation should hold in that market: risk premia in the stock market should also

only be compensation for equity return risk. Interestingly, our strong positive results on this

dimension are in marked contrast to those in the equity return literature. Early papers, such

as French, Schwert, and Stambaugh (1987), Glosten, Jagannathan, and Runkle (1993), and

Whitelaw (1994) document a weak, or even negative, relation between expected returns and

conditional volatility, despite the evidence for a large unconditional equity risk premium,

and more recent work has had difficulty overturning this puzzling result. It may be that the

bond market is actually the more natural place to search for this fundamental link due to the

absence of cash flow risk, which increases the complexity of the structure of stock returns.

The paper proceeds as follows. Section 2 analyzes the empirical factor structure of

government bond excess returns in both the US and China. Section 3 lays out our theoretical

model of nominal bond returns, the corresponding empirical specification, and our estimation

strategy. Section 4 presents the estimation results for US Treasury bonds. Section 5 presents

the estimation results for Chinese government bonds, and Section 6 concludes.

2 The Empirical Factor Structure of Bond Returns

To lay the groundwork for our model of conditional bond return volatility and price of

risk in Section 3, this section presents the results of PCAs of implied zero-coupon bond

4See Amstad and He (2018) for a description of China’s bond markets.
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excess returns in the US and China. Much of the existing empirical literature, going back

to Fama and Bliss (1987), forecasts bond risk premia maturity by maturity. We focus on

forecasting the risk premia of the first two principal components of bond returns, i.e., the

risk premia on portfolios of these bonds, for a number of reasons. First, using returns on

portfolios rather than on individual bonds avoids many of the measurement error issues that

have been discussed extensively in the prior literature. Specifically, in regressions that use

maturity-matched term structure variables as predictors, the same bond price shows up in

both the return on the left-hand side of the forecasting regression and the yield or forward

rate for the same maturity on the right-hand side. Thus, the same measurement error in this

price also potentially shows up on both sides of the regression equation. We also use yields as

predictors, but there are returns of bonds with many more different maturities in the portfolio

return we are trying to predict, so the possibility of common measurement error is much less

severe. Second, the PCA dramatically reduces the dimensionality of the problem, so we can

present results for only two factors rather than for multiple different maturities, making the

results easier to analyze and interpret. Third, more recent papers, such as Cochrane and

Piazzesi (2005) and Cieslak and Povala (2015), emphasize the existence of a single dominant

factor in expected returns. In a no-arbitrage framework, a single factor structure would imply

that all bonds have the approximately the same Sharpe ratio, assuming little idiosyncratic

risk, which is inconsistent with the strongly declining Sharpe ratio pattern in the data that

we will discuss later. However, given the low dimensionality of the bond return data, two

factors are likely to pick up much of the time-variation in returns and thus of risk premia.

The results of these PCAs are strikingly consistent across subperiods and markets. They

also explain the pattern of declining Sharpe ratios with maturity, documented by Frazzini

and Pedersen (2014), in terms of an important second priced factor, on which short-term

bonds load positively and long-term bonds load negatively.

2.1 Priced Factors in Bond Returns

In the spirit of the analysis of Litterman and Scheinkman (1991) for UST implied zeroes over

the period 1984–1988, Panel A of Table 1 presents the results of PCAs of the standardized

excess returns of the implied zeroes. To construct the monthly returns on implied zero-

coupon bonds with annual maturities 1, 2, ..., 10 years, we first fit a cubic exponential

spline function through the key-maturity par rates from FRED for the US or from WIND

for China. Then we back out the implied zero rates for semi-annual maturities, fit another

spline through these implied zero rates, and compute monthly prices and returns for zero-

coupon bonds with monthly maturities. The columns on the left-hand side of Table 1 are
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for UST implied zeroes for two subperiods, 7/1976–12/1989 and 1/1990–12/2019. These

correspond roughly to the Volcker period and the post-Volcker period.5 The columns on the

right are for CGB implied zeroes.

In each subsample, we standardize each zero’s excess return series by its monthly volatility

so that the PCA is not dominated by the longer-maturity, higher-volatility zero returns.6

Thus, in the ten-maturity zero PCAs, the sum of the ten annualized variances, and thus the

sum of the ten resulting principal-component factor-portfolio variances, is 120. Panel A of

Table 1 contains the results for the first three principal-component factor portfolios. The first

row shows the percent of total variance explained by each of the first three factor portfolios.

The table shows that the first factor explains most of the total variance of the standardized

zero returns, while the second factor also explains a material portion. In the more recent

subperiods, the second factor becomes more important. For the UST implied zeroes during

the post-Volcker period, Factor 1 explains 91% of the total variance of the standardized zero

returns, while Factor 2 explains 7%. Factor 3 explains an additional 1% of the variation and

the remaining factors are negligible. For the CGB implied zeroes, the second factor is even

important; Factor 1 explains 82% of total variance and Factor 2 explains 14%. Panel A of

Table 1 also shows the annualized Sharpe ratios of each of the factor portfolios. We sign

the factors so that they have positive Sharpe ratios. The Sharpe ratios of Factors 1 and 2

are fairly large, especially in the UST zeroes in the post-Volcker period, where the Factor 1

portfolio has a Sharpe ratio of 0.77 and the Factor 2 portfolio has a Sharpe ratio of 0.85.

The column-vector of zero loadings under each factor in Panel A of Table 1 is the factor

eigenvector. It simultaneously shows the loadings of the different standardized zero returns

on the factor portfolio return and the holdings of standardized zeroes in the factor portfolio.

The compositions of the three factor portfolios are similar across subperiods and across

markets. Factor 1 is a roughly equal-weighted portfolio of standardized zeroes. Factor 2 is

long short-maturity zeroes and short long-maturity zeroes. Factor 3 is long extreme-maturity

zeroes and short middle-maturity zeroes.

Since the eigenvectors in Table 1 show the return responses of each implied zero to the

returns on the factor portfolios, we can approximate the yield-curve shift associated with

a one-annual-standard-deviation increase in each factor-portfolio return. Figure 1 plots the

yield curve shifts associated with the three different factors. As in Litterman and Scheinkman

(1991), movements in the three factors correspond roughly to shifts in the level, steepness,

and curvature of the yield curve, respectively, for all subsamples.

5Paul Volcker was Chairman of the Federal Reserve from August 1979 to August 1987. The precise start
of the second subperiod is dictated by the availability of VIX data as we discuss later.

6The results with unstandardized excess returns are qualitatively similar.
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2.2 The “Betting-Against-Duration” Pattern in Sharpe Ratios

Frazzini and Pedersen (2014) document a “betting-against-duration” pattern in the Sharpe

ratios of Treasury bond portfolios over the period 1952–2012: Sharpe ratios are declining

with bond maturity. We verify that this pattern is robust across two US subsamples and in

China. Panel B of Table 1 presents unconditional annualized mean monthly excess returns,

volatilities, and Sharpe ratios for the ten constant-maturity zeroes. The table shows that in

both subperiods, the means and volatilities of the UST implied zero returns are increasing

with zero maturity, while their Sharpe ratios are decreasing with maturity. The patterns of

the performance measures for the CGB implied zeroes are qualitatively very similar. In par-

ticular, the Sharpe ratios of CGB implied zeroes are also mostly declining in maturity. This

is somewhat surprising, given that the Chinese securities markets are largely segmented from

other global financial markets, with limited ownership by foreign investors, and given that

CGB bond-factor portfolio returns have low correlation with the UST bond-factor portfolio

returns. The highest correlation is 22%, between CGB Factor 1 and UST Factor 1 returns.

Frazzini and Pedersen (2014) attribute the “betting-against-beta” pattern in asset prices

to leverage-constrained investors bidding up high-beta assets for their high returns. However,

this explanation is less plausible in the bond markets, where the repo market facilitates the

use of leverage. The declining pattern of bond Sharpe ratios with maturity is better explained

through the presence of the important second priced factor in bond returns, on which short

bonds load positively and long bonds load negatively.

2.3 The Factor Structure and Performance of UST ETFs

Table 2 verifies that the bond factor structure and performance patterns presented in Ta-

ble 1 are not simply artifacts of our implied zeroes construction by demonstrating the same

patterns in the excess returns of UST exchange-traded funds (ETFs). These ETFs are

traded assets, in contrast to our synthetic zeroes, and therefore their returns are free from

any measurement error that might be induced by our splining procedure, for example. The

data, from the Center for Research in Security Prices for the period 2/2007 to 12/2019, are

for returns net of fees. The columns headed “Gross of 15-bp Fees” show results for excess

returns augmented with the 15-basis point management fee charged by Blackrock iShares.

Gross of these fees, the Sharpe ratios on the ETFs decline sharply with the maturity of the

underlying bonds, and net of these fees, the Sharpe ratios decline with maturity for all but

the shortest-maturity ETF. Panel A of Table 2 verifies that the factor structure of UST ETF

returns mirrors that of the UST implied zeroes. The Sharpe ratios for Factor 1 and Factor 2

are even larger in the ETF market, gross of fees, perhaps reflecting some variance reduction
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associated with holding portfolios of bonds. The large Sharpe ratio on Factor 2 explains the

declining pattern of ETF Sharpe ratios with maturity that we document in Panel B.

3 A Model of Nominal Bond Returns

This section develops a model of nominal bond returns that positions the bond market within

the broader financial market, formalizes our assumptions about the factor structure of bond

returns, derives a testable no-arbitrage relation between bond risk and return, and motivates

the empirical specification of bond returns in the estimation that follows. Suppose real asset

prices are Itô processes with respect to a standard d-dimensional Brownian motion Bt. In

particular, there is a riskless real money market account with instantaneous riskless rate rt

and there are n risky assets with real cum-dividend prices Si,t that follow

dSi,t
Si,t

= µi,t dt+ σi,t dBt , (1)

where rt, the µi,t, and the d-dimensional row vector σi,t are stochastic processes that are

measurable with respect to the information generated by the Brownian motion and satisfy

standard integrability conditions that ensure the processes Si,t are well-defined. The value

Wt of a self-financing portfolio that invests value πi,t in risky asset i, for i = 1, . . . , n, follows

dWt = (rtWt + πt(µt − rt1)) dt+ πtσt dBt , (2)

where πt is the n-dimensional row vector with elements πi,t, µt is the n-dimensional column

vector with elements µi,t, 1 is the n-dimensional vector of 1’s, and σt is the n×d-dimensional

matrix with rows equal to the σi,t. Assume that πt is such that πt(µt − rt1) and πtσt satisfy

the integrability conditions that ensure Wt is well-defined.

3.1 No-Arbitrage Condition

In the absence of arbitrage, the real price processes Si,t must satisfy the condition that if πt

is such that πtσt = 0, then πt(µt − rt1) = 0. That is, a portfolio with zero risk must have

a zero risk premium. Otherwise, it would be possible to generate a locally riskless portfolio

that appreciates at a rate greater than rt. This condition is algebraically equivalent to the

condition that there exists a d-dimensional vector θt such that

σtθt = µt − rt1 . (3)
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It follows that there exists a d-dimensional vector process θt satisfying Equation (3), as well

as suitable measurability and integrability conditions.7 This process is typically called a

“market price of risk” or simply a “price of risk.” Therefore, in the absence of arbitrage, we

can re-write Equation (1) as

dSi,t
Si,t
− rt dt = σi,tθt dt+ σi,t dBt , (4)

for any market price of risk process θt. Moreover, together with the riskless rate rt, any such

market price of risk process θt determines the dynamics of a stochastic discount factor

Mt = e−
∫ t
0 rs ds−

∫ t
0 θ
′
s dBs− 1

2

∫ t
0 |θs|

2 ds (5)

such that

Si,t = Et{
Mu

Mt

Si,u} for all 0 < t < u and i = 1, . . . , n . (6)

In many equilibrium models, the equilibrium stochastic discount factor is equal to the

marginal utility of consumption of the representative agent, and the equilibrium market

price of risk on the claim to aggregate consumption is

θt = Rtσc,t (7)

where Rt is the coefficient of relative risk aversion of the representative agent, and σc,t is the

volatility vector of aggregate consumption.8

3.2 Nominal Asset Prices with Locally Riskless Inflation

Suppose the price level qt is locally riskless, i.e.,

dqt
qt

= it dt, (8)

where the expected inflation rate it is suitably integrable and measurable with respect to the

information generated by the d Brownian motions. Then the nominal riskless rate, that is,

the rate on a nominally riskless money market account, is rt + it and nominal asset prices,

Pi,t = qtSi,t satisfy

dPi,t
Pi,t
− (rt + it) dt =

dqt
qt

+
dSi,t
Si,t
− (rt + it) dt =

dSi,t
Si,t
− rt dt = σi,tθt dt+ σi,t dBt . (9)

7See Karatzas and Shreve (1998), Theorem 4.2.
8See Karatzas and Shreve (1998), Eqn. (6.21).
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Thus, nominal returns in excess of the nominal riskless rate are the same as real returns in

excess of the real riskless rate, and can shed light on the real price of risk θt.
9

Note that the nominal stochastic discount factor for nominal asset prices is

Mt/qt = e−
∫ t
0 (rs+is) ds−

∫ t
0 θ
′
s dBs− 1

2

∫ t
0 |θs|

2 ds , (10)

and the nominal price of a nominal zero-coupon bond with maturity T is

P T
t = Et{e−

∫ T
t (rs+is) ds−

∫ T
t θ′s dBs− 1

2

∫ T
t |θs|

2 ds} . (11)

Therefore, the volatilities of nominal bond returns will in general reflect exposure to shocks

to the inflation rate it, and the risk premia on nominal bonds will contain compensation for

this exposure. I.e., there will in general be an inflation risk premium in both the real and

nominal excess returns of nominal bonds.

3.3 Bond Market Factors and Implied Zero Excess Returns

Motivated by the evidence from Section 2.1 of two important, orthogonal factor portfolios,

which together explain virtually all of the variation in nominal bond returns, we identify the

excess return of Factor 1 with the first Brownian motion and the excess return of Factor 2

with the second Brownian motion. This is without loss of generality, since we can always

rotate the original Brownian motions to achieve this representation. Thus, for j = 1, 2, we

write the excess return on Factor j, dFj as

dFj,t = σj,tθj,t dt+ σj,t dBj,t , (12)

where for j = 1, 2, σj,t is now the scalar conditional volatility process for Factor j and θj is

now the uniquely defined Sharpe ratio for Factor j. A natural interpretation is that Factors 1

and 2 from the bond market are correlated with important latent risk factors in aggregate

consumption, and their Sharpe ratios thus shed light on the prices of those dimensions of

consumption risk.

Next, taking the ten annual maturity nominal implied zeroes to be the first ten risky

assets in the market, we write the nominal implied zero excess returns as

dPi,t
Pi,t
− (rt + it) dt = βi,1dF1,t + βi,2dF2,t , for i = 1, . . . , 10 , (13)

9Cochrane and Piazzesi (2005) and Cieslak and Povala (2015) effectively make this assumption as well.
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where the βi,1 and βi,2 are the components of the eigenvectors associated with Factors 1

and 2, respectively. In particular, in light of evidence that the risk associated with the

third and higher principal components is economically negligible, we treat the zero-cost

constant-maturity implied-zero portfolios as constant-beta portfolios of the Factors 1 and

2 only. Note that we are not restricting the conditional Factor-1 and Factor-2 volatilities

and Sharpe ratios σj,t and θj,t to depend only on the information generated by the first two

Brownian motions. In general, these can depend on the information generated by the full set

of d Brownian motions, which justifies the possibility of a large set of predictor variables for

these conditional moments, not limited to bond yields. In particular, this flexible model can

accommodate unspanned stochastic volatility, such as that documented by Collin-Dufresne

and Goldstein (2002), and unspanned macro risks, such as in Joslin et al. (2014), among

others.

Once we empirically characterize the conditional factor volatilities and Sharpe ratios σj,t

and θj,t, then we can recover the conditional volatility of each implied zero i as the two-

dimensional vector (βi,1σ1,t, βi,2σ2,t) and the risk premium on implied zero i as βi,1σ1,tθ1,t +

βi,2σ2,tθj,t. In particular, the risk premia on the two factors, σ1,tθ1,t and σ2,tθ2,t, will drive the

risk premia on all ten zeroes, simply as a consequence of the two-factor structure of bond

returns. To the extent that the first bond factor’s risk premium, σ1,tθ1,t, is dominant, as the

evidence in Table 1 suggests, it will appear as though this single forecasting variable drives

returns on all zeroes, with the individual zero loadings given by the βi,1. For the ordinary

unstandardized zero returns, each zero’s loading is its element in the Factor-1 eigenvector in

Panel A of Table 1 times its volatility from Panel B of Table 1. As the Table shows, these

loadings are monotonic in the maturity of the zeroes. Thus, the presence of a dominant first

bond factor with time-varying risk premia will produce the finding of Cochrane and Piazzesi

(2005) that a single forecasting factor drives returns on all bonds, with loadings monotonic

in maturity.

3.4 Empirical Specification and GMM Estimation

To take the continuous-time model to monthly time-series data, we work with a discrete-time

analogue of Equation (12),

Rj,t+1 = σj,tθj,t + σj,tεj,t+1 for j = 1, 2 , (14)

11



where Rj is the monthly excess return on Factor j, the εj,t are i.i.d. standard normal, and

we assume that the volatilities and prices of risk satisfy

σj,t = Xtβ
σ
j (15)

and

θj,t = Xtβ
θ
j (16)

for a row-vector of predictor variables, Xt, which includes a constant.

3.4.1 Predictor Variables

A large literature going back to Fama (1986) uses yield-curve variables to forecast bond risk

premia, while another literature going back to Chan, Karolyi, Longstaff, and Sanders (1992)

uses yield-curve variables to forecast interest rate volatility. To capture the information about

future bond return volatility and risk premia in the yield curve, Xt includes three variables

that describe the yield-curve level, slope, and curvature, namely, the two-year zero-coupon

yield, Y2,t, the ten-year yield minus the two-year yield, Y2,t − Y10,t, and the six-year yield

minus the average of the two- and ten-year yields, Y6,t− Y2,t+Y10,t
2

.10 As with the return data,

we make a conscious choice to reduce the dimensionality of the yield data used as predictors

for a number of reasons. First, and most important, we want to reduce the possibility of

overfitting. Second, the structure of yields looks similar to the structure of returns in that

there are a few factors that capture the vast majority of the time-variation in these series.

While it is theoretically possible that a yield factor that explains a very small fraction of the

variation in yields explains a large fraction of the variation in risk premia, this possibility

seems economically implausible. Third, the goal of the paper is not to maximize the R2’s

of our regressions. Rather we are trying to illuminate the underlying economic structure

of bond risk premia in as simple and parsimonious a specification as possible. We leave a

detailed specification search intended to maximize forecasting power to future research.

For the UST factors, Xt also includes VIX, which is an index of the implied volatility

of the 30-day return on the S&P 500 derived from S&P 500 index options.11 In theory,

this implied volatility measure contains both a forecast of market volatility and information

about risk aversion, so it should be relevant for predicting both bond return volatility and

10We use the two-year yield rather than the one-year yield to avoid any distortions in the short end of
the yield curve associated with monetary policy, although using the latter instead of the former produces
qualitatively similar results.

11The VIX data are available from the CBOE going back to January 1990, which dictates the precise start
date of the sample period for our GMM estimation. This date also coincides roughly with the end of the
Volcker period.
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its price of risk.12

Fama and Bliss (1987) use matching-maturity forward rates to forecast excess returns on

zeroes with annual maturities one through five years. Cochrane and Piazzesi (2005) use all

five forward rates to forecast the excess returns on individual zeroes with annual maturities

one through five years. In our setting here, we are working with factor portfolios of zeroes

with annual maturities up to ten years. To include all ten forward rates seems likely to

lead to overfitting, so we prefer the more parsimonious summary of yield-curve information

contained in our Level, Slope, and Curvature variables, which correspond roughly to the

first three principal components of yields. A number of other variables have been used to

predict bond excess returns in the literature. Ang and Piazzesi (2003) and Joslin et al.

(2014) use measures of economic growth and inflation, Ludvigson and Ng (2009) use PCs

from 132 macro variables, Greenwood and Vayanos (2014) use measures of Treasury bond

supply, Cieslak and Povala (2015) use residuals from regressions of yields on an average of

past inflation, and Brooks and Moskowitz (2017) use measures of value, momentum, and

carry. We limit our predictor variables to our three yield-curve variables plus VIX, which

seem natural and well-motivated.

3.4.2 GMM Estimation Equations and Diagnostics

For each j = 1, 2, we perform a simultaneous GMM estimation of βσj and βθj from the

following two equations:

Rj,t+1 = αj + (Xtβ
σ
j )(Xtβ

θ
j ) + uj,t+1 , (17)√

π

2
|uj,t+1| = Xtβ

σ
j + vj,t+1 , (18)

where we use E{
√

π
2
|uj,t|} = E{

√
π
2
|σj,t−1εj,t|} = σj,t−1. We refer to Equation (17) as the

“return equation” and Equation (18) as the “volatility equation.” The “return constant” αj

in Equation (17) should be zero in theory by no arbitrage.13 We include this constant in

preliminary specifications to check for possible mis-specification in Equations (15) and (16).

12We also tried the MOVE Index, which tracks the U.S. Treasury yield volatility implied by current prices
of one-month over-the-counter options on two-year, five-year, ten-year and thirty-year Treasuries. MOVE is
highly correlated with VIX and is subsumed by VIX in our empirical specifications. This result is perhaps
somewhat surprising, since one might speculate that a bond market volatility measure such as MOVE would
do better than a stock market measure such as VIX. However, the latter is based on a much more liquid and
widely traded set of instruments, especially in the early part of the sample, which may explain the result. For
both the UST and CGB factors, we also tried including the lagged value of realized volatility, approximated
as

√
π
2 |Rj,t|, as a predictor variable, but it is insignificant in all cases.

13Other papers that have made this point in the context of bond pricing include Cox, Ingersoll, and Ross
(1985) and Stanton (1997).
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Unless otherwise specified, the set of moment conditions we use in the estimations are

E{uj,t+1Zt} = E{[Rj,t+1 − [αj + (Xtβ
σ
j )(Xtβ

θ
j )]]Zt} = 0 , (19)

E{vj,t+1X
′
t} = E{[

√
π

2
|Rj,t+1 − [αj + (Xtβ

σ
j )(Xtβ

θ
j )]| −Xtβ

σ
j ]X ′t} = 0 , (20)

where the vector Zt includes all of the unique elements of the matrix X ′tXt. These moment

conditions allow us to test the restrictions on the coefficients on the square and cross-product

terms in X ′tXt imposed by Equations (15) and (16) using the standard J-statistic over-

identifying restrictions test.

We also report goodness-of-fit measures for the two estimated equations, defined as

Goodness-of-fit (1) = 1−
∑

t u
2
j,t∑

t(Rj,t − R̄j)2
, (21)

Goodness-of-fit (2) = 1−
∑

t v
2
j,t

π
2

∑
t(|uj,t| − ¯|uj|)2

. (22)

These are similar to ordinary-least-squares (OLS) regression R2’s. The difference is that

an OLS regression chooses coefficients to maximize R2, while the GMM estimation chooses

coefficients to minimize the weighted sum of the squares and cross-products of the sample

moments in the moment conditions.

In addition, we formally test three null hypotheses about the dynamics of the bond factor

returns. The first null hypothesis, based on the no-arbitrage theory, is that bond factor risk

premia are solely compensation for bond risk, that is,

H0,0 : αj = 0 .

We test this with the standard z-test. The second null hypothesis is that bond factor volatility

is constant, that is,

H0,1 : βσj,1 = βσj,2 = · · · = βσj,k = 0 ,

where the βσj,1, . . . , β
σ
j,k are the volatility coefficients on the k non-constant elements of X.

We test this joint hypothesis with a standard Wald test. The third null hypothesis is that

the price of bond factor risk is constant, that is,

H0,2 : βθj,1 = · · · = βθj,k = 0 ,

where the βθj,1, . . . , β
θ
j,k are the Sharpe ratio coefficients on the k non-constant elements of

X. We also test this joint hypothesis with a standard Wald test.

14



4 Results for US Treasury Bonds

This section first presents the results of the GMM estimation of UST factor volatility and

Sharpe ratio dynamics using data from FRED for the period 1990 to 2019. Then we provide

evidence on the effect of the length of the return horizon, monthly or annual, on the OLS R2’s

of excess return regressions, and we show that our goodness-of-fit measures for the return

equation are comparable to R2’s in bond return regressions documented in the previous

literature. Finally, we analyze the times series of fitted volatility and Sharpe ratio values to

shed additional light on the dynamics of return premia.

4.1 GMM Estimation Results for the UST Factors

The top panel of Table 3 presents GMM estimates of αj, β
σ
j , βθj , and their robust z-statistics

for alternative specifications of Equations (17) and (18) for the UST factors. The bottom

panel indicates the number of moment conditions used in the estimation, the p-value of the J-

statistic over-identifying restrictions test, p-values for the Wald tests of null hypotheses H0,1

and H0,2 described above, and the goodness-of-fit measures. The left-hand side of Table 3

reports results for UST Factor 1 and the right-hand side reports results for UST Factor 2.

For convenience, the yield-curve variables are divided by 10 and VIX is divided by 100 to

give their coefficients comparable magnitude.

The first specification for UST Factor 1, Specification (1a), includes all the predictor

variables linearly, as well as the “return constant” α1. The z-statistic for the estimate of the

return constant is insignificant, as predicted by theory. The p-value of the J-statistic test

for misspecification is large, suggesting that we are not omitting any important higher-order

terms in our specification. The p-values for the Wald tests indicate that we can easily reject

Hypothesis H0,1 that Factor-1 volatility is constant but we cannot yet reject Hypothesis

H0,2 that the Factor-1 price of risk is constant. However, when we impose the no-arbitrage

restriction that α1 = 0 in Specification (1b), we increase power.14 In particular, while the

estimates of the volatility and Sharpe ratio coefficients βσj and βθj in Specification (1b) remain

similar to those in (1a), we are now not only able to reject H0,1 easily but we are also able

to reject H0,2 at close to the 10% level. The Curvature variable is insignificant in both the

volatility and return equations, so to further increase power, we exclude this variable in

Specification (1c). This boosts the significance levels of most of the coefficients on the other

predictor variables. In particular, in Specification (1c), both the volatility and the Sharpe

14The decision about whether or not to impose this restriction involves the usual tradeoff between efficiency
and robustness, as noted in a slightly different asset pricing context by Cochrane (2005) (see p. 236). We
follow the natural recommendation of Lewellen, Nagel, and Shanken (2010) to both test the restriction and
impose it ex ante (see the discussion of their Prescription 2).
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ratio of UST Factor 1 are significantly positive functions of Level and Slope, consistent with

previous studies forecasting bond risk premia and interest rate volatility. Our analysis is

the first to decompose these effects into the price and quantity of interest rate risk in bond

returns. We also find that the volatility of Factor 1 is a significantly positive function of

VIX. The p-value of the J-statistic remains large, suggesting this is well-specified, and the

p-values of the Wald tests are 0.0% and 5.4%, so we reject that volatility and the price of

risk are constant.

For UST Factor 2, Specifications (2a) and (2b) are analogous to (1a) and (1b) for Fac-

tor 1. The p-values of the J-statistics are still well above 10%, suggesting that the linear

specifications are adequate. The estimate of the return constant α2 in Specification (2a) is in-

significant, so we impose the no-arbitrage restriction α2 = 0 in Specification (2b). This again

boosts power, and brings the p-values for the Wald tests down below 1%. Thus, we strongly

reject the hypotheses that Factor-2 volatility is constant and that the price of Factor-2 risk

is constant. Factor-2 volatility is a significantly positive function of Level, Slope, and VIX,

and a significantly negative function of Curvature. Factor-2 price of risk is a significantly

positive function of Level and VIX.

The result that expected returns in the bond market are compensation for risk, i.e., that

bond risk premia go to zero as bond risk goes to zero, is consistent with the no-arbitrage

restriction in our model of Section 3. However, this result is in stark contrast to much of the

literature on the risk-return relation in the stock market. Starting with French et al. (1987),

this literature has often failed to find a statistically significant or even positive relation

between expected returns and the conditional volatility of stock returns.

4.2 Monthly versus Annual R2’s in Bond Return Regressions

While the empirical results in Table 3 are both economically and statistically significant, and

we document significant predictable variation in UST returns, the goodness-of-fit measures

in the return equation look small relative to those in the existing literature. Specifically, it

is not unusual to see R2’s in linear regressions of maturity-specific bond returns on various

predictor variables of 30% or more.15 Why then are our goodness-of-fit measures so much

lower than the R2’s reported in earlier papers? The simple answer is that, for the most part,

the existing literature uses monthly overlapping annual returns as the dependent variable

in these regressions, whereas as we use non-overlapping monthly returns. As we illustrate

below, the use of overlapping annual returns instead of monthly returns mechanically boosts

R2’s.

15See, for example, Cochrane and Piazzesi (2005) and Cieslak and Povala (2015).
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However, there is one clear benefit of using monthly returns when the predictor variables

are persistent: higher frequency non-overlapping returns generate larger effective sample

sizes, which increases confidence in the validity of asymptotic inference and reduces concerns

about small sample biases. This issue has been discussed extensively in the stock-return

predictability literature, with Boudoukh and Richardson (1994) providing a comprehensive

analysis of the properties of long-horizon return regressions. In the context of bond-return

predictability, Bauer and Hamilton (2018) show that there are substantial biases in the

standard errors and regression R2’s in studies with overlapping annual returns due to their

poor small sample properties.

We illustrate the effect of using overlapping annual returns instead of monthly, and put

the goodness-of-fit measures presented in Table 3 into perspective, as follows. We estimate

regressions of UST Factor-1 returns on a fitted volatility measure and contrast the R2’s from

regressions of monthly returns with the R2’s from regressions of overlapping annual returns.

For ease of comparison to existing papers, we do not use the simultaneous GMM estimation

of Table 3, but rather a two-stage OLS approach.

Table 4 presents the full set of results in five steps. Panel A shows the first-stage regression

of realized Factor-1 monthly return volatility on the three predictor variables in our preferred

specification (1c) in Table 3. In addition to the fact that this volatility regression is not

estimated simultaneously with the return equation, the other difference from our previous

econometric strategy is that the independent variable uses the total Factor-1 return rather

than the fitted unexpected return for the obvious reason that we have not yet estimated the

expected component of this return. Nevertheless, the results are very consistent with the

earlier estimation. All three predictors are statistically and economically significant, and the

magnitudes of the coefficients are similar.

The fitted monthly volatility from this first-stage regression will be the predictor variable

in the second-stage return equation. However, before we get to this estimation, it is important

to understand the time-series properties of this predictor. Therefore, Panel B shows the

results from a simple first-order autoregression (AR(1)) of fitted volatility. There are two

related results of note. Fitted volatility is extremely persistent, with an autoregression

coefficient exceeding 0.9, and this simple AR(1) model seems to provide a reasonably good

description of the data. The high serial correlation is of particular importance, because it is

this feature together with the overlap in annual returns that boosts the R2 of the annual-

return regression and also creates small-sample biases.

In Panel C we run the second-stage predictive regression for monthly Factor-1 returns.

This regression is likely misspecified, given the evidence in Table 3 of a time-varying price of

risk, but it is sufficient to illustrate the point. Fitted volatility predicts returns with a positive
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and significant coefficient and an R2 of just over 4%, which is slightly below the goodness-

of-fit from our GMM specification. Up to this point in Table 4, we have only reported

simple OLS t-statistics in parentheses but we now also report Newey-West t-statistics in

square brackets, calculated using twelve lags. At the monthly frequency, the Newey-West

adjustment makes little difference because there is little, if any, serial correlation in the

monthly returns.

Panel D illustrates what happens to this predictive regression when the returns are ag-

gregated to the annual level. The same fitted volatility is used as the lone predictor variable,

and the regression uses monthly overlapping annual returns. The results are striking. The

R2 increases by a factor of approximately five and the coefficient increases by even more. In

many ways, these results look much more impressive than their monthly counterparts, but

are they really? Not surprisingly, the OLS t-statistic is deceptively high. Once we adjust

for serial correlation in the residuals, the t-statistic returns to the level from the monthly

regression. Moreover, even this t-statistic is likely overstated because, while the Newey-

West methodology has good asymptotic properties, it underweights the correlations in small

samples in the context of overlapping data in order to ensure positive definiteness.

Boudoukh, Richardson, and Whitelaw (2008) show analytically how the regression coef-

ficient and the R2 should scale up as the data are aggregated. Specifically, even under the

null hypothesis that there is no true predictability, if the predictor is sufficiently highly auto-

correlated, these estimated quantities increase dramatically with the return horizon. Panel

E shows the annual-return regression coefficient and R2 that the econometrician should ex-

pect to see under the assumption that fitted volatility follows an AR(1).16 In particular,

even when the annual-return regression provides no incremental information about return

predictability relative to the monthly return regression, the econometrician should expect

to see an R2 an order of magnitude higher with the annual regression. This phenomenon

is what Boudoukh et al. (2008) call the myth of long-horizon predictability. The annual

R2 of 27%, while seemingly very large, provides no more evidence of predictability than the

monthly R2 closer to 4%. In this particular instance, the implied annual numbers actually

exceed the estimates generated using annual returns, so the idea that running annual return

regressions provides incremental information is difficult to support.

Putting these results together, our conclusion is that there is no good reason to use annual

returns in our analyses. While the goodness-of-fit measures using monthly returns may look

less impressive, statistically and economically they support the same conclusions without

the econometric problems associated with using long-horizon, overlapping return data.

16See equations (6) and (7) in Boudoukh et al. (2008).
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4.3 Fitted UST Factor Volatilities and Sharpe Ratios

Figure 2 plots the time series of annualized fitted values of UST Factor-1 and Factor-2 Sharpe

ratios and volatilities based on the GMM estimates from Table 3. Panel A plots Factor-1

fitted values from Specification (1c) of Table 3, and Panel B plots Factor-2 fitted values from

Specification (2b) of Table 3. As the figure shows, the correlations between the Sharpe ratio

(price of risk) and the volatility (quantity of risk) are significantly positive for both factors.

More specifically, the time-series correlation between the Sharpe ratio of Factor 1 and the

volatility of Factor 1 is 99.9% and this same correlation for Factor 2 is 55% with a Newey-

West t-statistic of 5.51. The positive relation between the factor prices and quantities of risk

are consistent with the predictions of equilibrium models of the pricing of risk factors that

are correlated with aggregate consumption.17 At the same time, the fitted Sharpe ratios for

Factor 1 and Factor 2 change sign over the sample period, which cannot be accommodated

by affine models with stochastic variation in volatility (Duffee, 2002).

Figure 2 also shows that factor prices and quantities of risk spike up during NBER

recessions. This former effect is similar to cyclical pattern of the US stock market Sharpe

ratio demonstrated by Tang and Whitelaw (2011), and it is consistent with increasing risk

aversion in bad economic times. Increases in volatility during recessions are also a feature

seen in other financial and economic series.

In addition to this cyclical pattern in volatility, there is also evidence of a notable decline

in the volatility of both factors over the sample period. Fitted volatilities are approximately

half as large at the end of the sample as they are at the beginning of the sample. Given

the positive correlation between the volatilities and Sharpe ratios of both factors, it is not

surprising that the Sharpe ratios exhibit a similar time series pattern. More specifically,

fitted annualized Sharpe ratios that exceed one for both factors in the 1990s decline to

values that average closer to zero from 2012 onwards.

Given that we have factored conditional risk premia into conditional volatilities and

conditional Sharpe ratios, a natural question to ask is, what is the relative contribution to

the time variation in risk premia of each of these two component factors? To address this,

we start with the decomposition ∆(σ̂θ̂) = σ̂(∆θ̂) + θ̂(∆σ̂) + (∆σ̂)(∆θ̂). Then, using a first-

order approximation, we drop the higher-order term (∆σ̂)(∆θ̂) and approximate the squared

change in the risk premium as

[∆(σ̂θ̂)]2 ≈ σ̂2(∆θ̂)2 + θ̂2(∆σ̂)2 + 2σ̂θ̂(∆σ̂)(∆θ̂) . (23)

Summing Equation (23) over the observations in our sample and dividing by the left-hand

17See, for example, Campbell (1987).
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side, we get a sample variance decomposition under the natural assumption that the mean

of the risk premium is zero. For UST Factor 1, the components of this decomposition are∑T−1
t=1 σ̂2

t (θ̂t+1−θ̂t)2∑T−1
t=1 (σ̂t+1θ̂t+1−σ̂tθ̂t)2

= 48%,
∑T−1

t=1 θ̂2t (σ̂t+1−σ̂t)2∑T−1
t=1 (σ̂t+1θ̂t+1−σ̂tθ̂t)2

= 9%, and 2
∑T−1

t=1 σ̂tθ̂t(σ̂t+1−σ̂t)(θ̂t+1−θ̂t)∑T−1
t=1 (σ̂t+1θ̂t+1−σ̂tθ̂t)2

= 38%.18

Thus, neglecting variation in volatility is effectively equivalent to misattributing about

50% of the variation in risk premia. Similarly, for UST Factor 2 these components are∑T−1
t=1 σ̂2

t (θ̂t+1−θ̂t)2∑T−1
t=1 (σ̂t+1θ̂t+1−σ̂tθ̂t)2

= 42%,
∑T−1

t=1 θ̂2t (σ̂t+1−σ̂t)2∑T−1
t=1 (σ̂t+1θ̂t+1−σ̂tθ̂t)2

= 14%, and 2
∑T−1

t=1 σ̂tθ̂t(σ̂t+1−σ̂t)(θ̂t+1−θ̂t)∑T−1
t=1 (σ̂t+1θ̂t+1−σ̂tθ̂t)2

= 36%.

As in the case of UST Factor 1, neglecting variation in volatility is equivalent to misattribut-

ing about 50% of the variation in risk premia. These results suggest that empirical studies

motivated by constant volatility models, where all variation in risk premia is attributable to

movements in the price of risk, are missing an important part of the story.

4.4 Fitted UST Bond Volatilities, Sharpe Ratios, and Risk Premia

As discussed in Section 3.3, we can recover the risk and return dynamics of the zero-coupon

bonds from the dynamics of the factors together with the zero volatilities and the loadings

of the standardized zeroes on the factors from the principal components analysis in Table 1.

For simplicity, we assume that just the first two principal component factors are driving the

zero returns and we ignore Factors 3 through 10 since their combined explanatory power

is small. Thus, the standardized monthly excess return on the zero with maturity i is the

loading-weighted sum of the monthly excess returns on Factors 1 and 2:

szi,t = βi1R1,t + βi1R2,t , (24)

where βij are the loadings of standardized zero i on factor j from Table 1 Panel A. Letting

vi denote the unconditional monthly volatility of the i-year zero, based on Table 1 Panel

B, the unstandardized monthly excess return on zero i is zi,t = viszi,t. It follows that the

annualized fitted conditional volatility of the unstandardized excess return on zero i is

volt(zi) =
√

12vi

√
β2
i1σ̂

2
1,t + β2

i2σ̂
2
2,t . (25)

Similarly, the annualized fitted conditional risk premium of the unstandardized excess return

on zero i is

rpt(zi) = 12vi(βi1σ̂1,tθ̂1,t + βi2σ̂2,tθ̂2,t) , (26)

and the annualized fitted conditional Sharpe ratio of the unstandardized excess return on

zero i is

srt(zi) = rpt(zi)/volt(zi) . (27)

18These components do not sum to exactly one because we dropped the higher-order terms.
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Figure 3 illustrates the time series of the annualized fitted conditional volatilities, Sharpe

ratios, and risk premia of the unstandardized excess returns on the UST two-year and ten-

year zeroes. These plots illustrate a number of interesting features of the data.

First, with regard to volatility, it is no surprise that the two-year and ten-year zeroes

exhibit similar time series behavior, with the ten-year volatility scaled by a factor of approx-

imately five, i.e., its relative duration. Most notable is that both volatility series exhibit the

same approximately 50% decline in volatility exhibited by the underlying factors as discussed

in Section 4.3.

Second, while both zeroes also exhibit major declines in fitted Sharpe ratios over the

sample, the decline is much larger in magnitude for the two-year zero. For much of the sam-

ple, the Sharpe ratio on the shorter-term security exceeds that on the longer-term security,

consistent with the unconditional evidence in Table 1. However, by the end of the sample

these Sharpe ratios have converged, as the fitted Sharpe ratio on the second bond market

factor, which determines Sharpe ratio differences across the term structure, hovers close to

zero. As we noted earlier, in a world with a single priced factor on which all bonds load

positively, the Sharpe ratios on all bonds are equal.

Third, the joint dynamics of the volatilities and Sharpe ratios generate an interesting

pattern in risk premia. Specifically, the gap between the risk premia on the ten-year and

two-year zeroes shows both a marked business cycle pattern and a trend over time. This

gap is minimal or even negative at the end of expansions and heading into recessions, but it

spikes at the beginning of expansions. However, this gap has also apparently been declining

over time, with small or no differences between the risk premia on the two bonds over the

last five years of the sample.

5 Results for Chinese Government Bonds

This section first presents the results of the GMM estimation of CGB factor volatility and

Sharpe ratio dynamics using data from Wind for the period 5/2004 to 12/2019. Then we

analyze the times series of fitted volatilities and Sharpe ratios for bond-factor portfolios and

individual bonds in China. These results are important for three reasons. First, the size of

the CGB market and its increasing global importance make the market inherently worthy of

study. Second, since for most of the sample the CGB market was effectively segmented from

the UST market, the CGB market provides independent evidence on the pricing of interest

rate risk. Third, the structure of the CGB market is quite different from the UST market,

therefore these results shed some light on the extent to which market structure affects the

pricing of risk.
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5.1 GMM Estimation Results for the CGB Factors

The top panel of Table 5 presents GMM estimates of αj, β
σ
j , βθj , and their robust z-statistics

for alternative specifications of Equations (17) and (18) for the CGB factors. The bottom

panel indicates the number of moment conditions used in the estimation, the p-value of the

J-statistic over-identifying restrictions test, p-values for the Wald tests of null hypotheses

H0,1 and H0,2, and the goodness-of-fit measures. The left side of Table 5 reports results for

CGB Factor 1 and the right side reports results for CGB Factor 2.

For each CGB factor, the table reports results for specifications that include all three

yield-curve variables in the volatility and Sharpe ratio functions. The p-values of the J-

statistic tests are uniformly high, suggesting that linear functions of the predictor variables

are adequate for modeling the factor volatilities and Sharpe Ratios. For CGB Factor 1,

Column (1a) of Table 5 reports estimation results for the specification that includes the

return constant α1. As the table shows, the estimate of α1 is insignificant, as no-arbitrage

theory predicts, so in Specification (1b), we impose the theoretical restriction α1 = 0. This

has little effect on the estimates of the volatility coefficients, but imposing the theoretical

restriction α1 = 0 appears to increase the power of the estimation of the Sharpe ratio

coefficients. Three of the coefficient estimates become marginally to highly significant. In

addition, the p-values for the Wald tests all fall below 1% or 5%. We reject the hypotheses

that CGB Factor-1 volatility is constant and that the price of CGB Factor-1 risk is constant.

These results display a striking similarity to those for UST Factor 1 in Table 3. The signs

of the coefficients on the three term structure variables in both the volatility and Sharpe

ratio functions are identical across markets. The difference is in the importance of curva-

ture. While we dropped this variable from the UST specifications because of its statistical

insignificance, in China it is by far the most significant variable in the volatility function and

it also shows up with at least marginal significance in the Sharpe ratio. Moreover, the mag-

nitude of the curvature coefficient, both in an absolute sense and relative to the coefficients

on level and slope, is much bigger in China. We will return to this feature of the data when

examining the prices and quantities of interest rate risk below.

For CGB Factor 2, Specification (2a) in Table 5 includes the return constant α2 and the

estimate of α2 is again insignificant, as no-arbitrage theory predicts. In Specification (2b),

we impose the theoretical restriction α2 = 0. As with CGB Factor 1, this increases our

power to reject the null hypothesis that the price of CGB Factor-2 risk is zero or constant.

The Wald test p-value is about 1%. For Factor 2, while the signs of the coefficients in the

volatility function are the same as those in the US, the same is not true of the Sharpe ratio.

However, most importantly, we conclude that, as in the case of the UST factors, the risk

premia in the CGB factors are solely compensation for risk, and both the quantities and
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prices of these risks vary stochastically. This confirmatory evidence from China indicates

that modeling these components of bond risk premia separately, as the theory would suggest,

is likely important for understanding the economic underpinnings of time-variation in these

premia.

5.2 Fitted CGB Factor Volatilities and Sharpe Ratios

Figure 4 plots the time series of fitted values of CGB Factor-1 and Factor-2 Sharpe ratios and

volatilities based on GMM estimates from Table 5. Panel A plots Factor-1 fitted values from

Specification (1b) of Table 5, and Panel B plots Factor-2 fitted values from Specification

(2b) of Table 5. In contrast to the results for the UST factors, the CGB factors exhibit

negative correlations between their prices and quantities of risk. In particular, the time-

series correlation between the Sharpe ratio of Factor 1 and the volatility of Factor 1 is -46%

with a Newey-West t-statistic of -2.68 and this same correlation for Factor 2 is -63% with a

Newey-West t-statistic of -6.37.

For Factor 1, these negative correlations appear to be driven by the dynamics around

two periods with heavy government interventions, that of the massive post-crisis stimulus

starting in 2009, and that following the stock market crash in the summer of 2015. During

each of these periods, the People’s Bank of China (PBoC) conducted major monetary policy

interventions involving five reductions of the benchmark bank deposit and lending rates and

four reductions of the bank deposit reserve requirement ratio. These interventions may have

lead bond market participants to anticipate significant stabilization of prices, reflected in

the drop in expected volatility. At the same time, an increase in risk aversion during these

periods of economic and stock market crisis may have lead to an increase in the price of

risk. Interestingly, it is the curvature variable, which has opposite signs in the volatility and

Sharpe ratio equations, that appears to pick up this phenomenon. For Factor 2, the negative

correlation is stronger, and it appears to be more consistent over time.

The two bond factor volatilities appear to follow a time trend broadly similar to that in

the US. Specifically, both series exhibit significant declines in magnitudes over the sample

period. In the US, most of this decline occurs in the latter half of the sample, which

corresponds to the sample period over which we have Chinese data. However, the same is

not true of the CGB factor Sharpe ratios. There is little or no evidence of a decline in the

price of risk in China. A full exploration of the economic underpinnings of this empirical

evidence is beyond the scope of this paper, but the results do show the potential of our

theoretically motivated decomposition of bond risk premia to highlight important economic

phenomena.
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5.3 CGB Bond Volatilities, Sharpe Ratios, and Risk Premia

Following the method described in Section 4.4, we recover the annualized fitted conditional

volatilities, Sharpe ratios, and risk premia of the unstandardized excess returns on the CGB

two-year and ten-year zero-coupon bonds from the fitted values of the conditional volatilities

and Sharpe ratios of CGB Factors 1 and 2. Figure 5 illustrates their time series.

The decline in volatility over time is perhaps not surprising given the results from the

previous section. The Sharpe ratios do not exhibit an obvious time trend, but they do

exhibit substantial time-variation. For China, the higher unconditional Sharpe ratio for

shorter maturity bonds seems to be attributable to the latter part of the sample, in contrast

to the result from the US. In fact, the post-crisis stimulus appears to coincide with a period

when the Sharpe ratio of the ten-year zero greatly exceeded that of the two-year zero. Putting

these components together, the gap between the two bonds’ risk premia shows interesting

variation. There are apparently substantial periods of time when the risk premia on longer-

term bonds are very high compared to those on shorter-term bonds. However, this difference

has all but disappeared in recent years as the higher Sharpe ratio on the two-year bond offsets

its lower volatility.

6 Conclusion

While for many investors and investment managers, Treasury securities are a critical com-

ponent of their portfolios, in some cases even more critical than equities, the associated aca-

demic literature has not evolved to answer a number of key questions. Many of these studies

neglect consideration of risk, which is of particular importance in fixed income markets where

expected returns can be levered almost arbitrarily. At the same time, the dynamics of bond

risk and risk premia have implications for other important issues, such as the underlying

economic equilibrium and the transmission of monetary policy.

Our paper advances the literature by providing two critical insights in a well-motivated

economic framework. First, our empirical specifications restrict risk premia to be functions

of risk, i.e., volatility. Thus, we decompose premia into two components: the quantity of risk

(volatility) and the price of that risk (the Sharpe ratio). Second, our focus on Sharpe ratios

reveals the existence of two important factors in government bond returns. For both factors,

the quantity and price of risk vary over time in important and economically reasonable ways.

Interestingly, these two components covary positively in the US Treasury market. This result

is in stark contrast to the evidence in the US equity markets, where the observed correlation

is negative, leading to apparently Sharpe-ratio-maximizing, volatility-timing strategies that
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increase equity exposure when volatility is low (see, for example, Fleming, Kirby, and Ostdiek

(2001) and Moreira and Muir (2017)). The reverse is true in the Treasury bond market. For

example, a volatility-managed portfolio that holds UST Factor 1 in inverse proportion to its

variance, as in Moreira and Muir (2017), has a Sharpe ratio only 67% as large as the original

Factor 1 portfolio.

Of further interest, the structure of risk premia in the Chinese government bond market

is broadly similar to that in the US Treasury market, despite the fact that for much of

the sample the bond market in China was effectively segregated from the bond market in

the US. This independent evidence lends credence to the argument that we have uncovered

fundamental structural components of bond risk premia. The one result that does not

hold in China is the consistently positive correlation between the quantity and price of risk.

Specifically, periods of significant government intervention, associated with the financial crisis

and the 2015 stock market meltdown, generate a negative rather than a positive correlation

between the price and quantity of interest rate risk.
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Table 1: Factor Structure and Performance of UST and CGB Implied Zero Excess Returns
The factor structure of US Treasury and Chinese Government Bond implied zero excess returns in

Panel A, and their unconditional means, volatilities, and Sharpe ratios in Panel B. All quantities

are annualized. Means and volatilities are in percent. Panel A shows the factor structure of the

standardized excess zero returns based on PCAs of their 10x10 correlation matrix for each subperiod

and market. For each subperiod and market, Panel A contains results for the first three principal

components, F1, F2, and F3. Factor Var. as % of Tot. is the factor’s eigenvalue expressed as a

percent of the sum of all ten eigenvalues from the PCA. Factor Vol and SR are the volatility and

Sharpe ratio of each factor portfolio, constructed with holdings in the standardized zeroes given by

the eigenvector for the factor. The column-vector of zero loadings under each factor is the factor

eigenvector.

UST Implied Zeroes CGB Implied Zeroes
7/1976–12/1989 1/1990–12/2019 5/2004–12/2019

A. Factor Structure F1 F2 F3 F1 F2 F3 F1 F2 F3
Factor Var. as % of Tot. 94.69 4.07 0.73 90.64 7.35 1.42 82.05 13.91 2.37
Factor Vol 10.66 2.21 0.93 10.43 2.97 1.30 9.92 4.09 1.69
Factor SR 0.27 0.45 0.45 0.77 0.85 0.61 0.53 0.21 0.07

1-year zero loadings 0.30 0.57 0.43 0.26 0.66 0.66 0.24 0.56 0.59
2-year zero loadings 0.31 0.40 0.11 0.31 0.40 -0.24 0.29 0.46 0.09
3-year zero loadings 0.32 0.27 -0.14 0.32 0.24 -0.36 0.32 0.30 -0.27
4-year zero loadings 0.32 0.15 -0.29 0.33 0.10 -0.32 0.34 0.15 -0.39
5-year zero loadings 0.32 0.02 -0.39 0.33 -0.03 -0.23 0.34 0.01 -0.38
6-year zero loadings 0.32 -0.14 -0.33 0.33 -0.12 -0.11 0.34 -0.12 -0.21
7-year zero loadings 0.32 -0.26 -0.19 0.33 -0.20 0.01 0.33 -0.22 0.01
8-year zero loadings 0.32 -0.31 0.02 0.32 -0.26 0.13 0.33 -0.27 0.14
9-year zero loadings 0.32 -0.34 0.27 0.32 -0.31 0.25 0.32 -0.32 0.27
10-year zero loadings 0.31 -0.34 0.58 0.31 -0.35 0.37 0.31 -0.35 0.38

B. Performance Measures Mean Vol SR Mean Vol SR Mean Vol SR
1-year zero 1.40 2.51 0.56 0.80 0.64 1.24 0.46 0.89 0.52
2-year zero 1.56 4.70 0.33 1.54 1.63 0.94 0.86 1.52 0.57
3-year zero 1.68 6.34 0.26 2.10 2.67 0.79 1.12 2.07 0.54
4-year zero 1.94 8.07 0.24 2.77 3.68 0.75 1.39 2.68 0.52
5-year zero 2.26 9.71 0.23 3.27 4.67 0.70 1.68 3.37 0.50
6-year zero 2.61 11.11 0.23 3.82 5.58 0.68 2.08 3.99 0.52
7-year zero 2.60 12.43 0.21 4.04 6.47 0.62 2.08 4.67 0.45
8-year zero 2.73 13.55 0.20 4.35 7.33 0.59 2.27 5.30 0.43
9-year zero 2.83 14.46 0.20 4.58 8.20 0.56 2.46 5.95 0.41
10-year zero 2.84 15.25 0.19 4.61 9.08 0.51 2.61 6.64 0.39
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Table 2: Factor Structure and Performance of UST ETF Excess Returns
The factor structure of US Treasury ETF excess returns, gross and net of 15-basis-point annual

fees, in Panel A, and their unconditional means, volatilities, and Sharpe ratios in Panel B. The

sample period is 2/2007–12/2019. All quantities are annualized. Means and volatilities are in

percent. Panel A shows the factor structure of the standardized excess ETF returns based on

PCAs of their 6x6 correlation matrix for each subperiod. Panel A contains results for the first

three principal components, F1, F2, and F3. Factor Var. as % of Tot. is the factor’s eigenvalue

expressed as a percent of the sum of all ten eigenvalues from the PCA. Factor Vol and SR are the

volatility and Sharpe ratio of each factor portfolio, constructed with holdings in the standardized

zeroes given by the eigenvector for the factor. The column-vector of zero loadings under each factor

is the factor eigenvector.

Gross of 15-bp Fees Net of Fees
A. Factor Structure F1 F2 F3 F1 F2 F3
Factor Var. as % of Tot. 76.19 16.30 5.92 76.19 16.30 5.92
Factor Vol 7.41 3.43 2.06 7.41 3.43 2.06
Factor SR 0.91 0.94 0.29 0.79 0.44 0.17

0-1-year ETF 0.27 0.75 0.59 0.27 0.75 -0.59
1-3-year ETF 0.40 0.39 -0.53 0.40 0.39 0.53
3-7-year ETF 0.45 0.06 -0.42 0.45 0.06 0.42
7-10-year ETF 0.46 -0.19 -0.02 0.46 -0.19 0.02
10-20-year ETF 0.44 -0.32 0.22 0.44 -0.32 -0.22
>20-year ETF 0.41 -0.38 0.38 0.41 -0.38 -0.38
B. Performance Measures Mean Vol SR Mean Vol SR
0-1-year ETF 0.33 0.25 1.32 0.18 0.25 0.72
1-3-year ETF 1.22 1.19 1.02 1.07 1.19 0.90
3-7-year ETF 3.11 3.54 0.88 2.96 3.54 0.83
7-10-year ETF 4.40 6.31 0.70 4.25 6.31 0.67
10-20-year ETF 5.33 8.76 0.61 5.18 8.76 0.59
>20-year ETF 6.85 13.71 0.50 6.70 13.71 0.49
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Table 3: GMM Estimates of UST Factor Dynamics
GMM estimates of αj , β

σ
j , βθj , and their robust z-statistics for alternative specifications of the system

Rj,t+1 = αj + (Xtβ
σ
j )(Xtβ

θ
j ) + uj,t+1 ,√

π

2
|uj,t+1| = Xtβ

σ
j + vj,t+1 .

The sample period is 1/1990–12/2019. R1 and R2 are the monthly returns on the first and second principal-

component UST factor portfolios. Results for Factor 1 are on the left, results for Factor 2 are on the right.

Xt is the vector of predictor variables indicated by the row titles. Level = Y2/10, Slope = (Y10 − Y2)/10,

and Curvature = (Y6 − Y2+Y10

2 )/10, where YT is the yield on the T -year zero, for T = 2, 6, and 10. VIX is

an index of the implied volatility of the 30-day return on the S&P 500 derived from S&P 500 index options.

Wald test (1) tests the null hypothesis that factor volatility is constant, i.e., βσj,1 = βσj,2 = · · · = βσj,k = 0.

Wald test (2) tests the null hypothesis that the price of factor risk is constant, i.e., βθj,1 = · · · = βθj,k = 0.

Goodness-of-fit (1) = 1-
∑
t u

2
j,t∑

t(Rj,t−R̄j)2
. Goodness-of-fit (2) = 1-

∑
t v

2
j,t

π
2

∑
t(|uj,t|− ¯|uj |)2

.

UST Factor 1 UST Factor 2
(1a) (1b) (1c) (2a) (2b)

Volatility Coefficients (βσj )
Constant 0.30 0.28 0.40 0.00 -0.02

(0.65) (0.73) (1.10) (0.03) (-0.14)
Level 2.90 2.93 2.60 0.61 0.62

(3.89) (4.29) (4.51) (2.99) (3.07)
Slope 7.44 7.49 6.16 2.79 2.83

(2.87) (3.02) (4.01) (3.12) (3.22)
Curvature -6.72 -6.90 -8.41 -8.59

(-0.71) (-0.74) (-2.29) (-2.41)
VIX/100 3.88 3.88 4.10 1.93 2.02

(2.81) (2.90) (3.03) (3.74) (3.71)
Sharpe Ratio Coefficients (βθj )

Constant -0.48 -0.25 -0.36 0.69 -0.36
(-0.27) (-1.11) (-1.69) (0.36) (-1.64)

Level 0.44 0.30 0.57 0.12 0.66
(0.42) (0.93) (2.14) (0.11) (1.85)

Slope 0.76 0.41 1.44 -2.46 -0.25
(0.26) (0.34) (1.94) (-0.58) (-0.18)

Curvature 4.35 4.76 7.65 1.43
(0.80) (1.04) (0.61) (0.27)

VIX/100 1.20 1.01 0.95 0.99 2.05
(0.78) (1.29) (1.24) (0.49) (3.14)

Return Constant (αj) 0.32 -0.37
(0.13) (-0.55)

No. Moment Conditions 20 20 14 20 20
J-stat p-value (in %) 69.26 78.37 83.97 15.01 20.44
Wald test (1) p-value (in %) 0.00 0.00 0.00 0.00 0.00
Wald test (2) p-value (in %) 60.20 10.86 5.40 6.22 0.11
Goodness-of-fit (1) (in %) 4.72 4.62 4.53 4.31 2.48
Goodness-of-fit (2) (in %) 8.08 8.19 8.17 10.22 11.30
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Table 4: R2’s in Monthly and Annual Return Regressions
The table compares regression results using monthly returns with those using annual overlapping
returns. Panel A shows the coefficients, t-statistics, and R2 from the first-stage regression of
realized volatility, measured as

√
π
2 |R1,t+1|, on the indicated predictor variables. R1 is the return

on UST Factor 1. Panel B shows the coefficients, t-statistics, and R2 from the autoregression
of fitted volatility values, Volhat, from the first-stage regression. Panel C shows the coefficients,
t-statistics, and R2 from the second-stage regression of UST Factor-1 monthly returns on Volhat.
Panel D shows the coefficients, t-statistics, and R2 from the second-stage regression of UST Factor-
1 annual, overlapping returns on Volhat. Panel E shows the coefficient and R2 for the second-stage
annual, overlapping return regression implied by the model of Boudoukh et al. (2008). Ordinary-
least-squares t-statistics are in parenthesis, Newey-West t-statistics are in brackets, and R2’s are in
percent.

A. First-stage volatility regression
Constant Level Slope VIX/100 R2

-0.19 3.08 7.72 6.19 11.82
(-0.40) (4.80) (4.78) (3.79)

B. Autoregression of fitted volatility
Constant Volhat R2

0.18 0.94 87.19
(3.03) (49.29)

C. Second-stage monthly return regression
Constant Volhat R2

-1.55 0.74 4.32
(-2.71) (4.02)
[-3.00] [4.25]

D. Second-stage annual return regression
Constant Volhat R2

-10.28 6.13 19.12
(-4.84) (9.06)
[-2.23] [4.22]

E. BRW-implied annual return regression
Volhat R2

6.43 27.01
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Table 5: GMM Estimates of CGB Factor Dynamics
GMM estimates of αj , β

σ
j , βθj , and their robust z-statistics for alternative specifications of the system

Rj,t+1 = αj + (Xtβ
σ
j )(Xtβ

θ
j ) + uj,t+1 ,√

π

2
|uj,t+1| = Xtβ

σ
j + vj,t+1 .

The sample period is 5/2004–12/2019. R1 and R2 are the monthly returns on the first and second principal-

component CGB factor portfolios. Results for Factor 1 are on the left, results for Factor 2 are on the right.

Xt is the vector of predictor variables indicated by the row titles. Level = Y2/10, Slope = (Y10 − Y2)/10,

and Curvature = (Y6 − Y2+Y10

2 )/10, where YT is the yield in percent on the T -year zero, for T = 2, 6, and

10. Wald test (1) tests the null hypothesis that factor volatility is constant, i.e., βσj,1 = βσj,2 = · · · = βσj,k = 0.

Wald test (2) tests the null hypothesis that the price of factor risk is constant, i.e., βθj,1 = · · · = βθj,k = 0.

Goodness-of-fit (1) = 1-
∑
t u

2
j,t∑

t(Rj,t−R̄j)2
. Goodness-of-fit (2) = 1-

∑
t v

2
j,t

π
2

∑
t(|uj,t|− ¯|uj |)2

.

CGB Factor 1 CGB Factor 2
(1a) (1b) (2a) (2b)

Volatility Coefficients (βσj )
Constant 2.19 1.96 -0.34 -0.38

(2.16) (1.64) (-0.75) (-0.86)
Level 1.98 2.63 3.11 3.23

(0.73) (0.85) (2.56) (2.71)
Slope 5.49 7.42 6.95 7.04

(1.17) (1.42) (4.24) (4.46)
Curvature -50.65 -61.89 -5.39 -4.64

(-3.08) (-4.25) (-0.76) (-0.66)
Sharpe Ratio Coefficients (βθj )

Constant 0.33 -1.21 1.57 0.85
(0.16) (-2.15) (0.76) (1.62)

Level 2.69 3.57 -1.90 -1.04
(1.11) (2.46) (-0.71) (-0.75)

Slope -0.04 1.91 -5.15 -3.34
(-0.01) (0.86) (-0.92) (-1.84)

Curvature 52.58 21.55 -9.51 -11.52
(1.64) (1.86) (-1.09) (-1.54)

Return Constant (αj) -3.78 -0.35
(-0.84) (-0.38)

No. Moment Conditions 14 14 14 14
J-stat p-value (in %) 69.11 55.20 47.74 58.35
Wald test (1) p-value (in %) 1.38 0.00 0.04 0.01
Wald test (2) p-value (in %) 11.06 3.99 10.91 1.14
Goodness-of-fit (1) (in %) 6.18 5.17 5.31 5.28
Goodness-of-fit (2) (in %) 4.12 4.45 10.03 10.47
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Figure 1: Yield Curve Shifts for One-Std-Dev Increases in Factors
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bond market factors described in Table 1.
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Figure 2: UST Factor Dynamics
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Time series of annualized fitted values of UST Factor 1 and Factor 2 Sharpe ratios and
volatilities based on GMM estimates of factor dynamics from Specifications (1c) and (2b)
of Table 3, respectively.
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Figure 3: UST Bond Dynamics
A. UST Bond Volatilities
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C. UST Bond Risk Premia
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Time series of annualized fitted volatilities, Sharpe ratios, and risk premia of UST implied
2-year and 10-year zero-coupon bonds, based on the fitted values of UST Factor 1 and
Factor 2 Sharpe ratios and volatilities together with the loadings of the standardized excess
returns of the zeroes on the factors and the unconditional volatilities of the zero excess
returns from Table 1.
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Figure 4: CGB Factor Dynamics
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Figure 5: CGB Bond Dynamics
A. CGB Bond Volatilities

B. CGB Bond Sharpe Ratios

C. CGB Bond Risk Premia
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Time series of annualized fitted volatilities, Sharpe ratios, and risk premia of CGB implied
2-year and 10-year zero-coupon bonds, based on the fitted values of CGB Factor 1 and
Factor 2 Sharpe ratios and volatilities together with the loadings of the standardized excess
returns of the zeroes on the factors and the unconditional volatilities of the zero excess
returns from Table 1.
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