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1 Introduction

This paper develops a new method for identifying econometric models with partially

latent covariates. We show that a broad class of econometric models that play a large

role in industrial organization and labor economics can be nonparametrically identi-

fied if the partially latent covariate variables satisfy certain monotonicity assumptions.

Examples that fall into this class of models are a variety of different production, skill

formation, and achievement functions.1 It is often plausible to assume that the dif-

ferent inputs or explanatory variables are functions of a common unobserved random

shock, and we consider models in which it is natural to impose strict monotonicity in

this common shock.2 The monotonicity assumption imposes some strong functional

dependencies on the explanatory variables as pointed out in the context of produc-

tion function estimation by Ackerberg, Caves, and Frazer (2015). The key insight

of this paper is that we can leverage the functional dependence between inputs to

achieve identification within a partially latent covariate framework. In that sense, we

turn the functional dependence problem on its head to impute the partially latent

covariates. Broadly speaking, our imputation is in the spirit of matching algorithms

(Rubin, 1973). In contrast to traditional matching algorithms, we propose to match

on the expected dependent variable to impute missing covariates.3

The partially latent data structure, that we study in this paper, arises quite natu-

rally in many potential applications of our technique if one employs an “input-based

sampling” strategy, i.e. if the sampling unit is one of the multiple labor input factors.

These types of data sets are becoming more prevalent in modern econometrics since

researchers have come to rely on unstructured or semi-structured data sets. Consider,

for example, a production team in which team members perform different tasks. Let

us assume that the researcher interviews one member from each team to provide the

data. It is plausible that this person knows the team’s output, but does not have

1Other potential applications in applied microeconomics are discussed in the conclusions.
2Note that this assumption is commonly used, for example, in the production function literature

as discussed by Olley and Pakes (1996). In particular, this assumption does not require that inputs
are “optimally” chosen by competitive firms and is consistent with a broad class of strategic and
non-strategic models that may describe the agents’ behavior.

3Note that we do not apply the matching approach within the standard potential outcome frame-
work of program evaluation which is based on the potential outcome model developed by Fisher
(1935). For a discussion of the properties of matching estimators in that context see, among oth-
ers, Rosenbaum and Rubin (1983), Heckman, Ichimura, Smith, and Todd (1998), and Abadie and
Imbens (2006).

2



complete information about the other team members’ input choices. By randomly

sampling the teams we elicit information from all different types of team members

and hence input factors. We call this type of sampling an “input-based sampling”

approach and provide a formal definition of this data structure. Alternatively, con-

sider a child that is raised by divorced or separated parents. It is likely that either

one of the parents knows his or her inputs as well as the child’s achievement but does

not perfectly know the level of input provided by the divorced partner. Again, we

show that we can identify the input functions of the father and the mother under the

input-based sampling approach if inputs satisfy a plausible monotonicity restriction.

Once we have identified the latent covariates, the estimation of the outcome func-

tion can proceed using standard semiparametric methods developed in the economet-

ric literature. One key issue here is that the common shock creates an endogeneity

problem.4 We show that we can combine our identification results with a variety of lin-

ear, nonlinear, and semiparametric estimation strategies. In that sense our approach

is flexible and allows researchers to make appropriate functional form assumptions if

necessary. To illustrate the key issues that are encountered in estimation we consider

the scenario in which researchers only have access to a single cross-section of data

and rely on instrumental variables for estimation.5 For example, production function

estimation relies on the assumption that differences in local input prices give rise

to differences in input choices that are uncorrelated with productivity shocks at the

local level.6 Similarly, skill formation and achievement function estimation requires

the choice of suitable instruments for parental inputs.7

Estimation proceeds in two steps. In finite samples, we first nonparametrically

estimate the latent input functions. Plugging the estimators into our production,

4In the context of production function estimation this endogeneity problem is referred to as the
transmission bias problem since inputs are correlated with unobserved productivity shocks (Marschak
and Andrews, 1944).

5Hence we cannot address this endogeneity problem using panel data with fixed effects, first
advocated by Hoch (1955, 1962) and Mundlak (1961, 1963). We can also not use more sophisticated
timing assumptions within a control function or IV frameworks as discussed, for example, in Olley
and Pakes (1996) and Blundell and Bond (1998, 2000), Levinsohn and Petrin (2003), and Ackerberg,
Caves, and Frazer (2015). We discuss the extension of our methods to this scenario in the conclusions.

6Hence, local input prices can serve as valid instruments for endogenous input choices. See
Griliches and Mairesse (1998) for a critical discussion of the assumption that these input prices are
exogenous.

7For a more general discussion of the issues encountered in estimating achievement and skill for-
mation functions see, among others, Todd and Wolpin (2003) and Cunha, Heckman, and Schennach
(2010).
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skill formation, or achievement function, we can estimate the parameters of this

outcome function using a standard IV estimator based on the observed and imputed

covariates. The second econometric challenge then arises for the need to account for

the sequential nature of the estimator when deriving the correct rate of convergence

and computing asymptotic standard errors. To illustrate this we consider the standard

log-linear, Cobb-Douglas model. We propose two different estimators and provide

both high-level and lower-level conditions under which these semiparametric two-step

estimators are consistent and asymptotically normal at the usual parametric rate

of convergence. The technical proofs are based on the general econometric theory

on semiparametric two-step estimation as in Newey (1994), Newey and McFadden

(1994) and Chen, Linton, and Van Keilegom (2003). Finally, we show that using

the conditional expectation of outcomes as the dependent variable produces efficiency

gains relative to the more traditional estimator that uses the observed output instead.

To evaluate the performance of our estimator we conduct a variety of Monte Carlo

experiments. Our findings suggest that our estimators are well-behaved in samples

that are similar in size to those observed in our applications discussed below. We also

study the behavior of our estimator when we pool observations across markets as is

often necessary for many practical applications. Moreover, we consider other realistic

deviations such as the case in which instruments are also partially latent.

We then illustrate the usefulness of the techniques developed in this paper and

consider two new applications. First, we apply our new estimator to study differences

in productivity in an important industry: pharmacies. Goldin and Katz (2016) have

forcefully argued that this is one of the most egalitarian and family-friendly professions

in which females face little discrimination in the workforce. One potential explanation

of this fact has been related to the rise of chains that have replaced independent

pharmacies in many local markets. Here we estimate a team production function

that distinguishes between managerial and non-managerial certified pharmacists. We

can, therefore, test the hypothesis whether managers have become more productive

in chains than in independent pharmacies.

We use data from the National Pharmacist Workforce Survey in 2000 which uses

an “input-based sampling” procedure. It not only collects data for each pharmacist

that is surveyed but also a limited amount of information at the store level including

output. We find that we can reject the null hypothesis that independent pharma-

cies and chains have the same technology. Estimates for independent pharmacies are
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somewhat noisy but do not suggest that there is a large difference between man-

agers and regular employees. Estimates for chains suggest that managers are more

productive than regular employees. We thus conclude that chains seem to improve

the effectiveness of managers which may partially explain why they have become the

dominant firm type in this industry.

Our second application focuses on skill formation or achievement functions which

play a large role in pubic, labor, and family economics. Here we rely on data from the

Child Development Supplement of the PSID. We consider two different samples to

illustrate the usefulness of our new methods. First, we consider a sample of children

who live in married households. Hence, both parental inputs are observed for these

children. We find that our latent variable IV estimator produces similar results to the

feasible IV estimator. We also consider a sample of children from divorced households

where the father’s inputs have to be imputed. Hence, the standard IV estimator is

no longer feasible, but our latent variable IV estimator can still be applied. We find

that there are some significant differences between married and divorced parents. In

particular, divorced fathers have no significant impact on child quality.

This paper relates to the line of literature on production function estimation by

proposing a method to handle the problem of partially latent inputs. Our identifi-

cation strategy is based on strict monotonicity and the consequent invertibility in a

scalar unobservable, a feature also leveraged by Olley and Pakes (1996) and Levin-

sohn and Petrin (2003). They essentially use an auxiliary variable together with an

input to control for the unobserved productivity shock: investment with capital in

Olley and Pakes (1996) and intermediate inputs with capital in Levinsohn and Petrin

(2003). In comparison, we use the output with the observed input to pin down the

productivity shock. We emphasize that the feature of functional dependence between

input variables, which was pointed out by Ackerberg, Caves, and Frazer (2015) as an

underlying problem in Olley and Pakes (1996) and Levinsohn and Petrin (2003), in

fact, forms the basis of our imputation strategy. While most of these papers focus on

value-added production functions, there is also much interest in estimating gross out-

put production functions. Doraszelski and Jaumandreu (2013) propose an solution

to the transmission bias problem that also relies on observed firm-level variation in

prices. In particular, they show that by explicitly imposing the parameter restrictions

between the production function and the demand for a flexible input and by using

this price variation, they can recover the gross output production function. Gandhi,
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Navarro, and Rivers (2020) provide an alternative identification strategy to estimate

gross output production functions that works well in short panels. Beyond these con-

ceptual linkages, our paper has a different focus from these papers cited above: they

focus more on the dynamic nature of capital inputs, while we focus on the problem

of partially latent inputs. Moreover, the estimation of production functions is just

one of many applications of our general identification result. This paper shows that

our methods may be even more useful for applications outside of IO where these data

structures are more prevalent as we discuss below.

Also, we should point out that this paper is both conceptually and technically

different from previous work on missing data in linear regression and, more generally,

GMM estimation settings, such as Rubin (1976), Little (1992), Robins, Rotnitzky,

and Zhao (1994), Wooldridge (2007), Graham (2011), Chaudhuri and Guilkey (2016),

Abrevaya and Donald (2017) and McDonough and Millimet (2017). This line of liter-

ature usually exploits two types of conditions: first, observations with no missing data

occur with positive probability, and second, data are “missing at random” (potentially

with conditioning). Neither condition is satisfied in our setting: every observation

contains missing data, and missing can be correlated with other observables as well

as the unobserved productivity shock. Instead, we rely on monotonicity in a scalar

unobservable shock to identify and impute the latent input.

Similarly, our monotonicity conditions also differentiate our paper from the econo-

metric literature on data combination as surveyed by Ridder and Moffitt (2007), which

mostly involves conditional independence assumptions. That said, in a way our pro-

posed method can be regarded as a strategy to combine two samples, each of which

contains a common outcome variable and a different covariate variable. Hence, our

proposed method may also be useful as a data combination method for scenarios

where our monotonicity conditions are interpretable and justifiable.

The rest of the paper is organized as follows. Section 2 presents our main identi-

fication result. Section 3 discusses the problems associated with estimation. Section

4 introduces our first application focusing on the production functions of pharma-

cies. It discusses our data sources and presents our main empirical findings. Section

5 discusses our second application which deals with education production functions.

Section 6 provides a discussion of other applications and presents our conclusions.
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2 Identification of Partially Latent Covariates

2.1 Model and Main Result

Consider the following cross-sectional econometric model

yi = F (xi1, xi2, ui) + εi (1)

where i = 1, ..., N indexes a generic observation from a random sample, yi denotes

an observable scalar-valued outcome variable, and xi := (xi1, xi2) denotes a two-

dimensional vector of covariates.8 Both ui and εi are scalar-valued unobserved errors,

with ui taken to be a “structural error” that is endogenous with respect to xi, while

εi is a “measurement error” that is assumed to be exogenous. The unknown outcome

function F may be either parametric or nonparametric.

First, we need to define what we mean by partially latent covariates, a key data

structure that we explore in this paper.

Assumption 1 (Partially Latent Covariates). For each observation i, the econome-

trician either observes xi1 or xi2, but never both.

Essentially, one of the two covariates (xi1, xi2) is latent in each observation in the

data. In the following, it will be convenient to write

di :=

1, if xi1 is observed and xi2 is latent,

2, if xi2 is observed and xi1 is latent,

so that effectively (di, (2− di)xi1, (di − 1)xi2) is observed for i. Such data structures

often arise when the data is collected at the individual level while we are interested

in some firm, household, or team level outcome variable that also depends on other

individuals who are not surveyed in the data. These types of unstructured data sets

are becoming increasingly more prevalent in empirical work, as we discuss in detail

below. In this section we just provide one application that we use as the leading

example to illustrate the main concepts.

Example (Team Production Functions). Our first application studied in Section 4

8See Corollary 1 for the extension of our identification method to settings with covariates of
higher dimensions.
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focuses on identifying and estimating team production functions.9 For simplicity, let

us assume a log-linear Cobb-Douglas specification:

yi = α0 + α1xi1 + α2xi2 + ui + εi, (2)

where yi is the logarithm of the team’s output, xi1 is the logarithm of hours worked by

the first team member (a manager), and xi2 is the logarithm of hours worked by the

second team member (an employee).10 The data structure described in Assumption

1 arises if the researcher interviews only one member, and not both members of the

team. We also refer to this technique as an “input-based sampling” approach. It is

plausible that the interviewed team member knows the team’s output, but does not

have complete information about the other team member’s input choices. Hence, the

surveyed person provides the output level, yi, and her own hours worked, xi1 or xi2,

leading to the problem of partially latent inputs as defined in Assumption 1.

The next assumption imposes a monotonicity condition on the outcome function.

Assumption 2 (Monotonicity of the Outcome Function). F is nondecreasing in all

of its arguments and is strictly increasing in at least one of its arguments.

This assumption essentially states that the covariates or inputs (xi1, xi2) and the

structural error ui have nonnegative effects on the outcome variable yi. Moreover,

the monotonicity is strict in, at least, one of the three arguments xi1, xi2, and ui.

The restriction of monotonicity with respect to (xi1, xi2) is substantive: it requires

that the covariates cannot negatively affect the outcome variable holding everything

else fixed. In contrast, the restriction of monotonicity with respect to ui is largely

innocuous given the interpretation of ui as a (weakly) “positive shock”.

Example (Team Production Functions Continued). Assumption 2 is satisfied in the

linear additive model in equation (2) provided that the model satisfies the additional

parameter restriction that α1, α2 ≥ 0.

9We use the term “team production function” since we largely focus on different types of labor
inputs and abstract from capital or other inputs that may be subject to dynamics and adjustment
costs.

10The team production concept is also related to the concept of task production functions, which
are surveyed by Acemoglu and Autor (2011). Haanwinckel (2018) estimates a task production
function in which each team member specializes in a single task.
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Next, we turn to the assumptions on the unobserved errors ui and εi in equa-

tion (1). First, we assume that the endogenous covariates xi are strictly monotone

functions of the scalar structural error ui, potentially after conditioning on a set of

observed covariates zi, that may affect the covariates xi.

Assumption 3 (Strict Monotonicity of the Covariates in the Structural Error). There

exists a vector of additional observed covariates zi and two deterministic, real-valued

functions h1, h2, such that

xi1 = h1 (ui, zi) , xi2 = h2 (ui, zi) ,

with both h1 (ui, zi) and h2 (ui, zi) strictly increasing in their first argument ui for

every realization of zi.

We note that the functions h1 and h2 can be unknown and nonparametric. More-

over, Assumption 3 does not require zi to be exogenous; in other words, zi and ui

are allowed to be statistically dependent. The only requirement here is that, after

conditioning on zi, the covariates xi1 and xi2 can be written as deterministic mono-

tone functions of the error ui. Such a “monotonicity-in-a-scalar-error” assumption

has been widely used in the econometric literature on identification analysis.11

Example (Team Production Functions Continued). In the IO literature ui is typically

interpreted as a “productivity shock” that enters into the choices of inputs xi. In

contrast, εi captures either a measurement error or a productivity shock that does

not affect inputs, since it is not observed to the firms when input choices are made.

Assumption 3 requires that the input choice functions are strictly increasing in the

“productivity shock” ui, conditional on any additional observed covariates zi that

may influence input choices, as suggested, for example, by Olley and Pakes (1996) and

others.12 For concreteness, we take zi to be local wages for managers and employees.

The monotonicity of input choices in the unobserved productivity shock can be fur-

ther micro-founded in a variety of settings based on efficiency or equilibrium criteria.

For example, Assumption 3 is automatically satisfied if competitive firms optimally

11See Matzkin (2007) for a general survey, and see Ackerberg, Caves, and Frazer (2015) in the
specific context of production function identification, which fits into our working example (2).

12This is a standard assumption that underlies most, if not all, existing approaches of production
function estimation in one way or another: see, for example, Griliches and Mairesse (1998) and
Ackerberg, Caves, and Frazer (2015) for reviews of the relevant literature.
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choose inputs to maximize profits. The input choice functions h1 and h2 are char-

acterized by the relevant first-order conditions and have simple closed-form formulas

that are linear and increasing in ui and decreasing in zi.
13 More generally, one may use

the theory of monotone comparative statics to obtain more primitive conditions for

input monotonicity, which typically involve various forms of increasing-difference or

single-crossing conditions: see, for example, Milgrom and Shannon (1994) and Vives

(2000) for formal statements. Essentially, in settings where input choices are made by

a single decision maker, such as under perfect competition and monopsony, we would

need the marginal values of inputs to be increasing in the productivity shock ui, which

is a mild condition to impose given our interpretation of ui as a “productivity shock”.

In settings where the input choices are generated as equilibria of a strategic game

between two decision makers, an additional assumption of strategic complementarity

is typically sufficient for monotonicity. For games with strategic substitutability, we

would further need a condition to ensure that the extent of strategic substitutability is

not overwhelming: see Roy and Sabarwal (2010) for general results, and our Appendix

D for an example where Assumption 3 is satisfied under strategic substitutability.

Next we formalize the required exogeneity condition on the measurement error εi.

Assumption 4 (Exogeneity of the Measurement Error). E [εi|xi, zi, di] = 0.

Note that, under Assumption 3, conditioning on (xi, zi, di) is equivalent to con-

ditioning on (ui, zi, di). In the production function estimation literature without the

partial latency problem, E [εi|ui, zi] = 0 is a standard assumption imposed on εi. In

our current setting, we are requiring that εi is furthermore exogenous with respect to

the partial latency indicator variable di.

It is worth noting that this paper is both conceptually and technically different

from previous work on missing data in linear regression and, more generally, GMM

estimation settings, such as Rubin (1976), Little (1992), Robins, Rotnitzky, and Zhao

(1994), Wooldridge (2007), Graham (2011), Chaudhuri and Guilkey (2016), Abrevaya

and Donald (2017) and McDonough and Millimet (2017). This line of literature

13See Appendix A for details. We note that the problem of partially latent inputs is less relevant
in that case since the “reduced-form” regression of the observed inputs on the exogenous wages
wi will indirectly recover the production function parameters α. This corresponds to the “duality
approach” to production function estimation as discussed in detail in Griliches and Mairesse (1998).
However, an attractive feature of our approach is also that we can test whether inputs are optimally
chosen. If we reject the null hypothesis that inputs are optimal, our estimator is still feasible while
duality estimators are not.
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usually exploits two types of assumptions to handle missing values: first, observations

with no missing data occur with positive probability, and second, data are “missing

at random (MAR)”: the indicator for missingness is exogenous to or independent of

certain observable covariates or constructed conditioning variables. Neither condition

is satisfied in our setting: here every observation contains “missing values”, and the

partial latency indicator di is allowed to be correlated with other observables as well

as the unobserved productivity shock. Instead, we will be relying on monotonicity

conditions to identify and impute the latent input.

Specifically, Assumption 4 here is simply requiring that εi is a “measurement

error” term that is exogenous with respect to the observables and consequently the

“productivity shock” ui, but does not impose any restriction on the dependence struc-

ture between the partial latency indicator di and other structural components of the

model (ui, xi, zi).

However, we do require the following very mild condition on the variable di.

Assumption 5 (Nondegenerate Latency Probabilities). 0 < P {di = 1|ui, zi} < 1.

Assumption 5 guarantees that conditioning on realizations of (ui, zi) we will ob-

serve xi1, and xi2, with strict positive probabilities. Again, this assumption is much

weaker than “missing-at-random” assumptions, which would usually require that

P {di = 1|ui, zi} is constant in ui, zi, or some other variables. In contrast, here

we do not impose any restrictions on the dependence of P {di = 1|ui, zi} on (ui, zi)

beyond non-degeneracy.

We are now ready to present our main identification result.

Theorem 1. Under Assumptions 1-5, for each observation i, the latent covariate,

xi2 if di = 1 or xi1 if di = 2 , is point identified.

Next, we provide a detailed explanation of our identification strategy. The start-

ing point of our identification strategy is the reduced form of our model with the

measurement error term:

yi = F (ui, zi) + εi (3)

where

F (ui, zi) := F (h1 (ui, zi) , h2 (ui, zi) , ui) . (4)

11



Clearly, F (ui, zi) is strictly increasing in ui given Assumptions 2 and 3.

Consider two firms i and j with zi = zj. In the context of our working example, we

are effectively considering two firms i and j operating in the same local labor market

with the same local wages. For concreteness, suppose that (xi1, xj1) are observed,

while (xi2, xj2) are unobserved. Since these firms have the same value of managerial

inputs xi1 = xj1, then by Assumption 3 it must also be true that they have the same

value of the productivity shock:

ui = h−11 (xi1; zi) = h−11 (xj1; zj) = uj,

where h−11 (· ; zi) is the inverse of h1 (·, zi), which is well-defined by Assumption 3.

This further implies that

F (ui, zi) = F (uj, zj) .

Taking an average of yi and yj,

1

2
(yi + yj) = F (ui, zi) +

1

2
(εi + εj) , (5)

we are essentially averaging out the variations in ε.14 Intuitively, if we average over

outcomes of all observations that share the same xi1 and the same zi and thus the

same value of ui, then we can identify F (ui, zi).

Formally, define γ1 (c) as the expected output of firm i conditional on the event

that xi1 is observed (di = 1) to have a given value of c1, i.e.,

γ1 (c1; z) := E [yi| zi = z, di = 1, xi1 = c1] . (6)

Clearly, γ1 is directly identified from data given Assumptions 1 and 5,15 and can

be nonparametrically estimated later on. Taking a closer look at γ1, we have, by

equation (3), Assumption 3, and Assumption 4,

γ1 (c1; z) = E
[
F (ui, zi) + εi

∣∣ zi = z, di = 1, h1 (ui, zi) = c1
]

= F
(
h−11 (c1; z) , z

)
+ E

[
εi| zi = z, di = 1, ui = h−11 (c1; z)

]
= F

(
c1, h2

(
h−11 (c1; z) , z

)
, h−11 (c1; z)

)
, (7)

14In fact, we can directly “match” on output yi if there is no measurement error, εi, in output.
15Assumption 5 ensures that the conditioning event occurs with strictly positive probability.
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which is a direct formalization of the intuition in equation (5). By conditioning on

zi and a particular observed value of xi1 = c1, we are effectively conditioning on

the unobserved productivity shock ui. Aggregating across observations allows us to

average out the measurement errors and obtain a quantity that is implicitly a function

of the productivity shock ui = h−11 (c1; zi).

Next, we observe that γ1 (c1; z) is strictly increasing in c1, since

∂

∂c1
γ1 (c1; z) = F1 + F2 ·

∂

∂u
h2
(
h−11 (c1) , z

) 1
∂
∂u
h1
(
h−11 (c1) , z

) + F3 ·
1

∂
∂u
h1
(
h−11 (c1) , z

)
> 0 (8)

since ∂
∂u
h1,

∂
∂u
h2 > 0 by Assumption 3, and the partial derivatives F1, F2, F3 of F

are all nonnegative with, at least, one being strictly positive by Assumption 2.16

Similarly, we can define

γ2 (c2; z) := E [yi| zi = z, di = 2, xi2 = c2]

which is strictly increasing in c2.

Now, the basic idea behind our identification strategy is then to conditionally

“match” observations on the event that

γ1 (c1; z) = γ2 (c2; z) (9)

for some c1, c2, and z.

Example (Team Production Functions Continued). Let us consider production teams

within the same local market so that wages (zi) are constant. Equation (9) then in-

volves two separate conditional expected output levels, one (γ1) for teams whose

manager input (xi1) is observed , and the other (γ2) for teams whose employee input

(xi2) is observed. When these two expected output levels are equalized as in equation

(9), we can infer that the underlying productivity shock (ui) must be the same across

all teams with either xi1 = c1 observed or xi2 = c2 observed. By equations (5) and

(7) we know

h−11 (c1; zi) = h−12 (c2; zi) =: u

16The partial derivatives F1, F2, F3 of F are evaluated at
(
c1, h2

(
h−1
1 (c1; z) , zi

)
, h−1

1 (c1; z)
)
.
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which also pins down the latent inputs via:

xi2 = h2 (u, zi) , for di = 1,

xi1 = h1 (u, zi) , for di = 2.

Formally, the latent covariates can be identified via a composition of γ1, γ2 and

their inverses,

xi2 = γ−12 (γ1 (xi1; zi) ; zi) , for di = 1,

xi1 = γ−11 (γ2 (xi2; zi) ; zi) , for di = 2, (10)

since on the right-hand side xi1, xi2 are observed for di = 1, 2, respectively, and γ1, γ2

are nonparametrically identified functions. This completes the description of our key

identification strategy as well as the proof of Theorem 1.

Remark 1 (More Than Two Covariates). We have thus far focused on the case with

two covariates. It is straightforward to see that our model, assumptions, and the

main identification result can be easily generalized to the case with covariates of an

arbitrary finite dimension D. This result is summarized by the following Corollary.

Corollary 1. Consider the model yi := F (xi1, ..., xiD, ui)+εi along with Assumptions

2 and 4 unchanged, and the following modifications of other assumptions:

(i) Assumption 1: for each i at least one out of D covariates is observed.

(ii) Assumption 3: all D covariates are strictly increasing in ui given zi.

(iii) Assumption 5: all D covariates are observed with strictly positive probabilities.

Then the latent covariates are identified.

Remark 2. If Condition (i) in Corollary 1 is strengthened so that more than one

covariates are simultaneously observed in a given observation (with positive prob-

ability), then we would also obtain over-identification, and the input-monotonicity

restriction in Assumption 3 becomes empirically refutable. Alternatively, with two or

more covariates simultaneously observed, we would be able to accommodate higher

dimensions of unobserved shocks, provided that the dimension of the unobserved

14



shock ui is strictly smaller than the dimension of the covariates D. Since such an

extension would be more involved and move farther away from the applications we

consider in this paper, we leave it as a direction for future research.

3 Identification and Estimation of Outcome Func-

tions

With the latent inputs already identified in Theorem 1, we are back to equation (1)

yi = F (xi1, xi2, ui) + εi,

but now we can effectively regard both xi1 and xi2 as being known, at least for

identification purposes. Researchers may proceed to identify the output function F

under appropriate application-specific assumptions as in a “standard” setting without

the partial latency problem.

Hence, the identification of F or other objects of interest is largely “separable”

from the partial latency problem, which is the key problem we are solving in this

paper. That said, we note that the estimation of the latent covariates will affect the

estimation of (the parameters of) F based on “plugged-in” latent covariate estimates.

This section provides a discussion on how to identify and estimate F , and analyzes

the impact of the “first-stage” estimation of latent inputs on the final estimator of F .

While we cannot cover all relevant specifications of F , in this section we will pro-

vide both identification and estimation results for the linear case, which is arguably

the workhorse model, or at least a natural benchmark, in various empirical applica-

tions. We also discuss how our method can be applied under more general settings.

3.1 The Linear Model

In this subsection we focus on the linear parametric specification of F as in (2):

yi = α0 + α1xi1 + α2xi2 + ui + εi,

where our goal is to identify and estimate the unknown parameters α := (α0, α1, α2).
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3.1.1 Identification

In the presence of the endogeneity problem between xi := (xi1, xi2) and ui, we will

need instrumental variables for the identification of α. For illustrational simplicity,

we impose the following standard IV assumption.

Assumption 6 (Instrumental Variables). Write zi := (zi1, zi2), zi := (1, zi1, zi2)
′

and

xi = (1, xi1, xi2)
′
. Assume

(i) Relevance: Σzx := E
[
zix

′
i

]
has full rank.

(ii) Exogeneity: E [ui| zi] = 0.

Corollary 2 (Identification of Linear Parameters). Under Assumptions (1)-(6), α is

point identified.

Example (Team Production Function Continued). In the context of our working ex-

ample, here we are essentially following a strategy discussed in Griliches and Mairesse

(1998) and assume that we have access to some instrumental variables (such as local

wages) that affect input choices.

3.1.2 Estimation Procedure

We now turn to the more interesting problem of estimation, propose semiparametric

estimators for α, and characterize their asymptotic distributions.

We first describe our proposed estimator. Since the identification of latent inputs

via equation (10) is constructive, it suggests a natural estimation procedure:

Step 1 (Nonparametric Regression): obtain an estimator γ̂1 of γ1 by nonpara-

metrically regressing yi on xi1 and zi, among firms with di = 1, i.e., those with xi1

observed. Similarly, obtain an estimator γ̂2 of γ2.

Step 2 (Imputation): impute latent inputs by plugging the nonparametric esti-

mators γ̂1, γ̂2 into equation (10), i.e.,

x̂i2 = γ̂−12 (γ̂1 (xi1; zi) ; zi) , for di = 1,

x̂i1 = γ̂−11 (γ̂2 (xi2; zi) ; zi) , for di = 2.
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Step 3 (IV Regression): estimate equation (2) with zi as IVs for xi, i.e.,

α̂ :=

(
1

n

n∑
i=1

zix̃i

)−1(
1

n

n∑
i=1

ziyi

)

and

x̃i :=

(1, xi1, x̂i2)
′
, for di = 1,

(1, x̂i1, xi2)
′
, for di = 2.

In Appendix B.4, we also propose an alternative estimator α̂∗ that features a slightly

different Step 3, leading to an efficiency gain over α̂ asymptotically. Since the asymp-

totic theories for α̂ and α̂∗ are very similar, we defer results on α̂∗ to the appendix.

3.1.3 Asymptotic Theory

We now establish the consistency and the asymptotic normality of α̂ under the fol-

lowing regularity assumptions.

Assumption 7 (Finite Error Variances). E [u2i | zi] <∞ and E [ε2i |xi, zi, di] <∞.

Assumption 8 (Strong Monotonicity). The first derivative of γk (·, z) is uniformly

bounded away from zero, i.e., for any c, z,

∂

∂c
γk (c; z) > c > 0.

In view of equation (8), Assumption 8 is satisfied if either α1, α2 > 0 or ∂
∂u
h1,

∂
∂u
h1

are uniformly bounded above by a finite constant. Assumption 8 is needed to ensure

that γ̂−1k (·, z) is a good estimator of γ−1k (·, z) provided that the first-stage nonpara-

metric estimator γ̂k is consistent for γk.

Assumption 9 (First-Stage Estimation).

(i) Donsker property: γ1, γ2 ∈ Γ, which is a Donsker class of functions with uni-

formly bounded first and second derivatives, and γ̂1, γ̂2 ∈ Γ with probability

approaching 1.

(ii) First-stage convergence: ‖γ̂k − γk‖ = op

(
N−

1
4

)
for k = 1, 2.

17



Assumption 9(i) is guaranteed if γ1, γ2 satisfy certain smoothness condition, e.g. γk

possesses uniformly bounded derivatives up to a sufficiently high order. Assumption

9(ii) requires that the first-stage estimator converges at a rate faster thanN−1/4, which

is satisfied under various types of nonparametric estimators under certain regularity

conditions. This is required so that the final estimator of the production function

parameters α can converge at the standard parametric (
√
N) rate despite the slower

first-step nonparametric estimation of γ1, γ2.

Finally, we state another technical assumption that captures how the first-stage

nonparametric estimation of γ1, γ2 influences the final semiparametric estimators α̂

through the functional derivatives of the residual function with respect to γ1, γ2.

Assumption 10 below, based on Newey (1994), provides an explicit formula for the

asymptotic variance of α̂ that does not depend on the particular forms of first-stage

nonparametric estimators.

Formally, write wi := (yi, xi, zi, di), γ := (γ1, γ2), and suppress the conditioning

variables zi in γ for notational simplicity. Define the residual functions

g (wi, α̃, γ̃) :=

zi
(
yi − α̃0 − α̃1xi1 − α̃2γ̃

−1
2 (γ̃1 (xi1))

)
for di = 1,

zi
(
yi − α̃0 − α̃2xi2 − α̃1γ̃

−1
1 (γ̃2 (xi2))

)
for di = 2.

for generic α̃, γ̃, and g (wi, γ̃) := g (wi, α, γ̃) at the true α. Define the pathwise

functional derivative of g at γ along direction τ by

G (wi, τ) := lim
t→0

1

t
[g (wi, γ + tτ)− g (wi, γ)] .

Then, following Newey (1994), the so-called “influence function” can be derived an-

alytically17 based on G and takes the form of ϕ (wi) ziεi with

ϕ (wi) := −
(
λ1
α2

γ
′
2

− λ2
α1

γ
′
1

)
(1 {di = 1} − 1 {di = 2}) ,

where γ
′

k denotes ∂
∂hk

γk (xik; zi), λ1 stands for

λ1 (xi, zi) := E [1 {di = 1}|xi, zi]

i.e., the conditional probability of observing xi1, and λ2 := 1− λ1.
17See the proof of Theorem 2 for details on the calculation.
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The influence function essentially characterizes how the first-stage estimation in-

fluences the asymptotic variance of the final estimator. Formally, we present the

following assumption, commonly known as an asymptotic linearity condition, which

basically requires that the expected error induced by the first-stage estimation is

asymptotically equivalent to the sample average of ϕ (wi) ziεi. In particular, the for-

mula for ϕ given above will be the same regardless of the specific forms of first-step

estimators used, provided that some suitable regularity conditions are satisfied.

Assumption 10 (Asymptotic linearity). Suppose

∫
G (w, γ̂ − γ) dP (w) =

1

N

N∑
i=1

ϕ (wi) ziεi + op

(
N−

1
2

)
.

We emphasize that Assumptions 9 and 10 are standard assumptions widely im-

posed in the semiparametric estimation literature, which can be satisfied by many

kernel or sieve first-stage estimators under a variety of conditions. See Newey (1994),

Newey and McFadden (1994) and Chen, Linton, and Van Keilegom (2003) for refer-

ences. In Assumption 11 below, we also provide an example of lower-level conditions

that replace Assumptions 9 and 10 when we use the Nadaraya-Watson kernel estima-

tor in the first-stage nonparametric regression.

The next theorem establishes the asymptotic normality of α̂.

Theorem 2 (Asymptotic Normality). Under Assumptions 1-10,

√
N (α̂− α)

d−→ N (0,Σ) ,

where Σ := Σ−1zx ΩΣ−1xz and

Ω := E
[
ziz

′

i

(
u2i + [1 + ϕ (wi)]

2 ε2i
)]
.

We note that, if the latent inputs were observed and the first-step nonparametric

regression were not required, the asymptotic variance of standard IV estimator of α

would be given by Σ−1zx Var (zi (ui + εi)) Σ−1xz . Hence, the presence of the additional

term δ (zi) in Ω captures the effect of the first-step nonparametric regression on the

asymptotic variance of α̂.
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To obtain consistent variance estimators, define

Ω̂ :=
1

N

N∑
i=1

ziz
′

i

[
yi − x̃

′

iα̂ + ϕ̂ (wi) (yi − ỹi)
]2

where

ỹi :=

γ̂1 (xi1, zi) , for di = 1,

γ̂2 (xi2, zi) , for di = 2,

and with

ϕ̂ (wi) := −
(
λ̂1
α̂2

γ̂
′
2

− λ̂2
α̂1

γ̂
′
1

)
(1 {di = 1} − 1 {di = 2})

where λ̂1 is any consistent nonparametric estimator of λ1. Then the variance estima-

tors can be obtained as

Σ̂ := S−1xz̃ Ω̂S−1z̃x

with Szx̃ := 1
N

∑N
i=1 zix̃

′
i.

Proposition 1. In addition to Assumptions 1-8 and 11, suppose that λ̂1 is any con-

sistent nonparametric estimator of λ1. Then Ω̂
p−→ Ω and Ω̂∗

p−→ Ω∗.

If furthermore λ1 (xi, zi) ≡ λ1 ∈ (0, 1) is assumed, then we may use the sample

proportion λ̂1 := 1
N

∑
i {di = 1}.

3.1.4 Lower-Level Regularity Conditions for Kernel First Step

Finally, we present a set of lower-level conditions that replace Assumptions 9 and 10,

when we use the canonical Nadaraya-Watson kernel estimator for the nonparametric

regression in Step 1. We emphasize that this subsection simply serves as an illustration

of Assumptions 9-10 and Theorem 2, as our method does not require the use of

a specific form of first-step nonparametric estimators. For sieve (series) first-step

estimators, similar results can be derived based on, for example, Newey (1994), Chen

(2007) and Chen and Liao (2015).

Assumption 11 (Example of Lower-Level Conditions with Kernel First Step). Let

Nk :=
∑N

i=1 1 {di = k} denote the number of firms for which hik is observed, and let
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γ̂k be the Nadaraya-Watson kernel estimator of γk defined by

γ̂k (v) :=
1

Nkb3

∑
di=k

K
(
v−vik
b3

)
yi

1
Nkb3

∑
di=k

K
(
v−vik
b3

)
where vik := (xik, zi1, zi2) for all i such that di = k. Suppose the following conditions:

(i) λ1 (xi, zi) ∈ (ε, 1− ε) for all (xi, zi) for some ε > 0.

(ii) (xi, zi) has compact support in R4 with joint density f that is uniformly bounded

both above and below away from zero.

(iii) E [y4i ] <∞ and E [y4i |xi, zi] f (xi, zi) is bounded.

(iv) γk has uniformly bounded derivatives up to order p ≥ 4.

(v) K (u) has uniformly bounded derivatives up to order p, K (u) is zero outside

a bounded set,
∫
K (u) du = 1,

∫
utK (u) du = 0 for t = 1, ..., p − 1, and∫

‖u‖p |K (u)| du <∞.

(vi) b is chosen such that
√
logN√
Nb3

= o
(
N−

1
4

)
and
√
Nbp → 0.

Assumption 11(i) essentially requires that the proportion of observations with xi1

observed and that with xi2 observed are both strictly positive, or in other words, the

numbers of both types of observations tend to infinity at the same rate of N . This

guarantees that we can estimate both γ1 based on observations with xi1 and γ2 based

on observations with xi2 well enough asymptotically. Assumption 11(iv) is the key

smoothness condition that will help establish the Donsker property (and a consequent

stochastic equicontinuity condition) in Assumption 9(i). Assumption 11(v)(vi) are

concerned with the choice of kernel function K and bandwidth parameter b: (v)

requires that a “high-order” kernel function (of order p) is used, while (vi) requires

that the bandwidth is set (in a so-called “under-smoothed” way) so that the kernel

estimator γ̂k converges at a rate faster than N−1/4, as required in Assumption 9(ii).

The requirement of p ≥ 4 in (iii) ensures that (vi) is feasible. Together with the

additional regularity conditions in (ii)(ii), these conditions ensure that Assumptions

9-10 are satisfied. See Newey and McFadden (1994, Section 8.3) for additional details.

Proposition 2 (Asymptotic Distributions with Kernel First Step). Under Assump-

tions 1-8 and 11, the conclusions of Theorem 2 hold.
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3.2 Generalizations

Additional Instrumental Variables

If additional instruments are available, it is straightforward to incorporate them in the

second-stage regression, which will take the form of a two-stage least square estimator

instead of an IV regression. Our results will carry over with suitable changes in

notation. For example, the asymptotic variance formula for α̂ needs to be adapted as

Σ :=
(
ΣxzΣ

−1
zz Σzx

)−1
ΣxzΣ

−1
zz ΩΣ−1zz Σzx

(
ΣxzΣ

−1
zz Σzx

)−1
.

Other Parametric Outcome Function

Consider a potentially nonlinear parametric production function of the form

yi = Fα (xi1, xi2) + ui + εi

After the identification of partially latent inputs via Theorem 1, the second stage boils

down to the estimation of α based on the moment condition E [zi (yi − Fα (xi1, xi2))] =

0, which can be obtained via GMM estimation. Technically, since GMM estima-

tors are Z-estimators, the corresponding asymptotic theory in Newey and McFadden

(1994), on which the proof of Theorem 2 is mainly based, still applies with proper

changes in notation.

Nonparametric Outcome Function

More generally, with any nonparametric production function that is additively sepa-

rable in ui and εi of the form

yi = F (xi1, xi2) + ui + εi,

where F is an unknown function that satisfies Assumption 2, the only thing that

changes is the second-stage nonparametric estimation of F with the imputed covari-

ates x̃i (or more precisely, with one component known and one component imputed)

based on the moment condition E [zi (yi − F (xi1, xi2))] = 0. The asymptotic theory

for this case can be similarly obtained based on theory on nonparametric two-step

estimation (e.g. Ai and Chen, 2007, and Hahn, Liao, and Ridder, 2018).
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In the more general specification (1):

yi = F (xi1, xi2, ui) + εi

where there is no more additive separability in ui, one way to obtain identification and

implement IV estimation is by adapting Chernozhukov, Imbens, and Newey (2007) to

our current context. Essentially, we would need to impose strict monotonicity of F in

ui, impose independence of ui from zi, normalize the distribution of ui to be uniform,

and then exploit a quantile-based residual condition as described in Chernozhukov,

Imbens, and Newey (2007).

3.3 A Monte Carlo Experiment

Here we report the findings of some Monte Carlo experiments. Table 1 reports the

parameter specifications of the Cobb-Douglas production function that we use in our

experiments. We assume that inputs are optimally chosen by a profit maximizing

firm as discussed in detail in Appendix A. These parameters were chosen so that

the simulated data are broadly consistent with the descriptive statistics of our first

application that we discuss in detail in the next section. For each specification, market

size, denoted by L, and number of firms in each market, denoted by I can vary. In

particular, we consider the following scenarios: L = 50, 100, 500 and I = 1, 50, 100.

For each experiment, we compute the difference between the true parameter value and

the sample average of the estimates using 1000 replications (N). This is a measure

of the bias of our estimator. We also estimate the root mean squared error (RMSE)

using the sample standard deviation of our estimates.

Note that our data generating process mechanically implies xi1 and xi2 have a

linear relationship with yi. We estimate γ1 (·, zi) and γ2 (·, zi) using second degree

polynomials. Not surprisingly, we find that the estimated coefficients on quadratic

terms are almost 0. The interpolated functions γ−11 and γ−12 are also almost linear.

Table 2 summarizes the performance of two different estimators: TSLS when all

inputs are observed as well as our version of TSLS when inputs are imputed. We

refer to our version of the TSLS estimator as the “matched” TSLS estimator . As

we would expect given our asymptotic results, the matched TSLS performs almost

as well as the standard TSLS estimator under these ideal sampling conditions. This

finding holds for all three different specifications and several choices for the number
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Table 1: Monte Carlo Parameter Specification

Constant Across Specification Variable Across Specification

α0 α1 α2 µz σz κ1,2,3,4 σu σε ση

Spec1 4 0.35 0.25

(
2.4
2.1

) (
0.05 0

0 0.02

) 
1.3
0.3
0.1
0.9

 0.4 0.3

(
0.01 0

0 0.01

)

Spec 2 4 0.35 0.25

(
2.4
2.1

) (
0.05 0

0 0.02

) 
1.3
0.3
0.1
0.9

 0.8 0.3

(
0.01 0

0 0.01

)

Spec 3 4 0.35 0.25

(
2.4
2.1

) (
0.05 0

0 0.02

) 
1.3
0.3
0.1
0.9

 0.8 0.3

(
0.5 0
0 0.5

)

of firms within a market and the number of local markets.

Next, we investigate how our estimator performs when we have a relatively small

number of observations in each market. Considering an extreme case, we simulate

data for L = 500 and I = 1. As we only have a single firm in each market, we cannot

impute the missing input variable using within market information. Instead, we pool

observations across markets and estimate conditional expectations conditional on x1

(or x2), z1, and z2. Table 2 also summarizes the bias and RMSE where L = 500 and

I = 1. We find that the matched TSLS estimator performs almost as well as the

standard TSLS estimator that assumes that both inputs are observed.

Finally, we consider the case in which the wage for type j is observed only when

we observe the input for type j, i.e. we assume that:

(zi1, zi2) =

(z∗i1,missing) if xi1 is observed

(missing, z∗i2) if xi2 is observed
(11)

Since we need to impute missing wages, we assume that true wages are functions of

some demand shifters Dm ∈ R2 for the local labor market m and a random error

ηi which is assumed to be independent from the demand shifters. Note that this
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Table 2: Monte Carlo: Different Markets, Observed Wages

Number of Number of TSLS Matched TSLS

Param Markets Firms Spec Bias RMSE Bias RMSE

α0 50 50 1 0.001 0.001 0.000 0.001
α0 100 100 1 -0.000 0.000 -0.000 0.000
α0 50 50 2 0.001 0.002 -0.000 0.002
α0 100 100 2 -0.000 0.000 0.000 0.001
α0 50 50 3 0.001 0.002 0.001 0.002
α0 100 100 3 -0.000 0.000 0.001 0.001
α0 500 1 1 -0.004 0.003 -0.004 0.003
α0 500 1 2 -0.014 0.011 -0.015 0.011
α0 500 1 3 -0.013 0.010 -0.014 0.010

α1 50 50 1 0.004 0.003 0.003 0.004
α1 100 100 1 0.000 0.001 0.000 0.001
α1 50 50 2 0.007 0.010 0.006 0.013
α1 100 100 2 0.001 0.002 0.001 0.003
α1 50 50 3 0.006 0.008 0.032 0.015
α1 100 100 3 0.001 0.002 0.020 0.003
α1 500 1 1 -0.002 0.015 -0.001 0.016
α1 500 1 2 -0.000 0.048 0.001 0.052
α1 500 1 3 -0.007 0.040 -0.006 0.043

α2 50 50 1 -0.005 0.005 -0.004 0.006
α2 100 100 1 -0.001 0.001 -0.000 0.001
α2 50 50 2 -0.010 0.014 -0.010 0.017
α2 100 100 2 -0.002 0.003 -0.002 0.004
α2 50 50 3 -0.007 0.011 -0.046 0.021
α2 100 100 3 -0.001 0.002 -0.029 0.005
α2 500 1 1 -0.004 0.020 -0.004 0.022
α2 500 1 2 -0.020 0.068 -0.022 0.073
α2 500 1 3 -0.009 0.051 -0.010 0.055
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specification allows for correlation between z1m(i) and z2m(i) through Dm. Specifically,

we simulate wages as follows:

z∗i1 = z1m(i) = κ1D1m + κ2D2m + ηi1 (12)

z∗i2 = z2m(i) = κ3D1m + κ4D2m + ηi2

To impute the missing wages, we regress the observed wages (zi1, zi2) on the demand

shifters (D1m, D2m). Using estimated parameters from the regression, we then impute

the missing wages.

Table 3: Monte Carlo: Small Markets with Partially Latent Wages

Number of Number of Standard SLS Matched TSLS

Param markets firms Spec Bias RMSE Bias RMSE

α0 500 1 1 -0.004 0.003 -0.004 0.003
α0 500 1 2 -0.008 0.010 -0.007 0.010
α0 500 1 3 -0.008 0.010 -0.007 0.010

α1 500 1 1 -0.002 0.015 -0.001 0.016
α1 500 1 2 0.005 0.054 0.008 0.055
α1 500 1 3 0.004 0.053 0.008 0.054

α2 500 1 1 -0.004 0.020 -0.004 0.022
α2 500 1 2 -0.021 0.072 -0.023 0.075
α2 500 1 3 -0.020 0.070 -0.023 0.074

Table 3 summarizes the performance of our new estimator together with TSLS

estimator. Even if we have a relatively large variance of the imputation errors, such

as in Specification 3, our new estimator performs reasonably well.

Figure 1 plots the empirical distribution for the case of specification 2. Overall,

we find that the matched TSLS estimator performs almost as well as the standard

TSLS estimator.

We conclude that our estimator performs well in all Monte Carlo experiments, even

in scenarios that are more general than those considered in Sections 3 of the paper. In

particular, we do not need to observe both sets of instruments in the data, i.e. we can

impute the missing instrument. Next, we evaluate the performance of our estimator in

two applications. The first application focuses on pharmacies and studies differences

in technology across different types of firms. The second application studies education
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Figure 1: Histograms of Estimated Coefficients With Imputed Wages

0

3.6 3.8 4 4.2
0

20

40

60

80

100

T
S

LS
1

0 0.5 1
0

20

40

60

80

100
2

-1 -0.5 0 0.5 1
0

20

40

60

80

100

0

3.6 3.8 4 4.2
0

20

40

60

80

100

M
at

ch
ed

 T
S

LS

1

0 0.5 1
0

20

40

60

80

100
2

-1 -0.5 0 0.5 1
0

20

40

60

80

100

Nmarket = 500, Nfirms = 1, Parameter Spec = II

production functions.

4 First Application: Pharmacies

Our first application focuses on the industrial organization of pharmacies. This indus-

try has undergone a dramatic change over the past decades. An industry that used

to be primarily dominated by local independent pharmacies has been transformed by

the entry of large chains that operate in multiple markets. An important question is

the extent to which this transformation has been driven by technological change that

has benefited large chains over smaller independently operated pharmacies. If this is

in fact the case, these technological changes may help to explain why this profession

has become so popular with females (Goldin and Katz, 2016).

The main data set that we use is the National Pharmacist Workforce Survey of

2000 which is collected by Midwestern Pharmacy Research. The data comes from

a cross-sectional survey answered by randomly selected individual pharmacists with

active licenses. The data set is composed of two types of information: information

about pharmacists and information about the pharmacy each pharmacist works at.
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Information at the pharmacy level includes the type of pharmacy (Independent

or Chain), the hours of operation per week, the number of pharmacists employed,

and the typical number of prescriptions dispensed at the pharmacies per week. The

store-level information is provided by an individual pharmacist who works at the

pharmacy, thus the quality of the responses may depend on how knowledgeable the

person is about the pharmacy. However, considering that most of the pharmacists in

our sample are observed to be full-time pharmacists, the quality of the firm-level data

is likely to be high. The number of prescriptions dispensed at the pharmacy is our

measure of output. As a consequence, we do not have to use revenue based output

measures which could bias our analysis as discussed, for example, in Epple, Gordon,

and Sieg (2010).

Table 4: Summary Statistics at the Firm Level: Pharmacies

Firm Number Emp Operating Prescriptions Prescriptions Prop Number
Type Pharmacists Size Hours per Week per Hour Urban of Obs

Indep n < 2 3.15 51.96 778.00 14.94 0.63 50
(1.41) (7.08) (368.95) (6.54) (0.39)

Indep 2 ≤ n < 3 3.94 56.99 914.40 16.09 0.71 58
(1.80) (10.04) (472.81) (8.43) (0.34)

Indep 3 ≤ n 4.71 64.24 1252.22 19.44 0.78 36
(1.44) (14.15) (610.61) (8.75) (0.32)

Chain n < 2 1.88 53.50 666.88 12.90 0.81 8
(0.99) (8.02) (278.84) (6.58) (0.34)

Chain 2 ≤ n < 3 3.25 80.50 1294.68 16.21 0.81 101
(1.36) (9.86) (595.08) (7.66) (0.29)

Chain 3 ≤ n 5.32 82.82 1765.67 21.43 0.89 79
(1.63) (13.67) (681.57) (7.87) (0.20)

Independent pharmacies: fewer than 10 stores under the same ownership.
Chain pharmacies: more than 10 stores under the same ownership.
Standard deviations in parentheses.
One part-time pharmacist is counted as 0.5 pharmacist in number of pharmacists.
Employment size includes interns and technicians.

Table 4 summarizes the means of key variables that are observed at the firm or

pharmacy level. After eliminating cases with missing input/output information, we

observe 332 pharmacists. Table 4 suggests that there are some pronounced differences

between chains and independent pharmacies. Chains are more likely to be located in
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larger urban areas than independent pharmacies. They also operate longer hours per

week. Interestingly, hourly productivity measured by the number of prescriptions per

hour is, on average, similar to the independent pharmacies with similar employment

size.18 We explore these issues in more detail below and test whether the different

types of pharmacies have access to the same technology.

The survey also collects various information about pharmacists including hours

of work, demographics, and household characteristics. Most importantly we observe

the position at the pharmacy (Owner/Manager or Employee). We treat hours of the

manager and hours of the employees as the two input factors in our analysis.

Information related to the individual pharmacists is summarized in Table 5. Em-

ployee pharmacists at independent pharmacies work fewer hours than the employee

pharmacists at chain pharmacies, and hourly earnings are lower than those of the

employees at the chains. Pharmacists in managerial positions at independent phar-

macies work more hours than do managers at chain pharmacies, but they have lower

hourly earnings on average.

We observe only one pharmacy in each local labor market, which is defined as

the 5-digit zip code area.19 Hence, we need to use the version of our estimator that

averages across local markets as discussed in Section 3.3.

We test whether the observed labor inputs are indeed the optimal choice of firms.

If the inputs are optimally chosen, the coefficients can be directly estimated from

equation (16) in Appendix A. Under the assumption of Cobb-Douglas production,

we can test the optimality by jointly testing the null hypothesis of equality of both

coefficients. Table 6 shows the results. A formal Wald test rejects the null hypothesis

of optimality. Thus the direct inversion of the optimality conditions cannot be applied

to estimate the parameters of the production function, whereas our new estimator is

feasible.

We implement two versions of our “matched” TSLS estimator: the first estimator

uses the observed outputs while the second one uses expected outputs. Since the

observed output is subject to a measurement error, the semi-parametric estimator

18Most pharmacies in our sample have one manager pharmacist and one employee pharmacist,
but there are a few pharmacies with a larger employment size. See Appendix C for details on how
to compute employees’ hours work for the pharmacies with multiple employees.

19We only observe the wage for the observed type. Thus, wages are imputed for the unobserved
type using local demand shifters in 5-digit zip code levels and pharmacists’ characteristics. We use
actual wages for the observed position and imputed wages for both positions together with principal
components of local demand shifters as instruments.
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Table 5: Summary Statistics at the Worker Level: Pharmacists

Firm Number of Actual Paid Hourly Number of
Type Position Pharmacists Hours Hours Earnings Obs

Indep Employee n < 2 40.94 39.28 28.87 9
(11.61) ( 9.60) (7.64)

Indep Employee 2 ≤ n < 3 33.90 33.03 29.37 29
(12.01) (11.14) (4.09)

Indep Employee 3 ≤ n 31.61 30.95 30.24 28
(11.62) (10.96) (4.93)

Indep Manager n < 2 50.02 45.34 30.32 41
(9.05) (7.24) (12.45)

Indep Manager 2 ≤ n < 3 49.45 44.19 28.70 29
(8.15) (7.99) (9.90)

Indep Manager 3 ≤ n 46.50 44.38 30.28 8
(4.11) (6.30) (6.57)

Chain Employee n < 2 46.20 43.00 34.70 5
(2.77) (4.47) (2.19)

Chain Employee 2 ≤ n < 3 41.82 39.84 34.13 66
(5.76) (4.38) (3.32)

Chain Employee 3 ≤ n 39.96 37.94 34.03 56
(8.63) (7.02) (3.12)

Chain Manager n < 2 45.33 42.00 36.75 3
(5.03) (2.65) (4.43)

Chain Manager 2 ≤ n < 3 44.10 40.50 34.06 35
(7.02) (2.58) (4.90)

Chain Manager 3 ≤ n 43.61 41.43 35.04 23
(5.41) (3.41) (3.59)

Independent pharmacies: fewer than 10 stores under the same ownership.
Chain pharmacies: more than 10 stores under the same ownership.
Hourly earnings are computed based on the paid hours, not actual hours.
Standard deviations in parentheses.
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Table 6: Test for Optimality of Inputs

Independent Chain
H1 Observed H2 Observed H1 Observed H2 Observed

Wald Statistic 5.495 36.914 15.312 26.172
p-value (0.064) (0.000) (0.000) (0.000)

using expected outputs offers the potential of some efficiency gains as discussed in

Appendix B.4. Table 7 summarizes our findings. We report the estimated parameters

of the Cobb-Douglas production function as well as the estimated standard errors.

In addition, we report standard F-statistics for the first stage of the TSLS estimator

to test for weak instruments. Overall, we find that our instruments are sufficiently

strong in most cases.20

Table 7 shows that we estimate most of parameters of the production function

with good precision. Correcting for potential measurement error by using the ex-

pected output as the dependent variable, we achieve similar, maybe even slightly

more plausible estimates.21

Table 7: Estimation Result

Independent Chain
Observed Expected Observed Expected
Outputs Outputs Outputs Outputs

α0 5.447 5.857 2.504 3.634
(0.597) (0.331) (1.790) (1.060)

α1 0.227 0.163 0.819 0.687
(0.122) (0.057) (0.454) (0.268)

α2 0.090 0.047 0.409 0.250
(0.071) (0.051) (0.191) (0.105)

Nobs 144 144 188 188
First-stage F for x1 9.320 9.320 11.774 11.774
First-stage F for x2 13.648 13.648 3.630 3.630

Our results provide several insights to understanding the difference between in-

20As a robustness check, we also explored a different matching algorithm which estimates the
expectation of output conditional on local demand shifters rather than wages. The results are
consistent although the matching algorithm with local demand shifters gives slightly larger point
estimates with slightly less precision.

21Appendix C provides some additional robustness checks.
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dependents and chains. First, our results indicate that chains may have a different

production function than independent pharmacies. A formal joint hypothesis test

reported in Table 8 rejects the null hypothesis that the coefficients of the production

function are the same.

Table 8: Hypothesis Tests

Production Function Managerial Efficiency Residual Variance
(Joint) α1 V (u)

Independent 0.163 0.010
Chain 0.687 0.006
Difference or Ratio -0.524 1.532

Test Statistics 122.841 -1.913 1.532
Test Wald t F
p-value (0.000) (0.028) (0.003)

Second, our findings also suggest that managers may be more effective in chains

than independents. A formal one-sided t-test reported in Table 8 rejects the null

hypothesis that the two coefficients that characterize managerial efficiency are the

same.

Finally, we find that chains have a significantly lower residual variance than in-

dependents. A formal F test reported in Table 8 rejects the null hypothesis that the

residual variance of independents is greater than or equal to the residual variance of

chains. Note that all the tests are based on the estimation results with the expected

outputs as the dependent variable.

We thus conclude that chains have different production functions than indepen-

dent pharmacies which may partially explain the change in the observed market

structure of that industry. However, more research is needed to fully address this

important research question.

5 Second Application: Child Education

Our second application focuses on the estimation of education achievement functions.

Here we assume that a child’s achievement yi is a function of the mother’s and the

father’s time inputs, denoted by xim and xif . Again, we consider a log-linear Cobb-
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Douglas specification given by

yi = αi + αm xim + αf xif + ui (13)

where heterogeneity in the intercept is given by:

αi = x′i α0 (14)

Hence, we assume that the baseline productivity αi varies with family characteristics,

such as family income. As before, we can estimate the education production function

using TSLS with wages as instruments for inputs as well as our “matched” TSLS

estimator if some inputs are partially latent.

Our data is based on the four available waves of the Child Development Sup-

plement (CDS). These are the cohorts interviewed in 1997, 2002, 2007, and 2014.22

For these children, we have detailed time usage information of their parents on two

days, each of which is randomly selected among weekdays and weekends, respectively.

Based on this time diary information we can construct time inputs for mothers and

fathers.23 The CDS can be linked to the original PSID survey using the family ID.

Hence, we have detailed parental information such as education level, household in-

come, and the number of children.

The CDS collects multiple measures of child development including both cognitive

and non-cognitive skills. We focus on two important cognitive tests. First, we study

the passage comprehension test which assesses reading comprehension and vocabulary

among children aged between 6 and 17. Second, we analyze the applied problems test

which assesses mathematics reasoning, achievement, and knowledge for children aged

between 6 and 17.24

We begin by estimating an education production function using the subsample

of children who live in married households. Hence, we observe the mother’s and the

father’s inputs in the data set. We observe 3,236 children with complete inputs and

applied problem scores as well as 2,789 children with complete inputs and reading

22The CDS 1997 cohort consists of up to 12-year-old children and follows them for 3 waves (1997,
2001, 2007). The CDS 2014 cohort consists of children that were up to 17 years old in 2013.

23We exclude families with stepmother and stepfather from our sample.
24We also analyzed the letter word test which assesses symbolic learning and reading identification

skills. There are also two non-cognitive measures. The externalizing behavioral problem index
measures disruptive, aggressive, or destructive behavior. The internalizing behavioral problem index
measures expressions of withdrawn, sad, fearful, or anxious feelings.
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comprehension scores. Table 9 provides descriptive statistics of the main variables in

our sample.

Table 9: Summary Statistics of CDS Sample

Married Sample Divorced Sample

Applied Problem Score (Standardized) 107.58 101.28
(16.63) (16.92)

Passage Comprehension Score (Standardized) 105.89 99.48
(14.77) (14.49)

Mother’s Time Input 20.77 15.18
(14.32) (14.06)

Father’s Time Input 13.87 4.34
(11.96) (13.81)

Total Number of Child In Family 2.17 2.1
(0.9) (0.9)

Child’s Age At Interview 9.68 11.37
(4.74) (4.44)

Total Household Labor Income (in 2011 Dollar) 68941 24158
(55732) (28616)

Mother’s Age 37.05 37.3
(7.27) (6.85)

Father’s Age 39.1 38.81
(7.7) (8.8)

Mother’s Years of Education 13.51 12.92
(2.57) (1.97)

Father’s Years of Education 13.38 12.97
(3.21) (1.9)

Prop of Living With Mother - 0.88

We can estimate the model using the traditional TSLS estimator. We compare

these estimates with our matched TSLS which is based on a sample in which we ran-

domly omit one of the two inputs. This exercise allows us to compare the performance

of both estimators when there is no latent input problem. We restrict our attention

to married couples with both spouses living together. We exclude families with more

than 5 children. As instruments for time inputs we use education, employment status,

hourly wage, age of children. To preserve the representativeness of our sample, we use

the child-level survey weight for all analyses. Household labor income is measured in
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10,000 dollars. Table 10 summarizes our findings.

Table 10: Education Production Function: Married Sample

Applied Problems Passage Comprehension
TSLS matched TSLS TSLS matched TSLS

Mom Hour 0.016 0.027 0.100 0.098
(0.008) (0.002) (0.012) (0.033)

Dad Hour 0.032 0.021 0.017 0.006
(0.007) (0.007) (0.009) (0.040)

Num Child = 2 −0.011 0.034 −0.051 −0.097
(0.008) (0.020) (0.013) (0.150)

Num Child = 3+ 0.008 0.077 −0.030 −0.059
(0.009) (0.026) (0.014) (0.152)

Household Labor Inc 0.008 0.006 0.010 0.009
(0.001) (0.002) (0.001) (0.017)

Constant 4.510 4.484 4.321 4.380
(0.017) (0.026) (0.026) (0.223)

Nobs 3,236 3,236 2,789 2,789
First-stage F for xm 61.997 127.295 41.812 58.530
First-stage F for xf 62.636 117.966 58.654 59.156

Overall, our empirical findings are reasonable. We find that investments in child

quality decrease with the number of children in the family and increase with house-

hold income, as expected. Both parental time inputs are positive and typically sta-

tistically significant and economically meaningful. Comparing the TSLS with our

matched TSLS estimator, we find that the results are remarkably similar, especially

for the passage comprehension test. The results for the applied problem test are also

encouraging although the differences in the estimates are slightly larger. Qualita-

tively, we reach the same conclusions with both estimators. We thus conclude that

our matched TSLS performs well in this sample.

Next, we consider the subsample that consists of households that self-reported to

be either divorced or separated. We exclude single households for obvious reasons.

In all households in this sample one of the parents is not living in the child’s house-

hold. We typically do not observe time inputs for these divorced parents. For the

applied problem (passage comprehension) score we observe 785 (723) children with

the mother’s input. There are 103 (92) observations where we have the father’s in-
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Table 11: Education Production Function: Divorced Sample

Applied Problems Passage Comprehension
matched TSLS matched TSLS

Mom Hour 0.050 0.037
(0.028) (0.015)

Dad Hour 0.010 0.001
(0.013) (0.003)

Num Child = 2 0.051 0.019
(0.055) (0.039)

Num Child = 3+ 0.002 −0.015
(0.056) (0.066)

Household Labor Inc −0.013 −0.006
(0.016) (0.004)

Constant 4.548 4.529
(0.078) (0.061)

Nobs 785 723
First-stage F for xm 40.532 35.264
First-stage F for xf 15.715 56.184

put, which we use for imputation purposes.25 Note that the standard TSLS is no

longer feasible in this subsample because of the latent variable problem. Table 11

summarizes our findings.

Table 11 shows that the time inputs for mothers are positive, statistically signif-

icant, and economically meaningful. Moreover, the point estimates for the applied

problem test are similar to the ones we obtained for the married sample reported in

Table 10. The main difference is that mother’s time inputs are slightly less productive

for children from divorced families, and father’s time inputs are not statistically dif-

ferent from zero. In summary, our estimator work well in this application and yields

plausible and accurate point estimates for most coefficients of interest. Most impor-

tantly, we find that the inputs of divorced fathers into the skill formation function of

their children seem to be negligible.

25 Missing instruments for the unobserved spouse are imputed using standard techniques based
on the observed spouse’s information.
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6 Concluding Remarks

We have developed a new method for identifying econometric models with partially

latent covariates. We have shown that a broad class of econometric models that play

a large role in industrial organization and labor economics can be non-parametrically

identified if the partially latent covariates are monotonic functions of a common shock.

Examples that fall into this class of models are production and skill formation func-

tions. The partially latent data structure arises quite naturally in these settings if

we employ an “input-based sampling” strategy, i.e. if the sampling unit is one of

multiple labor input factors. It is plausible that the sampling unit will only have

incomplete information about the other labor inputs that affect output. Our proofs

of identification are constructive and imply a sequential, two-step semi-parametric

estimation strategy. We have discussed the key problems encountered in estimation,

characterized rate of convergence, and the asymptotic distribution of our estimators.

We also presented two applications of our technique. Our first application focuses

on estimating team production functions. Using a national survey of pharmacists,

we have found some convincing evidence that chains have different technologies than

independently operated pharmacies. In particular, managers appear to be more pro-

ductive in chains. Our second application focuses on the estimation of skill formation

functions, which play a large role in labor and family economics. We have shown that

our matched TSLS estimator produces similar results to the feasible TSLS estimator

in a sample of children in married households, where both parental inputs are ob-

served. We have also considered a sample of children from divorced households where

father’s inputs must be imputed. We find that the inputs of divorced fathers into the

skill formation function of their children is negligible.

There is substantial scope for future research in areas other than the two applica-

tions that we provided above. At the heart of the applications discussed thus far is the

relationship between multiple inputs that are combined to produce a single output.

It is easy to imagine questions that ask about relationships that fit this structure and

that do not fall into the frameworks we have considered thus far.

To illustrate this idea, consider the problem of inter vivos gifts. It is common for

parents, while still alive, to give money to their children, often to help with a down

payment on a house or to reduce taxes the parents will pay. When a couple makes a

gift to their married child, however, they risk that the child divorces and a portion of
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the gift will accrue to the child’s spouse. The concern is real since approximately 40%

of marriages in the US end in divorce. A natural question is how well can parents

predict how long a child’s marriage will last at the time they contemplate making

a gift. One could address this question with a data set that includes inter vivos

gifts from parents to married children and, in addition, how long the child’s marriage

survives. Such data sets exist, for example the PSID, which documents these for a

family lines that stretch over a half century.

There is a problem however: Multigenerational data sets such as PSID have quite

detailed information about the choices of individuals who are descendants of the

initial respondents, but substantially less information about choices of individuals

who “marry into” the data set. For each married couple in the PSID, one of the

two has the “PSID gene” (that is, a descendant of an initial respondent), and we

have substantially more information about that individual and, importantly, about

that individual’s parents than we have about the spouse. In particular, we know the

inter vivos gifts to the couple from the parents of the PSID gene child but not inter

vivos gifts to the couple from the spouse’s parents. Note that this design of the PSID

gives rise to a data structure that mimics the “input-based sampling” approach that

we have studied in this paper.26 As we show in Appendix D, it is straightforward to

write down a non-cooperative model of intergenerational transfer, where the transfers

of each parents are monotonically increasing in the probability that the marriage

survives. This potential application is an example of interesting problems that arise

in trying to understand intergenerational effects. We would like to know how the

choices or characteristics of individuals in one generation affect the outcomes of their

descendants. We conjecture that the methods developed in this paper can be fruitfully

applied to study a variety of questions related to intergenerational linkages.

Finally, our research provides ample score for future research in econometric

methodology. We have restricted ourselves to applications in which our method of

identification can be combined with standard IV techniques to estimate the functions

of interest. Much of the recent panel data literature has focused on dynamic inputs in

the presence of adjustment costs. More research is clearly needed to evaluate whether

the ideas presented in this paper can be extended and applied to dynamic panel data

frameworks. We have also restricted ourselves to systems of inputs with a single com-

26Other multigenerational data sets such as NLSY79, NLSY97 and NCDS share the partially
latent variable problem.
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mon shock. Another potentially interesting research question is how our methods can

be extended to more complicated econometric structures with multiple shocks.
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A The Cobb-Douglas Case with Optimal Inputs

Suppose that firm i chooses inputs optimally by solving the following (expected)

profit-maximization problem:

max
Xi1,Xi2

eα0+uiXα1
i1 X

α2
i2 eui − Zi1Xi1 − Zi2Xi2, (15)

where Xi1, Xi2, Zi1, Zi2 denote exponents of xi1, xi2, zi1, zi2. By the first-order condi-

tions,

Xi1 = e
α0+ui

1−α1−α2

(
Zi1
α1

) 1−α2
α1+α2−1

(
Zi2
α2

) α2
α1+α2−1

Xi2 = e
α0+ui

1−α1−α2

(
Zi2
α2

) 1−α1
α1+α2−1

(
Zi1
α1

) α1
α1+α2−1

Y i = e
α0+ui

1−α1−α2

(
Zi1
α1

) α1
α1+α2−1

(
Zi2
α2

) α2
α1+α2−1

= eα0+ui

(
α2Zi1
α1Zi2

)α2

x
α1+α2

i1 = eα0+ui

(
α1Zi2
α2Zi1

)α1

x
α1+α2

i2

In log forms

xi1 = h1 (ui, zi) =
α0 + (1− α2) logα1 + α2 logα2

1− α1 − α2

− 1− α2

1− α1 − α2

zi1 −
α2

1− α1 − α2

zi2 +
1

1− α1 − α2

ui

xi2 = h2 (ui, zi) =
α0 + α1 logα1 + (1− α1) logα2

1− α1 − α2

− α1

1− α1 − α2

zi1 −
1− α1

1− α1 − α2

zi2 +
1

1− α1 − α2

ui

yi = y (ui, zi) =
α0 + α1 logα1 + α2 logα2

1− α1 − α2

− α1

1− α1 − α2

zi1 −
α2

1− α1 − α2

zi2 +
1

1− α1 − α2

ui

= α0 + α2 log (α2/α1) + (α1 + α2)h1 (ui, zi) + α2zi1 − α2z2l + ui

= α0 + α1 log (α1/α2) + (α1 + α2)h2 (ui, zi)− α1zi1 + α1z2l + ui

Taking inverses

ui = h−11 (xi1, zi) := − [α0 + (1− α2) logα1 + α2 logα2] + (1− α1 − α2)xi1 + (1− α2) zi1 + α2zi2

= h−12 (xi2, zi) := − [α0 + α1 logα1 + (1− α1) logα2] + (1− α1 − α2)xi2 + α1zi1 + (1− α1) zi2
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Hence,

γ1 (xi1, zi) = y
(
h−11 (xi1, zi) , zi

)
= − logα1 + xi1 + zi1,

γ2 (xi2, zi) = y
(
h−12 (xi2, zi) , zi

)
= − logα2 + xi2 + zi2,

and

yi = γ1 (xi1, zi) + εi =− logα1 + xi1 + zi1 + εi

= γ2 (xi2, zi) + εi =− logα2 + xi2 + zi2 + εi. (16)

It is then evident that α1 or α2 can be estimated directly from (16) from the corre-

sponding subsample where xi1 or xi2 is observed. Furthermore, we may test input

optimality based on equation (16).

B Proofs

B.1 Additional Notation and Lemmas

Notation For each i, we use xij to denote the observed input and use xik to denote

the latent input variable for firm i, i.e.

xij = xi1, xik = xi2, for di = 1,

xij = xi2, xik = xi1, for di = 2.

We write

di1 := 1 {di = 1} ,

di2 := 1 {di = 2} ,

so that xij = di1xi1 + di2xi2 while xik := di1xi2 + di2xi1. We write xi := (1, xi1, xi2)
′

to

denote the true regressor vector. (Recall x̃i denotes the same regressor vector with

imputed latent input x̂ik in place of xik.)

Moreover, we suppress the instrumental variables zi in functions, such as γ1 (ui, zi),

unless it becomes necessary to emphasize the dependence of such functions on zi.
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Lemma 1. Under Assumption 8, if ‖γ̂k − γk‖∞ = Op (an), then
∥∥γ̂−1k − γ−1k ∥∥∞ =

Op (an) and |x̂ik − xik| = Op (an).

Proof. By Assumption 8 we have

c |u1 − u2| ≤ |γk (u1)− γk (u2)|

For any v ∈ Range (γk),

∣∣γ̂−1k (v)− γ−1k (v)
∣∣ ≤ 1

c

∣∣γk (γ̂−1k (v)
)
− γk

(
γ−1k (v)

)∣∣ =
1

c

∣∣γk (γ̂−1k (v)
)
− v
∣∣

=
1

c

∣∣γk (γ̂−1k (v)
)
− γ̂k

(
γ̂−1k (v)

)∣∣ ≤ 1

c
‖γ̂k − γk‖∞ = Op (an) .

Furthermore, observing that

c
∣∣γ−1k (v1)− γ−1k (v2)

∣∣ ≤ ∣∣γk (γ−1k (v1)
)
− γk

(
γ−1k (v2)

)∣∣ = |v1 − v2|

we have by Assumption 8 and Lemma 1, for di = 1,

|x̂ik − xik| =
∣∣γ̂−1j (γ̂k (xik))− γ−1j (γk (xik))

∣∣
=
∣∣γ̂−1j (γ̂k (xik))− γ−1j (γ̂k (xik)) + γ−1j (γ̂k (xik))− γ−1j (γk (xik))

∣∣
≤
∣∣γ̂−1j (γ̂k (xik))− γ−1j (γ̂k (xik))

∣∣+
∣∣γ−1j (γ̂k (xik))− γ−1j (γk (xik))

∣∣
≤
∥∥γ̂−1j − γ−1j ∥∥∞ +

1

c
|γ̂k (xik)− γk (xik)|

≤
∥∥γ̂−1j − γ−1j ∥∥∞ +

1

c
‖γ̂k − γk‖∞

= Op (an) . (17)

Lemma 2. Under Assumption 8:

(i) The pathwise derivative of γ−1k w.r.t. γk along τk ∈ Γ is given by

∇γkγ
−1
k [τk] := lim

t↘0

(γk + tτk)
−1 (v)− γ−1k (v)

t
= −

τk
(
γ−1k (v)

)
γ
′
k

(
γ−1k (v)

) .

46



(ii) The pathwise derivative of γ−1k (γj (·)) w.r.t. γj along τj ∈ Γ is given by

∇γj

(
γ−1k ◦ γj

)
[τj] := lim

t↘0

γ−1k (γj (x) + tτj (x))− γ−1k (γj (x))

t

=
(
γ−1k
)′

(γj (x)) τj (x) =
1

γ
′
k

(
γ−1k (γj (x))

)τj (x) .

(iii) The second-order derivatives have bounded norms:

∇2
γk
γ−1k [τk] [τk] ≤M ‖τk‖2

∇2
γj

(
γ−1k ◦ γj

)
[τj] [τj] ≤M ‖τk‖2

Proof. (i) and (ii) follow immediately from the definition of pathwise derivatives. See,

e.g., Lemma 3.9.20 and 3.9.25 in Van Der Vaart and Wellner (1996) for reference. For

(iii),

∇2
γk
γ−1k [τk] [νk] =

τ
′

k

(
γ−1k
)

γ
′
k

(
γ−1k
) · νk (γ−1k )

γ
′
k

(
γ−1k
) − τk

(
γ−1k
)[

γ
′
k

(
γ−1k
)]2
[
γ
′′

k

(
γ−1k
)

+
1

γ
′
k

(
γ−1k
)] νk (γ−1k )

≤M ‖τk‖ ‖νk‖

since γ
′

k ≥ c > 0 by Assumption 8 and γ
′′

and τ
′

k are uniformly bounded above by

Assumption 9(i). Similarly for ∇2
γj

(
γ−1k ◦ γj

)
.

Lemma 3. Writing γ := (γ1, γ2), the pathwise derivative of γ−1k ◦ γj w.r.t. γ along τ

is given by

∇γ

(
γ−1k ◦ γj

)
[τ ] := lim

t↘0

(γk + tτk)
−1 (γj (x) + tτj (x))− γ−1k (γj (x))

t

=
1

γ
′
k

(
γ−1k (γj (x))

) [τj (x)− τk
(
γ−1k (γj (x))

)]
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Proof. By Lemma 2,

1

t

[
(γk + tτk)

−1 (γj (x) + tτj (x))− γ−1k (γj (x))
]

=
1

t

[
(γk + tτk)

−1 (γj (x) + tτj (x))− γ−1k (γj (x) + tτj (x))
]

+
1

t

[
γ−1k (γj (x) + tτj (x))− γ−1k (γj (x))

]
→ ∇γkγ

−1
k [τk] (γj (x)) +∇γj

(
γ−1k ◦ γj

)
[τj]

= −
τk
(
γ−1k (γj (x))

)
γ
′
k

(
γ−1k (γj (x))

) +
1

γ
′
k

(
γ−1k (γj (x))

)τj (x)

=
1

γ
′
k

(
γ−1k (γj (x))

) (τj (x)− τk
(
γ−1k (γj (x))

))

B.2 Proof of Theorem 2

Proof. We verify the conditions in Lemma 5.4 of Newey (1994), or equivalently, The-

orems 8.11 of Newey and McFadden (1994).

Recall wi := (yi, xi, zi, di), γ := (γ1, γ2) and

g (wi, α̂, γ̂) =zi
(
yi − α̂0 −

(
xi1α̂1 + γ̂−12 (γ̂1 (xi1)) α̂2

)
di1 −

(
xi2α̂2 + γ̂−11 (γ̂2 (xi2)) α̂2

)
di2
)

=zi
(
yi − α̂0 − xijα̂j − γ̂−1k (γ̂j (xij)) α̂k

)
g (wi, γ̂) =zi

(
yi − α0 −

(
xi1α1 + γ̂−12 (γ̂1 (xi1))α2

)
di1 −

(
xi2α2 + γ̂−11 (γ̂2 (xi2))α2

)
di2
)

=zi
(
yi − α0 − xijαj − γ̂−1k (γ̂j (xij))αk

)
=zi

(
ui + εi +

[
xik − γ̂−1k (γ̂j (xij))

]
αk
)

Clearly, E [g (wi, γ)] = E [zi (ui + εi)] = 0 by Assumptions 6 and 4. Moreover,
1
N

∑N
i=1 g (wi, α̂, γ̂) = 0 by the definition of α̂.
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Now, define

G (wi, γ̂ − γ) := ∇γg (wi, γ) [γ̂ − γ]

= −αkzi∇γ

(
γ−1k ◦ γj

)
[γ̂ − γ]

=
−αkzi

γ
′
k

(
γ−1k (γj (xij))

) [(γ̂j − γj) (xij)− (γ̂k − γk)
(
γ−1k (γj (xij))

)]
= − αkzi

γ
′
k (xik)

[γ̂j (xij)− γj (xij)− γ̂k (xik) + γk (xik)] since γ−1k (γj (xij)) = xik

= di1zi

(
−α2

γ
′
2

)
(1,−1)

(
γ̂1 − γ1
γ̂2 − γ2

)
+ di2zi

(
−α1

γ
′
1

)
(−1, 1)

(
γ̂1 − γ1
γ̂2 − γ2

)

= −zi
(
di1
α2

γ
′
2

− di2
α1

γ
′
1

)
(1,−1) (γ̂ − γ) (18)

By Lemma 2(iii) and Lemma 3, we deduce

‖g (w, γ̂)− g (w, γ)−G (w, γ̂ − γ)‖ = Op

(
‖γ̂ − γ‖2∞

)
= op

(
1√
N

)
given our assumption that ‖γ̂ − γ‖∞ = op

(
N−1/4

)
.

Next, the stochastic equicontinuity condition

1√
N

N∑
i=1

(
G (wi, γ̂ − γ)−

∫
G (wi, γ̂ − γ) dP (wi)

)
= op

(
1√
N

)
(19)

is guaranteed by Assumptions 8 and 9. Specifically, γ̂ − γ belongs to a Donsker class

of functions by the smoothness assumption while 1/γ
′

k (xik) ≤ 1/c guarantees that

G (zi, ·) is square-integrable, so that G (zi, ·) is also Donsker and thus (19) holds.

Now, write ζi := (xi, zi) so that wi = (yi, ζi, di). Then we have∫
G (wi, γ̂ − γ)Pwi

=

∫
−zi

(
di1
α2

γ
′
2

− di2
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dP (ζi, di)

=

∫
−zi

([∫
di1dP (di| ζi)

]
α2

γ
′
2

−
[∫

di2dP (di| ζi)
]
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dPζi

=

∫
−zi

(
λ1 (ζi)

α2

γ
′
2

− λ2 (ζi)
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dPζi
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By Proposition 4 of Newey (1994), with

ϕ (wi) := −
(
λ1
α2zi
γ
′
2

− λ2
α1zi
γ
′
1

)
(di1 − di2)

we have

zi

(
λ1
α2

γ
′
2

− λ2
α1

γ
′
1

)
(1,−1)

(
di1 (yi − γ1 (xi1))

di2 (yi − γ2 (xi2))

)
≡ ϕ (wi) ziεi,

and by Assumption 10

∫
G (w, γ̂ − γ) dP (w) =

1

N

N∑
i=1

ϕ (wi) ziεi + op

(
1√
N

)
.

Hence, Lemma 5.4 of Newey (1994),

1√
N

N∑
i=1

g (wi, γ̂) =
1√
N

N∑
i=1

[g (wi, γ) + ϕ (wi) ziεi] + op (1)
d−→ N (0,Ω) ,

where

Ω :=Var [g (wi, γ) + ϕ (wi) ziεi]

=E
[
ziz

′

i (ui + [1 + ϕ (wi)] εi)
2
]

= E
[
ziz

′

i

(
u2i + [1 + ϕ (wi)]

2 ε2i
)]

Lastly, by Lemma 1∣∣∣∣∣ 1n
n∑
i=1

zi (x̂i1 − xi1)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|zi| |x̂i1 − xi1| ≤ Op (an) · 1

n

n∑
i=1

|zi| = Op (an) = op (1)

and thus

1

N

N∑
i=1

zix̃
′

i = E
[
zix

′

i

]
+

1

N

N∑
i=1

zi (x̃i − xi)
′
+

1

N

N∑
i=1

(
zix

′

i − E
[
zix

′

i

])
= E

[
zix

′

i

]
+Op (aN) +Op

(
1√
N

)
p−→ Σzx := E

[
zix

′

i

]
.
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Hence,

√
N (α̂− α) =

(
1

N

N∑
i=1

zix̃i

)−1
1√
N

N∑
i=1

g (wi, γ̂)
d−→ N

(
0,Σ−1zx ΩΣ

′−1
zx

)
.

B.3 Proof of Propositions 2 and 1

Proof. Assumption 11(i) guarantees that N1 ∼ N2 ∼ N so that

‖γ̂1 − γ1‖∞ ∼ ‖γ̂2 − γ2‖∞ = Op (aN)

where, by Assumption 11(ii)-(v) and Theorem 8 of Hansen (2008),

aN = bp +

√
logN√
Nb3

.

With b chosen according to Assumption 11(vi) so that
√
logN√
Nb3

= o
(
N−

1
4

)
and
√
Nbp →

0, implying that

aN = o
(
N−

1
2

)
+ o

(
N−

1
4

)
= o

(
N−

1
4

)
,

verifying Assumption 9(ii). Assumption 10 (and consequently Proposition 2) follows

from Theorem 8.11 of Newey and McFadden (1994).

Since ϕ̂
p−→ ϕ and ϕ̂∗

p−→ ϕ∗, Proposition 1 then follows from Theorem 8.13 of

Newey and McFadden (1994).

B.4 An Alternative and More Efficient Estimator α̂∗

The estimator α̂ proposed in the main text is defined by an IV estimator of the

regression equation

yi = α0 + α1xi1 + α2xi2 + ui + εi, E [ui + εi| zi] = 0

in Step 3, where the left-hand side is the raw outcome variable yi. Alternatively, with

Steps 1 and 2 unchanged, we may construct a slightly different estimator α̂∗ for α

based on the conditionally expected outcome as described below.
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Step 3*: Estimate the following equation

yi = α0 + α1xi1 + α2xi2 + ui, E [ui| zi] = 0, (20)

with the outcome variable given by

yi := F (ui, zi) = γ1 (xi1, zi) = γ2 (xi2, zi) ,

replaced by its plug-in estimator

ỹi :=

γ̂1 (xi1, zi) , for di = 1,

γ̂2 (xi2, zi) , for di = 2,

Again using zi as IVs, estimate α by

α̂∗ :=

(
1

n

n∑
i=1

zix̃i

)−1(
1

n

n∑
i=1

ziỹi

)
.

The difference between α̂ and α̂∗ lies in the outcome variable being used for the

IV regression: α̂ is based on the raw output yi, while α̂∗ is based on the estimated

conditionally expected output yi. As we will show below, α̂∗ is in fact asymptotically

more efficient than α̂.

Theorem 3 (Asymptotic Normality of α̂∗). Define

g∗ (wi, α̃, γ̃) :=

zi
(
γ̃1 (xi1)− α̃0 − α̃1xi1 − α̃2γ̃

−1
2 (γ̃1 (xi1))

)
for di = 1,

zi
(
γ̃2 (xi2)− α̃0 − α̃2xi2 − α̃1γ̃

−1
1 (γ̃2 (xi2))

)
for di = 2,

and g∗ (wi, γ̃) as well as G∗similarly as in Section 3.1.3. Define

ϕ̂∗ (wi) :=

[
λ̂1

(
1− α̂2

γ̂
′
2

)
+ λ̂2

α̂1

γ̂
′
1

]
1 {di = 1}+

[
λ̂1
α̂2

γ̂
′
2

+ λ̂2

(
1− α̂1

γ̂
′
1

)]
1 {di = 2} .

Under Assumptions 1-10 with G,ϕ replaced by G∗, ϕ∗ whenever applicable,

√
N (α̂∗ − α∗) d−→ N (0,Σ∗) ,
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where Σ∗ := Σ−1zx Ω∗Σ−1xz and

Ω∗ := E
[
ziz

′

i

(
u2i + ϕ∗ (wi)

2 ε2i
)]
.

The proof is very similar to that of Theorem 2, and is presented in Appendix B.5.

Next, we compare the asymptotic variances of α̂∗ and α̂, and show that α̂∗ is in

fact asymptotically more efficient.

Theorem 4 (α̂∗ is Asymptotically More Efficient than α̂). Ω−Ω∗ is positive definite,

i.e., α̂∗ is asymptotically more efficient than α̂.

The proof is in Appendix B.6. Here we discuss the intuition of Theorem 4. The

error term for the IV regression with the raw outcome yi as the left-hand-side variable

is ui + εi, which has a larger variance than the corresponding error term ui, if the

conditionally expected outcome yi is used instead. Even though we do not observe yi

and must use an estimator ỹi = γ̂1 (xi1) or ỹi = γ̂2 (xi2), the impact of the first-stage

estimation error (which can be loosely thought as an average of εi across i) is smaller

than the impact of εi itself.

To see this more clearly, first consider the multiplier “1 + ϕ (wi)” in (i): the “1”

comes from the one “raw” share of error εi embedded in each yi that we use as the

outcome variable, while “ϕ (wi)” essentially captures the share of influence of the

first-step estimation error γ̂ − γ due to εi. Together, we have

1 + ϕ =

(
1− λ1

α2

γ
′
2

+ λ2
α1

γ
′
1

)
1 {di = 1}+

(
λ1
α2

γ
′
2

+ 1− λ2
α1

γ
′
1

)
1 {di = 2} ,

while the corresponding multiplier ϕ∗ on εi in (ii) is essentially the same except that

“1−λ1 α2

γ
′
2

” becomes “λ1−λ1 α2

γ
′
2

” and “1−λ2 α1

γ
′
1

” becomes “λ2−λ2 α1

γ
′
1

”. Since λ1, λ2 < 1,

the overall multiplier on εi becomes smaller in magnitude27. Essentially, by using the

estimated conditional expected output ỹi, the raw “1” share of εi in yi is moved

into the first-stage estimation error of yi, which is then “averaged” and reduced in

magnitude to λ1 or λ2, thus leading to smaller overall variance.

Lastly, we emphasize that the efficiency comparison in 4 does not directly relate

to the theory of semiparametric efficiency bounds, such as in Ackerberg et al. (2014),

27Note that α1/γ
′

1 ≤ 1 and α2/γ
′

2 ≤ 1 by equation (8).
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which is about asymptotic efficiency of semiparametric estimators under a given cri-

terion function. In fact, by Ackerberg et al. (2014), both estimators based on yi and

ỹi attain their corresponding semiparametric efficiency bounds with respect to their

different criterion functions g and g∗. Theorem 4, however, is a comparison across the

two criterion functions g and g∗: it essentially states that the asymptotically efficient

estimator under g∗ is even more efficient than the efficient estimator under g.

B.5 Proof of Theorem 3

Proof. We adapt the proof of Theorem 2 above with

g∗ (w, α̂, γ̂) :=zi
(
γ̂j (xij)− α̂0 − α̂jxij − α̂kγ̂−1k (γ̂j (xij))

)
,

g∗ (w, γ̂) :=zi
(
γ̂j (xij)− α0 − αjxij − αkγ̂−1k (γ̂j (xij))

)
.

with E [g∗ (wi, γ)] = E
[
zi
(
γj (xij)− α0 − αjxij − αkγ−1k (γj (xij))

)]
= E [ziui] = 0

and 1
N

∑N
i=1 g (z, α̂∗, γ̂) = 0.

By the chain rule,

G∗ (wi, τ) :=∇γg
∗ (wi, γ) [γ̂ − γ]

=zi
(
[γ̂j (xij)− γj (xij)]− αk∇γ

(
γ−1k ◦ γj

)
[γ̂ − γ]

)
=zi

(
1− αk

γ
′
k (xik)

)
[γ̂j (xij)− γj (xij)]− zi

αk
γ
′
k (xik)

[γ̂k (xik)− γk (xik)]

=zi

[
di1

(
1− α2

γ
′
2

,−α2

γ
′
2

)
+ di2

(
−α1

γ
′
1

, 1− α1

γ
′
1

)]
(γ̂ − γ)

and∫
G (wi, γ̂ − γ)Pwi =

∫
zi

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

, λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))
(γ̂ − γ) dPζi

By Proposition 4 of Newey (1994), with

ϕ∗ (wi) := −
(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

)
di1 +

(
λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))
di2
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we have

zi

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

, λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))(
di1 (yi − γ1 (xi1))

di2 (yi − γ2 (xi2))

)
≡ ϕ∗ (wi) ziεi,

and by Assumption 10

∫
G (w, γ̂ − γ) dP (w) =

1

N

N∑
i=1

ϕ∗ (wi) ziεi + op

(
1√
N

)
.

Hence, we have

1√
N

N∑
i=1

g∗ (wi, γ̂) =
1√
N

N∑
i=1

[g∗ (wi, γ) + ϕ∗ (wi) zi] + op (1)
d−→ N (0,Ω∗) ,

where

Ω := Var [g∗ (wi, γ) + δ∗ (zi)] = E
[
ziz

′

i

(
u2i + ϕ∗ (wi)

2 ε2i
)]
,

giving

√
N (α̂− α) =

(
1

N

N∑
i=1

zix̃i

)−1
1√
N

N∑
i=1

g∗ (wi, γ̂)
d−→ N

(
0,Σ−1zx Ω∗Σ

′−1
zx

)
.

B.6 Proof of Theorem 4

Proof. By (7), we have

∂

∂c
γj (c; z) = αj + αkx

′

k

1

x
′
j

+
1

x
′
j

> αj,

and thus 0 < αj/γ
′
j < 1, which implies

λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

> 0, λ2

(
1− α1

γ
′
1

)
+ λ1

α2

γ
′
2

> 0.
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Hence,

ϕ∗ =

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

)
di1 +

(
λ2

(
1− α1

γ
′
1

)
+ λ1

α2

γ
′
2

)
di2 > 0

1 + ϕ = 1−
(
α2

γ
′
2

λ1 −
α1

γ
′
1

λ2

)
(di1 − di2)

=

(
1− λ1

α2

γ
′
2

+ λ2
α1

γ
′
1

)
di1 +

(
1− λ2

α1

γ
′
1

+ λ1
α2

γ
′
2

)
di2

= ϕ∗ + (1− λ1) di1 + (1− λ2) di2
> ϕ∗ > 0.

Hence, (1 + ϕ)2 > ϕ∗2 > 0 and

Ω− Ω∗ = E
[
ziz

′

i

[
(1− ϕ (xi, di))

2 − ϕ∗ (xi, di)
2] ε2i ]

is positive definite.

C Robustness Check for First Application

Although most pharmacies in our sample have one manager and one pharmacist,

there are a few pharmacies with more than one employee pharmacist. For this subset

of pharmacies, we compute the total hours worked by employee pharmacists by mul-

tiplying the reported hours worked from an employee by the number of employees.

Then, the second imputation step is applied based on the total hours worked by all

employees. In this process, we implicitly assume the labor hours from two different

employees are perfect substitutes. As a robustness check, we also estimate a version of

production function which has an elasticity of substitution between the hours worked

by different employees equal to one. Table 12 summarizes this version of the esti-

mation result. The estimated parameters show that employees become slightly less

productive at both independents and chains compared to our baseline estimation,

but in general our estimation result is robust to how we treat employee inputs from

pharmacies with more than one employee.
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Table 12: Using N2 ∗ log(x2) instead of log(N2 ∗H2)

Independent Chain
Observed Expected Observed Expected
Outputs Outputs Outputs Outputs

α0 5.493 5.888 3.409 4.201
(0.527) (0.270) (1.656) (0.972)

α1 0.258 0.178 0.878 0.719
(0.121) (0.057) (0.446) (0.261)

α2 0.033 0.017 0.092 0.056
(0.021) (0.014) (0.039) (0.022)

Nobs 144 144 188 188
First-stage F for x1 10.066 10.066 10.199 10.199
First-stage F for x2 12.360 12.360 3.210 3.210

D Inter Vivos Gifts

Consider an example with a married couple and two parental households, j = 1, 2,

whose wealth levels are respectively m1 and m2, which is based on Bergstrom, Blume,

and Varian (1986). Parents are altruistic toward their married offspring but not

toward that offspring’s spouse. Parental household j has utility

uj(gj) = ln(mj − gj) + µ ln(g1 + g2)

where gj is the married couple’s gift from parental household j and µ is the probability

that both parental households think the children’s marriage will endure. This leads

to a noncooperative game between the two parental households since the incentive

for either household to gift the offspring couple diminishes as the other parental

household gives more. This is a game of strategic substitutes. The Nash equilibrium

of this game between the two parental households is

g∗1 =
(1 + µ) m1 −m2

2 + µ
, g∗2 =

(1 + µ) m2 −m1

2 + µ
.

There is a unique Nash equilibrium for any µ for any wealth levels for the two house-

holds that are not “too” different. Both g1 and g2 are strictly increasing in the shock

µ, and hence the outcome is strictly increasing in µ. Finally, we can interpret the

length of time the marriage survives as a measure of the durability of the marriage.
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