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Abstract

This paper explores whether Big Data, taking the form of extensive high dimen-
sional records, can reduce the cost of adverse selection by private service providers in
government-run capitation schemes, such as Medicare Advantage. We argue that using
data to improve the ex ante precision of capitation regressions is unlikely to be help-
ful. Even if types become essentially observable, the high dimensionality of covariates
makes it infeasible to precisely estimate the cost of serving a given type: Big Data
makes types observable, but not necessarily interpretable. This gives an informed pri-
vate operator scope to select types that are relatively cheap to serve. Instead, we argue
that data can be used to align incentives by forming unbiased and non-manipulable ex
post estimates of a private operator’s gains from selection.

Keywords: adverse selection, big data, capitation, health-care regulation, detail-
free mechanism design, delegated model selection.

1 Introduction

This paper explores the value of Big Data in reducing the cost of adverse selection by

private service providers in government-run capitation or voucher schemes. We emphasize
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an application to healthcare insurance. School voucher programs are an other example.

In the context of public health-insurance, a capitation scheme pays private insurance

plans an estimate of the cost of insurance for individuals they enroll. An example is Medicare

Advantage, a program which lets US Medicare recipients switch to private health insurance

plans. Capitation payments can be conditioned on agreed upon user characteristics (then,

they are said to be risk-adjusted). While capitation programs are a popular way to outsource

government mandated services to the private sector, they are often plagued by adverse

selection. Private plans have strong incentives to select types that are cheaper to serve

than their capitation payment, which increases the cost of serving the overall population.

In the context of Medicare Advantage, Batata (2004) and Brown et al. (2014) report yearly

overpayments in the thousands dollars for patients selected by private plans.

A natural strategy to reduce adverse selection is to increase the precision of risk-adjusted

capitation schemes by reimbursing private plans for the expected cost of taking care of the

specific patients they select. This suggests that Big Data — i.e., the availability of high-

dimensional patient records — could be used to condition capitation payments on precise

individual characteristics, and eliminate the scope for adverse selection. We take a different

view and argue that in realistic Big Data environments, this näıve use of high-dimensional

co-variates is likely to be of limited value. Instead, we suggest that data may be more

successfully used to form unbiased ex post estimates of strategic selection by private plans.

Correcting capitation formulas with these ex post estimates aligns the public and private

plans’ incentives.

Our model considers a single public plan p0 seeking to outsource the provision of health-

care services to a single private plan p1.1 The private plan may have a genuine comparative

advantage in insuring certain types of patients so that some selection into plans may be

welfare enhancing. For instance, plan p1 may have expertise in tobacco cessation, inducing

a comparative advantage insuring current smokers. However, the private plan also has in-

1In the case of Medicare Advantage, the private plan would correspond to a preferred provider organization
(PPO) or a health management organization (HMO).
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centives to select patients whose cost of care is overestimated; for instance, patients that are

more healthy or less likely to use costly services than their official risk-rating suggests. This

leads us to distinguish legitimate selection characteristics, which predict comparative ad-

vantage, from illegitimate selection characteristics, which predict costs but not comparative

advantage. Efficient selection strategies need only depend on legitimate selection characteris-

tics. We assume that comparative advantage can be captured using a small set of legitimate

characteristics, while the underlying set of types predicting cost of care is large. In addition,

we assume that public plan p0 has access to a hold-out sample of cost realizations that is

not observed by private plan p1, such as cost realizations for the patients it serves.

Our modeling choices reflect both the opportunities and limitations presented by Big

Data. We assume that high-dimensional records isomorphic to patients’ types — i.e. suffi-

cient statistics for patients’ cost of care — are observable. However, we also recognize that

the number of such possible types need not be small relative to the sample size of available

cost data, thereby limiting their use for prediction.2 This leads us to study mechanism de-

sign for environments where both the sample size and the number of relevant covariates are

large. In such Big Data environments, sufficient statistics of types are observable but not

interpretable: even conditional on type and cost data, it is not possible to form a precise

estimate of a patient’s cost of care. This creates a trade-off when setting capitation rates:

“sparse” cost estimates, conditioned on a few patient characteristics, have low standard er-

rors but high bias; in contrast “rich” cost estimates, conditioned on an exhaustive set of

patient characteristics, have low bias, but large standard errors.

Concerns over estimation error are reflected in the capitation scheme employed by Medi-

care Advantage, as well as in the risk-adjustment formula used to calculate transfers be-

tween plans under the Affordable Care Act (ACA). The Medicare Advantage risk adjust-

ment model, rolled out in 2004 by the Centers for Medicare and Medicaid Services (CMS),

uses Hierarchical Condition Categories (HCCs) (Pope et al., 2004). The HCCs are groups

2The statistics literature concerned with Big Data makes similar assumptions. See Belloni et al. (2013,
2014) for recent examples in econometrics.
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of conditions that can be inferred from the patient diagnosis data. The number of HCCs in

the model varies between editions, but generally is under 100. HCCs are used in conjunction

with condition severity modifiers and demographic factors to estimate individual patients’

expected expenditures in the subsequent year. Thus the model falls under the “sparse capita-

tion” category discussed above: there are relatively few categories, and a reasonably precise

estimator can be formed for each category (Evans et al., 2011). The desire for “adequate

sample sizes to permit accurate and stable estimates of expenditures” has been a design

principle for the risk adjustment scheme, and a factor in keeping the number of patient

types in the model relatively low (Pope et al., 2004).

The model used for risk-adjustment transfers under the ACA uses a somewhat expanded

set of HCCs (114 in 2014), reflecting the fact that the ACA transfer model is a general-

population model, while the Medicare Advantage model is primarily for patients above the

age of 65 (Kautter et al., 2014). As in the case of the Medicare Advantage model, the need

for statistical power to get good ex ante estimates is one of the design principles limiting

the number of categories used (Centers for Medicare and Medicaid Services, 2016). We

discuss implications of our analysis to the ACA setting, where no public option is available,

in Section 5.

Our first set of results considers traditional capitation schemes, which, as emphasized

by Brown et al. (2014), seek to reimburse private plans for the expected cost of treating

patients given ex ante observables. Sparse capitation schemes condition cost estimates on

a small set of patient characteristics, while rich capitation schemes condition cost estimates

on the full set of characteristics made available by Big Data. We show that such schemes

induce efficient selection when the private plan is constrained to select only on the basis

of legitimate characteristics (determinants of comparative advantage). However, if private

plans can engage in illegitimate selection, then patient assignment is bounded away from ef-

ficiency in Big Data environments. Indeed, even though types are observable, cost-estimates

conditional on types remain noisy even for large samples. As a result it is possible for the
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private plan to maintain an informational advantage which induces inefficient selection and

increases the average cost of care.

In spite of these limitations, if legitimate selection characteristics are common knowledge,

we can construct a prior-free mechanism that achieves efficient patient assignment at no

excess cost for the public plan. Big Data is not used to obtain a more precise ex ante

capitation formula. Instead, we augment the baseline capitation formula (based on legitimate

characteristics) with a single additional term measuring ex post selection by the private

plan. This additional term takes the form of an appropriately weighted covariance between

the distribution of types selected by the private plan, and the residuals from the sparse

capitation regression evaluated on out-of-sample costs. More concretely, it uses Big Data to

form an unbiased estimate of the cost savings obtained by the private plan from selecting a

non-representative sample of patients. This “strategic capitation scheme” induces efficient

selection, and, importantly, does not give the public plan any incentive to bias its report of

out-of-sample costs. This last property allows us to extend our approach to health exchanges

for which out-of-sample cost realizations would be reported by competing healthcare plans

(see Section 5).

Strategic capitation can be extended to environments where legitimate selection char-

acteristics are not common knowledge. It is still possible to achieve a meaningful share of

first-best efficiency by using generalized strategic capitation schemes that let private plans

specify the characteristics they wish to select on. This flexibility comes at a cost related

to the complexity of the class of models the private plan can use to select patients. We

show that the performance guarantees of this indirect prior-free mechanism are essentially

unimprovable by studying the unrestricted direct mechanism design problem in a specific

environment.

The paper contributes to the theoretical literature on adverse selection in insurance mar-

kets.3 Our work is particularly related to Glazer and McGuire (2000), who study optimal

3See for instance Rothschild and Stiglitz (1976), Bisin and Gottardi (1999, 2006), Dubey and Geanakoplos
(2002).
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risk-adjustment in a Bayesian setting. They show that when selection is possible, optimal

ex ante reimbursement schemes should deviate from simply reimbursing private plans the

expected cost of taking care of patients. In particular, capitation schemes should adjust

reimbursement rates to dull the effect of “cream-skimming” by private plans. We show how

to induce efficient selection by using information about patient types and ex post cost data.

Our mechanism is closely related to that of Mezzetti (2004), which also uses noisy ex post

information to provide accurate ex ante incentives. Also related is the work of Riordan and

Sappington (1988) who show how to exploit noisy ex post signals to screen agents at no cost

to the principal. As we clarify in greater detail in Section 6, our work differs for two main

reasons. First, we are interested in prior-free mechanisms and do not make the identification

assumptions required in Riordan and Sappington (1988). Second, ex post signals (here the

public plan’s hold-out cost data) need not be publicly observed and we must ensure that the

relevant party has correct incentives for reporting. Third, unlike Mezzetti (2004), we require

exact budget-balance.

Our work is motivated by a growing empirical literature which documents cream-skimming

in health insurance markets, and studies the efficiency of various risk-adjustment schemes

(Frank et al., 2000, Mello et al., 2003, Batata, 2004, Newhouse et al., 2012, Brown et al.,

2014). Our analysis is inspired by Brown et al. (2014) which shows that increasing the

number of covariates used in Medicare Advantage’s capitation formulas has in fact led to

an increase in the cost of adverse selection to the state.4 We complement their result by

showing that näıve uses of data are unlikely to resolve adverse selection, but progress can be

made by using data to detect selection ex post.

The paper is structured as follows. Section 2 describes our framework, and in particular

our approach to Big Data. Section 3 uses a simple example in which legitimate selection

characteristics are common knowledge to delineate the mechanics of adverse selection under

various capitation schemes. Section 4 generalizes the analysis to settings in which the private

4Newhouse et al. (2012) argues that the cost of adverse selection may be overstated.
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plan’s comparative advantage is not common knowledge. Section 5 uses a stylized model

to show how strategic capitation can help reduce adverse selection in healthcare exchanges.

Section 6 and Appendix A present several extensions addressing potential risk inflation,

dynamic selection, and reduced quality provision by private plans. Proofs are collected in

Appendix B unless mentioned otherwise.

2 Framework

Our model seeks to capture three features of healthcare capitation. The first is selection by

private healthcare plans, such as HMOs or PPOs, which we model as a reduced form cost for

attracting different populations. Selection may be achieved through targeted advertisement

and marketing (consistent with Starc (2014)), heterogenity in the quality of customer service

during enrollment procedures, as well as targeted service bundles.

Second, public and private plans may have heterogeneous comparative advantages in

treating patients. While there is controversy about the real value added of private plans over

Medicare, there is evidence that insurance plans are more than mere financial intermediaries.

Plans play an important role in selecting, monitoring and generally resolving agency problems

vis à vis doctors and hospitals, as well as encouraging preventive care and healthy habit

formation. Data from Bundorf et al. (2012) provides evidence for such comparative advantage

across different plans. In their sample, HMOs have a comparative advantage over PPOs in

insuring high risk patients. In our model, the possibility of comparative advantage creates

a reason for both public and private plans to be active, and raises the question of efficient

patient allocation.

Third, we seek to correctly capture the forces that make Big Data attractive but chal-

lenging: we assume that high dimensional records make patients’ types observable, but that

as a result, even with a large sample of patients, it is not possible to form precise estimates of

expected cost of treatment conditional on individual types (the concern for power is explicit

in discussions of CMS formulas by Pope et al. (2004), Evans et al. (2011), Kautter et al.
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(2014)). In short, types are observable but not interpretable.

The lead example for our work is Medicare Advantage, a program that lets US Medicare

recipients switch to private insurance plans such as HMOs and PPOs. Medicare Advantage is

a large and growing program. It covers approximately 15 million patients, out of the roughly

50 million enrolled in Medicare, and its size was multiplied by three from 2005 to 2015.

Selection by private plans is an ongoing concern threatening the financial sustainability of

the program (Batata, 2004, Brown et al., 2014).

2.1 Players, Actions, Payoffs

We study the relationship between a public health care plan p0, responsible for the health

expenses of a set I = {1, · · · , N} of patients, and an independent private plan p1.

Treatment costs. Each patient i ∈ I has a type τi ∈ T ⊂ Rn where the set of types

T is potentially very large, but finite. Type τ is a sufficient statistic for a patient’s cost

of care, and is observable to both plans. For any sample J of patients, we denote by

µJ ∈ ∆(T ) the empirical distribution of types τ in sample J , defined by µJ(τ) ≡ |Jτ |
|J | , where

Jτ ≡ {j ∈ J |τj = τ}, and |J | denotes the cardinal of J .

The realized cost of care for a patient i of type τ insured by plan p is positive, bounded

above, and denoted by ĉi(p) ∈ [0, cmax]. The distribution of potential costs (ĉi(p0), ĉi(p1))

conditional on type τ is distributed according to a c.d.f. F (τ). Treatment costs across

patients i are exchangeable conditional on patient type τ , cost distribution F , and plan p.

We allow for aggregate uncertainty so that c.d.f. F is itself uncertain.

Selection. The key difficulty is that private plan p1 may strategically seek to attract a

targeted subset of patients. Specifically, private plan p1 can choose an expected selection

policy λ : T → [0, 1] at a cost K(λ) ≥ 0. A patient i enrolls with private plan p1 with

probability λ(τi). Consistent with observations in Starc (2014), this reduced-form cost of
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selection may be thought of as a cost of advertisement.5 Realized selection Λ ⊂ I is a mean

preserving spread of intended selection λ defined by

1i∈Λ = λ(τi) + ϕi.

Error terms (ϕi)i∈I have expectation equal to zero, and may be correlated across different

types τ ∈ T , but are otherwise independent of cost realization ĉi(p). For instance, a recruit-

ment ad may unexpectedly attract a population different from the targeted one. Patients

i ∈ I \ Λ that do not enroll with private plan p1 are insured by public plan p0.

Realized payoffs and preferences. Transfers Π ∈ R from public plan p0 to private plan

p1 are feasible. Given a selection decision λ by private plan p1, a realized selection Λ, and a

transfer Π, the realized surpluses U0 and U1 accruing to the public and private plans are

U0 = −Π +
∑
i∈Λ

ĉi(p0) and U1 = Π−
∑
i∈Λ

ĉi(p1)−K(λ).

Conditional on selection rule λ and a distribution of costs F , surplus takes the form

S(λ) = −K(λ) + EF

[∑
i∈I

λ(τi) (ĉi(p0)− ĉi(p1))

]
.

Public plan p0 has lexicographic preferences: its main objective is to maximize surplus S

in expectation; however, taking as given selection behavior λ and surplus S, its secondary

objective is to maximize cost savings U0 in expectation. Private plan p1 seeks to maximize

its profits U1 in expectation.

Note that although we let the public plan care about surplus, we will seek mechanisms

such that the expectation of cost savings U0 is approximately non-negative in equilibrium.

5Cost K implicitly includes any information acquisition costs needed to implement λ. Under a more
standard model of selection along the lines of Rothschild and Stiglitz (1976), the private plan would screen
patients through a menu of discounts and benefits specifically appealing to desirable types. In a dynamic
setting, plans may be able to select patients by offering better customer service to types they wish to retain.
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This can be thought of as a financing constraint.

2.2 Data

We model explicitly the role that data plays in the contracting problem. We assume that in

Big Data environments, the richness of covariates makes patients’ types essentially observ-

able, but prevents the public plan from forming a precise estimate of expected treatment

costs conditional on types. A consequence illustrated in Section 3 is that even imprecise

additional signals of costs may allow the private plan to profit from selecting patients.

Samples. Both plans p0 and p1 observe a public dataset of types and cost realizations

D0 = {(i, τi, ĉi(p0))|i ∈ D0} for plan p0, where i ∈ D0 denotes a patient i whose record is

included in D0. In addition, we denote by Dτ
0 = {(i, τi, ĉi(p0))|τi = τ, i ∈ D0} the cost data

relating to patients of type τ . We assume that for every τ ∈ T , the set Dτ
0 is non-empty,

which implies |T | ≤ |D0|: the sample size of dataset D0 is at least as large as the type space.

Plan p1 privately observes a dataset D1 = {(i, xi, ĉi(p1))|i ∈ D1} reporting both her own

costs, and side-signals xi for a sample of patients i ∈ D1. Side signal xi (which can include

type τi) captures other signals beyond cost realizations that the plan may be able to use in

order to select patients.

Finally, we assume that plan p0 has access to a hold-out sample H = {(i, τi, ĉi(p0))|i ∈ H}

of its own costs, independent of data D1 conditional on the realization of cost distribution

F . Hold-out sample H may consist of ex post cost realizations for the current set of patients

enrolled by the public plan. Alternatively, H may correspond to past cost data, securely

encrypted, and verifiably released only after patient selection has occurred.6 Contractual

transfers Π will be allowed to depend on hold-out sample H, but we will take seriously

the public plan’s incentive to reveal correct information. Specifically, we will address the

public plan’s incentives to bias its records in order to reduce payments to the private plan.

6For instance, an encrypted version of the data can be released before selection occurs, with a decryption
key publicized after patient enrollment has occurred.
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For instance the public plan could down-code interventions happening to its own patients.

Access to a hold-out sample is essential. It allows the public plan to obtain estimates of its

own costs whose errors are uncorrelated to the private plan’s information. We motivate the

asymmetric treatment of data-sets D0 (publicly observed) and H (privately observed by the

public plan) when we discuss the timing of actions.

Big Data. Recall that µI(τ) ≡ |Iτ |
|I| denotes the sample distribution of types τ in patient

population I. Our model of Big Data consists of two assumptions:

(i) types τ ∈ T are publicly observed;

(ii) even if sample data D0 is large, type space T is of comparable size; i.e. there
exists a fixed constant a > 0 such that

EµI

[
1√
|Dτ

0 |

]
> a.

Points (i) and (ii) summarize what we think are the opportunities and limitations of Big

Data. Point (i) captures the idea that high dimensional records make types observable.

Point (ii) implies that even if sample D0 is very large, the size |Dτ
0 | of many subgroups Dτ

0

remains bounded above. As a result the public plan’s estimates of type-specific costs on the

basis of data D0 remains noisy.

Note that all our results are non-asymptotic: we provide efficiency bounds that depend

explicitly on EµI
[

1√
|Dτ0 |

]
. Point (ii) clarifies the terms we consider negligible and non-

negligible when we provide performance bounds. Our large type-space model of Big Data

contrasts with small type-space environments in which the sample size maybe considered

large compared to the set of types.

2.3 Beliefs, Contracts, and Equilibrium

Beliefs. The plans’ environment is described by: healthcare-cost distribution F ; data-sets

D0, D1 and H; cost of selection K. All these objects are in principle random variables.
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For simplicity, we assume that plans p0 and p1 share a common prior ν over the tuple

(F,D0, D1, H,K).

Note that the capitation mechanisms we study do not rely on the common prior assump-

tion. Our performance bounds remain valid in a non-common prior setting if expectations

are taken under the private plan’s prior.7

Reporting of hold-out data. We allow mechanisms to depend on reports of hold out

sample H made by public plan p0. We denote by β : H 7→ HR the public plan’s strategy,

mapping hold-out data H to (potentially biased) reported hold-out data HR. We note that β

does not depend on realized selection Λ. This can be thought of as a restriction on timing (the

hold-out sample must be encrypted and shared before selection occurs), or a restriction on

strategies (the public plan cannot tailor misreporting to simultaneous selection by the private

plan). We denote by β∗(H) ≡ H the truthful reporting strategy, and break indifferences in

favor of truth-telling, reflecting small costs in misreporting.

Contracts. For any set of patients J ⊂ I, let τJ ≡ (τi)i∈J and ĉJ(p) ≡ (ĉi(p))i∈J de-

note profiles of types and costs. We denote by HR = {(i, τi, ĉRτi(p0)), i ∈ H} the hold-out

data reported ex post by public plan p0. We emphasize that these are reports of privately

observed costs, and that the public plan must be given appropriate incentives in order to

report truthfully. A capitation contract between the public and private plan is a mapping

Π(Λ, HR) ∈ R, specifying the aggregate transfer to private plan p1 as a function of realized

selection Λ, and reported hold-out sample data HR. Note that contract Π implicitly depends

on data D0, but we suppress this dependency in the notation since D0 is common-knowledge

between plans.

7For recent work emphasizing prior-free approaches to mechanism design, see Segal (2003), Bergemann
and Schlag (2008), Hartline and Roughgarden (2008), Chassang (2013), Carroll (2015), Madarász and Prat
(2014), Brooks (2014), Antic (2014).
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Timing and equilibrium. Given public data D0 and a common knowledge contract Π,

the timing of the interaction between public and private plans is as follows:

1. the public and private plans simultaneously pick a cost reporting strategy β, and a

selection strategy λ;

2. potentially biased hold-out data HR is reported, and actual selection Λ ⊂ I by the

private plan is realized, resulting in a contractual transfer Π(Λ, HR).

We assume away potential incentive issues related to the revelation of data D0 by public plan

p0 for simplicity. It is sufficient for our analysis that the contract Π be common knowledge

in stage 1. We only care about data D0 to the extent that it lets us specify contract Π.

Note that since the public plan’s primary objective is to maximize surplus, there would be

little incentive to misreport D0: biased costs would distort the selection of patients λ taking

place at a later stage, and reduce surplus S. In contrast, sending a biased report HR of hold-

out data H cannot influence the selection of patients λ, which takes place simultaneously.

As a result, biasing hold-out data H does not affect surplus S; it only affects the allocation

of surplus across the public plan’s cost savings U0, and the private plan’s profits U1. This

is why we take seriously strategic issues related to the reporting of hold-out data H, but

simplify away strategic considerations pertaining to the release of initial data D0.

Given a capitation contract Π, a selection strategy λ, and a reporting strategy β, the

public and private plans’ expected payoffs under common prior ν are

EνU0 = Eν

[
−Π +

∑
i∈Λ

ĉi(p0)
∣∣∣λ, β] ,

EνU1 = Eν

[
Π−

∑
i∈Λ

ĉi(p1)
∣∣∣λ, β]−K(λ).

Given a contract Π, abstractly denoting by I0 and I1 the information available to plans p0
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and p1, a strategy profile (β, λ) is an equilibrium if and only if β and λ respectively solve

max
β

Eν [−Π
∣∣I0, β, λ] and max

λ
Eν

[
Π−

∑
i∈Λ

ĉi(p1)
∣∣∣I1, β, λ

]
−K(λ).

In words, taking selection λ as given, the public plan’s reporting strategy β must minimize

expected transfers to the private plan. Taking reporting β as given, the private plan picks

the selection strategy that maximizes its expected profit.

Design objectives. We seek contracts Π such that for all priors ν, data D0, D1, and all

equilibria (λ, β), surplus S and public and private plan payoffs U0, U1 satisfy:

Eν [S|λ] = Eν
[
max
λ

Eν [S|λ,D0, D1]
]
− o(|I|); (1)

Eν
[
U0

∣∣∣λ, β,D0

]
≥ −o(|I|); (2)

Eν
[
U1

∣∣∣λ, β,D1

]
≥ 0, (3)

where o(|I|) is the usual little-o notation for “negligible relative to |I|.”

In words, we seek ex post budget-balanced prior-free mechanisms that: (i) maximize

efficiency given available information up to a term negligible compared to the size |I| of the

patient population; (ii) satisfy approximate interim individual rationality for the public plan

(reflecting some willingness to subsidize the market); (iii) satisfy exact interim individual

rationality for the private plan.

3 Strategic Capitation

In this section we clarify why existing ex ante capitation schemes may work under idealized

conditions, but likely fail in a realistic Big Data setting. Still, we are able to exhibit a prior-

free mechanism that achieves first-best allocation by using an ex post measure of selection to

correct capitation payments. Since this indirect prior-free mechanism achieves the first-best,
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there are no performance benefits from using a prior-dependent Bayesian mechanism.

To make the key forces more transparent we make a few simplifying assumptions that

we relax in Section 4.

Legitimate and illegitimate selection. We assume for now that there exists a common

knowledge partition E of type space T , with typical element η ∈ E, such that treatment

costs can be decomposed as

ĉi(p) = κ(ηi, p) + ei,τi (4)

where error terms ei,τi do not depend on provider p, and have mean zero conditional on ηi

in the patient population:

Eν,µI [ei,τi|ηi, D0] = 0. (5)

In the example of a private plan with expertise running smoking cessation programs, E would

partition patients into smokers, and non-smokers; η would be a patient’s smoking status.

Cost decomposition (4) implies that the comparative advantages of plans p0 and p1,

described by κ(η, ·), depend only on characteristics η ∈ E. We think of E as a small set

compared to type space T , so that it is possible for each plan to form accurate estimates of

its costs conditional on η ∈ E. For simplicity, we assume that the costs of the public plan

κ(·, p0) are known by both plans, and that private plan p1 knows its own costs κ(·, p1). Error

term ei,τ captures residual errors in cost estimates.

We assume (for this section) that the private plan can engage in arbitrary costless selec-

tion: ∀λ ∈ [0, 1]T , K(λ) = 0. Let M(E) denote the set of selection rules measurable with

respect to E.

Remark 1. First-best surplus, Smax ≡ maxλ Eν
[∑

i∈Λ ĉi(p0)− ĉi(p1)
]

is attained by a selec-

tion policy λ∗(τ) = 1κ(η,p0)>κ(η,p1) that is measurable with respect to partition E.

Accordingly, a selection rule is said to be legitimate if and only if it is measurable with

respect to E (i.e. λ ∈ M(E)). Selection rules that are not measurable with respect to
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type-space partition E depend on features of types τ that do not matter for efficiency. They

are referred to as illegitimate.

A stylized example. The following very stylized example makes for simple computations

in the proofs that follow. We denote by ν0 the corresponding prior. We assume that |I| =

|T | = |D0| = |D1|. Types τ ∈ T take the form τ = (η, n, δ), with η in some finite set E,

n ∈ {1, · · · , n} an integer, and δ ∈ {−1, 1}. Sample I includes one patient per type τ ∈ T .

Data D0 (resp. D1) consists of a cost realization ĉi(p0) (resp. ĉi(p1)). Thus |I| = 2×n×|E|.

Comparative advantage is determined by κ(η, p) = κ0 + ∆× εη1p=p1 , where ∆ ∈ [0, κ0/4]

parameterizes the magnitude of comparative advantages, and εη ∼ U{−1, 1} (uniformly

distributed over {−1, 1}) indicates which plan has a comparative advantage. Error term

ei,τ is distributed ei,τ ∼ U{0, δεη,nκ0}, with εη,n ∼ U{−1, 1}. Every n is associated with

two types (corresponding to δ equal to 1 or −1), one whose idiosyncratic cost shocks has a

positive average, and one with a negative average. Random variables εη and εη,n are drawn

independently. Shocks ei,τ are drawn independently across individuals i conditional on εη,n.

It is immediate that Eν,τi∼µI [ei,τi|D0, η] = 0. Cost data for types (η, n, 1) and (η, n,−1) is

either fully revealing of εη,n or not at all, leading to straightforward conditional expectations.

3.1 Why Ex Ante Capitation Schemes Fail

Existing capitation mechanisms attempt to align incentives through capitation rates that

are fixed ex ante. This removes concerns that the public plan may misreport its hold-out

cost data H to reduce payments. We clarify when such schemes are potentially effective:

when the private plan p1 is unable to engage in illegitimate selection, or when type-specific

cost estimates are arbitrarily precise. We then show that in Big Data environments, if plan

p1 is able to engage in illegitimate selection, such schemes are either bounded away from

efficiency, or generate large losses for the public plan.

We consider sparse and rich capitation contracts that differ in the sophistication of the
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information used to predict treatment costs. For simplicity, and since we mostly establish

negative results, we allow these ex ante capitation schemes to depend on the common prior

ν.8 Transfers take one of the following forms:

Πsparse(Λ) =
∑
i∈Λ

Eν,µI [ĉi(p0)|ηi, D0] =
∑
i∈Λ

κ(ηi, p0) (6)

Πrich(Λ) =
∑
i∈Λ

Eν [ĉi(p0)|τi, D0] =
∑
i∈Λ

κ(ηi, p0) + Eν [ei,τi|τi, D0]. (7)

In both schemes the private plan is paid the public plan’s expected cost of treating selected

patients, conditional on some set of ex ante observables. We denote by Ssparse and Srich the

associated surpluses in equilibrium.

Sparse capitation, like the existing CMS formulas, estimates patients’ costs conditional

on legitimate characteristics η alone. Rich capitation estimates patients’ costs conditional

on the full set of observables τ — i.e. it exploits Big Data to form targeted estimates.

Under sparse capitation, private plan p1’s expected payoffs for engaging in selection λ

can be decomposed as the sum of social surplus, and a rent equal to the covariance between

selection profile λ and the bias in cost estimates conditional on type τ :

∑
i∈I

λ(τi) [κ(ηi, p0)− κ(ηi, p1)]︸ ︷︷ ︸
social surplus

+
∑
i∈I

λ(τi)Eν [ei,τi|D0, D1, τi]︸ ︷︷ ︸
rents from type selection

.9 (8)

Proposition 1 (sparse capitation). Consider capitation scheme Πsparse.

(i) If the private plan is constrained to use legitimate selection (λ ∈M(E)), then

efficient selection and truthful reporting (λ∗, β∗) is the unique equilibrium.

(ii) Under prior ν0, if the private plan is not constrained to use legitimate selec-

8In contrast, we establish positive results for mechanisms that do not depend on the prior ν.
9We include D0 in the information set of the private plan since this information is essentially conveyed

by the capitation rate set by the public plan.
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tion rules, then Eν0 [Smax − Ssparse] = 3
8
∆|I|.

If ∆ = 0 so that there is no comparative advantage, the public plan makes expected

losses Eν0 [U0] = − 3
16
κ0|I|.

Since Eν,µI [ei,τi|D0, D1, ηi] = 0, rents from type selection in (8) are equal to zero whenever

selection strategy λ is measurable with respect to legitimate selection characteristics η ∈ E.

Hence, under the constraint that λ ∈M(E), sparse capitation leads to efficient selection.

When the private plan can select on the basis of illegitimate characteristics τ , bias

Eν [ei,τi|D0, D1, τi] in cost estimates can be exploited. The private plan will seek to avoid

under-reimbursed patients and recruit over-reimbursed patients, thereby deviating from ef-

ficient selection. In addition, rents from such selection come at the expense of the public

provider, potentially resulting in large losses to p0 if the gains from trade are small. The

inefficiency loss due to selection does not vanish even for large samples D0.

In order to correct bias Eν [ei,τi|D0, D1, τi] in cost estimates, rich capitation Πrich conditions

capitation rates on the full set of observables τ . Unfortunately, this does not solve the

problem in Big Data settings since conditional cost estimates remain noisy, allowing the

private plan to exploit estimation error, instead of estimation bias.

Proposition 2 (rich capitation). (i) Under any prior ν, efficiency loss Smax −

Srich satisfies Eν
[
Smax − Srich

]
≤ 2cmax|I|EµI

[
1√
|Dτ0 |

]
(ii) Under prior ν0, Eν

[
Smax − Srich

]
= 3

32
∆|I|.

If ∆ = 0, the public plan makes expected losses Eν [U0] = − 3
64
κ0|I|.

While sparse capitation schemes do not achieve efficiency, regardless of data D0, rich

capitation schemes may achieve near efficiency provided that EµI
[

1√
|Dτ0 |

]
is small, i.e. for

almost every type τ , subsample Dτ
0 is large. This is ruled out in Big Data environments.

Cost estimates Eν [eτ,i|D0, τi] remain imprecise for a non-vanishing mass of types τ (under

the sample distribution of types µI). As a result, the private plan’s additional data D1 has a

non-vanishing impact on cost estimate Eν [eτ,i|D0, D1, τi]. This result would arise even if the
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private plan did not observe data D0 but only observed the capitation rates Eν [ĉi(p0)|τi, D0]

offered by the public plan for enrolling patients with type τi.

3.2 Aligning Plan Incentives via Strategic Capitation

We now describe a capitation scheme that eliminates incentives for strategic selection by p1

and strategic reporting by p0. Payments take the form

Πstrat(Λ, HR) ≡
∑
i∈Λ

π(ηi) + ∆π(ηi, HR,Λ), (9)

where π(η) ≡ κ(η, p0) is the baseline capitation rate conditional on legitimate characteristics

used in sparse capitation. Term ∆π(η,HR,Λ) is a correction dependent on reported hold-out

data HR and selected sample Λ. It correlates a measure of the private plan’s deviation from

legitimate selection with hold-out estimates of cost-prediction bias. It is equal to zero in

expectation when the plan does not engage in illegitimate selection. Formally, it takes the

form:

∆π(ηi, HR,Λ) ≡ covI(sτi , rτi|ηi = η) =
1

|Iη|
∑
i∈Iη

sτirτi , where

• sτi ≡
µΛ(τi|ηi)
µI(τi|ηi) − 1 measures selected sample Λ’s deviation from legitimate selection;10

• rτi ≡ 1
|Hτi
R |

∑
j∈Hτi

R

[
ĉRj (p0)− κ(η, p0)

]
is the average residual of costs for type τi in the

reported hold-out sample Hτi
R ≡ {(j, τj, ĉRj )|j ∈ HR, τj = τi}.

Strategic capitation satisfies the following key properties

∀λ, Eν [∆π(η,HR,Λ)|D0, D1, β
∗, λ] = Eν

[∑
τ∈η

(µΛ(τ |η)− µI(τ |η))Eν [eτ,i|D1, D0, τ ]

]
, (10)

∀λ ∈M(E),∀β, ∀η ∈ E, Eν [|Λη|∆π(η,HR,Λ)|D0, D1, β, λ] = 0. (11)

10Recall that for any sample J , µJ(τ |η) ≡ |Jτ |
|Jη| denotes the distribution of types τ conditional on charac-

teristic η ⊂ T in sample J .
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Condition (10) implies that under truthful reporting β∗, the strategic capitation adjustment

is an unbiased estimate of the excess profits plan p1 may have obtained through illegit-

imate selection (the adjustment is negative if private plan p1 overselects types that are

comparatively cheaper to treat). This noisy ex post estimate provides an accurate ex ante

correction and dissuades inefficient selection. Condition (11) ensures that regardless of the

public plan’s reporting strategy β, the private plan can guarantee itself expected capitation

payments π(η) = κ(η, p0), provided it uses a legitimate selection strategy λ ∈ M(E).11

Strategic capitation essentially turns illegitimate selection into a zero-sum game in which

both the public and private plans can guarantee themselves a value of zero.

Proposition 3. Strategic capitation contract Πstrat induces a unique equilibrium (λ∗, β∗).

Private plan p1 selects patients efficiently, and public plan p0 truthfully reports hold-out

sample H. Both plans get positive expected payoffs:

Eν [U0|D0, D1, λ
∗, β∗] ≥ 0 and Eν [U1|D0, D1, λ

∗, β∗] ≥ 0.

Section 6 discusses possible alternative mechanisms and clarifies the importance of dif-

ferent moving parts needed to make strategic capitation work. In a nutshell, Big Data

(i.e. observable types τ) is needed to measure the private plan’s deviation from legitimate

selection, and ensure that in equilibrium, public plan p0 does not benefit from misreport-

ing hold-out sample costs. The hold-out sample is needed to ensure that residuals rτi are

uncorrelated to plan p1’s information.

4 General Analysis

The strategic capitation scheme presented in Section 3 relies on cost decomposition (4): the

surplus maximizing policy depends on a small number of commonly known characteristics

η ∈ E. This is not realistic. A private plan’s dimensions of comparative advantage are likely

11This point plays a key role when studying incentives for truthful revelation in exchanges.
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to be its private information. For instance, a private plan may be able to innovate and develop

comparative advantages along new dimensions. In addition, it need not be the case that the

optimal selection policy be measurable with respect to a small set of characteristics. Finally,

in practice, the public plan’s expected cost of treatment conditional on a characteristic η will

have to be estimated from data. This creates additional room for selection by the private

plan. This section extends strategic capitation to such environments.

We denote by ei the idiosyncratic cost shocks of a patient enrolled in public plan p0,

conditional on cost distribution F : ei ≡ ĉi(p0) − EF [ĉi(p0)|τi]. By construction, it must be

that ei ∈ [−cmax, cmax]. Finally, let

S(λ|D0, D1) ≡ Eν,λ

[∑
i∈Λ

ĉi(p0)− ĉi(p1)
∣∣∣D0, D1

]
−K(λ), and

SE|D0,D1 ≡ max
λ∈M(E)

S(λ|D0, D1)

respectively denote the surplus achieved by selection rule λ given data D0, D1, and the

maximum surplus achievable using selection rules measurable with respect to a partition E

of types.

4.1 Generalized Strategic Capitation

For any given collection E of partitions E ∈ E – i.e. for any family of possible definitions

of legitimate and non-legitimate characteristics – our goal is to approach the maximum

achievable efficiency SE|D0,D1 with respect to partitions E ∈ E . We take on two difficulties:

first, the relevant partition E is no longer common knowledge, but must be elicited from the

private plan; second the public plan’s expected costs conditional on characteristics η ∈ E

must estimated from data. We define the generalized strategic capitation scheme Gstrat
E as

follows:

1. data D0 is shared with plan p1;
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2. plan p1 picks a partition E ∈ E according to which it will be allowed to select patients;

we continue to refer to characteristics η ∈ E as legitimate selection characteristics;

3. plan p1 is rewarded using the strategic capitation scheme Πstrat defined by

Πstrat(Λ, HR) ≡
∑
i∈Λ

π(ηi) + ∆π(ηi, HR,Λ)

where π(η) = κ̂(η, p0) ≡
∑

τ∈η µI(τ |η) 1
|Dτ0 |

∑
i∈Dτ0

ĉi(p0) is the empirical estimate κ̂(η, p0)

(in sample data D0) of the public plan’s expected treatment costs conditional on char-

acteristic η ∈ E. As in Section 3, ∆π(η,HR,Λ) takes the form:

∆π(η,HR,Λ) ≡ covI(sτi , rτi|ηi = η) =
1

|Iη|
∑
i∈Iη

sτirτi ,

with

sτi ≡
µΛ(τi|ηi)
µI(τi|ηi)

− 1 and rτi ≡
1

|Hτi
R |
∑
j∈Hτi

R

[
ĉRj (p0)− κ̂(η, p0)

]
.

An equilibrium of mechanism Gstrat
E is a triplet (E, λ, β) where E ∈ E is private plan p1’s

choice of the characteristics it can use for selection.

Mechanism Gstrat
E expands on strategic capitation by letting the private plan specify the

set of characteristics it wishes to use for selection. As we show below, this additional degree

of freedom results in unavoidable losses related to the complexity of the class of models E

the private plan is allowed to pick from. These losses are related to penalties encountered

in the model selection literature (Vapnik, 1998, Massart and Picard, 2007), and indeed one

can think of our problem as one of delegated model selection.

Definition 1. For any class of partitions E and idiosyncratic errors e = (ei)i∈D0, let Ψ(E , e)

denote the random variable

Ψ(E , e) ≡ max
E∈E

∑
η∈E

|Iη|

∑
τ∈η

µI(τ |η)
1

|Dτ
0 |
∑
i∈Dτ0

ei

+ . (12)
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Variable Ψ(E , e) is an upper-bound to the gains a perfectly informed private plan could

obtain from selecting the partition E that lets it optimally target over-reimbursed types.

The scope for selection comes from the fact that generalized capitation uses slightly noisy

sample averages κ̂(η, p0) to estimate the public plan’s cost of service EF [ĉi(p0)|η] conditional

on legitimate characteristics η ∈ E. In Section 3 we simply assumed that the public plan

knew its own cost κ(η, p0) conditional on η.

Generalized capitation extends the performance bounds described in Proposition 3 up to

a penalty of order Eν [Ψ(E , e)].

Proposition 4 (efficiency bounds). Consider a collection E of partitions E ∈ E. In any

equilibrium (E, λ, β) of mechanism Gstrat
E we have that

S(λ) ≥ Eν
[
max
E∈E

SE|D0,D1

]
− 2Eν [Ψ(E , e)] ; (13)

Eν

[
−Π +

∑
i∈Λ

ĉi(p0)
∣∣∣D0

]
≥ −Eν [Ψ(E , e)] ; (14)

Eν

[
Π−

∑
i∈Λ

ĉi(p1)
∣∣∣D0, D1

]
≥ 0. (15)

Note that Proposition 4 takes as given the class of models E . Corollary 2 will show how

to endogenize the class of models E , provided E can be chosen before data D0 is shared with

the private provider.

To operationalize the performance bounds of Proposition 4 we need to evaluate term

Eν [Ψ(E , e)], which depends depends on prior ν through error term e. Lemma 1 provides prior-

free bounds for Eν [Ψ(E , e)]. Let α ≡ EµI
[
|Iτ |
|Dτ0 |

|D0|
|I|

]
≥ 1 denote the average representativeness

of data D0 for patients in I.12 Let M ≡
∑

E∈E
(
2|E| − 1

)
.

Lemma 1 (bounds on penalties). (i) Let (e′i)i∈I denote i.i.d. random variables

uniformly distributed over {−cmax, cmax}. For any class E and any centered error

12The fact that α ≥ 1 follows from the observation that α = EµI [µI(τ)/µD0
(τ)] ≥ 1/EµI [µD0

(τ)/µI (τ)] = 1.
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terms (ei)i∈I arbitrarily distributed over [−cmax, cmax], we have that

Eν [Ψ(E , e)] ≤ E [Ψ(E , e′)] ≡ ΨE . (16)

(ii) Regardless of the distribution of error terms (ei)i∈I ,

Eν [Ψ(E , e)] ≤ |I|cmax

√
2α

|D0|

(
1 +

√
logM

)
. (17)

Bound (16) is a tight bound that can be computed through numerical simulation. We

denote by ΨE the corresponding upper-bound, which does not depend on prior ν. Bound

(17) is a more explicit but coarser bound. While it may seem overly conservative, we now

show that it delivers non-trivial results in a setting of interest: the class of sparse linear

classifiers.

Example: sparse linear classifiers. We now evaluate bound (17) for a natural class of

partitions E : those generated by sparse linear classifiers. This is consistent with the use of

LASSO and other penalized regression techniques for prediction in Big Data settings. We

assume that type space T is a subset of Rf (we will use the inequality f ≤ |T | ≤ |D0|). For

d ∈ {1, · · · , f}, a d-sparse vector v = (vk)k∈{1,··· ,f} ∈ Rf is a vector with at most d non-zero

coordinates. The family of partitions E induced by d-sparse classifiers is defined as

E ≡{Ev ≡ {η+
v , η

−
v }|v ∈ Rf , v is d-sparse}

where η+
v = {τ ∈ T s.t. 〈τ, v〉 ≥ 0} and η−v = {τ ∈ T s.t. 〈τ, v〉 < 0}.

For any d-sparse vector v ∈ Rf , Ev is the partition of Rf in the two half-spaces η+
v and η−v

defined by direction v.13

The private plan is allowed to use any d-sparse linear classifier to decide whether or not

13Note that affine hyperplanes can be generated by including a constant in the type vector.
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to select a particular set of types or not.

Corollary 1. When the class of possible partitions E consists of partitions induced by d-

sparse classifiers, penalty Eν [Ψ(E , e)] satisfies

Eν [Ψ(E , e)] ≤ 4cmax|I|

√
αd log |D0|
|D0|

. (18)

Corollary 1 follows from a direct application of Lemma 1(ii) and the fact that |T | ≤ |D0|.

Indeed, the number of possible partitions of |T | points generated by d-sparse linear classifiers

is bounded by 2d ×
(
f
d

)
×
(|T |
d

)
< 1

4
|T |3d, where

(
m
n

)
= m!

(m−n)!n!
.14 Since each E ∈ E contains

two elements, we obtain that M ≤ K2d. Applying bound (17) implies (18).

Note that for all practical purposes, term
√

log |D0|may be treated as a constant between

4 and 5. For |D0| = 48 × 106, approximately the size of the US Medicare population,√
log |D0| ' 4.2. For |D0| = 7×109, roughly the current world population,

√
log |D0| ' 4.8.

Endogenizing E. While Proposition 4 takes as given the class E of type partitions, it is

possible to endogenize E . Consider the following extension of generalized strategic capitation:

1. private plan p1 picks a class of partitions E , and pays a price pE = ΨE (where ΨE is
defined within bound (16));

2. the private and public plan play mechanism Gstrat
E .

Note that the private plan must choose E before information D0 is shared. The proof of

Proposition 4 implies the following corollary.

14To obtain this bound, observe that there are
(
f
d

)
ways to choose the d non-zero coordinates in the d-

sparse classifier. For each such choice, the classifier can be written in the form a1x1 + . . .+ adxd < 1, where
x1, . . . , xd are the relevant coordinates, and a1, . . . , ad ∈ R are appropriately chosen coefficients. The set of
appropriate d-tuples (a1, . . . , ad) forms a polytope A in Rd, with each of the |T | points representing a linear
constraint on the possible values of (a1, . . . , ad). A node of such a polytope is an intersection of d constraints,
and thus A can be identified using d points from T along with the signs of the d constraints. This gives at
most 2d ×

(|T |
d

)
choices.
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Corollary 2. Let P(T ) denote the set of partitions of type space T . In any equilibrium

(E , E, λ, β) of the extended generalized strategic capitation mechanism,

Eν [S(λ|D0, D1)] ≥ max
E ′⊂P(T )

Eν
[
max
E∈E ′

SE|D0,D1

]
− 2ΨE ′ . (19)

By charging the private plan a price taking the form of a complexity penalty, it is possible

to let the private plan choose the class of models it can use to select patients. Note that if

the upfront price pE is transferred to the public provider, then the public provider makes no

losses in expectation.

4.2 Unimprovability of Strategic Capitation

In the spirit of Hartline and Roughgarden (2008), we now provide a lower-bound for the min-

imal efficiency losses that any mechanism can guarantee, even if the mechanism is allowed to

depend on prior ν. The proof will construct a specific prior ν over the tuple (F,D0, D1, H,K)

for which we establish minimal efficiency losses under any direct mechanism, along the lines

of Myerson and Satterthwaite (1983). Sample size |D0|, as well as the distributions of types

µI ∈ ∆(T ) in the patient population I, and µD0 ∈ ∆(T ) in public data D0, are known.

We consider the problem of Bayes-Nash implementation using budget-balanced direct

mechanisms g of the following form:

• data D0 is publicly observable;

• plan p1 sends a message m1 = (Dm
1 , K

m), reporting its data and selection costs;

• the mechanism suggests a selection λg(D0,m1) ∈ [0, 1]T by private plan p1;

• plan p1 makes a selection decision λ ∈ [0, 1]T , with realized selection Λ ⊂ I;

• plan p0 sends a message m0 = HR corresponding to a reported hold-out sample;

• transfers Π(D0,m1,m0,Λ) from p0 to p1 are implemented.

We denote by Gν the set of incentive compatible direct revelation mechanisms under prior
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ν. For any mechanism g, we denote by λg the equilibrium selection by private plan p1 that

maximizes social surplus.

Proposition 5. For any class of partitions E, there exists a prior ν such that

max
g∈Gν

EνS(λg) ≤ Eν
[
max
E∈E

SE|D0,D1

]
− ~|I|cmax max

E∈E
EµI

[
1√
|Dη

0 |

]
. (20)

where ~ is a fixed constant independent of E and sample size |D0|.

In particular, the efficiency loss achieved by strategic capitation for linear classifiers

(Corollary 1) is tight up to an order
√

log |D0|, which, for all plausible values of |D0|, can

be treated as a constant less than 5.

5 Extension: Adverse Selection in Exchanges

So far, we have studied adverse selection in a setting with a single private plan and a single

public plan. Adverse selection is also a significant concern in insurance markets consisting

of multiple private plans, such as the ones organized by the American Healthcare Act.

If regulation constrains prices to depend only on a subset of observables (as is the case

with community rating), plans have incentives to select patients that are cheaper to serve

given characteristics excluded from legal pricing formulas. This increases the cost of serving

patients and can result in limited entry. A simple example suggests that strategic capitation

may help improve market outcomes in such environments.

A stylized model. As in Section 2, a set I of patients with types τ ∈ T has inelastic

unit demand for insurance, where insurance corresponds to a single standardized insurance

contract. Plan p0 is now an incumbent private plan, while p1 is a potential entrant. For

simplicity, we assume that each plan’s cost technology is the same: ∀i ∈ I, ĉi(p0) ∼ ĉi(p1).

Here the objective is not to improve the allocation of patients to plans, but rather to increase
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competition so that insurance is priced at marginal cost. By law, each plan p is constrained

to offer insurance at prices πp(η) that depend only on a coarse set of patient characteristics

η ∈ E, where E is a partition of type-space T . Prices are bounded above by π.15

We assume that the private plans both know their common expected cost of treatment

κ(τ) ≡ E[ĉi|τi = τ ] conditional on type τ . Let κ(η) ≡ EµI [κ(τ)|η] denote the expected cost

of treatment conditional on legitimate characteristics. Each plan p has access to a hold-out

sample of its own costs Hp. We assume that both plans have lexicographic preferences over

maximizing their own revenue and minimizing that of their competitor.16 The timing of

decisions is as follows:

1. potential entrant p1 decides to enter the market or not;

2. each plan p active in the market submits a price formula πp : η 7→ πp(η);

3. each plan p active in the market chooses a selection λp ∈ [−1/2, 1/2]T of patients;

4. if πp0(η) 6= πp1(η), patients of type η purchase insurance from the cheapest plan;

if πp0(η) = πp1(η), plan p serves a patient of type τ ∈ η with probability

µI(τ)×
(

1

2
+ λp(τ)− λ¬p(τ)

)
,

where ¬p denotes the other plan.

We assume that the cost of selection K(λp) is positive, strictly convex, continuously

differentiable, and equal to 0 when λp is constant and equal to 0: K(0) = 0. In addition,

K(λ) is sufficiently steep around λ = 0 that 1/2 + λp − λ¬p ≥ 0 for all individually

rational selection policies.

The cross-price elasticity of patient demand is infinite, so that patients always go to the

cheapest plan. As a result an entrant will make at most zero profits when entering. We

assume that whenever the entrant can guarantee itself zero profits it enters.17 We denote

the realized selected sample of patients purchasing from plan p by Λp.

15Parameter π may be viewed as the patients’ (common) value for insurance.
16This could be because reducing a competitor’s profits reduces its ability to expand and compete in the

future.
17This could be due to small subsidies for entry, or high but finite cross-price elasticities.
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The following result holds.

Proposition 6. The market entry game described above has a unique subgame perfect equi-

librium. The potential entrant does not enter, and the incumbent charges price πp0(η) = π.

In the off-equilibrium subgame following entry, both the entrant and the incumbent make

equilibrium losses −K(λ∗) < 0 where λ∗ solves maxλ∈[0,1]T Eλ
[∑

i∈Λ κ(ηi)− κ(τi)
]
−K(λ).

Indeed, because cross-price elasticities are infinite, in equilibrium, both plans price at

marginal cost conditional on η: πp(η) = κ(η). Furthermore, since the marginal cost of

selection at λp = 0 is zero, both players find it profitable to engage in non-zero selection. In

aggregate however, selection efforts by the two plans cancel one another and merely destroy

surplus.

Strategic capitation. Consider now the following extension of the strategic capitation

scheme introduced in Section 3. The market entry game is modified in two ways:

• at stage 2 each active plan p submits a pricing formulas πp, and a report HR,p of its

hold-out sample;

• after selection has occurred, for each type η it serves, plan p receives price πp(η) and

capitation adjustment ∆π(η,HR,¬p,Λp) taking the form:

∆π(ηi, HR,¬p,Λp) ≡ covI(sτi,p, rτi,p|ηi = η) =
1

|Iη|
∑
i∈Iη

sτi,prτi,p,

with

sτi,p ≡
µΛp(τi|ηi)
µI(τi|ηi)

− 1 and rτi,p ≡
1

|Hτi
R,¬p|

∑
j∈Hτi

R,¬p

[
ĉR,¬pj (p0)− πp(η)

]
.

Proposition 7. The market game with strategic capitation described above has an efficient

truthful equilibrium in which: the potential entrant enters; both plans submit prices πp(η) =

κ(η); both plans select a representative population in expectation (λp = 0); both plans submit

their hold-out sample costs truthfully (HR,p = Hp); and expected ex post adjustments are

equal to 0 (E∆πp = 0).
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The intuition for Proposition 7 result is identical to that of Proposition 3. Given ex ante

representative selection, a plan’s expected capitation adjustment is equal to zero regardless of

messages sent by the other plan. Given truthful revelation of costs, representative selection

is a best-response. This reduces the costs of adverse selection and encourages entry.

6 Discussion

This paper explores the value of Big Data in reducing the extent of adverse selection in

government-run capitation schemes. We argue that in realistic Big Data environments,

including a large number of covariates in an ex ante capitation formula is unlikely to succeed.

Instead, we suggest that Big Data may be used to align incentives by using ex post capitation

adjustments that interact an unbiased estimate of counterfactual costs to the public plan,

with the private plan’s deviation from legitimate selection.

This section discusses alternative mechanisms, as well as extensions dealing with dynamic

selection, risk-inflation, and heterogeneity in the quality of care.

6.1 Alternative Mechanisms

Generalized strategic capitation deals with three different difficulties: common values, ex-

act budget balance, and prior-free implementation. As Proposition 5 shows, using prior-

dependent mechanisms does not imply large performance improvements. Still, in order to

clarify the economic forces at work in our analysis it is useful to delineate the mechanics of

other relevant mechanisms.

Mechanisms from the literature. Other work has emphasized the value of ex post noisy

signals in environments with quasi-linear preferences. Riordan and Sappington (1988) show

that it is possible to efficiently regulate a monopoly with unknown costs by exploiting public

signals correlated to the monopoly’s type. Using a construction related to that of Cremer

and McLean (1988), they show how to extract all the surplus by offering the monopoly
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appropriately chosen screening contracts. Strategic capitation also exploits the fact that

noisy ex post signals (here, hold-out cost realizations) can be used to construct accurate ex

ante incentives, but our environment differs in key ways. First, signals are not public, and we

need to take care of the public plan’s incentives to reveal its hold-out cost data H. Second,

the identification condition at the heart of Riordan and Sappington (1988) is not satisfied:

neither the distribution of the public plan’s cost, nor the private plan’s beliefs thereover, are

sufficient statistics of the private plans’ costs.

Mezzetti (2004) shows that it is possible to obtain efficiency in common value environ-

ments using ex post reports of the players’ realized payoffs. In our application the mechanism

proposed by Mezzetti (2004) would proceed by making the private plan a negative ex post

transfer equal to the public plan’s realized cost, and a positive ex ante transfer to cover

expected costs. This mechanism does not satisfy budget balance (the public plan does not

receive the private plan’s transfer – if it did truthful reporting of hold-out data H by the

public plan would not be incentive compatible) and relies on priors to set ex ante transfers.18

The differences between our environment and that of Mezzetti (2004) help clarify the role

played by the Big Data assumption, i.e. the assumption that types are observable but not

interpretable. We align incentives under budget balance by forming a measure of the private

plan’s deviation from legitimate selection, and interacting this measure with an unbiased

estimate of the public plan’s counterfactual costs. This ensures that in equilibrium, neither

the private nor the public plan can affect their expected payoffs by deviating from legitimate

selection and truthful reporting. The observability of types is used to compute the private

plan’s deviation from legitimate selection, as well as correctly reweight the distribution of

types in the hold-out sample H to obtain estimates of counterfactual costs in the sample Λ

of patients selected by the private plan.

18Budget balanced expected externality mechanisms along the lines of d’Aspremont and Gérard-Varet
(1979) or Athey and Segal (2013) require private values. They are also prior-dependent.
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Intuitive alternative mechanisms. A key step in strategic capitation is to use hold-out

data to form estimates of counterfactual costs for the public plan. The assumption that

types are observable is needed to reweight the distribution of types in the hold-out sample to

match that of the selected sample. There may be other ways to form an unbiased estimate

of counterfactual costs to public plan p0. For instance, if it were possible to assign patients

selected by the private plan back to the public plan with a fixed uniform probability, one

could form an estimate of counterfactual costs without observing types. Beyond feasibility

issues (patients would likely object), a difficulty with this approach is that it does not take

care of the public plan’s incentives to bias its own cost reports.

Strategic capitation dissuades illegitimate selection by forming unbiased estimates of the

private plan’s excess profits. An alternative way to dissuade illegitimate selection is to impose

sufficiently large penalties, say proportional to
∣∣∣µΛ(τi|ηi)
µI(τi|ηi) − 1

∣∣∣, when the sample selected by

the private plan deviates from legitimate selection. This scheme requires the observability

of types but does not require the availability of a hold-out sample. If the private plan

can perfectly select patients at no cost (K(λ) = 0 for all λ), this schemes induces efficient

legitimate selection. However this scheme induces an efficiency loss if it is costly for private

provider p1 to ensure that realized selection Λ is perfectly representative of population I.

Strategic capitation avoids the issue by using hold-out data to form an unbiased estimate of

the profits from selection.

6.2 Extensions and Implementation Concerns

We now briefly discuss various realistic challenges with capitation programs like Medicare

Advantage, and how they can be addressed within our framework. Details are provided in

Appendix A.

Dynamic selection and risk-inflation. The process of selection is dynamic. In the

context of Medicare Advantage, patients have the opportunity to switch back and forth

32



between public and private plans once a year. This implies that costs of care need to be

evaluated over time. Plans with low short-term cost of care may end up generating greater

longer term costs if they skimp on quality, and encourage patients to disenroll once they get

sick enough (Ellis, 1998). Appendix A shows how to adjust strategic capitation to address

this issue. It becomes important to keep track of the counterfactual distribution of types

over time, had the patient remained with the public plan.

A key insight from Appendix A is that correct dynamic capitation fees remove incentives

for risk-inflation by private plans. Indeed, if a patient with legitimate characteristic ηt enrolls

in the private plan at time t, then baseline repayments πt+s to the private plan at all times

t+ s where the patient remains with the private plan take the form

πt+s = π(t+ s, ηt) ≡ E[ĉi,t+s(p0)|ηt].

In other words, target repayments depend only on the type ηt of the patient when she enrolls

with the private plan, and on elapsed time t + s. Target repayments do not depend on the

patient’s type ηt+s after enrollment time t. As a result, the private plan has no incentives

to exaggerate the medical condition of patients it enrolls (for instance by running a battery

of tests detecting mild conditions). Plans may have incentives to exaggerate the medical

condition of patients it enrolls when repayments πt+s depend on types ηt+s at time t+ s.

Quality. Throughout the paper we assume that the quality of actual healthcare delivery is

homogeneous across plans. In practice, insurance plans may differ in the quality of care they

deliver to their enrollees. It may be important to take into account this quality dimension

when designing capitation schemes. Otherwise, costs could be kept low at the expense

of quality. Appendix A describes an extension of strategic capitation that correctly reflects

differences in the quality of care. An important limitation is that it requires health outcomes

(including death) to be observable and assigned monetary values.
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Surplus Extraction. The paper focuses on the efficient allocation of patients across public

and private plans. However, if there is a deadweight loss of public funds, it may be welfare

improving for the public plan to extract some of the surplus. Since the private plan has

private information over its costs conditional on patient types, this is a difficult multidimen-

sional screening problem. Two observations are helpful to make progress on this issue. First,

given that we consider prior-free mechanisms, the argument of Carroll (2017) suggests there

may not be much value in complex multidimensional screening. It may be near-optimal to

focus on separable one-dimensional screening mechanisms that associate a discounted base-

line capitation rate ρ(η)κ(η, p0) to each patient with characteristics η, with ρ(η) ∈ [0, 1] a

discount factor. A second useful observation is that strategic capitation adjustments used to

prevent selection of mispriced types can be applied to any baseline repayment scheme. This

suggests using capitation schemes of the form

Π(Λ, HR) ≡
∑
i∈Λ

ρ(η)κ(η, p0) + ∆π(ηi, HR)

where ∆π(ηi, HR,Λ) = 1
|Iη |
∑

i∈Iη sτirτi , with

sτi ≡
µΛ(τi|ηi)
µI(τi|ηi)

− 1 and rτi ≡
1

|Hτi
R |
ρ(ηi)

∑
j∈Hτi

R

[
ĉRj (p0)− κ(η, p0)

]
.

This separates the problems of extracting revenue and preventing illegitimate selection.

Ethical concerns. Regulators frequently ban indexing ex ante capitation rates on certain

observables, such as ethnicity or income. One rationale for such bans is that the law has

expressive content that affects social norms, and it is desirable to reinforce the norm that all

citizens deserve equal treatment. We believe that these ethical concerns admit an important

refinement: differential treatment on the equilibrium path weakens the norm of equality;

differential treatment off of the equilibrium path does not. The latter is the case for strategic

capitation: it punishes plans off of the equilibrium path for non-representative selection of
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types.

Volatility of revenues and profits. One concern with strategic capitation is that capi-

tation payments to the private plan are uncertain at the interim stage. If correlated noise ϕi

in selection causes the private plan to enroll types that are relatively cheap (resp. expensive)

to treat for the public plan, it receives lower (resp. higher) payments than anticipated. This

increases the volatility of revenues, but may in fact reduce the volatility of profits. Indeed,

types that are relatively cheap (resp. expensive) to treat to the public plan are also likely to

be cheap (resp. expensive) to treat for the private plan. If noise in selection causes a plan to

overselect types that are relatively cheap to treat for the public plan, it receives a negative

capitation adjustment. However, it is likely that the cost of treating these types is also rel-

atively cheap for the private plan, keeping net profits stable. A similar reasoning applies if

the plan overselects types that are relatively expensive to treat for the public plan. Positive

capitation adjustments may well compensate a corresponding increase in the private plan’s

cost of care. In other words, strategic capitation can serve as insurance against selection

shocks.

Appendix

A Extensions

A.1 Dynamic Selection and Risk-Inflation

In dynamic settings, capitation schemes need to control for differential transitions in health

status across plans. For simplicity, as in Section 3, we assume that comparative advantage

depends on a commonly known set E of legitimate selection characteristics η ∈ E, and that

expected costs conditional on legitimate characteristics are known. We denote by τi,t the

type of patient i at date t ∈ N, by ηi,t her legitimate selection characteristics at date t, and
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by ĉi(t, p) her realized cost of care if treated by plan p at time t. Types (τt)t∈{0,··· ,T} and

characteristics (ηt)t∈{0,··· ,T} follow Markov chains, whose process φp depends on the plan p

in which the patient is enrolled. Future costs are discounted using discount factor δ ∈ (0, 1],

and T denotes an upper bound to the duration of patients’ lives in the system.

For a patient i of type τi enrolled with the public plan from time t to time T , we define

Ĉi(t, p0) ≡
T∑
s=t

δs−tĉi(s, p0) and C(t, η, p0) ≡ Eν
[
Ĉi(t, p0)

∣∣∣ηt = η
]
.

In dynamic environments, strategic capitation must accommodate the possible reenroll-

ment of patients with the public plan. As a result, transfers must occur at the reentry of

patients into the public system. Let us denote by Λt the selection of patients enrolled with

the private plan at time t, and by Λre
t the selection of patients disenrolling from the private

plan and re-enrolling with the public plan at time t. The following scheme extends strategic

capitation. At initial time of enrollment t = 0, the public plan commits to the following

baseline payments conditional on legitimate characteristics η ∈ E:

• A capitation payment π(t, η0) = Eν [ĉi(t, p0)|ηi,0 = η0] whenever patient i with initial

type η0 is enrolled with the private plan at time t;

Note that because transfers depend only on type η0, there is no incentive for risk-

inflation by the plan, i.e. an incentive to requalify the patient as a different type;

• A signed transfer πrei (with positive transfers being made from the public plan to the pri-

vate plan) at every time T patient i returns to the public plan: πrei = Eν [Ĉi(T, p0)|ηi,0]−

C(T, ηi,T , p0).

Provided that the private plan does not engage in illegitimate selection, this scheme induces

efficient dynamic behavior by the private plan. To dissuade illegitimate selection, dynamic

strategic capitation makes payment adjustments ∆π(t, η0) and ∆πre(T, η0) using reported

dynamic hold-out data HR as follows:
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• ∆π(t, η0) = 1
|Iη0 |

∑
i∈Iη0 si,tri,t, with

si,t ≡
µΛt(τi,0|ηi,0 = η0)

µI(τi,0|ηi,0 = η0)
− 1, and ri,t ≡

1

|Hτi,0
R |

∑
j∈H

τi,0
R

ĉRj (t, p0)− π(t, η0).

• ∆πre(t, ηt) = 1
|Iηt |

∑
i∈Iηt s

re
i,t r

re
i,t, with

srei,t ≡
µΛret

(τi,t|ηi,t = ηt)

µI(τi,t|ηi,t = ηt)
− 1, and rrei,t ≡

1

|Hτi,t
R |

∑
j∈H

τi,t
R

[
C(T, ηi,T , p0)− ĈR

j (t, p0)
]
.

A.2 Quality

If the private and public plan differ in the quality of health outcomes they deliver to patients,

the value associated with different health outcomes needs to be reflected in capitation trans-

fers. We assume that health outcomes (including death) for each patient i ∈ I treated by

plan p are observable and associated with realized monetary values v̂i(p). As in the case of

costs, we assume that the private plan’s comparative advantage is measurable with respect

to a relatively small set of characteristics ηi. Given selection rule λ and transfers Π, the

surpluses accruing to the public and private plans take the form

EνU0 = Eν

[
−Π +

∑
i∈Λ

ĉi(p0) + v̂i(p1)− v̂i(p0)
∣∣∣λ] ,

EνU1 = Eν

[
Π−

∑
i∈Λ

ĉi(p1)
∣∣∣λ]−K(λ).

Differences in quality of care are isomorphic to a change in the public plan’s cost of care.

Since we assume that health outcomes are observable, data D0 should now include values

v̂i(p0) of patients in D0. Health outcomes v̂i(p1) of patients in Λ (selected by private plan

p1) should be visible to the public plan. Strategic capitation can be extended by setting
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transfers:

Π(Λ, HR) ≡
∑
i∈Λ

v̂i(p1) + π(ηi) + ∆π(ηi, HR)

where

π(η) ≡
∑
τ∈η

µI(τ |η)

 1

|Dτ
0 |
∑
i∈Dτ0

ĉi(p0)− v̂i(p0)


and ∆π(η,HR) takes the form:

∆π(ηi, HR,Λ) ≡ 1

|Iη|
∑
i∈Iη

sτirτi ,

with sτi ≡
µΛ(τi|ηi)
µI(τi|ηi) − 1 and

rτi ≡
1

|Hτi
R |

∑
j∈Hτi

R

ĉRj (p0)− v̂j(p0)

− π(η).
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Online Appendix, Not for Publication

B Proofs

B.1 Proofs for Section 3

Proof of Proposition 1: We begin with point (i). Reports from plan p0 do not affect

reimbursements so that truth-telling strategy β∗ is dominant. In turn, for any selection λ

measurable with respect to characteristics η ∈ E, the private plan’s expected payoffs from

selection take the form

Eν

[∑
i∈I

1i∈Λ(κ(ηi, p0)− κ(ηi, p1) + ei,τi)

]
= Eν

[∑
i∈I

1i∈Λ(κ(ηi, p0)− κ(ηi, p1))

]

where we use the fact that Eν,µI [ei,τi|ηi] = 0. It follows that the optimal selection rule is

indeed λ(τ) = λ∗(τ) = 1κ(η,p0)>κ(η,p1).

Let us turn to point (ii). Under environment ν0, the public plan sets a fixed capitation

payment κ0 for every patient. For τ = (η, n, δ), the private plan’s conditional expectation

about error shock ei,τi is Eν [ei,τ |D1, τ ] = 0 if both types (η, n, 1) and (η, n,−1) have real-

ized costs κ(η, p1) in data D1 – this happens with probability 1/4. In the complementary

event, the private plan is informed, and Eν [ei,τ |D1, τ ] = δεη,nκ0/2. Since the magnitude

∆ of comparative advantage is less than κ0/4, the optimal selection scheme for the private

plan consists of: selecting only the relatively cheap type with characteristics (η, n) when the

private plan is informed about εη,n (proba 3/4); and selecting type τ on the basis of com-

parative advantage when the private plan is uninformed about εn (proba 1/4). This implies

that in expectation, the efficiency loss is equal to

Eν0 [Smax − Ssparse] =
3

8
∆|I|.
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When ∆ = 0, the private plan only profits from selecting the relatively cheap type with

characteristics (η, n). This yields an aggregate expected profit equal to 3
16
κ0|I|. Since there

is no comparative advantage, this profit comes entirely at the expense of public plan p0.

Proof of Proposition 2: We first establish point (i). Given selected set Λ, and data D0,

D1, private plan p1 gets payoff

E[U1|Λ, D0, D1] =
∑
i∈Λ

κ(p0, ηi)− κ(p1, ηi) + Eν [eτi,i|τi, D0]− Eν [eτi,i|τi, D0, D1].

Using the fact that a− |b| ≤ a+ b ≤ a+ |b|, we have that

−Φ +
∑
i∈Λ

κ(p0, ηi)− κ(p1, ηi) ≤ E[U1|Λ, D0, D1] ≤ Φ +
∑
i∈Λ

κ(p0, ηi)− κ(p1, ηi)

with

Φ = Eν

[∑
i∈I

|E [eτi,i|D0, D1]− E [eτi,i|D0]|

]
.

The private plan’s optimal selection Λ must yield a higher payoff than the surplus-

maximizing selection Λ∗ = 1κ(η,p0)>κ(η,p1). Hence it follows that

∑
i∈Λ

κ(p0, ηi)− κ(p1, ηi) ≥ −2Φ +
∑
i∈Λ∗

κ(p0, ηi)− κ(p1, ηi).

Since |ei,τ | < cmax, it follows that

Eν |E [eτi,i|D0, D1]− E [eτi,i|D0]| ≤
(
Eν (E [eτi,i|D0, D1]− E [eτi,i|D0])2)1/2 ≤(
Eν (eτi,i − E [eτi,i|D0])2)1/2 ≤

(
c2
max

|Dτi
0 |

)1/2

=
cmax√
|Dτi

0 |
.

Hence Φ ≤ cmax|I|EµI
[

1√
|Dτ0 |

]
. This establishes point (i).
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Point (ii) follows directly from Proposition 1(ii) and the observation that: with proba-

bility 3/4 the public plan is fully informed of εη,n, in which case the capitation rate is set

precisely, and the private plan selects types efficiently; with probability 1/4, the public plan

is uninformed about εη,n and sets capitation rate κ(η, p0). In this last event, the analysis of

Proposition 1(ii) applies as is.

Proof of Proposition 3: We begin by establishing (10) and (11). We begin with (10). We

have that

Eν [∆π(η,HR,Λ)|D0, D1, β
∗, λ] = Eν

[
1

|Iη|
∑
i∈Iη

(
µΛ(τi|η)

µI(τi|η)
− 1

)
Eν [eτi,i|D0, D1, τ ]

]

= Eν

[∑
τ∈η

µI(τ |η)

(
µΛ(τ |η)

µI(τ |η)
− 1

)
Eν [eτ,i|D0, D1, τ ]

]

= Eν

[∑
τ∈η

(µΛ(τ |η)− µI(τ |η))Eν [eτ,i|D0, D1, τ ]

]
.

We turn to (11). Using the fact that λ is measurable with respect to E (allowing us to define

λ(η) = λ(τ)), and the fact that selection error ϕi is orthogonal to rτi have that

Eν [|Λη|∆π(η,HR,Λ)|D0, D1, β
∗, λ] = Eν

[∑
τ∈η

(
|Λτ | − |I

τ |
|Iη|
|Λη|

)
rτ

]

= Eν

[∑
τ∈η

(
λ(τ)|Iτ | − |I

τ |
|Iη|

λ(η)|Iη|
)
rτ

]
= 0.

We now return to the proof of Proposition 3. In equilibrium, the public plan will get a

payoff at most equal to 0. By condition (10), it follows that the public plan can guarantee it-

self a payoff of 0 by reporting costs truthfully: β = β∗. Hence, it must be that in equilibrium

the public plan gets a payoff of 0. Since we break indifferences towards truthtelling, it must

be that the public plan reports truthfully in equilibrium. This implies that the private plan

gets a payoff equal to Eν
[∑

i∈Λ κ(p0, ηi)− κ(p1, ηi)
]
, which is maximized by using optimal
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selection policy λ = λ∗.

B.2 Proofs for Section 4

Proof of Proposition 4: Given a cost distribution F , let κ(η, p) ≡ EµI ,F [ĉi(p)|ηi = η]

denote the expected cost of service for plan p conditional on legitimate selection characteristic

η in patient population I. We also denote by κ(τ, p) ≡ EF [ĉi(p)|τi = τ ] the expected cost of

treatment by plan p conditional on type τ .

Given a partition E and a selection rule λ, plan p1’s expected returns are

Eν [U1|D0, D1] =Eν

[∑
i∈I

λ(τi) [κ̂(ηi, p0) + ∆π(ηi, HR,Λ)− κ(τi, p1)]
∣∣∣D0, D1

]
−K(λ)

=Eν

[∑
i∈I

λ(τi) [κ(τi, p0)− κ(τi, p1)]
∣∣∣D0, D1

]
−K(λ)

+Eν

[∑
i∈I

λ(τi) [κ(ηi, p0) + ∆π(ηi, HR,Λ)− κ(τi, p0)]
∣∣∣D0, D1

]

+Eν

[∑
i∈I

λ(τi) [κ̂(ηi, p0)− κ(ηi, p0)]
∣∣∣D0, D1

]

=UA1 + UB1 + UC1 .

where UA
1 , UB

1 and UC
1 are defined as the three respective terms in the expression above.

Note that UA
1 = S(λ|D0, D1). The key steps of the proof are the following,

(i) in any equilibrium (E, λ, β), UB
1 ≤ 0;

(ii) for any reporting strategy β, if λ is measurable with respect to E, then UB
1 = 0;

(iii) for any E and λ, ∣∣Eν [UC
1 |D0]

∣∣ ≤ Eν [Ψ(E , e)].

Let us first show that points (i), (ii) and (iii) imply properties (13), (14) and (15). We have
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that under equilibrium strategies (E, λ, β),

Eν [U1|D0, D1] ≤S(λ|D0, D1) + Eν [UB
1 |D0, D1, λ, β] + Eν [UC

1 |D0, D1, λ, β]

≤S(λ|D0, D1) + Eν [UC
1 |D0, D1, λ, β].

In addition, from the fact that the private plan is weakly better off using (E, λ) over any

strategy (E ′, λ′) where λ′ is measurable with respect to E ′, it follows that

Eν [U1] ≥Eν
[
max
E′∈E

SE′|D0,D1

]
− Eν [Ψ(E , e)].

Altogether, this implies that S(λ|D0, D1) ≥ Eν
[
maxE∈E SE|D0,D1

]
− 2Eν [Ψ(E , e)]. Condition

(14) follows from the fact that truthful reporting β∗(c, τ) guarantees that

−Eν

[∑
i∈I

λ(τi) [κ̂(ηi, p0) + ∆π(ηi, HR,Λ)− κ(τi, p0)]

]
≥−Eν

[∑
i∈I

λ(τi) [κ(ηi, p0) + ∆π(ηi, HR,Λ)− κ(τi, p0)]

]
︸ ︷︷ ︸

=0

− Eν

[∑
i∈I

λ(τi) [κ̂(ηi, p0)− κ(ηi, p0)]

]
︸ ︷︷ ︸

≥−Eν [Ψ(E,e)]

.

Finally, condition (15) follows from the fact that plan p1 can choose a selection strategy

measurable with respect to E, which guaranteed p1 positive expected payoffs.

Let us return to the proofs of points (i), (ii) and (iii) above. Point (i) follows from the

fact that in equilibrium the expected transfers of p0 to plan p1 under equilibrium reporting

strategy β must be weakly lower than under truthful reporting strategy β∗, i.e. Eν [Π|β] ≤

Eν [Π|β∗]. This implies that

Eν

[∑
i∈I

λ(τi) [κ̂(ηi, p0) + ∆π(ηi, HR,Λ)]
∣∣∣β] ≤Eν [∑

i∈I
λ(τi) [κ̂(ηi, p0) + ∆π(ηi, HR,Λ)]

∣∣∣β∗] , so that

Eν

[∑
i∈I

λ(τi) [κ(ηi, p0) + ∆π(ηi, HR,Λ)− κ(τi, p0)]
∣∣∣β] ≤Eν [∑

i∈I
λ(τi) [κ(ηi, p0) + ∆π(ηi, HR,Λ)− κ(τi, p0)]

∣∣∣β∗] .
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Using

Eν [∆π(ηi, HR,Λ)|i ∈ Λ, β∗] = Eν

[∑
τ∈ηi

(µΛ(τ |ηi)− µI(τ |ηi)) (κ(τ, p0)− κ̂(ηi, p0))
∣∣∣i ∈ Λ, β∗

]

= Eν

[∑
τ∈ηi

(µΛ(τ |ηi)− µI(τ |ηi)) (κ(τ, p0)− κ(ηi, p0))
∣∣∣i ∈ Λ, β∗

]

= Eν

[∑
τ∈ηi

µΛ(τ |ηi)(κ(τ, p0)− κ(ηi, p0))
∣∣∣i ∈ Λ, β∗

]

and

Eν

[∑
i∈Λ

κ(ηi, p0)− κ(τi, p0) + ∆π(ηi, HR,Λ)

]
= Eν

∑
η∈E
|Λη|

[
∆π(η,HR) +

∑
τ∈η

µΛ(τ |η)[κ(η, p0)− κ(τ, p0)]

]
we obtain that indeed,

Eν

[∑
i∈I

λ(τi) [κ(ηi, p0) + ∆π(ηi, HR,Λ)− κ(τi, p0)]
∣∣∣β∗] = 0,

and hence, for any reporting strategy β, UB
1 ≤ 0, which yields point (i).

Point (ii) follows from the fact that whenever λ is measurable with respect to E, then

for all reporting strategies β

Eν

[∑
i∈I

λ(τi)(κ(ηi, p0)− κ(τi, p0))

]
= 0

and

Eν [∆π(η,HR,Λ)] = Eν

[∑
τ∈η

[µΛ(τ |η)− µI(τ |η)]rτ

]
= 0,

where rτ = 1
|Hτ |

∑
i∈Hτ ĉRi (p0)− κ̂(η, p0) denotes the mean residual of the baseline capitation

formula computed in the reported hold-out sample.
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Finally,

UC
1 ≤ max

λ∈[0,1]T ,E∈E
Eν

[∑
i∈I

λ(τi)(κ̂(ηi, p0)− κ(ηi, p0))

]

≤ max
λ∈M(E),E∈E

Eν

[∑
i∈I

λ(τi)(κ̂(ηi, p0)− κ(ηi, p0))

]

≤max
E∈E

Eν

[∑
η∈E

[∑
i∈Iη

κ̂(ηi, p0)− κ(ηi, p0)

]+]
,

which yields point (iii).

Proof of Lemma 1: We begin with point (i) and show that Eν [Ψ(E , e)] ≤ E[Ψ(E , e′)] using

a coupling argument, i.e. by carefully jointly sampling original errors e and Rademacher

errors e′.

Consider the following process for generating errors e and e′. Errors e are generated

according to the original distribution of ei (where the different ei’s are independent of one

another). In turn, each error term e′i is generated from ei as follows: conditional on ei,

e′i ∈ {−cmax, cmax} is chosen so that Eν [e′i|ei] = ei. This is possible since ei ∈ [−cmax, cmax],

and there is a unique such distribution. Since error terms (ei)i∈D0 are independent, so are

error terms (e′i)i∈I . In addition,

Eν [e′i] = EeiEν [e′i|ei] = Eeiei = 0,

which implies e′i ∼ U{−cmax, cmax}.

We now show that Eν [Ψ(E , e)] ≤ Eν [Ψ(E , e′)]. Note that Ψ(E , e) can be viewed as the

maximum value for S ⊂ E ∈ E of

ΣS ≡
∑
η∈S

|Iη|

∑
τ∈η

µI(τ |η)
1

|Dτ
0 |
∑
i∈Dτ0

ei

 .19 (21)
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Fix e, and assume that Ψ(E , e) is realized by ΣS for some set S of η’s. We have by linearity

of expectation that

Ψ(E , e) =
∑
η∈S

|Iη|

∑
τ∈η

|Iτ |
|Iη||Dτ

0 |
∑
i∈Dτ0

ei

 = Eν

∑
η∈S

|Iη|

∑
τ∈η

|Iτ |
|Iη||Dτ

0 |
∑
i∈Dτ0

e′i

 ∣∣∣e


≤ Eν [Ψ(E , e′)|e] .

Using the law of iterated expectations, this completes the proof of point (i).

We now turn to point (ii). Let E ∈ E be any partition, and let S ⊂ E be a selection of

elements in partition E. We first show that for all t,

prob (ΣS > t) ≤ exp

(
− t2|D0|

2c2
maxα

2|I|2

)
(22)

where ΣS is defined by (21). Using Hoeffding’s inequality (see Hoeffding (1963) or Cesa-

Bianchi and Lugosi (2006), Lemma 2.2) we have

prob (ΣS > t) = exp

− 2t2∑
η∈S,τ∈η

∑
i∈Dτ0

4c2
max

|Iτ |2
|Dτ0 |2


≤ exp

− t2

2c2
max

∑
τ∈T

|Iτ |2
|Dτ0 |

 = exp

− t2

2c2
max

|I|2
|D0|

∑
τ∈T

|Iτ |
|Dτ0 |

|D0|
|I|
|Iτ |
|I|


≤ exp

[
− t2

2c2
max

|I|2
|D0|α

]
.

Since there are at most M =
∑

E∈E 2|E| − 1 possible non-empty sets S, this implies

prob (Ψ(E , e) > t) ≤M exp

[
− t2

2c2
max

|I|2
|D0|α

]
.

To complete the proof, we use the fact that Eν [Ψ(E , e)] =
∫ +∞

0
prob(Ψ(E , e) > t)dt. Pick t0

19Indeed, the corresponding set S will only select ηs such that
∑
τ∈η µI(τ |η) 1

|Dτ0 |
∑
i∈Dτ0

ei > 0.
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such that M exp

[
− t20

2c2max
|I|2
|D0|

α

]
= 1, i.e. t0 = |I|cmax

√
2α logM
|D0| . We have

Eν [Ψ(E , e)] ≤
∫ t0

0

prob(Ψ(E , e) > t)dt+

∫ +∞

t0

prob(Ψ(E , e) > t)dt

≤ t0 +

∫ +∞

t0

M exp

[
− t2

2c2
max

|I|2
|D0|α

]

≤ |I|cmax

√
2α logM

|D0|
+

√
2π

2
|I|cmax

√
α

|D0|
M exp

[
− t2

2c2
max

|I|2
|D0|α

]

≤ |I|cmax

√
2α

|D0|

(√
logM + 1

)
.

Proof of Corollary 2: Let E∗ be defined as

E∗ ∈ arg max
E∈P(T )

Eν [max
E∈E

SE|D0,D1 ]− 2ΨE .

It follows from the proof of Proposition 4 that, net of payments pE , the payoff U1 to the

private plan in equilibrium (E , E, λ, β) must satisfy:

Eν [U1] ≤ EνS(λ|D0, D1), and

∀E ′ ⊂ P(T ), Eν [U1] ≥ Eν
[
max
E∈E ′

SE|D0,D1

]
− 2ΨE ′ .

This implies that

EνS(λ|D0, D1) ≥ max
E ′⊂P(T )

Eν
[
max
E∈E ′

SE|D0,D1

]
− 2ΨE ′ .
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Proof of Proposition 5: Let E be the partition maximizing
∑

η∈E
1

1+
√
|Dη0 |

µI(η). We start

with the following simple claim:

Claim 1 (hard to distinguish distributions). For each integer d ≥ 0, there exists a pair

of distributions φl, φh taking finitely many values ĉ ∈ [0, cmax] and such that Eφl ĉ = κdl ,

Eφh ĉ = κdh, with κdh, κ
d
l ∈ [cmax/4, 3cmax/4], κdh − κdl ≥ k′cmax/(1 +

√
d), and φdl is hard to

distinguish from φdh, in the sense that their statistical distance is less than 1/4:

sup
S⊂[0,cmax]d

φdl (S)− φdh(S) ≤ 1/4, (23)

for some universal constant k′ > 0, where φdl and φdh denote the d-product measures.

We defer the proof of Claim 1 until after the proof of the proposition. The following class

of environments ν lets us establish our results.

• Selection cost K is identically equal to 0.

• Cost distributions F for the public and private plans are determined as follows. Let

(bη)η∈E be independent Bernoulli draws over {0, 1} such that prob(bη = 1) = 1/2.

For patients i with characteristic η ∈ E costs ĉi(p0) are independent and identically

distributed according to the distribution φ
|Dη0 |
bη

described in Claim 1. Its expected value

is denoted by κη0 ∈
{
κ
|Dη0 |
l , κ

|Dη0 |
h

}
. Note that illegitimate selection characteristics τ are

independent of costs, and play no role in this construction.

• For patients with characteristic η ∈ E, costs ĉi(p1) are deterministic and equal to

κη1 ≡
(
κη0 + κ

|Dη0 |
l + κ

|Dη0 |
h

)/
3.

• Holdout set H contains sufficient information to identify (bη)η∈E. Hence, we can let

messages m0 be reports of (bη)η∈E.

• Private plan p1 knows (bη)η∈E. Hence, we can also let messages m1 be reports of

(bη)η∈E.

Since only legitimate characteristics η are correlated to costs, making illegitimate types τ

irrelevant, we can restrict attention to suggested selection strategies λ(D0,m1) taking values

in [0, 1]E.
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Step 1: exploiting incentive compatibility to obtain monotonicity constraints.

Fix a characteristic η (there are µI(η)|I| such patients), and let d ≡ |Dη
0 |. We establish

minimum performance losses that any direct mechanism must accumulate with respect to

patients with characteristic η. Our first step is to exploit incentive compatibility constraints

to derive a monotonicity condition.

Let m∗0 and m∗1 denote the truthful reporting strategies by plans p0 and p1. Let m0,

m1 (resp. m0, m1) denote the reporting strategies in which the two plans correctly report

(bη′)η′ 6=η but always report bη = 1 (resp. report bη = 0).

Fix a realization of D0. In principle, D0 is an argument of transfer function Π, and of

suggested selection λ. We suppress this dependency for now since D0 is held constant. We

denote by λm1(η) the selection intensity of patients with characteristic η given message m1.

We define plans p0 and p1’s conditional expected values U0 and U1 given messages and a

value of bη as

U0(m0, bη|D0) ≡ Eν

[
−Π(m0,m

∗
1, λm∗1) +

∑
η′∈E

|Iη′| × κη
′

0 × λm∗1(η′)
∣∣∣D0, bη

]

U1(m1, bη|D0) ≡ Eν

[
Π(m∗0,m1, λm1)−

∑
η′∈E

|Iη′| × κη
′

1 × λm1(η′)
∣∣∣D0, bη

]
.

By incentive compatibility of plan p1’s messages if bη = 1, we must have

U1(m1, bη = 1|D0) ≥ U1(m1, bη = 1|D0). (24)

Incentive compatibility of plan p0’s message when bη = 0 implies that

U0(m0, bη = 0|D0) ≥ U0(m0, bη = 0|D0).
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Since the true value of bη does not affect expected transfers, this inequality simplifies to

Eν
[
Π(m0,m1, λm1

)
∣∣D0

]
≤ Eν

[
Π(m0,m1, λm1

)
∣∣D0

]
. (25)

Combining (24) and (25) implies

Eν
[
Π(m0,m1, λm1)− Π(m0,m1, λm1

)
∣∣D0

]
(26)

≥ Eν

[∑
η′∈E

|Iη′| × κη
′

1 ×
(
λm1(η′)− λm1

(η′)
) ∣∣∣D0, bη = 1

]
.

A symmetric argument implies

Eν
[
Π(m0,m1, λm1)− Π(m0,m1, λm1

)
∣∣D0

]
(27)

≤ Eν

[∑
η′∈E

|Iη′| × κη
′

1 ×
(
λm1(η′)− λm1

(η′)
) ∣∣∣D0, bη = 0

]
.

By construction, bη affects the value κη1 but not that of κη
′

1 for η′ 6= η. Hence, (26) and (27)

imply

Eν
[
|Iη|

(
2κdl + κdh

3
− 2κdh + κdl

3

)
×
(
λm1(η)− λm1

(η)
) ∣∣∣D0

]
≥ 0.

This yields the following monotonicity condition:

Eν
[
λm1(η)

∣∣D0

]
≤ Eν

[
λm1

(η)
∣∣D0

]
. (28)

Step 2: establishing a lower bound on performance losses. Under first-best pa-

tient selection, the unconditional expected cost of treatment for a patient with legitimate

characteristic η is

Eν [ĉ(p0) + λ∗(η)(ĉ(p1)− ĉ(p0))] =
1

2
κdl +

1

2

(
1

3
κdl +

2

3
κdh

)
=

2κdl + κdh
3

. (29)
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Monotonicity condition (28) implies that under any selection λ induced by a direct mecha-

nism, the expected cost of treatment for a patient with characteristic η satisfies:

Eν
[
ĉ(p0) + λ(η)(ĉ(p1)− ĉ(p0))

]
= Eν

[
Eν
[
ĉ(p0) + λ(η)(ĉ(p1)− ĉ(p0))|D0

]]
=Eν

[
prob(bη = 0|D0)× Eν

[
λm1

(η)× 2κdl + κdh
3

+ (1− λm1
(η))× κdl

∣∣∣D0

]
+ prob(bη = 1|D0)× Eν

[
λm1(η)× 2κdh + κdl

3
+ (1− λm1(η))× κdh

∣∣∣D0

]]
=

2κdl + κdh
3

+
κdh − κdl

3
× Eν

[
prob(bη = 0|D0)Eν [λm1

(η)|D0]

+ prob(bη = 1|D0)Eν [1− λm1(η)|D0]
]

≥2κdl + κdh
3

+
κdh − κdl

3
× Eν

[
prob(bη = 0|D0)Eν [λm1(η)|D0]

+ prob(bη = 1|D0)Eν [1− λm1(η)|D0]
]

≥2κdl + κdh
3

+
κdh − κdl

3
× Eν [min {prob(bη = 0|D0), prob(bη = 1|D0)}]

Step 3: quantify the lower bound using Claim 1. Since prob(bη|D0) only depends

on Dη
0 , it suffices to bound Eν [min {prob(bη = 0|Dη

0), prob(bη = 1|Dη
0)}].

Recalling that d = |Dη
0 |, Bayes rule and Claim 1 imply that

Eν [min {prob(bη = 0|Dη
0), prob(bη = 1|Dη

0)}] =

Eν min

(
φdl (D

η
0)

(φdl + φdh)(D
η
0)
,

φdh(D
η
0)

(φdl + φdh)(D
η
0)

)
=

Eν
[

1

2
− |φ

d
l (D

η
0)− φdh(D

η
0)|

2(φdl + φdh)(D
η
0)

]
=

1

2
−
∑
Dη0

|φdl (D
η
0)− φdh(D

η
0)|

4
>

1

4

where we used the fact that the statistical distance satisfies 1
2

∑
Dη0
|φdl (D

η
0) − φdh(D

η
0)| =

supS⊂[0,cmax]d φ
d
l (S)− φdh(S).

Altogether, it follows that for patients with characteristic η, the per-patient efficiency
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loss is least
1

4

κdh − κdl
3

≥ k′

12
× cmax

1 +
√
|Dη

0 |
.

Setting k = k′/12 completes the proof.

We now prove Claim 1.

Proof of Claim 1: Given d ≥ 1, let φl ∼ cmaxB1/2−ε, and φh ∼ cmaxB1/2+ε, where Bq

denotes Bernoulli variables taking values in {0, 1}, and equal to 1 with probability q. Set

ε so that 0 < ε < 1/4 (with the relationship between ε and d to be specified below). The

Kullback-Leibler divergence D(φdl ||φdh) between φdl and φdh satisfies (see Cover and Thomas

(2012) for a reference)

D(φdl ‖φdh) = d×D(φl‖φh) = d×D(B1/2−ε‖B1/2+ε) = d×O(ε2),

By Pinsker’s Inequality (e.g. Csiszar and Körner (2011), Section 3) the statistical distance

between φdl and φdh satisfies

2× sup
S⊂[0,cmax]d

φdl (S)−φdh(S) = ‖φdl −φdh‖1 ≤
√

2×D(φdl ‖φdh) =
√
d×O(ε2) < k1×ε

√
d, (30)

where k1 ≥ 2 is a constant.

Choose ε = 1/(2k1

√
d) ≤ 1/4. Claim 1 holds with κdh − κdl = 2ε = 1/(k1

√
d). Setting

k′ ≤ 1/k1 completes the proof.

B.3 Proofs for Section 6

Proof of Proposition 6: Consider the subgame following entry. For any continuation

pricing equilibrium (πp0 , πp1), the usual Bertrand competition argument implies that price
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formulas must satisfy

∀η, π0(η) = π1(η) = κ(η).

Given these prices, profits are determined by the plans’ selection behavior (λp0 , λp1). Given

the selection rule λ¬p of its competitor, plan p chooses

λp ∈ arg max
λ∈[0,1]T

∑
τ∈T

(κ(η)− κ(τ))µI(τ)

(
1

2
+ λ(τ)− λ¬p(τ)

)
−K(λ)

= arg max
λ∈[0,1]T

∑
τ∈T

µI(τ)λ(τ)(κ(η)− κ(τ))−K(λ).

Since K is strictly convex, minimized at 0, and smooth, it follows that its gradient ∇K|0 at

0 is equal to 0. As a result both plans engage in the same non-zero amount of selection λ∗,

and in aggregate selection has no effect on each plan’s treated sample. Strict convexity of K

implies that K(λ∗) > 0. The entrant gets strictly negative expected profits following entry.

It follows that the unique equilibrium involves no entry, allowing the incumbent to charge

prices equal to π.

Proof of Proposition 7: Consider the subgame following entry. For any continuation

pricing equilibrium (πp0 , πp1), the usual Bertrand competition argument implies that price

formulas must satisfy

∀η, π0(η) = π1(η) = κ(η).

Assuming truthful reporting by plan ¬p, strategic capitation ensures that plan p does

not benefit from selecting a non representative sample of types. Hence plan p’s payoff is

equal to ∑
τ∈T

(κ(η)− κ(τ))µI(τ)

(
1

2
− λ¬p(τ)

)
−K(λp).

It is therefore optimal for plan p to set λp = 0 and minimize selection cost. Given this choice,

it is indeed optimal for plan ¬p to report its hold-out sample truthfully.
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