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When tastes are represented by a class of generalized isoelastic
preferences which—unlike traditional Von-Neumann preferences—
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Alberto Giovannini Philippe Weil
Graduate School of Business Department of Economics
Columbia University Harvard University
New York, NY 10027 Cambridge, MA 02138



The two most popular asset pricing models, the intertemporal—-
or dynamic, or "consumption bascd"—asset pricing model of Lucas
[1978] and Breeden [1979], and the static—or "market based" —asset
pricing model of Sharpe [1966] and Lintner [1965], are often viewed
as mutually inconsistent. The alleged mutual inconsistency of these
models stems from the differences in their so-called "beta represen-
tations", which express the equilibrium excess rate of return (over
the riskfree rate) on an asset. According to the consumption asset
pricing model (CCAPM), the equilibrium excess return on an asset
is determined by its covariation with the marginal rate of substi-
tution in consumption. When preferences are of the standard Von
Neumann-Morgenstern (VNM), time-separable, isoelastic form, tile
marginal rate of substitution is an isoelastic function of consump-
tion growth. By contrast, the static capital asset pricing model
(SCAPM) predicts that the excess return on an asset is determined
by its covariance with the return on the market portfolio.' As a con-
sequence, the two models also imply different measures of systematic
risk.2

Aside from their generally disappointing empirical performance,3
these two models are questionable theoretically. The SCAPM is
based on the strong assumption that the utility of end-of-period
wealth is independent of returns beyond the current period. The
CCAPM, by contrast, relies on a specification of preferences which
characterizes the two distinct concepts of intertemporal substitution
and risk aversion with a single parameter.4 Thus, in the CCAPM,
risk neutral agents also have an infinite elasticity of intertemporal
substitution: clearly an a priori unacceptable restriction.

This paper studies a dynamic asset pricing model derived as-
suming a general family of generalized isoelastic preferences, which
subsumes isoelastic VNM expected utility functions as a special
case. The main advantage of our specification of preferences—
derived from recent work by Epstein-Zin [1987a1, Farmer [1987],

1See Hansen, Richard and Singleton 11981].
2See, for example, Mankiw and Shapiro [1986].
3See the original studies of Black, Jensen and Scholes [19721 and Hansen and Sin-

gleton [1982, 1983].
'Of course, these models have been criticized for many other assumptions: see, for

example, Roll [1977] for a. comprehensive survey.
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and one of us (Weil [1987, 19881)—is our ability to parametrize in-
dependently investors' attitudes towards risk (the parameter that
enters the SCAPM), and investors' willingness to substitute in-
hire for present consumption (the parameter that characterizes the
CCAPM). Hence our model is free from the theoretical shortcoming
that we mentioned above.

We characterize the optimal consumption and portfolio alloca-
tion programs which arise from our assumptions on preferences. As
Epstein and Zin [1987b1 first hinted, the model of asset prices which
emerges is—in general—a hybrid of the SCAPM and the CCAPM.
We compare the equilibrium conditions from our model with those
that characterize the SCAPM and the CCAPM. We show that, un-
der suitable restrictions on preferences and technology, our more
general dynamic setup may give rise to equilibrium conditions which
are equivalent to those of the SCAPM. On the other hand, the
CCAPM arises only when preferences are VNM. We thus demon-
strate that the static and the dynamic capital asset pricing models—
far from being mutually inconsistent—are just special cases of a
more general, but as tractable, specification of preferences.

Our study is related to earlier attempts by Hakansson 119711
(who studied a discrete-time model) and Merton [1973] (who used
a continuous-time model) to establish which restrictions on prefer-
ences or asset returns would give rise to the SCAPM even in a fully
specified, dynamic model. The restrictions uncovered by these au-
thors, however, were difficult to interpret, since they involved mag-
nitudes which coWd not be interpreted, in a VNM setting, as un-
ambiguously referring to risk or intertemporal substitution. Our
analysis suggests that myopia in consumption-saving----the case of
a mit elasticity of intertemporal substitution—does not in general
give rise to the static CAPM. Instead, we show that unit elasticity
of relative risk aversion gives rise to myopia in portfolio allocation,
and that myopia in portfolio allocation makes the SCAPM hold true
even in the general dynamic setup that we consider.

Our paper is also indirectly related to recent work by Bergman
[1985], Constantinides [1988] and Si.mdaresan [19891, who explore
the implications for equilibrium asset pricing of time non-separable
preferences. We, on our part, allow for preferences which are both
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time and state non-separable.
Section 1, which describes the model, outlines the axiomatic foun-

dations of Kreps-Porteus non-expected utility preferences, and de-
rives the Euler equations that characterize our model. Section. 2
studies various restrictions on taste parameters and the parameters
of the distribution of returns. Section 3 explores the theoretical and
empirical implications of our results for the beta representation of
excess returns. The conclusion, summarizes our study, and indicates
directions for future research.

1 Optimal consumption and portfolio allocation with
Kreps-Porteus preferences

.1.1 An introduction to Kreps-Porteus preferences

Researchers in finance and economics have long used the very con-
venient assumption of time and state separability to represent pref-
erences over random consumption prospects. Unfortunately, speci-
fying that utility can be written as

V = Pi 51 u(cg÷1) (1)

implicitly imposes, as is well known, severe restrictions on the con-
sumers' attitudes toward risk and intertemporal substitution. For
the case of isoelastic utility, for instance, if u(c) = c1/(l —

the parameter p represents both the Arrow-Pratt coefficient of rel-
ative risk aversion for timeless gambles or lotteries on permanent
consumption, and the inverse of the elasticity of intertemporal
substitution.5 This behavioral restriction is obviously devoid of any
behavioral rationale—as it implies, for instance, that risk neutral
agents necessarily have an infinite elasticity of substitution. Not
only has it led to much semantic confusion, but it has also pre-
vented any delineation of the respective role of attitudes toward risk
and intertemporal substitution in portfolio choice and consumption-

5For the exponential sub-utility function u(c) = exp(—(c)/(--(), > 0, C is the
coefficient of absolute risk aversion and (c the elasticity of intertemporal substitution.
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savings decisions .
For that reason, a way has long been sought to relax the ha-

plicit restriction imposed by the combined assumptions of state and
time separability, while maintaining the properties, deemed desir-
able, of stationarity of preferences and temporal consistency of opti-
mal plans. As independent work by Epstein and Zin [1987a], Farmer
[1988] and one of us (Weil [1987]) has established, and as Selden's
11978] early results on the two-period "ordinal certainty equivalence"
preferences had hinted, that a class of preferences axiomatized iii a
series of seminal papers by Kreps and Porteus [1978, 1979a, 1979b],
provide a simple and elegant way of separating risk aversion from in-
tertemporal substitution while complying with all the above desider-
ata. Kreps-Porteus preferences generalize time-additive expected
utility by relaxing one of the fundamental axioms of VNM theory,
the originally static "axiom of reduction of compound lotteries" ,
which, when imposed on temporal gambles, implies that agents arc
indifferent to the way uncertainty on consumption lotteries resolves
over time.8

Monotonicity and regularity conditions, together with axiom of
independence of irrelevant alternatives and the requirement that
preferences be temporally consistent and stationary, suffice, as Kreps
and Porteus show, to obtain the following recursive representation

6See, for instance, Hall [1988] for the empirical difficulties raised in consumption
theory by the time additive, expected utility restriction.

7Loosely speaking, this axiom imposes that when one is offered to participate in a
lottery whose prizes consist in tickets to other lotteries, one is concerned only in the
compound probability of each final prize, and does not care about which particular
sequence of lotteries led to that prize.

8Consider, for instance, two consumption lotteries each offering prizes with the same
compound probabilities, but which differ in terms of the dates at which uncertainty
resolves. In lottery A, the agent consumes c > 0 with certainty at t. A fair coin is
then flipped at i + 1: if heads, the agent consumes c forever; if tails, he consumes. c at
+ 1 and c' c thereafter. In lottery B, the agent consumes c with certainty at t and

i + 1, and the fair coined is tossed instead at t + 2. If tails, consumption is c thereafter;
if heads, it is c'. A VNM expected utility maximizer, who only looks at compound
probabilities, is indifferent between the two lotteries, despite the fact that uncertainty
on future consumption is resolved one period earlier in lottery A than in lottery B. A
Kreps-Porteus agent, by contrast, may have a preference for late or early resolution
of uncertainty. Note, in addition, that the foregoing remarks apply to consumption
lotteries: even VNM consumers in general prefer early resolution of uncertainty on
income lotteries, as it improves planning.
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of preferences:
V1 = U[c1,EV1+,], (2)

where V1 denotes utility at time t, Eg is the expected value opera-
tor conditioned by the time t information set, and U[.,.] is, using
Koopman's [1960] terminology, the "aggregator" function—which
aggregates current consumption with future (expected) value.9

When the aggregator function U[.,.] is linear in its second argu-
ment (a case which would result from the imposition of the "reduc-
tion" axiom on temporal consumption lotteries), one can easily see,
by forward substitutions and the law of iterated projections, that
utility 14 is the expected sum of discounted future "felicities," with
the discount factor being a constant, the derivative, U2, of the aggre-
gator function with respect to its second argument. The standard
time- and state-separable expected utility representation therefore
obtains as a special case of Kreps-Porteus preferences.

More generaily, the tastes represented in (2) are not part of the
class of expected utility functionals,'° and they allow, as ICreps and
Porteus show, for preference for late or early resolution of uncer-
tainty over consumption lotteries depending on the concavity or
convexity of the aggregator function U[.,.] in its second argument.

To understand why Kreps-Porteus preferences provide a way to
separate attitudes towards risk from behavior towards intertempo-
ral substitution, it is necessary to explain the link between the three
concepts of preference for early or late resolution, risk aversion, and
intertemporal substitution. In utility terms,11 one can show lotteries
in which uncertainty resolves early'2 are less risky than late resolu-
tion lotteries with the same distribution of prizes,'3 but that they
present, at the same time, more sure fluctuations of utility over time.
There is therefore, in general, a trade-off between safety and stability
of utility. Agents who dislike risk "more" than intertemporal fluc-
tuations prefer, ceteris paribus, early resolution; but consumers who
have a stronger distaste for intertertemporal fluctuations than for

91n general, the aggregator function could be allowed to be time dependent.
'°Equation (2) is not linear in probabilities when the aggregator function is not

linear in its second argument.
1This, and not consumption, is in general the appropriate "metric."
'2Lottery A in footnote 8.
13Lottery B.
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risk prefer late resolution. For VNM consumers with tune-additive
utility, the cost and benefit of each lottery in terms of safety and
stability of utility balance out, because the very same factor which
leads them to dislike risk (a high coefficient of relative risk aver-
sion) is necessarily conducive to a strong distaste for intertemporal
fluctuations in utility (a low elasticity of intertemporal substitution).
VNM consumers with time additive utility are, therefore, indifferent
to the timing of resolution of uncertainty over consumption lotteries.

The particular parametric form of ICreps-Porteus preferences
upon which this paper concentrates is based on the generalization of
isoelastic utility independently proposed, in slightly different forms,
by Epstein-Zin [198Th] and Weil [1987], and characterized by the
following aggregator function:

I -y

___1I —P
U[cg,EVj÷i] =

1(1
— 6); + 6(E34+i)''1 , (3)

where 'y > 0, -y 1 can be interpreted as the Arrow-Pratt coeffi-
cient of relative risk aversion (CRRA), 1/p � 0, p 1 represents
the elasticity of intertemporal substitution (EIS), and 6 E (0, 1) is
the subjective discount factor.14 Under certainty, it is easy to see
that the parameter -y is irrelevant, as it can be eliminated by an
increasing monotone transformation: risk aversion does not matter
under certainty. In the presence of uncertainty, the standard time
additive, isoelastic, expected utility representation obtains as the
special case in which -y is constrained to be equal to p, as the ag-
gregator function is then linear in its second argument. In general,

14To justify this terminology and understand the connection of this parametrization
with Selden's two-period isoelastic OCE preferences, write W =u"', and define

two functions, V(x) = 1 and U(c,x) = [(1 — L)c'" + bt)1(°). Thea the
definition of preferences in (2) and (3)is equivalent to 1V =U(ct, V (EV( W,+i ))) —
a formulation used by Epstein [1988). Current utility is hence the aggregate, through
the function U which depends only on S and p, of current consumption and the certainty
equivalent of future utility, computed through the function V which depends only on
y. Attitudes toward intertemporal substitution are thus captured by U, and behavior
towards risk by V. In the two-period case, the certainty equivalent of future utility
is just the certainty equivalent of future consumption—and our preferences reduce to
Selden's. Also note that the configurations = 1 and p = 1 can be dealt with as
limiting cases, using de L'Hopital's rule, of the aggregator function in (3) after using
the affine transformation ¾ = 1 + (1— 6)(1 — 7)vg. We follow that procedure in section
2 and its attendant appendices.
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however, a consumer has a preference for late (resp. early) reso-
lution of uncertainty if p is larger (resp. smaller) than -y)5 The
preferences defined by (2) and (3) are isoelastic in two dimensions:
the coefficient of relative risk aversion, -y, is a constant, and so is
the elasticity of intertemporal substitution, i/p. The Kreps-Porteus
preferences defined in (3) achieve the desired separation between risk
aversion and intertemporal substitution: for they do not impose any
cross-restriction on the taste parameters 7 and p.

1.2 Optimal consumption and portfolio allocation

We now turn to the characterization of the optimal consumption and
portfolio decision of an infinitely-lived, representative16 consumer
whose tastes are defined by equations (2) and (3), and who can
invest his wealth in N financial assets, with asset i, i = 1,... , N,
offering the random gross rate of return R11÷1 between periods t and

1. Let
N

(4)

denote the rate of return on the optimally weighted portfolio (the
"market" portfolio), where a,t denotes the share, determined at
time t, of asset i in the optimal portfolio, and

N
a11 = 1. (5)

1=1

The consumer's objective is to maximize utility, defined by (2) and
(3), by choosing a sequence of consumption plans and portfolio
shares, subject to (4), (5), and the following sequence of budget
constraints:

= RM,i+1(wt — Ct), (6)

for all t � 0, where Wt and c1 denote, respectively, wealth and con-
sumption at time t.

'5This is because the aggregator function is then concave (resp., convex) in its second
argument. See Kreps and Porteus [1978].

16lssues relative to the aggregation of heterogeneous agents are outside the scope of
this paper.
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Let S denote the history of asset returns until, and including,
thne t, which we assume is known to the agent at time t. The opti-
mal program is then characterized, most simply, in terms of a value
function, V(w, 8), which solves the following functional equation,
reminiscent of standard Bellman equations:

V(wg,St) = mar U[c1,E1V(w1+i,S1÷i)] (7)
ct

subject to (4), (5) and (6)—with the aggregator function given in
(3).

Given the homotheticity cf the preferences defined in (3), tile
characterization of the optimal consumption program can be cii-
vorced, as in standard VNM settings, from that of the optimal port-
folio composition. It is easy to show, performing the maximizations
called for by (7) and using the envelope theorem, that in a consump-
tion optimum, the marginal value of wealth must be equalized to the
marginal utility of consumption, so that the optimal consumption
decision is characterized by the following first-order condition:

U1,2 = E {RM,t+1 U2, U11÷1 } , (8)

where U denotes the derivative of the aggregator function with
respect to its i-th argument, evaluated at (c1, E1V2÷1). With time
additive, expected utility, the discount factor U2,1 is constant and
equal to 6—so that this Euler equation assumes its "familiar" form.

As for portfolio composition, it must be the case that, for any
two distinct assets i and 5 which are held by our consumer,

E1 {U1,2+1 R1,2+1} = E1 {U111+1 R5,1+1}. (9)

Equation (9) must hold, in particular, for the market portfolio
(because the market must be held in equilibrium in this represen-
tative agent economy). Hence, for any asset i which is held (which
includes the market)

E1{ U2,2t+1 R1,1+3} =
1, (10)

which is the fundamental Euler equation exploited in this paper.17

'TGiving up one unit of consumption today costs U,, time-i utils. An additional
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Let

MRS1+1 (11)
U1,t

denote the marginal rate of substitution between periods it and t +1.
Then, as in all optimizing intertemporal models, it is the covariance
of an asset with the marginal rate of substitution which determines,
in equilibrium, its excess return.

But what are the determinants of this marginal rate of substitu-
tion, and thus of excess returns? Is it consumption growth—as in
traditional dynamic models with time-additive expected utility? Is
it the rate of return on the market—as in static models? In the next
section we answer those questions by showing that, in general, the
marginal rate of substitution is a geometric weighted average of the
consumption growth rate and of the return on the market. It is only
in a few special cases, which we catalogue, that the marginal rate of
substitution is driven solely by the rate return on the market. We
postpone discussion of the implications of those results for the beta
representation of excess returns and the interpretation of empirical
evidence to the last section of the paper.

2 'Determinants of the marginal rate of substitution

In this section, we examine the determinants of the marginal rate
of substitution, given in equation (11), for the parametrization of
isoelastic Kreps-Porteus preferences introduced in (3). We proceed
in two steps, first characterizing those determinants for general pa-
rameter values, then examining the interesting special cases 'which

emerge for remarkable values of p and y, and for specific distribu-
tional assumptions on St.

2.1 General case

The method followed here draws both on Epstein-Zin [1987aj and
Weil [1987, 1988}. To compute the marginal rate of substitution

unit of consumption tomorrow provides U1,÷1 time-(i + 1) utils, which are worth

U2,IU1.H.1 time-t utils. In an optimum, investing the one unit of consumption given
up at time i in any asset i, and eating the proceeds at t + 1 should not, on average,
increase utility.
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along an optimal consumption path, it is necessary to characterize
the value function which solves the functional equation in (7). It
is easy to verify18 that the value function is homogeneous of degree
1 — 'y ill wealth, and that it can be written as

V(wt, S1) = (S) (12)

Therefore, the Arrow-Pratt coefficient of relative risk aversion for
timeless gambles (the elasticity of the indirect marfinal utility of
wealth) is simply 'y—which confirms the interpretation of given
supra.

The associated consumption function is

C1 = 14S1) Wt. (13)

Our generalized isoelastic preferences thus yield, as does their
VNM time additive counterpart, consumption functions which are
linear in wealth.19 Using the properties of the functions (.) and
p(.) spelled out in Appendix A together with the definition of the
aggregator function given in (3), one can show after tedious but
straightforward manipulations that the marginal rate of substitution
can be expressed as

MRS1÷1 =
[s (ct+i)P]

'
[R

1

]

1-p

(14)
Ct M,t+1

Equation (14), which was first derived by Epstein and Zin [1987a],
shows that with Kreps-Porteus isoelastic preferences, the marginal
rate of substitution is, in general, a geometric weighted average of
the rate of growth of consumption and of the rate of return on the
market portfolio.

What in general determines the equilibrium rate of return on as-
set i is thus the covariance with both consumption growth and the
rate of return on the market. The SCAPM and CCAPM should
hence not be viewed as contradictory approaches, but rather as con-
stitutive elements of a more general theory.

'8See Appendix A for proofs of the following statements.
19This property is shared by the Kreps.Porteus generalization of exponential utility,

which is easy to parametrize. We conjecture that it is true more generally for the meta-
HARk class of utility functions which can in principle be derived from Kreps-Porteus
preferences.
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2.2 Unit elasticity of intertemporal substitution

We now establish that one of the remarkable feature of timeacldjtjve
logarithmic utility—the constancy of the marginal propensity to
consume—obtains more generally for preferences characterized by
a unit elasticity of intertemporal substitution, independently of at-
titudes towards risk.

As we show in Appendix B, when p = 1 optimal consumption is
proportional to wealth, independently of the value of the coefficient
of relative risk aversion:

= (1 — S)wt. (15)

However, this insensitivity to the current realization of the state
does not carry over to portfolio allocation, for the optimal portfolio
decision is truly dynamic—as shown by the Euler equation derived
in Appendix B.

Therefore, a unit elasticity of intertemporal substitution implies
a form of (rational) myopia in consumption and savings decisions,
but not in portfolio allocation.

Under the additional assumption that the market rate of return
at t + 1 follows, conditionally on information available at t, a log-
normal process:

lnRM÷l = irInRMl + wi (16)

with r-.' .Af(O, a2), and supposing that there is no other uncertainty
than rate of return uncertainty, the functional equation in (7) can
be solved explicitly. The (indirect) utility of wealth is simply:

V(wt, RM,t) = (17)

where q (1 — 'y)irS/(l — irS), and is a constant whose value
is irrelevant for the present discussion. As equation (17) indicates,
the process followed by In RM need not be stationary for the value
function to be well defined. Instead, one can show that it is only
required that the process for RM be of exponential order less than
1/6, i.e., that it 1< 1/6.20 The elasticity of the value function with

20A similar condition was noted by Hansen and Sargent [19801 in their analysis of
solutions of linear rational expectations models.
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respect to a realization of RAt, q, thus reflects, up to a constant
of proportionality equal to 1 minus the coefficient of relative risk
aversion, the present value of future increments in in RM, discounted
at rate 6.

Notice that if Rft{ is i.i.d., then q = K = U and the marginal value
of one unit of wealth is, of course, independent of the current real-
ization of the interest rate process. Of course, the same (familiar)
result arises when -y = p = 1 (the expected logarithmic utility case
analyzed infra).

The Euler equation associated with (17) is shown, in Appendix
B.2 D, to be:

E — 1i,t+1 M',t+l 5 — t 1,1+1 M,t+1

As equation (18) shows, with a unit elasticity of intertemporal
substitution and conditionally lognormal returns, we obtain an Euler
equation that is observationally equivalent to the first-order condi-
tion in the SCPAM (.or the CCAPM). The difference between the
standard SCPAM equation and that obtained from our (restricted)
dynamic model is in the interpretation of the "risk aversion" param-
eter. The relative risk aversion coefficient 7 of the SCPAM is here
replaced by — i1—which would lead, if (18) were used to estimate
the coefficient of relative risk aversion, to a downward bias of size q.

2.3 Unit coefficient of relative risk aversion

In the case of logarithmic risk preferences (y = 1, p $ 1), and for
any stochastic environment, the consumption function which char-
acterizes an optimal program is given by

= JL(Si) w, (19)

where the function 4) is implicitly defined in Appendix C. Con-
sumption is linear in wealth. The marginal propensity to consume
is, however, in general state-dependent: logarithmic risk preferences
do not, therefore, yield any myopia in consumption.

The marginal rate of substitution between current and future
consumption reduces to [see (14) and Appendix C]:

MRS1 = 1
, (20)

RM,i+1
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so that the Euler equation characterizing the optimal program be-
comes

Ej{Rj,g÷l/RM,t+1} = 1, (21)
which is the first-order condition of the SCPAM.

We thus conclude that with logarithmic risk preferences, anti
without any distributional restrictions on asset returns, excess re-
turns should conform, in equilibrium, to the SCPAM—whichever the
magnitude of the elasticity of intertemporal substitution. In other
terms, a unit coefficient of relative risk aversion implies a form of
(rational) myopia in portfolio allocation, but not in consumption
decisions.

2.4 Logarithmic expected utility

The logarithmic expected utility case combines, not surprisingly,
the remarkable features of the unit EIS and unit CR,RA cases ex-
amined supra. It is easy to show2' that, when 'y = p = 1, optimal
consumption is a constant fraction of wealth:

= (1 — b)wg, (22)

so that, using the budget constraint, the Euler equation can be
written in two algebraically identical forms:

= 1, (23)

or
= 1. (24)

Excess returns are then governed, in equilibrium, by the SCAPM
according to the first equation, by the CCAPM according to the
second. These two formulations are not contradictory: the SCAPM
and CCAPM must be equivalent under logarithmic expected utility,
because consumption growth is perfectly correlated with the rate of
return on the market when the marginal propensity to consume is
constant.

Logarithmic expected utility thus features two forms of rational
myopia: myopia in consumption (a constant marginal propensity to

2tSee Appendix B.1 for a short proof.
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consume), and myopia in portfolio allocation (excess returned gov-
erned by the SCAPM). Our framework enables us to unambiguously
attribute tile former to a unit elasticity of interteml)oral substitu-
tion, and the latter toa unit coefficient of relative risk aversion.

Our results on specific preference restrictions are collected in Ta-
ble 1. The Table highlights the symmetric effects of p = 1 and 'y = 1

on consumption and portfolio allocation, respectively; it shows that
myopia in consumption is not equivalent to myopia in portfolio al-
location unless, as shown supra, when = p = 1.

MPG True CAPM
p = 1 constant Neither SCAPM

nor CCAPM
= 1 non-constant SCAPM

p =7=1 constant SCAPM=CCAPM

Table 1: Implications of unit risk aversion and unit intertemporal substitution

2.5 Li. d. uncertainty

Suppose that the state vector S is identically and independently dis-
tributed, so that current realizations convey no information about
future states. It is obvious that the marginal propensity to consume
must then be constant: it depends on the state- and time-invariant
expected return on the market portfolio. Consumption growth is,
therefore [see (6)], proportional to the rate of return on the mar-
ket. Straightforward computations (see Appendix D) prove that
the marginal rate of substitution, given in (14), then reduces to
MRS÷1 = = [(cj+i/cg)/(1 — p))]1, so that the Euler equa-
tion (10) becomes

= 1, (25)

or, equivalently,

{(i — PP = 1, (26)
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where p denotes the marginal propensity to consume, computed in
Appendix D.

The first of these two algebraically identical Euler equations is
simply the Euler equation characterizing the optimal portfolio al-
location of an agent with coefficient of relative risk aversion y who
maximizes, period by period, the expected utility of his wealth;22
the second equation tells us that the optimal program is observa-
tionally equivalent to that of a VNM maximizer with a CRRA of
(or an EIS of 1/7), and a subjective discount factor of (1 — p)7.

Therefore, with i.i.d. uncertainty, attitudes toward intertem-
poral substitution, as measured by p, are irrelevant for portfolio
allocation;23 only attitudes toward risk, as parametrized by , mat-
ter. Further, the SCAPM and CCAPM should provide, with i.i.d.
uncertainty, identical descriptions of excess returns.24 As we shall
argue below, the apparent inconsistency of this result with the data
can be interpreted as prima facie evidence that the i.i.d. assump-
tion is unwarranted in reality. Our results on specific distributional
assumptions are collected in Table 2.

MPC True CAPM

I.i.d. returns constant SCAPM=CCAPM

p = 1, lognormal returns constant SCAPM- and CCAPM-like

Table 2: Implications of distributional assumptions

22This is most easily seen by noting that equation (25) holds, in particular, for the
market portfolio, so that E {Rj71Ri,t+i} = E {R)7+i}—the traditionat formu-
lation of the SCAPM.

"But obviously not for the consumption/savings program.
24The equivalence of the SCAPM and CCPAM under i.i.d. uncertainty is well

known with VNM time-additive preferences (see, for instance, iluang and Litzenberger
[1988) for a proof). It has also been noticed, for Kreps-Porteus (KP) preferences, by
Kocherlakota [1987], who interprets it as implying the observational equivalence of
VNM and KP preferences. This observationai equivalence is however trivial, as it is
confined to a case—i.i.d. uncertainty—in which time is irrelevant both for VNM and
KP optimal portfolio allocation. We drive a more interesting observational equivalence
result in section 2.4 below.
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3 Interpreting the data

We have suggested above that our model, based on isoelastic ICreps-
Porteus preferences, predicts that excess returns on any asset are, in
general, governed by the covariation with both consumption growth
and the rate of return on the market portfolio. This result—which
unifies two theories, the static and consumption capital asset pricing
models, often viewed as largely contradictory—is now analyzed in
greater detail. We provide a theoretical rationalization of the exist-
ing empirical evidence on excess returns, and identify some testable
implications of our theory.

3.1 Decomposition of the true beta

To derive an analytically tractable expression of an asset true beta,
it suffices to assume that the logarithm of the return on any asset i,
of the rate of the return on the market, and of consumption growth
are conditionally jointly normal, with mean

(27)

and variance-covariance matrix

( C ajJ,f ork\
Di=ICIM £Tj CMCI, (28)

Mc )
where c is shorthand for the logarithm of the rate of growth of
consumption.25

Using standard results on the multivariate lognormal distribu-
tion, and the property that EX = exp(ae + a2c2/2) if laX

"The assumption that individual asset returns and the market return are jointly
lognormal is, of course, only an approximation, since the market return is a linear
combination of individual returns and the lognormal distribution is not stable under
addition; the results below however hold exactly over infinitesimal time periods when
asset returns follow a diffusion process. As to the assumption that asset returns and
consumption growth are jointly lognormal, it might, in discrete time, be inconsistent
with utility maximization. This occurs not only in our model but also, for instance, in
the Hansen-Singleton [19831 paper for the special case of logarithmic expected utility.
This difficulty, when it arises, is also resolved by considering continuous time.

16



Ar(e,a2), the Euler equation, given by (10) and (14), can be rewrit-
ten as:

—pOe + (0 — 1)M + + Ep202c2 + (0 — 1)24 + a]
— P0ic — pO(O — 1)cM+ (0— l)UIM = —lnô, (29)

where 0 (1
— 7)/(1 — p).

This equation also applies to the riskfree rate, so that:

—pOC + (0 — 1)fM + r + [p2O2c + (0— 1)24]
—pO(O—1)uM= —lnb, (30)

where rp denotes the logarithm of the riskfree rate, RE.26
Subtracting (30) from (29), we find that

1M, (31)i—P i—p

or, equivakntly, that

in ER1,÷1 — rp = 7Cic +' (uj — o). (32)

Equation (32) confirms our earlier results. If preferences are VNM,
so that -y = p, the covariance between an asset's return and the
market should play no role in the determination of that asset's
excess return—except, as noted above, in the special logarithmic
case = p = 1 for which the static asset pricing model obtains
(In ER1,+i. — = aIM). On the other hand, if preferences are
of the Kreps-Porteus variety (7 p), the covariance with both
consumption and the market should in general have explanatory
power for excess returns—one exception being the case -y = 1 for
which the SCAPM obtains independently of the value of p, since
7=(-y—p)/(1—p)wheny=1.

A further, and perhaps more attractive, implication of the trans-
formed Euler equation (31) can be derived by noting that it applies,

26Because of our distributional assumptions, and as (29) and (30) indicate, condi-
tional expected returns and the riskfree rate are constant in this economy.
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in particular, to the market portfolio, so that

rM+4/2 TF =P1CMC+u. (33)

Dividing (31) by (33), and defining the i-th asset's consumption and
market betas as being, respectively,27

= UICIUMC, (34)

pM = UIMRM, (35)

we immediately find that

(36)

where
hi Et(R1,t+l/RF) (37

hlEt(RM,j+l/RF)
denotes the "true" beta of asset i (defined as the excess return on
asset i over the riskfree rate, relative to the excess return on tile
market portfolio),28 and where

38
p(l — 7)frMC/cT2M) + (y —

Hence, according to equation (36), the true beta of asset i is a
linear combination of that asset's consumption and market betas.
The weight in that linear combination, a, is, from equation (38),
the same for every asset. It depends only on preferences and on the
correlation between the rate of return on the market and the the
rate of growth of consumption.

Two interesting parameter configurations confirm, once again,
the results of section 2. When consumers have a unit coefficient of
relative risk aversion ('y = 1), a = 0 and the true beta is the market
beta independently of the value of the elasticity of intertmporai
substitution. When preferences are VNM (p = 7 y4 1), a = 1 and
the true beta is the consumption beta.

"The market consumption and market betas are equal to 1 by normalization.
28Again, the market true beta is 1 by normalization.
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In what follows, we show that this theoretical beta decomposition
provides an explanation to the empirical evidence: excess returns,
we shall claim, are best explained by the market beta because the
consumers' coefficient of relative risk aversion is not significantly
different from 1 and the VNM restriction does not hold.

3.2 An empirical exploration

In this section we report some illustrative analyses of the data, by
reinterpreting the cross-sectional regressions run by Mankiw and
Shapiro [19861.29

Mankiw and Shapiro [1986] presented a test on the relative pvc-
dictive ability of the market beta and the consumption beta in a
linear regression to explain a cross section of stock returns. As we
have shown above, equations (36) and (37)—formally similar to the
one estimated by Mankiw and Shapiro—are the implication of a
fully specified dynamic model of asset pricing: hence we can inter-
pret the estimates of the coefficients of the consumption beta and the
market beta in terms of structural parameters. In addition, equation
(36) and suggests that the coefficients of the market beta and the
consumption beta in such a cross section should sum to 1, and—
being a function of risk aversion, intertemporal substitution, and
the covariance of consumption and the market portfolio—should be
constant across assets. We test these propositions by reconstruct-
ing and updating the sample of Maniciw and Shapiro. Our sample
includes all the companies listed in the New York Stock Exchange
(NYSE) continuously from January 1959 to May 1987, contained in
the tape of the Center for Research in Security Prices (CRSP) at
the University of Chicago. The total number of firms is 379.

The consumption measure is real per capita consumer expendi-
ture in nondurables and services (measured in terms of nondurables)
from the US National Income Accounts. Individual firms' returns
include dividends and capital gains, while the market return is the
value-weighted CRSP NYSE index. The nondurables price deflator
is used to measure real returns. We construct quarterly series of

"The approach of Mankiw and Shapiro [1986] was pioneered by Douglas (1969],
Miller and Scholes [1982), Blume and Friend [19731, and Fama and MacBeth [1973].
See Huang and Litzenberger [1988] for a valuable survey of tests of the CAPM.
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real returns and consumption growth, measured at the first month
of each quarter.3° From these quarterly series, we compute—for
each firm in our sample—the moments in (27) and (28) over the
period from January 1959 to May 1987.31

The dependent variables in the regression is the ratio on the right-
hand side of equation (37). Since the riskiree rate is not observable,
we follow the findings of Fama [1985] for the period from 1953 to
1971, and assume it to equal 1 percent per annum. The right-
hand side variables in the regression are a constant term,32 and the
consumption and market betas defined in equations (34) and (35).

OLS estimates of the relation between betas and stock returns
are consistent under relatively weak assumptions, but the covariance
matrix of the disturbances may not be spherical, since stock returns
are correlated. Hence we compute both OLS and GLS estimates.
Following Mankiw and Shapiro we compute GLS estimates assuming
that the residuals v (i = 1, .. . ,379) have the form:

= kv' + q (39)

where ii is a common stochastic factor, and Cov(q, e) = 0 Vi $
j, and Cov(zi, c) = 0 Vi. These assumptions imply that excess
returns are driven by a common factor, which is the implication of
the beta representation of our model. Under these conditions, it is
easy to show that the off-diagonal elements of the covariance matrix
of disturbances are proportional to /3j/i, while the diagonal elements
are proportional to a lab.

Tables 3 and 4 contain the results of the OLS and GLS regressions
and tests of the relation between betas and stock returns.

The first implication of the model is that the coefficients on the
market beta and the consumption beta should sum to 1. Table 5
reports the marginal significance levels for the null hypothesis that
the coefficients sum to For both the OLS and GLS estimates the
• "The use of average consumption the first month of every quarter allows us to
minimize the time-aggregation problem.

31The data and all the Fortran and Gauss programs used in this paper are available
from us on request.

"A constant is included to allow for measurement error in our riskfree rate assump-
tion and in the estimation of the expected rate of return in the market.

331.e., the probability that under the null hypothesis the test statistic exceeds the
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Constant H2

OLS 0.48 0.07 0.89 0.17

Unrestricted (0.11) (0.06) (0.12)
OLS 0.44 0.07 0.93 0.17

Restricted (0.03) (0.06) (0.06)
GLS 0.39 0.06 0.96 0.17

Unrestricted (0.92) (0.06) (0.39)
GLS 0.38 0.06 0.94 0.17

Restricted (0.91) (0.06) (0.06)
Standard errors are given in parentheses

Table 3: The relation between stock returns and betas

Test of the restriction Stability test
sum of coefficients = 1

OLS 0.701 0.146

GLS 0.961 0.045

Table 4: Stock returns and betas: test statistics

restriction is not rejected. Furthermore, the OLS and GLS estimates
are very similar to each other, and similar in the constrained and
unconstrained versions of the regression equation.

The second implication is that the coefficients should not vary
across firms. We test this constraint using a Chow test in the OLS
case and a Wald test in the GLS case.34 In both cases the null
hypothesis of no change in the coefficients across subsamples is not
rejected at the 1 percent level, although it is rejected at the 5 percent
level when we use GLS estimates. We also produce 50 arbitrarily
rearranged replicas of the original sample, and perform Chow and
Wald tests for each one of them. We cannot reject the hypothesis

computed value. The statistic is distributed as an F in the OLS case, and as a x2 in
the GLS case.

34We stack together the equations in the subsamples.
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of constant coefficients at the 1 percent level in all 50 cases vIxen
we use the Chow test, and in about 80 percent of the cases when we
use the Wald test.

The estimates of Table 3 indicate that the consumption beta co-
efficient is insignificantly different from zero, thus confirming tile
results first reported by Mankiw and Shapiro [1986]. Our model,
however, suggests an explanation for this finding—which was, tip to
now, viewed as puzzling. As we argued above, equations (36) and
(37) imply that, when 7 —+ 1, the weight of the consumption beta
tends to zero. Hence our estimates imply that 'y is insignificantly
different from 1.

Is the evidence consistent with logarithmic VNM preferences?
As we showed above, we should observe, if it were the case that
7 = p = 1, the equivalence of the SCAPM and CCAPM; in other
terms, we should have fl = /3f6 for every asset i. The estimated
standard errors clearly suggest that the collinearity between /Y and
/JM is low.36 Thus, the data do not seem to support the hypothesis
of logarithmic VNM preferences, and suggest that we have 'y = 1,pl.

Is the evidence consistent with i.i.d. uncertainty? Again, the
lack of substantial collinearity between the market and consump-
tion betas— a collinearity which, according to the analysis of sec-
tion 2, should be present under i.Ld. uncertainty—rules out this
interpretation of the evidence.

Hence we tend to conclude that the evidence both leans against
the VNM restriction on preferences, and is consistent with the hy-
pothesis that the coefficient of relative risk aversion is unity. These
results are consistent with the time-series evidence of Epstein and
Zin [1987b].

One drawback of the beta regressions of Table 3 is that they
are conditional on assumed values for the riskfree rate. Perhaps a
cleaner test of our model relies on equation (32). In a cross-sectional
regression of asset returns on a constant, k and trIM — the con-
stant should provide an estimate of the riskfree rate, the coefficient

35A regression of pM on a constant and 3' produces an estimate of the constant
term of 0.77 (standard error 0.03) and of the slope coefficient of 0.23 (standard error
0.02).
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on a an estimate of the coefficient of relative risk aversion, and
the coefficient on 1M — 0ic should be non-zero if preferences arc not
VNM. In Table 5 and 6 we provide the OLS and GLS estimates and
test statistics of that equation.

constant oic CJ — ic 112

OLS 0.98 5.85 1.84 0.17

(0.17) (3.43) (0.25)
GLS 0.83 5.60 2.00 0.17

(0.14) (4.22) (0.87)
Standard errors are given in parentheses

Table 5: Covariance regressions

Test of the restriction: Stability test

7=1
OLS 0.996 0.326

GLS 0.282 0.487

Table 6: Covariance regressions: test statistics

The results are consistent with those obtained in the beta re-
gressions. Although the coefficient of relative risk aversion is very
unprecisely estimated, we cannot reject the hypothesis that it isdif-
ferent from one, as shown by the test of the restriction that both the
coefficients on Uk and CIM — uj are equal to 1 Furthermore, the
assumption that preferences are VNM is decisively rejected. How-
ever the estimates of the riskfree rate, which is expressed in percent
per quarter, appear to be too high: the lower bound of a 95 confi-
dence interval for both the OLS and the GLS estimates is about 2
percent per annum, a value that is twice the sizeof the one estimated
by Fama [1975] on a partly overlapping sample period. Finally, the
stability tests appear less strongly supportive of the hypothesis that

36For p 0 1, -y = 1 implies that = (r — — p) = 1—whence our test [see

equation (32)].
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coefficients are constant across equations. While in the OLS re-
gression we found that the null hypothesis of no difference iii the
coefficients is never rejected in the 50 sample permutations we per-
form, in the GLS regression we reject stability in about 30 percent
of the experiments.

The high estimates of the riskfree rate and the few rejections of
the coefficient-stability tests suggest the presence of some specifica-
tion errors. These errors might be associated with our method of
estimation, that assumes the model holds on average during a speci-
fled time interval, with sampling errors in the covariance matrix, and
with errors in the measurement of the market rate of return (which
might plausibly also include human wealth). We plan to address
these questions directly in future empirical research, in order to ob-
tain full-information estimates of these structural parameters which
exploit the time-variation of conditional first and second moments.

Concluding remarks

This paper has studied the Capital Asset Pricing Model under the
assumption that investors' preferences display a coefficient of con-
stant relative risk aversion which differs from the constant elastic-
ity of intertemporal substitution. Our analysis was motivated both
by the theoretical shortcomings of VNM preferences which confuse
these two parameters, and by various theoretical and empirical pa-
pers which aimed at establishing the relative importance of intertern-
poral effects in asset pricing equations.

We have shown that the particular family of preferences employed
in this paper allows the construction of asset-pricing equations that
are both tractable and intuitive. In particular, the respective roles
of intertemporal substitution and risk aversion are greatly clarified
in this setup. We find that a unit elasticity of intertemporal sub-
stitution gives rise to mypia in consumption-savings decisions (the
future does not affect optimal consumption) while unit relative risk
aversion gives rise to myopia in portfolio allocation decisions (the
future does not affect optimal portfolio allocations). Equilibrium as-
set returns are determined both by the covariance with the market
portfolio and the covariance with consumption growth: the relative
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importance of these two effects depends on the relative magnitude
of the risk aversion and intertemporal substitution parameters.

As Epstein and Zin {1987b] first suggested, our paper implies that
regressions similar to those run by Mankiw and Shapiro [1986] can
be reconciled with a fully specified dynamic model of asset pricing.
Parameter estimates in our regressions are known functions of thc
coefficient of relative risk aversion and the elasticity of intertemporal
substitution, so that these regressions can be used to test for various
hypotheses on behavioral parameters and for the restriction of VNM
preferences. We find that portfolio choice seems to conform mainly
to static considerations (whence the apparent empirical support for
the SCAPM), and that market and consumption betas are largely
unrelated. This empirical evidence is consistent with the behavior
of intertemporal maximizers who have a unit coefficient of relative
risk aversion and an elasticity of intertemporal substitution different
from 1.

Although the exploratory regressions reported here are broadly
consistent with our theoretical framework, we feel that a full-fledged,
maximum likelihood estimation and testing of the model would be
of interest. We propose to undertake that task, which is beyond the
scope of this paper, in future research.
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Appeudix A Characterizatiou of the optimal program

This appendix studies the optimal consumption program and portfolio allocation. \Vc
proceed in two steps, first characterizing the solution to the optimality equation (7) itt
the text, then turning to the computation of the marginal rate of substitution along
an optimal consumption path.

A.1 Value function and consumption function

Because of the homogeneity properties of the aggregator function, of the interpretation
of 7 as the CRRA, of the fact that preferences are isoelastic and of the separation
between the consumption-savings and portfolio allocation problems, guess that the
value function can be written in the form

1 —yV(w,S)4(St)w , (A.1)

where 4.(.) is an unknown function, and that the consumption function is linear in
wealth:

= p(St)wt, (A.2)

where jt(Sg) is the state-dependent marginal propensity to consume.

It is easy to show, performing the maximization called for by (7), that the functions
.(.) and jt(.) are related by the following two conditions:

(1 — 5)[45)]' = 5w[1 — (A.3)

and I
4(S) = (1 — 8)'—' [p(Sg)]'—' (A.4)

where ipg = Eg{(Sl+l)[RM,t+jjl_7}t. Those two expressions can be combined to

yield a functional equation in (.). Although that equation has an explicit solution in
only a few special cases, the analysis which follows avoids the need for closed forms.

Using the budget constraint (6) along with (A.2), (A.3) and (A.4) imply that,
along an optimal program,

(A51—
—

I j M,t4-1' -

ESL+1)RM1L+l I. Ct

an expression which will be used infra.

A.2 Computation of the marginal rate of substitution

From (3), it is straightforward to show that the marginal rate of substitution defined

in (11) is, along an optimal path,

MRS+, = 5 {c.i] EtV+i]
, (A.6)

Cl Vt+1.
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where T4. denotes the value function evaluated at (wz+i,St+). Using the budgel
constraint (6) along with (A.1) and (A.2), one finds that

____ — _________ A
t+1

so that, substituting (A.5) and (A.7) into (A.6), we find that

C 1=1_i
MRS+1 = [ (÷i) J

RJjj'1 (A.8)

an expression which, when inserted in (11), yields the Euler equation (14) in the text.

Appendix B Unit elasticity of intertemporal substitution

As in the previous appendix, we start by computing the limit of a monotone transfor-
mation of the aggregator function in (3):

— l U{ct, 1 + (1 — y)(1 — S)Eivt+i] — 1
—

(1—-y)(1—E)
— (1—S)(1—,),r, \6—

C1

and by guessing a functional form for the value function: v(wg,Sg) =
Hence

• = ye(wg — c1)1', (B.2)
with 40g = E(lg÷iR7+1). Following the same procedure as supra, we obtain the
first order condition for the consumer-investor optimization problem,

(1_o)1=6 (B.3)

which implies:
c1 = (1— 5)tv. (B.4)

Substituting this result in the functional equation, we obtain the following functional
equation for (.):

= B[E((S1+1)14j71)]6 (B.5)
where B = (1 — fi)(1—6X1)5(11)6• This equation cannot, in general, be solved
explicitly.

The marginal rate of substitution between periods t and t + 1 is, from (11) and
(B.i),

U1,t+1 — vt+iu2, — , (B.6)
U,g Ev4i

so that, using the functional form of the value function and (B.5) and (10), the Euler
equation can be written as:

E {(S1+1)R;'÷1R11÷1 } = & {+(St+i)Rq÷1 } = 1. (B.7)

This Euler equation corresponds, in general, to neither the SCAPM nor the CCAPM.
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B. 1 Logarithmic utility37

In the particular case in which y = p = 1 (logarithmic expected utility), the second
equality in (B.?) implies that that Et'1(Sg+i) = 1. But then, (B.5) implies that

= = 1 Vt, since B = 1 when = 1. In addition, the constancy of the
marginal propensity to consume, established in (B.4), implies that the rate of growth of
consumption is proportional to the rate of return on the market (cg÷i/c1 =
so that the Euler equation becomes

= E{5 {'] R1,1÷1} = 1. (B.S)

Hence, with logarithmic expected utility, excess returns are explained equally well by
the SCAPM and CCAPM—since the constancy of the marginal propensity to consume
makes them identical models by implying a perfect correlation between consumption
growth and the rate of return on the market.

ff2 Lognonnal asset returns

Suppose that the only uncertainty is Markovian rate of return uncertainty, with the
conditional distribution of returns given in equation (16).

Under this distributional assumption, the functional equation can be solved explic-
itly (the solution is reported in (17)), and (B.7) becomes, after a few manipulations,

E {R111÷1 Rfl.} = E {R.+1 R)tT'} (B.9)

where

(B.1O)

Notice that, again, (8.9) is observationally equivalent to both the SCAPM and
CCAPM: consumption is a fixed fraction of wealth, and we can replace RM.e+1 by
r1(c1+1/c) in (BS).

Appendix C Unit coefficient of relative risk aversion

We first compute the limit of a monotone transformation of the aggregator function
in (3):

— . U[ci,i + (1— 7)(1 — S)Etvt+i] —1
V1 — im

(1—y)(1—S)

— ln1 — 5)c' + £e(_@_flEht+1] (C.1)—
(1—p)(1—S)

3TThe results in this subsection can, of course, also be derived by considering the
limiting case p = 1 in the previous appendix.
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and guess the value function to be of the form v(wc,S) = f- + t'(S). Ilenc:e
expki — p)(1 — = — ci)1, with 'pt = exp(Eg l[R-ç÷1],
and . = e. The consumer's optimization problem is then:

rnax [(i — 4)c + rpt(wl — (0.2)

We guess the consumption function to be of the form cj = ;z1w1 and obtain the first
order conditions:

(1 — = — pg), (0.3)
Substituting (D.3) into the Bellman equation (7), we obtain following relation: 4' =

— p). Using (0.1) and (0.3) to rewrite (14) in the text, we get:

Et[R;,g+IJRM,g+lJ = 1. (0.4)

Appendix D I.i.d. uncertainty

We guess the value function to be of the form

V(wt,St) = (D.1)

Hence, E(V1+i) = (tot — ct)''Et(L+1R)7+i).38 Under the assumption of i.i.d.

uncertainty, we can write Et(t+iR7+i) = so that the optimization problem
of the consumer-investor becomes:

max [(1— b)c° + Ly(wg — ct)1_Pj T=t (D.2)

We guess the consumption function to be of the form cg = p(St)wg: the first order
condition in (P.2) is:

(1— = L(1 — (D.3)

which implies p(Si) = p. Substituting the consumption function into the Bellmann
equation (7), it is easy to verify that $(S) = —a constant whose value is not relevant
to this analysis. Substituting (D.3) into (7), after some manipulations we obtain:

p = 1 — 8(ER71) ' (D.4)

Using this expression in the Euler equation (11) and (14) in the text, we obtain

= Et(R7÷1) = 1. (D3)

38Henceforth we use the shorthand notation $ = 'I(S) and t = p(St).
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