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1 Introduction

This paper suggests that it may be useful to conceptualize R ≤ 1 as a policy constraint, allow-
ing traditional economic and societal goals to then be the objective function in a simple static
optimization problem. Informally,

maximize Social Welfare (1)

subject to

Standard Economic Constraints

R ≤ 1: Reduce the Covid-19 Average Transmission Rate to Below 1

As is widely understood, diseases with average transmission rates above 1 eventually infect huge
numbers of people, whereas diseases with average transmission rates below 1 gradually dissipate.
An R ≤ 1 constraint is therefore a simple way to incorporate the dynamics of the health problem
society faces — in particular, the risk of exponential growth of the number of infections and deaths
— into familiar static optimization.

This simple approach perhaps bridges the usual economic approach and the health policy
perspective. Health policy experts, especially in the initial response to the Covid-19 crisis in Feb-
March 2020, often seemed to have a constrained optimization problem in the back of their heads
like

minimize Spread of Covid-19 (2)

subject to

Keep Society Functioning

Superficially, formulation (1) looks very different from (2). But, because of the R ≤ 1 con-
straint, (1) will reasonably approximate the medical objective in (2). At the same time, by having
traditional economic and societal goals as the objective function, (1) leads to very different pol-
icy implications. In particular, formulation (2) inevitably leads to a large societal lockdown —
it does not allow for any unnecessary risk. Whereas, formulation (1) seeks to allow as much
socially-valuable activity as possible subject to R ≤ 1.

This approach to the problem yields two main insights. First, the R ≤ 1 constraint imposes
a disease-transmission budget on society. This paper’s simple model suggests that society should
optimally spend this budget by ranking activities by their ratio of utility to disease-transmission
risk — in effect, the activity’s social welfare “bang for buck” per unit of virus risk. This part of
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the analysis is presented in Section 3.
Second, facemasks, Romer mass testing, six feet of social distance, and other related ideas can

be conceptualized as reducing the transmission risk of activities — their “cost” in terms of the
R ≤ 1 risk budget — at relatively low cost to utility as compared to lockdown. Such interventions
thus expand the frontier of how much social welfare can be achieved while keeping within the
disease constraint; they improve society’s bang for buck per unit of virus risk. Section 4 models
these ideas formally. Section 5 presents a detailed numerical example, using estimates from the
medical literature for R0 and the efficacy of facemasks and complementary measures, and uniform
distributions for utility and risk.

The numerical example highlights just how valuable simple interventions can be. If R0 = 2.5
and utility and risk are uniformly distributed, then without simple interventions society has to
drop fully 45% of activities, which together constitute 27% of pre-virus utility and 60% of risk,
to get to R ≤ 1. This is a severe societal lockdown. Whereas if simple interventions can reduce
transmission risk by 50% — which is in line with many estimates for the efficacy of facemasks
and complementary measures, and is likely conservative if better testing is considered as well —
then society can maintain nearly 90% of its pre-virus activities (dropping only those with the very
poorest utility-to-risk ratios), while still achieving R ≤ 1.

Remark on Related Literature: Static vs. Dynamic Models. Whereas this paper takes
a static approach treating traditional economic goals as the objective and R ≤ 1 as a constraint,
there is now a much larger and more influential literature in economics that builds dynamic models
with both traditional economic goals and health as objectives, incorporating disease dynamics as
a contraint. Early examples include Alvarez, Argente and Lippi (2020), Eichenbaum, Rebelo
and Trabandt (2020), Farboodi, Jarosch and Shimer (2020), Jones, Philippon and Venkateswaran
(2020), and Acemoglu et al. (2020).

At some level a dynamic approach is “more correct”. However, to get tractability, the dynamic
models all make important simplifying assumptions, and for this reason I think static and dynamic
approaches may be complementary. To be precise, a dynamic model seems necessary for analyzing
time-varying lockdown policies or optimal time-varying paths for R, whereas a static approach
may allow for a richer analysis of the optimal policy to achieve a given level of R, with R ≤ 1
the centrally important case. The specific modeling elements incorporated in my analysis that are
abstracted from in the dynamic models cited above are (i) heterogeneous activities that vary in
their ratio of utility to risk, and (ii) “masks” that can reduce activities’ riskiness at relatively low
cost to utility, and hence can increase the utility-to-risk ratio.1

1By contrast, for example, in Alvarez, Argente and Lippi (2020) agents are either (i) “in lockdown” and not
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I would also like to underscore the following point. If a combination of (i) simple low-cost
interventions, such as masks, tests, social distance, etc., and (ii) dropping activities with the
poorest utility-to-risk ratios, such as crowded bars, large indoor gatherings, etc., allows society to
get to R ≤ 1 relatively cheaply — where we understand “cheaply” in relation to either the massive
societal and economic costs of lockdown, or the massive mortality cost of the virus spreading
unchecked — then the optimal dynamics become a lot less interesting and important (in a good
way). Roughly speaking: just get to R ≤ 1 and stay there until a vaccine is available.2

Remark on the Context for this Draft and the April 1st Draft. I circulated an initial
draft of this paper on April 1st, 2020, in the midst of the national lockdown. My goal at the time
was to influence thinking about reopening policy in two related ways.

First, to focus attention on R ≤ 1, as opposed to “minimize”, as the appropriate policy goal
from a health perspective. If eradication is infeasible, a policy that avoids exponential growth
approximates the goal of avoiding as many infections as possible, while allowing for other policy
considerations besides the virus (economic, societal, and other aspects of health). A lot of the
public-health messaging at the time (“Stay Home. Stay Safe.”) suggested that society’s only focus
should be containing the virus. I suspect history will look back at that messaging as a mistake,
draining public goodwill and compliance energy. Again, if eradication were feasible, this would be
a different story.

Second, to try to encourage an engineering mindset towards achieving R ≤ 1 at least economic
cost. Lockdown is not a very creative policy. Given our knowledge of the way the virus spreads,
there are many more creative ways to limit risk while allowing people to live some approximation
of their pre-lockdown lives. This point also complements the first one: once the goal is not
to minimize but rather to prevent exponential growth, interventions need not be perfect to be
valuable.3

Whether the April draft succeeded in some modest way is hard to know. Clearly, there has
been a lot more public attention on R and on masks and social distance as an alternative to

productive, or (ii) “not in lockdown”, produce homogeneous output w, and have just as many contacts and just as
much infectiousness as in a society that is completely unaware of the virus. This setup thus assumes that the only
way to achieve R ≤ 1 is with a widescale lockdown.

2For research on the economics of accelerating vaccine development, please see Athey et al. (2020). If the stock
of infections is large, the social planner may optimally wish to invest in reducing the stock of infections first, with
R significantly less than 1, before then transitioning to R ≤ 1; see further discussion in Section 2 and Section
6.1. If the stock of infections is small and the time horizon until a vaccine is short, then there may not be much
quantitative difference between R ≤ 1 and R slightly larger than 1; see Figure 1 for intuition.

3Approximations, non-standard constraints, and an engineering attitude are all common in my home field of
economics, market design. See Roth’s (2002) famous manifesto on “The Economist as Engineer”, as well as my
own more modest methodological contribution on the do’s and don’ts of non-standard objectives and constraints,
Budish (2012).
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lockdown. At the same time, I think it is safe to say that we have not managed as a society to
agree that our goal is to maximize societal well-being subject to keeping the virus contained.4

The purpose of the present draft is to present the April draft’s argument more completely, with
additional formal detail and literature discussion. It seems possible that this will be a useful input
to policy thinking in the current pandemic, or possibly it will be useful for future pandemics. At
the very least, I feel it is important to clarify to other academics what my argument was.

2 Why R ≤ 1?

Importance of R ≤ 1 in the SIR Model. Figure 1 illustrates the importance of the R ≤ 1
threshold in the standard SIR epidemiological model.5 Each line represents a different number of
initial infections, ranging from 1,000 to 10 million. The horizontal axis of each panel varies R0 (“R-
nought”), the initial average transmission rate.6 More precisely, what varies along the horizontal
axis is the SIR model’s β parameter (which represents the rate of infectiousness), with the γ
parameter (where 1

γ
represents the duration of infectiousness) held fixed, and with R0 defined

according to R0 ≡ β
γ
. The vertical axis then depicts the cumulative number of infections and

deaths over a 12 month period, using a relatively conservative infection fatality rate of 0.7%.7

That is, rather than focus on the dynamic path of the virus over time, the figure just plots the
total number of infections and deaths.

Focus first on the middle and right of the figure. What this shows is that if the transmission
rate is high enough — roughly, R0 = 1.5 or higher — there will be in excess of 200 million
infections and 1 million deaths in the United States, essentially irrespective of the initial seed
of infections. This is because of exponential growth. Now look right around R0 ≈ 1. As is
widely understood, R0 = 1 is the critical threshold in the SIR model, above which the number of

4To say the least.
5See Atkeson (2020) and Stock (2020) for helpful introductions to the SIR model written for economists. See

Avery et al. (2020) for an excellent survey that discusses additional modeling approaches and open questions.
6A note on notation: throughout this paper I will mostly use the notation “R”, without any subscripts or argu-

ments, to refer to the average transmission rate of Covid-19 at a moment in time as a function of any interventions,
behavioral changes, or accumulating herd immunity. This is sometimes called Re (e for “effective”), Rt (with t
for evolution over time), or R̂. I reserve the notation R0 (“R-nought”) to refer specifically to either (i) the initial
transmission rate of Covid-19, or (ii) output from the standard SIR model with initial conditions R0 ≡ β

γ .
7The 0.7% figure is based on the CDC’s Pandemic Planning Scenarios Current Best Estimate, most recently

updated Sept 10, 2020 (Centers for Disease Control and Prevention, 2020). The CDC estimate provides IFR
estimates by age group which I turn into an overall IFR using Census Bureau data for population by age group.
The CDC’s optimistic scenario generates an IFR of 0.4% and its pessimistic scenario generates an IFR of 1.3%.
The influential Imperial College modeling team used an IFR of 0.9% in Ferguson et al. (2020) and has estimated
the IFR to be in the range 0.9%-1.26% for Europe (Flaxman et al., 2020). Economics papers such as Fernández-
Villaverde and Jones (2020) and Stock (2020) emphasize the econometric difficulty of identifying the true number
of underlying infections and hence the IFR.
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Figure 1: Cumulative Infections and Deaths as a Function of R0 in the Standard SIR
Model (United States, 12 months)
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Note: Output is based on the standard SIR model. Each line depicts a different initial infection seed. The γ parameter
is fixed throughout at 1

5 , which represents a duration of infectiousness of 5 days. (The figure is similar if other reasonable
values of γ are used instead). The β parameter, which represents the rate of infectiousness, is varied such that R0 = β

γ
is

the value depicted along the horizontal axis. The vertical axis depicts the cumulative number of infections and deaths in
the United States over a 12-month period as a function of R0 = β

γ
, based on an infection fatality rate of 0.7% (per CDC

estimates) and a population of 330 million.

cumulative infections starts to grow quickly. For the bottom 3 lines — initial seeds of 1,000 to
100,000, which may represent the stock of infections in the United States as of late February or
early-mid March 20208 — if R0 < 1 then the cumulative number of infections is hard to discern
from zero on the figure, whereas even by R0 = 1.2 or so there will be about 100 million infections
and over half a million deaths. If the initial seed is larger, such as 1 million or 10 million — which
may represent an intervention that occurs “late”, after a sustained period of exponential growth
— then there is more significant of a difference between R0 = 1 and R0 meaningfully less than 1,
but R0 ≈ 1 remains a critical point beyond which cumulative infections grow even more quickly. I
will return to this scenario of high stock of infections later in this section and then in more detail
in Section 6.1.

Is R ≤ 1 Possible? In a word, yes. Many countries around the world, and many US states,
have achieved average transmission rates R ≤ 1 for sustained periods of time.

8The first confirmed case of community spread in the United States was announced on Feb 27th. In the first
week of March, there were about 250 confirmed cases. In the week leading to March 15th, there were about 3000
confirmed cases. It is widely known that actual cases meaningfully exceed reported cases, especially early in the
crisis when testing was especially poor. See Stock (2020) and Stock et al. (2020).
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Most estimates for the initial average transmission rate R0 of Covid-19 — in a society that
is not even aware that the virus is spreading, let alone engaged in policy interventions — are
between 2.0 − 4.0. The CDC’s current best estimate is 2.5 and scenario range is 2.0 − 4.0, while
the influential Imperial College study (Ferguson et al., 2020), which reportedly influenced lockdown
policy decisions, used a baseline R0 of 2.4 and a range of 2.0− 2.6.9 This initial transmission rate
depends on both the properties of the virus (e.g., how is it transmitted) and behavior in the society
that the virus is embedded in (e.g., how often do people behave in ways that risk transmission).
For comparison, the initial transmission rate R0 of standard flu is around 1.5, whereas for mumps
and measles it is greater than 10.

The subsequent transmission rate R can be lower than the initial transmission rate R0 for two
basic reasons. First, even with no change in societal behavior, R declines over time from the initial
R0 as more and more people have already been infected: this is what generates the well-known
hump-shaped dynamic disease curves in the SIR model, made famous by the “flatten the curve”
graphic, where there is a phase of exponential growth and then at some point so much of society
has already been infected that the transmission rate transitions to R ≤ 1. This decline is known
as herd immunity. However, given Covid-19 estimated mortality rates, achieving R ≤ 1 via herd
immunity would come at considerable cost in lives lost.10

Second, R can be lower than the initial R0 because of changes in behavior and policy inter-
ventions. This includes everything from severe lockdowns, to more targeted activity bans (e.g.,
large indoor gatherings), to relatively simple interventions such as masks, protective gloves, hand-
washing, stay-home-if-sick, and six feet of social distance (whether mandated or encouraged), to
more widespread testing and contact tracing. In the notation of the SIR model, these all either
reduce the infectiousness rate β or the infectiousness duration 1

γ
. Intuitively, if the initial R0 is

around 2.5, then if these kinds of behavior changes and policy interventions can reduce the spread
by around 60% (i.e., 2.5−1.0

2.5 = 0.6), then we can achieve R ≤ 1. In the pessimistic scenario where
R0 is around 4.0, a 75% reduction in spread is required to achieve R ≤ 1.

As emphasized in the April 1st draft of this paper, we know a lot about how Covid-19 spreads
(and we know even more now). It therefore does not seem crazy to think that we can engineer a 60-

9The CDC’s Pandemic Planning Scenarios webpage provides citations to several studies in the medical literature
that inform their current best estimate of 2.5 as well as their scenario range of 2.0 to 4.0. The key difficulty in
estimating R0 is that the data on the time-series of infections are poor, especially early in the pandemic when
testing was highly variable (Stock, 2020). Fernández-Villaverde and Jones (2020) provide R0 estimates across a
wide range of cities and countries using mortality data; their highest point estimate is 2.7 for New York City, and
their estimate for the United States overall is 2.02 (Table 1).

10For example, if R0 = 2.5 and the infection fatality rate is 0.7%, then herd immunity in the United States would
occur at on the order of 200 million infections, corresponding to 1.4 million deaths. Even if R0 is just 1.3, herd
immunity would require on the order of 75 million infections and about 500,000 deaths. The “flatten the curve”
graphic seems to have implicitly viewed meaningful reduction in R as achievable but R ≤ 1 as impossible.
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Figure 2: Why R ≤ 1 May be Optimal Policy: Basic Price-Theory Intuition

0.51.01.52.02.5
R

Be
ne

fit
s, 

Co
st

 o
f M

iti
ga

tio
n Health Benefits of 

Reducing Spread 
(Lives Saved, 
Infections Avoided)

Economic Costs of 
Reducing Spread

Note: The blue line depicts the same information as the I0 = 100, 000 case of Figure 1, but with both axes flipped as
described in the text. The red line depicts a convex cost curve; as emphasized in the text, the convex shape of the cost
curve is microfounded in Sections 3 and 4 but its rate of change and its location relative to the blue line are both unknown.
Both curves are depicted under the assumption that R0 without any interventions or behavior changes is 2.5, per the
CDC’s current best estimate.

75% reduction in transmission without a severe societal lockdown. Several estimates suggest that
facemasks and complementary measures alone could reduce transmission rates by over 50%. Paul
Romer has shown that widespread random testing could reduce the transmission rate dramatically
as well. See detailed discussion of both masks and tests in Section 4.3.

This paper’s model will allow for a combination of (i) simple interventions such as masks and
tests, and (ii) dropping activities with especially poor utility-to-risk profiles, to achieve the risk
reduction necessary to achieve R ≤ 1.

Is R ≤ 1 Optimal? Price-Theory Intuition. Figure 2 depicts a simple graphical illustration
of why R ≤ 1 may be an appropriate target for economic policy. The blue line, labeled “Health
Benefits of Reducing Spread”, depicts the same information as in Figure 1 but with both axes
flipped: on the horizontal axis, further to the right now means lower R as opposed to higher, and
on the vertical axis, higher now represents the number of people not infected or dead as opposed
to the number infected or dead. The red line, labeled “Economic Costs of Reducing Spread”,
represents the economic cost of reducing the spread of the virus, e.g., by reducing economic
activity or utilizing facemasks. The theory in Sections 3 and 4 will microfound that this cost
curve is increasing and convex, but I emphasize that both the level of curvature, and the level of
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the cost curve relative to the benefits curve, are both unknown.11

Optimal policy maximizes the difference of benefits less costs. The reason that R ≤ 1 may be
an optimal policy target is that the benefits curve has a “kink” at R = 1 — the health benefits of
lowering R increase at an increasing rate until R = 1, at which point the curve not only becomes
concave but essentially flat.12 Therefore, a policy that targets R ≤ 1 reaps almost all of the
health benefits of mitigation — and, particularly the steeply increasing part as R approaches 1
from above, representing the gain from avoiding exponential growth — without incurring further,
increasing, economic mitigation costs to go even further into the concave and essentially flat part
of the health benefits curve.

Is R ≤ 1 enough? If the initial stock of infections is high, then there will be a quantitatively
large difference in the number of ultimate infections between the case of R just less than 1 versus
R significantly less than 1. For example, as depicted in Figure 1, in the case of an initial stock of
1 million infections R of 0.99 leads to around 22 million cumulative infections, whereas R of 0.5
leads to around 2 million cumulative infections.

Thus, if the stock of infections at the time of policy intervention is sufficiently high — which
represents a policy intervention that is “late”, after a meaningful period of exponential growth
— then it may be socially optimal to aim for R meaningfully less than 1, or to adopt a dynamic
policy in which R is at first meaningfully less than 1, and then gradually constraints are relaxed.

Additionally, there is uncertainty about how various interventions and behavior changes affect
R. This uncertainty can also be a reason to at first aim for R meaningfully less than 1, and then
gradually relax.

In either case, this paper’s simple price-theory formulation remains useful but might need to
be implemented with R constraints that vary over time; i.e., initially with R ≤ x for some x < 1,
and then transitioning to a steady state of R ≤ 1. This dynamic thinking about R corresponds to
the idea of “The Hammer and the Dance” in an influential Medium post of Pueyo (2020), and also
can be helpful for interpreting various reopening “roadmaps” such as the Gottlieb et al. (2020)
“Road Map to Reopening”.

We will return to this issue in Section 6.1.
11Section 6.1 will discuss evidence in Goolsbee and Syverson (2020) and behavioral SIR models that suggest that

the economic cost of reducing spread is potentially decreasing in the region to the left of R = 1.0, because of the
economic damage caused by fear of contracting the virus if the stock of infections grows large, which will occur if
R > 1. These points only enhance the case for R ≤ 1 as an optimal policy target.

12The figure depicts the blue benefits curve for the case of I0 = 100, 000. The kink is even more stark for the
cases of I0 = 10, 000, and I0 = 1, 000. The transition from the convex part of the curve to the concave part is more
gradual for the case of I0 = 1 million and especially I0 = 10 million, i.e., for a very large current stock of infections.

8



Is R ≤ 1 too much? The emphasis on R ≤ 1 implicitly assumes that the mortality rate of the
virus and disease burden for non-lethal cases are high relative to the costs of reducing the virus’s
spread. This assumption could be false, either overall or for a meaningful subset of the population
(e.g., relatively young and without underlying conditions).

If this assumption is false for the population overall then the ideas in this paper are not very
useful. The case in which this assumption is true for some sub-populations but false for others
(along the lines of Acemoglu et al. (2020)) will be discussed in detail in Section 6.2.

3 Initial Model (without Simple Interventions)

Society chooses a vector of activities x ∈ X = [0, 1]n. Each activity i has traditional economic
benefits and costs, denoted vi and ci, and a disease-transmission risk denoted ri. Initially, the vi’s
and ci’s ignore the existence of the virus; that is, vi and ci represent activity i’s benefits and costs
in the world pre-coronavirus, with vi > ci for all i. The disease-transmission risk ri represents the
activity’s expected contribution to transmission of the coronavirus. For simplicity, benefits, costs,
and risk are each linear in activities. Formally, activity vector x ∈ X yields traditional economic
benefits minus costs of ∑i xi(vi − ci), and an effective reproduction rate of the virus of ∑i xiri.13

3.1 Three Approaches to the Problem

Myopic Utilitarian Objective (“Ignore the Virus”). A society that is unaware of or ignores
the virus solves the program

max
x∈X

n∑
i=1

xi(vi − ci) (3)

Society thus fully engages in all activities. This yields myopic utility (i.e., ignoring the growth
of the virus) of ∑i(vi − ci) and a virus reproduction rate of ∑i ri. Define

U0 ≡
∑
i

(vi − ci)

R0 ≡
∑
i

ri

as the utility level and reproduction rate in a society that fully engages in its typical range of
activities. U0 thus represents the level of social welfare in pre-virus society and R0 thus represents

13A simple way to incorporate diminishing returns into the model is to have activities come in multiple units
with decreasing v − c and/or increasing r over units. The April 1st draft of this paper had more flexible concave
benefits and convex costs, but this additional generality does not add much insight and complicates notation and
exposition.
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the reproduction rate in a society that is both fully open and that does not take even the simplest
virus precautions.

Pure Medical Objective (“Minimize the Virus”). A society whose only goal is to minimize
the spread of the virus solves the program

min
x∈X

n∑
i=1

xiri (4)

Society thus engages only in activities with zero disease-transmission risk, i.e., with ri = 0.
Program (4) could be augmented to capture the idea that there is a minimal required set of
essential activities, by adding a constraint x ≥ x, where x denotes this societal minimum set of
activities.

Maximize Utility subject to R ≤ 1 (Proposed Middle Ground). This paper suggests
that a useful formulation of society’s problem is:

max
x∈X

n∑
i=1

xi(vi − ci) (5)

subject to
n∑
i=1

xiri ≤ 1

The objective in program (5) is the same economic objective as in program (3), but the con-
straint ∑n

i=1 xiri ≤ 1 encodes the health objective that the virus is contained. As shown above in
Figure 1, a society that achieves R ≤ 1 starting from a time when the stock of infections is still
relatively small approximates the pure medical objective in (4). Whereas, if R > 1, the number
of infections grows exponentially, eventually leading to a large number of cumulative infections
and deaths. Additionally, if R > 1, then as the number of infections grows fear of the virus may
directly lower activity utilities relative to their pre-virus levels (see Section 6.1 for this extension).

3.2 Maximize Utility subject to R ≤ 1: Solution

Let
ρi = vi − ci

ri
(6)

denote the ratio of benefits minus costs to disease-transmission risk for each activity i. That is, ρi
represents activity i’s net utility per unit of disease-transmission risk. For activities with ri = 0
define ρi =∞.
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The optimal solution to (5) is found by choosing activities in descending order of their ρi
ratios until the disease-transmission constraint is reached. Intuitively, R ≤ 1 is like a disease-
transmission budget constraint, and ri is the risk price of activity i. The way to maximize utility
subject to the transmission budget constraint is to choose the activities with the highest utility
vi − ci per unit of virus risk ri, i.e., the activities with the highest ratios ρi. This is the standard
logic of the divisible-goods version of the knapsack problem in operations research.

Formally, let ρ∗i denote the threshold at which the budget constraint is reached when choosing
activities in descending order of ρi, i.e., the solution to

ρ∗ = inf
ρi :

∑
j:ρj>ρi

rj ≤ 1
 (7)

The optimal choice of the activity vector x∗ is then:

x∗i =


1 if ρi > ρ∗

q if ρi = ρ∗

0 if ρi < ρ∗.

where q :=
(
1−∑j:ρj>ρ∗ rj

)
/
(∑

j:ρj=ρ∗ rj
)
is a constant defined to exhaust the risk budget given

that all activities with ρi > ρ∗ are done in full and all activities with ρi < ρ∗ are fully dropped.

Which Activities to Keep and Drop: Graphical Depiction. Figure 3 presents a simple
graphical depiction of the optimal solution to (5) in terms of which activities the social planner
keeps and drops.

The vertical axis represents the utility of an activity, vi − ci. The horizontal axis represents
the virus-transmission risk of an activity, ri. The diagonal line represents the criticial threshold
ρ∗ for the ratio of utility to virus-transmission risk. All activities above the diagonal line are kept
(hatched green), and all activities below the diagonal line are dropped (striped red). Intuitively,
activities above the diagonal line have enough “bang for buck” — enough utility per unit of virus-
transmission risk — to be included in the optimum. Activities below the diagonal line are too
expensive in virus-transmission terms to be worth their utility gains.

Notice that activities with very high risk can be included in the optimum solution if their utility
is sufficiently high. And, conversely, some activities with relatively low risk should be dropped if
their utility is sufficiently low. The key for the optimum is to sort activities not by their absolute
level of risk, but by their utility per unit of risk.
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Figure 3: Which Activities to Keep and Drop
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Note: This figure illustrates the optimal mix of activities to maximize societal utility subject to R ≤ 1. The diagonal
line depicts the critical threshold ρ∗ for the ratio of utility-to-risk. Activities with utility-to-risk ratios above ρ∗ should
optimally be kept and activities with utility-to-risk ratios below ρ∗ should optimally be dropped. The placement of the
line is illustrative and is based on the numerical example in Section 5 with R0 = 2.5, no simple interventions, and uniform
distributions of utility and risk.

Convex Cost of Mitigation. For any K ∈ [0, R0], let UR≤K be the utility in the optimal
solution to program:

max
x∈X

n∑
i=1

xi(vi − ci)

subject to
n∑
i=1

xiri ≤ K

This is the same program as (5) but with a disease-transmission budget of K instead of 1. Define
the cost of mitigation from R0 to K by c(R0 − K) = U0 − UR≤K . It is straightforward to show
that this cost of mitigation is increasing and convex. Intuitively, one has to drop more and more
attractive activities the larger is the desired reduction in transmission, with attractiveness defined
in terms of the utility-to-risk ratio ρi = vi−ci

ri
. Please see Appendix A.1 for a proof.

This result provides a simple microfoundation for the “Economic Costs of Reducing Spread”
curve in Figure 2. I reiterate, however, that we do not know the level of the curve relative to the
health benefits curve, nor do we know its rate of curvature. Some example cost curves will be
simulated in Section 5, after we add simple interventions to the model in Section 4
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4 Simple Interventions (Masks, Tests, etc.)

As I emphasized in the April 1st draft of this paper: (i) R0 as measured, of around 2.5-3.0, describes
the growth of Covid-19 in a population that is unaware of the virus, so is not taking even the
most basic precautions against its spread; (ii) we know a lot about how Covid-19 spreads (and
have learned even more over time); and thus (iii) it therefore stands to reason that some relatively
simple behavior changes and policy interventions — the April 1st draft emphasized facemasks,
gloves, social distancing practices, handwashing, stay-home-if-sick, and testing — might be able
to reduce R meaningfully.14 R could then be reduced even further by dropping some activities.
As I wrote in the April 1st draft:

. . .we should try to be creative about combinations of policies and interventions that
together bring R below 1, without an indefinite period of significant harm to the
economy and society. If R0 were 10 this would seem helpless but with R0 on the order
of 2.5-3, with a relatively clear understanding of how the disease does and doesn’t
spread, and with several empirical examples to date of countries bringing their R < 1,
it seems achievable. (Budish 2020, pg. 7)

4.1 Adding Simple Interventions to the Model

We can incorporate this idea of simple, low-cost interventions into the model as follows. For each
activity i there is a “mask” technology that:

• Weakly reduces the economic benefit of the activity from vi to vmi ≤ vi

• Weakly increases the economic cost of the activity from ci to cmi ≥ ci

• Weakly reduces the disease-transmission risk of the activity from ri to rmi ≤ ri

The terminology “masks” is meant to represent the various kinds of simple interventions described
above, the set of which may further evolve over time as our understanding continues to improve.
The reason I use the term “masks” rather than “non-pharmaceutical interventions” (NPIs) is that
the term NPIs has come to include both the simple interventions of the sort I have in mind here
as well as severe lockdowns (Ferguson et al., 2020).

The first two assumptions capture that masks at least weakly reduce the benefits and increase
the costs of activities relative to pre-virus utility levels. On the benefits side: facemasks are
uncomfortable, physical distance reduces joy, etc. On the costs side: it is costly to erect glass

14I will review the evidence that has accumulated in support of masks, tests, and related simple interventions
below in Section 4.3.
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partitions between customers and check-out clerks, factory lines are less efficient with physical
distance, tests cost time and money, etc.

The last assumption captures the whole point of masks, which is to reduce the riskiness of
activities. Masks therefore allow society to engage in more activity subject to any given risk
budget.

4.2 Optimal Masks

In this section I provide a simple necessary condition for it to be optimal to adopt simple interven-
tions (“masks”) for a given activity, and then provide a formula that describes the optimal such
interventions.

Let ρmi = vmi −c
m
i

rmi
denote activity i’s utility-to-risk ratio with masks, analogous to ρi as defined

in (6) without masks. A necessary condition for it to be optimal to use the masked version of
activity i is that masks improve the activity’s utility-to-risk ratio:

ρmi ≥ ρi (8)

Intuitively, masks must increase society’s “bang per buck” per unit of virus risk, allowing the social
risk budget to be stretched further. See Appendix A.2.2 for a formal statement and proof.

Interestingly, this condition is not quite sufficient. To see why, consider the following simple
example. There are two activities. Activity 1 has parameters v1 − c1 = 1, r1 = 1 without masks
and vm1 − cm1 = 0.7, rm1 = 0.5 with masks. Activity 2 has parameters v2− c2 = 0.1, r2 = 1 without
masks and vm2 −cm2 = 0.1, rm2 = 0.5 with masks. The optimum without masks is to do just activity
1 (exactly exhausting the risk budget) whereas the optimum with masks is to do both activities
in full. Yet, utility is higher without masks than with masks. What drives this example is that
the utility harm of masks to the socially valuable activity (Activity 1) is relatively large, and the
risk budget that is freed up is then spent on a much lower value activity (Activity 2). Thus, in
this example, even though masks allow for more activity in total, welfare is lower.

The example suggests that for mask adoption to increase welfare, the marginal activities that
are enabled by mask adoption must be of sufficiently high value relative to the utility harm of
masks. Define ∆ri = ri − rmi and ∆ui = (vi − ci) − (vmi − cmi ). A sufficient condition for it to
be optimal to use the masked version of activity i is that the necessary condition (8) holds, and,
additionally:

ρ∗i ≥
∆ui
∆ri

(9)

where ρ∗i denotes the utility-to-risk ratio of the marginal activity if a mask is adopted for
activity i, taken as a lower bound over potential mask policies for activities other than i. The
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right-hand-side of (9) represents the cost of freeing up additional risk budget by masking activity
i: the numerator is the utility harm of the mask, the denominator is the amount of risk budget
that is freed up. The condition thus requires that the marginal use of the freed-up risk budget is
guaranteed to be high enough to justify the utility cost of the mask.15 See Appendix A.2.3 for a
formal statement and proof, as well as a version of the sufficient condition that applies to masking
a set of activities.

Now suppose that we can flexibly design the set of simple interventions for activity i. What
is the optimal such set of interventions? Assume that society’s marginal utility-to-risk ratio ρ∗ is
exogenous to the mask policy of activity i. Let {m1

i , . . . ,m
K
i } denote the set of potential mask

policies for activity i. The optimal mask policy for activity i is the choice from this set that
maximizes:

∆ri︸︷︷︸
risk reduction
from mask

· ρ∗︸︷︷︸
marginal value
of risk budget

− ∆ui︸︷︷︸
utility harm

of mask

(10)

In words: the optimal mask for activity i maximizes its risk reduction (∆ri) times the marginal
societal value of this additional risk budget (ρ∗) minus the utility harm of the mask itself (∆ui).
While intuitive, notice that the optimal mask for activity i is not necessarily the one that maximizes
the ratio of utilty-to-risk. Eliminating the last epsilon of risk is great for the ratio of utility-to-risk
but only has a small benefit for societal utility. This may not be worth it if the utility cost of
eliminating this last epsilon of risk is high. Instead, (10) tells us that the optimal masks are those
that achieve large absolute reductions of the quantity of risk, at small absolute harm to utility.

4.3 Evidence on Simple Interventions

This sub-section briefly reviews the empirical evidence on simple interventions. This evidence, in
conjunction with data on the economic harm from the lockdown, suggests that the economic case
for adopting simple interventions is overwhelming for activities with any non-trivial amount of
risk ri.

15To see the relationship between the necessary condition (8) and the sufficient condition (9), rearrange (8) as
ρmi ≥ ∆ui

∆ri
. (This takes several algebraic manipulations, see Appendix A.2.4). The difference is ρmi on the left-hand-

side in this manipulated version of the necessary condition, in place of ρ∗
i on the left-hand-side of the sufficient

condition. Intuively, while the sufficient condition requires that the marginal use of risk budget is higher than the
cost of freeing up this risk budget, the necessary condition requires that an inframarginal use of risk budget is
higher. Since this manipulated version of the necessary condition is not very interpretable, I prefer to use ρmi ≥ ρi
as the necessary condition.
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Medical Evidence on Facemasks. Significant evidence has accumulated since early 2020
on the efficacy of facemasks and other simple interventions. Three helpful starting points for
economics readers are Abaluck et al. (2020b), Chu et al. (2020), and Howard et al. (2020).

Abaluck et al. (2020b) reviews the medical evidence available at the time (the paper was
first circulated April 1, 2020) and conducts regression analyses using case prevalence and deaths
as outcome variables and mask-use norms as an explanatory variable. Their evidence points to
reductions in the growth rate of prevalence and deaths on the order of 40-60%, which translates
to a reduction in R on the order of 20-45%.16 Subsequent versions of this regression approach
include Hatzius, Struyven and Rosenberg (2020) and Leffler et al. (2020); these studies look at
mask-use mandates as opposed to (or in addition to) norms and find somewhat larger effects. The
Hatzius, Struyven and Rosenberg (2020) study finds reductions in growth rates of about 60%, and
the Leffler et al. (2020) study reports a reduction in growth rates of 75%. The Abaluck et al.
(2020b) paper also does cost-benefit analysis of the case for adopting masks. The paper finds the
cost-benefit case is overwhelming even under very conservative assumptions.17

Chu et al. (2020) provide a detailed meta-study of the medical literature on masks. In health
care settings masks are estimated to have a “relative risk” of 0.30, which corresponds to a 70%
reduction in R.18 In non health care settings their estimate is a relative risk of 0.56 which corre-
sponds to a 44% reduction in R.

Howard et al. (2020) provide a wider survey of the literature on masks, helpfully organizing
it into several distinct types of evidence. There are direct observational studies (e.g., comparing
prevalence in hospitals with and without widespread mask use, as in studies surveyed by Chu et al.
(2020)); ecological studies (e.g., comparing prevalence rates across geographies with different levels
of mask use, as in the regression studies mentioned above); source control studies (e.g., direct
measurement of various kinds of masks’ abilities to block various kinds of infectious particles);19

and model-based approaches (e.g., using source control estimates to then simulate population
spread). Across all of these different kinds of evidence, the reductions are very large. Their

16At the higher end, if R0 without masks is 4.0 and the reduction in the growth rate with mask norms is 60%,
the implied R with mask norms is approximately 4.0− 60%(4.0− 1.0) = 2.2, which is a reduction from the original
R0 of 1.8/4.0 = 45%. At the lower end, if R0 without masks is 2.0 and the reduction is 40%, the implied R with
mask norms is 2.0− 40%(2.0− 1.0) = 1.6 which is a reduction from the original R0 of 20%.

17Specifically, Abaluck et al. (2020b) report gains of $3000-$6000 per cloth mask under the assumption that
masks reduce risk by only 10% — which is significantly more conservative than their own estimates, which have
been subsequently reinforced by other studies — and also focusing only on the benefits from the value of lives
saved, ignoring any additional economic benefits.

18In fact in the four studies they survey that are specific to Covid-19 the reduction is even more dramatic, with
point estimates of relative risk of 0.03-0.04, which corresponds to a 96-97% reduction in R. However these studies
have important limitations that the authors discuss in detail (see Figure 4 and the surrounding text).

19In laboratory environments, masks are estimated to block as much as 99.98% of viral droplets (N95 masks),
with 95% reduction possible for the cloth masks that are widely available (Ma et al. (2020); see also Konda et al.
(2020) for related evidence).
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summary conclusion is that

“near universal adoption of non-medical masks when out in public, in combination
with complementary public health measures could successfully reduce Re (effective-R)
to below 1.” Howard et al (2020, pg. 11)

In their article they discuss estimates of the initial reproduction rate R0 in the range of 2.4-3.9,
so their conclusion that masks and complementary public health measures could reduce R to less
than 1 corresponds to a 58%-74% reduction in transmission.

There is not yet an RCT study of masks, though there is at least one in the field (Abaluck et al.,
2020a). Still, the preponderance of evidence from various sorts of empirical studies, combined
with common sense conceptual understanding based on how the virus is known to spread, all
point to reductions that are significant, perhaps on the order of 50% or more in conjunction with
complementary measures.

Romer Mass Testing. Paul Romer, in a series of blog posts, conducted simple disease-transmission
simulations (“dots in a box”) under three scenarios: (i) myopic ignore-the-virus behavior, (ii) lock
down (“isolating at random”), and (iii) frequent random testing (“isolating based on test results”).
The key point from the simulations is that large-scale random testing of a population, with tempo-
rary isolation of those who test positive, can achieve the same reduction in disease-transmission as
a lockdown at much lower economic cost (Romer, 2020a,b,c). A follow-up paper then formalized
the reduction in R that is possible from population-scale testing, under various assumptions about
frequency, accuracy, speed, and targeting. Under optimistic assumptions population-scale testing
easily achieves R ≤ 1 on its own. Even under relatively pessimistic assumptions, population-scale
testing can help achieve R ≤ 1 in conjunction with other measures (see especially Figure 3 of
Taipale, Romer and Linnarsson, 2020).

In the language of this paper’s model, Romer’s population-scale tests are a mask that reduces
the disease-transmission risk of any particular activity, i.e., lowers risk from ri to rmi . The more
frequent, accurate, etc., are the tests, the larger is the reduction. Contact tracing can be an
important complement to the random tests: if a random test detects that Alice is positive only
after she has been infectious for some time, the random test may not prevent her infection of Bob,
but with contact tracing it might be possible to detect Bob’s infection before he infects Carol.
Like with tests, contact tracing need not be perfect to be helpful.

Testing that is frequent, accurate and fast enough for the relevant population for activity i can
reduce ri arbitrarily close to 0, but at cost cmi − ci that increases with the frequency and expense
of the test.20 This paper’s model suggests that tests are therefore likely to be of especially high

20See Droste, Stock and Atkeson (2020) for a recent detailed cost-benefit analysis of testing that finds that
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social value for activities that are both high pre-virus utility vi− ci and high risk ri: the activities
in the top-right corner of Figure 3. Additionally, tests are likely to be especially socially valuable
for activities where facemasks and other cheaper interventions either are not sufficiently effective
(i.e., rmi − ri is small) or are too harmful to utility (i.e., vi− vmi is large). Congregate settings such
as nursing homes may be an example of the former (see Chen, Chevalier and Long (2020)); film
and television production is an obvious example of the latter.

An intellectually interesting question is what is the optimal mix of masks, tests, etc., to achieve
R ≤ 1 at least social cost. Practically, however, it is important to keep in mind that all of these
interventions are very cheap relative to the social cost of lockdown, as I will discuss next.

Shadow Cost of the Lockdown Constraint. In the three month period from mid-March
2020 to mid-June 2020, there were nearly 42 million unemployment claims in the United States
(versus about 3 million in the three months prior). US GDP contracted at 31.7% on an annualized
basis in Q2 2020, with a drop in global GDP from pre-lockdown peak to trough (April 10th, 2020)
of about 20%.21

To put it plainly: the shadow cost of the lockdown constraint was enormous.

4.4 Price-Theory Intuition

Figure 4 illustrates the price-theory intuition for the effect of masks on optimal policy. Under
the conditions described above, masks increase the social welfare that is achievable for a given
level of disease-transmission risk. This is equivalent to masks reducing the economic cost of virus
mitigation. The figure illustrates a case where, without masks, mitigation to R ≤ 1 is optimal but
expensive. With masks, mitigation to R ≤ 1 remains optimal but is significantly less expensive.
Specific numerical examples of mitigation cost curves, and how they are impacted by masks, will
be provided in Section 5.

The figure may represent a society that is initially in lockdown, at significant economic expense,
and then transitions to reopening with simple interventions such as masks and tests that can help
keep R ≤ 1. This was my hope for the United States’s reopening strategy when I circulated the
first version of this paper on April 1st, 2020.

benefits far exceed costs over a wide range of testing scenarios.
21The unemployment figure is from the BLS via https://oui.doleta.gov/unemploy/claims.asp for the weeks ending

March 21st 2020 through June 13th 2020. The Q2 2020 US GDP figure is from the BEA’s revised estimate released
Aug 27th 2020 available via https://www.bea.gov/news. The peak-to-trough figure for global GDP is from The
Economist (2020) via Goldman Sachs. See also Chetty et al. (2020) and https://opportunityinsights.org/tracker-
resources/ for real-time data on the economic impacts of Covid-19.
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Figure 4: Simple Interventions Reduce the Cost of Mitigation
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Note: This figure illustrates the effect of simple interventions, denoted “masks” in the model, on the economic cost of
mitigation. The solid-blue line and dotted-red line are the same as in Figure 2. The solid-green line illustrates the lowering
of the economic cost of mitigation from masks. The reduction is illustrative and is based on the numerical example from
Section 5 under the assumptions that masks reduce risk by 40% and harm utility by 5%.

5 Detailed Numerical Example: the Value of Simple In-
terventions

This section presents a detailed numerical example in two steps. First, it considers the baseline
model of Section 3 and depicts the optimal activity mix and cost of mitigation curve, in a simple
numerical environment using uniform distributions and empirical evidence on R0. Second, I add
simple interventions (masks, tests, social distance, etc.) to the example. This yields the most im-
portant results of the section: magnitudes for just how economically valuable simple interventions
are, given what we know about their efficacy and R0.

5.1 Numerical Example: Initial Model without Masks

Define activity i’s utility ui = vi − ci, i.e., (net) utility equals benefits less costs. Let activities’
utilities and risks be jointly uniformly distributed on [0, ū]×[0, r̄]. If society engages in all activities,
i.e., society engages in Program (3) above, then myopic utility and disease-transmission are given
by:

U0 =
∫ r̄

0

∫ ū

0
ui

1
ūr̄
dudr = ū

2

19



R0 =
∫ r̄

0

∫ ū

0
ri

1
ūr̄
dudr = r̄

2

Without loss of generality, set ū = 1. The relation r̄ = 2R0 allows us to express r̄ based on a
parameter choice for R0, which can be based on empirical evidence.

Now consider the constrained problem in which society chooses activities to maximize utility
subject to a constraint on R; particular attention will be given to the constraint R ≤ 1. Formally,
for any K ∈ [0, R0], society solves

max
x(·)

∫ 2R0

0

∫ 1

0
x(u, r) · ui

1
2R0

dudr (11)

subject to∫ 2R0

0

∫ 1

0
x(u, r) · ri

1
2R0

dudr ≤ K

The analysis in Section 3 shows that the optimal solution to (11) is characterized by a utility-
to-risk threshold ρ∗, such that all activities with utility-to-risk ratio above ρ∗ are included and
all activities with utility-to-risk ratio below ρ∗ are dropped. Appendix A.3 obtains ρ∗ for this
example in closed form.

Table 1 describes the features of the optimal solution to achieve R ≤ 1, for values of R0 ranging
from 2.0 to 4.0. Let me highlight the results with R0 = 2.5, the CDC’s current best estimate. In
this case, to achieve R ≤ 1 requires dropping 45% of activities, that together constitute 60% of
risk and 27% of social utility. Society keeps the other 55% of activities, leaving it with just 73%
of pre-virus utility. Even though society keeps the activities with the highest utility-to-risk ratio,
the welfare cost is significant: over one-quarter of social welfare. This is a numerical illustration
of what we mean by lockdown.

Even at the CDC’s optimistic scenario, R0 = 2.0, achieving R ≤ 1 requires dropping 38%
of activities constituting 19% of social welfare. At the CDC’s pessimistic scenario, R0 = 4.0,
achieving R ≤ 1 requires dropping 57% of activities constituting 42% of social welfare.

Remark: Super-Spreader Activities. A limitation of the uniform-distribution assumption
is that it does not allow for super-spreader activities — a small mass of activities with particularly
large ri. Intuitively, if super-spreader activities are incorporated into the example, then (i) fewer
activities will need to be dropped to get to R ≤ 1, but (ii) whether social utility is higher or
lower than in the uniform example depends on whether the super-spreader activities are high or
low utility. If there is a mass of super-spreader activities in the bottom-right of Figure 3 (low ui,
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Table 1: Optimal Solution to Achieve R ≤ 1, without Simple Interventions

Value of R0
2.0 2.5 3.0 3.5 4.0

To Achieve R ≤ 1:
% Activities Dropped 37.5 45.0 50.0 53.7 56.7
% Pre-Virus Utility Dropped 18.8 27.0 33.3 38.3 42.3

Relative to Pre-Virus Economy:
% Activities Kept 62.5 55.0 50.0 46.3 43.3
% Utility Kept 81.2 73.0 66.7 61.7 57.7

Note: Please see the text of Section 5.1 for description of the numerical example without simple interventions.

high ri), then utility will be comparatively higher than in the uniform case, whereas if there is a
mass of super-spreader activities in the top-right of Figure 3 (high ui, high ri), then utility will
be comparatively lower than in the uniform case.

5.2 Adding Masks to the Example

Now add simple interventions to the example, which as in Section 4 I refer to as “masks”. For
simplicity, assume that masks reduce risk by a uniform percentage across activities, denoted γr,
and similarly reduce utility by a uniform percentage across activities, denoted γu. Thus activity i
with original utility ui and risk ri has masked-utility of (1− γu)ui and masked-risk of (1− γr)ri.
With this assumption we still have a joint uniform distribution of utility and risk, only now on
[0, (1− γu)ū]× [0, (1− γr)r̄]. Thus all of the same math from above goes through analogously.

Table 2 summarizes the analysis. The Panels vary the assumption for R0: Panel A utilizes
the CDC’s current best estimate of R0 = 2.5, Panel B utilizes the CDC’s pessimistic scenario
of R0 = 4.0, and Panel C utilizes the CDC’s optimistic scenario of R0 = 2.0. The columns of
each panel vary mask efficacy from 30%-70%. The studies summarized in Section 4.3 suggest that
30% is a conservative figure for masks alone, 50% may be an appropriate estimate for the use of
masks in conjunction with complementary measures such as social distancing, and that 70% may
be either an optimistic estimate for masks and related measures, or represent a combination of
these kinds of measures in conjunction with Romer mass testing.

Focus first on the 50% efficacy column of Panel A. Simple interventions reduce average trans-
mission from R0 = 2.5 to R = 1.25 without any reduction in activity levels. Thus, to achieve
R ≤ 1 requires a further 20% reduction of risk. This can be accomplished by dropping the 15%
of activities with the worst utility-to-risk ratios, which together constitute just 3% of pre-virus
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Table 2: Optimal Solution to Achieve R ≤ 1: Large Effect of Simple Interventions

Panel A: Main R0 Scenario

No Masks
Mask Efficacy

30% 40% 50% 60% 70%

R if all activities are kept 2.50 1.75 1.50 1.25 1.00 0.75
To achieve R ≤ 1:
% Activities Dropped 45.0 32.1 25.0 15.0 0.0 0.0
% Pre-Virus Utility Dropped 27.0 13.8 8.3 3.0 0.0 0.0

Society % of Pre-Virus Utility:
if Masks Reduce Utility by 0% 73.0 86.2 91.7 97.0 100.0 100.0
if Masks Reduce Utility by 10% N/A 77.6 82.5 87.3 90.0 90.0

Panel B: High R0 Scenario

No Masks
Mask Efficacy

30% 40% 50% 60% 70%

R if all activities are kept 4.00 2.80 2.40 2.00 1.60 1.20
To achieve R ≤ 1:
% Activities Dropped 56.7 48.2 43.7 37.5 28.1 12.5
% Pre-Virus Utility Dropped 42.3 31.0 25.5 18.8 10.5 2.1

Society % of Pre-Virus Utility:
if Masks Reduce Utility by 0% 57.7 69.0 74.5 81.2 89.5 97.9
if Masks Reduce Utility by 10% N/A 62.1 67.0 73.1 80.5 88.1

Panel C: Low R0 Scenario

No Masks
Mask Efficacy

30% 40% 50% 60% 70%

R if all activities are kept 2.00 1.40 1.20 1.00 0.80 0.60
To achieve R ≤ 1:
% Activities Dropped 37.5 21.4 12.5 0.0 0.0 0.0
% Pre-Virus Utility Dropped 18.8 6.1 2.1 0.0 0.0 0.0

Society % of Pre-Virus Utility:
if Masks Reduce Utility by 0% 81.2 93.9 97.9 100.0 100.0 100.0
if Masks Reduce Utility by 10% N/A 84.5 88.1 90.0 90.0 90.0

Note: Please see the text of Section 5.1-5.2 for description of the numerical example with simple interventions (“masks”).
The three R0 scenarios are based on the CDC’s current best estimate, pessimistic scenario, and optimistic scenario,
respectively.
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utility. Society maintains activities that together constitute 97% of pre-virus utility. If masks
reduce the utility of the maintained activities by 10%, i.e., γu = 10%, then society’s total utility
is 87.3% of pre-virus utility levels.

If simple interventions are sufficiently effective, such interventions alone can reduce R to less
than 1 without any reduction in activity levels. This occurs if R0(1 − γr) ≤ 1; for example, if
R0 = 2.5 and the reduction in risk is at least 60%. If we think beyond the uniform-distribution
example to include a small mass of super-spreader activities, as discussed earlier, then the more
likely practical conclusion is that society would only have to drop super-spreader activities, keeping
everything else.

In the pessimistic scenario of R0 = 4.0, simple interventions can have an especially dramatic
effect on social utility. Without interventions, society has to drop over 50% of activity and over
40% of utility to reach R ≤ 1. If simple interventions are 60% effective, society can drop 28% of
activity constituting 10% of utility. If simple interventions are 70% effective, society can drop just
12.5% of activity constituting just 2% of pre-virus utility.

Figure 5 illustrates how masks affect the optimal activity mix. The top-left region (green
squares) depicts activities that are included in the optimum whether or not masks are utilized. If
masks are utilized, these activities are lower risk, and society then optimally spends this freed-
up risk budget on the yellow-hatched region labeled “Keep With Masks, Drop Without”. These
are the activities that, without masks, are too risky per unit of utility, but with masks can be
included in the optimum. The bottom right red-striped region depicts activities that are optimally
dropped even with masks; these are the activities with the lowest utility-to-risk ratios. The figure
depicts the dividing line for the case of R0 = 2.5 and 50% mask effectiveness. The higher is mask
effectiveness, the smaller is this striped region, vanishing to zero if the risk reduction is 60% or
greater.

Figure 6 illustrates the effect of masks on the cost of mitigation curves. This figure complements
the illustrative price theory diagram provided earlier, Figure 4. Focus first on the 50% effectiveness
line. Masks get us from R0 = 2.5 to R = 1.25 without dropping any activities. Then, the cost
curve begins increasing as activities are dropped, but at first this increase is slow because society
drops only those activities with the poorest utility-to-risk profiles. For this reason, society can get
all the way to R = 1 very cheaply. If masks are 30% effective, the cost is meaningfully higher but
still lower than without masks. If masks are 70% effective, society can get all the way to R = 1
for free. Yet, even in this optimistic case, a policy of “minimize the virus” remains very expensive
— the costs get arbitrarily high as society drops more and more activities with non-zero risk.
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Figure 5: Effect of Simple Interventions on the Mix of Activities to Keep and Drop
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Note: This figure illustrates how simple interventions, denoted “masks” in the model, expand the set of optimal set of
activities used to maximize societal utility subject to R ≤ 1. The diagonal line labeled “No Masks” depicts the critical
threshold ρ∗ for the ratio of utility-to-risk if there are no masks; this is the same line as in Figure 3 and is based on
the uniform-distribution example with R0 = 2.5. Without masks, activities above the “No Masks” line should optimally
be kept and activities below this line should optimally be dropped. The diagonal line labeled “50% Effective” depicts
how the mix of activities expands if masks are adopted and they uniformly reduce risk by 50%. Activities with utility
and un-masked risk in the yellow hatched region, above the “50% Effective” line but below the “No Masks” line, can be
included in the optimum with masks whereas they are dropped without masks.

Figure 6: Effect of Masks on the Economic Cost of Mitigation
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Note: This figure presents the economic cost of mitigation curve in the numerical example with no masks and with masks
of varying effectiveness. The horizontal axis represents the level of mitigation and the vertical axis is the cost depicted as
a percentage of myopic utility U0 as defined above. These curves correspond to the illustrative cost of mitigation curves
presented in price-theory diagrams Figure 2 (without masks) and Figure 4 (with masks).
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6 Discussion: Is R ≤ 1 Enough? Too Much?

6.1 Is R ≤ 1 Enough? High Stock of Infections and Fear of the Virus

In the initial model, ui = vi − ci represents the private utility of an activity, ignoring any virus
considerations. The virus enters the analysis through ri, the risk of transmission; the R ≤ 1
constraint is a way of capturing the negative externalities of privately beneficial behavior that
risks spreading the virus.

Clearly, if the level of infections in an area is high enough, this will directly affect the private
utility of many kinds of activities because of the fear of catching the virus. Goolsbee and Syverson
(2020) provide empirical evidence on the quantitative importance of this channel.

This idea can be captured in the model by letting uexposedi denote the utility from activity i
if perceived exposure to the virus is high, and assuming that ui > uexposedi for all i. If uexposedi <

0, individuals wil drop the activities on their own, even without any kind of formal ban, as
documented by Goolsbee and Syverson (2020). Several papers elaborating what are now called
Behavioral SIR models make this point, and several suggest that, since uexposedi seems likely to
decrease monotonically with the stock of infections, R may automatically equilibrate to around
1.22

Figure 7 depicts the high stock of infections case graphically. Panel A depicts the original
myopic cost of mitigation curve and the modified cost curve with a high stock of infections. The
cost curve in the high stock of infections case is worse than the original because the utility of any
activity i that is kept is lower with a high stock of infections, i.e., uexposedi < ui. The Behavioral
SIR models suggest furthermore that the points to the left of R = 1 on the original mitigation
cost curve are illusory — if the social planner chooses one of those points, the stock of infections
will rise, and we will end up instead on the high stock of infections curve which is worse.

Panel B adds two additional curves to the figure: the original cost curve with masks, and a
curve that represents the case of both masks and a high stock of infections. This latter curve is
worse for the same reason as above; the private utility of any activity that is kept is lower with
a high stock of infections than without, even if masks are utilized in both scenarios. That is, the
curves assume that umi > um,exposedi , where umi denotes the private utility of activity i with masks
in the original case, and um,exposedi denotes the private utility of activity i with masks if the stock
of infections is high.

A society with a high stock of infections faces a more complicated dynamic problem than
22See Cochrane (2020), Toxvaerd (2020), and Keppo et al. (2020) for models with this equilibration feature. See

Atkeson, Kopecky and Zha (2020) for related stylized empirical facts and see Gans (2020) for an article that both
surveys this literature and suggests directions for future modeling.
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Figure 7: Effect of High Stock of Infections (“Fear of the Virus”) on the Economic
Cost of Mitigation
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Note: Panel A illustrates the effect of a high stock of infections (“fear of the virus”) without masks. The blue line and the
red line are exactly as in Figure 2. The gray line represents the economic cost of mitigation in the case of a high stock of
infections ({High Stock, No Masks}). The figure depicts that a high stock of infections increases the cost of mitigation due
to fear of catching the virus. The red line is dotted to the left of R = 1.0 to represent that if R > 1 the stock of infections
will grow and society will thus transition from the low stock of infections case to the high stock of infections case with
higher costs. The transition arrows labeled “Behavioral SIR Model” and “Hammer” are described in the text. Panel B
illustrates the effect of masks on the economic cost of mitigation in both the high-stock and low-stock cases ({High Stock,
Masks} and {Low Stock, Masks}). In both panels, the effects of fear of the virus and of masks are illustrative. The curves
are based on the numerical example from Section 5 assuming that fear of the virus reduces utility by 20% if the stock of
infections is high (both with and without masks) and that masks reduce risk by 40%.

a society that acts before the stock of infections grows. In particular, a society with a high
stock of infections may wish to first invest in significantly reducing the stock of infections (i.e., R
significantly lower than 1), before then transitioning to a steady state with R ≤ 1 once the stock
is sufficiently low. This is the thesis of the “Hammer and the Dance” argument of Pueyo (2020),
formalized in sophisticated dynamic models by Farboodi, Jarosch and Shimer (2020) and Assenza
et al. (2020).23 In the simplified graphical depiction here, society may choose a point further up
the high-stock-of-infections cost curve than is statically optimal, in order to then transition to the
low-stock-of-infections cost curve and adopt the R ≤ 1 strategy going forward.

One additional point that bears emphasis is that if R > 1 is not a real choice in the longer run
23In the Farboodi, Jarosch and Shimer (2020) analysis, if the initial stock of infections is high, the optimal policy

is first to choose R significantly lower than 1 to reduce the stock of infections, and then transition to a steady
state with R actually a tiny bit larger than 1. Intuitively, starting from a low enough stock of infections, R = 1.01
does not lead to a large number of infections and deaths in the next twelve months, and in their model there is a
first-order gain from relaxing the constraint from, say, R = 0.99 to R = 1.01.
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anyways, as in the behavioral SIR models and as is consistent with the Goolsbee and Syverson
(2020) evidence, then society would have been better served to treat R ≤ 1 as a constraint from
the outset, and then maximize utility subject to this constraint. Why not start on and stay on
the best cost curve (with masks and a low stock of infections) rather than spend significant time
on the worst one?

6.2 Is R ≤ 1 Too Much? Acemoglu et al (2020) Young/Old Argument

In an important and influential paper, Acemoglu et al. (2020) analyze a model with optimal
dynamic lockdowns that can distinguish among three types of people: young, middle-aged, and
old. Their analysis is motivated by the medical fact that the virus is significantly more dangerous
for the old than for the young — the infection fatality rate for adults over 75 may be as much
as 50-100 times as high as that for adults in their 20’s — as well as the economic fact that the
economic cost of restricting mobility is especially high for people in school and in the work force.
The authors conclude that the optimal policy involves stricter lockdowns for the old than for the
young.

Figure 8 translates the Acemoglu et al. (2020) argument into the simple price-theory diagram
from earlier. As depicted, the optimal policy favors R ≤ 1 overwhelmingly for the old (Panel A),
whereas for the young the benefits of R ≤ 1 are not worth the economic costs (Panel B). The
Acemoglu et al. (2020) model does not consider masks, non-lockdown forms of social distance,
or other similar means of reducing risk in case an infected and susceptible interact (similarly to
many of the other dynamic SIR models cited in the introduction).24 It does consider testing and
contact tracing in detail (Section 5.3), but only at levels that are insufficient on their own to get to
R ≤ 1. The optimal calibrated policy with such moderately-effective testing and no masks involves
a strict lockdown for the old, and either a modest lockdown for the young and middle-aged (see
their Figure 5.14) or, if there is enough social separation between age groups, no lockdown for
the young and middle-aged (see their Figure 5.15). In terms of the infection rate, the optimum
involves R ≤ 1 for the old but R > 1 for the young and middle-aged, as depicted here in Figure 8.

Presumably, if masks or other non-lockdown methods of reducing infectiousness were incor-
porated into the Acemoglu et al. (2020) model and sufficiently effective alongside tests, society

24Formally, in the Acemoglu et al. (2020) model individuals in each group j are either “in lockdown” or not, and
when in lockdown their productivity is lower by a parameter ζj that “captures the relative productivity of home
vs. market production.” The main calibrations then set ζj = 0.70 “so that workers on average lose 70% of their
productivity when under lockdown.” The main calibrations do not consider the possibility that workers could be
closer to fully productive without incurring all of the virus-transmission risk of pre-lockdown society in case an
infected and susceptible interact — i.e., there is no role for facemasks, non-lockdown forms of social distance, etc.
When the model considers testing and contact tracing in detail (Section 5.3), it finds that this intervention is very
effective.
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Figure 8: Depiction of the Acemoglu, Chernozhukov, Werning and Whinston “Young-
Old” Argument

Panel A: Old Population
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Note: This figure illustrates the Acemoglu et al. (2020) young-old argument. In both panels, the dotted blue line represents
the health benefits of reducing the spread for the full population and the dotted red line represents the economic cost of
mitigation for the full population; these are rescaled versions of the curves in Figure 2. Panel A illustrates the curves for
the Old population; as Acemoglu et al. (2020) describe, the economic costs of mitigation are lower and the health benefits
of mitigation are significantly higher. Panel B illustrates the curves for the Young population; as Acemoglu et al. (2020)
describe, the economic costs of mitigation are higher and the health benefits of mitigation are significantly lower. The
placement of the curves is illustrative and is meant to help describe the Acemoglu et al. (2020) argument. See the text of
Section 6.2 for additional discussion.

would choose R ≤ 1 for the young and middle-aged as well, especially if there is socially-valuable
interaction between these lower-risk populations and more vulnerable populations. Whereas, the
optimum would involve R > 1 for the sufficiently young and healthy if (i) the disease burden for
this population is sufficiently low; (ii) the interventions required to achieve R ≤ 1 for this popu-
lation are sufficiently harmful to utility relative to this disease burden; and (iii) cross-infection of
the old or vulnerable could be sufficiently controlled.

7 Conclusion: A New Play in the Pandemic Playbook?

This paper has suggested that “maximize utility subject to R ≤ 1” may be a useful formulation of
the Covid-19 lockdown and reopening policy problem. That is, treat the prevention of exponential
growth of the virus as a constraint, and then place traditional economic and societal goals as the
objective.

There are four features of Covid-19, relative to other past pandemics, that together make this
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formulation potentially appropriate:

1. Mortality / morbidity cost high: Covid-19 is sufficiently lethal and harmful that R ≤ 1 is a
desirable policy goal even at meaningful expense.

[In the language of this paper’s analysis: the curve “health benefits of reducing spread” in
Figures 2 and 4 is sufficiently high relative to the costs of mitigation to justify a policy
response.]

2. Eradication likely not feasible: Covid-19 had already spread relatively widely by the time
of policy intervention in many countries, making eradication an unrealistic goal for many
countries.

[Mitigation requires simple interventions or dropping activities, until a vaccine or effective
treatment is ready, as opposed to a one-time fixed cost of eradication.]

3. R ≤ 1 feasible with modestly expensive measures: with an initialR0 in the ballpark of 2.0-4.0,
and a fast understanding of how the virus spreads, medical experts quickly converged upon a
suite of public-health responses that together could achieve R ≤ 1. As Atul Gawande put it:
“we have learned in hospitals where we’ve been going to work every day in the pandemic and
have avoided infections, that if you have hygiene, distancing, mandatory masks, and screen
everybody for symptoms so that they stay home and get tested, that shuts the virus down.”25

These interventions are not free, but they are trivial relative to either the 2 million U.S.
deaths forecast in the Imperial College model under an “ignore the virus” policy (Ferguson
et al., 2020), or the 40 million jobs lost during the lockdown period (see Section 4.3).

[The R ≤ 1 point on the “economic cost of reducing spread” curve with simple interventions,
Figure 4, is relatively low.]

4. Minimize unboundedly expensive: when eradication of an infectious threat is not feasible,
the second-best from a public health perspective is to minimize its spread. For example Dr.
Michael Osterholm writes: “As epidemiologists, we have two goals. The first is to prevent.
When that is not possible, the second is to minimize ...” (Osterholm and Olshaker, 2020, pg.
26). As emphasized in the introduction, however, the minimize objective makes it difficult
to think about tradeoffs if the interventions themselves are very expensive. This latter point

25The quote is from an interview with David Axelrod recorded on July 9, 2020. Emphasis added. See also
Gawande’s March 21, 2020 New Yorker article “Keeping the Coronavirus from Infecting Health-Care Workers”
which makes similar points based on the experiences of Singapore and Hong Kong. This article is a useful reminder
of how early on medical experts understood how to contain the virus without lockdown.
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bears emphasis. In the HIV pandemic, the minimize strategy entailed widespread public
education about safe sex, condom distribution, needle exchange, etc. — but no public health
expert recommended literally trying to minimize the spread of the virus by banning sex (or
banning non-monogamous sex, etc.). In the Covid-19 pandemic, however, the minimize
strategy has included not just the kinds of interventions that are relatively cheap like virus-
risk education, masks, testing, etc., but also much more severe and expensive measures which
have included banning many forms of social and commercial contact.

[The “economic cost of reducing spread” curve grows very steeply as R gets lower than
lower than 1.0, even if simple interventions are utilized, because of the increasingly-valuable
activities that have to be dropped.]

A New Play in the Infectious-Threat Playbook? Figure 9 contrasts this paper’s analysis
of Covid-19 (Panels A and B) with several other infectious-threat scenarios — past plays in the
epidemiology playbook.

Panel C depicts the case where it is “optimal to ignore” a particular infectious threat, because
the health benefits of reducing the spread are too low to justify a policy response.

Panel D depicts the case where it is “optimal to partially mitigate” to R > 1. The cost curve
is fairly flat up to a point (about R = 1.5 in the figure, purely for conceptual illustration), and
then increases steeply upwards. This represents a scenario in which there are some interventions
that are both cheap and effective — “no brainers” to do as fully as possible — but then it is
impossible or prohibitively expensive to do more. With Covid-19, relatively cheap measures have
been proven to be enough to get to R ≤ 1, whereas, for example, for HIV there was no comparable
set of interventions that was enough.

Panel E depicts the case where it is “optimal to suppress to R significantly less than 1”. This
requires two things. First, that the cost curve remains relatively flat beyond R = 1 — for example,
simple interventions or targeted activity bans are sufficiently effective. Second, that the benefits
curve is still meaningfully increasing beyond R = 1, because the stock of infections is sufficiently
high.26

Panel F depicts the case where it is “optimal to eradicate”. Costs of eradication can be viewed
as a one-time fixed cost as opposed to an ongoing flow cost of reducing spread via interventions
or activity bans. Eradication is optimal if this one-time fixed cost is sufficiently low, as depicted
in Panel F.

26The curve in Panel F depicts the data from Figure 1 with an initial stock of infections of 10 million. Alterna-
tively, one could generate a benefits curve that is meaningfully increasing beyond R = 1 with a less-severe stock
of infections if the hospital system is stretched beyond capacity, which would increase the IFR until infections are
brought down.
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The public-health instinct expressed by Dr. Osterholm to eradicate if feasible, and otherwise
minimize, is a useful heuristic in the scenarios depicted in Panels D, E, and F. Specifically, if we
understand “eradicate if feasible” to mean feasible at a fathomable fixed cost, and “minimize” to
mean doing all of the cheap interventions, on the relatively flat part of the mitigation curve, as
fully as possible, then this heuristic gets to the optimal policy response in each of Panels D, E,
and F.

However, if the costs of interventions being considered grow large enough — as they clearly
have done in the Covid-19 response — then this instinct may lead to sub-optimal policy. This is
the case depicted in Panels A and B and that has been emphasized throughout this paper.

It therefore seems that Covid-19 required a novel play in the epidemiological playbook: maxi-
mize societal utility subject to R ≤ 1. That is, get to R ≤ 1 as efficiently as possible, using either
simple interventions or targeted bans of activities with particularly poor utility-to-risk.

I want to close by emphasizing that this paper, at most, puts economics language on a for-
mulation that many medical experts have converged on as well. There were also several other
economists who, early in the pandemic, seemed to have in mind that getting to R ≤ 1 at the
lowest harm to societal utility is the appropriate formulation of the policy problem.27

27Examples include John Cochrane (see especially his blog posts of March 29th, April 8th and April 14th), my
colleague Austan Goolsbee (who said early on that the “First Law of Virus Economics” is to contain the virus),
and Paul Romer whose work on mass random testing is discussed extensively above. I imagine that many other
economists have had some version of “maximize utility subject to R ≤ 1” implicit in their thinking about the
Covid-19 response. I hope this paper is useful nonetheless.
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A Theory Appendix
A.1 Economic Cost of Mitigation is Convex and Increasing
For any K ∈ [0, R0], let UR≤K be the utility in the optimal solution to program:

max
x∈X

n∑
i=1

xi(vi − ci)

subject to
n∑
i=1

xiri ≤ K

Define U0 = UR≤R0 , that is, U0 is (myopic) social utility without any disease-transmission constraint.
Define the cost of mitigation from R0 to R0 − δ by c(δ) = U0 − UR≤R0−δ. In this subsection we prove
that the cost of mitigation is increasing and convex in the quantity of mitigation δ :

Proposition 1. The cost of mitigation from R0 to R0−δ, denoted by c(δ) = U0−UR≤R0−δ, is increasing
and convex in δ.

Proof. We start the proof with the following lemma:

Lemma 1. dUR≤K
dK = ρ∗+(K), where ρ∗+(K) is defined as:

ρ∗+(K) =

sup
{
ρi :

∑
j:ρj≥ρi rj > K

}
, K < R0

0, K = R0

Intuitively, ρ∗+(K) is the utility-to-risk ratio of the marginal activity affected by an infinitesimal increase in
the disease-transmission budget K when K < R0. ρ∗+(K) is weakly positive and monotonically decreasing
in K over the range [0, R0].

Proof. Consider a small increase in the disease-transmission budget, ∆, and take the limit as ∆ → 0.
When K = R0, additional budget does not translate into more utility since all activities can already be
performed in full. Thus, dUR≤K

dK |K=R0 = 0. When K < R0, the optimal policy spends disease-transmission
budget in descending order of the utility-to-risk ratio ρi. Therefore, we have:

dUR≤K
dK

= lim
∆→0

UR≤K+∆ − UR≤K
∆ = lim

∆→0

∆ · ρ∗+(K)
∆ = ρ∗+(K).

We now show that ρ∗+(K) is monotonically decreasing in K over the range [0, R0]. For any K1 < K2
in the range [0, R0), by the definition of ρ∗+(K) and set inclusion, we have:

ρ∗+(K2) = sup

ρi :
∑

j:ρj≥ρi
rj > K2

 ≤ sup

ρi :
∑

j:ρj≥ρi
rj > K1

 = ρ∗+(K1).

Therefore, ρ∗+(K) is monotonically decreasing in K on [0, R0). Since ρi is weakly positive for all i and
we have defined ρ∗+(R0) = 0, we thus have that ρ∗+(K) is weakly positive and monotonically decreasing
in K on [0, R0], as required.
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Next, take the derivative of c(δ):

dc(δ)
dδ

= dU0
dδ
− dUR≤R0−δ

dδ
= 0− ρ∗+(R0 − δ) · (−1) = ρ∗+(R0 − δ)

By Lemma 1, ρ∗+(K) is monotonically decreasing with K, so ρ∗+(R0 − δ) is monotonically increasing
with δ. Therefore, c(δ) is convex. Since ρ∗+(R0 − δ) is weakly positive by construction, c(δ) is increasing
as well.

A.2 Support for Section 4: Model with Simple Interventions
A.2.1 Formal Statement of the Model with Masks

As described in the text of Section 4, for each activity i there is an original version with parameters
(vi, ci, ri) and a “masked” version with parameters (vmi , cmi , rmi ). The term “masks” is meant to cover
simple low-cost interventions including facemasks as well as tests, social distance, hand-washing, stay-
home-if-sick, etc. Throughout we assume that masks weakly reduce activity benefits, weakly increase
activity costs, and weakly reduce activity risk: vmi ≤ vi, cmi ≥ ci, and rmi ≤ ri.

The social planner now chooses both a mask policy vector m ∈ M = {0, 1}n, where mi ∈ {0, 1}
denotes whether or not masks are utilized for activity i, as well as the activity vector x ∈ X = [0, 1]n.
The formal optimization problem, for any K ∈ [0, R0], is now:

max
x∈X,m∈M

n∑
i=1

xi [(1−mi)(vi − ci) +mi(vmi − cmi )] (12)

subject to
n∑
i=1

xi [(1−mi)ri +mir
m
i ] ≤ K.

To simplify notation, define

U(x,m) :=
n∑
i=1

xi [(1−mi)(vi − ci) +mi(vmi − cmi )]

R(x,m) :=
n∑
i=1

xi [(1−mi)ri +mir
m
i ]

We can now rewrite Problem (12) as

max
x∈X,m∈M

U(x,m) (13)

subject to
R(x,m) ≤ K.

Let x∗ and m∗ denote the optimal activity vector and mask policy. Given a specific mask policy m,
let x∗(m) denote the optimal activity vector holding fixed that mask policy, and let OPT (m) denote the
associated utility at mask profile m and activity vector x∗(m).
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A.2.2 Statement and Proof of Necessary Condition for Mask Adoption

Proposition 2. (Necessary Condition, Activity i Mask Adoption) Let x∗,m∗ be an optimal solution to
Problem (13). If an activity i satisfies m∗i = 1 and x∗i > 0, then ρmi ≥ ρi.

Proof. Suppose towards a contradiction that ρmi < ρi. In the optimum x∗ activity i creates a total risk
cost of x∗i rmi . Fix x∗−i and m∗−i but now instead choose mi = 0 and choose x′i = x∗i ·

rmi
ri
≤ x∗i . In words,

x′i spends the same risk budget on activity i as in the optimum x∗i but now on the un-masked version.
Note that rmi must be strictly positive because rmi = 0 would imply ρmi =∞ which contradicts ρmi < ρi;
since rmi ≤ ri by the definition of masks ri must be strictly positive as well.

This new policy is feasible since the total risk cost remains unchanged and x′i ∈ [0, 1] is feasible.
Denote ui = vi − ci and umi = vmi − cmi . We have:

x′iui = x∗i ·
rmi
ri
· ui

= x∗i · rmi · ρi
> x∗i · rmi · ρmi
= x∗iu

m
i ,

where the inequality follows from the presumption that ρmi < ρi, the assumption in the proposition
statement that x∗i > 0, and rmi > 0 as noted above. Hence utility is higher using the un-masked version
of activity i than using the masked version of activity i. Contradiction.

A.2.3 Statement and Proof of Sufficient Condition for Mask Adoption

Let ρ∗m denote the utility-to-risk ratio of the marginal activity (as defined in (7)) when the mask policy
vector is m. Formally,

ρ∗m = sup

ρ̃ :
∑

j:ρmj ≥ρ̃
mjr

m
j +

∑
j:ρj≥ρ̃

(1−mj)rj > 1

 .
Similarly, for any mask policy vector m and feasible activity vector x, we can define ρ̄(m,x) as the

best utility-to-risk ratio from activities not fully performed in x:

ρ̄(m,x) = sup {miρ
m
i + (1−mi)ρi | i : xi < 1} .

We can also view ρ̄(m,x) as the marginal utility-to-risk ratio at x because it is the ratio of the best
activity to add to activity vector x if the risk budget increases by a small amount.

Note that ρ̄(m,x∗(m)) = ρ∗m by construction.
We will state two versions of the sufficient condition: the first for a single activity i and the second

for a set of activities J .

Proposition 3. (Sufficient Condition, Activity i Mask Adoption). Suppose activity i satisfies the neces-
sary condition, and define

ρ∗i = min
m−i∈M−i

ρ∗(mi=1,m−i).

If the risk constraint binds at the optimal activity vector under the full-mask policy m = 1, and it holds
that

ρ∗i ≥
∆ui
∆ri

,
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then OPT (mi = 1,m−i) ≥ OPT (mi = 0,m−i) for any m−i. In words, it is optimal to adopt the mask
for activity i under any mask policy for the other activities m−i.

Proof. Consider an arbitrary m−i. To simplify the notation, write m0 = (mi = 0,m−i) and m1 = (mi =
1,m−i). We want to show that OPT (m1) ≥ OPT (m0). If x∗i (m0) = 0, then masking activity i cannot
hurt utility. Therefore assume x∗i (m0) > 0, that is, activity i is used in the optimum if it is not masked.
We construct a feasible activity vector x̃ under mask policy m1 which we show leads to weakly greater
utility. In words, x̃ starts with activity vector x∗(m0), and then optimally spends the extra risk budget
that is freed up by masking activity i. More formally, let x̃ be the optimal activity vector under mask
policy m1 under the additional constraint that x̃j ≥ x∗j (m0) for all activities j. We prove the result with
the following steps:

OPT (m1) ≥ U(x̃,m1) (14)
= U(x∗(m0),m1) + U(x̃− x∗(m0),m1) (15)
= U(x∗(m0),m0)︸ ︷︷ ︸

Utility from x∗(m0)

− x∗i (m0) ·∆ui︸ ︷︷ ︸
Cost of masking

activity i

+ U(x̃− x∗(m0),m1)︸ ︷︷ ︸
additional utility from

spending the freed-up budget

(16)

= OPT (m0)− x∗i (m0) ·∆ui + x∗i (m0) ·∆ri ·
U(x̃− x∗(m0),m1)

x∗i (m0) ·∆ri
(17)

≥ OPT (m0)− x∗i (m0) ·∆ui + x∗i (m0) ·∆ri · ρ̄(m1, x̃) (18)
≥ OPT (m0)− x∗i (m0) ·∆ui + x∗i (m0) ·∆ri · ρ∗m1 (19)
= OPT (m0) + x∗i (m0) · (ρ∗m1 ·∆ri −∆ui) (20)
≥ OPT (m0) + x∗i (m0) · (ρ∗i ·∆ri −∆ui) (21)
≥ OPT (m0). (22)

Step (14) follows from the definition of optimality. Step (15) adds and substracts the vector x∗(m0)
which by construction is weakly smaller in all elements than x̃. Step (16) explicitly breaks out the utility
cost of adopting a mask for activity i from the utility under the optimal activity vector if i is not masked.
Step (17) notes that the first element is the optimal utility under the original mask policy m0, and
multiplies and divides the last term by x∗i (m0) ·∆ri.

Step (18) is a key step in the argument. In the term U(x̃−x∗(m0),m1)
x∗
i (m0)·∆ri , the denominator is the amount of

risk budget freed up by masking activity i, and the numerator is the utility that is gained by spending this
freed-up risk budget to go from activity vector x∗(m0) to activity vector x̃. Thus the ratio is the average
utility-to-risk ratio of the additional expenditure. Because this freed-up budget is spent optimally over
activities not in x∗(m0) — that is, in descending order of utility-to-risk — this average must be larger
than the utility-to-risk ratio of the marginal activity left undone (or not done in full) under x̃, namely
ρ̄(m1, x̃). Step (19) then follows by noting ρ∗m1 ≤ ρ̄(m1, x̃) by construction. In words, the optimal activity
vector x∗(m1) at mask policy m1, without the constraint that x̃j ≥ x∗j (m0), must have a weakly lower
marginal utility-to-risk than the activity vector with the constraint, because the optimum consumes in
strict descending order of utility-to-risk under m1 whereas the constrained policy might not.

Step (20) rearranges terms. Step (21) follows from the definition of ρ∗i . Step (22) follows from the
assumption in the statement of the proposition. Stringing these all together gives OPT (m1) ≥ OPT (m0),
as required.

We now state the sufficient condition for a set of activities.
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Proposition 4. (Sufficient Condition, Mask Adoption for a Set of Activities). Suppose all activities i
in set J satisfy the necessary condition, and define

ρ∗J = min
m−J∈M−J

ρ∗(mJ=1,m−J ).

If the risk constraint binds at the optimal activity vector under the full-mask policy m = 1, and it holds
for all activities i in set J that

ρ∗J ≥
∆ui
∆ri
·,

then OPT (mJ = 1,m−J) ≥ OPT (m′J ,m−J) for any m−J and any m′J . In words, it is optimal to adopt
masks for all activities in set J under any mask policy for the other activities m−J .

The proof for Proposition 4 is essentially identical to that for Proposition 3 and is omitted.

A.2.4 Mathematical Relationship Between Necessary and Sufficient Conditions.

The relationship between the necessary and sufficient conditions can be seen as follows:

ρmi ≥ ρi ⇔
umi
rmi
≥ ui
ri

⇔ umi ri ≥ uirmi
⇔ umi ri − umi rmi ≥ uirmi − umi rmi
⇔ (ri − rmi )umi ≥ (ui − umi )rmi

⇔ (ri − rmi ) · u
m
i

rmi
≥ ui − umi

⇔ ρmi ≥
∆ui
∆ri

.

Thus, while the sufficient condition requires that the marginal activity’s utility-to-risk ratio exceeds
∆ui
∆ri , the utility-cost per unit of freed-up risk budget, the necessary condition requires that the activity’s
own utility-to-risk ratio exceeds ∆ui

∆ri . If included in the optimum, the activity is by definition weakly
inframarginal, thus the necessary condition is less demanding than the sufficient one.

A.3 Characterization of ρ∗ for Numerical Example
As in the theory of Section 3, the optimal policy is characterized by a threshold strategy ρ∗ such that any
activity with ρ ≥ ρ∗ is done in full, and any activity with ρ < ρ∗ is completely dropped. Since the optimal
policy must fully spend the disease-transmission budget, the problem is solved by finding the ρ∗ such
that the total risk cost from all activities above the line ui = ρ∗ri equals the targeted level K ∈ [0, R0].
Depending on the targeted value K, we may have 3 different cases as depicted in Figure 10.
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Figure 10: Optimal Threshold Illustration

Panel A: Edge Case
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Panel B: Tighter Constraint
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Panel C: Looser Constraint
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Notes: This figure depicts the optimal utility-to-cost ratio threshold under 3 different cases. For each panel, the vertical axis represents
the net utility of activities and the horizontal axis represents the transmission costs. The XY-plane represents the space of all activities.
Panel A shows the edge case where the targeted disease transmission K = R0/3. In this case, the transmission costs from all activities
above the diagonal integrate to K. Panel B shows the case of a tighter constraint when K < R0/3. Panel C shows the case of a looser
constraint when K > R0/3.

Case 1: Edge Case. We first focus on the edge case depicted in Figure 10 Panel A where the
costs from all activities above the diagonal sum exactly to the targeted level K. In this case, ρ∗ = 1

2R0
.

We now calculate the total risk costs from all activities in the green hatched area above the diagonal∫ 2R0

0

∫ 1

ρ∗r

r

2R0
dudr =

∫ 2R0

0

1
2R0

(1− ρ∗r)rdr

= 1
2R0

· (1
2r

2 − 1
3ρ
∗r3)

∣∣∣∣2R0

0

= 1
2R0

· (1
2 · 4R

2
0 −

1
3 ·

1
2R0

· 8R3
0)

= R0
3

Therefore, when K = R0
3 , the total risk costs from all activities in the green hatched area above the

diagonal exactly equal the disease transmission budget.

Case 2: Tighter Constraint When K < R0/3, we fill up the transmission budget with a
smaller triangle (Figure 10 Panel B). Line ui = ρ∗ri intersects the square at point (1/ρ∗, 1). The total
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transmission cost of activities allowed is given by:∫ 1/ρ∗

0

∫ 1

ρ∗r

r

2R0
dudr =

∫ 1/ρ∗

0

1
2R0

(1− ρ∗r)rdr

= 1
2R0

· (1
2r

2 − 1
3ρ
∗r3)

∣∣∣∣1/ρ
∗

0

= 1
2R0

· (1
2 ·

1
ρ∗2
− 1

3ρ
∗ · 1
ρ∗3

)

= 1
12R0ρ∗2

The total cost should equal the targeted level K,

1
12R0ρ∗2

= K =⇒ ρ∗ = 1√
12R0K

.

Case 3: Looser Constraint When X > R0/3, we need to fill up the transmission budget with
activities from the green hatched trapezoid region (Figure 10 Panel C). Line ui = ρ∗ri intersects the
square at point (2R0, 2R0ρ

∗). The total cost from activities in the green hatched trapezoid is given by
the myopic total transmission cost R0 minus the cost from the red striped triangle:

R0 −
∫ 2R0

0

∫ rρ∗

0

r

2R0
dudr = R0 −

∫ 2R0

0
ρ∗r2 · 1

2R0
dr

= R0 −
1

2R0
· ρ∗ · 1

3r
3
∣∣∣∣2R0

0

= R0 −
1

2R0
· ρ∗ · 1

3 · 8R
3
0

= R0 −
4
3ρ
∗R2

0

At the targeted transmission level K,

R0 −
4
3ρ
∗R2

0 = K =⇒ ρ∗ = 3(R0 −K)
4R2

0
.

Bringing these three cases together we have:

ρ∗ =


3(R0 −K)

4R2
0

if K ≥ R0
3 ,

1√
12R0K

if K ≤ R0
3 .
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