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ABSTRACT

This paper documents several facts on the real effects of economic uncertainty. First, higher 
uncertainty is associated with a more dispersed distribution of output growth. Second, the relation 
is highly asymmetric: A rise in uncertainty is associated with a sharp decline in the lower tail of 
the growth distribution whereas it has a much smaller and insignificant impact on its upper tail. 
Third, the negative response of growth to uncertainty shocks is larger when the equity market is 
more volatile. We build a model in which growth and uncertainty are both endogenous: rapid 
adoption of new technology raises economic uncertainty and may cause measured productivity to 
decline. The equilibrium growth distribution is negatively skewed and higher uncertainty leads to 
a thicker left tail and to more labor reallocation among jobs and among
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1 Introduction

Contemporary macro literature often finds uncertainty about the future to be an impor-

tant driver of economic fluctuations. A growing body of work proposes uncertainty as a

cause of economic slowdowns and sluggish recoveries. For example, Bloom (2009a) and

Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2018) argue that higher un-

certainty stems from the process governing technological innovation, which subsequently

causes a decline in real activity.

Empirically, this evidence has been found to be robust to the use of various proxy

variables such as implied stock volatility (VIX), economic policy uncertainty (EPU) from

Baker, Bloom and Davis (2016), or a broad-based measure of macroeconomic and finan-

cial uncertainty, as in Jurado, Ludvigson and Ng (2015) (JLN) and Ludvigson, Ma and

Ng (2019) (LMN). However, these papers usually investigate the impact of higher un-

certainty on mean growth either via a linear forecasting regression or a structural vector

autoregression (SVAR). Consequently, they are silent about the effect of uncertainty on

the volatility or other higher moments of the growth distribution, and this may underes-

timate the impact of economic uncertainty on growth downside risk.

In this paper, we provide evidence that uncertainty is highly correlated with the higher

moments of the growth distribution. Figure 1 depicts the contemporaneous relationship

between JLNmacro uncertainty and 36-month rolling window average growth of industrial

production (hereafter “IP”) in the left panel, IP growth volatility in the middle panel, and

IP growth skewness in the right panel. While uncertainty is highly negatively correlated

(−36%) with mean growth as the literature has shown, we find that uncertainty is also

highly correlated with growth volatility (44%) and growth skewness (−22%). Therefore,

higher uncertainty is not only associated with lower mean growth but also contributes to

a more dispersed and negatively skewed growth distribution.

We estimate the distribution of future real growth of IP as a function of uncertainty

measures using quantile regression methods.1 We document three stylized facts. First,

higher economic uncertainty is associated with a more dispersed and left-skewed future

growth distribution. A one-standard-deviation increase in uncertainty statistically sig-

nificantly increases the interquartile range of the one-month ahead annualized growth

distribution by 2%, and decreases the lower 5th percentile by 5%. This indicates that the

marginal effects of higher uncertainty are to significantly increase growth downside risk.

1This empirical model is based on Adrian, Boyarchenko and Giannone (2019) (ABG). Instead of using
an uncertainty measure, ABG uses the national financial condition index (NFCI) as the conditioning
variable to estimate the growth distribution.
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Figure 1: Uncertainty and Higher Moments of Growth. Note: this figure depicts the contem-
poraneous relationship between JLN macro uncertainty and 36-month rolling window average industrial

production (IP) growth (left panel), growth volatility (middle panel), and growth skewness (right panel).

The sample spans the period 1973:01 to 2018:12.

Second, the response of IP growth to changes in uncertainty is highly asymmetric,

the response being much higher when uncertainty rises than when it falls. An increase in

uncertainty is associated with a larger decrease in the lower tail of the growth distribution

while it has a much smaller impact on its upper tail. These results suggest that higher

uncertainty could lead to an abrupt economic decline whereas lower uncertainty does

not necessarily rebound the economy from the recession. Third, higher asset volatility

magnifies the negative impact of uncertainty on growth. We find that when the equity

market is more volatile as measured by a higher VIX, an increase in macro uncertainty

has a larger negative impact on the lower tail of the expected growth distribution. A

one-standard deviation increase in VIX increases in the marginal effect of uncertainty on

the lower 5th percentile by 10%.

Motivated by this evidence, we present and estimate an endogenous growth model

that generates uncertainty. Equilibrium growth results from the adoption of technologies

of uncertain quality. A technology’s “quality”refers to how closely the technology’s needs

match the economy’s input endowments. Since technology needs are unpredictable, its

rapid irreversible adoption raises uncertainty and can even lead to a decline in output

and, hence, to negative growth.

Uncertainty thus affects growth because of technological commitment and the ex-post

mismatch between the technology and the firm’s inputs. Firms adopt technologies the

exact character of which they do not know; a firm may have to commit to the scale of its

factory and to the size of its labor force, as argued by Ramey and Ramey (1991), or it
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may be have to commit to the skill and occupational composition of the labor force. The

mismatch is distributed symmetrically but the cost of that mismatch is quadratic so that

maximal losses from technology adoption exceed the maximal gains. The firm’s growth

rate is therefore negatively skewed as observed in the data.

How well a technology fits a firm’s asset endowments is revealed only after the fact.

An ex-post mismatch causes a resulting adjustment which we hypothesize will show up in

job-to-job mobility whereby workers move from one firm to another, and in occupational

mobility which may also be internal to the firm when it reallocates workers among tasks

that differ in their occupational label.

The model provides an analytic characterization of the equilibrium growth distribu-

tion. Consistent with our empirical evidence, higher uncertainty about the newly adopted

technologies leads to a lower average growth as well as a more dispersed and negatively

skewed growth distribution. By assuming that the uncertainty has no long-run impacts

on growth, the calibrated model is able to quantitatively match the marginal effect of

uncertainty on several key moments of the growth distribution. As in the data, the model

suggests that higher asset price volatility, measured from the estimated option prices of

a Lucas (1978) representative security, leads to a higher marginal effect of uncertainty on

the lower tail of the growth distribution.

Related Literature

Our paper relates closely to two major strands of literature. First, a growing body of

empirical studies the real effect of uncertainty. Carriero, Clark and Marcellino (2018)

finds that economic uncertainty has a strong negative effect on economic outcomes. Simi-

larly, based on breaks in the volatility of macroeconomic variables, Angelini, Bacchiocchi,

Caggiano and Fanelli (2019) shows that macro uncertainty has a contractionary effect on

output. Using a shock-restricted SVAR approach, Ludvigson et al. (2019) finds that finan-

cial uncertainty is a possible source of business cycle fluctuations. In spite of the mixed

evidence on which type of uncertainty has a contractionary effect on economic growth, it’s

evident that the higher uncertainty about future economic conditions exhibits a large im-

pact on mean growth. However, all these papers investigate uncertainty and real variables

using a structural vector autoregression (SVAR) framework and thus cannot establish a

relationship between uncertainty and higher moments of the growth distribution.2

One exception is Hengge (2019). As we do in our paper, she also uses quantile re-

2Other examples include Baker and Bloom (2013), Caldara, Fuentes-Albero, Gilchrist and Zakrajšek
(2016), Alfaro, Bloom and Lin (2016), and Shin and Zhong (2018).
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gression analysis and shows that the relationship between macroeconomic uncertainty

and future quarterly GDP growth is highly nonlinear and asymmetric. Our empirical

evidence on the asymmetric response of expected IP growth to higher uncertainty is con-

sistent with hers despite our use of monthly IP as the measure of economic growth. Using

quantile regression estimates, we further construct the Growth-at-Risk measure and study

its interaction with asset pricing volatility and capacity utilization both empirically and

theoretically. To the best of our knowledge, we are the first to provide a theoretical frame-

work to study the impact of uncertainty on higher moments of the growth distribution.

Second, a large body of theoretical literature proposes that higher economic uncer-

tainty causes lower output growth. Prescott and Visscher (1980) argue that workers’

comparative advantages for performing various tasks differ and firms need to learn them

at a cost. If a new technology garbles their aptitudes for some of the workers, this

gives rise to a reallocation cost that lowers output. More generally, there are models of

the real options effects of uncertainty (Bernanke (1983), McDonald and Siegel (1986)),

models in which uncertainty influences financing constraints (Gilchrist, Sim and Zakrajsek

(2010), Arellano, Bai and Kehoe (2011)), investment (Fajgelbaum, Schaal and Taschereau-

Dumouchel (2017)), or precautionary saving (Basu and Bundick (2017), Leduc and Liu

(2016), Fernández-Villaverde, Pablo Guerrón-Quintana and Uribe (2011), Bianchi, Kung

and Tirskikh (2018)). Our notion of uncertainty in the model is similar to Bloom (2009a)

and Bloom et al. (2018) that assume that higher uncertainty originates directly in the

process governing technological innovation and adoption.

Our paper is also related to papers on disaster risk and business cycles. Gourio (2012)

studies the impact of disastrous shocks on the first moments of real variables whereas our

paper focuses on the second and third moments. Related to our findings, Berger, Dew-

Becker and Giglio (2020) and Dew-Becker, Tahbaz-Salehi and Vedolin (2020) theoretically

and empirically emphasize the importance of time-varying second moment and skewness

in thinking about uncertainty shocks.

Our model follows the putty-clay tradition of Johansen (1959), and assumes irreversible

technological commitment, building on Ramey and Ramey (1991) and Jovanovic (2006).

It derives closed-form expressions for equilibrium growth and its distribution, and studies

the relationship between uncertainty and higher moments of the growth distribution.

Central to the model is investment in intangible capital which McGrattan and Prescott

(2014) and Bhandari and McGrattan (2018) estimate to be sixty percent of firms’total

assets. Parente (1994) and Klenow (1998) explain asymmetry at the level of the firm

by assuming that a technology improves with use through learning by doing. Upon an
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update, productivity drops sharply and then recovers gradually.

Closely related is Ramey and Ramey (1991) which, in a one-period model also assumes

technological commitment so that output may decline when new technology is adopted,

and where greater variability of shocks reduces expected output. In Chalkley and Lee

(1998), Veldkamp (2005), and Fajgelbaum et al. (2017) agents observe shocks more accu-

rately when investment is high and therefore in a boom a negative shock to the effi ciency

of investment is quickly detected and so, when a bad shock hits, investment suddenly

drops. Thus, a negative TFP shock in a boom has a quicker impact than a positive shock

does in a slump —investment responds asymmetrically to a symmetric exogenous shocks

because firms can detect negative shocks more quickly than positive ones. Our paper

shares the feature that uncertainty is endogenous —agents’actions affect how uncertain

they feel about future macroeconomic variables.

The rest of this paper is organized as follows. Section 2 provides evidence on the

asymmetric real effects of uncertainty. Section 3 presents the model, and analyzes its

empirical implications. Section 4 adds three extensions: A Markov-switching process for a

parameter that influences the level of uncertainty induced by technological upgrading , an

alternative measure for aggregate output, and recursive preferences. Section 5 concludes

the paper.

2 Empirical Evidence

In this section, we describe the data and present the key empirical fact that the relation-

ship between future economic growth and uncertainty is highly nonlinear. To document

this feature in the data, we follow Adrian et al. (2019) and investigate the relationship

between uncertainty and future growth via forecasting quantile regressions. Compared

to the traditional OLS forecasting regressions, quantile regressions describe how the set

of conditional variables, including uncertainty measures, affect different quantiles of the

future growth. This methodology thus allows the estimated relationship between uncer-

tainty and future growth to differ across quantiles. This extension of a simple linear

regression model can capture the potential nonlinear relationship between the shocks in

uncertainty and vulnerability of the growth, which is largely neglected in the literature.

More formally, we regress the h-month-ahead real IP growth (hereafter “IP growth”) on

a vector of condition variables Xt,

∆ipt+h,α = δ′α,hXt + εt, (1)
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where the conditional variables Xt include a constant, the lag of the IP growth, and

uncertainty Ut.

The regression slope can be obtained by minimizing the quantile-weighted absolute

value of errors:

δ̂α,h = arg min
∑
t

{
α1∆ipt+h,α>δ

′
α,hxt
|∆ipt+h,α − δ′αxt|

+ (1− α)1∆ipt+h,α<δ
′
α,hxt
|∆ipt+h,α − δ′αxt|

}
, (2)

where h is the forecasting horizon, α is the quantile and 1 is the indicator variable. For

inference, standard errors are estimated via the bootstrap procedure described in Adrian

et al. (2019).

2.1 Data

The monthly IP data is obtained from FRED Economic database maintained by the

Federal Reserve Bank of St. Louis. Our main measure of uncertainty, denoted by UM
t ,

is the macroeconomic uncertainty index from Jurado et al. (2015) (hereafter JLN un-

certainty), which aggregates over a large number of individual uncertainties constructed

from a panel of data. More specifically, let yMjt ∈ Y M
t = (yM1t , . . . , y

M
NCt

)′ be a variable

in a set of large macroeconomic series denoted by Y M
t . For each macro series y

M
jt , its h-

period ahead uncertainty, denoted by UMjt (h), is defined to be the volatility of the purely

unforecastable component of the future value of the series, conditional on all information

available. Specifically,

UMjt (h) ≡

√
E
[
(yMjt+h − E[yMjt+h|It])2|It

]
,

where It denotes the information available up to time t. Then h-period macro uncertainty

UMjt (h) is an aggregate of individual uncertainty measures across all macro series:

UM
t (h) ≡ plimNM→∞

NM∑
j=1

1

NM

UMjt (h) ≡ E[UMjt (h)].

For JLN macro uncertainty, they use a monthly macro dataset consisting of NM = 134

mostly macroeconomic time series listed in McCracken and Ng (2016). Intuitively, if the

expectation of the squared error in forecasting yjt+h rises, uncertainty in that variable

increases. In this paper, we update JLN uncertainty index to 2018:12 and use the one-

month ahead (h = 1) macro uncertainty as our baseline measure of uncertainty, following

Ludvigson et al. (2019). Our sample is monthly and spans the period 1973:01 to 2018:12,

unless otherwise noted.
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Figure 2: Impact of a one-standard deviation increase in uncertainty measure on the
annualized growth rate. Note: this figure report the estimated coeffi cient of uncertainty over h =
1, 2..., 60 months from the baseline quantile regression described in the texts. The bootstrapped 68%

confidence intervals are reported in red dashed lines.

2.2 Results

By construction, any effects of changes in xt on h-month ahead growth at α percentile is

captured by the slope estimate δ̂α,h. Figure 2 reports the estimates of marginal coeffi cient

of uncertainty over h = 1, 2..., 60 months.3 The top panel reports the effect of uncertainty

on changes in expected median growth. We find that a one-standard-deviation increase

in uncertainty decreases the median of the annualized growth by 3% over the next month.

The effect gradually weakens over time with a half-life of 23 months. The middle panel

shows that the distribution of the growth becomes more dispersed following an increase

in uncertainty. The interquartile range (75th minus 25th percentile) rises at short- and

medium- terms. Similarly, the bottom panel shows that when uncertainty increases, the

distribution of the growth is more negatively skewed. The 5th percentile of the growth

falls by 6% at short horizon, and 2% over 2 to 4 years. As a result, the impact of the

uncertainty on skewness of the distribution is long-lasting.

In Figure 3, we plot the estimated uncertainty coeffi cients δα,h for different α over

3One can interpret the coffi cients from equation (1) over h as the impulse responses to uncertainty
shock, as in the local projection method from Jordà (2005).
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Figure 3: Asymmetric impact of uncertainty on growth. Note: this figure reports the estimated
uncertianty coeffi cients for different quantiles α over horizon h from the baseline quantile regression

described in the texts.

horizon h. In most cases, an increase in uncertainty is associated with a larger decrease

in the lower tail of the growth distribution while it has much smaller impact on the upper

tail. This asymmetric response shows that the impact of uncertainty on growth is highly

nonlinear.

2.3 Growth-at-Risk

We define Growth-at-Risk (GaR) as the lower 5th percentile of the estimated conditional

distribution of real IP growth. It’s worth noting that our measure of GaR differs from the

one in Adrian, Grinberg, Liang and Malik (2018) because they use the national financial

condition index (NFCI) from the Chicago Fed in conditional variables xt whereas we use

the uncertainty measure.4 In fact, in Appendix 6, we show that JLN uncertainty has more

accurate out-of-sample forecast of IP growth distribution (i.e. higher average predictive

scores) than NFCI. Figure 4 shows the time series of one-month ahead GaR estimated

using uncertainty measure. The red line in the figure shows the he GaR estimated using

NFCI for comparisons. First, it shows that both measures of GaR are counter-cyclical

4In addition, Adrian et al. (2018) uses quarterly GDP growth to measure of economic growth whereas
we use monthly IP growth.
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and with a less than 5% probability, a one-standard deviation increase in uncertainty is

associated with as much as a 3% decline in IP Growth within a month during recessions.

Second, GaR estimated with uncertainty is more volatile and exhibit larger spikes during

recessions. For the rest of the paper, we refer to GaR as the one that is estimated using

uncertainty.

One­month­ahead Growth­at­Risk (%)

1970 1980 1990 2000 2010 2020
­4

­3.5

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1
Macro Uncertainty
NFCI

Figure 4: Growth-at-Risk. Note: this figure reports the estimated Growth-at-Risk using NFCI (red
line) and JLN Macro uncertainty (black line). The baseline quantile regression is described in the texts.

The sample spans the period 1973:01 to 2018:12.

Our baseline measure of uncertainty is based on macro variables but some papers in

the literature, such as Ludvigson et al. (2019), found evidence that volatility related to

the asset returns also lead to persistent decline IP growth. This evidence suggests that

the uncertainty should be associated with a larger decline in growth when asset prices

are more volatile. To directly test this argument, Figure 4 plots the estimated GaR

against the standardized implied volatility indices (VIX), which is a popular measure of

the stock market’s expectation of volatility implied by S&P 500 index options.5 It shows

that when the US equity market is more volatile, an increase in macro uncertainty has

a larger negative impact on IP growth and thus leads to a lower GaR. On average, a

two-standard-deviation increase in VIX is associated with a 0.5% decline in GaR.
5In the paper, we chose to use the VXO implied volatility index that is available since 1962 instead of

VIX because the latter is only available after 1990 and the two measures are 99% correlated.
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Figure 5: Growth-at-Risk and VIX. Note: this figure shows the contempraneous relationship
between standardized VIX and estimated Growth-at-Risk. The Growth-at-Risk is estimated conditional

on JLN macro uncertainty. The red line reports the OLS Estimate. The sample spans the period 1973:01

to 2018:12.

To sum up, we document some empirical evidence on the real effect of uncertainty.

First, we find that an increase in uncertainty leads to lower median and yet more volatile

IP growth, and a more negative GaR. Second, the response of IP growth to an increase in

uncertainty is highly nonlinear, especially at the short term. Third, higher asset volatil-

ity magnifies a negative effect of uncertainty on growth. The next section presents an

endogenous growth model that captures these facts.

3 Model

The following model endogenizes growth and uncertainty. It features a collection of agents

that can raise their productivities by adopting new technologies. We first focus on a single

agent and then in Sec. 3.1 discuss why the representative agent assumption holds up in

a group of agents in spite of the informational spillovers involved. Consider an agent

“Crusoe,”with preferences over consumption sequences (ct)

E0

{ ∞∑
0

βtlnct

}
.
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We use log utility here for analytical tractability. In Section 4.3, we extend the model

using Epstein and Zin (2013) recursive preferences and show that it delivers the same

economic insights.

Production.– For simplicity of the exposition, we assume there is a single production

good y and there is no physical capital. The output depends on the level of technology A

as well as Crusoe’s skill mix h. The potential output, yp, is defined as

yp = exp

{
A− λ

2
(sA − h′)2

}
. (3)

where sA is the skill-mix ideal for technology A. By construction, λ
2

(sA − h′)2 captures

the foregone output due to the “skill gap”between Crusoe’s current skill and the ideal

skill for technology A.

Adoption of Technology.– Crusoe can raise his technology by any amount, x ≥ 0,

so that starting today at A, tomorrow’s technology is

A′ = A+ x.

Crusoe must use technology A′ for at least one period. We assume that adopting a new

technology is free but adoption of the new technology A′ makes unpredictable demands

on the skill mix,

sA′ = sA + xε, (4)

where ε ∼ F (ε) is time specific and i.i.d., having mean zero and variance σ2. Once ε is

drawn, sA′ becomes an invariant skill requirement for technology A′. Crusoe chooses A′

before seeing ε, and he cannot return to technologies that he used in the past.

Adjustment of h.– Crusoe starts the period with h. Before producing, he can change
it to h′ ≡ h+ ∆ at an adjustment cost of

C (yp,∆) ≡
[
1− exp

{
−θ

2
∆2

}]
yp.

Finally, Crusoe’s net output is

yp − C (yp,∆) ≡ y (u,∆, A) = exp

{
A− λ

2
(u−∆)2 − θ

2
∆2

}
, (5)

where

u = sA − h, (6)

is the gap between ideal and actual skill (hereafter the “skill gap”).

11



3.1 Optimal Investment in skill and in technological upgrading

Crusoe’s state is his skill gap u and technology level A. His decisions are (x,∆). He has

no assets other than h and A, and he simply consumes his output. His Bellman equation

is

V (u,A) = max
x,∆

{
lny (u,∆, A) + β

∫
V (u+ xε−∆, A+ x) dF (ε)

}
. (7)

The following result is proved in Jovanovic (2006, Proposition 1), but in Proposition 3

we shall generalize it to the case in which the parameter σ follows a two-state Markov

process, and in Proposition 5 we shall partially generalize it to cover recursive preferences

with an intertemporal elasticity of substitution different from unity. The solution to (7),

derived in Appendix 1, can be summarized as follows:

Proposition 1 The policy functions are

x =
1

θσ2 (1− β) (1− α)
, (8)

and

∆ = (1− α)u, (9)

where

α =
1

2β

1 + β +
λ

θ
−

√(
1 + β +

λ

θ

)2

− 4β

 , (10)

is the fraction of the gap that Crusoe leaves open. The solution for V is

V (u,A) =
A

1− β −
1

2
θ (1− α)u2 + J, (11)

where

J =
β

1− β

(
x

1− β −
[

ψ

1− βα2

]
x2σ2

)
, and ψ =

1

2

(
λα2 + θ (1− α)2) . (12)

Thus Crusoe upgrades technology at a constant rate x, and his adjustment of skills ∆

is proportional to his current skill gap u. As a result, using equation (4) and (6), the skill

gap u follows a AR(1) process as follows,

ut+1 = αut + xεt+1. (13)

Reductions in σ are expansionary.– Eq. (8) states that if σ falls, x rises. If a
more predictable policy lowers σ that would have an expansionary effect. In line with this

prediction, Gulen and Ion (2016) use a news-based index of policy uncertainty and show

12



that higher uncertainty reduces investment, especially in industries where investment is

irreversible —as investment in A is in our model. Similarly, Mody and Nedeljkovic (2018)

stress the expansionary effect of unambiguous ECB monetary policy during the Euro

Crisis. In Sec. 4.1 we shall extend the model and assume a Markov switching process for

σ2 and study the effect of periodic switches in σ2 that are not expected to remain fixed

forever and there, too, periodic reductions in σ are expansionary.6

Uncertainty.– Our notion of uncertainty is captured by the volatility of the skill gap
u. Because α is between zero and one, ut is stationary and its variance is

τ ≡ V ar (u) =
x2σ2

1− α2
=
(
(1− β)2 (1− α2

)
θ2 (1− α)2)−1

σ−2, (14)

where the second equality derives from equation (8). Conditional on the current skill gap

u, the rise in x prompted by a lower σ, leads to higher uncertainty. On the other hand, an

increase in λ, or penalty for skill mismatch, lowers investment x and lowers uncertainty.

From equation (14), it’s noteworthy that uncertainty τ is a linear function of the parameter

σ−2, we therefore consider changes in parameter σ−2 as a shock to uncertainty in the rest

of this section. Intuitively, a lower σ increases new technology adoption through a higher

x; consequently, it becomes harder for Crusoe to predict next-period skill mix sA′ , and

uncertainty hence rises.

Decentralization of the optimum.– All agents start in the same state (u,A) and if

they all then take the same actions, the equilibrium is symmetric and it has only aggregate

risk. At each date the choice of x and the realization of ε on the RHS of Eq. (13) would

then be the same for all agents and there would be no benefit to ex-post reallocation

of h. Section 4 of Jovanovic (2006) analyzes the incentives of agents to deviate from

this situation by considering the option to “wait and see” how other firms fare with

the newly adopted technology. The decentralized version assumes that there are two

markets: A market for output, and a market for firm’s shares —the only assets available

to households. Firms maximize shareholder utility and still reject the option to wait and

see the realization of u′ before committing to A′. It also assumes that agents are measure

zero, and that a deviation from equilibrium actions not change the aggregate state and,

particularly, the beliefs of the representative agent.7

6This in contrast to the effects of a mean-preserving spread in TFP shocks in Jones, Manuelli, Siu,
and Stacchetti (2005), who find that through the orecautionary savings channel (which is absent here)
this can raise average growth under some conditions.

7By contrast, in finite-player one-arm bandit models such as Bolton and Harris (1999) and Keller,
Rady and Cripps (2005), a player’s actions do affect the beliefs of others, and a player takes the reactions
of others into account. In both these models the unknown state is binary and player types remain the
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3.2 Growth Distribution

Suppose that C (yp,∆) consists entirely of foregone output. As Appendix 1 also shows,

the log of measured output then is,

lnyt = A− λ

2
α2u2

t −
θ

2
(1− α)2 u2

t (15)

= A0 + xt− ψu2
t ,

where ψ is given in Eq. (12).8 Because ut is stationary, lny is trend-stationary; the trend

and the long-run rate of output growth is x. Growth can be expressed as,

gt+1 ≡ lnyt+1 − lnyt = x− ψ
(
u2
t+1 − u2

t

)
. (16)

Eq. (16) shows that growth is driven not just by the adoption of new technology, x, but

also by the changes in Crusoe’s skill gap u2
t+1 − u2

t . On the one hand, a decrease in the

skill gap stimulates growth. On the other hand, adjusting h towards its technologically

ideal value is costly and will therefore take time, and output will fall sharply whenever an

unlucky draw of sA occurs. So we should expect the growth distribution to be negatively

skewed especially when θ is large. This leads to the following proposition, proved in

Appendix 2.

Proposition 2 Conditional on initial output and technology level y0 and A0, if εt follows

a normal distribution N (0, σ2), the distribution of growth gt is left skewed and is expressed

as

gt = x− ψ
[
Ct +

(
1− α2

)
τξ2

t + (αAt −Bt)α
tu0ξt

]
,

where ξt ∼ N (0, 1) follows standard normal distribution and

At =

√
4 (1− α2) τ

(
1− α2t

1− α2
+ 1

)

Bt =

√
4 (1− α2) τ

(
1− α2t

1− α2

)
Ct =

(
αtu0

)2 −
(
αt−1u0

)2

u0 =

√
1

ψ
(lny0 − A0)2.

same, both in the symmetric equilibria (which sometimes do exist) and asymmetric equilibria that can
Pareto dominate the symmetric outcome. In those models, however, there is no counterpart to our
variable u; indeed, u would become different for players that take different actions, and both u and A
would be different for those that choose a value for x different from that chosen by other players. Thus,
to analyze the possible existence and properties of asymmetric equilibria would require admitting the
distribution of types as the aggregate state.

8In Sec. 4.2, we analyze the case when the output is measured by yp.
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Because ξt follows a normal distribution, ξ
2
t follows the chi-squared distribution with

the degree of freedom of one and gt therefore follows a noncentral chi-squared distribu-

tion.9 Since ψ > 0, the distribution of gt is negatively skewed. The following corollary

characterizes the first two moments of the growth distribution, including mean, median,

variance and interquartile range (IQR).

Corollary 1 In equilibrium, the distribution of growth gt+1 satisfies,10

E (gt+1) = x− ψCt+1 − ψ
(
1− α2

)
τ

V (gt+1) = 2ψ2
(
1− α2

)2
τ 2 + ψ2

(
(αAt+1 −Bt+1)αtu0

)2

Median (gt+1) ≈ x− ψCt+1 − 0.47ψ
(
1− α2

)
τ

IQR (gt+1) ≈ ψ
(
1.22

(
1− α2

)
τ + 1.34 (αAt −Bt)α

tu0

)
.

If the parameter ratio r ≡ λ
θ
satisfy r > [2 (1− β)− (1− α)]α−2 (1− α), mean and

median of the growth distribution are decreasing in uncertainty τ whereas the variance

and IQR increase in uncertainty,

∂E (gt+1)

∂τ
< 0,

∂Median (gt+1)

∂τ
< 0,

∂V (gt+1)

∂τ
> 0,

∂IQR (gt+1)

∂τ
> 0.

As uncertainty rises, mean and median growth fall while the growth distribution be-

comes more dispersed. Intuitively, higher uncertainty raises the skill gap volatility. As a

result, it becomes harder for Crusoe to predict “ideal”skill and it’s more likely to generate

a even larger foregone output due to the skill mismatch in the next period (i.e., higher

chance of generating low growth). The future growth distribution therefore becomes more

left-skewed.

However, we find this argument holds if and only if the penalty for skill mismatch λ is

suffi ciently large, i.e., under our parameter restriction r ≡ λ
θ
> [2 (1− β)− (1− α)]α−2 (1− α)

where α depends on r as shown in Eq. (10). In the limit when there is no penalty for skill

mismatch, λ→ 0, growth increases in τ as the investment x rises. Figure 6 visually illus-

trates the parameter restrictions on r. The blue line plots r−[2 (1− β)− (1− α)]α−2 (1− α)

on r so that the E(g) decreases in uncertainty τ , i.e., ∂E(gt+1)
∂τ

< 0, when the blue curve

is above zero and the opposite holds otherwise. Thus, uncertainty is contractionary if

the ratio of the penalty for skill mismatch λ over the cost of skill adjustment θ is 0.2%

or higher. In Section 3.3, we estimate the model using monthly industrial production

9See details in https://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html
10The exact closed-form expression of quantiles of noncentral chi-squared distribution does not exist,

we therefore use the approximation from Result 26.4.32 on page 942 of Abramowitz and Stegun (1948).
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Figure 6: Parameter Restrictions for Uncertainty Impacts on Mean Growth. Note: the
blue line portrarys r − [2 (1− β)− (1− α)]α−2 (1− α) over r = λ/θ . The red and grey dashed lines

indicate the value of r used in Jovanovic (2006) and in Table 1 of the paper.

and find that this restriction holds (portrayed in dashed grey vertical line). Similarly,

Jovanovic (2006) estimated the model using annual GDP per capita, and this restriction

also holds (portrayed by point J on the dashed red vertical line).

In the long run as t→∞, the growth distribution doesn’t depend on the initial values
of u0 and measures of centrality and dispersion of the growth distribution are bounded as

long as ut is stationary. The following corollary summarizes this finding.

Corollary 2 When t → ∞, the (long run) distribution of growth gt does not depend on
the initial condition u0 and satisfies

gt = x− ψx2σ2ξ2
t (17)

The first two moments of the growth distribution are bounded in the limit and satisfy the
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following expressions if and only if α < 1,

lim
t→∞

E (g) = x− ψ
(
1− α2

)
τ

lim
t→∞

V (g) = 2ψ2
(
1− α2

)2
τ 2

lim
t→∞

Median (g) ≈ x− 0.47ψ
(
1− α2

)
τ

lim
t→∞

IQR (g) ≈ 1.22ψ
(
1− α2

)
τ .

Growth-at-Risk (GaR).– Following Adrian et al. (2018), the Growth-at-Risk (GaR)

at time t is defined as the lower 5th percentile of the growth distribution gt+1. Because

gt+1 follows a noncentral chi-squared distribution, its 5th percentile can be expressed

approximately as

χt ≈ x− ψCt+1 − 3.84ψ
(
1− α2

)
τ − 1.65ψ (αAt+1 −Bt+1)αtu0. (18)

In equilibrium, GaR decreases in uncertainty (τ),

∂χt
∂τ

< 0.

Consistent with the empirical findings, larger uncertainty is associated with higher down-

side risk.

3.3 Impact of Uncertainty on Growth

Parameter choice.– The parameters are β, θ and λ. We cannot identify σ, λ,and θ

separately, only (σλ, σθ). Therefore we set σ = 1. Table 1 reports the parameter estimates

of the baseline model.11

Table 1 —Parameter Estimates

β θ λ
0.95 13, 573 83

In order to capture the transitory impact of uncertainty as in the empirical section, we

restrict parameters so that the uncertainty shock does not have a permanent effect on the

distribution of the growth rate. More specifically, we set the discount rate at β = 0.95

11These estimates are similar to those in Jovanovic (2006, Table 1) which had λ = 85, θ = 16733, where
the model was estimated using GDP per capita, instead of industrial production.
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and jointly estimate the parameters (λ, θ) to target the annualized long-run mean and

standard deviation of the growth rate which are set to be 2% and 4.5%, respectively or,12

lim
t→∞

E (gt+1) = x− ψx2 = 2%, and (19)

lim
t→∞

√
V (gt+1) =

√
2ψx2 = 4.5%.

We now examine the impact of uncertainty on growth in the model. Starting with

σ = 1, we change σ according to Eq. (14) to rise uncertainty τ by 15% and 30%,

respectively, while adjusting (θ, λ) accordingly in each case to meet the target (19). In

Sec. 4.1, by contrast, we shall introduce a two-state Markov process for σ and consider

uncertainty shocks as occasional changes in σ while keeping (θ, λ) fixed. A 15% increase

in uncertainty corresponds to a one-standard-deviation increase in JLN uncertainty.

We simulate the model for 60 periods and compute the changes in growth relative to the

case when σ is fixed at 1. Figure 7 depicts the response of median growth in the top panel

, interquartile range in the middle panel and 5th percentile (GaR) in the bottom panel to

a unexpected increase in uncertainty at time 0. The blue line depicts the case with small

uncertainty (15% increase in τ) while the red line reports results with large uncertainty

(30% increase in τ). The dotted black line depicts the data counterpart reported in Figure

2. Similar to the empirical evidence, an increase in uncertainty is associated with lower

median growth, higher interquartile range, and lower Growth-at-Risk. Quantitatively, our

model suggests that one standard deviation increase in uncertainty immediately results in

a 2% decline in median growth, a 2% increase in the growth dispersion and a 4% decline

in GaR. Compared to the data, our model fits the impact response well but underpredicts

(overpredicts) the median and GaR (interquartile range) in the long terms.13 This suggests

the effect of uncertainty is more persistent in the data.

Figure 8 depicts the response of various quantiles of the expected growth distribution

to a 15% increase in uncertainty. Consistent with the empirical evidence reported in Figure

3, the response of the expected growth is highly nonlinear: an increase in uncertainty is

associated with a larger decrease in the lower tail of the growth distribution whereas it

has much smaller impact on the upper tail. Quantitatively, a 15% increase in uncertainty

results in 3% decrease in 25th percentile of the expected growth distribution but only

12The targets are calculated as the historical mean and standard deviation of annual log differences in
US industrial production from 1973:01 to 2018:12.
13One reason that the model doesn’t match the empirical impulse responses well could be due to the

nonparametric nature of local projections which are known to behave erratically at longer horizons in the
conditional mean setting. See Barnichon and Brownlees (2019).
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Figure 7: Uncertainty and Growth. Note: this figure depicts the response of median growth in
the top panel , interquartile range in the middle panel and 5th percentile (GaR) in the bottom panel to

an unexpected 15% (blue line) and 30% increase (red line) in uncertainty at time 0. The dashed black

line is the empirical estimates from the baseline quantile regression described in the texts.

contributes to a 1% decline of the 75th percentile.

3.4 Occupational and job-to-job flows

One interpretation of h is that of organization capital in the sense of Prescott and Visscher

(1980) in which a new technology has an unpredictable task-requirement coeffi cients.

In that model labor is heterogeneous in its aptitude to perform the tasks well, and a

realization of xεt+1 on the RHS of Eq. (13) would be interpreted as the change in the task

requirements of the newly adopted technology, and this would call forth some adjustment

of workers across tasks. With xε being identical across firms, the resulting adjustment of

h would be purely internal to a firm, and could be seen as occupational switching by the

firm’s employees.

One can speculate on what the model would produce if, on the RHS of Eq. (13), εt+1

was allowed to differ across firms. As a result, ut+1 would then also differ across firms

and would imply a coexistence of heterogeneous technologies in a putty-clay framework.
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Figure 8: Asymmetric impact of uncertainty on growth. Note: the left panel depicts the
response of various quantiles of the expected growth distribution to a 15% increase in uncertainty. The

right panel reports the the empirical estimates from the baseline quantile regression described in the

texts.

These include a labor market (Johansen (1959)) and firm-specific shocks to the cost of

investment (Campbell (1998) and Gilchrist and Williams (2000)). These features would

call forth for reallocation of labor among firms and would show up as job-to-job flows.

In sum, we shall think of occupational mobility and job-to-job mobility as proxies

for the size of the skill gap, and uncertainty in these measures will be measured by

the volatility of these measures. In this subsection, then, we empirically establish the

connection between these two measures of labor reallocation —occupational and job-to-

job mobility —and JLN macro uncertainty that is directly estimated by the volatility of

the forecast errors of macro series.

We combine two data sources on labor mobility. The first data set is from Kambourov

and Manovskii (2008); it reports occupational mobility at the 3-digit level between 1968

and 1997. We start the analysis in 1971, so as to match the start date of our uncertainty

sample. The second data set is job-to-job mobility described in Hyatt, McEntarfer, McK-

inney, Tibbets and Walton (2014), which reports the sector-level job-to-job separation

flows after 2000. We aggregated the job separations over all sectors.

For each measure, we compute its volatility as the 5-year rolling-window standard

deviation. Figure 9 reports the scatterplot of these two measures of job mobility volatility
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Figure 9: Uncertainty and volatility of occupational mobility. Note: this figure reports the
scatterplot of the 5-year rolling-window volatility of the measure of occupational mobility from Kam-

bourov and Manovskii (2008) against JLN macro uncertainty in the left panel. The right panel reports

the scatter plot of 5-year rolling-window volatility of the job-to-job separation flow from Hyatt et al.

(2014) against JLN macro uncertainty. In each panel, the OLS slope is reported, and the associated

robust t-statistics are reported in parenthesis. The sample is annual for the left panel and is quarterly

for the right panel.

against macro uncertainty. For both measures, JLN macro uncertainty and job mobility

volatility are highly correlated, and we find a statistically significant positive relationship

between the two. The right panel shows that JLN uncertainty is as high as 69% correlated

with occupational mobility volatility, as measured by job-to-job separation flows. Results

for pre-2000 sample using the occupation mobility measure are similar: despite a lower

sample frequency for the pre-1997 sample, the JLN uncertainty is still 48% correlated

with volatility of the occupational mobility from Kambourov and Manovskii (2008).

3.5 Capacity Utilization

King and Rebelo (1999) argue that capacity utilization combined with positive technology

shocks yields utilization in generating realistic variation in output. This fits our model

in which there never is technological regress because x is always positive. The model has

no employed resources or spare capacity, but we may assume that the skill gap ut is an
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index of the fraction of capital —human or physical —that does not meet the needs of the

date-t technology.

To do so, we return again to Prescott and Visscher (1980) whose model includes three

tasks; two of the tasks are production tasks, while the third is a training task in which the

firm is testing workers and trying to find out which of the two productive tasks a worker is

better suited for. If adopting a new technology garbles some of the workers’task-specific

abilities, then those workers would need to be re-tested and during the testing period

would not be employed on productive tasks. The larger the technological leap x, the

larger the fraction of workers whose abilities are garbled and then need re-testing. We

may thus think of the workers being tested as spare capacity.

This interpretation of ut would also be in the general spirit of Ljungqvist and Sargent

(1988) explanation for high European unemployment in the last two decades of the 20th

century in which higher unemployment reflected restructuring from manufacturing to

services, adoption of new information technologies, and globalization. And since Klein

and Su (1979) a number of studies show that capital and labor are utilized, by industries,

at approximately the same rate in short run, implying a positive correlation at high

frequencies between unemployment and spare capacity.

From equation (15), detrended output in the model depends on the skill gap ut. While

it’s empirically challenging to directly estimate the skill gap in the data, the capacity

utilization rate — the ratio of actual output to the potential output — can be used to

test the relationship between u and growth. Monthly data on U.S. capacity utilization is

available at the FRED economic data maintained by the St. Louis Fed (series id TCU).

As before, we simulate the model using calibrated parameters reported in Table 1, and

calculate skill gap ut according to equation (13).14 We define the capacity utilization as

1/ |ut| so that an increase in the skill gap leads to a fall in capacity utilization.
Figure 10 plots relation between model-implied Growth-at-Risk and the capacity uti-

lization for the baseline model with σ = 1. Consistent with the data, the downside risk of

the economy is much larger conditioning on small capacity utilization (i.e. large skill gap):

a small changes in ut can lead to drastic drop in growth-at-risk when capacity utilization

is one standard deviation below its mean. Similar to what we will find with the VIX in

the next subsection, our baseline model produces a better fit for the relation observed in

the data than the OLS model.
14We consider the mean ut at each t so that ut = αtu0.
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Figure 10: Capacity Utilization and Growth-at-Risk. Note: The red (yellow) reports model-
generated contempraneous relationship between capacity utilization and Growth-at-Risk under OLS re-

gression and our baseline model, respectively. Both series are standardized to have zero mean and unit

variance. The blue dots depict the empirical counterpart.

3.6 Growth-at-Risk, the value of options and the VIX

For the price of a representative security p (u,A) we have the Lucas (1978) equation

p (u,A) = β

∫
c (u,A)

c (u′, A+ x)
[c (u′, A+ x) + p (u′, A+ x)] dF (ε) , (20)

where u′ = u + xε − ∆. Although preferences being log, prices will fluctuate because

consumption growth is autocorrelated. If low consumption today means high consumption

growth, a disaster is accompanied by very low asset prices. A put option15 is more valuable

in such states, i.e., more likely to be “in the money.”The opposite holds for call options.

Therefore today’s prices of those two derivative assets should be a good signal of Growth-

at-Risk. Taking today’s price as the strike price for both assets,

pput =

∫
p(u′,A+x)≤p(u,A)

(p (u,A)− p (u′, A+ x)) dF (ε) (21)

pcall =

∫
p(u′,A+x)≥p(u,A)

(p (u′, A+ x)− p (u,A)) dF (ε) . (22)

15From Investopedia: A put option is an option contract giving the owner the right, but not the obliga-
tion, to sell a specified amount of an underlying security at a specified price within a specified time frame.
.
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The VIX index used in the empirical exercise contains put and call options on the in-

dividual firms in the S&P 500 index, and its price would reflect idiosyncratic as well as

aggregate risk. The natural definition in our model is the sum of the prices of a call op-

tion and a put option with a strike price tomorrow equal to today’s price of the security

p (u,A),

VIX (u,A) ≡ pput + pcall. (23)

We simulate the model and calculate the price the security from equation (20), and price

of options and VIX according to equations (21) to (23) based on parameters reported in

Table 1. The calculated VIX is further standardized to have zero mean and unit variance

as in the empirical exercise.

Two series are plotted in Figure 11: the red line portrays data regression slope of GaR

in the data on the VIX, while yellow lines depict model-generated VIX according equation

(23) against GaR from equation (18). It shows that an increase in the VIX decreases the

GaR in the model. This is consistent with the feature in the data that higher equity

price volatility magnifies the negative impact of uncertainty on IP growth. Compared

to a naive empirical linear regression, our model produces a better fit for the empirical

relation between VIX and GaR.16

3.7 Long Run Growth Distribution

Based on equation (17), growth distribution follows a negative chi-squared distribution

in the long run. The top panel of Figure 12 depicts the simulated long run distribution

for different values of σ. We again use calibrated (λ, θ) such that the mean and variance

of the long run distribution remain the same. It shows higher uncertainty leads to a

more negatively skewed distribution (portrayed by red bars) and lower 5th percentile (red

dashed line).

The chi-squared distribution is well known as a light-tailed distribution whereas in the

traditional growth literature (e.g. Barro and Jin (2011)), the heavy-tailed distribution,

such as the Pareto Distribution, has been commonly used to calculate the tail risk. To

16The baseline model produces a 38% smaller root-mean squared errors than OLS. The root-mean-
squared error (RMSE) is defined as

RMSE =

√√√√ 1

T

T∑
i=1

(ŷi − yi)2

where the "hat" refers to the estimated value of GaR at time t. We find our model is able to outperform
a quadratic regression model too.
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Figure 11: Asset Volatility and Growth-at-Risk. Note: The yellow (purple) reports model-

generated contempraneous relationship between VIX and Growth-at-Risk under our baseline model and

empirical OLS. The blue dots depict the empirical relationship. Both VIX and GaR are standardized to

have zero mean and unit variance. The red line reports the OLS Estimate.

address this issue, we assume that in the long horizon, the growth distribution follows,

gt = x− ψx2σ2zt.

The variable zt ∈ [0,∞) follows a Type-II Pareto Distribution with associated CDF,

F (zt) = 1− (1 + x)−α ,

where α is the shape parameter that governs the tail thickness.

We randomly draw 10,000 zt from F (zt) and numerically calculate α by targeting

the lower 5th percentile to be the corresponding value in the calibrated Chi-squared

distribution with σ2 = 1. The bottom panel of Figure 12 depicts the simulated growth

distribution using Pareto distribution with α = 2.83 (in red bars) against the baseline

growth distribution with chi-squared distribution. It shows that Pareto distribution has

a thicker tail than the Chi-squared distribution. Therefore, in order to generate the same

downside risk, measured by the lower 5th percentile, the growth distribution with Pareto

has much smaller mean growth (0.78%) than the chi-squared distribution (1.50%).
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Figure 12: Simulated Long-run Growth Distribution. Note: the upper panel shows the sim-
ulated long-run growth distribution for small uncertainty (blue bars) and large uncertainty (red bars).

The lower panel shows the simulated long-run growth distribution with Pareto distribution (red bars)

and Chi-squared distribution (blue bars).

3.8 Technological commitment

It’s worth noting that the assumption of irreversible technological commitment is essential

to generate the negatively skewed growth distribution in equilibrium: output could fall

because of commitment to technology before an unfavorable shock ε is realized. If a firm

could revert quickly and costlessly to technologies it used before, it would always use the

best technology up to date and output never declines. For example, Jovanovic and Rob

(1990) assume costless recall of past technologies.17 In contrast to our empirical evidence,

instead of having a left tail, the distribution of growth rates in their model exhibits a spike

at zero and a right tail. Therefore, we need at least partial technological commitment.

17Recent related papers include Bardhi (2019) and Wong (2020).
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4 Extensions of the model

The following subsections present three extensions. Sec. 4.1 considers a two-state Markov

process for σ; so far, to derive the impact of uncertainty on growth, Sec. 3 starts with

σ = 1 and then lowers it to 0.95 and 0.87, interpreting the change in σ as permanent and

completely unexpected. Here, as in Bloom (2009), we shall model σ as a shock that follows

a two-state Markov process the parameters of which the agents understand. Predictably,

growth is slower when uncertainty is high but ∆ is state independent, and it is the same

as it was in the constant-σ case.

Sec. 4.2 changes the definition of measured output. So far we assumed that output,

y, was net output, which is potential output minus the adjustment cost of production.

One may ask whether this is the reasonable counterpart to the data, and how the results

change if we use yp instead of y. It turns out, however, that the theoretical predictions

are virtually the same due to the presence of foregone output from the skill gap.

Finally, Sec. 4.3 analyzes Epstein-Zin preferences; the model so far used log prefer-

ences which are not ideal for explaining stock-price movements and the equity premium

puzzle. This seems relevant when analyzing the VIX. We indeed find that our model un-

der recursive preferences is able to produce the same predictions from the baseline model

under standard choices of preference parameters while generating a more realistic VIX.

4.1 A two-state Markov process for σ

Instead of comparing long run growth for two different values of σ, we now follow Bloom

(2009, Eqs. 3.5 and 3.6) and imagine a two state symmetric Markov process for σ ∈
{σL, σH} with transition probabilities pi,j between the states i, j ∈ {L, H}. This allows us
to study the effects of uncertainty shifts that are that agents expected to be temporary

(unless pi,i = 1).18

The Bellman equation (7) now acquires a new state i ∈ {L, H}:

Vi (u,A) = max
x,∆

{
lny (u,∆, A) + β

∫ (∑
j

pi,jVj (u+ xε−∆, A+ x)

)
dF

(
ε

σi

)}
.

(24)

Assume symmetry of the process so that pi,i = pj,j = p. In an abbreviated form Eq. (24)

then reads

Vi = max
x,∆

{
lny + β

∫ (
pV ′i + (1− p)V ′j

)
dFi

}
, (25)

18Other related papers are Gourio (2012), Gabaix (2012), and Wachter (2013).
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where Fi = F
(
ε
σi

)
, and where primes denote next period values of a variable.

The optimal policies are the same as in the constant-σ case: The effect on x of a

temporary reduction in σ is identical to its effect in Eq. (8) where it is assumed to be

permanent:

Proposition 3 The optimal x is state-dependent; for i ∈ {L, H} we have

xi =
1

θσ2
i (1− β) (1− α)

. (26)

The optimal ∆ does not depend on the state, and is the same as in the constant-σ case:

∆L = ∆H = (1− α)u, (27)

where α remains the same as constant-σ case and is expressed by (10).

The proof is in Appendix 3. Proposition 3 also shows that the adjustment ∆ indicating

the fraction of the skill gap that the agent closes is the same the one from as constant-σ

case. As a result, the agent chooses the same amount of investment in skills, whether σ

is expected to be changed or not in the future.19

Proposition 1 is a special case that obtains when p = 1 or, equivalently, when σL = σH.

Similar to the case where σi is fixed over time, the conditional growth distribution gi is

a linear combination of a normal distribution and a chi-squared. We summarize our key

findings in the following corollary also proved in Appendix 3:

Corollary 3 At state i ∈ {L,H} growth equals

gi =
[
xi + ψ

(
1− α2

)
u2
]

+ 2ψαuxiσiξ − ψx2
iσ

2
i ξ

2. (28)

where

ξ ∼ N (0, 1) and ψ =
1

2

(
λα2 + θ (1− α)2)

Conditional on u, the distribution of growth g a is left skewed and its mean and skewness

satisfy

E (gi|u) = xi + ψ
(
1− α2

)
u2 − ψτ i

Skewness (gi|u) = −2.82ψ
(
1− α2

)
τ i < 0 (29)

where the uncertainty at state i satisfies

τ i ≡ var (u) =
x2
iσ

2

1− α2
=
(
(1− β)2 (1− α2

)
θ2 (1− α)2)−1

σ−2
i . (30)

19This is due to the assumption of log utility. Section 4.3 shall show that under a more general recursive
preferences, α varies with current skill gap u, instead of being a constant.
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Figure 13: Conditional growth distribution. Note: this figure plots the simulated growth distri-
bution for σ = 0.95 (blue line) and σ = 0.87 (red line) conditional on u = 1. We draw 5000 ξ randomly

from the standard normal distribution, and generate gL and gH according to Eq.( 28).

Equation (29) shows that the higher uncertainty τ i induces a more negative-skewed

distribution in equilibrium; and according to equation (30), state with high uncertainty

corresponds to the state with low σi. Fig. 13 depicts the simulated distribution under low

uncertainty state where we set σL = 0.95 and high uncertainty state where we set σH =

0.87, conditional on u = 1. We draw 5,000 ξ randomly from standard normal distribution,

and generate gL and gH according to Eq. 28. The red line shows the simulated conditional

PDF of gH conditional on u = 1 and the blue line shows the counterpart PDF of gL. As

shown in the figure, higher uncertainty induces a more negatively-skewed distribution and

the distribution under the red curve exhibits a fatter left tail than the blue curve.

While we have shown analytically that state with higher uncertainty is associated with

a more left-skewed conditional growth distribution, it is still of interest to study impact

of the uncertainty on the unconditional growth distribution. While there is no closed-

form solution to the unconditional growth distribution, we simulate the model for T = 10

periods and calculate the evolution of the growth distribution. More specifically, we start

with u0 = 1 and σ0 = σL = 0.95. For each t = 1, 2..., T , we draw 5000 ξ randomly

from standard normal distribution and calculate the growth distribution according to Eq.

28 according to the state at time t. The state stays unchanged, i.e. σt = σt−1, with
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probability p and ut+1 is updated according to equation (13).

We set p = 0.71 following Bloom (2009b) so that the half-life of an uncertainty shock

on average is 2 months. We are thus looking at short-run changes in uncertainty. Figure 14

depicts the simulated distribution for t = 1, 4, 10. The top panel of the figure shows that

the simulated economy is changed from the low uncertainty state to the high uncertainty

state at t = 4. As a result, compared to the growth distribution at t = 1 (blue curve), the

growth distribution at the time of the uncertainty shock (red curve) immediately becomes

more dispersed and more negatively skewed. From time t = 5, 6..., 10 sans uncertainty

shock, the growth distribution becomes less and less negatively skewed as the average skill

gap u decreases.

1 2 3 4 5 6 7 8 9 10
t

1.05
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1.15
Realized Path of ­1, p = 0.71

­4 ­2 0 2 4 6
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Figure 14: Simulated growth distribution. Note: this figure plots the simulated evolution of σ
(top panel) and the growth distribution (bottom panel) at time 1, 4, and 10 when the economy starts at

u = 1 and σ = 0.95. For each time t, we draw 5000 ξ randomly from the standard normal distribution,

and generate gL and gH according to Eq. (28).

Thus the findings in Sec. 3 that were based on the constant-σ model and related to

permanent changes in σ, still hold up here in the sense that the rise in uncertainty at date

4, now perceived to be fairly temporary, still leads to a thicker lower tail of the growth

distribution and to a much smaller impact on its upper tail.
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4.2 Potential output versus net output

In our baseline model, forgone output C (yp,∆) captures the cost of adjustment of skill h.

The closeness of u to zero can be viewed as a form of intangible capital. Rapid adjustment

of technology causes this intangible capital to depreciate, and C (yp,∆) can be interpreted

as unmeasured investment.20

We now show that our analytical results on the impact of uncertainty are not driven

by the presence of C (yp,∆); the model’s implications remain qualitatively the same when

potential output, instead of net output, is used to measure the economic growth.

First, according to Eqs. (3) and (5), potential output yp can be expressed as

yp = exp

{
A− λ

2
(u−∆)2

}
= y exp

{
θ

2
(1− α)2 u2

}
Then the log of potential output is

lnypt = lnyt +
θ

2
(1− α)2 u2

= A0 + xt− λ

2
α2u2

t ,

where the second line follows from equation (15) and equation (12). Then the growth of

yp can be expressed as

gpt+1 ≡ lny
p
t+1 − lny

p
t = x− λ

2
α2
(
u2
t+1 − u2

t

)
,

and the following result is proved in the Appendix 4:

Proposition 4 Conditional on initial output and technology level yp0 and A0, if εt follows

a normal distribution N (0, σ2), the distribution of growth gpt is left-skewed and expressed

as

gpt = x− λ

2
α2
[
Ct +

(
1− α2

)
τξ2

t + (αAt −Bt)α
tup0ξt

]
,

where ξt ∼ N (0, 1) follows standard normal distribution and At, Bt, and Ct are the same

as in proposition 2, and

up0 =

√
2

λα2
(lnyp0 − A0)2.

20McGrattan and Prescott (2014) and Bhandari and McGrattan (2018) use data from U.S. national
accounts and business census data and estimate a ratio of intangible to total assets in private business
that is close to 60 percent, and that intangible are especially large for high-technology sectors that have
important input-output linkages with other sectors. Table 2 of Chappell and Jaffe (2018) reports results
for New Zealand.
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Therefore, similar to the net output, the distribution of the total output growth gpt
is also left-skewed and the following corollary suggests that our results remain the same

qualitatively if total output is used.

Corollary 4 In equilibrium, the moments of distribution of growth gp and the growth-at-
risk χp satisfy,

∂E
(
gpt+1

)
∂τ

< 0,
∂Median

(
gpt+1

)
∂τ

< 0,
∂V
(
gpt+1

)
∂τ

> 0,
∂IQR

(
gpt+1

)
∂τ

> 0,
∂χp

∂τ
< 0

4.3 Recursive Preferences

The model so far used log preferences for analytical tractability. However, this assumption

generates counterfactual stock-price movements (i.e. the equity premium puzzle). In this

section, we extend the model using Epstein and Zin (2013) recursive preferences. The

Bellman equation (7) now becomes

VEZ (u,A) = max
x,∆

[
y (u,∆, A)1−φ + β

[∫
VEZ (u+ xε−∆, A+ x)1−γ dF

( ε
σ

)] 1−φ1−γ
] 1
1−φ

(31)

where y (u,∆, A) = exp
{
A− λ

2
(u−∆)2 − θ

2
∆2
}
, γ is the risk aversion coeffi cient, and

the parameter φ is the inverse of the elasticity of substitution (IES).

Because recursive preferences are homothetic, the following proposition shows that the

optimal investments (x,∆) are independent of the productivity A.

Proposition 5 The value function can be expressed as

VEZ (u,A) = eAv (u)

and x and ∆ are independent of A.

While there are no general closed-form solutions to VEZ (u,A) for all pairs (γ, φ), the

following corollary shows that in a special case where γ = φ = 1, the log of the EZ value

function satisfies equation (11).

Corollary 5 When γ = φ = 1,

lnVEZ (u,A) =
A

1− β −
1

2
θ (1− α)u2 + J

where J satisfies equation (12).
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Parameter choice.– The parameters of this extended model are β, γ, φ, λ and θ.

Table 2 reports the parameter estimates.

Table 2 —Parameters Estimates under Recursive Preferences

β γ φ λ θ
0.95 5 0.95−1 8 21

To solve the model, we follow the baseline model and set parameters (λ, θ) to target the

long-run mean and standard deviations of the growth rate valued at 2% and 4.5%, re-

spectively. For other parameters, we set the risk aversion parameter to be γ = 5, and set

1/φ, the elasticity of intertemporal substitution (IES), to be 0.95, which is in line with

macro studies such as Hall (1988). As in the baseline model, we express the optimal skill

investment in terms of αEZ (u) so that ∆EZ (u) = [1− αEZ (u)]u, and numerically calcu-

late the policy functions (xEZ (u) , αEZ (u)) based on the numerical procedure described

in the Appendix.

Figure (15) shows the optimal xEZ (u) and αEZ (u). Different from the baseline model

featuring log utility where x and α are constant, optimal investment decisions xEZ (u)

and αEZ (u) under recursive preferences now vary with the skill gap u. Under the current

parametrization, the investment in technology x declines as the skill gap rises while the

fraction of skill gap invested in skill, 1− αEZ , increases in u.
Turning to the growth, the log of measured output satisfies,

lnyt = A− λ

2
α2
EZu

2
t −

θ

2
(1− αEZ)2 u2

t

= A0 +
t∑

s=1

xEZ,s − ψEZ,tu2
t ,

where ψEZ,t ≡ 1
2

[
λα2

EZ,t + θ (1− αEZ,t)2]. Therefore, the log growth can be expressed as,
gt+1 ≡ lnyt+1 − lnyt = xEZ,t+1 − ψEZ,t+1u

2
t+1 + ψEZ,tu

2
t . (32)

where the skill gap follows ut+1 = αEZut + xEZ,t+1σξt+1. While there is no closed-form

solution to the growth distribution (32) under recursive preferences, we start with u0 = 1

and simulate the model for T = 10 periods using the parameterization for Figure (15).

For each t = 1, 2..., T , we draw 5000 ξ randomly from standard normal distribution and

calculate the growth distribution according to Eq. 32 for low uncertainty where we set

σ = 0.95 and high uncertainty where we set σ = 0.87.
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Figure 15: Policy Functions under Recursive Preferences. Note: this figure plots the optimal
policy function x and α under recursive preferences over the grid of skill gap u. See texts for the parameter

choices.
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Figure 16: Simulated growth distribution under Recursive Preferences. Note: this figure
plots the simulated growth distribution time 10 when the economy starts at u = 1. For each time t,

we draw 5000 ξ randomly from the standard normal distribution, and generate g according to Eq. (32)

under high and low uncertainty, respectively.
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Figure 16 plots the simulated growth distribution at time T = 10. Similar to the base-

line model, the growth distribution is negatively skewed. Compared to the distribution

under low uncertainty (portrayed by the blue curve), high uncertainty (portrayed by the

red curve) induces a more dispersed and more negative skewed growth distribution.

Asset Pricing.– For the price of a representative security p (u,A), the Lucas (1978)

equation (20) now becomes

p (u,A) = β

∫
M (u,A) [c (u′, A+ x) + p (u′, A+ x)] dF

( ε
σ

)
,

where the stochastic discount factor satisfies,

M (u,A) =

(
y (u′, A+ x)

y (u,A)

)−φ(
VEZ (u+ xε−∆, A+ x)1−γ∫

VEZ (u+ xε−∆, A+ x)1−γ dF
(
ε
σ

))φ−γ

.

The model’s VIX can be then calculated based on equation (23). We use the same

parameterization for Figure (15) and simulate the model for T = 508 periods, which

corresponds to the sample size of our empirical exercise. The model’s VIX is further

normalized to have zero mean and unit variance over the simulation sample.

We find that the more general recursive preferences improve model’s fit to the data.

The correlation between the model implied VIX and the data is 31%, increasing from

18% under log utility. In short, our model under recursive preferences is able to generate

the same implications from the baseline model while matching the mean and variance of

long-run growth and generating more realistic VIX under standard choices of preference

parameters (γ, φ) from macro literature.

5 Conclusion

In this paper, we documented several stylized facts on the real effects of uncertainty. First,

we showed that higher economic uncertainty is closely associated with a more dispersed

growth distribution. Second, we found that the response of IP growth to an increase in

uncertainty is highly nonlinear and asymmetric. Third, we presented evidence that higher

asset volatility magnifies the negative impact of uncertainty on growth.

We then presented and estimated a model in which growth and uncertainty are both

endogenous. Rapid adoption of new technology leads in equilibrium to higher economic

uncertainty that may cause measured productivity to decline for a while. The model

matches several key features in the data. The equilibrium growth distribution is nega-

tively skewed and higher uncertainty leads to higher downside risk, and to more labor
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reallocation among jobs and among occupations. The model also generates a negative

nonlinear relation between asset price volatility and Growth-at-Risk, as observed in the

data.
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Appendix

5.1 1. Proof of Proposition 1

The first-order condition for the optimality of ∆ is

λ (u−∆)− θ∆− β
∫
V1dF = 0, (33)

and the first-order condition for the optimality of x is∫
(εV1 + V2) dF = 0. (34)

Solving for ∆.– The envelope theorem gives

V1 = −λ (u−∆) + β

∫
V1dF = −θ∆, (35)

where the second equality uses (33). Substituting into (33) we have

λ (u−∆) = θ∆− βθ
∫

∆′dF (ε) . (36)

We seek a solution of the form (9) where α is a constant to be solved for. If (9) holds,

(36) reads

λαu = θ (1− α)u− βθ
∫

(1− α) (αu+ xε) dF (ε)

= θ (1− α)u− βθ (1− α)αu,

which, after cancellation of u leaves a quadratic in α, namely θ (1− α) − βθ (1− α)α −
λα = 0, or

βα2 −
(

1 + β +
λ

θ

)
α + 1 = 0. (37)

This implicit function has the solution for α given in (10).

Solving for x.– The envelope theorem also gives

V2 = 1 + β

∫
V2dF =

1

1− β . (38)

The second equality follows because the right-hand side of (38) is a contraction map with

at most one solution for V2. Substituting from (9) into (35) and from there (in an updated

form) into (34) gives

0 = −
∫
εθ∆′dF +

1

1− β

= −
∫
εθ (1− α) (αu+ xε) dF +

1

1− β , (39)
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because ∆′ = (1− α)u′ = (1− α) (αu+ xε). But E (εu) = 0, which leads to (8).

We must show that this function solves (7). Let us proceed with the method of

undetermined coeffi cients. Since V = aA− bu2 + c,

aA− bu2 + c = A− ψu2 + β

∫ (
a (A+ x)− b (u+ xε−∆)2 + c

)
dF (ε)

= A− ψu2 + β

∫ (
a (A+ x)− b (αu+ xε)2 + c

)
dF (ε)

= A− ψu2 + β (a (A+ x) + c)− βb
∫

(αu+ xε)2 dF (ε)

= A− ψu2 + β (a (A+ x) + c)− βbα2u2 − βbx2σ2.

Equating coeffi cients: a = 1 + aβ, b = ψ + bβα2, and c = β (ax+ c− bx2σ2), so that

a =
1

1− β , b =
ψ

1− βα2
, and c =

β

1− β
(
ax− bx2σ2

)
.

This leads to

V (u,A) =
A

1− β −
ψ

1− βα2
u2 +

β
(

x
1−β −

[
ψ

1−βα2

]
x2σ2

)
1− β ,

where x = 1
θσ2(1−β)(1−α)

. Then V2 (u,A) = 1/ (1− β) which is consistent with (38). It re-

mains to be shown that V1 (u,A) agrees with (35) and (9). Now, since ψ = 1
2

(
λα2 + θ (1− α)2),

they agree only if
ψ

1− βα2
=

1

2
θ (1− α) ,

i.e., if (
λ

θ
α2 + (1− α)2

)
= (1− α)

(
1− βα2

)
. (40)

But from (37),
λ

θ
=

1

α
+ βα− 1− β.

Substitute for λ/θ into (40) to conclude that V1 (u,A) is consistent with (35) and (9) if

and only if (
α + βα3 − α2 − βα2 + (1− α)2) = (1− α)

(
1− βα2

)
. (41)

But expanding the left-hand side of (41) yields(
α + βα3 − α2 − βα2 + 1 + α2 − 2α

)
= βα3 − βα2 + 1− α.

Conversely, expanding the right-hand side of (41) yields

(1− α)
(
1− βα2

)
= 1− α− βα2 + βα3.

Therefore (41) holds, and V is therefore given by (11).
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2. Proof of Proposition 2 and of Corollaries 1 and 2

Note that we can re-write 13 as MA (t) process

ut = αtu0 + x
t∑

s=0

αt−sεs.

As a result, we have

u2
t+1 − u2

t = (ut+1 + ut) (ut+1 − ut)

=

{(
αt+1 + αt

)
u0 + x

{
t+1∑
s=0

αt+1−sεs +

t∑
s=0

αt−sεs

}}
{(
αt+1 − αt

)
u0 + x

{
t+1∑
s=0

αt+1−sεs −
t∑

s=0

αt−sεs

}}

=

{(
αt+1 + αt

)
u0 + x

{
2

t∑
s=0

αt−sεs + εt+1

}}
︸ ︷︷ ︸

ζ1

{(
αt+1 − αt

)
u0 + xεt+1

}︸ ︷︷ ︸
ζ2

.

This is product of two variables ζ1 and ζ2 that follow normal distributions

ζ1 ∼ N

((
αt+1 + αt

)
u0, x

2

{
4

[
1− α2(t+1)

1− α2

]
+ 1

}
σ2

)
ζ2 ∼ N

((
αt+1 − αt

)
u0, x

2σ2
)
.

It’s worth noting that the product of two variables can be written as

XY =
1

4
(X + Y )2 − 1

4
(X − Y )2.

It follows that since X = ζ1 and Y = ζ2 are normal distribution

ζ1 + ζ2 − 2αt+1u0 ∼ N

(
0, 4x2

[[
1− α2(t+1)

1− α2

]
+ 1

]
σ2

)
= Aξt

ζ1 + ζ2 − 2αtu0 ∼ N

(
0, 4x2

[
1− α2(t+1)

1− α2

]
σ2

)
= Bξt.

where ξt is a standard normal and

A =

√
4x2σ2

[
1− α2(t+1)

1− α2
+ 1

]

B =

√
4x2

[
1− α2(t+1)

1− α2

]
σ2.
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Therefore, we have

ζ1ζ2 =
1

4

(
Aξt + 2αt+1u0

)2 − 1

4

(
Bξt + 2αtu0

)2

=
1

4

(
[Aξt]

2 +
[
2αt+1u0

]2
+ 4αt+1u0Aξt

)
−1

4

(
[Bξt]

2 +
[
2αtu0

]2
+ 4αtu0Bξt

)
= C +

1

4

[
A2 −B2

]
ξ2
t + (αA−B)αtu0ξt,

where the constant

C =
(
αt+1u0

)2 −
(
αtu0

)2
.

Now note that

A2 −B2 = 4x2σ2,

this leads to

ζ1ζ2 = C + x2σ2ξ2
t + (αA−B)αtu0ξt.

We now have the growth distribution

gt = x− ψ
[
Ct + x2σ2ξ2

t + (αA−B)αtu0ξt
]
, (42)

where ξt ∼ N (0, 1) and A, B and C are as stated in the proposition.

Proof of Corollaries 1 and 2:
Now notice that we can re-write the growth distribution in Eqs. (42) as follows,

gt = D0 − ψx2σ2 (ξ +D1)2

= D0 − ψx2σ2
(
ξ2 + 2ξD1 +D2

1

)
= D0 − ψx2σ2ξ2 − 2ξD1ψx

2σ2 − ψx2σ2D2
1

Matching the coeffi cients, we have

−2D1ψx
2σ2 = −ψ (αA−B)αtu0

D0 − ψx2σ2D2
1 = x− ψCt

or

D1 =
ψ (αA−B)αtu0

2x2σ2

D0 = x− ψCt + ψx2σ2D2
1.
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Now, gt = D0 − ψx2σ2 (ξ +D1)2 is a linear function of a noncentral chi-squared distribu-

tion, with the degree of freedom of 1 and the centrality parameter equal to D2
1. Its mean

and variance satisfy,21

E (ξ +D1)2 = 1 +D2
1

V ar (ξ +D1)2 = 2
(
1 + 2D2

1

)
Therefore, we have

E (gt) = D0 − ψx2σ2 (1 +D1)

= x− ψCt + ψx2σ2D2
1 − ψx2σ2

(
1 +D2

1

)
= x− ψCt − ψx2σ2

as stated in the corollary, and

V ar (gt) =
[
ψx2σ2

]2
2
(
1 + 2D2

1

)
= 2ψ2

(
x2σ2

)2
+ ψ2

[
ψ (αA−B)αtu0

]2
as stated in the corollary.

The skewness satisfies,

Skewness (gt) = −ψx2σ2

[
23/2 (1 + 3D2

1)

(1 + 2D2
1)

3/2

]

which is decreasing in σ2.

For quantiles, it’s well-known that there are no closed-form expressions for chi-squared

distribution but there exist an approximation fromResult 26.4.32 on page 942 of Abramowitz

and Stegun (1948) where the pth percentile of the noncentral chi-squared is,

χ2
p ≈

(
1 +D2

1

) [
1− 2 (1 + 2D2

1)

9 (1 +D2
1)

2

]3

.

Plugging in D1, we have

Median (gt+1) = x− ψCt+1 − 0.47ψ
(
1− α2

)
τ

IQR (gt+1) = χ2
75 − χ2

25

= ψ
(
1.22

(
1− α2

)
τ + 1.34 (αAt −Bt)α

tu0

)
,

as stated in the corollary.

21https://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html
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Uncertainty shocks —we consider rises in σ−2 as positive shocks to uncertainty τ

according to equation (14). Therefore, we consider,

∂E
(
gpt+1

)
∂τ

=
∂E
(
gpt+1

)
∂σ−2

∂σ−2

∂τ
,

and analogously for other moments. Therefore, to show
∂E(gpt+1)

∂τ
< 0, it’s suffi cient to

show
∂E(gpt+1)
∂σ−2 as ∂σ−2

∂τ
> 0 according to equation (14). Now according to proposition 1,

mean growth satisfies, E (gt+1) = x− ψCt+1 − ψx2σ2, and therefore

∂E
(
gpt+1

)
∂σ−2

=
∂x

∂σ−2
− ψ

(
1− α2

) ∂x2σ2

∂σ−2

because neither ψ nor Ct+1 depend on σ−2. Plugging in x from equation (8), we have

∂E
(
gpt+1

)
∂σ−2

=

[
1− ψ

θ (1− β) (1− α)

]
1

θ (1− β) (1− α)
σ−2,

so we have
∂E
(
gpt+1

)
∂σ−2

< 0 iff 1 <
ψ

θ (1− β) (1− α)

or ψ > θ (1− β) (1− α) as stated in the proposition 2. This inequality holds under

parameters in Table 1.

The proofs for median, variance and IQR are similar. If ψ > θ (1− β) (1− α)

∂V (gt+1)

∂σ−2
=

2ψ2 (1− α2)
2

[θ (1− β) (1− α)]2
∂ (σ−2)

2

∂σ−2︸ ︷︷ ︸
>0

> 0

∂Median (gt+1)

∂σ−2
=

0.47− ψ

θ (1− β) (1− α)︸ ︷︷ ︸
<0 if ψ>θ(1−β)(1−α)

 1

θ (1− β) (1− α)
< 0

∂IQR (gt+1)

∂σ−2
= 1.22ψ

(
1− α2

) ∂τ

∂σ−2︸ ︷︷ ︸
>0

> 0

as stated in the Proposition 2.

Limit: As t → ∞, we have αt → 0 because α ∈ (0, 1) and hence Ct → 0, we thus

achieve the limits of the moments stated in the Corollary 2.
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3. Proof of Proposition 3 and Corollary 3

Proof of Proposition 3: There are four first-order conditions. The first-order condition
for the optimality of ∆i in state i ∈ {L, H} is

λ (u−∆i)− θ∆i − β
∫ (

pV ′u,i + (1− p)V ′u,j
)
dFi = 0, (43)

Solving for ∆i.– The envelope theorem gives

Vu,i = −λ (u−∆i) + β

∫ (
pV ′u,i + (1− p)V ′u,j

)
dFi = −θ∆i, (44)

where the second equality uses (43). Substituting V ′u,i = −θ∆′i,into (43) we have

λ (u−∆i) = θ∆i − βθ
∫ (

p∆′i + (1− p) ∆′j
)
dFi. (45)

We seek a solution of the form (9), so that where (α1, α2) are constants to be solved for.

If (27) holds, (45) reads

λαiu = θ (1− αi)u− βθ
∫

(1− αi) (αiu+ xiε) dF (ε)

= θ (1− αi)u− βθ (1− αi)αiu,

which is an equation in αi alone, of the same form as Eq. (37), and with the same solution

αL = αH = α, with α given in (10). This proves Eq. (9).

Solving for xi.– The first-order condition for the optimality of xi for i ∈ {L, H} is∫ [
p (εVu,i + VA,i) + (1− p)

(
εV ′u,j + V ′A,j

)]
dFi = 0. (46)

The envelope theorem also gives

VA, i = 1 + β

∫
(pVA,i + (1− p)VA,j) dFi =

1

1− β . (47)

Substituting V ′u,i = −θ∆′i and V ′A,i = 1/ (1− β) into Eq. (46) and rearranging, it reads

1

1− β =

∫ [
pεθ∆′i + (1− p) εθ∆′j

]
dFi.

Now ∆′i = ∆′j = (1− α)u = (1− α) (αu+ xiε) . And since ε has zero mean, we are left

with
1

1− β =

∫
[pθ + (1− p) θ] (1− α)xiε

2dFi = θ (1− α)xiσ
2
i ,

implying Eq. (26). That completes the proof of the Proposition.
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Proof of Corollary 3: The growth for state i ∈ {L,H} can be expressed as

gi ≡ lny′ − lny = xi − ψ
(
u′2 − u2

)
.

= xi − ψ
(
(αu+ xiε)

2 − u2
)

=
[
xi + ψ

(
1− α2

)
u2
]

+ 2ψαuxiσiξ − ψx2
iσ

2
i ξ

2,

i.e., Eq. (28)

4. Proof of Proposition 4 and Corollary 4

Proof of Proposition 4: Because we can express the total output as

lnypt = A0 + xt− λ

2
α2u2

t ,

it’s straightforward to see that the proof of proposition 2 goes through in this case when

we replace ψ by λ
2
α2. Therefore the growth distribution satisfies,

gt = x− λ

2
α2
[
Ct + x2σ2ξ2

t + (αA−B)αtu0ξt
]

with

At =

√
4 (1− α2) τ

(
1− α2t

1− α2
+ 1

)

Bt =

√
4 (1− α2) τ

(
1− α2t

1− α2

)
Ct =

(
αtup0

)2 −
(
αt−1up0

)2

up0 =

√(
λ

2
α2

)−1

(lny0 − A0)2.

In equilibrium, the distribution of growth gt+1 therefore satisfies

E
(
gpt+1

)
= x− λ

2
α2Ct+1 −

λ

2
α2
(
1− α2

)
τ

Median
(
gpt+1

)
= x− λ

2
α2Ct+1 − 0.47

(
λ

2
α2

)(
1− α2

)
τ

V
(
gpt+1

)
= 2

(
λ

2
α2

)2 (
1− α2

)2
τ 2 +

(
λ

2
α2

)2 (
(αAt+1 −Bt+1)αtup0

)2

IQR
(
gpt+1

)
=

λ

2
α2
(
1.22

(
1− α2

)
τ + 1.34 (αAt −Bt)α

tup0
)
.

Proof of Corollary 4:

48



Therefore we have,

∂E
(
gpt+1

)
∂τ

< 0,
∂Median

(
gpt+1

)
∂τ

< 0,
∂V
(
gpt+1

)
∂τ

> 0,
∂IQR

(
gpt+1

)
∂τ

> 0.

The 5th percentile, or the growth-at-risk, satisfies

χpt = x− λ

2
α2Ct+1 − 3.84

(
λ

2
α2

)(
1− α2

)
τ + 1.65

(
λ

2
α2

)
(αAt+1 −Bt+1)αtup0, (48)

and because α ∈ (0, 1), we thus have

∂χpt
∂τ

= −3.84

(
λ

2
α2

)(
1− α2

)
< 0

as stated in the corollary.

5. Proof of Proposition 5 and Corollary 5 (Recursive Preferences)

Proof of Proposition 5: We guess that the value function takes the following form,

V (u,A) = eAv (u) . (49)

To verify this guess, we plug the guess into the RHS of value function (31), and it becomes

RHS = max
x,∆

[
e(1−φ)A exp

{
−λ

2
(u−∆)2 − θ

2
∆2

}1−φ

+ β

[∫
e(A+x)v (u+ xε−∆)1−γ dF

] 1−φ
1−γ
] 1
1−φ

= eAmax
x,∆

[
exp

{
−λ

2
(u−∆)2 − θ

2
∆2

}1−φ

+ βe(1−φ)x

[∫
v (u+ xε−∆)1−γ dF

] 1−φ
1−γ
] 1
1−φ

︸ ︷︷ ︸
v(u)

.

As a result, the RHS of value function (31) can be expressed as eAv (u) where

v (u) = max
x,∆

[
exp

{
−λ

2
(u−∆)2 − θ

2
∆2

}1−φ

+ βe(1−φ)x

[∫
v (u+ xε−∆)1−γ dF

] 1−φ
1−γ
] 1
1−φ

.

(50)

which is exactly our guess. Because the RHS of equation (50) is independent of A, so are

optimal policy functions (x,∆).

Proof of Corollary 5: When γ = φ, we can re-write v (u) from equation (50) as

v (u) = max
x,∆

[
exp

{
−λ

2
(u−∆)2 − θ

2
∆2

}1−φ

+ βe(1−φ)x

[∫
v (u+ xε−∆)1−γ dF

]] 1
1−φ

,
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therefore, we have

v (u)1−φ

1− φ = max
x,∆

exp
{
−λ

2
(u−∆)2 − θ

2
∆2
}1−φ

1− φ + βe(1−φ)x

[∫
v (u+ xε−∆)1−γ

1− γ dF

]
.

When γ = φ→ 1, we have v(u)1−φ

1−φ → lnv (u), and therefore we have

lnv (u) = max
x,∆
−λ

2
(u−∆)2 − θ

2
∆2 + β

[∫
ln (v (u+ xε−∆)) dF

]
.

As a result,

lnVEZ (u,A) = A+ ln (v (u))

= max
x,∆

A− λ

2
(u−∆)2 − θ

2
∆2 + β

[∫
lnVEZ (u+ xε−∆, A+ x) dF

]
which is the same as (7) with,

V (u,A) = lnVEZ (u,A) .

Therefore, using results from Proposition 1, we have

lnVEZ (u,A) =
A

1− β −
1

2
θ (1− α)u2 + J

where J satisfies equation (12).

Numerical Procedure for Computation of xEZ (u) and αEZ (u): We guess and

verify numerically that

v (u) = D0e
D1u2 (51)

where D0 and D1 are two constants remained to be solved. Using the guess and substitute

α = 1− ∆
u
, v (u) can be expressed as

v (u)1−φ = max
x,α

 exp
{

(1− φ)
(
−λ

2
α2 − θ

2
(1− α)2)u2

}
+βe(1−φ)xD1−φ

0

[∫
e(1−γ)D1(αu+xσZ)2dΦ (Z)

] 1−φ
1−γ

 (52)

where Z followsN (0, 1) andΦ (Z) is the CDF of Z. The integral
∫
e(1−γ)D1(αu+xσZ)2dΦ (Z),

which is the expectation of the exponential of a noncentral chi-squared distribution, has

no closed-form solution. Therefore, we numerically calculate this integral by using the

"qnwnorm" function in the Matlab CompEcon toolbox from Miranda and Fackler (2004).

Next, for any given pair (D0,D1), we numerically calculate the optimal (x, α) that

maximize RHS of equation (52) which restricts α ∈ (0, 1) and x ∈ (0, xmax). The upper

bound xmax is set to make sure the optimal solutions are interior points. Last, at the

optimal (x, α), we compute the value function, denoted by vNum (u;D0,D1). The algorithm

stops if we find a pair (D0, D1) that satisfies 1
Nu

∑
u

(
vNum (u;D0,D1)−D0e

D1u2
)2

< 10−2

where Nu is the size of the grid of u.
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6. Out-of-sample Predictive Scores

In this section, we evaluate the forecast performance of our empirical quantile regression

with JLN uncertainty and compare it to the one from Adrian et al. (2019). Following

Adrian et al. (2019), we evaluate the out-of-sample prediction performance among differ-

ent models using predictive scores. The predictive scores are computed as the predictive

distribution generated by a model and then evaluated at the realized value of the time

series. By construction, higher predictive scores are indicative of a more accurate fore-

cast. We produce the predictive distributions recursively starting with the sample ranging

from 1971:01 to 1994:12 to predict growth distribution for 1995:01 by estimating quantile

regressions (1) and then matching a skewed t-distribution. We then repeat the exercise

for 1995:02 by expanding the estimation sample to 1995:01, and so on until reaching the

end of the sample at 2018:12.

We consider three alternative models. The first one is our baseline model using JLN

uncertainty as the predictor. The second is the one studied in Adrian et al. (2019), which

uses NFCI. The third model includes both JLN uncertainty and NFCI. In all models,

we include the contemporaneous IP growth as the second predictor. Table A1 reports

the average predictive scores for each model for h = 1 and 12 month-ahead forecasts.

Our baseline model with JLN uncertainty produces the highest average out-of-sample

predictive score among the three models; it outperforms the NFCI model out-of-sample.

Interestingly, when we add NFCI to the baseline model, the out-of-sample prediction

performance decreases, which shows that JLN uncertainty brings additional predictive

power over NFCI for predicting future IP growth.

Table A1. Out-of-sample Predictive Scores

Model Predictive Scores
h = 1 h = 12

JLN Uncertainty Only 0.0447 0.1061
NFCI 0.0439 0.1004
JLN Uncertainty + NFCI 0.0431 0.0998

Note: This table reports the average predictive scores from 1995:01 to 2018:12.
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