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1 Introduction

A vast literature, pioneered by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), has

studied how resource misallocation across heterogeneous firms, induced by idiosyncratic policy dis-

tortions, could lower countries’ aggregate productivity and provide an explanation for the staggering

income differences observed across countries.1 In particular, Hsieh and Klenow (2009) (HK here-

after) develop an accounting framework to estimate the cost of resource misallocation from different

types of market frictions using firm-level data. Subsequent contributions to the literature have pro-

vided arguments for why their estimates could be systematically biased for various reasons. Jones

(2011, 2013) has posited that ignoring inter-sectoral linkages in production, as HK do, may result

in an underestimation of economic losses due to misallocation, as the effects of distortions within

sectors will be amplified by inter-sectoral linkages. Other studies show that the dispersion of firms’

physical total factor productivity (TFP) is significantly smaller if gross output instead of value-

added production functions are used (Gandhi et al., 2017), implying a potential overestimation of

losses in the existing misallocation literature that uses value-added data.

This paper develops a framework to study the relevance of these criticisms about the quanti-

tative assessment of aggregate TFP losses resulting from resource misallocation and to study the

circumstances under which the existing estimates in the literature, based on value added production

functions, may be biased.2

We first approach the question theoretically by developing a model of an economy in which

output in each sector is produced by heterogeneous firms using primary factors of production and

also intermediate inputs from different sectors; i.e., firms are linked through an inter-sectoral input-

output (IO) network as in Long and Plosser (1983). With identical primitives (firm-level produc-

tivity and distortions), we derive expressions for an economy’s aggregate output in the two different

settings: one in which it is based on gross output from sectors connected through IO linkages

1This literature includes Banerjee and Duflo (2005), Alfaro et al. (2009), Guner et al. (2008), Restuccia and
Rogerson (2008), Hsieh and Klenow (2009), Buera et al. (2011), and Bartelsman et al. (2013), among many others.
See Restuccia and Rogerson (2013) and Hopenhayn (2014) for reviews.

2To compare to HK, we focus on the percentage gain in aggregate TFP from removing distortions. That is, we
evaluate efficient TFP using actual TFP as benchmark. It is the opposite of the TFP loss from misallocation, which
means evaluating actual TFP using efficient TFP as benchmark. We sometimes use TFP loss in the paper when
there is no confusion.
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(henceforth the GO model) and another in which it is the sum of sectoral value added (henceforth

the VA model) as in HK.3 As is conventional in the literature, we then examine and compare ag-

gregate TFP gains from the removal of all distortions in the two models. Specifically, we explore

the conditions under which the VA model can produce the same aggregate TFP gain as the GO

model, i.e, the circumstances under which the VA model is unbiased.

Our main conclusion is that whether the VA model can be used to measure the costs of mis-

allocation accurately depends critically on the presence of intermediate input distortions. If there

are no such distortions, we show that one can calibrate the VA model to be consistent with the

GO model. Importantly, in the absence of intermediate input distortions, we show that consistency

between the two models requires three important “adjustments”: (1) rescaling firm productivity;

(2) changing the sectoral weights in the final good production function; and (3) transforming the

elasticity of substitution between output varieties in the sectoral production function in the GO

model to its VA counterpart.

The first adjustment, which requires a rescaling of firm productivity, has been emphasized in

earlier studies (e.g., Bruno (1978)). Consider an increase in a firm’s output productivity. If the firm

does not adjust its intermediate inputs, the percentage increase in value-added will be obviously

larger than that in gross output, given that value-added equals gross output minus the costs of

intermediate inputs. If the firm increases its demand for intermediate inputs in response to higher

productivity, the percentage increase in its value-added will be even higher than that in gross

output as its output increases more than the cost of intermediate inputs.4 Hence, a firm’s measured

value-added productivity, which ignores the change in intermediate input use, will be larger than

its measured output productivity.5

The second adjustment involves changing the sectoral weights in an economy’s final good pro-

3The comparison between the GO model and the VA model is legitimate as the intermediate inputs cancel out
in aggregation. For the aggregate economy, both models take the primary factors, capital and labor, as inputs and
produce a single final output. In fact, our model offers a more complete description of the economy and reduces to
the value-added framework of HK when intersectoral linkages are shut down. This allows us to evaluate the potential
bias of the HK framework due to the use of value-added production functions.

4Note that the marginal product of additional intermediate inputs equals the market price of intermediate inputs
only for the last unit of inputs. Infra-marginal increase intermediate inputs raises output more than the market
price.

5Incidentally, this finding largely explains why Gandhi et al. (2017) find a larger dispersion of firm productivity
when firms’ value-added data are used, because differences in firm productivity are magnified when measured in
value-added due to the adjustment of intermediate inputs.
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duction. In particular, a sector’s weight in the GO model, which is the economy’s expenditure

share, needs to be changed to its value added share in the VA model. Without intermediate input

distortions, a sector’s value added share is just the product of the sector’s sales-to-GDP ratio (the

so-called Domar (1961) weight) and its output elasticity with respect to the primary factors of

production.6

Finally, the elasticity of substitution between varieties in a sector’s production function needs

to be adjusted when firms’ outputs are changed from gross output to value added instead, using

the output elasticity with respect to the primary factors of production.

In the absence of intermediate input distortions and with necessary adjustments, a theoretical

isomorphism between the two models can be established. This appears to stand in contrast to Jones

(2011, 2013), who argues that firm- or sector-level distortions can be amplified through IO networks.

Our analysis clarifies that measures of value added implicitly incorporate the amplification effect

of inter-sectoral linkages, which is revealed in data as a more dispersed distribution of value added

productivity within sectors. Correspondingly, in the GO model, the IO amplification and the smaller

dispersion of firm gross output productivity completely offset each other, leaving the TFP gain from

removing distortions orthogonal to the economy’s IO structure. This invariance is a key theoretical

result of this paper.

We also show, in the absence of intermediate input distortions, how to correctly infer firm

primitives using the VA model. A firm’s value added productivity, after appropriate rescaling, will

be identical to its gross output productivity (as mentioned above). Furthermore, a firm’s distortions

inferred from its value added measure will also be identical to those inferred from its gross output

measure. The two models hence lead to identical measured efficiency loss from misallocation when

applied to the same data.

The isomorphism between the VA and GO approaches breaks down when there are interme-

diate input distortions. The VA model will be misspecified and no calibration of the VA model

can rationalize the data, given the same underlying distortions. Using data on value added will

6In the GO model, the effect of a sectoral productivity shock on aggregate productivity is determined by the
propagation from upstream sectors to downstream sectors in the production network, which is summarized in a
vector called the “influence vector” (Acemoglu et al., 2012). According to Hulten’s (1978) theorem, in the absence
of distortions in the production network, the vector of Domar weights equals the “influence vector”.
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also lead to biased estimation of firm primitives. Firms subject to idiosyncratic distortions face

different effective intermediate input prices. As a firm’s VA is computed as its revenue minus cost

of intermediate inputs, while assuming the same market intermediate input prices, its marginal

products and productivity inferred from the VA model will both be biased (Bruno (1978)).7 In

sum, when intermediate input distortions exist, the VA model produces biased estimates of TFP

gains from the removal of all distortions due to both model misspecification and incorrect inference

of firm primitives. However, the VA model does not necessarily underestimate or overestimate the

TFP gain. The direction and magnitude of the bias depend on the extent of intermediate input

distortions and their correlation with other firm characteristics. The assessment of the potential

bias of the VA model is thus an empirical matter.

We hence study the potential biases in the assessment of the cost of misallocation using Chinese

and Indian industrial enterprise data, as also used by HK. Interestingly, using the Chinese Annual

Survey of Industrial Production (1998-2007), we find for China that the two models produce very

similar measured TFP gains from the removal of all distortions. The average difference in the

estimated TFP gains between the two models is around 5 percentage points, compared to the average

TFP gain of over 100% based on the GO model.8 The small bias of the VA model indicates that

intermediate input distortions should be significantly smaller than those associated with the primary

factors, which we confirm in the data. In particular, the variance of the distortions intermediate

inputs (in logs) is only about 0.03, compared to 0.53 for the primary factors (a weighted sum of

capital and labor). The implied lower TFP gain is amplified by inter-sectoral IO linkages, which

renders the overall estimated TFP gain based on the GO model to be close to that according to

the VA model in the case of China.

For India, however, based on the Indian Annual Survey of Industries (1999-2009), we find sub-

stantially larger TFP gains from removing all distortions based on the GO model than the VA

model. The difference averages to around 114 percentage points, with the average TFP gain es-

timated in the GO model at 180%. According to our model, this must be because of the larger

7As the price of intermediate inputs no longer equals its marginal product, the differences in input prices will be
embedded in the value-added measures, affecting the meaures of productivity (Basu and Fernald, 1995).

8Depending on the year, the aggregate TFP gain measured using the value-added model can be smaller or larger
than that using the GO model.
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dispersion of the intermediate input distortions in India, as compared to China. Indeed, we find

that for India, the variance of the distortions on intermediate inputs equals 0.27, while its dispersion

of the primary input distortions is similar to that of China.

It is a common practice in the literature to apply the elasticities of substitution estimated with

gross output data to the VA model. In a final exercise, we evaluate the size of the bias in the

estimated TFP gains due to such inconsistent use of elasticities.9 As the output elasticity is larger

than 1 in practice, our model suggests that the elasticity chosen by the existing studies using the

VA model has been larger than the intended one.10 In other words, if the correct elasticity is

chosen for both models, the TFP gains estimated in the existing VA studies should be reduced.

When we impose HK’s baseline elasticity (=3) in both models, we find that China’s aggregate TFP

gains from removing all distortions will increase significantly, implying a mistaken 40 percentage-

point additional gain on average as compared to our GO counterpart. For India, the implied TFP

gain from removing all distortions also increases significantly based on the VA framework, closing

the gap between the estimates from the two models by almost 90 percentage points. That said,

our proposed GO model still suggests a larger TFP gain for India, implying that distortions on

intermediate inputs are still significantly more severe in India than China. These findings highlight

the importance of choosing the right elasticity in calibrating the models with different concepts of

output, as has been emphasized in Herrendorf et al. (2013).

This paper contributes to three inter-related strands of literature. First, it contributes to the

growing literature on resource misallocation, in particular those studies that complement and extend

the analysis of the HK model.11 Important studies along this line include Asker et al. (2014) and

David and Venkateswaran (2019) which allows for dynamic capital adjustment, Bartelsman et al.

(2013) which add a fixed cost to production and Song and Wu (2015) and Gollin and Udry (2017)

which consider heterogeneity in firm technology. Our results are also related to another line of

research that tries to distinguish measurement errors from misallocation (Dong, 2011; Song and

9For example, HK choose the elasticity based on estimates from Broda and Weinstein (2006) and Hendel and
Nevo (2006) which are more suitable for the GO model.

10If the elasticity is less than 1, the output elasticity is smaller than the value-added elasticity. See Proposition 3
for the transformation of the elasticity between the two models.

11The HK framework has been used by Kalemli-Ozcan and Sorensen (2012), Ziebarth (2012, 2013) , Brandt
et al. (2013), Oberfield (2013), Hsieh and Klenow (2014), Adamopoulos et al. (2015), Chen and Irarrazabal (2015),
Gopinath et al. (2017), and Restuccia and Stantaeulàlia-Llopis (2017), among others.
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Wu, 2015; Gollin and Udry, 2017; Bils et al., 2018; Haltiwanger and Syverson, 2018).12

Second, in exploring the role of intersectoral linkages and the potential isomorphism between

the VA and GO approaches, this paper contributes to the literature on production networks, and

is thus related to the important studies of Jones (2011, 2013) on the role of production networks

in amplifying the effect of given distortions. It also relates to several other recent papers on the

network propagation of distortions, which include, among others, Altinoglu (2020), Bartelme and

Gorodnichenko (2015), Bigio and La’O (2020), Baqaee and Farhi (2019b, 2020a,b),Caliendo et al.

(2017), Liu (2019), Luo (2019), and Osotimehin and Popov (2020).13 While these latter studies

mainly focus on the aggregate effects of idiosyncratic distortions in production networks, we pay

close attention to the issue of TFP gains from moving to efficiency between a model with production

networks and a model without. Our theoretical analysis extends the seminal work of Hulten (1978)

to incorporate both firm heterogeneous productivity and factor distortions.

Third, our finding of the bias of the VA model echoes an earlier literature on the validity of the

concept of real value added (Sato, 1976; Bruno, 1978). Bruno (1984) and Basu and Fernald (1995,

1997, 2002) have shown that the use of value added measures can lead to biased results in different

scenarios.14 Most closely related to our paper is Gandhi et al. (2017), which shows that the use

of data on value added could lead to overestimated costs of misallocation, given that empirically

distortions mostly benefit the less productive firms at the expense of the more productive ones. We

show, somewhat to the contrary, that adding inter-sectoral linkages with the required adjustments

can completely offset the overestimation, in the absence of intermediate input distortions. Finally,

Herrendorf et al. (2013) which examines different sources of structural transformation, discusses

how sectors can be viewed either as categories of final expenditure or value added and how these

different views require changes in the preference specifications. Our findings confirm the importance

of this distinction in the measurement of misallocation. We find a significant upward bias in the VA

model’s estimates of the cost of misallocation due to the use of an incorrect elasticity of substitution.

12Other important contributions to the misallocation literature include Banerjee and Duflo (2005), Restuccia and
Rogerson (2008), Guner et al. (2008), Banerjee and Moll (2010), Buera and Shin (2013), Midrigan and Xu (2014),
Moll (2014), David et al. (2016), among many others.

13Sectoral interlinakges have also been studied by Hirschman (1958), Long and Plosser (1983), Horvath (1998,
2000), Ciccone (2002), Acemoglu et al. (2012), Baqaee (2018), and Baqaee and Farhi (2019a,c), to name a few.

14The other studies mainly focus on measuring productivity growth over time, while this paper compares produc-
tivity across firms.
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The rest of the paper is structured as follows. The next section presents the two models for

measuring efficiency loss of misallocation. Section 3 studies the specification of the VA model

theoretically, while Section 4 discusses the measurement of firm productivity and wedges using

different concepts of output. Section 5 evaluates the bias in data. Section 6 concludes.

2 Two Theoretical Approaches

This section first introduces the GO model, which adds a production network a la Long and Plosser

(1983) to the HK framework, in preparation for an evaluation of the misallocation costs compared

to the VA approach.15 We view the GO model as a natural representation of production in an

economy as firms employ both primary inputs and intermediate inputs in reality. We then briefly

present the corresponding HK framework, which we label as the VA model. This framework, which

abstracts from inter-sectoral linkages is, in a sense, a simplified version of the GO model. Clearly,

both the GO and VA models require capital and labor to produce a final product (GDP). However,

the GO model considers endogenous intermediate input uses, while the VA model does not.

2.1 The Gross Output (GO) Model

The are S sectors in the economy. Output from any sector QS is used as either intermediate input

MS or for final consumption CS.16 A final product, Y , is produced by a representative firm according

to,

Y =
S∏
s=1

Cθs
s , with

S∑
s=1

θs = 1. (1)

Let the final output, Y , be the numeraire. The demand for sectoral output from final good producers

is given by PsCs = θsY . Market clearing for sectoral output implies

Qs = Cs +Ms, (2)

15Bils et al. (2018) study a model similar to the GO model.
16We use C to denote consumption, but it should be understood as expenditure including both consumption and

investment.
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where Ms =
∑S

q=1Msq with Msq being the demand from sector q for the output of sector s. The

sectoral output itself is produced using differentiated intermediate varieties Qsi,

Qs =

(
Ns∑
i=1

Q
σs−1
σs

si

) σs
σs−1

, (3)

where Ns is the total number of varieties in sector s and σs is the sector-specific elasticity of

substitution. We assume that each variety is produced by one single firm, such that firm and variety

can be used interchangeably. The inverse demand for a variety is given by Psi = PsQ
1
σs
s Q

− 1
σs

si , with

the sectoral price index given by Ps =
(∑S

i=1 P
1−σs
si

) 1
1−σs

.

The firms produce goods with two primary inputs, capital and labor, as well as intermediate

inputs from all sectors, using a Cobb-Douglas technology:

Qsi = Asi
(
Kαs
si L

1−αs
si

)ηs ( S∏
q=1

M
λqs
qsi

)1−ηs

, (4)

with
∑S

q=1 λqs = 1. Different from HK who assume a monopolistic competition market structure,

we assume that firms take prices as given.17 As we will discuss in detail later, the change in market

structure however does not affect our comparison of the two models in the empirical analysis.18

However, assuming perfect competition makes the GO model easier to implement.19

Each firm then solves the following profit maximization problem, facing idiosyncratic distortions

17One way to think about this is there are many firms with access to identical technology with negligible entry
costs, i.e., the market is contestable. In equilibrium there will be only one firm operating but the firm acts like a
competitive producer. Otherwise, we can assume there are many firms producing one variety and they all have the
same technology and face the same distortions.

18The benchmark results of HK will not be altered by the change in the market structure. In the GO model,
the change in market structure distorts between sector allocation of resources for two reasons. First, the presence
of markups distorts the relative price of intermediate inputs to primary inputs, which further distorts the sectoral
allocation of primary inputs. Second, between-sector allocations can still be distorted if sectors have different
markups. However, since we only focus on within-sector misallocation in our empirical analysis, the changes in sectoral
allocation does not impact our results other than through the determination of sectoral weights in aggregation. Our
calibration procedure in Section 5 makes sure the weights are affected by the same proportion due such distortions
in the two models.

19As discussed later, under perfect competition we do not actually need information on the input-output matrix
because the Domar weights are sufficient statistics for estimating the TFP gain. Under monopolistic competition
this is no longer true and we have to solve the Leontief inverse in order to compute the sectoral weights for the GO
model.
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in the factor markets:

max
Qsi,Ksi,Lsi,{Mqsi ∀q}

πsi = PsiQsi − (1 + τKsi)RKsi − (1 + τLsi)WLsi − (1 + τMsi)
S∑
q=1

PqMqsi.

Following HK, we assume that the wedges will not affect actual output besides distorting firms’ input

decisions. They correspond to the type of distortions in which payments are not discarded in Bigio

and La’O (2020). One way to think of this is to view the wedges as shadow prices for the constraints

the firms might face in the factor markets, such as a collateral constraint for renting capital. The

wedges could also reflect some genuine differences in prices that firms face.20 Alternatively, we can

think of the wedges as actual taxes that are rebated to the households lump sum.21

Finally, factor market clearing for capital and labor requires

S∑
s=1

Ns∑
i=1

Ksi = K, and
S∑
s=1

Ns∑
i=1

Lsi = L. (5)

Sector s’s demand for intermediate inputs from sector q is the sum of demand across all variety

producers Mqs =
∑Ns

i=1Mqsi.

We prove in Appendix A the following lemma that a sector’s production function inherits the

structure of the firm’s production function.

Lemma 1 Taking the inputs of a sector as given and solving the within-sector allocation problem,

the sectoral production function is given by

Qs = TFPs ·
(
Kαs
s L

1−αs
s

)ηs ( S∏
q=1

Mλqs
qs

)1−ηs

, and TFPs =

[
Ns∑
i=1

(
Asi

TFPRs

TFPRsi

)σs−1] 1
σs−1

, (6)

20For example, Luo (2019) argues that trade credits provide by suppliers would show up in the prices of interme-
diate inputs. Firms differing in their use of trade credits will then face different intermediate input prices.

21Bigio and La’O (2020) also discuss the case where payments due to wedges are discarded. They find that wedges
with discarded payments are isomorphic to productivity shocks. Since we don’t observe the amount of output lost
due to distortions in data, we assume firm productivity Asi already incorporates this kind of wedges and focus on
the case where payments due to wedges are not discarded.
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where sectoral and firm revenue productivity (TFPR) are defined as

TFPRs ≡
PsQs

(Kαs
s L

1−αs
s )ηs

(∏S
q=1M

λqs
qs

)1−ηs (7)

TFPRsi ≡
PsiQsi(

Kαs
si L

1−αs
si

)ηs (∏S
q=1M

λqs
qsi

)1−ηs , (8)

This lemma facilitates further aggregation of production as we now only have to deal with production

at the sector level.

As in previous analyses which undertake aggregation of a Cobb-Douglas network economy with

distortions (Jones, 2013; Bigio and La’O, 2020), a key to the aggregation turns out to be the Domar

weight vs = PsQs
Y

, which is simply the sectoral sales-to-GDP ratio (Domar, 1961). We can rewrite

the market clearing condition for sectoral output in vector form

V = θ +B ◦ diag(T ◦−1M )V,

where V is the 1 by S vector of Domar weights, θ is the vector of sectoral shares in final consumption,

B is the direct requirement matrix with its element given by bsq = λsq(1 − ηq), TM is the vector

of TMs = (1− ηs)λqs PsQsPqMqs
summarizing the distortions in intermediate input use within a sector,22

diag(·) transforms a vector into a diagonal matrix, and ◦ is the element-wise Hadamard product

(with ◦ − 1 indicating the Hadamard inverse). The Domar weight vector can then be solved as

V =
(
I −B ◦ diag(T ◦−1M )

)−1
θ

The Domar weight hence is determined by both technology and distortions in intermediate input

markets. If there is no distortion in the network, namely TMs = 1 for all sectors, we define Ṽ ≡

(I − B)−1θ. Ṽ is the influence vector in Acemoglu et al. (2012), which captures how sectoral

productivity shocks propagate downstream to other sectors through the production network. The

influence vector is a key determinant of the shape of the aggregate production function. We denote

22 Note that TMs = 1∑
i
PsiQsi
PsQs

1
τMsi

is a weighted average of firm level distortions.
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its element to be ṽs.
23 With the Domar weights, we can relate the sectoral capital and labor demand

to the Domar weights as,

Ks

K
=

1
TKs

αsηsvs∑S
q=1

1
TKq

αqηqvq
≡ βKs,

Ls
L

=
1
TLs

(1− αs)ηsvs∑S
q=1

1
TLq

(1− αq)ηqvq
≡ βLs,

where TKs = αsηs
PsQs
RKs

and TLs = (1 − αs)ηs PsQsWLs
summarize the effects of distortions on sectoral

capital and labor demand. Without intersectoral distortions, TKs = 1 and TLs = 1.

Given these shares, we are ready to present the following aggregation result for this economy.

Proposition 1 The economy admits an aggregate production function given by

Y = AKαL1−α, (9)

with α =
∑S

s=1 ṽsαs and total factor productivity given by

A = γ︸︷︷︸
network distortions

S∏
s=1

(TFPs)
ṽs

︸ ︷︷ ︸
within-sector distortions

S∏
s=1

[
(βKs)

αsηsṽs (βLs)
(1−αs)ηsṽs

]
︸ ︷︷ ︸

between-sector distortions

, (10)

where γ =
∏S

s=1

(
θs
vs

)θs∏S
s=1

[∏S
q=1

(
1
TMs

bqs
vs
vq

)(1−ηs)λqs]ṽs
.

Notice that distortions have no effect on the shape of the production function. The output elasticity

of capital in the aggregate production function is an average of the sectoral output elasticities

weighted by elements of the influence vector. Distortions, however, result in a lower aggregate TFP

which can be decomposed into three terms. The first term, γ, summarizes the distortions in the

production network. The second term is the weighted average of sectoral TFP, which reflects the

misallocation within sectors. Due to the presence of distortions, Hulten’s theorem (Hulten, 1978)

breaks down: The output elasticity of sectoral TFP is given by the influence vector instead of the

23Distortions affect the allocation of resources across sector. How the technology shocks transmit through the
production networks however is not affected. Given the the Cobb-Douglas technology, the impact of a technology
shock in an upstream sector on a downstream sector is always given by the input share of the upstream sector in the
production of the downstream sector.
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Domar weights.24 On the other hand, an increase in sectoral TFP will not change the allocation

of resources given the Cobb-Douglas technology (Baqaee and Farhi, 2019c). Finally, the third term

reflects distortions in primary input use.

As the sum of ṽs is larger than 1,25 the propagation of market distortions emphasized by Jones

(2011, 2013) comes from the presence of the influence vector in aggregate TFP. In particular, the

TFP loss coming from within-sector misallocation as studied by HK will be amplified through the

production network.

2.2 The Value-Added (VA) Model

The VA model ignores sectoral linkages and assumes each firm to have simply a value added pro-

duction. For the whole economy, the single final product is still denoted by Y . It is produced with

sectoral value-added,

Y = Φ
S∏
s=1

Y θ̂s
s , with

S∑
s=1

θ̂s = 1 (11)

where Φ is a normalizing constant to ensure that the final products in the two models are identical.

We use a hat as notation to indicate a variable that is different between the two models. Profit

maximization implies PY sYs = θ̂sY . Sectoral value added is an aggregate over its varieties:

Ys =

(
Ns∑
i=1

Y
σ̂s−1
σ̂s

si

) σ̂s
σ̂s−1

, (12)

where the elasticity of substitution between varieties σ̂s will be different from that in the GO

model. The inverse demand for a variety is PY si = PY sY
1
σ̂s
s Y

− 1
σ̂s

si with the price index equal PY s =(∑Ns
i=1 P

1−σ̂s
Y si

) 1
1−σ̂s

.

Each firm i uses only primary factors to produce its varieties:

Ysi = ÂsiK
α̂s
si L

1−α̂s
si . (13)

24Without distortions, Hulten (1978) only focus on the impact of sectoral TFPs on aggregate output, but not
between-sector allocation. In his study, the influence vector equals the vector of Domar weights. The sales-to-GDP
ratio fully measures how sectoral TFP shocks affect aggregate output.

25
∑S
s=1 ṽs >

∑S
s=1 vsηs = 1, where the latter equality simply states the aggregate production function has

constant returns to scale.
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The firm faces idiosyncratic distortions in the factor markets and maximizes profit as follows26

max
Ysi,Ksi,Lsi

π̂si = PY siYsi − (1 + τKsi)RKsi − (1 + τLsi)WLsi,

where we have assumed that the magnitudes of the distortions are identical across the two models.

Note that using a value added production function should not affect the size of the distortions.27

Factor prices of primary inputs too are not distinguished between the two models: as factor prices

are observed, they should remain the same if both models can rationalize the data. Factor markets

are assumed to clear as usual.

HK show that the sectoral production function is given by

Ys = T̂FP s ·K α̂s
s L

1−α̂s
s , with T̂FP s =

 Ns∑
i=1

(
Âsi

T̂FPRs

T̂FPRsi

)σ̂s−1
 1
σ̂s−1

. (14)

Thus, the formula for sectoral TFP in the VA model has the same form as that in the GO model,

except that now firm revenue productivity (TFPR) and physical TFP are expressed in terms of the

value added measures.28

Given the sectoral production function, sectoral demand for capital and labor is given by:

Ks

K
=

1

T̂Ks
α̂sθ̂s∑S

q=1
1

T̂Kq
α̂qθ̂q

≡ β̂Ks,

Ls
L

=

1

T̂Ls
(1− α̂s)θ̂s∑S

q=1
1

T̂Lq
(1− α̂q)θ̂q

≡ β̂Ls,

where T̂Ks = α̂s
PY sYs
RKs

and T̂Ls = (1− α̂s)PY sYsWLs
are defined as above. Plugging these factor demand

equations into the production function, we obtain the aggregate production function, as summarized

26Another minor difference between our model and the original HK model is that they assume an output and a
capital wedge while we assume a capital and a labor wedge. The assumption simplifies the algebra a little but will
not affect the results in this paper in any way. The wedges changes the marginal revenue product of the production
factors. Because there are three wedges (output, capital, and labor wedge) but only two production factors, we can
match the same marginal revenue products with different sets of wedges.

27However, inferred distortions using data might be different in these two models, depending on whether there
are intermediate input distortions. We will discuss the inference in Section 4.

28Sectoral and firm revenue productivity are defined as T̂FPRs ≡ PY sYs
Kα̂s
s L1−α̂s

s
and T̂FPRsi ≡ PY siYsi

Kα̂s
si L

1−α̂s
si

.
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in the following proposition.

Proposition 2 The VA model also admits an aggregate production function given by

Y = ÂK α̂L1−α̂, (15)

where the capital share is α̂ =
∑S

s=1 θ̂sα̂s,
29 and total factor productivity is given by

Â = Φ
S∏
s=1

(
T̂FP s

)θ̂s
︸ ︷︷ ︸

within-sector distortions

S∏
s=1

[(
β̂Ks

)α̂s (
β̂Ls

)1−α̂s]θ̂s
︸ ︷︷ ︸

between-sector distortions

, (16)

Again, the shape of the production is determined by the technology parameters. The effect

of distortions on aggregate TFP can be decomposed into the within-sector and between-sector

components. Different from the GO model, there is no network propagation at work in the VA

model by definition. The exponents on sectoral TFP and the allocation terms are the sectoral

value-added shares in final output, which sum to one.

3 Model Comparison

This section compares measured TFP gains in the two models theoretically. As the VA model

ignores intersectoral linkages, it is natural that we view the GO model as the data generating

process. Taking the technology parameters, firm-level productivity and wedges in the GO model

as given, we construct the measures of TFP gains in both models in terms of these parameters.

Importantly, we will also build a mapping of model parameters between the two models.

3.1 Calibration of the VA model

In evaluating the TFP gain, we compare the actual state of the world to the counterfactual one

with zero distortion, taking the same observed data as given. For the VA model to be consistent

with the GO model, the VA model should be able to rationalize the same data as the GO model

29The share of labor is
∑S
s=1 θ̂s(1− α̂s). It is obvious that they sum to 1.
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in both states of the world. In this subsection, we establish the conditions for the VA model to be

consistent with the GO model.

As the two models use different concepts of output, we must first define value added in the GO

model. We compute firm value added as revenue minus the cost of intermediate inputs:

PY siYsi = PsiQsi −
S∑
q=1

PqMqsi (17)

A key assumption here is that distortions in intermediate inputs are not recorded in the prices

paid by the firms. What we have in mind are shadow prices of financial constraints (Bigio and

La’O, 2020), or taxes/subsidies that are not directly recorded as costs of intermediate inputs. This

assumption rules out firm-level intermediate input price differences as discussed by Luo (2019).

Because we only observe the value of intermediate inputs but not the quantity,30 allowing for

distortions that are recorded as firm-specific prices would make the quantity of intermediate input

unobserved.31 Our simplifying assumption induces a bias in the estimates of the TFP loss from

misallocation in the GO model, as the intermediate input distortion will be measured with error if

recorded intermediate prices are different across firms. However, it can be shown that the VA model

inherits the same bias, so that the differences in measured TFP loss from misallocation between

the two models are not affected by this assumption.32

With firm value added defined, we are ready to calibrate the VA model. The model parameters

that needed to be determined include {α̂s, σ̂s, θ̂s} and firm productivity Âsi. We take primary input

distortions as given and calibrate the VA model to match the allocation of capital, labor and firm

nominal value added as generated by the GO model. Intermediate input distortions are not observed

in the VA model. However, whether the VA model is consistent with the GO model depends on the

properties of these distortions. Specifically, the following assumption is in order.

Assumption 1 τMsi = 0, ∀ s ∈ {1, 2, ...S} and i ∈ {1, 2, ...Ns}.

30An exception is Atalay (2014), who observes firm-specific prices of intermediate inputs in a detailed dataset
from the US Census Bureau.

31In a sense, HK also make this assumption in measuring capital stock, as they only observe the value of total
assets in data. Using sector-specific deflators to deflate the value leads to a biased measure of capital stock, had
firms used different prices to value their assets.

32This proof is available upon request.
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We prove in Appendix A the calibration results that are summarized in the following proposition.

Proposition 3 Under Assumption 1, the VA model can generate the same observed allocation and

nominal output as the GO model if the following conditions hold: (1) Âsi ∝ A
1
ηs
si , (2) α̂s = αs, (3)

σ̂s = 1 + ηs(σs − 1), (4) θ̂s = ηsṽs, and (5) Φ is adjusted such that final production is equated in

the two models. If Assumption 1 does not hold, we cannot find a calibration of the VA model that

is consistent with the data generated by the GO model.

The above proposition shows that the value added specification may not generate the data that

are consistent with those from the GO model. If firms face intermediate input distortions, the

two models are theoretically inconsistent with each other. Since intermediate input distortions are

present in actual data (Bigio and La’O, 2020; Liu, 2019), we should not expect the two models to

produce the same TFP gain from removing distortions. Before proceeding to construct the TFP

gain measures, a discussion about the proposition is in order.

First, note that we cannot determine the absolute level of firm value added TFP. This is because

we only observe nominal output in the data, which incorporates both quantity and price. As the

production of final goods uses a Cobb-Douglas technology, sectoral nominal value added is not

affected by sectoral TFP: an increase in productivity is perfectly offset by a decrease in price.33

Firm productivity is thus only comparable within a sector but not across sectors. Across sectors,

comparison of TFP measures are meaningless as we can always change TFP in a sector by using a

different unit of output measurement. This claim is invalidated when output prices and quantities

are separately observed. We can also determine the level of firm TFP if the elasticity of substitution

between sectoral output is different from one, which means that changes in firm TFP will induce

resource reallocation across sectors.

As the firm’s GO production function is separable in primary and intermediate inputs, we can

simply write the firm’s gross output as a function of value-added and intermediate inputs.

Qsi = Y ηs
si

(
S∏
q=1

M
λqs
qsi

)1−ηs

This gives the intuitive results on factor shares and value added TFP. In particular, value added

33The effect of the change in sectoral productivity on final output can be offset by adjusting Φ.

17



TFP is gross output TFP raised to a power of 1
ηs
> 1. This is also the reason why value added

TFP is more dispersed than gross output TFP, as documented by Gandhi et al. (2017). There are

two economic forces at work. First, in response to an increase in output productivity, if the firm

does not adjust its intermediate input, the percentage increase in value-added will be larger than

that in gross output.34 Second, an increase in firm gross output productivity induces an increase

in the demand for intermediate inputs, holding the intermediate prices constant. This induces a

larger increase in value added because the contribution of additional intermediate inputs is larger

than the increased costs.

The scaling up of firm value added productivity has been recognized in the literature. What’s

new is that the sectoral production function has different elasticity of substitution under different

concepts of output. The difference is related to the value added ratio to gross output. As ηs

increases, the gap between the two elasticities diminishes. If there is no intermediate input use, the

two elasticities converge. The economic reason behind this is as follows. Without loss of generality,

let us consider the more reasonable case of σs > 1. If the output productivity increases by one

percent, the price of the firm’s good will decrease by one percent, holding factor prices constant.

In the VA model, the corresponding increase in productivity and the decrease in price would be

1
ηs

percents. The decrease in prices induces the firm to increase the demand for primary inputs

by σs − 1 percent in the GO model, and 1
ηs

(σ̂s − 1) in the VA model. The percentage increase in

input demand should be identical in the two models. This leads to the relationship between the

two elasticities.35 The value added elasticity is smaller than the output elasticity if σs > 1. The

reverse holds if σs < 1. The two elasticities thus should be on the same side of 1, with the value

added elasticity closer to 1.

The calibration of the elasticity of substitution should depend on the output concept of the

model. This is a point that has not been appreciated enough in the literature. Since the elasticity

is generally estimated for gross instead of value added output, the value added studies have often

chosen the wrong parameters. For example, HK cite Broda and Weinstein (2006) and Hendel and

34Since value-added is the difference between gross output and the costs of intermediate input, an increase in
gross output but not intermediate input raises value-added more in percentage terms.

35The two elasticities are the same if the elasticity equals to one, regardless the size of ηs. This is the Cobb-Douglas
case, under which a price change will not lead to changes in factor demand.
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Nevo (2006) for their choice of elasticity while both studies estimate the parameter for gross output

instead of value added. As the estimated TFP gain depends positively on the elasticity, this could

be a source of biases of the estimates.36 Using the adjusted elasticity of substitution will lower the

measured TFP gain. Our empirical study below shows that assigning incorrect values of elasticity

leads to a significant upward bias in the measured TFP gain in the VA model.

Finally, the value added weights are proportional to the Domar weights up to a factor of ηs.

This adjustment corresponds to the scaling up of value added productivity. As both models are

supposed to represent the same data, the amplification effect of sectoral linkages are always present

regardless of the concept of output used.37

The differences in parameters between the two models resemble the differences in utility func-

tions estimated with different data in Herrendorf et al. (2013), except that we study a full general

equilibrium model and focus more on the production structure. Like us, Herrendorf et al. (2013)

emphasize that we can view sectors as producing either final expenditure or value-added, with the

two views connected through the IO structure of the economy. Hulten (1978) also compares the

differences in measuring aggregate TFP in a model with production networks and one without. But

his model without production networks examines the production of sectoral consumption goods

from primary factors instead of value added. This is quite different from the VA model presented

here.38

3.2 Aggregate TFP Gain

We now proceed to the measurement of TFP gains from removing all distortions. Assumption 1 is

assumed to hold such that the VA model is consistent with the GO model observationally. We first

36For example, HK use 3 as a conservative measure of elasticity. If we take 3 as the elasticity for output, that for
value-added will be 2 if we assume ηs = 0.5, a reasonable number according to Jones (2011).

37This can be more clearly seen from the one sector example in Jones (2013). Final output is produced by
labor and intermediate input Q = ALαX1−α, which is used for consumption and intermediate inputs in production,

Q = C + X. GDP in this economy then is simply given by C = α(1 − α)
1−α
α A

1
αX. If we derive the aggregate

production from the output production function, we realize that the effect of the output productivity A is amplified
through input-output linkages. The exponent 1

α is the Domar weight for this economy. If we are only given data

on value-added and primary inputs, we will see the value-added productivity is A
1
α , which already includes the

amplification effect of the production network. The VA model does not simply ignore the production network, it
implicitly includes the effect of the network in the value-added measures.

38Note that Hulten (1978) requires a producer combining capital and labor from different sectors to produce the
final product, which has no counterpart in the data.
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construct TFP gain at the sector level. In the GO model, sectoral TFP is rewritten as

TFPs =

 Ns∑
i=1

(
Asi

T αsηsKs T
(1−αs)ηs
Ls

(1 + τKsi)αsηs(1 + τLsi)(1−αs)ηs

)σs−1
 1

σs

In the VA model, if we plug in the formula for value added productivity, sectoral TFP is

T̂FP s =

(
Ns∑
i=1

(
A

1
ηs
si

T αsKsT
1−αs
Ls

(1 + τKsi)αs(1 + τLsi)(1−αs)

)σ̂s−1) 1
σ̂s−1

,

where we have assumed Âsi = A
1
ηs
si . This is without loss of generality as the absolute level of

productivity will not affect the measured TFP gain. Comparing the two TFPs, we have T̂FP s =

TFP
1
ηs
si . Sectoral efficient TFP (in the absence of any distortion) for the two models are

TFPE
s =

(
Ns∑
i=1

Aσs−1si

) 1
σs

and T̂FP
E

s =

(
Ns∑
i=1

A
σ̂s−1
ηs

si

) 1
σ̂s−1

.

Combining all these information, sectoral TFP gain in these two models are related to each other

according to

T̂FP
E

s

T̂FP s

=

(
TFPE

s

TFPs

) 1
ηs

.

We thus show that the two models illustrate an identical sectoral TFP gain by eliminating all

distortions at the sector level, under Assumption 1. Aggregating over sectors leads to an identical

aggregate TFP gain with all within-sector distortions removed.

Without intermediate input distortions, the allocation of primary factors would remain the same

in the two models. For example, the allocation of capital is

αsηsvs∑S
q=1 αqηqvq

=
Ks

K
=

α̂sθ̂s∑S
q=1 α̂qθ̂q

.

Plugging the between-sector allocation terms into the aggregate production function in Proposition

1 and 2, it is clear that the aggregate TFP gain from removing between-sector misallocation is also

identical in the two models. We summarize the above results in the following proposition.
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Proposition 4 Under Assumption 1, the two models produce the same theoretical aggregate TFP

gain, conditional on observing the same data. If we decompose the TFP gain into a between-sector

and a within-sector component. The two components are also identical in the two models.

The isomorphism between the two models contrasts with the arguments in Jones (2011, 2013)

and Gandhi et al. (2017). In particular, Jones (2011, 2013) argues that existing distortions can be

amplified through production networks such that the cost of misallocation is larger than HK have

estimated. On the other hand, Gandhi et al. (2017) find that the dispersion of firm physical TFP

is smaller if it is measured with output data, implying a smaller cost of misallocation. Proposition

4 therefore offers a more complete understanding of the effect of production networks: Value-

added measures implicitly incorporate the amplification effect of intersectoral linkages, which is

reflected in data as a larger dispersion of firm physical productivity. When there is no intermediate

input distortion, the two forces cancel out each other, implying that the TFP gain from removing

distortions is orthogonal to the input-output structure of the economy. The points made by Jones

(2011, 2013) and Gandhi et al. (2017) are, in fact, just opposite sides of the same coin.

In sum, this section establishes that the a VA model can be consistent with data if there is

no distortion in intermediate input use, and the two models are no different in measuring TFP

gain from moving to efficiency in this case. This discussion takes firm productivity and market

distortions as given. To empirically measure the TFP gain, we also have to infer firm productivity

and wedges from the data. Moreover, Assumption 1 may not hold in the data (Bigio and La’O,

2020). We take up these issues in the next section.

4 Empirical Measures of TFP Gain

This section discusses the measurement of TFP gains using firm data. We first discuss the infer-

ence of firm productivity and wedges, which are then used to construct the empirical measures of

aggregate TFP gains from removing all firm-level distortions.
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4.1 Inference of Firm Productivity and Wedges

To recover firm productivity and wedges, imagine we have a firm level dataset with information on

output (PsiQsi), capital (Ksi), labor (Lsi), and intermediate inputs (
∑S

q=1 PqMqsi).
39 Nominal value-

added is computed as firm’s revenue minus the cost of intermediate inputs. Given this definition,

we relate nominal value-added to nominal output as

PY siYsi =

(
1− 1− η

1 + τMsi

)
PsiQsi. (18)

This condition is important in understanding the results in this subsection. It says that with

distortions, the share of value-added in gross output deviates from the contribution of primary

factors.

We also assume that we have correct values for all the technology parameters. Our discussion

in the last section shows that the literature might have incorrectly calibrated the elasticity of

substitution for the VA model, which can potentially bias the value-added TFP gain upward. We

ignore this issue in this section and only discuss its quantitative implications in the next section.

We first discuss the inference of the wedges. For the GO model, the first order conditions for

firms imply

αsηsPsiQsi

RKsi

= 1 + τKsi,

(1− αs)ηsPsiQsi

WLsi
= 1 + τLsi,

(1− ηs)PsiQsi∑S
q=1 PqMqsi

= 1 + τMsi,

where R and W are exogenously set.40 The left hand side is the ratio of marginal revenue products

to factor prices, and the right hand side is inferred firm-level distortions expressed in terms of true

39Note that we have assumed that we only observe total value of intermediate inputs, which is what most firm-
level database can provide. Given that we assume the intermediate input distortion does not affect the allocation
of resources between different intermediate inputs, we can attribute total expenditure on intermediate inputs to
different inputs, which can be further used to estimate the real quantity of intermediate inputs from different sectors
given appropriate price indexes for sectoral output. This however is unnecessary for the exercise in this paper.

40The exact value of factor prices is irrelevant as only the relative size of the wedges matter for measuring
misallocation.
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distortions. The distortions are thus identified as differences in marginal revenue products. For the

VA model, we can infer the distortions as

αsPY siYsi
RKsi

= (1 + τKsi)

(
1− 1− ηs

1 + τMsi

)
/ηs,

(1− αs)PY siYsi
WLsi

= (1 + τLsi)

(
1− 1− ηs

1 + τMsi

)
/ηs,

where we have used the relationship between nominal value-added and output in the model. Both

of the inferred wedges deviate from true distortions, as the share of value-added in output does not

reflect true contribution of the primary factors.

Identifying a firm’s physical productivity is more challenging as there is no output price or value-

added price at the firm level. Following HK, we use the allocation rule for intermediate inputs and

the pricing function for the variety to infer physical productivity in the GO model as

κs
(PsiQsi)

σs
σs−1(

Kαs
si L

1−αs
si

)ηs (∑S
q=1 PqMqsi

)1−ηs = Asi,

where κs is a sector level constant. The left hand side is observed up to a constant, and the right

hand side is true firm productivity. As discussed above, the absolute level of firm productivity does

not affect our results in any sense so we can normalize κs = 1. Firm output productivity thus can

be correctly inferred using output measures. Similarly, physical productivity measured in the VA

model is given by:

κ̂s
(PY siYsi)

σ̂s
σ̂s−1

Kαs
si L

1−αs
si

=

(
1− 1−ηs

1+τMsi

ηs

) σ̂s
σ̂s−1

(1 + τMsi)
ηs−1
ηs A

1
ηs
si ,

where κ̂s is a sector level normalizing constant. The right hand side is inferred value-added pro-

ductivity, which deviates from its theoretical counterpart due to the presence of intermediate input

distortions. The first two terms on the right hand side reflect the effect of the distortions, which

is a combination of two effects with opposite signs. First, the share of intermediate input deviates

from its contribution in production (the first term). A positive distortion raises the contribution of

primary factors and value-added productivity. Second, a positive distortion also reduces the use of
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intermediate input and hence lowers value-added productivity (the second term). Taken together,

the sign of the total bias in measured value-added productivity is indeterminate. Besides the size

of the distortion, the sign depends on the technology parameters. A rise in the elasticity of substi-

tution reduces the first effect while keeping the second effect unchanged. This is because nominal

value-added now is raised to a lower power in deriving real value-added. A rise in the importance

of intermediate input (a reduction in ηs) increases the second effect. Its effect on the first effect

however depends on the sign of the distortion. If τMsi > 0, the bias due to first effect is reduced.

The bias is increased if τMsi < 0.41

Our results on the inference of firm productivity and wedges are summarized as follows.

Proposition 5 Inference using value-added measures is biased due to the presence of intermediate

input distortions.

One way to understand the economics behind the bias in the inference using value-added mea-

sures is to consider our value-added measure as a real value-added, where the prices used to value

intermediate inputs deviate from that perceived by the firms due to the presence of the intermediate

input distortions. In this case, the value of intermediate inputs recorded in data does not reflect

true productive contribution of intermediate inputs, which further leads to a bias in the contribu-

tion of primary inputs in our value-added measure. This finding resonates with an earlier literature

studying the use of real value-added indexes.42 As the market prices of intermediate inputs do

not equal the effective prices facing firms, we attribute the differences in effective prices to the

value-added measure which is essentially a partial Solow residual (Basu and Fernald, 1995). The

earlier literature mainly focuses on measuring productivity change over time using real value-added.

Changes in the relative price between output and intermediate inputs naturally brings challenges

to the valuation of intermediate inputs. Our focus here is on the comparison of productivity across

firms where the source of changes in the prices of intermediate inputs is idiosyncratic distortions in

41To see this point, note that
∂

1− 1−ηs
1+τMsi
ηs

∂ηs
= − 1

η2s

1
1+τMsi

< 0. The last inequality requires τMsi > −1, which is a

natural assumption for the firm’s problem to be well-defined. If τMsi > 0, the bias is positive and an increase in ηs
lowers the bias. If τMsi < 0, the bias is negative and an increase in ηs raises the bias.

42For example, Bruno (1978) shows that marginal revenue products and productivity will be incorrectly inferred
using the real value-added index if the intermediate input prices used in constructing the real value-added measures
are different from the prices the firms face. See also the discussion in Basu and Fernald (2002).
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the intermediate input markets.

With correct inference of firm productivity and wedges, the GO model correctly measures the

TFP gain. A corollary of Proposition 4 and Proposition 5 regarding the VA model is as follows:

Corollary 1 If Assumption 1 holds, firm productivity and wedges can be correctly inferred using

value-added measures. The VA model and the GO model produce the same measured aggregate TFP

gain, conditional on observing the same data.

This corollary serves as a benchmark for our understanding of the consequences of ignoring

the production network for measuring misallocation. Assumption 1, concerning the absence of

intermediate input distortions, however is highly unrealistic. We next turn to the measurement of

TFP gain in data when the assumption does not hold.

4.2 Measured TFP Gain

We now construct the empirical TFP gain measures using inferred firm productivity and wedges

from the previous subsection, allowing for distortions in the intermediate input use. We first make

the following simplifying assumption for the rest of our analysis.

Assumption 2 TJs = 1, ∀J ∈ {K,L,M} and s ∈ {1, 2, ...S}.

TJs, ∀J ∈ {K,L,M} summarizing firm level distortion in a sector are defined above. This as-

sumption says that there is no between market misallocation. It is made mainly with the empirical

implementation of the TFP gain measures in mind. Without between sector misallocation, we can

use sectoral input shares to calibrate the output elasticity in the production function. Otherwise

the distortions and the output elasticity could not be distinguished from each other unless we have

direct measures of the distortions or the output elasticity from other sources. TMs = 1 also implies

there is no distortion in the production network such that ṽs = vs. In this case, we do not have

to actually invert the Leontief matrix but can use the Domar weights to aggregate sectoral TFP in

the GO model directly.

Let Y E be the efficient output, the TFP gains from moving to efficient allocation in the two
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models are as follows if Assumption 2 holds.

(
Y E

Y

)o
=

S∏
s=1

(
TFPE

s

TFPs

)vs
, and

(
Y E

Y

)va
=

S∏
s=1

(
T̂FP

E

s

T̂FP s

)θ̂s

. (19)

The aggregate TFP gain is the average across sectoral TFP gains, with each sector weighted by the

corresponding Domar weight in the GO model and the value-added share in the VA model. Given

Assumption 2, it can be seen that all errors in measuring the aggregate efficiency loss comes from

mismeasured sectoral TFP gains. The VA model can produce the correct empirical aggregate TFP

gain as long as the sectoral TFP gain is correctly measured, even if Assumption 1 is violated.

To compare between the two models, we will derive actual TFP and its efficient benchmark as

functions of firm productivity and wedges, realizing that inferred measures may deviate from true

measures. To the extent that the inferred measures are unbiased based on the GO model, measured

sectoral TFP in the GO model is the same as above. We restate the result below

TFPs =

(
Ns∑
i=1

(
Asi

1

(1 + τKsi)αsηs(1 + τLsi)(1−αs)ηs(1 + τMsi)1−ηs

)σs−1) 1
σs−1

where we have applied Assumption 2. Efficient sectoral TFP is TFPE
s =

(∑Ns
i=1A

σs−1
si

) 1
σs−1

.

Measured sectoral TFP based on the VA model however will differ from its theoretical value

given the bias in the inference of firm productivity and wedges. To conserve notation, we still use

the same notation to denote sectoral TFP. Measured sectoral TFP in the VA model is

T̂FP s =

 Ns∑
i=1

 Asi (ηs)
1

1−σs

(
1− 1−ηs

1+τMsi

) 1
σs−1

[(1 + τKsi)αs(1 + τLsi)1−αs ]
ηs (1 + τMsi)1−ηs


σs−1

1
ηs(σs−1)

. (20)

Ignoring the power terms, the term in the inner brackets only differs from that in the GO model

due to the the deviation of the contribution of primary inputs from the output elasticity. The effect

of the distortions on the use of intermediate input is recognized in the value-added sectoral TFP, as

shown in the denominator. Efficient sectoral TFP however will be mismeasured due to the presence
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of both effects,

T̂FP
E

s =

 Ns∑
i=1

(
Asi (ηs)

1+ηs(σs−1)
1−σs

(
1− 1− ηs

1 + τMsi

) 1+ηs(σs−1)
σs−1

(1 + τMsi)
ηs−1

)σs−1
 1

ηs(σs−1)

(21)

Measurement errors at the firm level thus build up, such that both actual and efficient sectoral TFP

will deviate from the correct measures.

Given sectoral actual and efficient TFP, how do the two measured TFP gains differ if interme-

diate input distortions are present? The comparison is not tractable. Importantly, we cannot claim

with certainty that the value-added model overstates or understates measured TFP gain.

To illustrate this point, we approximate the measures by assuming Asi, 1+τY si,
43 and (1+τMsi)

jointly follow a log-normal distribution, with the log of the latter two having zero mean. We further

assume ηs = 0.5 such that 1 − 1−ηs
1+τMsi

can be approximated by 1
2
(1 + τMsi). TFP gain for a single

sector in the GO model can be approximated by44

log

(
TFPE

s

TFPs

)vs
=
Nsvs(1− σs)

2

(
σ2
y

4
+
σ2
m

4
− σay − σam +

σym
2

)
,

where σ2
x is the variance of variable x and σxz is the covariance between variables x and z. TFP

gain in the VA model is approximated by

log

(
T̂FP

E

s

T̂FP s

)θ̂s

=
Nsvs(1− σs)

2

[
σ2
y

4
+

(
1

4
− 1

σs − 1

)
σ2
m − σay − σam +

(
1

2
− 1

σs − 1

)
σym

]

Comparing these two measures, we have the following proposition.

Proposition 6 Assuming firm productivity and distortions follow a joint log-normal distribution

and ηs = 0.5, the difference between the two TFP gain measures is given by

log

(
TFPE

s

TFPs

)vs
− log

(
T̂FP

E

s

T̂FP s

)θ̂s

= −Nsvs
2

(σ2
m + σym) (22)

431 + τY si is defined as (1 + τKsi)
αs(1 + τLsi)

1−αs , which summarizes the distortion in primary input use.
44Notice the measure is raised by the Domar weights. This expression actually gives the contribution of sector s

to aggregate efficiency loss. It is the same case for the VA model.
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An immediate conclusion from the above proposition is that the measured TFP gain in the VA

model can be biased away from that in the GO model in either direction. The sign and the size

of the bias depends on how the wedges for intermediate inputs are distributed. A higher variance

for the intermediate input distortions would raise the value-added TFP gain relative to the output

TFP gain. This is because the dispersion of physical productivity is larger in the VA model in

the presence of wedges, which raise the level of efficient TFP. A positive covariance between the

primary input and input distortions also increases the value-added TFP gain. In this case, firms

facing a higher primary input distortion will also have a larger measured value-added productivity,

because firm value-added overstates the contribution of primary factors due to the intermediate

input distortions. On the other hand, a negative covariance lowers the value-added TFP gain

relative to the output TFP gain. In this case, the most constrained firms in the primary input

markets also have lower measured TFP. This reduces the scope for and the gain from reallocation.

Obviously, only if the covariance is negative and large enough could the GO model have a larger

TFP gain. Finally, if the variance of the intermediate input market distortions and its covariance

with the primary market distortions are small, the difference between the two measures will be

small.

In sum, we find that intermediate input market distortions induce measurement errors in in-

ferred firm productivity and wedges, when using value-added data, suggesting another source of

the bias embedded in the VA model. Proposition 6 shows that the bias can go in either direction,

again reflecting the fact that value-added measures already incorporates the amplification effect of

production networks. The size of the bias is also indeterminate. However, Proposition 6 only holds

under restrictive assumptions. The actual bias of the value-added measure is an empirical matter.

This is what we study using micro data in the next section.

5 Applications with Actual Data

In this section we take the models to the data and evaluate the biases in the value-added TFP gain

measure quantitatively.
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5.1 Data

We use the Chinese Annual Survey of Industrial Production (1998-2007) and the Indian Annual

Survey of Industries (1999-2009) for our empirical analysis. The Survey of Industrial Production

from China’s National Bureau of Statistics covers all non-state firms with more than 5 million yuan

(about 0.6 million USD during the sample period) in revenue plus all state-owned firms in the

industrial sector, which includes mining, manufacturing, utilities, and construction. We use the

information on the firm’s industry (at the four-digit level), wage payments,45 employment, output,

value-added, capital stock, and intermediate inputs. Capital stock is defined as the book value of

fixed capital net of depreciation. Labor compensation in the data is systematically under-reported

such that calculated industrial labor share is much smaller than those in the national accounts.46

To correct for the under-reporting, HK raise the wage payments of all firms to make aggregate labor

share calculated from the survey consistent with national accounts data. This adjustment however

will not affect the result so we choose to use the original numbers. Finally, to allow for differences

in worker human capital across firms, we use wage bills as our measurement of labor input instead

of employment.

For India, the main data set is the annual plant-level data from the Annual Survey of Industries

(ASI) conducted by the Indian Ministry of Statistics . We use the annual data from 1999 to 2009.

A few caveats are in order. The sample consists of registered plants employing 10 or more workers

using power, or 20 or more workers without power. Plants with over 100 workers are surveyed

every year, while all other plants with fewer than 100 workers were randomly sampled. We use

the information on the firm’s industry (at the four-digit ISIC level), labor compensation, sales,

intermediate input, and book value of the fixed capital stock. The measure of labor compensation

is the sum of wages, bonuses, and benefits, which used as our measure of labor input. Capital is

measured as the average of the net book value of fixed capital at the beginning and end of a fiscal

year.

45Wage payments include wages, retirement and unemployment insurance, health insurance, housing benefits, and
employee supplementary benefits.

46It can be clearly seen in the data. For example, 59% of all firms report zero unemployment insurance payment,
38% of all firms report zero health insurance payment, while both of which are mandatory by the law.
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5.2 Calibration

Production networks introduce complicated sectoral linkages within an economy. However, our

analysis above shows that we don’t have to consider all the details of the linkages. For our purpose,

we only have to find the correct sectoral weights in the aggregate production function. To measure

the TFP gain, we thus need to assign values to parameters αs, ηs, σs, and the sectoral weights ṽs

and θ̂s. Following HK, we view the U.S. as an undistorted economy and calibrate the elasticities of

output with respect to inputs using U.S. industry shares matched to Chinese and Indian industries.

The U.S. shares are for six-digit NAICS industries. The output elasticity of capital αs is calibrated

as 1 minus the share of labor income in industrial value-added.47 Similarly, the output elasticity of

intermediate inputs is set to the share of intermediates of sectoral gross output.48 To reduce the

burden of assigning different elasticities of substitution for different industries, we assume σ̂s to be

3 for all industries following HK. This implies that σs = 1 + (σ̂s − 1)/ηs would be different across

industries for the VA model if ηs varies across industries. Given the aggregate share of intermediate

inputs in gross output is roughly 0.5, the elasticity of substitution for output is around 5 which is

substantially larger than that for value-added.49

The choice of sectoral weights needs some discussion. If there are distortions across sectors,

neither the Domar weights nor the value-added shares of GDP are the correct weights.50 Given

that U.S. has different consumption shares θs from China and India across industries, theoretically

we should combine the Chinese and India consumption shares and U.S. input-output matrix to

derive the weights. However, to make our VA model as comparable to HK as possible, we use

Chinese and Indian value-added shares for the VA model and use ṽs = θ̂s/ηs to be our output

weights. We admit the choice of weights might bias our measure of aggregate efficiency. However,

it will not have a large effect on the comparison between the two models, because both weights are

47In computing the U.S. labor’s share, each industry’s raw labor share is raised by 3/2 to adjust for the under-
reporting of non-wage benefits in the data, following HK.

48If we calibrate the output elasticities using Chinese and Indian shares, the main conclusion of this paper will
not change. We do not report these results in the paper.

49In results not reported here, we also experiment with assign 3 for σs as in HK and back out the elasticity for
output using the formula, this would lower the efficiency loss in both models but the main conclusions does not
change.

50Remember the Domar weights are given by V =
(
I −B ◦ diag(T ◦−1

M )
)−1

θ. The value-added shares are given
by V ◦ (1− (1− η̄)� TM ). Both of which are affected by distortions in intermediate input use.
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Table 1: Model Calibration

Parameters Targeted Value Mean STD
αs capital’s share of value-added for US industries 0.473 0.143

ηs intermediate’s share of gross output for US industries 0.513 0.100

σ̂s 3, following HK 3 0

σs 1 + (σ̂s − 1)/ηs, according to the theoretical analysis
5.083(China) 1.025(China)
5.091(India) 0.783(India)

θ̂s sector’s value-added share in GDP in China or India
0.0024(China) 0.0050(China)
0.0082(India) 0.0235(India)

ṽs θ̂s/ηs, according to the theoretical analysis
0.0052(China) 0.0127(China)
0.0200(India) 0.0700(India)

Note: Mean and Standard deviation of αs and ηs are computed for 422 Chinese industries in the data.
We do not report the statistics for India but note that they are similar to the Chinese numbers. Though
there are substantially fewer industries (122) in the Indian data. Statistics of θ̂s, ṽs, and θ̂s are reported
separately for China and India as industries have different value-added shares in manufacturing GDP
in the two countries. The statistics are also different across years as we compute sector’s value-added
share in GDP in each year separately. The reported values are for 2005, which is representative of
other years.

biased by the same proportion.51 This is certainly the case when we compare the TFP gain for each

industry instead of at the aggregate level. Our calibration of model parameters is summarized in

Table 1.

5.3 Estimation Results

5.3.1 Estimated TFP Gains from Moving to Efficiency

Figure 1 compares measured aggregate TFP gain in the two models. Panel a) shows that the two

models give different trends in resource allocation for China. There is a clear upward trend in

resource misallocation since 2004 in the VA model, while that in the GO model is more volatile.

However, despite the difference in trends, the GO model does not systematically produce larger or

smaller TFP gain than the VA model, contrast to the finding of Jones (2011, 2013) and Gandhi

et al. (2017).

For India, the estimated TFP gain from removing all distortions is always higher under the out-

51Remember that the output weights are given by Ṽ = (I−B)−1θ. The value-added weights are given by θ̂ = Ṽ ◦η̄.
As η is correctly calibrated, it is clear both weights are biased by the same proportion.
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Figure 1: Aggregate TFP Gain in Different Models
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Figure 2: Sectoral TFP Gain in Different Models
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.

put approach, and the gap averages at 114 percent points in our sample period. If we believe the

GO model is correctly specified, this finding suggests that intermediate input distortions are sub-

stantially larger in India, and using the VA model might be associated with a significant downward

bias in evaluating the actual cost of misallocation.

Next we examine the TFP gain at the sector level. As is shown in Figure 2, the TFP gains

measured in the two models are similar to each other for China. The difference between the two is

less than 5 percentage points for over 99% of the sector-year observations. For India, we continue
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to find significantly larger TFP gains using the GO model than the VA model at the sector level,

with an exception of a few observations that show higher gain under the value-added framework.

Figure 3: Dispersion of Firm Physical Productivity in Different Models
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Note: The dispersion is measured by the standard deviation of log firm productivity.

Despite the amplification effect of production networks (Jones, 2011, 2013), a reason why the

TFP gain in the GO model is not substantially larger than that in the VA model for China is a

lower dispersion of firm TFP measured in the GO model (Gandhi et al., 2017).52 This can be clearly

seen from Panel A of Figure 3, where the standard deviation of log firm TFP in the GO model is

plotted against that in the VA model. The pattern also holds for India in Panel B, with the VA

model producing substantially lower TFP gains.

5.3.2 Dispersion of Estimated Marginal Revenue Products

Our analysis above shows that the TFP gain measured in the VA model will only deviate from that

in the GO model if there are distortions in the use of intermediate input. The lower dispersion in

value-added TFP and the multiplier due to the amplification through input-output linkages will

offset complete with each other in the absence of intermediate input distortions. The fact that the

two measures stay close to each other for China suggests that intermediate input distortions might

be mild. Panel A of Figure 4 confirms this assertion in the data, in which we plot the density of the

marginal revenue product (in logs) of the primary inputs and intermediate inputs relative to their

52Another reason is the boosted elasticity of substitution, as we discuss later.
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Figure 4: Dispersion of Marginal Revenue Products
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, both relative to the industry average.

industry average respectively.53 While the marginal revenue product of primary inputs has a very

dispersed distribution with a variance of 0.525, that of intermediate inputs has a variance of merely

0.029. On the other hand, panel B of Figure 4 shows a much larger dispersion of the marginal

revenue products of intermediate inputs in India, with the variance reaching 0.267. Though the

variance for the marginal revenue product of the primary factors for India is close to that for China.

This helps explain why the output measure differs substantially from the value-added measure in

India.

Proposition 6 also suggests that a negative covariance between the primary input and interme-

diate input distortions would lead to a lower value-added TFP gain. 54 We confirm that a negative

covariance between the primary input and intermediate input distortions does help explain the

much higher output TFP gain in India. The covariance is -0.131 for India and only -0.023 for

China. Table 2 reports the variance-covariance matrix of the marginal revenue products for both

countries.

53They are given by
(
αsηsPsiQsi

Ksi

)αs ( (1−αs)ηsPsiQsi
Lsi

)1−αs
and

∏S
q=1

(
(1−ηs)PsiQsi

Mqsi

)λqs
.

54Why does a negative covariance lead to a lower value-added TFP gain? The reason lies in the bias in inferred firm
productivity and wedges using value-added measures. First, a negative covariance implies that the inferred TFPR
will have a smaller dispersion using value-added measures, given the primary input distortions in the GO model.
Second, for firms facing larger distortions in primary markets, we will also infer a lower value-added productivity.
This means firms that are highly constrained are not particularly productive in terms of measured value-added
productivity. Both biases result in a lower TFP gain in the VA model.
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Table 2: Variance-Covariance Matrix of Marginal Revenue Products

China India
Primary Intermediate Primary Intermediate

Primary 0.525 0.511

Intermediate -0.023 0.029 -0.131 0.267

Note: Marginal revenue products are measured as MRPKαs
si MRPL1−αs

si and∏S
q=1MRPM

λqs
qsi (in logs), both relative to the industry average.

5.3.3 Choice of the Elasticity of Substitution

Figure 5: Aggregate Efficiency Loss in Different Models
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Note: Efficiency losses are measured as
(
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)o
− 1 and
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Y E
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)va
− 1, with σ = 3 in both

models.

HK calibrate the elasticity of substitution with an estimate obtained using gross output data

(Broda and Weinstein, 2006; Hendel and Nevo, 2006). The number they choose is thus more

suitable for the GO model. If we take 3 as the true elasticity of substitution for the GO model,

their calibration procedure suggests an upward bias in the measured cost of misallocation due to

the choice of a higher than intended elasticity. This is because the TFP gain is increasing in the

elasticity of substitution and the VA model should have a lower elasticity of substitution. Given the

average intermediate share of output is roughly 0.5, the value-added elasticity should be around 2

instead of 3. We evaluate this upward bias by assuming that the elasticity is 3 in both models. As

is shown in Figure 5, the difference in aggregate TFP gain between the two models is around 40

percentage points over the sample years for China. At the industry level, the measured TFP gain
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using the VA model is larger for over 95% of industries. For India, the difference between the two

models is substantially narrowed by almost 90 percentage points, even though the VA model still

underestimates the TFP gain compared to the GO model. This finding suggests that the upward

bias in the value-added TFP gain measure due to incorrectly assigned elasticity of substitution is

not trivial.55 The very different results between China and India however shows that it is unclear

whether the bias would bring the value-added estimates closer or further away from the output

estimates.

6 Conclusion

This paper advances the study of the macroeconomic costs of resource misallocation by incorporating

sectoral IO linkages in a gross output model and identifying the conditions under which the existing

estimates based on a value added model will be unbiased. We show that in the absence of distortions

in the use of intermediate inputs, the two frameworks are isomorphic to each other. Specifically, if

there is no distortion in firms’ uses of intermediate inputs, a model with a production network can

be transformed into the value added model, with the two models suggesting the same TFP gain

from the removal of all distortions.

However, when there exist firm-specific intermediate input distortions, the value added model

is incorrectly specified and using value added measures may bias inferences of firm productivity

and distortions. However, this bias may go in either direction, implying that the widely-used VA

framework of HK does not necessarily understate nor overstate the cost of resource misallocation.

Furthermore, we show that the literature using the value added model might also calibrate the

elasticity of substitution to a higher value than is suitable for the gross output model, offering a

potential source of upward bias in the estimated TFP losses from resource misallocation based on

the value added model.

The findings in this paper support the idea that sectors can be viewed either as categories of final

expenditure or value-added. Both models can be correct representations of the same underlying

55Note this conclusion does not rely on the elasticity to be 3. The elasticity is smaller in the VA model for any
value larger than 1. Thus as long as we mistake the output elasticity for the value-added elasticity, there is an upward
bias in the value-added measure.
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data. The findings also suggest that the models can be easily mis-specified or calibrated if we fail to

distinguish the two perspectives explicitly, a point also emphasized in Herrendorf et al. (2013). The

recent surge in the study of production networks provides many insights regarding how the effect of

productivity shocks and market wedges can be amplified by IO linkages. Our study shows that the

measured aggregate effects of resource misallocation across firms might be similar between the gross

output model with production networks and the value added model without, as the amplification

effect via sectoral input-output linkages is already embedded in the measures of value added. The

presence of intermediate input distortions, however, may bias the value added estimates in an

unpredictable direction and with an unknown magnitude. We suggest the use of the GO model,

which can be easily implemented, especially in the studies of evaluating the aggregate efficiency loss

from resource misallocation following HK.
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Appendix

A. Proofs

Lemma 1 It is easy to show as firm’s demand for production factors is proportional to sectoral

factor supply, with the proportionality determined by firm physical productivity and wedges. It then

follows that the sectoral production function inherits the Cobb-Douglas form of the firm production

function and we only have to find the expression for sectoral TFP. We write the sectoral production

function as follows

Qs = TFPs ·
(
Kαs
s L

1−αs
s

)ηs ( S∏
q=1

Mλqs
qs

)1−ηs

.

On the other hand, we define sectoral value productivity as

TFPRs ≡
PsQs

(Kαs
s L

1−αs
s )ηs

(∏S
q=1M

λqs
qs

)1−ηs ,
Combining these two definitions, we have

TFPs ≡
Qs

(Kαs
s L

1−αs
s )ηs

(∏S
q=1M

λqs
qs

)1−ηs =
TFPRs

Ps
.

Plugging in CES price aggregator Ps and similarly noticing the prices of varieties is given as Psi =

TFPRsi
Asi

, we have the results presented in Lemma 1.

Proposition 1 With the Domar weights, we can solve for the sectoral intermediate input

demand as,

Mqs =
1

TMs

λqs(1− ηs)
PsQs

Pq
=

1

TMs

bqs
vs
vq
Qq.

Plugging the allocation of production factors described above and in the text into the sectoral

production function and taking logs, we have sectoral production function

Qs = TFPs ·
(
(βKsK)αs(βLsL)1−αs

)ηs [ S∏
q=1

(
1

TMs

bqs
vs
vq
Qq

)λqs]1−ηs
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Taking logs of the sectoral production functions and stacking them in vector form,

q̄ = ā+ ωq + δK logK + δL logL+B′q̄,

where q̄ is a vector of logQs, δK a vector of αsηs, δL a vector of (1 − αs)ηs, and ωq is a vec-

tor of the allocation terms whose sth element is given by αsηs log βKs + (1 − αs)ηs log βLs + (1 −

ηs)
∑S

q=1 λqs log
(

1
TMs

bqs
vs
vq

)
. The vector of log output is solved as

q̄ = (I −B′−1(ā+ ωq + δK logK + δL logL)

Notice that we can write Cs = θsQs
vs

. Taking logs and stacking it into a vector, we have

c̄ = ωc + q̄,

where c̄ is the vector of logCs and ωc a vector of log θs
vs

. Using the final good production function,

we have,

log Y = θ′c̄ = θ′[ωc + (I −B′−1(ā+ ωq + δK logK + δL logL)]

which leads to a Cobb-Douglas aggregate production function with the factor shares for capital and

labor are given by θ′−1δK and θ′−1δL. Since the value-added shares δK + δL are given by (I −B′)1

where 1 is the vector of ones. It is easy to show that θ′(I − B′−1(δK + δL) = 1, such that the

aggregate production function has constant returns to scale.

Proposition 3 Although the model has a complicated structure, it turns out we can calibrate

the parameters in a step-by-step procedure. First note that equating the allocation of capital within

a sector in the two models requires the following condition,

PY siYsi
1+τKsi∑S
q=1

PY qiYqi
1+τKqi

=
Ksi

Ks

=

PsiQsi
1+τKsi∑S
q=1

PqiQqi
1+τKqi
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Obviously, this condition holds only if PY siYsi ∝ PsiQsi. From the definition of firm value-added

and making use of the optimality condition for intermediate input use, we have

PY siYsi =

(
1− 1− η

1 + τMsi

)
PsiQsi

Firm value-added will be proportional to firm output only if all firms within a sector face the same

distortion τMsi. For the moment, denote the distortion for all firms within a sector τMs.

From the pricing rule of firm products, we can relate firm’s nominal output to productivity and

inputs in the two models as follows:

PsiQsi ∝

Asi (Kαs
si L

1−αs
si

)ηs ( S∏
q=1

M
λqs
qsi

)1−ηs


σs−1
σs

,

PY siYsi ∝
(
ÂsiK

α̂s
si L

1−α̂s
si

) σ̂s−1
σ̂s

,

where the term in the brackets on the right hand side is the firm-level production function in

the respective model. We have established that firm value-added should be proportional to gross

output. Combined with the above conditions we reach a proportional relationship between firm

production in the two models. Intermediate inputs show up in the production of gross output but

not value-added. We replace intermediate inputs using the optimality condition for intermediate

input use. For the VA model to be consistent with data, the following conditions must hold,

(
AsiK

αs
si L

1−αs
si

) σsηs
σsηs+(1−ηs) ∝

(
ÂsiK

α̂s
si L

1−α̂s
si

) σ̂s−1
σ̂s

From this condition, we establish that α̂s = αs and σ̂s = 1 + ηs(σs − 1). Firm value-added

productivity satisfies the condition, Âsi ∝ A
1
ηs
si .

We next look at the allocation at the sector level. Note that a sector’s value-added to GDP

ratio in the VA model is simply θ̂s. In the GO model, it equals to the product of the Domar weight

and the value-added to output ratio. The sectoral weight on final good production in the VA model
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can be calibrated as

θ̂s =

(
1− 1− ηs

1 + τMs

)
vs,

where τMs is the constant intermediate input distortion for firms within the sector. The allocation

of capital across sectors can be equated across the two models as long as

1
TKs

αsηsvs∑S
q=1

1
TKq

αqηqvq
=
Ks

K
=

1

T̂Ks
α̂sθ̂s∑S

q=1
1

T̂Kq
α̂qθ̂q

Since firm value-added is proportional to firm gross output, the sectoral level wedges are equated

across the two models, TKs = T̂Ks. Together with αs = α̂s, as we have shown, the above condition

holds only if θ̂s = ηsvs, which requires τMs = 0.

Proposition 6 The proof involves computing sectoral TFP and efficient TFP as the mean

of a log-normally distributed random variable. We show how to do this for the more complicated

sectoral value-added TFP. Note that if ηs = 0.5, we can approximate 1 − 1−ηs
1+τMsi

= 1
2
(1 + τMsi).

Plugging this into sectoral value-added TFP, we have

T̂FP s = (Nsxs)
1

ηs(σs−1) ,

where

xs =
1

Ns

Ns∑
i=1

(
Asi

(1 + τY si)ηs(1 + τMsi)
(1−ηs)− 1

σs−1

)σs−1

, 1 + τY si = (1 + τKsi)
αs(1 + τLsi)

1−αs

Given the log-normal distribution of firm productivity and wedges and making use of the properties

of normal distributions, we have log Asi

(1+τY si)ηs (1+τMsi)
(1−ηs)− 1

σs−1
follows a normal distribution with

the variance is given by56

σ2
a +

1

4
σ2
y +

(
1

2
− 1

σs − 1

)
σ2
m − σay −

(
1− 2

σs − 1

)
σam +

(
1

2
− 1

σs − 1

)
σym

56The mean of this random variable is given by the mean of logAsi. The exact value of the mean does not matter
as it cancels out in the computation.
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This means

(
Asi

(1+τY si)ηs (1+τMsi)
(1−ηs)− 1

σs−1

)σs−1
also follows a log-normal distribution. We can then

approximate xs as the mean of the log-normal distribution. Repeating this procedure for other TFP

measures. We have the sectoral TFP gains given in the text.

B. Data Appendix

B.1 Data Cleaning

In the Chinese industrial enterprise data from the country’s National Bureau of Statistics (NBS), we

first drop all observations with input or output data missing or having negative values. We also drop

firms employing less than 8 workers. After that, we trim the 1% tails of marginal revenue products

and TFPQ in each year, relative to the industry mean. Consistently, in the Indian enterprise data

from the Annual Survey of Industries (ASI), we first drop all observations with input or output data

missing or having negative values. After that, we trim the 1% tails of marginal revenue products

and TFPQ in each year, relative to the industry mean.

Table 3 reports the number of plants used to compute the aggregate TFP loss for each country

and year.

Table 3: Number of Plants

China India
Year # of plants Year # of plants
1998 96,296 1999 10,376
1999 104,520 2000 11,757
2000 102,522 2001 14,995
2001 116,864 2002 16,575
2002 125,264 2003 17,057
2003 142,290 2004 22,936
2004 199,657 2005 19,864
2005 203,003 2006 21,920
2006 228,365 2007 22,421
2007 258,486 2008 20,087
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B.2 Additional Results

Table 1: Dispersion of TFPQ and TFPR: China

TFPQ TFPR
Output Value-added Output Value-added

Year S.D. 90-10 75-25 S.D. 90-10 75-25 S.D. 90-10 75-25 S.D. 90-10 75-25
1998 0.476 1.240 0.659 1.718 4.409 2.333 0.349 0.916 0.486 0.742 1.952 1.024
1999 0.485 1.264 0.677 1.789 4.634 2.447 0.348 0.914 0.489 0.742 1.950 1.043
2000 0.484 1.266 0.679 1.790 4.640 2.490 0.341 0.896 0.476 0.733 1.931 1.022
2001 0.478 1.249 0.681 1.772 4.600 2.490 0.341 0.894 0.474 0.727 1.912 1.021
2002 0.482 1.268 0.685 1.800 4.664 2.542 0.339 0.885 0.471 0.723 1.895 1.004
2003 0.484 1.272 0.695 1.819 4.748 2.573 0.336 0.882 0.463 0.725 1.909 1.007
2004 0.461 1.217 0.654 1.748 4.578 2.466 0.321 0.840 0.444 0.709 1.864 0.990
2005 0.474 1.258 0.675 1.815 4.750 2.576 0.325 0.852 0.453 0.723 1.904 1.013
2006 0.488 1.296 0.702 1.833 4.839 2.593 0.331 0.871 0.464 0.730 1.926 1.027
2007 0.495 1.311 0.716 1.857 4.906 2.646 0.334 0.876 0.467 0.740 1.948 1.048

Notes: TFPR is defined as PsiQsi

(Kαs
si L

1−αs
si )

ηs
(∏S

q=1M
λqs
qsi

)1−ηs and PY siYsi
Kαs
si L

1−αs
si

for the output and VA model

respectively. TFPQ is defined as Qsi

(Kαs
si L

1−αs
si )

ηs
(∏S

q=1M
λqs
qsi

)1−ηs and Ysi
Kαs
si L

1−αs
si

for the output and VA

model respectively. Reported statistics are computed for the log of firm values relative to industry
means. S.D. is standard deviation. 90-10 is the difference between 90th and 10th percentile, and
75-25 is that between 75th and 25th percentile. Statistics are computed for each industries and
then summed up with industries weighted by their output shares and value-added shares.
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Table 2: Dispersion of TFPQ and TFPR: India

TFPQ TFPR
Output Value-added Output Value-added

Year S.D. 90-10 75-25 S.D. 90-10 75-25 S.D. 90-10 75-25 S.D. 90-10 75-25
1999 0.620 1.617 0.934 1.387 3.660 2.171 0.338 0.860 0.471 0.636 1.638 0.898
2000 0.630 1.659 0.948 1.391 3.698 2.151 0.342 0.876 0.479 0.632 1.617 0.861
2001 0.623 1.625 0.936 1.388 3.690 2.080 0.348 0.895 0.461 0.633 1.653 0.855
2002 0.566 1.498 0.820 1.270 3.410 1.815 0.358 0.905 0.496 0.638 1.700 0.862
2003 0.579 1.525 0.794 1.311 3.465 1.921 0.345 0.854 0.469 0.610 1.637 0.819
2004 0.585 1.550 0.802 1.329 3.565 1.729 0.353 0.885 0.463 0.613 1.593 0.855
2005 0.557 1.477 0.802 1.365 3.720 1.987 0.323 0.834 0.442 0.576 1.553 0.770
2006 0.578 1.586 0.820 1.331 3.397 2.012 0.338 0.892 0.460 0.623 1.702 0.714
2007 0.550 1.411 0.810 1.300 3.336 1.998 0.336 0.876 0.465 0.613 1.512 0.824
2008 0.610 1.618 0.921 1.375 3.556 2.132 0.356 0.959 0.472 0.622 1.696 0.780

Notes: TFPR is defined as PsiQsi

(Kαs
si L

1−αs
si )

ηs
(∏S

q=1M
λqs
qsi

)1−ηs and PY siYsi
Kαs
si L

1−αs
si

for the GO and VA model

respectively. TFPQ is defined as Qsi

(Kαs
si L

1−αs
si )

ηs
(∏S

q=1M
λqs
qsi

)1−ηs and Ysi
Kαs
si L

1−αs
si

for the GO and VA

model respectively. Reported statistics are computed for the log of firm values relative to industry
means. S.D. is standard deviation. 90-10 is the difference between 90th and 10th percentile, and
75-25 is that between 75th and 25th percentile. Statistics are computed for each industries and
then summed up with industries weighted by their output shares and value-added shares.

Table 3: Aggregate TFP Gain

China India
Year Output VA Var(τM) Cov(τM ,τY ) Year Output VA Var(τM) Cov(τM ,τY )
1998 109.0 104.6 0.039 -0.031 1999 157.9 65.7 0.260 -0.110
1999 111.0 105.1 0.033 -0.027 2000 164.0 69.2 0.297 -0.152
2000 107.5 103.5 0.031 -0.023 2001 194.9 71.2 0.296 -0.126
2001 107.1 102.1 0.037 -0.025 2002 199.3 72.6 0.336 -0.163
2002 117.5 102.5 0.029 -0.023 2003 180.3 65.0 0.291 -0.115
2003 107.5 107.0 0.036 -0.021 2004 175.4 61.4 0.299 -0.118
2004 104.1 107.9 0.037 -0.026 2005 149.0 57.8 0.255 -0.121
2005 108.4 111.5 0.031 -0.022 2006 224.7 76.1 0.226 -0.076
2006 114.5 118.4 0.031 -0.022 2007 158.3 61.6 0.246 -0.101
2007 117.0 124.1 0.033 -0.023 2008 196.0 61.4 0.328 -0.161

Note: Output and VA indicate aggregate TFP gains computed as 100 ×
(
Y E

Y

)o
− 100 and

100 ×
(
Y E

Y

)va
− 100. Var(τM) is the variance of the variance of the marginal revenue products

of intermediate inputs (in logs relative to industry means). Cov(τM ,τY ) is the covariance between
the variance of the marginal revenue products of intermediate inputs and primary inputs (in logs
relative to industry means). The two statistics are averaged over industries with industry output
share as weights.

48


	Introduction
	Two Theoretical Approaches
	The Gross Output (GO) Model
	The Value-Added (VA) Model

	Model Comparison
	Calibration of the VA model
	Aggregate TFP Gain

	Empirical Measures of TFP Gain
	Inference of Firm Productivity and Wedges
	Measured TFP Gain

	Applications with Actual Data
	Data
	Calibration
	Estimation Results
	Estimated TFP Gains from Moving to Efficiency
	Dispersion of Estimated Marginal Revenue Products
	Choice of the Elasticity of Substitution


	Conclusion



