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Liquidity provision—intermediation that lowers the cost of buying and selling assets–

is a central function of the financial system. In this paper, we show theoretically and

empirically that liquidity providers bear a negative exposure to market volatility. Since

market volatility carries a large negative price of risk in option markets (Carr and Wu,

2008), the negative exposure of liquidity providers explains why liquidity provision earns

a substantial premium (Krishnamurthy and Vissing-Jorgensen, 2015), why this premium

increases with volatility (Nagel, 2012), and why liquidity contracts during crises (Brun-

nermeier, 2009). By integrating liquidity and volatility, our results provide a new per-

spective on the risks and returns to liquidity provision.

Why do liquidity providers have a negative exposure to market volatility? The basic

problem liquidity providers face is adverse selection by investors with private informa-

tion. In standard models (e.g. Kyle, 1985), the quantity of private information in the mar-

ket is constant and known to liquidity providers. It therefore poses no risk to them. While

this is a simple assumption, it is clearly unrealistic. Volatility, the observed end-product of

the flow of information, is highly time-varying, both at the level of individual assets and

for the market as a whole. Moreover, the volatilities of individual assets covary strongly

with each other and with market volatility. This suggests that flows of information, both

public and private, vary substantially over time and in a synchronous manner.

To capture this co-movement, we extend the model of Kyle (1985) by making the

amounts of market and private information uncertain and positively correlated. Because

of this correlation, market volatility informs liquidity providers about the amount of pri-

vate information they face. In particular, an increase in market volatility leads them to

estimate a greater amount of private information.

As in Kyle (1985), liquidity providers’ estimate of private information determines how

much they adjust prices in the direction of the net order flow they receive. If their estimate

is too low, they adjust prices too little, and because of adverse selection trade too much

with informed investors. They then accumulate long positions at prices that are too high

and short positions at prices that are too low.

Now consider what happens when there is a positive shock to market volatility. The

shock increases liquidity providers’ estimate of private information. Liquidity providers

learn that they had not adjusted prices enough and likely traded too much with informed

investors. Prices immediately come to reflect this. Liquidity providers see their long
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positions fall and their short positions rise, taking losses across the portfolio. The opposite

happens when a negative shock hits: liquidity providers’ estimate of private information

declines, their longs rise and their shorts fall. In sum, liquidity providers have a negative

exposure to market volatility.

In existing models of liquidity provision, which focus on inventory risk (e.g., Stoll,

1978; Grossman and Miller, 1988), a liquidity provider’s risk is idiosyncratic. To explain

the liquidity premium these models assume that some friction prevents the liquidity

provider from diversifying this risk away. While this may apply in some cases, partic-

ularly for small and thinly-traded assets, it is unlikely to explain the liquidity premium

among large and heavily-traded assets.

In our model liquidity providers face a systematic risk (fluctuations in market volatil-

ity) that cannot be diversified away. We thus need to specify how this risk is priced by the

economy’s stochastic discount factor. Consistent with the strong evidence from option

prices, we assume that market volatility carries a large negative price of risk. This implies

that liquidity providers earn a positive premium for the negative volatility risk exposure

they bear. The premiums for liquidity and volatility are thus one and the same.

To test the model, we need to proxy for liquidity providers’ portfolios, which are not

directly observed. As in Nagel (2012), the model shows that they are mimicked by short-

term reversals (e.g., Lehmann, 1990), a trading strategy that buys assets whose price has

fallen and shorts assets whose price has risen. The reason for this is that a large price

change reflects a large net order flow, requiring the liquidity provider to take a large

position. We thus use reversals to proxy for the returns to liquidity provision.

We build reversal portfolios using daily U.S. stock returns from 2001 to 2020 (i.e., the

period since “decimalization,” when liquidity provision became competitive; see Bessem-

binder, 2003). Each day we sort stocks into quintiles by market cap and deciles by the

day’s return, normalized by its rolling standard deviation as implied by our model. Also

as implied by our model, we weight the portfolios by dollar volume to proxy for the size

of liquidity providers’ holdings. This gives us fifty portfolios sorted by size and return.

We further construct long-short reversal strategies within each size quintile by buying the

low-return deciles and shorting the high-return deciles: Lo–Hi, 2–9, 3–8, 4–7, and 5–6. The

outermost-decile strategies carry the strongest reversal signal and therefore capture the

most intensive liquidity provision. This allows us to test our model in the cross section.
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Consistent with the model, and with the prior literature, the reversal strategies earn

substantial returns that are not explained by their exposure to market risk. For instance,

among large stocks, which account for the bulk of the market value, the Lo–Hi reversal

strategy has an average five-day return of 20 bps, or about 10% per year, and an annual-

ized Sharpe ratio of 0.5.

Figure 1 plots the average return of this strategy over rolling 60-day forward-looking

windows against the VIX index, which measures the risk-adjusted expected volatility of

the S&P 500 over the next month. The plot shows that VIX strongly predicts the reversal

strategy’s subsequent return: the two series have correlation of 46%. A predictive regres-

sion shows that a one-point increase in VIX predicts a 9-bps higher reversal return, a large

increase relative to the strategy’s 17-bps average return. These findings confirm the main

finding of Nagel (2012) in a setting with only large stocks.

According to our model, this predictability is due to the VIX also predicting the rever-

sal strategy’s systematic volatility risk, which results from its negative beta to expected

market volatility. We estimate this volatility risk by running 60-day rolling regressions

of the reversal strategy’s return on contemporaneous changes in the squared VIX index

(we square VIX to convert it into a variance, following the model). We then take the an-

nualized volatility of the regression’s fitted value. The volatility of the fitted value gives

the reversal strategy’s systematic volatility risk, the component of its return that is due

to its exposure to market volatility. As predicted by the model, the average beta in this

regression is strongly negative: a one-point increase in VIX-squared is associated with a

20-bps contemporaneous drop in the reversal strategy’s return.1

Panel B of Figure 1 plots the large-cap reversal strategy’s systematic volatility risk

against VIX. The figure shows that the two series track each other very closely, including

during the 2008 financial crisis and the 2020 Covid crisis. This shows that liquidity provi-

sion is especially risky during crises. The relationship is also strong in normal times and

the overall correlation is 58%. Importantly, the volatility risk of the reversal strategy has

the same pattern as its average return in Panel A. Thus, the price of liquidity is highest

when providing liquidity is riskiest, as predicted by our model.

Our main analysis tests the model’s predictions on the full cross section of reversal

1This is not due to market beta, which is close to zero. Moreover, the VIX beta is unchanged when we
control for the market return.
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portfolios. We first show that the long-short reversal strategies’ average returns display

the model’s predicted pattern: within each size quintile, the outermost Lo–Hi strategy

displays the largest return, the innermost 5–6 strategy the smallest, and the others lie in

between. We also confirm that these returns are not explained by market risk.

Next, we test the model’s central prediction that reversal strategies’ volatility risk

(their VIX betas) can explain their average returns. We again estimate volatility betas

by regressing each strategy’s return on the contemporaneous change in VIX-squared (we

also control for the market return to remove any market beta). We find that the volatility

betas are strongly negative; they are largest for the Lo–Hi strategies (−0.2 in the case of

large-caps) and converge toward zero for the 5–6 strategies. Thus, consistent with the

model, the reversal strategies’ volatility betas display the same pattern as their average

returns. This is the cross-sectional analog of the time-series result in Figure 1.

We use Fama-MacBeth regressions to formally test whether volatility risk explains the

reversal strategies’ average returns. The estimated premium for the volatility betas is a

large and significant−1.08% per unit of beta per five days. This number is consistent with

the highly negative variance risk premium found in the prices of index options. The VIX-

squared betas shrink the pricing errors of the portfolios dramatically. The pricing error

of the large-cap Lo–Hi strategy drops from 17 bps to −2 bps and becomes statistically

insignificant. Similarly, the second-largest quintile’s Lo–Hi pricing error shrinks from 13

bps to −1 bps. Only the very smallest stocks’ Lo–Hi pricing error remains large and

significant. These stocks, which account for less than 0.2% of total market value, appear

to behave quite differently than the rest. Besides this exception, the reversal strategies’

average returns are explained well by their volatility betas. In particular, the pricing error

of an overall liquidity provider portfolio, which we construct by combining the reversal

strategies as implied by the model, drops from 17 bps to 0.8 bps. Volatility risk thus

explains the overall liquidity premium in the cross section of stocks.

Since market variance is traded directly in the index options market, we can use in-

dex option returns to estimate its price of risk and test if it explains the reversal returns.

Following the literature, we do so by using the VIX squared, which equals the price of a

basket of options that replicates an S&P 500 variance swap. From the returns on this bas-

ket, we estimate that the price per unit of VIX-squared beta in option markets is −1.03%,

which is very close to our estimate from the equity reversal strategies.
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We set the price of VIX-squared risk to this restricted value (and the premium for

market risk to the market’s average excess return) and calculate the reversal strategies’

pricing errors.2 The restricted pricing tests perform very similarly to the unrestricted

Fama-MacBeth regressions, reflecting the similar price of risk estimates. For instance, the

pricing errors of the largest and second-largest quintiles’ Lo–Hi portfolios decrease from

0.17 bps and 13 bps to −1 bps. As before, only the pricing error of the smallest stocks’

Lo–Hi portfolio remains large and significant. The pricing error of the overall liquidity

portfolio drops from 17 bps to 1.5 bps.

Thus, small-stock reversals stand out from the others. While their VIX betas are nega-

tive, they are too small to explain their outsized returns. This suggests that undiversified

inventory risk may play a role. To analyze this, we extend our model to incorporate in-

ventory costs, as in the prior literature. Moreover, we allow the costs to increase with VIX,

as suggested by Nagel (2012). This makes reversal returns sensitive to VIX, giving them

a negative VIX beta. However, the model shows that this sensitivity is transitory: the

impulse response to a VIX shock must shrink to zero by the time the liquidity provider

disposes of the inventory. This is indeed what we find for the small-stock reversal strat-

egy: their initial drop from a positive VIX shock reverts back to zero after a few days.

The pattern is very different for medium and large stocks. Their response to VIX

shocks is permanent, with no sign of decay well beyond liquidity providers’ holding

periods. This result is implied by our model. A VIX shock that increases adverse selection

has a permanent impact on liquidity providers’ returns because it signals a decrease in the

fundamental value of their holdings. Thus, our model explains both the average returns

and impulse responses of large- and medium-stock reversals, while those of small stocks

require the additional ingredient of inventory risk as in Nagel (2012).

Our final set of results revolves around the model’s assumption that the quantities of

private and market information fluctuate together over time. Although the quantity of

information is not observable, we can proxy for it with the volatility it creates. Therefore,

as a test of this assumption we check whether market volatility and average idiosyncratic

volatility are positively correlated. We find that they clearly are: the two track each other

extremely closely with a correlation of 92%.

2This is equivalent to including the VIX-squared portfolio and the market as test assets and requiring
that they be priced with no error, see, e.g., Constantinides, Jackwerth and Savov (2013).
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Second, we create a new set of test assets by using the co-movement of a stock’s id-

iosyncratic volatility with market volatility as a proxy for the strength of the co-movement

of its private information with market information. Thus, we sort stocks into quintiles

based on the strength of the co-movement of their idiosyncratic volatility with market

volatility, and then construct reversal portfolios within the quintiles. Consistent with the

model, we find that the reversal portfolios in the high co-movement quintiles have much

more negative market volatility betas and higher average returns than stocks in the low-

co-movement quintiles. We then repeat all of our pricing tests on these “co-movement-

sorted” portfolios. We find that their volatility betas do a very good job explaining their

average returns, with an estimated price of risk that is again close to the one estimated

from options prices. Thus, consistent with our model, the variance risk premium explains

the liquidity premium in the cross section of co-movement portfolios.

The rest of this paper is organized as follows. Section 1 reviews the literature, Section

2 presents the model, Section 3 introduces the data, Section 4 discusses the empirical

results, and Section 5 concludes.

1 Related literature

Our paper brings together the large literatures on liquidity and volatility. The theoretical

literature on liquidity emphasizes the role of asymmetric information (e.g. Hellwig, 1980;

Grossman and Stiglitz, 1980; Diamond and Verrecchia, 1981; Kyle, 1985; Glosten and Mil-

grom, 1985; Admati and Pfleiderer, 1988). In these models, liquidity providers know how

much asymmetric information they face. This allows them to always break across a suf-

ficiently diversified portfolio. The same is true in models where asymmetric information

varies over time but is still known in equilibrium (Foster and Viswanathan, 1990; Eisfeldt,

2004; Collin-Dufresne and Fos, 2016). Our theoretical contribution is to make the amount

of asymmetric information unknown to liquidity providers and correlated across assets.3

This exposes liquidity providers to undiversifiable volatility risk.

The presence of undiversifiable risk allows our model to generate a liquidity premium

without relying on financial frictions. This contrasts with inventory models, which as-

3Consistent with such correlation, Chordia, Roll and Subrahmanyam (2000) and Hasbrouck and Seppi
(2001) find strong co-movement in illiquidity across assets. Similarly, Campbell et al. (2001) and Herskovic
et al. (2016) find strong co-movement in volatilities across assets and with the market, as do we.

6



sume imperfect diversification (e.g., Stoll, 1978; Grossman and Miller, 1988; Duffie, 2010;

Nagel, 2012). It also contrasts with the literature on intermediary asset pricing, which

assumes segmentation between financial institutions and outside investors. This could

be due to an equity capital constraint (e.g. He and Krishnamurthy, 2013; Brunnermeier

and Sannikov, 2014; Rampini and Viswanathan, 2019), a Value-at-Risk (VaR) constraint

(Gromb and Vayanos, 2002; Brunnermeier and Pedersen, 2008; Adrian and Shin, 2010)

or a collateral constraint (Kiyotaki and Moore, 1997; Geanakoplos, 2003; Gertler and Kiy-

otaki, 2010; Moreira and Savov, 2017). As emphasized by Holmström and Tirole (1998),

in these models liquidity is only scarce at the level of the aggregate claim. In our model

there is no segmentation and liquidity is scarce at the level of the individual asset due

to the co-movement in the amounts of asymmetric information across assets. This leads

to the unique prediction that the premium for liquidity is explained by the variance risk

premium with the same price of risk that prevails in other markets.

The empirical literature finds a liquidity premium in the form of higher average re-

turns for illiquid assets (Amihud and Mendelson, 1986; Brennan and Subrahmanyam,

1996; Easley and O’Hara, 2004). Chordia, Sarkar and Subrahmanyam (2004) show that

aggregate liquidity is decreasing in volatility. Amihud (2002) shows that an asset’s liq-

uidity impacts its expected return. Pástor and Stambaugh (2003) show that aggregate

liquidity is a priced factor. Acharya and Pedersen (2005) provide an equilibrium model

to capture this fact. Our contribution is to connect the liquidity premium to the variance

risk premium both empirically and theoretically.

Starting with Lehmann (1990) and Lo and MacKinlay (1990), the literature has used

short-term reversals to proxy for the returns to liquidity provision. Hameed, Kang and

Viswanathan (2010) show that these returns are high following stock market downturns.

Nagel (2012) shows that they are increasing in VIX. Collin-Dufresne and Daniel (2014)

interpret them as due to slow-moving capital as in Duffie (2010). Our contribution is to

explain reversal returns with the variance risk premium.

The literature on the variance risk premium focuses on option markets. Carr and Wu

(2008); Todorov (2009) and Bollerslev and Todorov (2011) show that investors pay a large

premium to hedge aggregate volatility risk. Bollerslev, Tauchen and Zhou (2009) and

Drechsler and Yaron (2010) show that the variance risk premium predicts aggregate stock

returns. Manela and Moreira (2017) extend this result back to 1890. Bao, Pan and Wang
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(2011) and Longstaff et al. (2011) find parallel results for bonds. Drechsler and Yaron

(2010), Drechsler (2013), and Dew-Becker et al. (2017) provide models that explain the

behavior of the variance risk premium based on macroeconomic risk. Our contribution is

to apply the insights of this literature to the pricing of liquidity.

2 Model

We present a model similar to Kyle (1985) with the key difference that liquidity providers

do not know how much private information they face.

There are three dates: 0, τ ∈ (0, 1), and 1. The risk-free rate is normalized to zero at

each date. There are N risky assets i = 1, . . . N in zero net supply. For each asset there are

unit masses of informed traders and liquidity traders. There is also a competitive fringe

of liquidity providers that are active in all assets. Trading takes place on dates 0 and τ.

Final payoffs are realized on date 1 and are given by

pi,1 = vi + vi, (1)

where vi is a constant and vi ∼ N (0, σv,i) is an idiosyncratic shock that is uncorrelated

across assets. One can easily add an aggregate shock, but we leave it out as orthogonal

to the mechanism we are studying. The value of vi is known by everyone ahead of time.

Since vi is idiosyncratic, vi is the price of the asset before any trading takes place. Thus,

σv,i is the volatility of asset i’s price over the whole time period.

On date 0 informed traders learn vi, whereas others do not. We follow Nagel (2012)

and assume that informed traders demand yi units of the asset, where

yi = φvi. (2)

The parameter φ controls how aggressively informed traders trade in the direction of their

private signal vi.4 The uninformed liquidity traders demand zi units of the asset, where

zi ∼ N
(

0, σ2
z,i

)
is uncorrelated across assets.

We assume liquidity providers share risks frictionlessly with the rest of the economy,

i.e. there is no market segmentation. As a result, they price date-1 payoffs using the
4Kyle (1985) is a version of this model with a monopolistic informed trader, which endogenizes φ.
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aggregate stochastic discount factor (SDF) Λ1. The price of asset i is:

pi,t = Et[Λ1 pi,1] = EQ
t [pi,1] for t ∈ {0, τ} , (3)

where Q is the risk-adjusted (i.e., risk-neutral) probability measure corresponding to Λ1.

By taking expectations under Q we obtain expressions that look like those in Kyle (1985),

but with the difference that they take risk premia into account. This is important because

we are interested in deriving the risk premium for liquidity provision.5

As in Kyle (1985), liquidity providers cannot distinguish between the trades of in-

formed traders and liquidity traders. They only observe their sum, net order flow:

xi = yi + zi = φvi + zi. (4)

We depart from Kyle (1985) by assuming that liquidity providers do not know the

volatility of the informed traders’ signal, σv,i. This means they do not know how much

private information is in the market. Moreover, we assume that the total amount of pri-

vate information across all assets fluctuates. We capture this by writing σ2
v,i as the sum of

a common component σ2
v and an idiosyncratic component ς2

v,i:

σ2
v,i = kσ2

v + ς2
v,i, (5)

where k > 0 is the loading of idiosyncratic variance on the common factor.6 The common

factor creates variation in the total amount of private information across assets, which

makes their idiosyncratic volatilities co-move, as is the case empirically. We further as-

sume that the total amount of private information covaries positively with the amount of

information about the aggregate market σ2
m:7

σ2
v = σ2

m + εv, (6)

where εv is orthogonal to σ2
m and all other shocks. As with σ2

v , market participants do not

5The literature typically assumes that all agents are risk neutral and is thus silent on risk premia.
6In Section 4.8 we further allow stocks to have different loadings ki on the common factor.
7We can write the aggregate market payoff as: pm,1 = vm + vm where vm ∼ N(0, σm). It is not important

for us to separate public and private information about the market, so vm includes both.
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know σ2
m and must form expectations about it, Eτ[σ2

m], at each point in time.

For simplicity, we assume liquidity providers observe the variance of order flow

σ2
x,i = φ2σ2

v,i + σ2
z,i. (7)

They could achieve this for instance by observing order flow across a large number of

similar assets. This simplifies their learning problem without changing the underlying

mechanism. The important thing is that liquidity providers cannot use the cross section

to infer how much total private information σ2
v is in the market. To ensure this holds, we

assume there is also a common factor in the quantity of liquidity demand:

σ2
z,i = σ2

z + ς2
z,i. (8)

By observing the cross section of order flow, liquidity providers can infer the combination

φ2kσ2
v + σ2

z of the common factors but cannot separate out the amount of private informa-

tion σ2
v from the amount of liquidity demand σ2

z . They therefore remain uncertain about

the amount of private information, and update their estimates when news arrives.

We assume such news arrives at the interim date τ. In particular, public news causes

liquidity providers to update their expectations of future market volatility, Eτ[σ2
m]. By

equation (6), liquidity providers also revise their estimate of the amount of private in-

formation, Eτ[σ2
v ]. To focus on the impact of this shock, we assume there are no other

changes in asset demand on date τ, hence prices adjust for informational reasons only.

The following proposition solves for prices as a function of order flow xi.

Proposition 1. The price of asset i on date t ∈ {0, τ} is given by

pi,t = vi + φ
EQ

t

[
σ2

v,i

]
σ2

x,i
xi. (9)

All proofs are in Internet Appendix IA.2. As in Kyle (1985), prices are sensitive to

order flow xi because it contains information about fundamental values due to trading

by informed investors. However, unlike in Kyle (1985), liquidity providers do not know

exactly how much information xi contains because this depends on the amount of private

information σ2
v,i, which they do not observe. As a result, they optimally set the sensitivity

10



of prices based on their expectation of this quantity, EQ
t [σ

2
v,i]. Note that this expectation

is risk-adjusted, which is important because σ2
v,i can covary with the SDF Λ1. In fact,

it covaries positively with market variance, σ2
m, which has a large negative price of risk

(investors strongly dislike high market volatility). Thus, Proposition 1 generalizes Kyle

(1985) by accounting for stochastic volatility and its large price of risk.

Liquidity providers absorb the order flow of other investors, so their portfolio holds

−xi in each asset. If xi was observable empirically, we could use it to directly analyze the

risks liquidity providers face. Unfortunately, in general it is not.8 Luckily, Proposition 1

shows that we can proxy for xi using the change in an asset’s price on date 0: ∆pi,0 =

pi,0 − vi. We can use it to characterize liquidity providers’ portfolios as follows:

Lemma 1. The position of liquidity providers in asset i, −xi, is proportional to the date-0 decline

in the price of the asset:

−xi = − 1
φ

 σ2
x,i

EQ
0

[
σ2

v,i

]
∆pi,0 (10)

Hence, liquidity providers hold a portfolio of reversals: they take long positions in assets whose

price has declined and short positions in assets whose price has increased.

Lemma 1 shows that reversal strategies are mimicking portfolios for the portfolios

of liquidity providers.9 The next step is to characterize their returns. As Proposition 1

shows, an asset’s price is exposed to volatility shocks. The sign and magnitude of this

exposure are a function of the asset’s date-0 order flow xi:

Lemma 2. Let ∆pi,τ = pi,τ − pi,0 be the change in asset i’s price between date 0 and τ. Then

∆pi,τ =
φxi

σ2
x,i

(
EQ

τ

[
σ2

v,i

]
− EQ

0

[
σ2

v,i

])
. (11)

Thus, an asset’s exposure to volatility shocks is proportional to its date-0 order flow xi.

Lemma 2 shows that a positive shock to expected volatility increases the price of an

asset that had positive date-0 order flow and decreases the price of an asset that had
8Volume is observable but has no sign. It also captures gross, not net, trading and there is no clear

mapping between the two. Thus, volume is a poor proxy for net order flow.
9If there are also public news on date 0, then the proxy becomes imperfect. In Internet Appendix IA.1

we allow for such news and show that the model’s main predictions carry through.
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negative date-0 order flow. This is because an increase in expected volatility implies that

there was more private information in the market than liquidity providers estimated at

date 0. To reflect this change in the informativeness of past order flow, liquidity providers

adjust prices further in the direction of their date-0 order flow.

Since order flow itself is positively related to the initial price change ∆pi,0, Lemma

2 shows that positive volatility shocks induce price continuation. And since liquidity

providers hold reversals, continuation causes them to incur losses. Liquidity providers

thus have a negative exposure to volatility shocks:

Lemma 3. The change in the value of liquidity providers’ position in asset i from date 0 to τ is

−∆pi,τxi = −
φx2

i
σ2

x,i

(
EQ

τ

[
σ2

v,i

]
− EQ

0

[
σ2

v,i

])
. (12)

Thus, liquidity providers are short a portfolio of variance swaps: they incur losses if there is an

increase in EQ
[
σ2

v,i

]
(asset i’s variance swap rate), and earn a profit if it falls.

Lemmas 1 and 3 show that we can think of liquidity creation in terms of two trading

strategies: reversals and variance swaps.10 These strategies seem unrelated, as reversals

are a bet against private information and variance swaps are a bet on volatility. Yet, they

are tightly connected in our model, since the level of volatility is determined by the flow

of information, which includes the private information liquidity providers are betting

against. Thus, liquidity providers have a built-in negative exposure to volatility risk.

Since liquidity providers risk-adjust returns using the aggregate SDF (they are fully

diversified), any premium they demand for holding reversal portfolios can only be due to

an exposure to undiversifiable risk. As asset payoffs vi are uncorrelated, one might think

there is no such undiversifiable risk here. In this case liquidity providers would compete

the cost of liquidity provision down to zero. However, this is not correct. Because liquid-

ity providers are negatively exposed to assets’ idiosyncratic volatilities, and idiosyncratic

volatilities load on the common factor σ2
v , liquidity providers are exposed to shocks to

this undiversifiable risk factor. Moreover, since σ2
v loads strongly on market volatility σ2

m

(Eq. 6), and market volatility shocks carry a high risk price in the SDF, so do shocks to

10A variance swap on asset i pays out the asset’s realized variance, σ2
v,i. The variance swap rate on date t

is the risk-adjusted expectation of this payoff, EQ
t

[
σ2

v,i

]
.
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σ2
v . Thus, liquidity providers have a large exposure to a highly priced risk factor—market

volatility—for which demand a large risk premium.

The following proposition solves for asset i’s market volatility beta on date τ:

Proposition 2. The beta of liquidity providers’ position in asset i to risk-adjusted expected market

volatility EQ
τ

[
σ2

m
]

is

βi,σm =
Cov

(
−∆pi,τxi, EQ

τ

[
σ2

m
]
− EQ

0
[
σ2

m
])

Var
(

EQ
τ [σ2

m]− EQ
0 [σ2

m]
) = −

φkx2
i

σ2
x,i

(13)

= − k
φ

(
σx,i

EQ
0 [σ

2
v,i]

∆pi,0

)2

< 0. (14)

Thus, all of liquidity providers’ positions, long (−xi > 0) and short (−xi < 0), have negative

market volatility betas. When market volatility rises, the reversal strategy loses on both sides: long

positions fall and short positions rise.

Proposition 2 shows that liquidity providers portfolios’ are negatively exposed to

market volatility risk. Note again that this is the case even though assets’ final payoffs

are completely uncorrelated with each other and with the market return. Nevertheless,

liquidity providers portfolios have unambiguously negative market volatility betas. The

reason is that even though assets’ final payoffs are idiosyncratic, their volatilities have

a common component. Since liquidity providers are effectively short variance swaps

(Lemma 3), this common component exposes them to undiversifiable risk.

A large literature in volatility and option pricing documents that market volatility

risk commands a very large negative price of risk, i.e. periods of large volatility spikes

are priced as bad times by market participants. Formally, this means that risk-adjusted

expected market volatility is higher than objective (i.e., statistical) expected volatility:

EQ
t
[
σ2

m
]
> Et

[
σ2

m
]
. Equivalently, the price of a market variance swap,EQ

t
[
σ2

m
]
, is higher

than its expected payoff, Et
[
σ2

m
]
. Since both the price and payoff converge to σ2

m as t→ 1,

the price of the variance swap drifts down over time (under objective expectations):

E0

[
EQ

t

[
σ2

m

]]
< EQ

0

[
σ2

m

]
for t > 0. (15)

This expected decrease in the price of the variance swap is the insurance premium the

13



buyer of the variance swap pays to hedge positive shocks to market volatility over the in-

tervening period. In the literature this premium is called the variance risk premium. Since

providing liquidity in our model is effectively shorting variance swaps, the premium liq-

uidity providers charge—the liquidity premium—reflects the variance risk premium they

should earn on the variance swaps.

Since the aggregate SDF prices market volatility shocks, the liquidity premium for

an asset is given by its market volatility beta multiplied by the variance risk premium.11

Summing up across all liquidity providers’ positions, we get that the expected payoff of

liquidity providers is given by the market volatility beta of their portfolios multiplied by

the variance risk premium:

Proposition 3. The expected payoff on liquidity providers’ portfolios from date 0 to date τ is

E0

[
N

∑
i=1
−∆pi,τxi

]
=

(
N

∑
i=1

βi,σm

)(
E0

[
EQ

τ

[
σ2

m

]]
− EQ

0

[
σ2

m

])
> 0. (16)

Thus, the liquidity premium is positive and proportional to the variance risk premium.

Proposition 3 shows that the expected return to liquidity provision—the liquidity

premium—is positive and determined by the market volatility risk of liquidity providers’

portfolios, i.e. their market volatility beta. Liquidity providers earn positive returns not

because they are constrained or under-diversified, as is often assumed in the literature,

but because they are exposed to systematic volatility risk. Of course, liquidity providers

could use other markets, such as the variance swap market, to hedge out this volatility

risk, but then they would have to hand over the premium they are earning for liquidity

provision to the seller of the variance swap. Thus, a liquidity premium emerges here in a

perfectly integrated market.

2.1 Market segmentation

We now extend the model to incorporate market segmentation in the form of inventory

costs, which are emphasized in the literature.

11A simple SDF that prices market variance shocks is: Λ1 = exp
(
−γσ2

m
)

/E0
[
exp

(
−γσ2

m
)]

, where γ < 0
controls the price of market volatility risk and Λ1 is normalized so that E0 [Λ1] = 1. Since γ < 0, high-
variance states are high-marginal utility states, so investors are willing to pay a premium to hedge them.
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As in Nagel (2012), we model inventory costs by assuming that liquidity providers

demand compensation for holding inventory of a given asset. This compensation is

over and above any risk premium on the asset due to its covariance with the economy’s

stochastic discount factor. Thus, in contrast to our main model, in which the pricing of

an asset is determined only by the economy’s SDF, the presence of inventory costs means

that liquidity providers are partly segmented from the rest of the economy. This could be

due to asymmetric information, moral hazard, imperfect competition, or other frictions.

We assume that inventory costs are quadratic: the marginal cost of holding −xi units

of asset i from date 0 to date t is −tγi,txi. Hence, the pricing condition (3) becomes

pi,t = EQ
t [pi,1] + (1− t) γi,txi. (17)

Asset i trades at a discount to its risk-adjusted expected payoff if liquidity providers are

long (−xi > 0), and at a premium if they are short (−xi < 0). The discount or premium

declines over time as the remaining holding period (1− t) shrinks. As it does, it compen-

sates liquidity providers for their inventory costs and causes a reversal in the price of the

asset equal to the inventory cost.

Inventory costs can vary both across assets and over time. Nagel (2012) focuses on

variation over time driven by the VIX index. This is represented here by setting γi,t =

γEQ
t
[
σ2

m
]
. Collin-Dufresne and Daniel (2014), on the other hand, focus on specialized

liquidity providers who are under-diversified and hence bear idiosyncratic risk. This is

captured by setting γi,t = γEQ
t

[
σ2

v,i

]
. Since the main model in this paper has no inventory

costs, it is nested by γi,t = 0. The following proposition solves the extended model and

shows how inventory costs affect the predictions of the main model.

Proposition 4. The model with inventory costs implies the following:

i. The position of liquidity providers in asset i, −xi, is proportional to the date-0 decline in the

price of the asset:

−xi = − ∆pi,0

γi,0 +
φEQ

0 [σ
2
v,i]

σ2
x,i

. (18)
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ii. The change in the value of liquidity providers’ position in asset i from date 0 to τ is

−∆pi,τxi = −x2
i

[
φ

σ2
x,i

(
EQ

τ

[
σ2

v,i

]
− EQ

0

[
σ2

v,i

])
− τγi,0 + (1− τ) (γi,τ − γi,0)

]
.

(19)

Part (i) of Proposition 4 shows that inventory costs induce liquidity providers to take

smaller positions. Equivalently, they require a larger initial price change to hold a given

position. To the extent that inventory costs are not observed and vary by asset, they

introduce measurement error when we proxy for liquidity providers’ portfolios using

reversals. To address this issue in our empirical analysis, we split the sample by size, as

inventory costs are likely to be higher for small stocks.

Part (ii) of Proposition 4 shows that inventory costs affect the returns on liquidity

providers’ positions in two ways. The first is that the value of their position in asset

i drifts up over time at the rate γi,0x2
i to compensate them for the cost of carrying the

inventory. As expected, this drift is over and above any compensation for risk.

The second effect is through shocks to the remaining inventory cost at date τ,

(1− τ) (γi,τ − γi,0). An increase in the remaining inventory cost reduces the value of

liquidity providers’ position on impact so that it can appreciate going forward and in

doing so recoup the higher inventory cost. By date 1 (τ → 1), all inventory costs have

been paid out and the value of the position is back to its fundamental value. Hence,

inventory cost shocks have a transitory impact that dissipates by date 1.12

Proposition 5. The market volatility beta of liquidity providers’ position in asset i from date 0 to

date τ is given by

β0→τ
i,σm

= −x2
i k

[
φ

σ2
x,i

+ (1− τ) βγi,σm

]
, (20)

where βγi,σm is the market volatility beta of asset i’s inventory cost γi,t. Thus, the contribution of

inventory costs to liquidity providers’ volatility betas decreases with τ and goes to 0 as τ → 1.

Proposition 5 shows that inventory costs can make liquidity providers’ market volatil-
12Of course, liquidity providers’ payoff net of inventory costs is affected by surprise changes in realized

inventory costs, but by date 1 liquidity providers no longer hold any inventory, hence this has no effect on
the date-1 value of their positions.
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ity betas more negative for small τ, but do not change the volatility beta over the full

holding period as τ → 1. The short-run effect requires inventory costs to be increasing in

market volatility, γ > 0, a condition that is satisfied in the two formulations we consid-

ered above. In both cases, a positive shock to market volatility on date τ raises inventory

costs and lowers the value of liquidity providers’ position, thereby giving it a more neg-

ative volatility beta. As τ increases towards 1, however, the remaining inventory cost

runs out and the value of the position converges toward its fundamental value. Thus,

inventory costs have no impact on volatility betas over the full holding period.

Because inventory costs are proportional to the holding period, even their short-run,

transitory contribution to volatility betas is small. In contrast, the negative volatility betas

due to uncertain private information are larger and do not decay with τ because they are

driven by information about the fundamental value of the asset.

Proposition 5 thus allows us to separate the contributions of private information and

inventory costs to the returns to liquidity provision. Private information exposes liquid-

ity providers to volatility shocks, for which they demand compensation equal to their

volatility beta multiplied by the variance risk premium. Inventory costs do not create

exposure to volatility shocks over the full holding period. In addition, they can account

for any excess returns to liquidity provision over and above the fair compensation for

volatility risk. We formalize this with the following proposition:

Proposition 6. The expected payoff of liquidity providers’ portfolio from date 0 to τ is:

E0

[
N

∑
i=1
−∆pi,txi

]
=

(
N

∑
i=1

β0→τ
i,σm

)(
E0

[
EQ

τ

[
σ2

m

]]
− EQ

0

[
σ2

m

])
+ τγi,0. (21)

The liquidity premium exceeds the variance risk premium associated with liquidity providers’ port-

folio by the inventory cost. As τ → 1, the portfolio’s volatility beta is independent of inventory

costs, so inventory costs only enter the expected payoff through the term γi,0.

Proposition 6 shows that as τ → 1, the component of liquidity providers’ expected

payoff that is due to inventory costs is independent of their volatility betas or the variance

risk premium. This component is only the part of the payoff that exceeds its fair compen-

sation for variance risk. The reason is that with inventory costs liquidity providers are

segmented from other investors in the economy, so the average return they earn can ex-
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ceed the fair premium based on the covariance of their payoffs with the economy’s SDF.

In contrast, in our main model, markets are fully integrated, so liquidity providers’ aver-

age returns are given by their market volatility betas. Thus, we can infer the importance

of inventory costs by looking at the average returns to liquidity provision in excess of

their variance risk premium.

2.2 Summary of empirical predictions

We now summarize the key empirical predictions that emanate from the model. We test

these predictions in Section 4.

Prediction 1. Stocks’ idiosyncratic volatilities share a common component that covaries positively

with the market portfolio’s volatility.

This prediction is captured by Equation 6. We test it by analyzing the time-series rela-

tionship between the average of stocks’ idiosyncratic volatilities and the VIX index, which

gives the (risk-adjusted) expected market volatility. We test this prediction in Section 4.1,

and in Section 4.8 we go further by showing that cross-sectional differences in this rela-

tionship line up with differences in the volatility betas and returns of reversal portfolios,

as predicted by Eqs. (14) and (16).

Prediction 2. Liquidity providers hold a portfolio of reversals: they buy stocks whose price has

fallen and sell stocks whose price has risen. The magnitude of their position in a stock is propor-

tional to its day-0 price change normalized by its volatility and weighted by its order flow variance.

Prediction 2 follows from Lemma 1. Since we do not directly observe liquidity providers’

portfolios, we use this prediction and data on returns to construct reversal portfolio as an

empirical proxy and use it to test the model.13 Lemma 1 further requires us to weight

the reversal portfolios by the variance of order flow (σ2
x,i). Since we do not observe this

variance either, we instead weight by dollar volume which, like order flow variance, is

unsigned. We test the model on the resulting portfolios. We describe the portfolio con-

struction in detail in Section 3.

Prediction 3. Reversals portfolios have negative market volatility betas; the more extreme portfo-

lios have more negative betas.
13The extended model in Internet Appendix IA.1 shows that reversals become a noisy but still unbiased

proxy for liquidity providers’ portfolios in the presence of public news about fundamentals.
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Prediction 3 follows from Proposition 2. We estimate the reversal portfolios’ mar-

ket volatility betas and test if they are negative and larger for the more extreme reversal

portfolios, which are associated with greater liquidity provision. We implement this by

running regressions of the reversal strategy returns on contemporaneous innovations in

the squared VIX index as Proposition 2 implies. We test this prediction in Section 4.3.

Prediction 4. The expected return of reversals due to their volatility risk equals their market

volatility beta times the variance risk premium. Any expected return in excess of this is explained

by inventory costs or other market frictions.

Prediction 4 is given by Proposition 3 for the baseline model and Proposition 6 for

the inventory cost generalization. This prediction allows us to separate the part of rever-

sals’ expected return that is compensation for volatility risk from whatever remains due

to inventory costs or other market frictions. Since volatility risk is traded in the options

market, we test if liquidity provision is integrated with the rest of the market by compar-

ing the price of volatility risk we estimate from the cross-section of reversal returns with

the one that prevails in the options market. We test this prediction in Sections 4.4 and 4.5.

Prediction 5. The expected returns of reversals co-move with the variance risk premium, i.e.,

the variance risk premium predicts reversals’ returns in the time series. In the cross section this

predictive coefficient is proportional to reversals’ volatility betas.

Prediction 5 is also given by Propositions 3 and Proposition 6. The variance risk pre-

mium for the period 0 to τ is given by E0

[
EQ

τ

[
σ2

m
]]
− EQ

0
[
σ2

m
]
. Thus, by Eq. 16, a rever-

sal’s predictive coefficient is its market volatility beta.14

Prediction 6. Reversal portfolios’ betas remain negative and constant over liquidity providers’

entire holding period. Equivalently, the impact of market volatility shocks on reversal portfolios’

returns does not dissipate over liquidity providers’ holding period. In contrast, under a pure

inventory cost model market volatility shocks have a transitory impact on reversal returns, so

reversals’ market volatility betas decay to zero by the end of liquidity providers’ holding period.

Prediction 6 follows from Proposition 5. In our model, a positive market volatility

shock is associated with an increase in the quantity of private information in the mar-

ket, which negatively affects the expected fundamental value of the reversal portfolios.
14Nagel (2012) finds evidence for this prediction by showing that the return of a reversal portfolio is

predicted by VIX. Nagel (2012) interprets this evidence through the lens of an inventory cost model. Our
model provides a novel explanation for this finding and relates it to other cross-sectional results.
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Hence, volatility shocks have a permanent impact on reversal returns. In contrast, in

inventory-cost models volatility shocks only affect the inventory cost of assets while held

by liquidity providers, and thus have no impact on their fundamental value. Thus, Pre-

diction 6 allows us to separate the impact of volatility shocks on private information—the

mechanism of our model—from the inventory-cost mechanism that has been the focus of

the literature. We test this prediction in Section 4.7.

3 Data and summary statistics

In this section we describe our data and how we construct the reversal portfolios.

Stock screens: Our main data is from CRSP. We restrict the sample to ordinary common

shares (share codes 10 and 11) listed on NYSE, NASDAQ, and AMEX. We exclude penny

stocks and micro-caps by removing observations with a share price below the 20th per-

centile.15 We also exclude stocks that are within one day of an earnings announcement as

in Collin-Dufresne and Daniel (2014). Earnings announcements are public-news events

and as shown in Internet Appendix IA.1 this introduces measurement error when we use

reversals as a proxy for the returns to liquidity provision.16

Sample selection: The sample is daily from April 9, 2001 to May 31, 2020, which gives a

total of 4,815 trading days. The starting date corresponds to “decimalization,” the transi-

tion from fractional to decimal pricing on the New York Stock Exchange and NASDAQ.

As Bessembinder (2003) shows, decimalization saw a large decrease in effective trading

costs, consistent with increased competition among liquidity providers. This implies that

the returns to liquidity provision prior to decimalization reflect monopolistic rents rather

than risk exposures, hence we exclude this period from the analysis.

Portfolio formation: We construct a set of reversal portfolios following Prediction 2 of

our model. Each day, we first sort stocks into quintiles by market capitalization. We do so

because small stocks exhibit higher inventory costs and other forms of market segmenta-

tion, allowing us to differentiate our model as discussed in Section 2.1.

We form ten decile portfolios within each size quintile by sorting stocks by their nor-

15We use a relative cutoff because many stocks (e.g., Citigroup) fell below $5 during the 2008 financial
crisis. Our results are robust to an absolute cutoff of $5, as is commonly used.

16Consistent with this, the literature on the post-earnings announcement drift shows that earnings an-
nouncements do not produce reversals but continuation (e.g. Bernard and Thomas, 1989).
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malized return. To compute a stock’s normalized return, we first market-beta-adjust it

and then normalize it by dividing it by its standard deviation over a 60-day rolling win-

dow. Market-beta adjusting the returns removes the influence of market movements on

the composition of the reversal portfolios. Since market movements are a form of public

news, this makes the portfolios better proxies for the returns to liquidity provision, as

discussed in Section IA.1. In addition, market-beta-adjusting ensures that the returns on

the portfolios are not compensation for market risk.

Normalizing the returns by dividing by their standard deviation is also motivated

by the model (see Prediction 2). Formally, the amount of liquidity provision in a stock,

as proxied by the position of the liquidity provider, is proportional to the stock’s price

change scaled by its variance (see Lemma 1). Normalizing thus ensures that we are not

just picking up more volatile stocks.

Within each decile portfolio we weight stocks by their dollar volume. As discussed in

Prediction 2, this further improves the mapping to our model. Since volume is unsigned,

it serves as a rough proxy for the variance of order flow, which captures the scale of

liquidity provision in a stock. We compute dollar volume over the same 60-day rolling

window as the standard deviation.

We follow Nagel (2012) and hold each portfolio for five trading days in most of our

tests. This horizon is also consistent with the evidence in Hendershott and Seasholes

(2007) that NYSE specialists (liquidity providers) earn most of their returns within five

days of entering in a position. As we will see, the same is true of our reversal port-

folios. Note that although liquidity provision in recent years has been dominated by

high-frequency trading, lower-frequency liquidity provision remains essential since im-

balances between ultimate buyers and sellers often persist for several days. The presence

of a reversal premium supports this view.

Reversal strategies: We form long-short reversal strategies that buy the low-return port-

folio and sell the high-return portfolios within each size quintile. In particular, the Lo–Hi

reversal strategy buys the first normalized return decile (“Lo”) and sells the tenth nor-

malized return decile (“Hi”) in a given size quintile. The 2–9, 3–8, 4–7, and 5–6 reversal

strategies are constructed analogously for the inner deciles.

Liquidity provider portfolio: In some tests, we report results for an aggregate portfolio

that mimics the portfolios of liquidity providers in our model. The portfolio is constructed
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by weighing the long-short reversal strategies by the product of their normalized return

and dollar volume, again as implied by Lemma 1. Thus, the liquidity provider portfolio

implements the same weighting across portfolios as within them.

Aggregate factors: We use the excess CRSP value-weighted market return as the market

risk factor. We compute excess returns by subtracting the risk-free rate (the return on the

one-month T-Bill). We obtain the VIX index from CBOE. The VIX index is a model-free

measure of the implied volatility of the S&P 500 at a 30-day horizon (as proposed by

Britten-Jones and Neuberger, 2000). Specifically, the squared VIX index is the price of

a basket of options whose payoff replicates the realized variance of the S&P 500 over

the following 30 calendar days. It therefore maps closely to the risk-adjusted expected

market variance in our model, EQ
t
[
σ2

m
]
. In particular, following Propositions 2 and 3, and

as discussed in Predictions 1–6, we use changes in the squared VIX (divided by 100 for

legibility) as our variance risk factor.

The VIX return: We use data on S&P 500 index options from OptionMetrics to calculate

the return to holding the VIX basket (this data ends on December 31, 2019). We use this

return to restrict the price of volatility risk as implied by Proposition 3. It is necessary to

calculate it from underlying options data, rather than simply use the percentage change

in the VIX index, because the VIX basket changes each day (to keep its horizon constant).

The percentage change in VIX is thus not an investable trading strategy. We solve this

problem by calculating the return to holding the same VIX basket from one day to the

next. This is an investable strategy and hence a valid return; we call it the VIX return.

To construct the VIX return, we first replicate the VIX index by reconstructing the

VIX basket from the OptionMetrics data and following the methodology provided by the

CBOE.17 The replication is very accurate: our replicated VIX has a 99.83% correlation with

the official VIX published by CBOE. The VIX return is the daily percentage change in the

price of the basket used to construct the replicated VIX.

3.1 Summary statistics

Table 1 presents summary statistics for the reversal strategies. Each panel contains a five-

by-five table focusing on a given characteristic. Each row of the table represents a given

17See the CBOE white paper at https://www.cboe.com/micro/vix/vixwhite.pdf. Since October 2014,
the CBOE uses weekly options as well as the traditional monthly ones. We follow their approach exactly.
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size quintile (Small, 2, 3, 4, and Big) and each column represents a given long-short port-

folio formed across the normalized return deciles (Lo–Hi, 2–9, 3–8, 4–7, and 5–6). Each

reversal strategy, corresponding to an entry in the tables, contains 125 stocks on average.

Panel A of Table 1 looks at market capitalizations. The average stock in the largest

quintile is worth $81.75 billion, almost three orders of magnitude larger than the smallest

quintile and two orders larger than the middle quintile. The largest stocks account for

95.42% of the total value of all the portfolios, making them the by far the most important

quintile in economic terms. The smallest stocks account for less than 0.14%.

Panel B of Table 1 looks at idiosyncratic volatility, which was used to normalize the

returns of individual stocks before sorting them into portfolios. Here we report its aver-

age value within each reversal strategy. Given our normalization, idiosyncratic volatility

is relatively flat across return deciles. At the same time, it varies significantly across size

quintiles: the largest stocks have idiosyncratic volatility between 1.71% and 2.01% while

for the smallest stocks it is between 3.74% and 5.96%. This reflects the well-known fact

that volatility is decreasing in size (Campbell et al., 2001).

Panel C of Table 1 shows the illiquidity measure of Amihud (2002), which is calcu-

lated as the absolute value of a stock’s return divided by its dollar volume (multiplied

by 106 for readability). This illiquidity is measured on the portfolio formation date and

averaged across all stocks in the portfolio and over time for the portfolio itself. As ex-

pected, illiquidity is strongly decreasing in size: the largest stocks have illiquidity that is

four orders of magnitude smaller than for the smallest stocks. Liquidity is thus relatively

more abundant among the largest stocks.

Panel D of Table 1 shows sorting-day returns, i.e., the sorting-day return of the long

leg of the portfolio minus that of the short leg (without normalizing). By construction,

all the sorting-day returns are negative. Since small stocks are more volatile than large

stocks, their sorting-day returns are substantially larger in magnitude. For instance, the

average sorting-day return of the Lo–Hi strategy is−13.55% for the smallest stocks versus

−5.20% for the largest ones. By construction, the sorting-day returns decline in magni-

tude as we move toward the inner deciles until they are close to zero for the 5–6 strategies.

This reflects the fact that the Lo–Hi strategy carries the strongest reversal signal and there-

fore captures the most intensive liquidity provision.

Panels E and F of Table 1 look at turnover. Panel E shows average turnover over the
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60 days prior to portfolio formation, while Panel F shows turnover on the day of portfolio

formation. From Panel E, average turnover is largely flat across both return deciles and

size quintiles. By contrast, Panel F shows that sorting-day turnover is significantly higher

(by about 40%) for the Lo-Hi strategy than the 5-6 strategy, with a monotonically decreas-

ing pattern in between. This result is consistent with the model, where high order flow

induces large price changes as liquidity providers filter out the information it contains.

Volume, which unlike order flow is unsigned, is therefore increasing in the magnitude

of price changes. Panels E and F thus validate the use of volume as an unsigned proxy

for order flow. By combining it with returns, which are signed, our reversal strategies

capture the portfolios of liquidity providers.

Table 2 provides summary statistics on the VIX return and related measures. From

Panel A, the VIX return averages −1.53% per day. This number is in line with estimates

of the variance premium from the literature (e.g. Carr and Wu, 2008; Bollerslev, Tauchen

and Zhou, 2009; Drechsler and Yaron, 2010).18 It reflects the very large price investors are

willing to pay to hedge variance risk.

Unlike the VIX return, changes in VIX and VIX-squared have a mean of zero. This il-

lustrates the fact that the VIX basket is re-balanced each day to keep its maturity constant,

hence the change in VIX is not a valid return and does not convey the variance premium.

This is why we compute the VIX return, which is the percentage change in the price of a

given VIX basket.

The VIX return is also significantly more volatile than changes in VIX and VIX-squared

(its standard deviation is 17.86% versus 1.82% and 1.53%, respectively). The VIX return

is also more right-skewed, as shown by the difference between its mean and median

(−1.53% versus −5.08%) and 1st and 99th percentiles (−25.33% versus 71.29%). The rea-

son for this is that the VIX return is a percentage change while the changes in VIX and

VIX-squared are simple first differences. Consistent with this, the percentage change in

VIX-squared (bottom row) has a standard deviation of 16.28%, which is similar to that of

the VIX return.

Panel B of Table 2 reports results from regressions of the VIX return on VIX changes,

VIX-squared changes, and their percentage counterparts. These regressions allow us to

18The variance premium is typically measured as the realized variance of the S&P 500 over 30 calendar
days divided by the squared VIX index. Since it can only be computed at 30-day horizons, comparing it to
the VIX return requires dividing by 21 (the number of trading days in a typical 30-day period).
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calculate the VIX return premium per unit of beta, i.e. the price of risk. We will use this

price of risk in Section 4.5 to test whether the price of variance risk in option markets can

account for the returns to liquidity provision as implied by our model.

Given the greater volatility of the VIX return, its per-unit price of risk is smaller than

its total premium. From columns (1) and (2), the VIX return has a beta of 7.939 with

respect to VIX changes and 7.404 with respect to VIX-squared changes. Thus, the implied

price of risk is −0.207% (= −1.53/7.404) per unit of VIX-squared beta per day. This

translates to −1.03% at the five-day horizon of our reversal strategies.

The VIX return is highly correlated with VIX changes (75%) and VIX-squared changes

(53%), as reflected in the R2 in Panel B columns (1) and (2). It is even more correlated with

their percentage change counterparts (86% and 89%, respectively). The explanation for

the difference is again the fact that the VIX return is a percentage change. In addition,

the VIX return incorporates the day’s realized variance (the strategy’s “dividend”), while

VIX and VIX-squared changes reflect only changes in expected future variance (again

because the basket is rebalanced). Overall, the table shows that innovations in VIX and

VIX-squared capture most of the variation in the VIX return.

4 Empirical Results

4.1 Idiosyncratic volatility and market volatility

We begin by verifying that idiosyncratic volatility and market volatility are closely re-

lated, consistent with Prediction 1. This is shown graphically in Figure 2, which plots

an aggregate measure of idiosyncratic volatility against the VIX index. We calculate this

measure from the beta-adjusted returns of individual stocks, which takes out the market

component to give us a clean measure of idiosyncratic volatility. Each day, we square

these returns, value-weight them across stocks, and take the square root. To make id-

iosyncratic volatility comparable to VIX, which is forward-looking, we average it over

the following 21 trading days (about 30 calendar days), and annualize it.

The figure shows that idiosyncratic volatility and VIX are highly related and share

many of the same fluctuations. For instance, like VIX, idiosyncratic volatility rose sharply

during the 2008 financial crisis and even more so during the 2020 Covid crisis. Thus,
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consistent with Prediction 1, the idiosyncratic volatilities of stocks have a large common

component that is strongly correlated with market volatility.19 In our model, this common

component represents a systematic risk to liquidity providers.

Our model (Propositions 2 and 3) requires us to use a forward-looking measure of

expected risk-adjusted variance. Since idiosyncratic variance is an ex-post realized out-

come, the appropriate forward-looking measure for testing the model is the squared VIX.

4.2 Reversal strategy returns

Table 3 shows the post-formation returns of the reversal strategies at the five-day horizon.

From Panel A, the Lo–Hi strategy among the largest stocks delivers a five-day return of

20 bps. From Panel B, this return is highly significant, with a t statistic of 4.47 (based on

Newey-West standard errors with five lags to correct for overlap in the returns). In terms

of magnitude, the return is about 10% per year, which is economically large. From Panel

C, the portfolio’s standard deviation is 2.84 and from panel D, the resulting annual Sharpe

ratio is 0.5, slightly higher than the market Sharpe ratio in our sample (0.41).

As our model predicts (Predictions 3 and 4), the reversal strategy returns decline as

we move from the Lo–Hi strategy toward the inner deciles, reaching near zero for the

5–6 strategy. This is true among all size quintiles. Intuitively, the inner deciles reflect less

intensive liquidity provision and therefore earn lower premiums.

The reversal strategies’ returns increase as we move from large stocks toward small

stocks (Avramov, Chordia and Goyal, 2006, find the same result). For the smallest stocks,

the Lo–Hi strategy delivers a five-day return of 78 bps, which is highly significant. The

strategy’s volatility is higher, 6.18%, but nevertheless the Sharpe ratio is also higher, 0.9.20

Thus, providing liquidity for very small stocks earns higher returns.

Panels E and F of Table 3 report the CAPM alphas and associated t statistics of the

reversal strategies. They are obtained from the time-series regressions:

Rp
t,t+5 = αp + βpRM

t,t+5 + ε
p
t,t+5, (22)

19Table IA.1 in the Internet Appendix presents a formal test. It shows that VIX predicts idiosyncratic
volatility at least as well or better than market volatility.

20The difference is partly due to bid-ask bounce (Roll, 1984), which can be seen as part of the return to
liquidity provision. In any case, it does not impact large stocks, whose bid-ask spreads are very small.
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where Rp
t,t+5 is the cumulative excess return of portfolio p from t to t + 5 and RM

t,t+5 is the

cumulative excess market return over the same period. As in Panel B, the t statistics are

based on Newey-West standard errors with five lags.

The panels show that the CAPM cannot account for the returns of the reversal strate-

gies. In all cases, the CAPM alphas are about the same as the raw average returns and

remain significant whenever the raw returns are significant. For instance, the Lo–Hi strat-

egy for the largest stocks has an alpha of 17 bps, only slightly lower than its 20-bps av-

erage return. The associated t-statistic is 3.90, strongly rejecting the hypothesis that the

CAPM prices this strategy. The same is true across all size quintiles in the Lo–Hi and

2–9 strategies. Overall, the table shows a robust reversal premium and is consistent with

liquidity being expensive on average.

4.3 Reversal strategy volatility risk

We now test Prediction 3 of our model directly. Specifically, we test whether the reversal

strategies are exposed to volatility risk by running the following regressions:

Rp
t,t+5 = αp + βp,VIX∆VIXt,t+5 + βp,MRM

t,t+5 + ε
p
t,t+5. (23)

These regressions have the same form as (22), but with the change in VIX-squared in-

cluded alongside the market return. This is the right factor to use according to our model.

It is the empirical counterpart to the change in the risk-adjusted market variance in Propo-

sition 2. As before, we compute t-statistics based on Newey-West standard errors with

five lags to account for the overlap in the returns.

Table 4 presents the results. Panel A reports the betas from a specification with only

VIX-squared changes. Focusing on the Lo–Hi strategy first, the VIX betas are uniformly

negative and highly statistically significant, consistent with Prediction 3. They are also

very similar across size quintiles, both in terms of magnitude and statistical significance.

Also consistent with Prediction 3, the betas decline steadily as we move toward the inner

decile strategies. They are still mostly significant for the 2–9 strategies but only about half

as large; they are very close to zero and insignificant for the 5–6 strategies.

The estimated beta for the large-stock Lo–Hi strategy is −0.20. This means that the

strategy loses an amount equal to its average premium whenever VIX-squared rises by
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one point. From Table 2, the standard deviation of VIX-squared changes is 1.53 points per

day, which works out to about 3.42 points per five days. Hence, a one-standard deviation

increase in VIX-squared over the holding period wipes out nearly three and a half times

the strategy’s average return. This shows that the volatility risk betas of the Lo-Hi reversal

strategies are economically large.

Panel B of Table 4 adds the market return as a control. This addresses a potential

concern that the negative VIX exposure reflect market risk rather than volatility risk. The

table shows that this is not the case. The betas with respect to VIX-squared changes re-

main very similar to those in Panel A. The strong correlation between the market and

VIX lowers the t statistics somewhat but most remain highly significant. The beta of the

large-stock Lo–Hi strategy remains identical (−0.20) and highly significant.

Panel C of Table 4 looks directly at the market betas from the bivariate regression in

Panel B. The market betas of the Lo–Hi strategies are very small and insignificant. The

market beta of the large-stock Lo–Hi strategy is almost exactly zero. This shows that the

strategies are neutral with respect to market risk as intended by their construction.

Overall, the results of Table 4 show that the reversal strategies have large and robust

negative volatility risk betas, confirming Prediction 3 of the model.

4.4 Fama-MacBeth regressions

We now test Prediction 4 of the model, which says that if there is no market segmenta-

tion in liquidity provision the expected returns of the reversal strategies should equal the

product of their volatility risk betas and the price of variance risk. In this section we treat

the price of variance risk as a free parameter that we recover from the cross section of re-

versal strategies. In the next section we sharpen the analysis by testing whether the price

of variance risk in the cross section of reversal strategies and option markets are the same

such that these markets are integrated.

We run two-stage Fama-MacBeth regressions to test whether volatility risk exposure

can explain the average returns of the reversal strategies. The first stage estimates the be-

tas as in Section 4.3 (see Equation (23)). The betas then enter the second-stage regression:

Rp
t,t+5 = λ0,t + λt,VIXβ

p
VIX + λt,Mβ

p
M + ε

p
t,t+5. (24)
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This regression provides time series of estimated factor premia λt,VIX and λt,M. Follow-

ing the Fama-MacBeth methodology, we use the time series variation in the factor premia

to calculate their standard errors, again with a Newey-West correction to account for the

overlap in the returns. To assess the performance of our asset pricing model, we report

root-mean-squared pricing errors for all portfolios and for different combinations of port-

folios. We also report the associated p-values, which test whether the pricing errors of the

portfolios are jointly equal to zero.

The results of the Fama-Macbeth regressions are presented in Tables 5 and 6. Table 5

shows the estimated factor premia and pricing errors. The first column does not include

any factors, hence it provides statistics for the raw returns as a benchmark. From the con-

stant, the average portfolio return is 0.205%. The overall r.m.s.e. is similar, 0.24%. The

r.m.s.e. of the long-short reversal strategies is also similar, 0.228%. Excluding the smallest

two quintiles or value-weighting reduces it to 0.123% bps and 0.124%, respectively, be-

cause small stocks have larger reversal returns. These returns are still highly significant

as seen from the low p-values. They are also sizable given their five-day horizon, equal to

6.2% annualized. The last row gives the pricing error of the liquidity provider portfolio,

which weighs the reversal strategies by the product of their dollar volume and normal-

ized return, as implied by Lemma 1. The liquidity provider portfolio puts more weight

on the Lo–Hi reversal strategies because they capture more intensive liquidity provision.

Its return is therefore somewhat higher than the value-weighted one, 0.168% over the

five-day horizon or 8.4% annualized.

Column 2 of Table 5 reports the specification with the market return as the sole factor

(i.e., the CAPM). The market premium is positive, 0.325%, which works out to 16.25%

per year. This number is more than double the equity premium in the sample, hence it is

somewhat implausible. The high premium is required because the portfolios exhibit only

small differences in market betas. It achieves a cross-sectional R2 of 15.8% and r.m.s.e.

of 0.112%, about half the raw value in column 1. However, the CAPM does very little to

price the long-short-reversal strategies: their r.m.s.e. is 0.201%, only slightly lower than

the raw value. When we exclude small stocks or value-weight, the pricing error is 0.094%,

about one quarter smaller than the raw value. The pricing error of the liquidity provider

portfolio is 0.127%, also one quarter smaller. As in column 1, all of the p-values are zero

to within two decimal points, hence the CAPM is also rejected statistically.
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Overall, the CAPM can explain about half of the level of returns among the full set of

portfolios but requires an implausibly high price of risk to do so. Even then, it is unable

to explain most of the differences in returns between the portfolios, which are captured

by the reversal strategies. Since the reversal strategies proxy for the returns to liquidity

provision, this means that the CAPM is unable to explain the liquidity premium in the

cross section of stocks.

Column 3 introduces the change in VIX squared as the sole factor. The estimated price

of risk is−0.570 and highly significant. In contrast to the CAPM, this magnitude is if any-

thing on the low side, as we will see in the next section. The cross-sectional R2 increases to

26%, the all-portfolio r.m.s.e drops slightly to 0.107%, and that of the reversal strategies to

0.183%. The impact is larger when we exclude small stocks or value-weight: the pricing

errors drop to 0.065% and 0.062%, respectively, which is about half the corresponding raw

values. The pricing error of the liquidity provider portfolio also drops in half, to 0.084%.

The p-values remain close to zero, hence this model is also statistically rejected.

Thus, the univariate volatility risk model is better able to price the test assets than the

CAPM, but it does not do so fully. The reason is that there is a tension between the overall

level of returns, i.e. the equity premium, and the differences between them, the liquidity

premium. The equity premium requires a relatively low price of volatility risk, while

the liquidity premium requires a larger one. The univariate model therefore settles on a

medium-sized price of risk, which limits its ability to fully capture the cross section. Note

however that the model does not predict that volatility risk should explain the equity

premium. It therefore makes sense to use volatility risk in conjunction with market risk

in a two-factor asset pricing model.

The two-factor model is estimated in column 4. The market premium drops to 0.152%

(over a five-day period). Although insignificant, this number is very close to the equity

premium in the sample. This helps the model price the level of returns among the port-

folios. The price of variance risk doubles to −1.079% and is highly significant. As we will

see in the next section, this number is very close to the price of variance risk implied by

option markets. For now, we see that the model does a significantly better job in explain-

ing the cross section. The cross-sectional R2 increases to 37.9%, the overall r.m.s.e. drops

to 0.097%, and the r.m.s.e. of the reversal strategies drops to 0.158%. These pricing errors

are still jointly significant with p-values close to zero. The reason is the small stock port-
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folios, whose returns are unusually high. When we remove them, the pricing error drops

to just 0.04%, two thirds smaller than the raw value. The p-value rises to 0.02, hence the

model cannot be rejected at the 1% significance level. Value-weighting drives the pricing

error down even further, to just 0.006%, a 95% decline from the raw value. Its p-value

rises to 0.79, hence the pricing error is insignificant. The same happens with the liquid-

ity provider portfolio, whose pricing error is just 0.008% (0.4% annualized), and whose

p-value is 0.78. The bivariate model thus prices the liquidity provider portfolio almost

perfectly and therefore explains the liquidity premium in the cross section of stocks.

Table 6 takes a closer look at the pricing errors of the individual long-short reversal

strategies. Panel A shows the CAPM pricing errors, which are based on the estimates in

column 2 of Table 5. The Fama-McBeth pricing errors are almost identical to those from

the time series regressions in Table 3. In particular, all of the Lo–Hi reversal strategies

retain their statistically and economically significant pricing errors. The pricing error of

the large-cap Lo–Hi strategy is 0.14% (t-statistic of 3.43), only slightly smaller than the

0.17% in Table 3. Thus, even if we treat the price of market risk as a free parameter, the

CAPM cannot explain the returns to liquidity provision in the cross section of stocks.

Panel B of Table 6 shows the pricing errors of the univariate volatility risk model

(column 3 of Table 5). The pricing error of the large-cap Lo–Hi reversal strategy drops to

0.08%. Only the smallest quintiles retain significant pricing errors, including the 0.68%

pricing error of the smallest quintile (t-statistic of 7.45).

Panel C looks at the two-factor model, which combines the market risk and volatility

risk factors (column 4 of Table 5). Now the pricing error of the large-cap Lo–Hi strategy

is fully explained: it drops to −0.02% with a t-statistic of −0.51. The pricing errors of the

middle two quintiles are also eliminated. Only the smallest two quintiles retain significant

pricing errors. The pricing error of the smallest quintile is 0.58% (versus a raw return of

0.78%). This confirms the finding in Table 5 that the overall r.m.s.e. of the two-factor

model remains significant because of the high reversal returns among the smallest stocks.

Overall, Table 6 shows that volatility risk, in combination with the market factor, explains

the returns to liquidity provision among all but the smallest stocks.

Figure 3 visualizes the results by plotting the average returns of the reversal strategies

against their predicted values from the Fama-MacBeth regressions. Each marker shape

and color represents a different size quintile. Within it are five data points corresponding
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to the five long-short reversal strategies across deciles: Lo–Hi, 2–9, and so on. Also shown

is the liquidity provider portfolio as a hollow black circle.

Panel A shows that the CAPM cannot explain the returns of the reversal strategies.

The average returns along the vertical axis display wide variation but the predicted re-

turns along the horizontal axis are confined to a very narrow range. Moreover, the pre-

dicted returns are all close to zero, hence the pricing errors are similar to the raw returns.

Panel B shows the univariate volatility risk model. Here the spread in predicted re-

turns is substantially larger, reflecting the fact that volatility risk does a better job in ex-

plaining the cross section of reversals. This is especially true for the three largest size

quintiles. Yet, since the model requires a somewhat low price of volatility risk to capture

the level of returns, it ends up under-predicting differences in returns as captured by the

long-short reversal strategies. This is why some reversal strategies lie above the 45-degree

line (their average returns are higher than their predicted returns).

Panel C of Figure 3 shows that the two-factor model captures the returns of the re-

versal strategies well. The range of predicted returns is wide and most of the reversal

strategies lie symmetrically around the 45-degree line. The liquidity provider portfolio

falls almost exactly on the 45-degree line (recall its pricing error is 0.006%). Only the

outer-decile small-stock strategies lie significantly above it. While their predicted returns

are fairly high, their realized average returns are even higher. Thus, volatility risk cannot

fully explain the returns to liquidity provision among small stocks. By contrast, Figure

3 shows that volatility risk can explain the returns to liquidity provision among larger

stocks, which are economically more important.

4.5 Option-implied price of volatility risk

The next question we address is whether the price of volatility risk needed to price the re-

versal strategies is consistent with the one that prevails in option markets, where volatility

risk is directly traded. Answering this question sharpens our test of Prediction 4. It also

sheds light on the broader question of whether the returns to liquidity provision reflect

narrow intermediation frictions or widely shared economic risks.

The natural place to measure the price of volatility risk is in option markets. As dis-

cussed in Section 3, the squared VIX is the price of a basket of options whose payoff repli-
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cates the realized variance of the S&P 500. Yet we cannot use the change in VIX squared

to measure the price of variance risk because the VIX basket is rebalanced each day. To

solve this problem, we track the price of a given VIX basket from one day to the next. The

percentage change in the price of this basket is the VIX return, which we denote RVIX.

Table 2, which we discussed in Section 3.1, gives us the option-implied price of risk

for our volatility risk factor, ∆VIX2. Based on column 2, this price of volatility risk is

−1.03% per unit of beta over a five-day horizon (−51.5% annualized). We similarly obtain

the price of market risk from the average market return over a five-day horizon in our

sample. The resulting restricted price of market risk is 0.16%. These prices of risk are

reported in the top half of Table 7. Also shown are Newey-West standard errors based on

the time series variation of the VIX return and market return.21 The option-implied price

of volatility risk is highly statistically significant.

The next step is to multiply the restricted prices of risk by the portfolios’ betas in order

to obtain their predicted returns. Then to get the pricing errors we subtract the portfolios’

predicted returns from their average returns. As in all prior tests, we use the time series

variation in these pricing errors to estimate their standard errors. The bottom half of Table

7 reports the pricing errors for the same sets of portfolios as in Table 6.

The first column of Table 7 shows the raw returns as before. In the second column, the

CAPM lowers the r.m.s.e. of the full set of portfolios from 0.24% to 0.116%. However, it

has almost no impact on the long-short reversal strategies whose r.m.s.e. is 0.212% under

the CAPM versus 0.228% in the raw returns. The same is true when we exclude small

stocks or value-weight, hence the lack of explanatory power is not due to small stocks.

In the case of the liquidity provider portfolio, the pricing error ticks down from 0.168%

to 0.146%, a one-tenth reduction. Thus, while the CAPM with a restricted price of risk

does fairly well on the level of returns (the equity premium), it has almost no explanatory

power for the differences in returns, i.e. the liquidity premium.

Column 3 shows that the opposite is true of the univariate volatility risk model. This

model does worse on the level of returns, driving the overall r.m.s.e. up to 0.76%, but

much better on the difference in returns, driving the long-short reversal strategy r.m.s.e.

down to 0.158%, a one-third reduction. The model’s explanatory power increases sub-

stantially when we exclude small stocks: the r.m.s.e. drops from 0.123% to 0.038%, a

21Note that there is no cross-sectional R2 since we are not running a cross-sectional regression.
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two-thirds reduction. Value-weighting reduces the pricing error even more: from 0.124%

to 0.012%, a 90% reduction. Finally, the pricing error of the liquidity provider portfolio

drops from 0.168% to 0.015%, also a 90% reduction. The associated p-values are above

conventional cutoffs. Thus, the model with an option-implied price of volatility risk ex-

plains the returns to liquidity provision among larger stocks.

Finally, column 4 looks at the two-factor model with volatility risk and market risk.

This model combines the ability of the CAPM to explain the level of returns with the

ability of the volatility risk model to explain the differences in returns. Thus, the overall

r.m.s.e. falls by about half, the r.m.s.e. of the long-short reversal strategies falls by a third,

and excluding small stocks makes it fall by two thirds (from 0.123% to 0.04%). As in

column 3, value-weighting leads to a 90% drop in pricing errors (from 0.124% to 0.011%).

The pricing error of the liquidity provider portfolio also drops by 90% (from 0.168% to

0.015%) and becomes insignificant.

Table 8 reports the pricing errors of the individual reversal strategies. Panel A is

very similar to Panel A of Table 6 and again shows that the CAPM cannot explain the

returns of the Lo–Hi reversal strategies. By contrast, Panel B shows that the model with a

restricted price of volatility risk fully explains the Lo–Hi returns among larger stocks: The

pricing error of the Lo–Hi strategy for the largest quintile drops from 0.17% to −0.01%

and becomes insignificant. The pricing errors of quintiles three and four are similarly

eliminated. Panel C shows the same pattern for the two-factor model.

While volatility risk is able to fully explain the reversal returns among larger stocks,

it falls short on the smallest stocks: the Lo–Hi reversal strategy for the smallest quintile

has a pricing error of 0.59% in Panel C, which is down only 25% from its raw return.

Similarly, the Lo–Hi reversal strategy for the second smallest quintile has a pricing error

of 0.23%, down 40% from the raw return. Both remain highly significant. The reason

for this is that while both strategies have volatility betas similar to those of the larger

quintiles, their returns are significantly larger. In other words, liquidity provision among

small stocks earns abnormal returns. This is consistent with market segmentation in the

form of inventory costs, as discussed in Section 2.1.

Finally, Figure 4 depicts average versus predicted returns with the restricted prices of

risk. Similar to Figure 3, the CAPM (Panel A) has no ability to fit the reversal strategy re-

turns, while the one-factor volatility risk model (Panel B) and the two-factor volatility risk
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plus market risk model (Panel C) capture these returns along the 45-degree line. Only the

Lo–Hi strategies of the two smallest quintiles and the 2–9 strategy of the smallest quintile

lie significantly away from the line. The liquidity provider portfolio, which captures the

overall returns to liquidity provision is priced almost perfectly.

Overall, the results with restricted prices of risk show that volatility risk carries the

same price of risk in the market for liquidity (reversals) and the market for variance (op-

tions). This price of risk explains the returns to liquidity provision among all but the

smallest stocks and overall. This is consistent with Prediction 4, which is a key implica-

tion of our model. It shows that the liquidity premium in the cross section of stocks is

explained by the variance risk premium.

4.6 Predicting reversals with VIX

Volatility risk is strongly time-varying and increasing in volatility itself (Singleton, 2006;

Broadie, Chernov and Johannes, 2007). Consistent with this, the variance risk premium

is larger in times of high volatility (Todorov, 2010; Andersen, Fusari and Todorov, 2015).

Investors thus demand greater compensation for bearing greater volatility risk. Since our

model predicts that reversal returns are explained by volatility risk, this time variation

in the compensation for volatility risk should generate predictability in reversal returns.

This is the idea underlying Prediction 5, which we test next. This time series test provides

evidence complementary to the cross-sectional tests of the previous section.

Table 9 shows results from predictive regressions of reversal strategy returns on the

level of VIX squared as of the portfolio formation date. Panel A reports the predictive

loadings (times 100). Focusing first on the Lo–Hi strategies, the loadings are similar across

size quintiles, ranging from 5.70 to 9.81. From Panel B, they are all highly statistically

significant. For the largest stocks, the coefficient is 9.09, implying that a one-point increase

in VIX squared is associated with a 9-bps higher return over the following five days.

This number is large relative to the 17-bps average return of the strategy. The predictive

loadings decline steadily as we move toward the inner decile strategies. Hence, they

display exactly the same pattern as the volatility risk betas in Table 4. This is consistent

with Proposition 3 of the model. Intuitively, portfolios that are more exposed to volatility

risk also have a risk premium that co-moves more strongly with aggregate volatility risk.
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Panel C of Table 9 shows the R2 coefficients from the predictive regressions. Focusing

again on the Lo–Hi strategies, the R2 is lowest for the smallest quintile (0.85%) and highest

for the largest quintile (3.45%). The latter is extremely high given the strategy’s five-day

horizon.22 Thus, just as in the pricing results in Section 4.4, aggregate volatility risk has

the highest explanatory power for large-cap reversal strategies.

Overall, the predictability results in Table 9 confirm the main finding of Nagel (2012)

that VIX predicts reversals, and extend this result to large-cap stocks.

4.7 Reversal strategy dynamics

To further test our model, and in particular Prediction 6, we zoom in on the dynamics

of the returns and volatility risk of the reversal strategies. These dynamics are shown in

Figures 5 and 6. In each figure, we fix the composition of the portfolios as of the formation

date (date 0) and follow their returns over time (i.e., without rebalancing).

Panel A of Figure 5 shows the average returns of the large-cap reversal strategies for

horizons up to ten trading days. Returns rise steadily with horizon and begin to level off

past the five-day mark. They are highest for the Lo–Hi strategy and decline toward the

inner deciles.23 Panel B of Figure 5 shows that the predictive loadings on VIX squared

follow the same steady pattern as the returns. Panels C and D show the same for the

volatility risk betas, whether we control for the market return (Panel D) or not (Panel C).

The steady pattern across horizon indicates similar exposure to volatility risk throughout

the holding period. The fact that predictive loadings and volatility risk betas line up with

the average returns builds further support for the pricing results of Section 4.4.

Figure 6 tests Prediction 6 of our model by looking at the persistence of the impact of

VIX shocks on the reversal strategies. In our model, VIX shocks have a persistent impact

because they reveal information about the fundamental value of the assets in liquidity

providers’ portfolios. By contrast, a transitory impact would be consistent with a model

where VIX shocks increase inventory costs (see Section 2.1). Increased inventory costs

reduce the value of liquidity providers’ portfolios only temporarily in order to compen-

22Following Campbell and Thompson (2007), it is about six times the strategy’s squared five-day Sharpe
ratio. Thus, an investor using VIX to time the large-cap reversal strategy would see a six-fold increase in
expected returns relative to a buy-and-hold strategy.

23The steady pattern shows that the returns are not driven by bid-ask bounce, which can only affect the
first day of the holding period. Instead, the figure shows a stable premium paid over time.
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sate them at a higher rate going forward. The differential predictions of the two models

thus provide us with a sharp test. We implement it by plotting the impulse responses of

reversal strategy returns to a VIX-squared shock one day after portfolio formation:

Rp
t,t+h = αp,h + β

p
VIX,h∆VIX2

t,t+1 + ε
p
t,t+h, for h = 1, 2, . . . , 20. (25)

If the impact of VIX shocks is persistent, the betas β
p
VIX,h should be flat across horizon h.

If it is transitory, they should converge towards zero.

Panel A of Figure 6 looks at the large-cap Lo–Hi reversal strategy. A one-point in-

crease in VIX squared on day one leads to a drop of 17 bps, about equal to the strategy’s

five-day return. The impact remains flat over time and settles at 19 bps after twenty trad-

ing days. The 95% confidence bands lie comfortable away from zero at horizons well

beyond the holding period associated with liquidity provision. Thus, this is inconsistent

with the transient effect predicted by inventory costs. Instead, it points to a permanent

impact on value, as predicted by our model. The results therefore support Prediction 6 of

our model, and go against the predictions of inventory cost models.

Panel B Figure 6 looks at all size quintiles. The pattern for quintiles three and four is

identical to that for the largest quintile. This is not the case for the smallest two quintiles,

however. The returns of the smallest quintiles tend to revert back towards zero after the

initial drop, consistent with the impact of an increase in inventory costs.

Table 10 formalizes the results of Figure 6. Panel A shows that after five days the

Lo–Hi strategies of each size quintile have similar negative betas with respect to day-one

VIX shocks. By day ten, however, the smallest two quintiles have reverted to about zero,

while the three larger quintiles retain their betas unchanged through day twenty.

Figure 6 and Table 10 thus reinforce the results of our asset pricing tests in Section 4.4.

Large-cap reversals have large and persistent volatility risk exposures that explain their

returns with the same price of risk as in option markets. By contrast, small stocks exhibit

evidence of market segmentation: their returns are abnormally high, and their volatility

risk exposures are transitory. The differences between small and large stocks are natural

because small stocks are thinly traded and rely on specialized intermediaries for liquidity

provision. The inventory constraints of these liquidity providers therefore influence their

prices. Our results for small stocks are thus consistent with Nagel (2012), who analyzes
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reversals without value-weighting and interprets their predictability by VIX through the

lens of an inventory cost model. At the same time, when we extend the analysis to large

stocks we find that the liquidity premium is explained by volatility risk.

4.8 Volatility co-movement portfolio sorts

In Section 4.1, we showed that idiosyncratic volatility and aggregate volatility co-move

strongly, consistent with Prediction 1. In this section we extend this test to the cross

section by forming portfolios based on differences in volatility co-movement between

stocks. Our model predicts that reversal returns and volatility risk betas should be larger

for stocks with greater volatility co-movement. A rise in VIX induces a greater increase in

the volatility of these stocks, which reveals that there is more private information about

their values. This increases the risk of providing liquidity in these stocks.24

We estimate the volatility co-movement of each stock by running time series regres-

sions of its idiosyncratic volatility on VIX. Idiosyncratic volatility is computed as the stan-

dard deviation of market-adjusted returns over a five-day rolling window (the horizon of

our portfolios). We then regress it on VIX as of the start of the window:

σ̂i
t,t+5 = a + kiVIXt + εi,t. (26)

To make sure we do not introduce look-ahead bias, we run these regressions on one year

of past data at each point in time. This interval is sufficient for creating meaningful vari-

ation in ex-post volatility co-movement (see Table IA.2 in the Internet Appendix). The

next step is to sort stocks into quintiles by their coefficients ki and then deciles by their

normalized returns. The portfolios are again weighted by dollar volume. They are thus

analogous to our main portfolios in Section 3 but with the ki’s in place of size.

The results for the volatility co-movement portfolios are summarized in Table 11.25

Panel A shows a strong pattern in CAPM alphas across quintiles. As predicted by our

model, portfolios of stocks whose idiosyncratic volatility co-moves more strongly with

market volatility earn substantially higher reversal returns. The alphas of the Lo–Hi

24Formally, we can generalize Eq. 5 by allowing for heterogeneous loadings: σ2
v,i = kiσ

2
v + ς2

v,i, ki > 0.
The volatility betas become βi,σm = −φki

(
x2

i /σ2
x
)
, hence they are more negative for assets with a larger ki.

It follows from Proposition 3 that the expected reversal return is correspondingly larger.
25The Internet Appendix contains a full set of tables analogous to our main results.
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strategies increase monotonically from 10 bps to 26 bps from the first quintile to the fifth.

Panel B of Table 11 looks at the volatility risk betas (controlling for market beta). The

betas become larger (more negative) as we go from low to high co-movement quintiles.

The beta of the Lo–Hi strategy in the first quintile is −0.07 and insignificant, while the

beta of the fifth quintile is −0.34 and highly significant.

Panel C of Table 11 shows the pricing errors from Fama-Macbeth regressions with an

option-implied price of risk. Controlling for volatility risk eliminates the pricing errors

of the Lo–Hi strategies. The pricing error of the high co-movement quintile five drops

from 26 bps under the CAPM to −5 bps in the two-factor model with volatility risk.

Figure 7 similarly shows that accounting for volatility risk aligns the average returns of

the reversal strategies with their predicted returns. In particular, the overall liquidity

provider portfolio lies almost exactly on the 45-degree line. Volatility risk thus again

explains the liquidity premium in the cross section of stocks.

5 Conclusion

Our results provide a new perspective on liquidity provision in financial markets. Un-

der this perspective, the price of liquidity reflects the cost of hedging the volatility risk

embedded in liquidity provision. This volatility risk stems from the exposure of liquidity

providers to uncertainty about the amount of asymmetric information they face. A spike

in volatility reveals greater asymmetric information than liquidity providers priced in,

triggering losses on both sides of their portfolios. Consistent with this view, our empirical

results show that short-term reversals, which mimic the portfolios of liquidity providers,

are exposed to substantial volatility risk. Moreover, this exposure explains the returns to

reversals over time and across all but the smallest stocks.

Overall, we find that liquidity is priced based on the broad economic risk of aggre-

gate volatility fluctuations, as opposed to the narrow risk of liquidity providers’ financial

constraints. Just how broad is this risk? The literature on the variance risk premium em-

phasizes the fundamental macroeconomic risks faced by a representative agent. Yet it is

also possible that the variance risk premium itself is a reflection of the importance of the

financial sector in the economy. This possibility is intriguing, as it promises to further

integrate the asset pricing and financial intermediation literatures.
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Table 1: Summary statistics

This table shows summary statistics for the reversal strategies. Each day, stocks are
first sorted into quintiles by market capitalization and then deciles by normalized beta-
adjusted return. The normalized return is calculated using a 60-day rolling window. The
portfolios are weighted by average dollar volume over that window. Stocks with share
price in the bottom 20% and stocks with an earnings announcement on the portfolio for-
mation day or the prior day are excluded. The sample is from April 9, 2001 to May 31,
2020.

Panel A: Market cap Panel B: Idiosyncratic volatility

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.12 0.12 0.12 0.12 0.12
2 0.36 0.36 0.36 0.36 0.36
3 0.89 0.90 0.89 0.89 0.89
4 2.49 2.49 2.48 2.48 2.48
Big 81.75 81.21 81.08 78.77 79.26

Lo–Hi 2–9 3–8 4–7 5–6
Small 3.74 4.22 4.77 5.50 5.96
2 3.41 3.72 3.94 4.09 4.17
3 2.98 3.20 3.34 3.44 3.48
4 2.47 2.67 2.79 2.87 2.90
Big 1.71 1.85 1.94 1.99 2.01

Panel C: Amihud illiquidity Panel D: Sorting-day return

Lo–Hi 2–9 3–8 4–7 5–6
Small 171.66 105.00 55.79 33.03 17.10
2 7.31 4.42 2.93 1.94 1.60
3 0.94 0.65 0.48 0.37 0.32
4 0.19 0.14 0.11 0.09 0.08
Big 0.02 0.01 0.01 0.08 0.01

Lo–Hi 2–9 3–8 4–7 5–6
Small −13.55 −7.12 −4.57 −2.59 −0.84
2 −10.80 −5.57 −3.52 −1.98 −0.64
3 −8.98 −4.63 −2.96 −1.67 −0.54
4 −7.39 −3.99 −2.57 −1.46 −0.47
Big −5.20 −2.98 −1.95 −1.12 −0.36

Panel E: Average turnover Panel F: Sorting-day turnover

Lo–Hi 2–9 3–8 4–7 5–6
Small 1.14 1.33 1.47 1.54 1.53
2 1.47 1.54 1.63 1.65 1.68
3 1.74 1.80 1.84 1.87 1.88
4 1.78 1.86 1.91 1.94 1.96
Big 1.16 1.23 1.28 1.30 1.30

Lo–Hi 2–9 3–8 4–7 5–6
Small 2.59 1.90 1.83 1.82 1.71
2 2.42 1.58 1.44 1.40 1.37
3 2.61 1.74 1.58 1.52 1.49
4 2.55 1.82 1.67 1.61 1.59
Big 1.50 1.20 1.14 1.10 1.08
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Table 2: Summary statistics: the VIX return

This table shows summary statistics for VIX2 changes and the VIX return (Panel A) and
regressions of the VIX return on VIX2 changes (Panel B). VIX2 is the squared VIX index
divided by 100. It represents the price of a basket of options whose payoff replicates the
variance of the S&P 500 over the following 30 calendar days. The VIX return, RVIX, is the
excess return on this basket of options. It is not equal to the percentage change in VIX2

because the VIX2 basket changes each day (to keep the horizon constant). The VIX return
is the percentage change in the price of a given basket from one day to the next (minus
the risk-free rate). The sample is from April 9, 2001 to December 31, 2019 (the latest date
for which OptionMetrics data is available).

Panel A: Summary statistics

Mean St. Dev. 1st 5th Median 95th 99th

RVIX −1.53 17.86 −25.33 −17.34 −5.08 26.85 71.29
∆VIX −0.00 1.82 −4.58 −2.25 −0.08 2.48 5.48
∆VIX2 −0.00 1.53 −3.65 −1.14 −0.02 1.18 3.89
∆VIX, % 0.26 7.47 −15.55 −9.62 −0.53 12.40 25.13
∆VIX2, % 1.07 16.28 −28.69 −18.32 −1.05 26.35 56.57

Panel B: Regressions

RVIX

(1) (2) (3) (4)
∆VIX 7.939***

(0.102)

∆VIX2 7.404***
(0.172)

∆VIX, % 2.080***
(0.018)

∆VIX2, % 0.991***
(0.008)

Constant −1.498*** −1.515*** −2.013*** −2.523***
(0.172) (0.220) (0.135) (0.121)

Obs. 4,711 4,711 4,711 4,711
R2 0.562 0.282 0.730 0.783
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Table 3: Reversal strategy returns

Average returns, standard deviations, Sharpe ratios, and CAPM alphas of the five-day
reversal strategies. Each day, stocks are first sorted into quintiles by market capitalization
and then deciles by normalized beta-adjusted return. The normalized return is calculated
using a 60-day rolling window. The portfolios are weighted by average dollar volume
over that window. Returns and standard deviations are over five days. Sharpe ratios are
annualized. The t-statistics are based on Newey-West standard errors with five lags to
account for the overlap in the returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: Average returns Panel B: t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.78 0.46 0.20 −0.08 −0.10
2 0.40 0.15 0.06 0.08 −0.02
3 0.15 0.12 0.04 0.04 −0.02
4 0.16 0.19 0.11 0.12 0.02
Big 0.20 0.16 0.18 0.08 0.00

Lo–Hi 2–9 3–8 4–7 5–6
Small 8.39 5.84 2.21 −0.98 −1.30
2 6.37 3.04 1.34 1.74 −0.37
3 2.79 2.85 1.05 0.98 −0.63
4 3.35 4.73 3.38 3.92 0.65
Big 4.47 4.66 6.17 3.54 0.17

Panel C: Standard deviations Panel D: Sharpe ratios

Lo–Hi 2–9 3–8 4–7 5–6
Small 6.18 5.49 5.60 5.43 5.41
2 3.91 3.35 3.24 3.08 3.10
3 3.31 2.71 2.67 2.65 2.20
4 3.01 2.52 2.16 1.95 1.88
Big 2.84 2.29 1.96 1.70 1.52

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.90 0.60 0.25 −0.10 −0.14
2 0.72 0.32 0.14 0.18 −0.04
3 0.32 0.30 0.11 0.10 −0.07
4 0.37 0.53 0.35 0.43 0.07
Big 0.50 0.48 0.64 0.35 0.02

Panel E: CAPM alphas Panel F: CAPM alpha t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.74 0.44 0.16 −0.10 −0.10
2 0.38 0.12 0.05 0.07 −0.02
3 0.12 0.10 0.03 0.03 −0.03
4 0.13 0.17 0.10 0.11 0.02
Big 0.17 0.14 0.16 0.07 −0.00

Lo–Hi 2–9 3–8 4–7 5–6
Small 7.95 5.62 1.76 −1.23 −1.28
2 6.16 2.46 1.09 1.55 −0.50
3 2.37 2.42 0.66 0.71 −0.81
4 2.81 4.38 3.12 3.69 0.87
Big 3.90 4.23 5.60 3.14 −0.15
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Table 4: Volatility risk of the reversal strategies

The table shows the betas of the five-day reversal strategies on changes in VIX2. The
betas are estimated by running the regressions

Rp
t,t+5 = αp + β

p
VIX∆VIX2

t,t+5 + β
p
MRM

t,t+5 + ε
p
t,t+5,

where Rp
t,t+5 is the cumulative excess return on reversal strategy portfolio p from the

portfolio formation date t to t + 5, RM
t,t+5 is the excess return on the market portfolio, and

∆VIX2
t,t+5 is the change in the squared VIX index from date t to t + 5. Panel A omits

the market return while Panels B and C include it. Panel C reports the market betas β
p
M.

The t-statistics are based on Newey-West standard errors with five lags to account for the
overlap in the returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: ∆VIX2 betas

β
p
VIX t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small −0.18 −0.05 −0.15 −0.02 −0.05
2 −0.18 −0.10 −0.08 −0.10 −0.03
3 −0.19 −0.11 −0.11 −0.05 0.00
4 −0.17 −0.13 −0.06 −0.06 0.01
Big −0.20 −0.11 −0.13 −0.07 −0.04

Lo–Hi 2–9 3–8 4–7 5–6
Small −3.48 −0.82 −1.91 −0.27 −0.80
2 −3.45 −2.45 −2.06 −3.80 −1.24
3 −3.89 −3.29 −4.55 −2.13 0.01
4 −3.98 −3.73 −2.23 −2.25 0.32
Big −4.27 −3.31 −4.10 −3.30 −1.72

Panel B: ∆VIX2 betas (controlling for RM)

β
p
VIX t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small −0.17 −0.02 −0.11 0.10 −0.03
2 −0.16 −0.03 −0.06 −0.08 −0.06
3 −0.18 −0.11 −0.10 −0.03 −0.00
4 −0.15 −0.12 −0.04 −0.06 −0.00
Big −0.20 −0.09 −0.14 −0.08 −0.03

Lo–Hi 2–9 3–8 4–7 5–6
Small −2.56 −0.21 −1.04 1.34 −0.35
2 −1.84 −0.62 −0.91 −2.07 −1.69
3 −2.54 −1.99 −2.88 −0.95 −0.18
4 −2.18 −2.71 −0.87 −1.46 −0.10
Big −3.12 −1.94 −3.28 −2.77 −1.04

Panel C: Market betas

β
p
M t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.02 0.04 0.06 0.16 0.03
2 0.04 0.10 0.04 0.04 −0.04
3 0.01 0.01 0.01 0.03 −0.00
4 0.03 0.01 0.04 −0.00 −0.01
Big 0.00 0.03 −0.01 −0.01 0.01

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.38 0.56 1.02 3.04 0.59
2 0.53 2.56 0.93 1.03 −1.33
3 0.25 0.17 0.30 1.00 −0.18
4 0.49 0.36 1.47 −0.02 −0.55
Big 0.03 1.10 −0.49 −0.31 0.22
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Table 5: Fama-Macbeth regressions

The table shows results from Fama-Macbeth regressions of the reversal portfolios. The
first-stage regressions are Rp

t,t+5 = αp + β
p
VIX∆VIX2

t,t+5 + β
p
MRM

t,t+5 + ε
p
t,t+5, where Rp

t,t+5
is the cumulative excess return on portfolio p from t to t + 5, ∆VIX2

t,t+5 is the change in
the squared VIX, and RM

t,t+5 is the excess market return. The second-stage regressions are

Rp
t,t+5 = λ0,t + λt,VIXβ

p
VIX + λt,Mβ

p
M + ep

t,t+5.

The table reports the time-series averages of the premia, λVIX and λM, and constant,
λ0. Column (1) reports raw returns, column (2) adds in RM, column (3) replaces it with
∆VIX2, and column (4) includes both. Standard errors are Newey-West with five lags to
account for the overlap in returns. Also shown are the second-stage R2, the root-mean-
squared error (r.m.s.e.) among (i) all portfolios, (ii) the long-short reversal strategies, and
(iii) the long-short reversal strategies excluding the smallest two quintiles, as well as the
pricing errors of (iv) the value-weighted long-short reversal strategy, and (v) the liquidity
provider portfolio. The liquidity provider portfolio is double-weighted by volume and
the normalized sorting-day return. The sample is from April 9, 2001 to May 31, 2020.

(1) (2) (3) (4)

βM 0.325*** 0.152
(0.122) (0.125)

βVIX −0.570*** −1.079***
(0.156) (0.230)

Constant 0.205** −0.434*** −0.527*** −0.251**
(0.101) (0.115) (0.097) (0.127)

N 50 50 50 50
R2 0.000 0.158 0.260 0.379

(i) All portfolios:
R.m.s.e. 0.240 0.112 0.107 0.097
p-value 0.00 0.00 0.00 0.00

(ii) Long-short reversal strategies:
R.m.s.e. 0.228 0.201 0.183 0.158
p-value 0.00 0.00 0.00 0.00

(iii) Long-short reversal strategies (ex small stocks):
R.m.s.e. 0.123 0.094 0.065 0.040
p-value 0.00 0.00 0.01 0.02

(iv) Value-weighted reversal strategy:
Pricing error 0.124 0.094 0.062 0.006
p-value 0.00 0.00 0.00 0.79

(v) Liquidity provider portfolio:
Pricing error 0.168 0.127 0.084 0.008
p-value 0.00 0.00 0.00 0.78
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Table 6: Fama-Macbeth pricing errors

The table shows the pricing errors of the reversal strategies from Fama-Macbeth regres-
sions (see Table 5 for the factor premia). The Lo–Hi strategy goes long the lowest nor-
malized return decile portfolio and short the highest normalized return decile portfolio
within a given size quintile. The remaining strategies are constructed analogously for
the inner normalized return deciles. Each strategy is held for five trading days. Panel
A reports the pricing errors when the market return is used as the only factor. Panel B
replaces it with the change in the squared VIX index. Panel C includes both factors. The
reported t statistics are based on Newey-West standard errors with five lags to account
for the overlap in the returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: Market
Pricing errors t statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.72 0.43 0.13 −0.12 −0.11
2 0.35 0.10 0.04 0.06 −0.02
3 0.10 0.08 0.01 0.02 −0.03
4 0.11 0.15 0.09 0.10 0.03
Big 0.14 0.12 0.15 0.07 −0.01

Lo–Hi 2–9 3–8 4–7 5–6
Small 7.87 5.52 1.50 −1.43 −1.38
2 5.91 2.06 0.78 1.23 −0.51
3 1.95 2.18 0.30 0.47 −0.81
4 2.42 4.03 2.83 3.50 0.94
Big 3.43 3.86 5.26 2.88 −0.39

Panel B: ∆VIX2

Pricing errors t statistics
Lo–Hi 2–9 3–8 4–7 5–6

Small 0.67 0.43 0.11 −0.09 −0.13
2 0.29 0.09 0.02 0.02 −0.03
3 0.04 0.05 −0.02 0.01 −0.02
4 0.06 0.11 0.07 0.08 0.02
Big 0.08 0.09 0.10 0.04 −0.02

Lo–Hi 2–9 3–8 4–7 5–6
Small 7.45 5.49 1.25 −1.10 −1.62
2 5.08 1.98 0.34 0.52 −0.77
3 0.84 1.36 −0.50 0.18 −0.63
4 1.40 3.06 2.32 2.80 0.78
Big 1.95 2.99 3.65 1.88 −0.84

Panel C: Market and ∆VIX2

Pricing errors t statistics
Lo–Hi 2–9 3–8 4–7 5–6

Small 0.58 0.42 0.05 −0.00 −0.13
2 0.22 0.09 −0.01 −0.00 −0.08
3 −0.05 −0.01 −0.07 −0.01 −0.03
4 −0.02 0.05 0.06 0.05 0.02
Big −0.02 0.06 0.03 0.00 −0.04

Lo–Hi 2–9 3–8 4–7 5–6
Small 6.70 5.43 0.60 −0.05 −1.58
2 4.08 1.85 −0.12 −0.05 −1.80
3 −1.11 −0.17 −1.80 −0.16 −0.96
4 −0.45 1.32 2.13 1.77 0.80
Big −0.51 1.80 0.86 0.02 −1.65
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Table 7: Option-implied price of volatility risk

The table shows pricing results for the five-day reversal portfolios using an option-
implied price of volatility risk. The option-implied price of volatility risk is the one that
prices the VIX return (see Table 2). The restricted price of market risk is the one that prices
the market return. To obtain the pricing errors of the reversal portfolios, we multiply their
betas by the restricted prices of risk and subtract the resulting predicted returns from the
average returns. The table reports the restricted prices of risk with standard errors based
on the time series variation of the VIX return and market return. Column (1) reports raw
returns and includes a constant, column (2) adds in the market return, column (3) replaces
it with the change in the squared VIX, and column (4) includes both. Standard errors are
Newey-West with five lags to account for the overlap in returns. Also shown are the root-
mean-squared error (r.m.s.e.) among (i) all portfolios, (ii) the long-short reversal strate-
gies, and (iii) the long-short reversal strategies excluding the smallest two quintiles, as
well as the pricing errors of (iv) the value-weighted long-short reversal strategy, and (v)
the liquidity provider portfolio. The liquidity provider portfolio is double-weighted by
volume and the normalized sorting-day return. Below each pricing error is its associated
p value. The sample is from April 9, 2001 to May 31, 2020.

βM 0.160** 0.160**
(0.081) (0.081)

βVIX −1.032*** −1.032***
(0.173) (0.173)

Constant 0.205**
(0.101)

N 50 50 50 50

(i) All portfolios:
R.m.s.e. 0.240 0.116 0.760 0.117
p-value 0.00 0.00 0.00 0.00

Constant Market VIX Market+VIX
(ii) Long-short reversal strategies:

R.m.s.e. 0.228 0.212 0.158 0.159
p-value 0.00 0.00 0.00 0.00

(iii) Long-short reversal strategies (ex small stocks):
R.m.s.e. 0.123 0.107 0.038 0.040
p-value 0.00 0.00 0.05 0.02

(iv) Value-weighted reversal strategy:
Pricing error 0.124 0.108 0.012 0.011
p-value 0.00 0.00 0.59 0.62

(v) Liquidity provider portfolio:
Pricing error 0.168 0.146 0.015 0.015
p-value 0.00 0.00 0.62 0.62
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Table 8: Pricing errors with an option-implied price of volatility risk

The table shows the pricing errors of the five-day reversal strategies using an option-
implied price of volatility. The option-implied price of volatility risk is the one that prices
the VIX return (see Table 2). The restricted price of market risk is the one that prices the
market return. To obtain the pricing errors of the reversal strategies, we multiply their
betas by the restricted prices of risk and subtract the resulting predicted returns from
the average returns. The Lo–Hi strategy goes long the lowest normalized return decile
portfolio and short the highest normalized return decile portfolio within a given size
quintile. The remaining strategies are constructed analogously for the inner normalized
return deciles. Each strategy is held for five trading days. Panel A reports the pricing
errors when the market return is used as the only factor. Panel B replaces it with the
change in the squared VIX index. Panel C includes both factors. The reported t statistics
are based on Newey-West standard errors with five lags to account for the overlap in the
returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: Market
Pricing errors t statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.74 0.44 0.16 −0.10 −0.10
2 0.38 0.12 0.05 0.07 −0.02
3 0.12 0.10 0.02 0.03 −0.03
4 0.13 0.17 0.10 0.11 0.02
Big 0.17 0.14 0.16 0.07 −0.00

Lo–Hi 2–9 3–8 4–7 5–6
Small 8.02 5.66 1.76 −1.24 −1.28
2 6.04 2.41 1.07 1.54 −0.50
3 2.29 2.43 0.64 0.71 −0.81
4 2.76 4.25 3.09 3.71 0.88
Big 3.82 4.14 5.58 3.14 −0.16

Panel B: ∆VIX2

Pricing errors t statistics
Lo–Hi 2–9 3–8 4–7 5–6

Small 0.59 0.41 0.04 −0.10 −0.15
2 0.21 0.05 −0.02 −0.02 −0.05
3 −0.05 −0.00 −0.07 −0.02 −0.02
4 −0.02 0.05 0.04 0.06 0.02
Big −0.01 0.04 0.05 0.01 −0.04

Lo–Hi 2–9 3–8 4–7 5–6
Small 6.35 5.19 0.44 −1.20 −1.89
2 3.36 0.94 −0.48 −0.46 −1.11
3 −0.85 −0.03 −1.75 −0.47 −0.63
4 −0.40 1.33 1.26 1.85 0.88
Big −0.20 1.29 1.64 0.43 −1.66

Panel C: Market and ∆VIX2

Pricing errors t statistics
Lo–Hi 2–9 3–8 4–7 5–6

Small 0.59 0.42 0.06 −0.01 −0.13
2 0.23 0.09 −0.00 0.00 −0.08
3 −0.04 −0.00 −0.07 −0.00 −0.03
4 −0.01 0.05 0.06 0.06 0.02
Big −0.01 0.06 0.03 0.00 −0.03

Lo–Hi 2–9 3–8 4–7 5–6
Small 6.37 5.42 0.63 −0.12 −1.58
2 3.69 1.78 −0.06 0.02 −1.79
3 −0.84 −0.04 −1.72 −0.12 −0.95
4 −0.25 1.37 2.04 1.85 0.80
Big −0.32 1.76 1.22 0.18 −1.59
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Table 9: Predicting reversal returns with VIX

Results from predictability regressions of the reversal strategy returns on VIX. The Lo–
Hi strategy goes long the lowest normalized return decile portfolio and short the highest
normalized return decile portfolio within a given size quintile. The remaining strategies
are constructed analogously for the inner normalized return deciles. Each strategy is held
for five trading days. The predictability regressions are

Rp
t,t+5 = ap

r + bp
r VIX2

t + ε
p
r,t+5,

where Rp
t,t+5 is the cumulative excess return on portfolio p from the portfolio formation

date t to t + 5 and VIX2
t is the squared VIX index on the portfolio formation date. The

predictive loadings bp
r are multiplied by 100 for legibility. The t-statistics are based on

Newey-West standard errors with five lags to account for the overlap in the returns. The
sample is from April 9, 2001 to May 31, 2020.

Panel A: Predictive loadings Panel B: t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 9.81 7.69 9.51 −0.48 −2.60
2 7.71 4.34 3.70 1.68 −0.34
3 6.72 3.13 3.00 2.65 0.44
4 5.70 5.28 3.01 3.41 −0.54
Big 9.09 5.51 3.53 3.02 0.34

Lo–Hi 2–9 3–8 4–7 5–6
Small 3.44 2.89 3.21 −0.19 −0.95
2 3.00 2.92 2.62 1.18 −0.25
3 2.98 1.98 2.59 1.85 0.63
4 2.94 3.34 2.51 2.76 −0.72
Big 4.65 4.13 2.98 3.00 0.47

Panel C: R2

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.85 0.66 0.97 0.00 0.08
2 1.30 0.56 0.44 0.10 0.00
3 1.38 0.45 0.43 0.34 0.01
4 1.21 1.47 0.65 1.03 0.03
Big 3.45 1.94 1.09 1.06 0.02
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Table 10: Persistence of the volatility risk of the reversal strategies

The table shows the betas of the reversal strategies at different horizons on changes in
VIX2 one day after portfolio formation. The betas are estimated by running the regres-
sions

Rp
t,t+h = αp + β

p
VIX,h∆VIX2

t,t+1 + ε
p
t,t+5,

where Rp
t,t+h is the cumulative excess return on reversal strategy portfolio p from the

portfolio formation date t to t + h, and ∆VIX2
t,t+1 is the change in the squared VIX index

from date t to t + 1. The panels show the betas β
p
VIX,h. Panel A uses h = 5 days, Panel

B uses h = 10 days, and Panel C uses h = 20 days. The t-statistics are based on Newey-
West standard errors with five lags to account for the overlap in the returns. The sample
is from April 9, 2001 to May 31, 2020.

Panel A: 5 days

β
p
VIX,5 t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small −0.10 −0.13 −0.15 0.01 −0.13
2 −0.20 −0.05 −0.03 −0.17 −0.09
3 −0.18 −0.07 −0.10 −0.09 −0.03
4 −0.20 −0.12 −0.09 −0.05 0.03
Big −0.19 −0.08 −0.10 −0.03 −0.02

Lo–Hi 2–9 3–8 4–7 5–6
Small −0.87 −1.46 −1.57 0.16 −1.23
2 −2.38 −1.00 −0.55 −3.34 −1.71
3 −3.04 −1.85 −1.68 −2.00 −0.70
4 −3.88 −2.48 −2.13 −1.57 1.19
Big −3.12 −1.44 −2.81 −0.57 −0.62

Panel B: 10 days

β
p
VIX,10 t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.03 −0.14 −0.39 0.05 −0.14
2 −0.01 −0.03 0.03 −0.08 −0.02
3 −0.14 −0.13 −0.07 −0.07 −0.07
4 −0.17 −0.12 −0.12 −0.03 0.00
Big −0.21 −0.10 −0.08 −0.08 0.02

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.21 −1.40 −3.42 0.44 −0.88
2 −0.09 −0.55 0.53 −1.11 −0.57
3 −1.88 −2.21 −1.38 −1.37 −1.87
4 −3.13 −2.36 −3.04 −0.65 0.08
Big −3.60 −2.37 −2.56 −1.90 0.89

Panel C: 20 days

β
p
VIX,20 t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.02 −0.28 −0.14 −0.00 −0.10
2 0.01 −0.06 0.10 −0.14 −0.09
3 −0.22 −0.12 −0.09 −0.14 −0.05
4 −0.23 −0.12 −0.12 0.03 0.09
Big −0.19 −0.07 −0.05 −0.11 0.00

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.26 −2.68 −1.48 −0.00 −0.60
2 0.04 −0.95 1.06 −1.32 −0.95
3 −3.85 −2.61 −1.81 −3.33 −1.09
4 −3.42 −1.98 −3.44 0.35 3.53
Big −3.86 −1.48 −1.30 −1.82 0.03
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Table 11: Volatility co-movement portfolios

CAPM alphas, volatility risk betas, and pricing errors of the reversal strategies formed by
quintiles of k, the sensitivity of a stock’s idiosyncratic volatility to market volatility. Each
day, stocks are first sorted into quintiles by k and then deciles by normalized beta-adjusted
return (normalized using a 60-day rolling window). The Lo–Hi strategy goes long the
lowest normalized return decile portfolio and short the highest normalized return decile
portfolio within a given k quintile (the remaining strategies are constructed analogously).
The strategies are held for five days. Panel A shows the CAPM alphas. Panel B shows the
volatility risk betas, estimated by regressing the reversal strategy returns on the change in
VIX squared and the market return. Panel C shows pricing errors using a restricted price
of volatility risk from option markets (the one that prices the VIX return). To obtain the
pricing errors, we multiply their volatility risk betas by the restricted price of volatility
risk and their market betas by the average excess market return. We then subtract these
predicted average return from the actual returns, and average over time. The reported
t statistics are based on Newey-West standard errors with five lags to account for the
overlap in the returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: CAPM alphas
Alphas t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.10 0.11 0.08 0.02 0.04
2 0.13 0.06 0.04 0.06 0.02
3 0.14 0.14 0.15 0.07 0.01
4 0.15 0.22 0.16 0.12 0.04
High k 0.26 0.29 0.16 0.13 −0.06

Lo–Hi 2–9 3–8 4–7 5–6
Low k 2.00 2.73 2.14 0.47 1.21
2 2.99 2.04 1.41 2.50 0.82
3 3.25 3.96 4.94 2.42 0.26
4 2.72 4.99 4.26 3.41 1.09
High k 2.67 4.74 3.17 2.70 −1.22

Panel B: Volatility risk betas (controlling for RM)
Betas t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k −0.07 −0.07 −0.09 −0.09 −0.02
2 −0.15 −0.06 −0.13 0.02 0.01
3 −0.20 −0.12 −0.09 −0.05 −0.05
4 −0.17 −0.17 −0.13 −0.01 −0.05
High k −0.34 −0.03 −0.07 −0.01 0.02

Lo–Hi 2–9 3–8 4–7 5–6
Low k −1.42 −2.14 −2.84 −1.37 −0.59
2 −2.78 −1.49 −3.29 0.68 0.57
3 −3.23 −2.49 −2.80 −0.82 −2.36
4 −2.46 −2.75 −4.06 −0.33 −1.28
High k −2.93 −0.35 −1.32 −0.15 0.35

Panel C: Pricing errors (market and ∆VIX2)
Pricing errors t statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.04 0.05 0.00 −0.06 0.03
2 −0.01 0.01 −0.08 0.08 0.03
3 −0.05 0.03 0.06 0.03 −0.04
4 −0.01 0.06 0.04 0.11 −0.01
High k −0.05 0.27 0.10 0.12 −0.04

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.75 1.17 0.02 −1.49 0.71
2 −0.24 0.17 −2.63 3.20 1.22
3 −1.22 0.84 2.04 0.91 −1.54
4 −0.12 1.39 0.98 2.98 −0.19
High k −0.56 4.44 1.90 2.62 −0.90
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Figure 1: Reversal strategy returns and volatility risk

The figure shows the average return and volatility risk of the reversal strategy against the
VIX index. The reversal strategy goes long the lowest normalized return decile portfolio
and short the highest normalized return decile portfolio within the top size quintile. The
portfolios are formed each day and held for five trading days. Panel A plots the annu-
alized average return of the strategy over a 60-day window. Panel B plots its volatility
risk estimated over the same window. The volatility risk of the reversal strategy is the
annualized standard deviation of changes in squared VIX times the strategy’s beta with
respect to these changes, i.e. σ

(
βVIX2∆VIX2). The sample is from April 9, 2001 to May

31, 2020.
Panel A: Reversal strategy average return

-1

0

1

2

3

0

20

40

60

80

2001 2004 2007 2010 2013 2017 2020

Reversal strategy average return VIX (right axis)

Panel B: Reversal strategy volatility risk

0

8

16

24

0

20

40

60

80

2001 2004 2007 2010 2013 2017 2020

Reversal strategy volatility risk VIX (right axis)
54



Figure 2: Idiosyncratic volatility and VIX

The figure shows the relationship between idiosyncratic volatility and VIX. Idiosyncratic
volatility is calculated as follows. Each day, we compute the beta-adjusted returns of all
stocks using a 60-day rolling window to estimate the betas. We then square these returns
and value-weight them across stocks. We take the annualized sum of these squared value-
weighted returns over the next 21 trading days (to match the 30-calendar-day horizon of
VIX). Idiosyncratic volatility is the square root of this sum. The sample is from April 9,
2001 to May 31, 2020.
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Figure 3: Fama-MacBeth regressions: average and predicted returns

The figure shows the average returns of the reversal strategies against their predicted re-
turns from Fama-Macbeth regressions (see Tables 5 and 6). Each observation corresponds
to a different reversal strategy. Colors and markers denote different size quintiles. Within
each quintile, there are five long-short reversal strategies (Lo–Hi, 2–9, 3–8, 4–7, and 5–6).
Each strategy is held for five trading days. Also shown is the liquidity provider (LP) port-
folio, which weighs the reversal strategies by their normalized return and volume. Panel
A uses the market return as the only factor. Panel B replaces it with the change in the
squared VIX index. Panel C includes both factors. The sample is from April 9, 2001 to
May 31, 2020.
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Figure 4: Option-implied price of volatility risk

The figure shows the average returns of the reversal strategies against their predicted
returns using a restricted price of volatility risk obtained from option markets. The re-
stricted price of volatility risk is the one that prices the VIX return. To calculate the pre-
dicted returns of the reversal strategies, we multiply their ∆VIX2 betas by the restricted
price of volatility risk. Each observation corresponds to a given reversal strategy. Differ-
ent colors and markers distinguish the five size quintiles. Within each quintile, there are
five long-short reversal strategies (Lo–Hi, 2–9, 3–8, 4–7, and 5–6). Each strategy is held
for five trading days. Panel A uses the market return as the only factor. Panel B replaces
it with the change in the squared VIX index. Panel C includes both factors. The sample is
from April 9, 2001 to May 31, 2020.
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Figure 5: Returns, predictive loadings, and betas by horizon

The figure shows average returns (Panel A), predictive loadings by VIX2 (Panel B),
volatility risk betas (Panel C), and volatility risk betas controlling for the market return
(Panel D) for the reversal strategies within the largest size quintile. The Lo–Hi strategy
goes long the lowest normalized return decile portfolio and short the highest normalized
return decile portfolio (the remaining strategies are constructed analogously). Each strat-
egy is held for up to ten trading days. The horizontal axis shows the holding period. On
the vertical axis, Panel A plots average returns and Panel B plots the predictive loading
on VIX2. The sample is from April 9, 2001 to May 31, 2020.
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Figure 6: Volatility risk persistence of reversal returns

The figure shows the betas of reversal strategies on changes in VIX2 on the first day after
portfolio formation. The betas are estimated by running the regressions

Rp
t,t+h = αp,h + β

p
VIX,h∆VIX2

t,t+1 + ε
p
t,t+h,

where Rp
t,t+h is the cumulative excess return on portfolio p from the portfolio formation

date t to t + h and ∆VIX2
t,t+1 is the change in the squared VIX from t to t + 1. The reversal

strategy takes a long position in the lowest normalized return decile portfolio and a short
position in the highest normalized return decile portfolio. Panel A focuses on the top size
quintile. Gray shading indicates 95% confidence interval. Panel B includes the smaller
size quintiles. Each strategy is held for up to twenty trading days. The horizontal axis
shows the holding period. The sample is from April 9, 2001 to May 31, 2020.
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Figure 7: Volatility co-movement portfolios

The figure shows the average returns of the volatility co-movement reversal strategies
against their predicted returns using a restricted price of volatility risk from option mar-
kets. The reversal strategies are formed by quintiles of k, the sensitivity of a stock’s id-
iosyncratic volatility to market volatility. The restricted price of volatility risk is the one
that prices the VIX return. To calculate the predicted returns of the reversal strategies, we
multiply their VIX-squared betas by the restricted price of volatility risk (and their market
betas by the average market excess return). Each observation corresponds to a reversal
strategy. Each color and marker corresponds to a k quintile. Panel A uses the market
return as the only factor. Panel B replaces it with VIX-squared changes. Panel C includes
both factors. The sample is from April 9, 2001 to May 31, 2020.
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Internet Appendix for

“Liquidity and Volatility”

IA.1 Public news about fundamentals

In the main version of the model only informed traders receive signals about final payoffs
ahead of time. This is common in the literature (e.g., Kyle, 1985) but unrealistic in practice
as there are also many instances of public news, such as earnings announcements. In this
section, we therefore expand the model to incorporate public news.

Prices at the final date 1 are now given by

pi,1 = vi + vi + ui, (IA.1)

where ui is the component of the final payout about which there is public news, and is
independent of vi. Since the news about ui is received by all market participants, they
share the same time series of expectations of its value, Et [ui]. We allow public news to
incorporate systematic risk that is priced. The risk pricing is captured by the risk-adjusted
expectation of ui, EQ

t [ui] = Et

[
ΛT
Λt

ui

]
. We normalize EQ [ui] = 0 so that the price of asset

i prior to date 0 continues to be vi. Proposition IA.1 extends the results in the baseline
model to account for public news.

Proposition IA.1. The model with public news implies the following results:

i. The price of asset i on date t ∈ {0, τ} is given by

pi,t = vi + EQ
t [ui] +

φEQ
t

[
σ2

v,i

]
σ2

x,i
xi. (IA.2)

ii. The position of liquidity providers in asset i, −xi, is proportional to the date-0 decline in the
price of the asset net of the public news component:

−xi = −
σ2

x,i

φ

∆pi,0 − EQ
0 [ui]

EQ
0

[
σ2

v,i

]
 . (IA.3)

iii. The change in the value of liquidity providers’ position in asset i between dates 0 and τ is

−∆pi,τxi = −
φx2

i
σ2

x,i

(
EQ

τ

[
σ2

v,i

]
− EQ

0

[
σ2

v,i

])
− xi

(
EQ

τ [ui]− EQ
0 [ui]

)
. (IA.4)

As the number of assets in the liquidity provider’s portfolio becomes large (N → ∞),

∑N
i=1 xi

(
EQ

τ [ui]− EQ
0 [ui]

)
→ 0, i.e., the public news component is diversified out of the

value of the liquidity providers’ portfolios.
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iv. The beta of liquidity providers’ position in asset i to expected market volatility Eτ[σ2
m] is

βi,σm = −
φkx2

i
σ2

x,i
− xiβui,σm = −

(
∆pi,0 − EQ

0 [ui]

EQ
0 [σ

2
v,i]

)2
kσ2

x,i

φ
− xiβui,σm , (IA.5)

where βui,σm is the market volatility beta of the public news component of asset i. As the
number of assets N in the liquidity providers’ portfolio grows large (N → ∞),

N

∑
i=1
−xiβui,σm → 0, (IA.6)

i.e., public news does not affect the portfolio’s market volatility beta.

v. The expected payoff on liquidity providers’ portfolios from date 0 to τ is:

E0

[
N

∑
i=1
−∆pi,τxi

]
=

(
N

∑
i=1

βi,σm

)(
E0

[
EQ

τ

[
σ2

m

]]
− EQ

0

[
σ2

m

])
> 0. (IA.7)

Thus, the liquidity premium is positive and proportional to the variance risk premium.

Part (i) of Proposition IA.1 shows that prices now reflect public news in addition
to the private news contained in order flow. Yet, public news does not change order
flow because it is observable by everyone. Part (ii) shows that the positions of liquidity
providers are proportional to price changes net of this public news component. To the
extent that we cannot separately identify the public news component, it makes reversals
a noisy proxy for liquidity providers’ portfolios. To address this issue in our empirical
analysis we exclude earnings announcements, which are the most prominent example of
firm-level public news.

Part (iii) of Proposition IA.1 shows that liquidity providers’ position in each asset
is given by a short variance swap as before, together with a directional bet on the pub-
lic news component. The directional bet stems from the long or short position that liq-
uidity providers have in the asset. However, since they are equally likely to be long or
short, their average position is zero and hence these directional bets tend to cancel out
at the portfolio level. Thus, by the law of large numbers liquidity providers’ exposure
to public news becomes negligible as the number of assets in the portfolio grows large:
(∑N

i=1 xi

(
EQ

τ [ui]− EQ
0 [ui]

)
→ 0). In contrast, the liquidity provider has a negative ex-

posure to market volatility in every position, so this exposure does not cancel out at all.
Thus, there is no change in the model’s central prediction, that liquidity providers have
an unambiguously negative market volatility beta.

Indeed, part (iv) shows that for a large number of assets, the market volatility beta
of the liquidity provider’s portfolio is exactly the same function of order flow as in the
model without public news. Part (v) then shows that the liquidity premium charged by
liquidity providers is, as before, the product of their portfolio’s market volatility beta and
the market variance risk premium. Therefore, although public news introduces measure-
ment error into our tests, all of the key predictions of the model remain the same.
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IA.2 Proofs

Proof of Proposition 1. The information set of liquidity providers isF0 =
{

xi, σ2
x,i : i = 1, . . . , N

}
on date 0 and Fτ =

{
Eτ[σ2

m],F0
}

on date τ. From (3), the price of asset i is

pi,t = EQ
t [pi,1] = vi + EQ [vi| Ft] . (IA.8)

Using the law of iterated expectations to condition on the value of σ2
v,i, and then using the

joint normality of yi and zi given σ2
v,, we can use standard joint normal filtering to give the

liquidity provider’s updated expectation of vi in terms of the net demand xi he observes:

EQ [vi| Ft] = EQ
[

E
[

vi| σ2
v,i,Ft

]∣∣∣Ft

]
= EQ

[
φσ2

v,i

σ2
x,i

xi

∣∣∣∣∣Ft

]
=

φEQ
t

[
σ2

v,i

]
σ2

x,i
xi. (IA.9)

The last equality follows from the fact that the liquidity provider knows xi and σ2
x,i. The

first equality uses the fact that, given σ2
v,i, vi is idiosyncratic and is therefore orthogonal to

the aggregate stochastic discount factor Λt corresponding to the Q measure. Substituting
(IA.9) into (IA.8) gives (9).

Proof of Lemma 1. The result is obtained by re-arranging (9) as applied to date 0, solving
for xi, and substituting ∆pi,1 = pi,0 − vi.

Proof of Lemma 2. The result is obtained by applying Proposition 1 to dates τ and 0 and
taking the difference.

Proof of Lemma 3. The result is obtained by multiplying (11) by −xi.

Proof of Proposition 2. The first equality is the definition of a beta. The second equality
substitutes in Lemma 3 as follows:

βi,σm =
Cov

(
−∆pi,τxi, EQ

τ

[
σ2

m
]
− EQ

0
[
σ2

m
])

Var
(

EQ
τ [σ2

m]− EQ
0 [σ2

m]
) (IA.10)

=

Cov
(
−φx2

i
σ2

x,i

(
EQ

τ

[
σ2

v,i

]
− EQ

0

[
σ2

v,i

])
, EQ

τ

[
σ2

m
]
− EQ

0
[
σ2

m
])

Var
(

EQ
τ [σ2

m]− EQ
0 [σ2

m]
) (IA.11)

= −
φx2

i
σ2

x,i

Cov
(

EQ
τ

[
kσ2

m + εv + ς2
v,i

]
− EQ

0

[
kσ2

m + εv + ς2
v,i

]
, EQ

τ

[
σ2

m
]
− EQ

0
[
σ2

m
])

Var
(

EQ
τ [σ2

m]− EQ
0 [σ2

m]
)

(IA.12)

= −
φkx2

i
σ2

x,i
. (IA.13)
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This gives (13). The second to last equality uses the factor structure of volatility as given
by (6). The last equality uses the fact that ς2

v,i is idiosyncratic and hence uncorrelated with
σ2

m. Finally, substitute (10) into (13) to get to get (14).

Proof of Proposition 3. The first step is to write the realized payoff of liquidity providers by
average across assets in Lemma 3: The expected payoff of liquidity providers’ portfolios
from date 0 to date t is:

N

∑
i=1
−∆pi,1xi =

N

∑
i=1
−

φx2
i

σ2
x,i

(
EQ

τ

[
σ2

v,i

]
− EQ

0

[
σ2

v,i

])
. (IA.14)

To get the expected payoff, take the realized payoff’s date-0 expected value under the
objective measure:

E0

[
N

∑
i=1
−∆pi,1xi

]
= E0

[
N

∑
i=1
−

φx2
i

σ2
x,i

(
EQ

τ

[
σ2

v,i

]
− EQ

0

[
σ2

v,i

])]
(IA.15)

=
N

∑
i=1
−

φx2
i

σ2
x,i

E0

[
EQ

τ

[
kσ2

m + εv + ς2
v,i

]
− EQ

0

[
kσ2

m + εv + ς2
v,i

]]
(IA.16)

=
N

∑
i=1
−

φkx2
i

σ2
x,i

(
E0

[
EQ

τ

[
σ2

m

]]
− EQ

0

[
σ2

m

])
. (IA.17)

The last equality uses the fact that ς2
v,i and εv are orthogonal to our pricing measure and

hence EQ
t

[
ς2

v,i + εv

]
is a martingale under the objective measure.

Proof of Proposition IA.1. The proof largely follows the proofs of Propositions 1–3 and Lem-
mas 1–3:

i. The information set of liquidity providers is F0 =
{

xi, σ2
x,i, EQ

0 [ui] : i = 1, . . . , N
}

on

date 0 and Fτ =
{

EQ
τ [ui] , σ2

m,F0

}
on date τ. From (3), the price of asset i is

pi,t = EQ
t [pi,1] = vi + EQ

t [ui] + EQ [vi| Ft] . (IA.18)

Applying the law of iterated expectations as in (IA.9),

EQ [vi| Ft] = EQ
[

E
[

vi| σ2
v,i,Ft

]∣∣∣Ft

]
= EQ

[
φσ2

v,i

σ2
x,i

xi

∣∣∣∣∣Ft

]
=

φEQ
t

[
σ2

v,i

]
σ2

x,i
xi.

(IA.19)

The last equality uses the fact that vi is idiosyncratic and hence independent of
EQ

t [ui] conditional on σ2
v,i. Plugging (IA.19) into (IA.18) gives (IA.2).

ii. Re-arranging (IA.2) to solve for −xi gives (IA.3).
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iii. Differencing (IA.2) between dates τ and 0 and multiplying by −xi gives (IA.4).

iv. The market volatility beta of asset i’s public news component is given by

βui,σm =
Cov

(
EQ

τ [ui]− EQ
0 [ui] , EQ

τ

[
σ2

m
]
− EQ

0
[
σ2

m
])

Var
(

EQ
τ [σ2

m]− EQ
0 [σ2

m]
) . (IA.20)

Taking the covariance of the right side of (IA.4) with EQ
τ

[
σ2

m
]
− EQ

0
[
σ2

m
]

and divid-

ing by Var
(

EQ
τ

[
σ2

m
]
− EQ

0
[
σ2

m
])

gives (IA.5). Next, note that since vi and zi are

idiosyncratic, xi is independent of βui,σm and so ∑N
i=1 xiβui,σm = 0.

v. This result follows the proof of Proposition 3.

Proof of Proposition 4.

i. Part (i) follows from re-arranging (17) as applied to t = 0.

ii. Part (ii) follows from differencing (17) between dates τ and 0 and multiplying by
−xi.

Proof of Proposition 5. The results follow from taking the covariance of the right side of
(19) with EQ

t
[
σ2

m
]
− EQ

0
[
σ2

m
]

and dividing by Var
(

EQ
t
[
σ2

m
]
− EQ

0
[
σ2

m
])

for t ∈ {τ, 1}. In

the cases γi,t = γEQ
t
[
σ2

m
]

or γi,t = γEQ
t

[
σ2

v,i

]
the term βγi,σm simplifies to γ.

Proof of Proposition 6. This result follows by taking the expected value of (19) as applied
to t ∈ {τ, 1} and simplifying using Proposition 5.

IA.3 Additional empirical results

IA.3.1 Idiosyncratic volatility and market volatility

Table IA.1 assesses the relationship between idiosyncratic and market volatility formally.
In order to provide a benchmark, column (1) regresses realized market volatility over 21
trading days on VIX as of the start of the period. The R2 is 55.2%, showing that VIX is a
powerful predictor of market volatility, as expected. The coefficient is slightly less than
one, 0.924, reflecting the fact that some of the variation in VIX is driven by changes in the
variance premium rather than expected variance.

Column (2) replaces market volatility with idiosyncratic volatility from Figure 2. The
R2 is almost identical, 55.5%, and the coefficient is 0.969. Thus, VIX is as good at pre-
dicting idiosyncratic volatility as it is market volatility. This is remarkable given the fact
that VIX is constructed to predict market volatility. In column (3), we replace VIX with
the contemporaneous realized market volatility. The R2 is even higher at 84.4%, implying
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a correlation of 92%. Thus, realized idiosyncratic volatility and market volatility move
practically in lockstep.

Columns (4) to (6) repeat columns (1) to (3) in terms of variances instead of volatilities.
The same results emerge: market variance and idiosyncratic variance are almost perfectly
correlated (93%), and VIX—in this case VIX squared—is an equally powerful predictor of
both. This again confirms Prediction 1.

IA.3.2 Volatility co-movement portfolio sorts

Table IA.2 presents summary statistics on the volatility co-movement (k-sorted) portfo-
lios. Market capitalization (Panel A), idiosyncratic volatility (Panel B), average turnover
(Panel C), and sorting-day returns (Panel D) are fairly similar across the quintiles sorted
by the co-movement coefficients k. By construction, the pre-sorting coefficients k are
strongly increasing across quintiles (Panel E). Importantly, the substantial spread is also
evident in the post-sorting coefficients (Panel F). This validates our empirical approach
and allows us to conduct an economically meaningful test of the model. Moreover, con-
sistent with Prediction 1, the ex-post co-movement coefficients are all positive, indicating
that higher market volatility is associated with higher idiosyncratic volatility.

Table IA.3 shows the average returns of the k-sorted reversal strategies. Panel A
shows a strong pattern in average reversal returns across quintiles. As predicted by our
model, portfolios of stocks whose idiosyncratic volatility co-moves more strongly with
aggregate volatility earn substantially higher reversal returns. Average reversal returns
for the Lo–Hi strategies increase monotonically from 13 bps to 29 bps from the first quin-
tile to the fifth. Panels E and F shows that the corresponding CAPM alphas are very
similar to the raw returns and statistically significant.

Table IA.4 looks at the volatility risk betas. From Panel A, the betas become larger
(more negative) as we go from low to high co-movement quintiles. The beta of the Lo–Hi
strategy in the first quintile is −0.13, while that of the fifth quintile is −0.27. Both are
significant (Panel B). The same is true when we control for market exposure (Panels C
and D). By contrast, Panels E and F show no pattern in the strategies’ market betas, which
are economically small. Table IA.4 thus shows that stocks whose idiosyncratic volatility
is more sensitive to aggregate volatility have reversal returns that are more exposed to
volatility risk, which is consistent with our model.

Table IA.5 shows the results of Fama-Macbeth regressions with an option-implied
price of risk. These results are analogous to Table 8 for our main portfolio sorts. From
Table IA.5, controlling for volatility risk eliminates the pricing errors of the Lo–Hi strate-
gies. The pricing error of the high co-movement quintile five drops from 26 bps under the
CAPM to 1 bps in the one-factor model with volatility risk and −5 bps in the two-factor
model. Volatility risk thus again explains the liquidity premium in the cross section of
stocks.
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Table IA.1: Idiosyncratic volatility, market volatility, and VIX

This table shows the relationship between idiosyncratic volatility, market volatility, and
VIX, as well as their variance counterparts. Idiosyncratic volatility and variance are cal-
culated as follows. Each day, we compute the beta-adjusted returns of all stocks using
a 60-day rolling window to estimate the betas. We then square these returns and value-
weight them across stocks. Idiosyncratic variance is the annualized sum of these squared
value-weighted returns over the next 21 trading days (to match the 30-calendar-day hori-
zon of VIX). Idiosyncratic volatility is the square root of idiosyncratic variance. Market
variance is the annualized sum of the squared market returns over the next 21 trading
days and market volatility is its square root. The sample is from April 9, 2001 to May 31,
2020.

Mkt. vol. Idio. vol. Mkt. var. Idio. var.
(1) (2) (3) (4) (5) (6)

VIX 0.924*** 0.969***
(0.012) (0.013)

Mkt. vol. 0.961***
(0.006)

VIX2 0.913*** 1.429***
(0.016) (0.024)

Mkt. var. 1.418***
(0.008)

Constant −1.881*** 10.555*** 13.934*** −0.338*** 3.463*** 4.550***
(0.258) (0.269) (0.118) (0.120) (0.181) (0.076)

Obs. 4,794 4,814 4,794 4,794 4,814 4,794
R2 0.552 0.555 0.844 0.397 0.417 0.860
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Table IA.2: Summary statistics: k-sorted portfolios

This table shows summary statistics for reversal strategies formed by quintiles of k, the
sensitivity of a stock’s idiosyncratic volatility to market volatility. It is estimated by run-
ning

σi,t = k0,i + kiVIXt + εσ
i,t,

where σi,t is the idiosyncratic volatility of stock i, measured from stock i’s beta-adjusted
returns over five trading days following date t. The regression is estimated using a one-
year rolling window. Each day, stocks are first sorted into quintiles by k and then deciles
by normalized beta-adjusted return. The normalized return is calculated using a 60-day
rolling window. The portfolios are weighted by average dollar volume over that window.
Post-sorting k’s are estimated by regressing the weighted average idiosyncratic volatility
of the stocks in each portfolio (taken over the five trading days following portfolio forma-
tion) on VIX. The sample is from April 9, 2001 to May 31, 2020.

Panel A: Market cap Panel B: Idiosyncratic volatility

Lo–Hi 2–9 3–8 4–7 5–6
Low k 52.01 52.22 48.50 47.92 45.88
2 57.50 56.73 54.90 54.32 53.72
3 55.88 56.47 54.91 53.79 54.01
4 47.55 49.10 47.96 46.95 46.72
High k 30.74 34.21 33.94 34.75 32.90

Lo–Hi 2–9 3–8 4–7 5–6
Low k 1.89 2.03 2.20 2.33 2.43
2 1.54 1.62 1.69 1.74 1.77
3 1.70 1.78 1.85 1.89 1.90
4 2.08 2.18 2.25 2.28 2.30
High k 2.95 3.07 3.19 3.25 3.30

Panel C: Average turnover Panel D: Sorting-day return

Lo–Hi 2–9 3–8 4–7 5–6
Low k 1.30 1.37 1.43 1.47 1.50
2 0.96 0.99 1.03 1.05 1.07
3 1.04 1.08 1.11 1.12 1.13
4 1.34 1.39 1.42 1.43 1.44
High k 2.00 2.09 2.13 2.18 2.19

Lo–Hi 2–9 3–8 4–7 5–6
Low k −6.00 −3.18 −2.03 −1.14 −0.37
2 −4.87 −2.67 −1.71 −0.97 −0.32
3 −5.27 −2.89 −1.85 −1.05 −0.34
4 −6.23 −3.41 −2.17 −1.22 −0.39
High k −8.57 −4.55 −2.88 −1.62 −0.53

Panel E: Pre-sorting k Panel F: Post-sorting k

Lo–Hi 2–9 3–8 4–7 5–6
Low k −0.39 −0.41 −0.44 −0.48 −0.49
2 0.26 0.26 0.26 0.26 0.26
3 0.68 0.68 0.68 0.68 0.68
4 1.20 1.20 1.20 1.20 1.20
High k 2.39 2.41 2.44 2.45 2.46

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.49 0.45 0.45 0.45 0.46
2 0.79 0.74 0.73 0.71 0.72
3 1.17 1.07 1.04 1.05 1.04
4 1.68 1.50 1.45 1.47 1.45
High k 2.51 2.06 2.04 2.08 2.06
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Table IA.3: Reversal strategy returns: k-sorted portfolios

Average returns, standard deviations, Sharpe ratios, and CAPM alphas of the five-day re-
versal strategies formed by quintiles of k, the sensitivity of a stock’s idiosyncratic volatility
to market volatility. Each day, stocks are first sorted into quintiles by by k and then deciles
by normalized beta-adjusted return. The normalized return is calculated using a 60-day
rolling window. The portfolios are weighted by average dollar volume over that window.
The t-statistics are based on Newey-West standard errors with five lags to account for the
overlap in the returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: Average returns Panel B: t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.13 0.13 0.10 0.03 0.04
2 0.16 0.08 0.06 0.07 0.02
3 0.16 0.16 0.16 0.08 0.01
4 0.18 0.24 0.17 0.13 0.04
High k 0.29 0.30 0.18 0.14 −0.05

Lo–Hi 2–9 3–8 4–7 5–6
Low k 2.46 3.17 2.57 0.71 1.18
2 3.62 2.53 1.97 2.66 1.01
3 3.68 4.52 5.33 2.79 0.40
4 3.29 5.43 4.62 3.63 1.21
High k 3.00 5.01 3.45 2.91 −1.11

Panel C: Standard deviations Panel D: Sharpe ratios

Lo–Hi 2–9 3–8 4–7 5–6
Low k 3.34 2.88 2.55 2.69 2.45
2 2.66 2.14 1.97 1.88 1.70
3 2.91 2.40 2.06 1.96 1.82
4 3.55 2.99 2.58 2.46 2.43
High k 5.62 3.99 3.65 3.40 3.42

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.28 0.32 0.27 0.07 0.12
2 0.42 0.26 0.20 0.26 0.10
3 0.39 0.47 0.54 0.29 0.04
4 0.37 0.56 0.47 0.38 0.12
High k 0.37 0.54 0.34 0.29 −0.11

Panel E: CAPM alphas Panel F: CAPM alpha t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.10 0.11 0.08 0.02 0.04
2 0.13 0.06 0.04 0.06 0.02
3 0.14 0.14 0.15 0.07 0.01
4 0.15 0.22 0.16 0.12 0.04
High k 0.26 0.29 0.16 0.13 −0.06

Lo–Hi 2–9 3–8 4–7 5–6
Low k 2.00 2.73 2.14 0.47 1.21
2 2.99 2.04 1.41 2.50 0.82
3 3.25 3.96 4.94 2.42 0.26
4 2.72 4.99 4.26 3.41 1.09
High k 2.67 4.74 3.17 2.70 −1.22
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Table IA.4: Volatility risk of the k-sorted reversal strategies

The table shows the betas with respect to changes in VIX2 of the five-day reversal strate-
gies by quintiles of k, the sensitivity of a stock’s idiosyncratic volatility to market volatility.
The betas are estimated by running the regressions

Rp
t,t+5 = αp + β

p
VIX∆VIX2

t,t+5 + β
p
MRM

t,t+5 + ε
p
t,t+5,

where Rp
t,t+5 is the cumulative excess return on reversal strategy portfolio p from the

portfolio formation date t to t + 5, RM
t,t+5 is the excess return on the market portfolio, and

∆VIX2
t,t+5 is the change in the squared VIX index from date t to t + 5. Panel A omits

the market return while Panels B and C include it. Panel C reports the market betas β
p
M.

The t-statistics are based on Newey-West standard errors with five lags to account for the
overlap in the returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: ∆VIX2 betas

β
p
VIX t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k −0.13 −0.10 −0.11 −0.08 0.00
2 −0.19 −0.09 −0.13 −0.01 −0.00
3 −0.21 −0.15 −0.09 −0.06 −0.04
4 −0.22 −0.15 −0.12 −0.05 −0.04
High k −0.27 −0.04 −0.07 −0.04 −0.01

Lo–Hi 2–9 3–8 4–7 5–6
Low k −3.76 −3.65 −4.46 −1.88 0.02
2 −4.46 −3.30 −4.95 −0.45 −0.01
3 −4.91 −4.37 −3.91 −1.25 −2.54
4 −4.15 −3.34 −5.35 −1.82 −1.22
High k −3.77 −0.75 −1.41 −1.05 −0.45

Panel B: ∆VIX2 betas (controlling for RM)

β
p
VIX t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k −0.07 −0.07 −0.09 −0.09 −0.02
2 −0.15 −0.06 −0.13 0.02 0.01
3 −0.20 −0.12 −0.09 −0.05 −0.05
4 −0.17 −0.17 −0.13 −0.01 −0.05
High k −0.34 −0.03 −0.07 −0.01 0.02

Lo–Hi 2–9 3–8 4–7 5–6
Low k −1.42 −2.14 −2.84 −1.37 −0.59
2 −2.78 −1.49 −3.29 0.68 0.57
3 −3.23 −2.49 −2.80 −0.82 −2.36
4 −2.46 −2.75 −4.06 −0.33 −1.28
High k −2.93 −0.35 −1.32 −0.15 0.35

Panel C: Market betas

β
p
M t-statistics

Lo–Hi 2–9 3–8 4–7 5–6
Small 0.10 0.04 0.03 −0.01 −0.03
2 0.05 0.05 0.00 0.04 0.02
3 0.02 0.04 −0.01 0.01 −0.01
4 0.08 −0.02 −0.01 0.06 −0.02
Big −0.10 0.02 −0.01 0.05 0.05

Lo–Hi 2–9 3–8 4–7 5–6
Small 2.28 1.19 1.19 −0.18 −1.08
2 1.41 1.32 0.09 2.00 0.76
3 0.39 1.30 −0.20 0.31 −0.74
4 1.70 −0.60 −0.21 1.84 −0.64
Big −1.05 0.46 −0.18 1.15 1.15
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Table IA.5: Option-implied price of volatility risk: k-sorted portfolios

The table uses a restricted price of volatility risk obtained from option markets to com-
pute the pricing errors of the five-day reversal strategies formed by quintiles of k, the
sensitivity of a stock’s idiosyncratic volatility to market volatility. The restricted price of
volatility risk is the one that prices the VIX return with ∆VIX2 as a pricing factor. To
obtain the pricing errors of the reversal strategies, we multiply their ∆VIX2 betas by the
restricted price of volatility risk and subtract the resulting predicted average return from
the actual return of each strategy, which we then average over time. The Lo–Hi strategy
goes long the lowest normalized return decile portfolio and short the highest normalized
return decile portfolio within a given k quintile. The remaining strategies are constructed
analogously for the inner normalized return deciles. Each strategy is held for five trading
days. Panel A reports the pricing errors when the market return is used as the only factor.
Panel B replaces it with the change in the squared VIXN index. Panel C includes both
factors. The reported t statistics are based on Newey-West standard errors with five lags
to account for the overlap in the returns. The sample is from April 9, 2001 to May 31, 2020.

Panel A: Market
Pricing errors t statistics

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.10 0.11 0.08 0.02 0.04
2 0.13 0.06 0.04 0.06 0.02
3 0.13 0.14 0.15 0.07 0.01
4 0.15 0.22 0.16 0.12 0.04
High k 0.26 0.29 0.16 0.13 −0.06

Lo–Hi 2–9 3–8 4–7 5–6
Low k 1.96 2.77 2.12 0.47 1.23
2 2.96 2.03 1.40 2.52 0.84
3 3.09 3.90 4.97 2.53 0.26
4 2.63 4.98 4.17 3.29 1.11
High k 2.67 4.83 3.23 2.76 −1.22

Panel B: ∆VIX2

Pricing errors t statistics
Lo–Hi 2–9 3–8 4–7 5–6

Low k −0.01 0.03 −0.01 −0.06 0.04
2 −0.04 −0.02 −0.08 0.06 0.02
3 −0.06 0.01 0.06 0.02 −0.03
4 −0.04 0.08 0.04 0.08 0.00
High k 0.01 0.26 0.11 0.10 −0.07

Lo–Hi 2–9 3–8 4–7 5–6
Low k −0.13 0.77 −0.36 −1.42 1.20
2 −0.83 −0.57 −2.62 2.29 1.00
3 −1.35 0.20 2.15 0.74 −1.27
4 −0.79 1.83 1.18 2.19 0.13
High k 0.08 4.33 2.11 2.09 −1.42

Panel C: Market and ∆VIX2

Pricing errors t statistics
Lo–Hi 2–9 3–8 4–7 5–6

Low k 0.04 0.05 0.00 −0.06 0.03
2 −0.01 0.01 −0.08 0.08 0.03
3 −0.05 0.03 0.06 0.03 −0.04
4 −0.01 0.06 0.04 0.11 −0.01
High k −0.05 0.27 0.10 0.12 −0.04

Lo–Hi 2–9 3–8 4–7 5–6
Low k 0.75 1.17 0.02 −1.49 0.71
2 −0.24 0.17 −2.63 3.20 1.22
3 −1.22 0.84 2.04 0.91 −1.54
4 −0.12 1.39 0.98 2.98 −0.19
High k −0.56 4.44 1.90 2.62 −0.90
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