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Production Based Asset Pricing 

L Introduction - 

Much of the current theory of asset pricing is based on the consumer's 

first order conditions, 

u' 
(c+i) 

1 — p Et Rt+l (1) 

u 
(ce) 

where R is the return on an asset and p is the consumer's discount factor. 
t+l 

This equation can-be derived from the statement that the consumer's marginal 

rate of substitution between date and state contingent claims should be equal 

to the price ratio of such claims. This paper explores the equivalent 

equation for prc ucers, which can be derived from the condition that the 

marginal rate of transformation between date and State contingent claims 

should also equal their price ratio. Its purpose is to provide an 

empirically tractable framework for linking asset returns to macroeconomic 

fluctuations. 

There is a great deal- of evidence that such links exist: term premia in 

the bond market, futures premia in the foreign exchange market, and risk 

premia in the stock market vary through time and are correlated with 

macroeconomic variables. (See, among others, Hansen and Hodrick (1983), Fama 

and Eliss (1987), Chen, Roll and Ross (1986), and Ferson (1986)). The most 

common approach to explaining these results uses (1) to link asset price 

phenomena to consumption data or state variables presumed to determine 

consumption, but this approach has not been particularly successful to date. 

As a result, a great deal of work on the specification of the consumption 



based model is in progress, including durability, continuous time, a variety 

of consumption goods, new forms for the utility function (state 

nonseparability, habit persistence), lack of perfect consumption insurance, 

heterogeneous consumers, borrowing constraints, money, etc. 

One difficulty in empirically implementing consumption based models is 

that they require information on how the conditional distribution of 

consumption varies over time and in response to the events of the business 

cycle. But business cycles are a prominent phenomenon of output, durables 

purchases, investment, inventories, employment etc. , not of nondurable or 

services consumption. To illustrate the relative smoothness of consumption, 

Fig. 1 presents the log values of consumption of nondurables and services 

together with gross fixed private investment and purchases of consumer 

durables. Also, as Wilcox (1988) has recently emphasized, the concept of 

consumption in the theoretical models corresponds weakly to the quantities 

used in the income and product accounts, especially when they are seasonally 

adjusted. Furthermore, deviations from optimal decision rules that are large 

enough to destroy empirically useful predictions about the cyclical relation 

between consumption and asset returns can imply minute utility costs. 

Cochrane (1988) calculates this utility loss for a variety of models, and 

finds that it is typically on the order of lc-lOC per quarter, which is 

interpreted to say that the predictions of the theory are sensitive to the 

modelling of small (lQ-1OC/quarter) costs of information acquisition or 

processing, transactions, etc.. 

This paper doesn't attempt to solve these or other problems with 
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consumption based models. Instead it ties the important cyclical variables 

such as output, investment, etc. directly to asset prices via the producer's 

first order conditions, completely ignoring their tie to (or through) 

nondurable consumption using the consumer's first order conditions. 

Of course, one hopes to eventually produce an empirically tractable 

general equilibrium model of asset prices and economic fluctuations, one that 

includes consumer and producer first order conditions and market equilibrium, 

because partial equilibrium models cannot explore the effects of fundamental 

sources of uncertainty, such as changes in technology or government policy. 

(Brock (1982) is an example of a prototype general equilibrium model with 

production, and the model in this paper is closely related to the production 

side of Brock's model.) 

However, the behavior of asset prices in general equilibrium depends on 

a mixture of preference and technological parameters, so it is hard to 

understand the mapping between the structure of a general equilibrium model 

and the qualitative features of the asset prices that result. Hence, as a 

great many insights into the behavior of a complete general equilibrium model 

appear from the consumer's first order conditions alone, ignoring producers, 

so many insights may appear from the corresponding producer's first order 

conditions, ignoring consumers. By studying the empirical implications of 

each set of first order conditions separately before uniting them, we can 

learn about preferences and technology in isolation, and this should simplify 

the task of producing empirically useful general equilibrium models. 
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Either consumer or producer first order conditions describe restrictions 

between the stochastic processes followed by real variables and asset prices 

or returns. Just as (1) describes a relation that must hold between asset 

returns and consumption no matter what the production technology, so producer 

first order conditions t(lO) below] describe a relation that must hold 

between asset returns and production variables no matter what the 

preferences. 

These restrictions can be exploited empirically in three ways. First, 

we can model the stochastic process for quantities, derive the process for 

prices, and compare those prices or the corresponding returns to data. This 

is Mehra and Prescott's (1985) approach, or the approach of any empirical 

implementation of Lucas' (197S) asset pricing model to data generated by a 

production economy. (Models that are based on (1) are often called "general 

equilibrium following Lucas. However, the stochastic process for 

consumption in an economy with storage or production is not exogenous as in 

Lucas' model, so when these models are applied to real data, they in fact 

only exploit partial equilibrium relationships.) Second, we can model the 

stochastic process for prices, derive what the quantity process should be, 

and compare those quantities to data. This is the approach of permanent 

income theory and the Q-theory of investment. Third, we can model the joint 

stochastic process for prices and quantities and test whether the 

restrictions implied by the first order condition hold. This is Hansen and 

Singleton's (1983) approach. 

The simulations of sections 3 and 4 use the first approach to see if the 
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size of the equity premium and the size and cyclical timing of the forward 

rate term premium are consistent with data on investment and consumer 

durables purchases, using a simple specification of technology. The purpose 

of this paper, like that of Mehra and Prescott's paper, is to see whether 

there exist simple and approximate models with "reasonable" parameters and 

functional forms that are capable of explaining a few well-documented 

phenomena, before proceeding to the construction of detailed (and hence, 

unavoidably, complex) models that can be formally tested. This paper finds 

that there are such production-based models, as Mehra and Prescott argued 

that there are no such consumption based models. 

A test assesses whether a model, including its auxiliary specification 

and statistical assumptions, is capable of explaining all phenomena for which 

one can derive predictions. In particular, the model presented in this paper 

and Mehra and Prescott's model have implications for asset prices beyond the 

first two moments, and those implications are ignored. In both cases, the 

models are so simple that one can derive the prices for contingent claims, 

and thus one can deduce all moments of asset returns and the prices of all 

derivative securities. A literally-minded formal test of either model would 

investigate whether all these predictions are satisfied, and such a test 

would certainly reject the models in sec. 3 and 4 of this paper as well as 

Mehra and Prescott's model. The exercise of both papers is a prelude to, and 

not a substitute for, formal testing and the search for specification and 

statistical assumptions that can hope to pass such formal testing. Such a 

test is under construction, in the form of a test whether the physical rates 

of return on a few technologies can act as factors for stock returns. 
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Mat Prices and Producer's fl Conditions 

Producers' first order conditions state that the marginal rate of 

transformation between state and date contingent claims achievable by varying 

investments in a variety of technology must be equal to the price ratios of 

such claims implicit in asset prices and payoffs. Alternately, they state 

that firms should adjust investment, production, etc. until they can no 

longer short a portfolio of assets that mimics the pattern of returns across 

states of nature provided by a marginal unit of investment in their 

technology, invest the proceeds in their technology, and make a sure 

(marginal) profit. Thus, they state that physical returns must lie in the 

space of asset returns, and so act as factors for asset returns. This 

section reviews these statements of producer's first order conditions in a 

simple environment with discrete time, a finite number of states, and 

complete markets. None of these elements are essential, but they simplify 

the mathematics and they establish the formulas used in the simulation 

economies that follow. 

Uncertainty comes from a state variable s can take one of S values, 

jX1 A2 As}. The cumulative history of shocks at time t is denoted 

t t t+l — O' 2 5t+l 
denotes the states s which follow a 

given state s. p(5t) is the time 0 price to a claim to a unit of a single 

consumption good c(st) delivered at time t in state s. An asset is a claim 

to a contingent stream of payoffs {d(s1), d(s2) . . ), where the list extends 

over all dates and states. The asset's price at time t in state s (i.e. 
with c(st) as numeraire) is 
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(r) 
PA(st) — E E d(Sr) (2) 

r t P(s) r>t t 

The notation under the second sum indicates that it is taken over all states 

r . t s which follow s . Let 

p(t) 
p(s '÷l — P(s ) 

denote the one period ahead contingent claims price, and let 
At t 

A t 
1 (s t÷l + d(s 

R (a — 

A(t) 
denote a one period asset return. Define the vector (5t) — [p(stA) 
p(stA) . (tA)] and A(5t) — 

[RA(st,A1) RA(st,A2) . . . RA(st,A3)J. 
Then, (2) implies that returns lie in a conditional linear space, 

1 — E p(5t5) R(st,st+l) — (t) t(st) (3) 

5t-Fl 

Fig. 2 illustrates (3) for the case S—3. The axes are returns or payoffs in 

each state at t+l, so contingent claim prices and asset returns are points in 

(3) implies that all returns lie on a plane, characterized by its 

orthogonality to the vector of contingent claims prices. Hansen and Richard 

(1987) derive this representation in a more general setting. Here it is just 

an accounting relation that must hold between asset prices and contingent 

claim prices. The calculations that follow use either consumer or producer 

first order conditions to identify the contingent claim prices, and then 

characterize asset returns from the contingent claim prices via (3)1 

A firm has access to N technologies i— 1,2,.. .N with which it can 
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transfer some of the consumption good forward through time. The firm chooses 

a production plan C c(st) Ii(st) ki(st) ) (the list extends across all dates, 

states and technologies) to maximize its contingent claim value 

r r 
max P(s ) c(s 

subject to the constraints 

j-l f(lc s) (4) 

(5) 

j—l 

kj+1 
- j - 1 N (6) 

k0 given, and kt c � 0 for all t. Here and below, I omit the dependence on 

state where it's not necessary, to keep the notation stmpler. k. is really 
k.(st), etc.. k. denotes the jth capital stock, so (4) describes the 

production function. I denotes investment in the jth technology, to (5) is 

a resource constraint. (6) is the capital accumulation rule. The function 

g 
allows for adjustment costs in investment. This could be achieved 

equivalently with investment in the production function, but the above form 

turns out to be more convenient. 

The first order conditions to this maximization are 

af.(t+l) 3g(t+l) / 3k. 3g.(t) 
1 — p(5t5) 1 + 1 1 

i—l, . . N (7) 

5t-fl Bkt÷l Bg(t+l) / dI al 
where the notation (t+l) means "evaluated with respect to the appropriate 

arguments at time t+l in state 5t+l (Throughout, I assume that the 
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inequality constraints k>O i>.O and c>O are not binding.) 

Let 
Ri(st, t÷l denote the physical rate of return from state s to 

state available from investment in the ith technology, or 

3fi(t) ög(t+l) / aki 3g(k.I.) 
R.(s t+l — + (9) 

3g(t+l) / dl. 31it 

If the producer invests one extra unit in technology i at time t, he can 

lower investment in that technology by Ri(st,st+l) 
at date t+l in state 

t+l' and leave his future production plan unchanged. Let 
B1js ) denote a 

vector of 
Ri(st,st+l) 

over the S states 
5t-fl' 

as R(s) is defined above (3). 

With these definitions, the first order conditions (7) become 

1 — E p(st,st+l) Ri(st, S÷1) — (st).a(st) i — 1 N (10) 

5t+l 

The cost of investing one unit of consumption in the ith technology is 

1, using c(st) as numeraire. The benefits (evaluated at time t) are 

Zp(st,st+l)Ri(st,st+l). Hence, the first order conditions just say to 

operate each technology up to the point where the marginal cost equals the 

marginal benefits, and direct the firm to adjust investment so that the 

physical returns i(st) 
lie in the space of asset returns RA(st) defined by 

(3). This is illustrated in Fig. 2. 

Consumer first order conditions state that 

if (c(ata1) 
p(s 't÷l 

— t+l' (11) 
u (a ) 

with obvious modifications as the utility function is varied. Using (11) we 



can identify the contingent claims prices from the consumption process, and 

then characterize asset returns using (3). This is how (1) is derived. 

When there are N technologies, the producer first order conditions (10) 

allow us to identify an N-l dimensional subspace of the S-l dimensional space 

of asset returns at each date, so long as the physical returns i(st) 
are 

linearly independent. The simulation economies that follow use a number of 

technologies N equal to the multiplicity of states 5, in which case we can 

recover contingent claims prices from the returns on technologies, and 

construct asset returns from those contingent claim prices. Since by (3) 

asset returns lie in a plane orthogonal to the vector of contingent claims 

prices (see Fig. 2), one finds contingent claims prices analytically by 

finding the vector orthogonal to the given plane. Let R(st) be an NxS matrix, 

ij(st) 
— 

R.(st,stA), and let 1 be an Sxl matrix of l's. With this 

notation, (10) can be rewritten 

1 — R(s) (t) 

Then, we can solve (10) for the contingent claims prices, 

t - t-l- 
(s)—R(s) 1 

We can use (12) to produce an equation that looks like (1), to 

illustrate the equivalence of consumer and producer based models in this 

case, 

t 
1 — E(m+1R+1Is ) 

where 

— 
m(st,st+l) — p(st,st÷l)/(st,st+l). 
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and p(st,st+l) 
is derived from production data by (12). 

The simulation economies that follow adopt a parametric form of the 

above model, with two technologies for transferring consumption across dates, 

fixed investment and purchases of consumer durables, and two states A1 and A2 

at each date, high and low investment growth. Each technology has constant 

returns to scale in production, but an adjustment cost to investment. The 

technologies are: 

(13) 

— mpk kkt 
+ mpd kdt 

kkt+l 
— k1 + (1 - kt 

kdt÷l 
— 8d kdt 

+ (1 - 

5mddt/kdt)2 dt 

and kd are the stocks of physical capital and durable goods, and mpk and 

mpd their marginal products. As one can include preference shocks in 

consumption based models, the marginal products could be made stochastic by 

making them depend on the state. 

The physical rates of return available through technology are, from (9), 

tkt-fl 

Rk(sts) — 
(l-Sk)[ 

mpk + I+l12 ][]. 
- 

3Ck[I1]2 
] 

(14) 

2 

Here I have again dropped the dependence on state for simplicity- 
- 't+l is 

I(stst+l), 
etc. d looks exactly the same, with d's in the place of k's. 
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Given k' Rd we can find contingent claims prices using (12), 

[ 
p(5t) (tA) — [ 1] s!A1 

Rd(st,Al) 

-l 

(15) 

Rk(s ,A2) Rd(s ,A2) 

Unlike the Mehra-Prescott model, it is not sufficient to characterize the 

current state history s by just the current draw of the investment growth 

state because the capital stock at any date is a function of a long past 

moving average of investment. 'klY I<kty 'dt' Kdt} 
are sufficient state 

variables for St. Hence, over many dates, many values of each physical 

return ¼' d and the resulting asset returns will be observed. 

The simulations proceed as follows. 1) Model the stochastic process of 

investment growth as a two state Markov process; 2) use (14) to find the one- 

or many period ahead physical returns at each date; 3) use (15) to derive one 

or several period ahead contingent claim prices; 4) use the contingent claim 

prices to construct the asset returns of interest. 

. Eouitv Premium 

A well documented puzzle of the consumption based asset pricing model is 

that the difference in mean returns between stocks and relatively risk free 

bonds is higher than predicted, without resorting to implausibly high risk 

aversion and discount factors greater than 1. Shiller (1982), Mehra and 

Prescott (1985) and Hansen and Jagannathan (1988) contain successively 

sharper statements of this puzzle. 
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The consumer's first order conditions (1) imply that higher variance of 

marginal rates of substitution (u'(c+i)/u'(c)) generate a 
more steeply 

sloped mean-standard deviation frontier of asset returns. Observations on the 

returns of s stock portfolio and a risk-free rate imply a lower bound on the 

slope of the mean-standard deviation frontier- - lower because the stock 

portfolio may not be efficient, or perfectly correlated with consumption 

growth. Hence one can deduce a lower bound on the volatility of marginal 

rates of substitution and (along with data on consumption growth) the 

coefficient of risk aversion from the slope of the mean-standard deviation 

frontier. This is an attractive statement of the Mehra-Prescott puzzle, 

because it does not require us to identify stocks with an asset that pays a 

dividend equal to aggregate consumption, as Mehra and Prescott assumed. 

In this section, I'll contrast an approach to this puzzle using consumer 

vs. producer first order conditions. It will be simpler and will highlight 

the symmetry of the two approaches to first derive the slope of the mean 

standard deviation frontier given contingent claims prices, and then use 

consumer's or producer's first order conditions to identify those contingent 

claims prices from consumption or production data. 

Since markets are complete, there is a risk free rate, 

Rf(st) — 

[ 
(t) 

]-l 5t+l 

Define the excess return on an asset as its return minus the risk free rate, 

e t At ft R (s 't÷l 
— R (s 't÷l 

- R (s ) 
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Plugging into (3) we find that the excess returns must be orthogonal to the 

contingent claims prices: 

o — E p(5t t÷l e(St, t÷l 
— £(St).Re(St) 

5t+l 

The unconditional mean-standard deviation frontier is found by the 

minimum variance excess return, among all excess returns with a given mean 

and that satisfy (16): 

mm 5t5) 
[ 

Re(st,s+l) - E(ReISt) 
]2 

5t÷l 

subject to 

t e t — wis P. (a 

sa 
t+l 

and (16) for each s. This is a straightforward Lagrangian maximization. 

The resulting slope is: 

- 
[ (t) 

]- 

- 1 
a p(s s÷1) / ir(a 

The corresponding formula for the conditional mean-standard deviation 

frontier can be found by using probabilities conditional on state a. The 

result is: 

2(t) 5t+l 
p(st, t+l / ir( 

2t — -1. 
a (s ) 

[ 5t+l 
p(5t 

The conditional and unconditional mean and variance are related by: 
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2 2t 
a(s) 

2 2 
— E (t) 2 t 2 (19) 

.s +a t 

Note that the frontiers are linear, as we expect given the existence of 

a risk free rate. Also, if consumers are risk neutral, so that state prices 

are proportional to probabilities- -the price and probability vectors are 

colinear--the slope of the mean-standard deviation frontier reduces to 0, as 

it should. (To see this, substitute p(st,st+l) 
— where is an 

arbitrary constant, into (17) or (18). Hansen and Richard (1987) give an 

similar characterization of the conditional and unconditional mean-standard 

deviation frontier.) 

Using Consumption to Identify the Frontier 

Substituting the consumer's first order conditions (11) in for the 

contingent claims prices in (18) , we relate the slope of the conditional 

mean-standard deviation frontier to the variance of marginal rates of 

substitution: 

t 1/2 j4(s ) var( u'(c1)/u (ce) Is ) 
— (20) 

a(s ) E( u'(c i)/u'(c) Is ) 

We can use (20) to calculate bounds on the coefficient of risk aversion 

that ignore conditioning information.2 With CRRA utility, u'(c) — c°, we 
can approximate marginal utility growth as (ct÷l/ct)a (l-ac/c), so (20) 

becomes 
1 

a sd(c/c) — a or a a a E(c/c) (21) 
a 1 - a E(c/c) sd(c/c) — + i sd(c/c) 
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Table 1 presents summary statistics on CRSP stock portfolio returns and 

consumption growth in postwar quarterly data. Each stock return in Table 1 

yields a ratio of mean excess return to its standard deviation ji/u of about 

.2. Shiller (1982) reports — .279 for the S&P500. Using j/ — .2 and 

the consumption growth statistics from table 1, (21) implies 

1 
________________ — 20.6. 
.00854 (5 + .712) 

If the risk aversion coefficient really is 20.6, then we need to reconcile 

— 
l/E{(c+l/ct)] l/(l-aE(c/c)) — l/(1-(20.6)(.00854)) — 1.21. 

With R — 1.0019 (the T-bill rate - CPI in table 1), this requires that the 

discount factor p 1.21. or a neagtive discount rate of about -21% per 

quarter. A more conventional value for p, near but below 1, requires a mean 

real interest rate near 21% per quarter. 

To perform a similar calculation that recognizes the difference between 

conditional and unconditional probabilities, I fit a two state Markov process 

to consumption growth rates, following Mehra and Prescott. The two states 

are growth above average and growth below average. I picked the value of 

consumption growth in each state to be one standard deviation above or below 

the mean. Since the unconditional frequencies of each state are .50 in the 

data, this choice of growth rates maintains the unconditional mean and 

variance of growth rates in the data. 

With the probability structure and growth rates of consumption in each 

state specified, we know c(stst+l) 
for each State that follows s. 
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Then, we can identify contingent claims prices from consumption using (11), 

plug (11) into to (18) to -get the (conditional) slope of the mean-standard 

deviation frontier at each date, and then use either (17) or (19) to get the 

unconditional slope. Table 2 summarizes the results of this simulation for 

various values of the risk aversion parameter, from 1 to 45. Values of the 

unconditional slope (/A/) around .2 as in table 1 correspond to a more than 

20. Table 2 also presents the calculation of p times the conditional risk 

free rate from the consumption model. Again, values of a that generate the 

observed slope of the mean standard deviation frontier also generate a "too 

large" PRf. Furthermore, values of the a that reconcile the slope of the 

mean-standard deviation frontier generate real interest rates that vary over 

time or across states far more than is observed. 

Using The Firm's First Order Conditions to Identify the Frontier 

The technologies are specified in (13). Table 3 presents the Markov 

matrix for investment growth used in the simulations. I chose the values of 

the growth rates in each state to match the unconditional mean and variance 

of investment growth in the postwar period. This choice requires 

g1+1r2 g2 (22) 

and 

l (g - )2 + 2 (g - g)2 — var g (23) 

where and 2 are the unconditional probabilities of each state, g1 and g2 
are investment growth rates in each state, is the unconditional mean, and 

var g is the unconditional variance of growth rates. (22) and (23) imply 

that the growth rates in the two states are 
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- 1/2 - it1 1/2 — (g+ 1-varg ) g2 —(g- —varg ) 

Before proceeding with simulations, it's worthwhile to see how 

qualitative features of this technology and probability specification map 

into slopes of the conditional and unconditional mean-standard deviation 

frontiers. The first task is to find the qualitative behavior of the 

physical returns and Kd defined in (14). 
When adjustment costs a — 0 or 

the investment to capital ratio (I/kt) 
— 0, the physical returns collapse 

to (1+mp)(1-6) in both states (I eliminate the k or d subscript when 

referring to either k or d simultaneously). As the investment to capital 

ratio rises, the last term in (14) lowers the physical return into 

both states, because it raises current period adjustment costs. As tomorrow's 

investment to capital ratio rises, the first term in (14) raises 

the physical return , because the firm gets the benefit of higher adjustment 

costs tomorrow when disinvesting. Hence, R(high growth) > R(low growth). 

Fig. 3 illustrates R(st, s) g is an element of 2, corresponding to the 

two possible states at t÷l. R(high growth) > R(low growth) implies that 

will lie below the 45° line, as in Fig. 3. 

We want to derive the behavior of physical returns as a function of 

state variables et time t. A higher investment to capital ratio today 1/k 
implies a higher investment to capital ratio tomorrow I÷1/k+1 as well 

•because investment growth is the state variable. The partial effects of 

raising both investment to capital ratios, and cancel to 

first order, as explained in the last paragraph. The major effect of raising 

the investment to capital ratio today I/k is thus to increase the disparity 
18 



between the returns in the two states tomorrow, R(st,A1) 
awl 

R(st,A2), 
rather 

than affecting the level of both. Hence, K(I/k) behaves as follows (refer to 

Fig. 3). When I/k — 0, a starts at — (l+mp)(l-6) in both states, or a 

point on the 450 line in Fig. 3. As the ratio is increased, a moves 

sideways, increasing the disparity between in the two states, rather than 

toward or away from the origin, which would reflect an overall decrease or 

increase in return. 

The adjustnent cost parameter a governs the sensitivity of the physical 

return to the investment to capital ratio I/k. Depreciation & and marginal 

product mpk or mpd only enter together in the determination of the 

no-adjustment-cost returns — 
(l+mpk)(l-&k) and 

— (l+mpd)(l.&d) shown 

as the intersection with the 45° line in Fig. 3. They have a smaller 

secondary effect, because the determine how capital is accumulated from 

investment. 

Now we are in a position to graphically evaluate how big a slope of the 

mean-standard deviation frontier will be generated by given parameters: we 

know how production function parameters map into the position of R.K 
and 

ad 
on 

a graph like Fig. 3; given and Ed all assets 
lie on the line connecting 

them; the contingent claims prices are orthogonal to that line; and the slope 

of the mean-standard deviation frontier is proportional to the deviation of 

the contingent claims price vector from the probability vector. 

We're looking for evidence that the price and probability vectors 

diverge enough to generate the observed slope of the mean-standard deviation 
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frontier, so it is useful to start with parameterizations that ensure no 

premium, and tharacterize more realistic parameterizations by their departure 

from a no-premium configuration. Since the probabilities of various states 

do not directly enter the technology as they do into expected utility, there 

is no way as simple or as general as setting the coefficient of risk aversion 

to 0 to guarantee that price and probability are colinear. 

The following choice of parsmeters guarantees that contingent claims 

pricea will be colinear with probabilities and hence that there will be no 

equity premium. First, assume that there are no adjustment costs to 

investment in consumer durables, giving investment in consumer durables a 

risk free return, like storage. The physical return for consumer dursble 

simplifies to: 

Rd(st,sc÷l) 
— (1 + mpd )(l - 6d — 

Second, linearize the return of capital about the mean growth rate of 

investment. Fig. 3 suggests that this is not a bad approximstion for small 

and 
(Ik/Ic.K). 

Let — the mean growth rate and g(A1) 
— ÷ 

dg1, g(A2) 
— g 

+ dg2. The form of this linearization is then 

[(StA) pk(stA) ] 
a 
(st,j) + _Rk(st,e). [ dg1 dg2 ] 

(24) 

p(5t) is (14) and 
_R.K(st,j) 

is the derivative of with respect to g, 

both evaluated at 
'kt+l 

— This is just an analytical statement of 

replacing the slightly curved R(I/k) path in Fig. 3 by a straight line. 

Third, choose mpk so that R,1(stj) 
— — (l+mpd)(l&d). This assumption 
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says that if the uncertainty is turned off in a specific way (dg — 0) then 

the rates of return of the two technologies are the same. Thus, and 

start on the same point on the 450 line in Fig. 3, and _R.K 
moves linearly to 

the southeast as Ik/k.K is increased. 

The contingent claims prices are orthogonal to the line connecting and 

or 

[p(stA) P(stA)] [ - R,(s,A2) R - Rk(st,Al)] 

( stands for 'is proportional to' ). Using (24), 

[p(stA) p(st,A2)] [ 
-dg2 dg1] 

Now, what choices of 
[dg1 dg2 give rise to prices colinear with 

probabilities? We need 

[ -dg2 dg1 ] [ ir(A1st) 
(Alst) 

] 

or 

lr(Alst) dg1 
+ (Alt) dg2 

— 0 

Comparing to (22), choices of dg1 and dg2 that maintain the mean growth rate 

at also ensure that prices and probabilities are collinear. 

Now we can examine what features of a more realistic technology account 

for deviation of the price and probability vectors. First, the linearization 

in (24) may fail. This has a very small effect for a wide range of 

reasonable parameters, as reflected in the small curvature of the (I/k) line 
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in Fig. 3. Second, the "persistence effect": as the Markov matrix governing 

investment growth displays mote persistence3, the conditional probabilities 

diverge from the unconditional probabilities and the contingent claim prices, 

raising the equity premium. Third, the "shift effect": the constant term 

Rk(st,g) 
in (24) will vary over time as capital is accumulated, even if it is 

identical to Rj 
— (1 - 8d1 + mpd) at one date. Changes in this term shift 

the point about which the deviations [dg1 dg2J 
are taken, so that even if 

investment growth is independent over time, contingent claim prices and 

probabilities will diverge. 

With this in mind, we can turn to some simulations. I examined the 

values — 1, a,5 
— 10 and 

ad 
— 0. The Q-theory literature supports much 

higher values for cz.K. 
but the high values common in that literature are 

regarded as a puzzle. I picked a value 6d 
— .08 for the depreciation rate of 

durables, and mpd — .10 for the marginal product of consumer durables. These 

always enter together; they imply that and the risk free rate are 

(l+mpd)(l.Sd) 
— 1.012 (4% per year), and have no other effects. I chose the 

depreciation rate of capital to be — .025 (10% per year). I chose the 

marginal product of capital so that if capital is at its steady state value 

k,5 
— 18k'5k 1k' then the constant term R,5(stj) would equal R. Thus in 

the steady state, there is no "shift effect". With the other parameter 

values, it implies mpk — .038144. I found very little difference in 

experimenting with a wide range of mpk and so long as their product 

(l+mpk)(l-&k) 
is the same. 

I calculated the conditional and unconditional slopes of the mean 
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standard deviation frontier in the following way: I simulated investment 

growth from a random number generator; then at each date, I accumulated 

capital, calculated _R.K and using (14), calculated the contingent claims 

prices each date using (15), and calculated the slope of the conditional 

mean-standard deviation frontier using (18). Then I calculated the 

unconditional slope using (19), averaging the conditional moments over time. 

This procedure yields small variations in the unconditional slope each time 

due to sampling variation, so I report the average of ten such simulations 

for each parameter choice. Table 3 presents a flowchart of this simulation. 

Table 3 also presents the results of the simulatiors. The column marked 

"force" indicates whether the certainty return on investment _R,(st,) in 

(24), is forced to be — 
(l+mPd)(lSd) at each date to eliminate the "shift 

effect". This is achieved by multiplying by a suitable constant at each 

date. The column marked "persistence" indicates whether the assumed Markov 

matrix is the actual one ("yes") or a matrix with no persistence, formed by 

the unconditional probabilities of each state ("no"). When "force" is "yes" 

and "persistence" is "no", the only thing that makes price and probability 

vectors diverge is nonlinearities in . As the table shows, these have very 

small effects. With "force" — "no" and "persistence" — "yes", we see that 

persistence in investment growth alone raises the unconditional slope to the 

range of its observed values. "Force" by itself has a smaller effect. 

Finally, with "force" — "yes" and "persistence" — "yes", we again get results 

similar to those estimated from the data. This slope is slightly less than 

the value for "force" — "no" and "persistence" — "yes", which initially seems 

puzzling. There are states where the conditional slope is very low--prices 
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and conditional probabilities are essentially colinear. Adopting "force" — 

"yes" to minimize the risk premium based on unconditional probabilities 

raises the conditional risk premium in these states. 

These simulations are analogous to Mehra and Prescott's. Yet the 

observed value of the equity premium is not at all hard to reconcile with 

production data through this adjustment cost technology. Note that 
ak 

— 10 

instead of — 1 has very little effect on the results. Increasing °k has 

the effect of moving away from while maintaining constant the slope of 

the line connecting and and hence the contingent claims prices and the 

equity premium. Thus, the crucial observation is the persistence of 

investment growth, as widely varying (and low) values of the curvature 

parameter a.K result in about the same equity premium. Note also that the 

conditional and unconditional risk free rates are constant at an arbitrary 

value of 4%, so the puzzle that values of the parameters that explain the 

equity premium predict strange risk free rates does not appear in this model. 

Forward fl Te Premium 

The equity premium simulation investigates the ability of a 

production-based model to capture the unconditional level of a risk premium. 

This second set of simulations is designed to capture the cyclical behavior 

of a risk premium as well as its unconditional value. 

Fama and Bliss (1987) regressed current year term premia (the ex-post 

return from holding an X year bond for one year minus the return from holding 
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a one year bond) on forward rate term premia (forward rate - spot rate). 

They found coefficients near 1.0 for long maturities. They concluded that 

long (K) maturity forward rate term premia move one for one with one year 

expected term premia and have little forecast power for one year changes in 

long (K-I) year rates. Fama and Bliss also pointed out that forward rate 

term premia also display an enticing cyclidal pattern. Fig. 4 presents the 5 

year forward rate term premium and gross fixed investment. In the 70's the 

forward rate moved slightly before business cycles in investment; while in 

the 60's and in 1979, it moved contemporaneously. Table 5 part I presents 

some regressions that quantify the cyclical correlations between the term 

premium, investment, and durable goods purchases. While the 5 year forward 

premium is negatively correlated with both the investment/output ratio and 

the durable/output ratio taken alone, in a multiple regression the 

durable/output ratio is positively correlated with the 5 year forward 

premium, and these multiple correlations are more stable through the sample 

than the single correlations. I take the correlations documented by these 

regressions as the stylized facts to be explained. 

Since the model as developed so far is entirely real, Fama and Bliss' 

evidence that variation in the forward rate term premium is almost entirely 

due to variation in a (real) risk premium and that the risk premium has an 

enticing cyclical correlation with production variables make it an attractive 

quantity for a simulation exercise with this model. In this section, I'll 

present simulations designed to replicate this behavior of the forward rate 

term premium, in a model similar to the one presented for the equity premium. 

Backus Gregory and Zin (1986) present an analogous Mehra-Preacott style 
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model of the ten structure using consumer's first order conditions. 

Stsmbaugh (1987) ties the forward rate ten premium to conditional moments of 

consumption. - 

Given contingent claims prices, we can calculate multiperiod bond prices 

as follows. The price of a one period bond is 

(1) t t 
p (s ) —Z p(s 

5t+l 

Then, the price of a two period bond is 

(2)t) — Z i t+lt+2 — Z p(5t 5t+P (1)(t) 
5t-i-l 5t+2 P(s 5t÷l 

We can continue this process, leading to 

— Z p(5t t+P 9(k-l)(t) . (25) 
5t+l 

The forward rate ten premium- -the excess of the forward rate from t+x-l 

to t+x over the spot rate is then: 

9(x) (t) 
f(x) (t) — __________ — 1 

(26) 
(x- )(t) ( )(t) 

I use the same technology as the last section, and the same two state 

Markov model for investment growth. In this model, investment and consumer 

durable purchases are always in the same growth state. This is a poor 

approximation to quarterly data, in which investment and consumer durables 

grow above or below their mean growth rate contemporaneously only 78% of the 

time (47,1-86,4). However, in annual data there are only two years in the 

last forty in which consumer durable growth was above its mean with 
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investment growth below its mean or vice versa. For this reason (as well as 

the computational difficulty of examining all 220 states 5 years ahead in 

quarterly data rather than the 2 states 5 years ahead in annual data), I 

will compare the model to actual data at annual frequencies. Alternately, 

one could add more states, such as 
A3. 

durables grow and investment declines. 

The physical returns are given by (14) as before. 

are state variables for s, so and d' contingent claims prices, interest 

rates, etc. , will be functions of these state variables. With physical 

returns (14), we can calculate contingent claims prices using (15), and then 

multi-period bond prices and term premia from (25) - (26). As before, I 

start with a description of the parameter choices that yield desirable 

qualitative behavior. 
- 

Recall that the one period interest rate is constructed as in Fig. 5, by 

the intersection of a line connecting k and with the 450 line. This 

construction mimics the creation of a risk free asset (one that pays off 

equally in either state) from the two risky technologies. Obviously, we 

cannot pick d — 0 as before, or there will be no variation in interest 

rates. To match the stylized fact (see table 5 part 1) that interest rates 

rise and forward premia decline (forecasting long horizon declines in the 

interest rate) when investment rises but vice versa for consumer durables, we 

must pick an arrangement like Fig. 5. With the line to the right of the 

line, increases in investment raise the one year rate, while increases in 

consumer durables purchases lower it. I assure this behavior by picking inpk, 

mpd, 6k and so that the return R corresponding to Ik/k. — 0 is further 
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out from the origin than the corresponding return for as in Fig. 5. 

I searched for parameters that produced a high correlation between 

actual and simulated forward premia, within the space of "sensible" 

parameters: 5k 
and 

6d 
C .2; all returns positive, etc. and while maintaining 

the geometry of Fig. 5. I calculated the correlation without removing a mean 

as 

(realsim) /( real sim )5 

This objective prizes a match with the level of the actual term premium as 

well as matching the cyclical fluctuations. 

A short manual search produced the following parameters, which I use in 

the simulations below. (A subsequent automated search produced only slightly 

different parameters and a slight improvement in correlation, from .48 to 

.499.) 

°d2 
.1 

1 
5d 

.1 

(l+mpk) — 1.05 * (l6kY (l+mpd) 
— 1.02 * (l6dY1 

To simulate the model, I followed the following procedure (Table 4 

presents a flowchart). 1) I produced a capital stock series at each date by 

accumulating capital according to the technology (13), starting with "long 

run values" k — (1-6)/S I ; 2) I constructed the physical returns and 

at each date using the observed values for investment and durable goods, and 

the accumulated capital stocks; 3) I constructed the implied yield curve and 
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forward premia five years forward at each date from (25)-(26). Note that 

this procedure is a little different from a pure simulation of the model, 

because at each date I use the actual investment and durables numbers rather 

than a the value given by a simulation of the Markov model for investment 

growth. However, at each date potential future values of investment and 

durables purchases needed to calculate the future physical returns are given 

by the Markov model for investment growth. 

- There are several ways to evaluate the accuracy of the simulations. 

First, Fig. 6 presents the simulated and actual 5 year forward rate term 

premium. (Keep in mind that the simulated premium is only a function of 

investment data, no asset information goes into its construction.) The 

simulation at least picks up the level and the cyclical timing of the actual 

premium. Second, since the model predicts that all rates are functions of 

¼' lCkt 'dt' kdt) we can evaluate how well the simulated forward premium 

matches the actual forward premium as functions of these state variables. 

Table S parts 2, 3, 4 below give regressions of the actual 5 year forward 

premium on the investment and capital stock variables in a variety of 

specifications, and the corresponding regressions using the simulated 

premium. In both Fig. 6 and in table S (especially part 4) it's clear that 

the simulations overstate the cyclical sensitivity of forward rate term 

premia. On the other hand, the mean value of the simulated term premium is 

slightly less than the actual. An objective of R2 tn deviations from the 

mean produces coefficients that match the cyclical pattern better, at the 

expense of matching the level. 
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The model predicts an exact relation between asset prices (the 5 year 

forward rate term premium, for example) and the state variables t¼' 1kt' 

'dt' kdt g(s)} so any deviation of the actual and simulated data is a 

formal statistical rejection of the model. Though the model is formally 

rejected, it replicates certain interesting stylized facts of the data. In 

particular, it gives an account of the puzzling negative partial correlation 

between investment and the forward rate term premium, implying a positive 

partial correlation with real interest rates; it gives an account of the 

different sign of the partial correlations of forward rate term premia with 

durables purchases and fixed investment; and it gives a quantitative account 

of the cyclical movement in the forward rate term premium. Also, there are 

(in retrospect) potential patterns in the data that this model could not have 

replicated. For example, it's clear from Fig. 5 that no arrangement would 

deliver positive partial correlations of both forms of investment with 

forward rate term premia. 

This example also contains some lessons for the theory of investment, if 

we regard asset returns as given and ask what are the firm's investment 

patterns. For example, the partial correlation of investment in physical 

capital and the risk free rate of interest is positive in this nodel, and 

both the mean rates of return and the rates of return on each technology in 

each state are much higher than the risk free rate (see Fig. 5). Thus this 

• model has the potential to explain some puzzling bad fits of the Q theory of 

investment, since it considers the risk considerations in forming a 

"portfolio" of investments rather than just equations like l+r — E (f'(k)). 
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The biggest weakness of the model so far is that I required 
different 

parameters to match the equity premium and the forward rates.4 The essential 

problem was matching the level (not the cyclical pattern) of forward rates. 

Matching the level of forward rates required the large difference (1.05 vs. 

1.02) between R. and R. In turn, this implies that the line (Fig. 5) 

connecting _R. 
and is steeply sloped compared to the probability vectors. 

Hence, the parameters that work for the term premium yield enormous equity 

premia. If we move closer to R, the equity premium declines towards the 

values of Table 3 and the cyclical pattern of the forward rate term premium 

is preserved, but the level of the forward rates declines. These 

observations provide some of the important lessons we would hope to learn 

from formal testing- -the dimensions along which the model succeeds and fails, 

and an understanding of the improvements we must seek. 
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Table 1 

Summary statistics of quarterly returns and consumption growth 

Cons. VWR VW EWR EW CPI T-Bill 
mean 0.608 1.181 2.788 2.240 3.248 1.024 1.215 

standard deviation 0.854 7.839 7.583 9.891 9.706 0.949 0.821 

mean/std. dev. 0.712 0.227 0.368 0.226 0.335 1.079 1.480 

mean excess return 1.590 1.574 2.049 2.033 

standard deviation 7.777 7.737 9.835 9.808 

mean/std, dev. 0.204 0.203 0.208 0.207 

Note: Cons, and CPI are the first difference of log quarterly real nondurable 

consumption and CPI respectively. VWR, W, EWR, EW are the (log) quarterly 
return on the CRSP value and equally weighted real and nominal portfolios. 
T-Bill is the quarterly average T-Bill rate divided by 4. Data sources: 
Citibase and CRSP. Excess returns for nominal returns are (return-TBill), 
for real returns they are (Returri-Thill+CPI). 
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Table 2 

Slope of mean standard deviation frontier with two state markov consumption 

&. Nondurable Consumotion Process 

growth state 

high low 

Unconditional probabilities of each state 0.5 0.5 

Consumption growth in each state 1.5% - .2% 

Markov matrix high 0.565 0.435 
low 0.435 0.565 

1. Effects f jj] Aversion g Mean-Standard Deviation Frontier 

Coefficient of 
risk aversion a 1 2 5 10 15 20 

(Risk free rate low 1.007 1.015 1.037 1.078 1.121 1.168 
+ discount rate) RfP high 1.005 1.010 1.025 1.052 1.081 1.110 

Conditional slopes low 0.009 0.017 0.044 0.091 0.142 0.198 

high 0.009 0.017 0.043 0.089 0.137 0.188 

Unconditional slope 0.009 0.017 0.044 0.090 0.140 0.193 

25 30 35 40 45 

(Risk free rate low 1.219 1.275 1.336 1.404 1.479 
+ diacount rate) RfP high 1.142 1.175 1.211 1.248 1.288 

Conditional slopes low 0.258 0.324 0.396 0.476 0.563 

high 0.242 0.299 0.359 0.423 0.491 

Unconditional slope 0.250 0.311 0.378 0.449 0.527 

Note: The conditional slope is calculated from (11) and (18); then (19) is 

used to calculate the conditional slope. 
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Table 3 

Slope of Mean Variance Frontier with two state Markov investment 

Flowchart j simulations 
Specify parameters a,, 

a , mpk, mpd, 5 5 
4, 

d k d 

Specify Markov process for investment. 
4, 

Do for trial — 1 to 10 
4, 

Do for t— 1947,1 to 1986,4 
4' 

Simulate markov process, find state g(t), 
4. 

Find investment from I g(t) I 

Accumulate cpital stock k+1 
— (l•Sk)(kt +(1- .5 

Generate a at each date from I , k equation (14) 
.1. 

t t 
-l 

Find contingent claims prices at t, P — [1 1]R , equation (15) 
4. 

Find slope of ji-c frontier at each date, using conditional ir (18) 
4, 

End date do, average conditional slopes over all dates (19) 
4. 

End trials do, average unconditional slopes over all trials 

L. Markov Process 
growth state 

high low 

Unconditional probabilities of each state .48 .53 

Markov matrix high .61 .39 
low .35 .66 

"No persistence" markov matrix high .48 .53 
low .48 .53 

Simulated slotes 

Force persistent slope ofj a. 
Force persistent slope of 

I growth frontier 
_R.K(j)_R 

I growth frontier 

yes no .015 10 yes no .016 

yes yes .273 10 yes yes .272 
no no .124 10 no no .116 
no yes .250 10 no yes .250 

Slope in postwar data a .2 
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Table 4 
Flowchart for term premium simulations 

Specify markov process for investment. 
'4' 

Specify parameters aK a , mpk, mpd, 6 , 6 
d k d 

Do for t— 1947,1 to 1986,4 
'4' 

Use actual investment at t; 2 
Accumulate capital stock k+1 

— 0 &kkt +(l- ¶c (I/k))I) 

Simulate markov process 5 steps ahead, find I, k for each date-state 
4' 

Generate at each date 5 steps ahead from I ,k equation (14) 

Find contingent claims 5 steps ahead P — [1 l]R, equation (15) 
find 1 - 5 period bond prices, forward rates (25)-(26) 

4. 

End date do 

(Optional: calculate R2 of actual and simulated premia, pick new parameters) 
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Table 5. Term Premium Regressions 

1. Forward rate term premium on investment/output ratio and 

consumption/output ratio. (quarterly data, 53:2 - 86:4) 

f5 — 4.9 - 57.8 
(Ik/GNP) 

+ 70.3 

(2.3) (17.8) (13.5) 

2. Forward rate term premium on investment, capital, durables purchases, and 

durable stock. (Annual data 1953 - 1985) 

real f5 — 6.5 - .041 - .0017 
k.K 

+ .086 
'd 

- .0007 kd 
(2.3) (.006) (.0029) (.014) (.0048) 

sin. f5 — - .064 1k 
- .0108 kk + .099 'd 

- .0176 

sin. fS — -1.7 - .064 - .0130 
k.K 

+ .098 
'd 

- .0208 

3. Forward rate term premium on logs of investment, capital, durables 

purchases and durables stock. (Annual data 1953 - 1985.) 

real f5 — 91.1 - 17.4 log(I) 
- 15.4 

log(k.) 
+ 14.5 log(I) + 8.4 log(k) 

(61.9) (3.7) (19.1) (3.76) (12.88) 

sin. f5 —-24.71 - 29.3 log(I) + 32.2 
log(k,) 

+ 21.9 log(I) -23.7 Log(k) 
aim. f5 — - 29.9 

log(I) 
+ 24.7 

1og(k,) 
+ 22.6 log(I) -18.8 log(k) 

4. Forward rate term premium on investment/capital ratio and durables 

purchases/durables stock ratio. (Annual data 1953 - 1985) 

real f5 — 3.2 - 100.4 
(Ik/k.K) 

+ 

(1.6) (22.7) (21.0) 

aim. f5 — 8.0 - 198.2 
(Ik/lc,K) 

+ 142.2 

sin. f5 — 3.2 - 167.0 + 162.5 
d'kd) 

(OLS standard errors in parentheses.) 

"real F5 " — actual data. 
"sin. F5 — artificial data, simulated from I, k using model. 
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Footnotes 

*1 thank Gene Fsma, tars Hansen, Ed Prescott and an anonymous referee for 

valuable comments on an earlier draft of this paper, and Gene Fsma for his 

generous permission to use the term structure data. This research was 

partially supported by a grant from the National Science Foundation. 

tThese formulas are often written in tens of normalized prices q(gt) — 

t t t P(s )/p lr(s ), 

t t+l t w(s t+l q(s +2 A t A 1—I R(sst÷1)_pE __R÷1s 
5t+l 1r(s )p q(s ) t 

and 

pA(t) — E 

[ rt d 

Using this notation, the firm's problem could be written as an expected 

present value with no change of content. The equivalent form given in the 

text turns out to be notationally simpler to use for producers, since 

probabilities do not enter production functions as they do expected utility 

functions. 
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2More precisely, the unconditional mean-standard deviation frontier is found 

by substituting (3.13) in (3.10), 

t2 
2 2 - [E(ms )1 

/.s/r _E[ 2 t J -l E(m Is ) 

where m — u'(ci)/u'(c). If the conditional moments are constant across 

this reduces to an unconditional version of (3.14) as used in the 

following paragraphs. 

3One way to quantify the persistence of a Markov process is with Markov 

matrices of the form 

(l-9)ir1 
+ 9 (l9)l 

(l-9)r2 (l-9)ir2 
+ 9 

where l and 1r2 are unconditional probabilities of each state. Persistence 

parameters 9 — .13 and 9 — 264 for consumption and investment respectively 

produce transition matrices very close to those estimated from postwar data. 

In experiments with several Markov matrices of this form, the slope of the 

mean-standard deviation frontier scaled with the persistence parameter 9. 

A second weakness is that the high forward rate term premia are associated 

with a falling real term structure and vice versa. Subsequent evidence by 

Fama (1988) suggests the opposite: high forward rate term premia correspond 

to a rising real term structure, correlated with even more strongly declining 

inflation forecasts. 
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Fig. 5 

Ceoecry of the paramecerizacion for term premium simulations 
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Fig. 6 

Actual and simulated 5 year forward rate term premium 




