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One of the most pressing questions of the day is the economic costs of the COVID-19

pandemic. While the virus will eventually pass, vaccines will be developed, and workers will

return to work, an event of this magnitude could leave lasting e�ects on the nature of economic

activity. Economists are actively debating whether the recovery will be V-shaped, U-shaped or

L-shaped.1 Much of this discussion revolves around con�dence, fear and the ability of �rms and

consumers to rebound to their old investment and spending patterns. Our goal is to formalize

this discussion and quantify these e�ects, both in the short- and long-run. To explore these

conjectures about the extent to which the economy will rebound from this COVID-induced

downturn, we use a standard economic and epidemiology framework, with one novel channel: a

�scarring e�ect.� Scarring is a persistent change in beliefs about the probability of an extreme,

negative shock to the economy. We use a version of Kozlowski et al. (2020), to formalize this

scarring e�ect and quantify its long-run economic consequences, under di�erent scenarios for

the dynamics of the crisis.

We start from a simple premise: No one knows the true distribution of shocks in the economy.

Consciously or not, we all estimate the distribution using past events, like an econometrician

would. Tail events are those for which we have little data. Scarce data makes new tail event

observations particularly informative. Therefore, tail events trigger larger belief revisions. Fur-

thermore, because it will take many more observations of non-tail events to convince someone

that the tail event really is unlikely, changes in tail risk beliefs are particularly persistent.

We have seen the scarring e�ect in action before. Before 2008, few people entertained the

possibility of a �nancial crisis in the US. Today, more than a decade after the Global Financial

Crisis, the possibility of another run on the �nancial sector is raised frequently, even though the

system today is probably much safer (Baker et al., 2019). Likewise, businesses will make future

decisions with the risk of another pandemic in mind. Observing the pandemic has taught us

that the risks were greater than we thought. It is this new-found knowledge that has long-lived

e�ects on economic choices.

To explore tail risk in a meaningful way, we need to use an estimation procedure that does

not constrain the shape of the distribution's tail. Therefore, we allow our agents to learn about

the distribution of aggregate shocks non-parametrically. Each period, agents observe one more

piece of data and update their estimates of the distribution. Section I shows how this process

leads to long-lived responses of beliefs to transitory events, especially extreme, unlikely ones.

The mathematical foundation for such persistence is the martingale property of beliefs. The

logic is that once observed, the event remains in agents' data set. Long after the direct e�ect

of the shock has passed, the knowledge of that tail event a�ects beliefs and therefore, continues

to restrain economic activity.

1See e.g., Summers (FT, 2020), Krugman (2020), Reinhart and Rogo� (2020) and Cochrane (2020).
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To illustrate the economic importance of these belief dynamics, Section II embeds our belief

updating tool in a macroeconomic model with an epidemiology event that erodes the value of

capital. This framework is designed to link tail events like the current crisis to macro outcomes

in a quantitatively plausible way and has been used � e.g. by Gourio (2012) and Kozlowski et al.

(2020) � to study the 2008-09 Great Recession. It features, among other elements, bankruptcy

risk and elevated capital depreciation from social distancing, which separates labor from capital.

Section III describes the data we feed into the model to discipline our belief estimates. Section

IV combines model and data and uses the resulting predictions to show how belief updating

can generate large, persistent losses. We compare our results to those from the same economic

model, but with agents who have full knowledge of the distribution, to pinpoint belief updating

as the source of the persistence.

We model the economic e�ects of the COVID-19 crisis as a combination of a productivity

decline and accelerated capital obsolescence. We use the well-known SEIR (susceptible-exposed-

infected-recovered) framework from the epidemiology literature to model the disease spread.

But, it is the response to the disease that is the source of the adverse economic shock in

our model. Our structure is capable of generating large asset price �uctuations, of the order

observed at the onset of the pandemic, and provides a simple mapping from social distancing

policies and other mitigation behavior to economic costs. It also allows us to connect to existing

studies on tail risk in macroeconomics and �nance. We present results for di�erent scenarios,

re�ecting the considerable uncertainty about outcomes even in the short-run. Our point is not

to make a forecast of the coming year's events but that that whatever you think will happen

over the next year, the ultimate costs of this pandemic are much larger than your short-run

calculations suggest.

In the �rst scenario, GDP drops by about 9% in 2020, recovers gradually but does not go

back to its previous trajectory. It persistently remains about 4% below the previous pre-COVID

steady state. The discounted value of the lost output is almost 10 times the 2020 drop and

belief revisions account for bulk of the losses (almost 6 times the short-run e�ect). Greater tail

risk makes investing less attractive, reducing the stock of productive capital and (and therefore,

labor input demand) persistently. In the second scenario, which captures a milder mitigation

response to the spread of the disease, both short- and long-run economic costs are longer, but

the relative importance of belief revisions remains the same.

The model also makes a number of predictions about asset prices. Interestingly, after an

initial shock, credit spreads and equity valuations are predicted to roughly return to their

original level. This is because �rms respond to this increase in riskiness by cutting back on

debt. The e�ects of scarring are more clearly noticeable in options prices. In scenario 1, for

example, the option-implied third moment in the risk-neutral distribution of equity returns
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becomes signi�cantly more negative.

For monetary policy makers, one of the most pressing questions is how belief scarring will

a�ect the long-run natural rate of interest, often referred to as �r-star." Following the onset

of COVID in the U.S., interest rates declined rapidly. A signi�cant portion of that decline is

related to demand for liquidity. In order to understand how much of that decline was temporary

and how much permanent � and more broadly about the interaction of liquidity and scarring �

we introduce a role for liquid assets in an extension of our baseline model in Section V. When

most capital is only partially pledgeable, but riskless assets are fully pledgeable, riskless assets,

of course have more value. But what we learn is that value is sensitive to tail risk. A persistent

increase in perceived risk from COVID-19 depresses the long-run natural rate of interest by 67

basis points.

Our results also imply that a policy that prevents capital depreciation or obsolescence, even

if it has only modest immediate e�ects on output, can have substantial long-run bene�ts, several

times larger than the short-run considerations that often dominate policy discussion. Obviously,

no policy can prevent people from believing that future pandemics are more likely than they

originally thought, but policy can change how the ongoing crisis a�ects capital returns. By

changing that mapping, the costs of belief scarring can be mitigated. For example, bankruptcies

can lead to destruction of speci�c investments and a permanent erosion in the value of capital.

Interventions which prevent widespread bankruptcies can thus limit the adverse e�ects of the

crisis on returns and yield substantial long-run bene�ts. While the short-run gains from limiting

bankruptcies is well-understood, our analysis shows that neglecting the e�ect on beliefs leads

one to drastically underestimate the bene�ts of such policies.

Of course, future governments could also invest in public health to mitigate the cost of

future pandemics. The ability of such an investment to heal beliefs depends on the nature of

belief changes induced by this episode. If we onlu updated our beliefs about the ability of a

particular type of communicable diseases to disrupt economic activity, then health investments

will be highly e�ective. However, traumatic events often leave survivors with a more general

sense that unexpected, disastrous events can arise without warning. This more amorphous fear

will be much harder for policy to combat.

Comparison to the literature There are many new studies of the impact of the COVID-

19 pandemic on the U.S. economy, both model-based and empirical. Alvarez et al. (2020),

Eichenbaum et al. (2020) and Farboodi et al. (2020) use simple economic frameworks to analyze

the costs of the disease and the associated mitigation strategies. Leibovici et al. (2020) use an

input-output structure to investigate the extent to which a shock to contact-intensive industries

can propagate to the rest of the economy. Koren and Pet® (2020) build a detailed theory-
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based measures of the reliance of U.S. businesses on human interaction. On the empirical

side, Ludvigson et al. (2020) use VARs to estimate the cost of the pandemic over the next few

months, while Carvalho et al. (2020) use high-frequency transaction data to track expenditure

and behavior changes in real-time. We add to this discussion by focusing on the long-term

e�ects from changes in behavior that persist long after the disease is gone.

Other papers share our focus on long-run e�ects. Jorda et al. (2020) study rates of return

on assets using a data-set stretching back to the 14th century, focusing on 15 major pandemics

(with more than 100,000 deaths). Their evidence suggests a sustained downward pressure on

interest rates, decades after the pandemic, consistent with long-lasting macroeconomic after-

e�ects. Reinhart and Rogo� (2009) examine long-lived e�ects of �nancial crises. Correia et al.

(2020) �nd evidence of persistent declines in economic activity following the 1918 in�uenza

pandemic. A few papers also use beliefs but rely on other mechanisms, such as �nancial

frictions, for propagation. Elenev et al. (2020) and Krishnamurthy and Li (2020) propagate the

shock primarily through �nancial balance sheet e�ects. In a more informal discussion, Cochrane

(2020) explores whether the recovery from the COVID-shock will be V, U or L shaped. This

work formalizes many of the ideas in that discussion.

Outside of economics, biologists and socio-biologists have noted long ago that epidemics

change the behavior of both humans and animals. Loehle (1995) explore the social barriers to

transmission in animals as a mode of defense against pathogen attack. Past disease events have

e�ects on mating strategies, social avoidance, group size, group isolation, and other behaviors

for generations. Gangestad and Buss (1993) �nd evidence of similar behavior among human

communities.

In the economics realm, a small number of uncertainty-based theories of business cycles also

deliver persistent e�ects from other sorts of transitory shocks. In Straub and Ulbricht (2013)

and Van Nieuwerburgh and Veldkamp (2006), a negative shock to output raises uncertainty,

which feeds back to lower output, which in turn creates more uncertainty. To get even more per-

sistence, Fajgelbaum et al. (2017) combine this mechanism with an irreversible investment cost,

a combination which can generate multiple steady-state investment levels. These uncertainty-

based explanations are di�cult to embed in quantitative DSGE models and to discipline with

macro and �nancial data.

Our belief formation process is similar to the parameter learning models by Johannes et al.

(2016), Cogley and Sargent (2005) and Kozeniauskas et al. (2014) and is similar to what is

advocated by Hansen (2007). However, these papers focus on endowment economies and do not

analyze the potential for persistent e�ects in a setting with production.2 The most important

2Other learning papers in this vein include papers on news shocks, such as, Beaudry and Portier (2004),
Lorenzoni (2009), Veldkamp and Wolfers (2007), uncertainty shocks, such as Jaimovich and Rebelo (2006),
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di�erence is that our non-parametric approach allows us to incorporate beliefs about tail risk.

I Belief Formation

Before laying out the underlying economic environment, we begin by explaining how we for-

malize the notion of belief scarring, the non-standard, but most crucial part of our analysis.

We then embed it in an economic environment and quantify the e�ect of belief changes from

the COVID-19 pandemic on the US economy.

No one knows the true distribution of shocks to the economy. All of us � whether in

our capacity as economic agents or modelers or econometricians � estimate such distributions,

updating our beliefs as new data arrives. Our goal is to model this process in a reasonable and

tractable fashion. The �rst step is to choose a particular estimation procedure. A common

approach is to assume a normal or other parametric distribution and estimate its parameters.

The normal distribution, with its thin tails, is unsuited to thinking about changes in tail

risk. Other distributions raise obvious concerns about the sensitivity of results to the speci�c

distributional assumption used. To minimize such concerns, we take a non-parametric approach

and let the data inform the shape of the distribution.

Speci�cally, we employ a kernel density estimation procedure, one of most common ap-

proaches in non-parametric estimation. Essentially, it approximates the true distribution func-

tion with a smoothed version of a histogram constructed from the observed data. By using the

widely-used normal kernel, we impose a lot of discipline on our learning problem but also allow

for considerable �exibility. We also experimented with a handful of other kernels.

Consider a shock φ̃t whose true density g is unknown to agents in the economy. The agents

do know that the shock φ̃t is i.i.d. Their information set at time t, denoted It, includes the
history of all shocks φ̃t observed up to and including t. They use this available data to construct

an estimate ĝt of the true density g. Formally, at every date, agents construct the following

normal kernel density estimator of the pdf g

ĝt

(
φ̃
)

=
1

ntκt

nt−1∑
s=0

Ω

(
φ̃− φ̃t−s

κt

)
(1)

where Ω (·) is the standard normal density function, κt is the smoothing or bandwidth parameter
and nt is the number of available observations of at date t. As new data arrives, agents add the

new observation to their data set and update their estimates, generating a sequence of beliefs

{ĝt}.

Bloom et al. (2018), Nimark (2014) and higher-order belief shocks, such as Angeletos and La'O (2013) or Huo
and Takayama (2015).
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The key mechanism in the paper is the persistence of belief changes induced by transitory

φ̃t shocks. This stems from the martingale property of beliefs � i.e. conditional on time-

t information (It), the estimated distribution is a martingale. Thus, on average, the agent

expects her future belief to be the same as her current beliefs. This property holds exactly if the

bandwidth parameter κt is set to zero and holds with tiny numerical error in our application.3

In line with the literature on non-parametric assumption, we use the optimal bandwidth.4 As

a result, any changes in beliefs induced by new information are expected to be approximately

permanent. This property plays a central role in generating long-lived e�ects from transitory

shocks.

II Economic and Epidemiological Model

To gauge the magnitude of the scarring e�ect of the COVID-19 pandemic on long-run economic

outcomes, we need to embed it in an economic model in which tail risk and belief changes can

have meaningful e�ects. For this, a model needs two key features. First, it should have the

potential for `large' shocks, that have both transitory and lasting e�ects. The former would

include lost productivity from stay-at-home orders preventing services from reaching consumers.

But for this shock to look like the extreme event it is to investors, the model must also allow for

the possibility of a more persistent loss of productive capital. This loss represents the interior

of the restaurant that went bankrupt, or the unused capacity of the hotel that will not �ll again

for many years to come. When stay-at-home orders forced consumers to work and consume

di�erently, it persistently altered tastes and habits, rendering some capital obsolete. One might

think this is hard-wiring persistence in the model. Yet, as we will show, this loss of capital by

itself has a short lived e�ect and typically triggers an investment boom, as the economy rebuilds

capital better suited to the new consumption normal. We explore two possible scenarios that

highlight the enormous importance of preventing capital obsolescence, because of the scarring

of beliefs.

The second key feature is su�cient curvature in policy functions, which serves to make

3As κt → 0, the CDF of the kernel converges to Ĝ0
t

(
φ̃
)

= 1
nt

∑nt−1
s=0 1

{
φ̃t−s ≤ φ̃

}
. Then, for any φ̃, and

any j ≥ 1

Et
[
Ĝ0
t+j

(
φ̃
)∣∣∣ It] = Et

[
1

nt + j

nt+j−1∑
s=0

1
{
φ̃t+j−s ≤ φ̃

}∣∣∣∣∣ It
]

=
nt

nt + j
Ĝ0
t

(
φ̃
)

+
j

nt + j
Et
[
1
{
φ̃t+1 ≤ φ̃

}∣∣∣ It]
Thus, future beliefs are, in expectation, a weighted average of two terms - the current belief and the distribution
from which the new draws are made. Since our best estimate for the latter is the current belief, the two terms

are exactly equal, implying Et
[
Ĝ0
t+j

(
φ̃
)∣∣∣ It] = Ĝ0

t

(
φ̃
)
.

4See Hansen (2015).
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economic activity sensitive to the probability of extreme large shocks. Two ingredients � namely,

Epstein-Zin preferences and costly bankruptcy � combine to generate signi�cant non-linearity

in policy functions.

It is important to note that none of these ingredients guarantee persistent e�ects. Absent

belief revisions, shocks, no matter how large, do not change the long-run trajectory of the

economy. Similarly, the non-linear responses induced by preferences and debt in�uence the size

of the economic response, but by themselves do not generate any internal propagation. They

simply govern the magnitude of the impact, both in the short and long run.

To this setting, we add belief scarring. We model beliefs using the non-parametric estimation

described in the previous section and show how to discipline this procedure with observable

macro data, avoiding free parameters. This belief updating piece is not there to generate the

right size reaction to the initial shock. Instead, belief updating adds the persistence, which

considerably in�ates the cost.

II.A The Disease Environment

This block of the model serves to generate a time path for disruption to economic activity, which

will then be mapped into transitory productivity shock and capital obsolescence . Of course,

we could have directly created scenarios for the shocks and arrived at the same predictions.

The explicit modeling of the spread of disease allows us to see how di�erent social distancing

policies map into shocks and ultimately into long-term economic costs from belief scarring.

Given this motivation, we build on a very simple SEIR model, which is a discrete-time version

of Atkeson (2020) or Stock (2020), who build on work in the spirit of Kermack and McKendrick

(1927). To this model, we add two ingredients: 1) a behavioral/policy rule that imposes

capital idling when the infection rate increase (for example, this rule could represent optimal

behavior or government policy); and 2) a higher depreciation rate of unused capital. While

we normally think of capital utilization depreciating capital, this is a di�erent circumstance

where habits, technologies and norms are changing more rapidly than normal. Unused capital

may be restaurants whose customers �nd new favorites, old conferencing technologies replaced

with new online technology or o�ce space that will be replaced with home o�ces. This higher

depreciation rate represents a speeding up of capital obsolescence.

Disease and shutdowns On January 20 2020, the �rst case of COVID was documented in

the U.S. Therefore, we start our model on that day, with one infected person. Because we are

examining persistence mechanisms, we want to impose a clear end date to the COVID shock.

Therefore, we assume that COVID-19 will be over by the end of 2020. The SEIR model predicts

the evolution of the pandemic. Our policy shutdown rule, maps the infection rate series into a
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value for the aggregate shock to the US economy in 2020. From 2021 onwards, we assume that

COVID-19 will be over. However, we explore scenarios where the economy may su�er other

pandemics in the future.

Time is discrete and in�nite. For the disease part of the model, we will count time in days,

indexed by t̃. Later, to describe long-run e�ects, we will change the measure of time to t, which

represents years. There are N agents in the economy. At date 1, the �rst person gets infected.

Let S represent the number of people susceptible to the disease, but not currently exposed,

infected, dead or recovered. At date 1, that susceptible number is S(1) = N − 1. Let E be

the number of exposed persons and I be the number infected. We start with E(1) = 0 and

I(1) = 1. Finally, D represents the number who are either recovered or dead, where D(1) = 0.

The following four equations describe the dynamics of the disease.

S(t̃+ 1) = S(t̃)− β̃t̃S(t̃)I(t̃)/N (2)

E(t̃+ 1) = E(t̃) + β̃t̃S(t̃)I(t̃)/N − σEE(t̃) (3)

I(t̃+ 1) = I(t̃) + σEE(t̃)− γII(t̃) (4)

D(t̃+ 1) = D(t̃) + γII(t̃) (5)

The parameter γI is the rate at which people exit infection and become deceased or recovered.

Thus, the expected duration of infection is approximately 1/γI , and the number of contacts an

infected person has with a susceptible person is β̃ times the fraction of the population that is

susceptible S(t̃)/N . The initial reproduction rate, often referred to as R0 is therefore β̃/γI .

We put a t subscript on β̃t̃ because behavior and policy can change it. When the infection

rate rises, people reduce infection risk by staying home. This reduces the number of social

contacts, reducing β̃. Lockdown policies also work by reducing β̃. We capture this relationship

by assuming that β̃ can vary between a maximum of γIR0 and a minimum of γIRmin. Rmin is

the estimated U.S. reproduction rate for regions under lockdown. Where on the spectrum the

contact rate lies depends on the last 30-day change in infection rates, measured with a 15-day

lag.5 Let ∆It be the di�erence between the average 15-29 day past infections and the average of

30-44 day infections: ∆It = (1/15)
(∑29

τ=15 I(t− τ)−
∑44

τ=30 I(t− τ)
)
. This captures the fact

that most policy makers are basing policy on two-week changes in hospitalization rates, which

are themselves observed with a 14-day lag. Then policy and individual behavior achieves a

5This is consistent with the U.S. o�cial policy on re-opening (CDC, 2020). Note that individual optimal
choice to social distance are also included in this �policy.� These optimal choices look similar. See Kaplan et al.
(2020).
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frequency of social contact:

β̃t̃ = γI ×min(R0,max(Rmin, R0 − ζ ∗∆It)) (6)

The key part of the epidemic from a belief-scarring perspective is that reducing the contact

rate requires separating labor from capital. In other words, capital is idle. No capital is idled

(full capacity) when no mitigation e�orts are underway, i.e. when β̃t̃ = γIR0. But as β̃t̃ falls,

capital idling (K−) rises. We formalize that relationship as

K−
t̃

= θ̃ ∗ (R0 − β̃t̃/γI). (7)

Idle capital depreciates as a rate δ̃. As mentioned before, this is not physical deterioration

of the capital stock. Instead, it represent a loss of value from accelerated obsolescence due to

changes in tastes, habits and technologies. It could also represent a loss in value because of

persistent upstream or downstream supply chain constraints.

II.B The Economy

Preferences and technology: To describe long-term economic consequences, we switch from

the daily time index t̃ to an annual time index t. An in�nite horizon, discrete time economy

has a representative household, with preferences over consumption (Ct) and labor supply (Lt):

Ut =

[
(1− β)

(
cγt (1− lt)1−γ

)1−ψ
+ βEt

(
U1−η
t+1

) 1−ψ
1−η

] 1
1−ψ

(8)

where ψ is the inverse of the inter-temporal elasticity of substitution, η indexes risk-aversion, γ

indexes the share of consumption in the period utility function, and β represents time preference.

The economy is also populated by a unit measure of �rms, indexed by i and owned by

the representative household. Firms produce output with capital and labor, according to a

standard Cobb-Douglas production function ztkαitl
1−α
it .

Aggregate uncertainty is captured by a single random variable, φ̃t, which is i.i.d. over

time and drawn from a distribution g(·). The i.i.d. assumption is made in order to avoid an

additional, exogenous, source of persistence.6 The e�ect of this shock on economic activity

depends on the realized default rate Def t (the fraction of �rms who default in t, characterized

later in this section). Formally, it induces a capital obsolescence `shock' φt ≡ Φ(φ̃t,Def t). The

function Φ(·) will made explicit later. This composite shock has both permanent and transitory
6The i.i.d. assumption also has empirical support. In the next section, we use macro data to construct a

time series for φ̃t. We estimate a (statistically insigni�cant) autocorrelation of 0.15.
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e�ects. The permanent component works as follows: a �rm that enters the period t with capital

k̂it has e�ective capital kit = φtk̂it.

In addition to this permanent component, the shock φt also has a temporary e�ect, through

the TFP term zt = φνt . The parameter ν governs the relative strength of the transitory compo-

nent. This speci�cation allows us to capture both permanent and transitory disruptions with

only one source of uncertainty. By varying ν, we can capture a range of scenarios without

having to introduce additional shocks.

Firms are also subject to an idiosyncratic shock vit. These shocks scale up and down the

total resources available to each �rm (after paying labor, but before paying debtholders' claims)

Πit = vit
[
ztk

α
itl

1−α
it −Wtlit + (1− δ)kit

]
(9)

where δ is the ordinary rate of capital depreciation. The additional obsolescence from idle

capital is already removed from kit, via the shock φt. The shocks vit are i.i.d. across time and

�rms and are drawn from a known distribution, F .7 The mean of the idiosyncratic shock is

normalized to be one:
∫
vit di = 1. The primary role of these shocks is to induce an interior

default rate in equilibrium, allowing a more realistic calibration, particularly of credit spreads.

What is capital obsolescence? Capital obsolescence shock re�ects a long-lasting change

in the economic value of the average unit of capital. A realization of φ < 1 captures the loss of

speci�c investments or other forms of lasting damage from a prolonged shutdown. This could

come from the lost value of cruise ships that will never sail again, businesses that do not re-

open, loss of customer capital or just less intensive use of commercial space due to a persistent

preference for more distance between other diners, travelers, spectators or shoppers. It could

also represent permanent changes in health and safety regulations that make transactions safer,

but less e�cient from an economic standpoint.

An important question is whether future investment could be made in ways or in sectors

that avoid these costs. Of course, such substitution is likely to happen to some extent. But, the

fact that the patterns of investment were not chosen previously suggests that these adjustments

are costly or less pro�table. More importantly, we learned that the world is riskier and more

unpredictable than we thought. The shocks that hit one sector (or type of capital) today may

hit another tomorrow, in ways that are impossible to foresee.

Credit markets and default: Firms have access to a competitive non-contingent debt mar-

ket, where lenders o�er bond price (or equivalently, interest rate) schedules as a function of

7This is a natural assumption: with a continuum of �rms and a stationary shock process, �rms can learn
the complete distribution of any idiosyncratic shocks after one period.
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aggregate and idiosyncratic states, in the spirit of Eaton and Gersovitz (1981). A �rm enters

period t + 1 with an obligation, bit+1 to bondholders The shocks are then realized and the

�rm's shareholders decide whether to repay their obligations or default. Default is optimal for

shareholders if and only if

Πit+1 − bit+1 + Γt+1 < 0

where Γt+1 is the present value of continued operations. Thus, the default decision is a function

of the resources available to the �rm Πit+1 (output plus undepreciated capital less wages) and

the obligations to bondholders bit+1. Let rit+1 ∈ {0, 1} denote the default policy of the �rm.

In the event of default, equity holders get nothing. The productive resources of a defaulting

�rm are sold to an identical new �rm at a discounted price, equal to a fraction θ < 1 of the

value of the defaulting �rm. The proceeds are distributed pro-rata among the bondholders.8

Let qit denote the bond price schedule faced by �rm i in period t, i.e. the �rm receives qit in

exchange for a promise to pay one unit of output at date t+ 1. Debt is assumed to carry a tax

advantage, which creates incentives for �rms to borrow. A �rm which issues debt at price qit
and promises to repay bit+1 in the following period, receives a date-t payment of χqitbit+1, where

χ > 1. This subsidy to debt issuance, along with the cost of default, introduces a trade-o� in

the �rm's capital structure decision, breaking the Modigliani-Miller theorem.9

For a �rm that does not default, the dividend payout is its total available resources, minus

its payments to debt and labor, minus the cost of building next period's capital stock (the

undepreciated current capital stock is included in Πit), plus the proceeds from issuing new

debt, including its tax subsidy

dit = Πit − bit − k̂it+1 + χqitbit+1. (10)

Importantly, we do not restrict dividends to be positive, with negative dividends interpreted

as (costless) equity issuance. Thus, �rms are not �nancially constrained, ruling out another

potential source of persistence.

Bankruptcy and obsolescence: Next, we spell out the relationship between default and

capital obsolescence, φt = Φ(φ̃t,Def t) where Def t ≡
∫
ritdi. This is meant to capture the

idea that widespread bankruptcies can amplify the erosion in the economic value of capital

arising from the primitive shock φ̃t. This might come from lost supply chain linkages, inter-

8In our baseline speci�cation, default does not destroy resources - the penalty is purely private. This is not
crucial - it is straightforward to relax this assumption by assuming that all or part of the cost of the default
represents physical destruction of resources.

9The subsidy is assumed to be paid by a government that �nances it through a lump-sum tax on the
representative household.
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�rm relationships or other ways in which economic activity is inter-connected. For example,

a retailer might ascribe a lower value to space in a mall if a number of other stores go out of

business. Similarly, a manufacturer might need to undertake costly search or make adjustments

to his factory in order to accommodate new suppliers. We capture these e�ects with a �exible

functional form:

lnφt = ln Φ(φ̃t,Def t) = ln φ̃t − µ Def 1−$t , (11)

where µ and $ are parameters that govern the relationship between default and the loss of

capital value.

Timing and value functions:

1. Firms enter the period with a capital stock k̂it and outstanding debt bit.

2. The aggregate capital obsolescence shocks are realized.10 Labor choice is made and pro-

duction takes place.

3. Firm-speci�c shocks vit are realized. The �rm decides whether to default or repay (rit ∈
{0, 1}) its debt claims and distribute any remaining dividends.

4. The �rm makes capital k̂it+1 and debt bit+1 choices for the following period.

In recursive form, the problem of the �rm is

V
(
k̂it, bit, vit,St

)
= max

[
0, max

dit,lit,k̂it+1,bit+1

dit + EtMt+1V
(
k̂it+1, bit+1, vit+1,St+1

)
,

]
(12)

where Mt+1 is the representative households's stochastic discount factor, subject to

Dividends: dit ≤ Πit − bit − k̂it+1 + χqitbit+1 (13)

Resources: Πit = vit
[
ztk

α
itl

1−α
it −Wtlit + (1− δ)kit

]
(14)

Bond price: qit = EtMt+1

[
rit+1 + (1− rit+1)

θṼit+1

bit+1

]
(15)

Finally, �rms hire labor in a competitive market at a wage Wt. We assume that this decision

is made after observing the aggregate shock but before the idiosyncratic shocks are observed,

10To simulate the COVID-19 pandemic, we run the epidemiology model from Section II.A for one year and
use the predicted capital obsolescence as the realized shock for 2020. For more details, see Section III.
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i.e. labor choice is solves the following static problem:

max
lit

zt(φtk̂it)
αl1−αit −Wtlit

The �rst max operator in (12) captures the �rm's option to default. The expectation Et
is taken over the idiosyncratic and aggregate shocks, given beliefs about the aggregate shock

distribution. The value of a defaulting �rm is simply the value of a �rm with no external

obligations, i.e. Ṽit = V
(
k̂it, 0, vit,St

)
.

The aggregate state St consists of (K̂t, φ̃t, It) where It is the economy-wide information

set. Equation (15) reveals that bond prices are a function of the �rm's capital k̂it+1 and debt

bit+1, as well as the aggregate state St. The �rm takes the aggregate state and the function

qit = q
(
k̂it+1, bit+1,St

)
as given, while recognizing that its choices a�ect its bond price.

Information, beliefs and equilibrium The set It includes the history of all shocks φ̃t
observed up to and including time-t. The expectation operator Et is de�ned with respect to

this information set. Expectations are probability-weighted integrals, where the probability

density is ĝ(φ̃). The function ĝ arises from using the kernel density estimation procedure in

equation (1).

For a given belief ĝ, a recursive equilibrium is a set of functions for (i) aggregate consumption

and labor that maximize (8) subject to a budget constraint, (ii) �rm value and policies that

solve (12) , taking as given the bond price function (15) and the stochastic discount factor,

(iii) aggregate consumption and labor are consistent with individual choices and (iv) capital

obsolescence is consistent with default rates according to (11).

II.C Characterization

The equilibrium of the economic model is a solution to the following set of non-linear equations.

First, the fact that the constraint on dividends (13) will bind at the optimum can be used

to substitute for dit in the �rm's problem (12). This leaves us with 2 inter-temporal choice

variables (k̂it+1, bit+1) and a default decision. The latter is described by a threshold rule in the

idiosyncratic output shock vit:

rit =

{
0 if vit < vt

1 if vit ≥ vt

which implies that the default rate Deft = F (vt). It turns out to be more convenient to

rede�ne variables and cast the problem as a choice of k̂it+1 and leverage, levit+1 ≡ bit+1

k̂it+1
. The

full characterization to the Appendix. Since all �rms make symmetric choices for these objects,
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in what follows, we suppress the i subscript. The optimality condition for k̂t+1 is:

1 = E[Mt+1R
k
t+1] + (χ− 1)levt+1qt − (1− θ)E[Mt+1R

k
t+1h(vt+1)] (16)

where Rk
t+1 =

φα+νt+1 k̂
α
t+1l

1−α
t+1 −Wt+1lt+1 + (1− δ)φt+1k̂t+1

k̂t+1

(17)

The object Rk
t+1 is the ex-post per-unit, post-wage return on capital, which is obviously a

function of the obsolescence shock φt. The default threshold is given by vt+1 = levt+1

Rkt+1
while

h (v) ≡
∫ v
−∞ vf(v)dv is the default-weighted expected value of the idiosyncratic shock.

The �rst term on the right hand side of (16) is the usual expected direct return from

investing, weighted by the stochastic discount factor. The other two terms are related to debt.

The second term re�ects the indirect bene�t to investing arising from the tax advantage of debt

- for each unit of capital, the �rm raises bt+1

k̂t+1
qt from the bond market and earns a subsidy of

χ− 1 on the proceeds. The last term is the cost of this strategy - default-related losses, equal

to a fraction 1− θ of available resources.
Note that the default threshold is a function of φt, which in turn is a�ected by default,

through (11). Therefore, the threshold equation vt+1 = levt+1

Rkt+1
implicitly de�nes a �xed-point

relationship:

vt+1 =
levt+1

Rk
t+1

=
levt+1

φα+νt+1 k̂
α−1
t+1 l

1−α
t+1 −Wt+1

lt+1

k̂t+1
+ (1− δ)φt+1

(18)

Next, the �rm's optimal choice of leverage, levt+1 is

(1− θ)Et
[
Mt+1

levt+1

Rk
t+1

f

(
levt+1

Rk
t+1

)]
=

(
χ− 1

χ

)
Et
[
Mt+1

(
1− F

(
levt+1

Rk
t+1

))]
. (19)

The left hand side is the marginal cost of increasing leverage - it raises the expected losses from

the default penalty (a fraction 1 − θ of the �rm's value). The right hand side is the marginal

bene�t - the tax advantage times the value of debt issued.

Finally, �rm and household optimality implies that labor solves the intra-temporal condition:

(1− α)yt
lt

= Wt =
1− γ
γ

ct
1− lt

(20)

The optimality conditions, (16) - (20), along with those from the household side, form the

system of equations we solve numerically.
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III Measurement, Calibration and Solution Method

This section describes how we use macro data to estimate beliefs and parameterize the model,

as well as our computational approach. A strength of our theory is that we can use observable

data to estimate beliefs at each date.

Measuring past shocks Of course, we have not seen a health event like COVID in the last

95-100 years. However, from an economic point of view, COVID is one of many past shocks to

returns that happens to be larger. When we think about COVID changing our beliefs, or our

perceived probability distribution of outcomes, those outcomes are realized returns on capital.

Therefore, to estimate the pre-COVID and post-COVID probability distributions, we �rst set

out to measure past capital returns that map neatly into our model.

A helpful feature of capital obsolescence shocks, like the ones in our model, is that their

mapping to available data is straightforward. A unit of capital installed in period t− 1 (i.e. as

part of K̂t) is, in e�ective terms, worth φt units of consumption goods in period t. Thus, the

change in its market value from t− 1 to t is simply φt.

We apply this measurement strategy to annual data on commercial capital held by US

corporates. Speci�cally, we use two time series Non-residential assets from the Flow of Funds,

one evaluated at market value and the second, at historical cost.11 We denote the two series

by NFAMV
t and NFAHC

t respectively. To see how these two series yield a time series for φt,

note that, in line with the reasoning above, NFAMV
t maps directly to e�ective capital in the

model. Formally, letting P k
t the nominal price of capital goods in t, we have P k

t Kt = NFAMV
t .

Investment Xt can be recovered from the historical series, P k
t−1Xt = NFAHC

t − (1− δ)NFAHC
t−1.

Combining, we can construct a series for P k
t−1K̂t:

P k
t−1K̂t = (1− δ)P k

t−1Kt−1 + P k
t−1Xt

= (1− δ)NFAMV
t−1 + NFAHC

t − (1− δ)NFAHC
t−1

Finally, in order to obtain φt = Kt
K̂t
, we need to control for nominal price changes. To do this,

we proxy changes in P k
t using the price index for non-residential investment from the National

11These are series FL102010005 and FL102010115 from Flow of Funds.
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Income and Product Accounts (denoted PINDX t).12 This yields:

φt =
Kt

K̂t

=

(
P k
t Kt

P k
t−1K̂t

)(
PINDX k

t−1

PINDX k
t

)

=

[
NFAMV

t

(1− δ)NFAMV
t−1 + NFAHC

t − (1− δ)NFAHC
t−1

](
PINDX k

t−1

PINDX k
t

)
(21)

Using the measurement equation (21), we construct an annual time series for capital de-

preciation shocks for the US economy since 1950. The mean and standard deviation of the

series over the entire sample are 1 and 0.03 respectively. The autocorrelation is statistically

insigni�cant at 0.15.

Next, we recover the primitive shock φ̃t from the time series φt. To do this, we use (11),

along with data on historical default rates from Moody's Investors Service (2015)13 and values

for the feedback parameters (µ,$) as described below. The �rst panel of Figure 2 shows the

estimated φ̃.

Parameterization A period t is interpreted as a year. We choose the discount factor

β = 0.95, depreciation δ = 0.06, and the share of capital in the production, α, is 0.40. The

recovery rate upon default, θ, is set to 0.70, following Gourio (2013). The distribution for the

idiosyncratic shocks, vit is assumed to be lognormal, i.e. ln vit ∼ N
(
− σ̂2

2
, σ̂2
)
with σ̂2 chosen

to target a default rate of 0.02.14 The share of consumption in the period utility function, γ, is

set to 0.4.

For the parameters governing risk aversion and intertemporal elasticity of substitution, we

use standard values from the asset pricing literature and set ψ = 0.5 (or equivalently, an IES

of 2) and η = 10. The tax advantage parameter χ is chosen to match a leverage target of

0.50, the ratio of external debt to capital in the US data � from Gourio (2013). Finally, we set

the parameters of the default-obsolescence feedback function, namely µ and $. Ideally, these

parameters would be calibrated to match the variability of default and its covariance with

the observed φt shock. Unfortunately, our one-shock model fails to generate enough volatility

in default rates and therefore, struggles to match these moments. Fixing this would almost

certainly require a richer model with multiple shocks and more involved �nancial frictions. We

12Our results are robust to alternative measures of nominal price changes, e.g. computed from the price
index for GDP or Personal Consumption Expenditure.

13The Moody's data are for rated �rms and shows a historical average default rate of 1% (our calibration
implies a default rate of 2%), probably re�ecting selection. Accordingly, we scaled the Moody's estimates by a
factor of 2 while performing this calculation. We also used estimates of exit and bankruptcy rates from Corbae
and D'Erasmo (2017) and found broadly similar results.

14This is in line with the target in Khan et al. (2017), though a bit higher than the one in Gourio (2013).
We veri�ed that our quantitative results are not sensitive to this target.
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take a simpler way out here and target a relatively modest feedback with values of µ = 0.2

and $ = 0.5. These values imply roughly an ampli�cation 3% at a baseline default rate of 2%,

rising to 5% for a 6% default.15

Epidemiology parameters. A major hurdle to quantifying the long-run e�ects is the lack of

data and uncertainty surrounding estimates of the short-run impact. While this will surely be

sorted out in the months to come, for now, with the crisis still raging and policy still being set,

the impact is uncertain. More importantly for us, the nature of the economic shock is uncertain.

It may be a temporary closure with furloughs, or it could involve widespread bankruptcies and

changes in habits that permanently separate workers from capital or make the existing stock

of capital ill-suited to the new consumption demands. Since it is too early to know this, we

present two possible scenarios, chosen to illustrate the interaction between learning and the

type of shock we experience. All involve signi�cant losses in the short term but their long-term

e�ects on the economy are drastically di�erent.

We begin by describing parameter choices that are �xed across the scenarios. Following

Wang et al. (2020)'s study of infection in Hubei, China, we calibrate σE = 1/5.2 and γI = 1/18

to the average duration of exposure (5.2 days) and infection (18 days). We use an initial

reproduction number of R0 = 3.5, based on more recent estimates of higher antibody prevalence

and more asymptomatic infection than originally thought andRmin = 0.8 based on the estimates

of the spread in New York, at the peak of the lockdown (Center for Disease Control, 2020).

This implies that the initial number of contacts per period must be β̃ = γIR0.

The extent to which capital idling reduces contact rates is set to θ̃ = 1/3. This implies

that a lockdown which reduces the reproduction number to 0.8 is associated with 50% capital

idling. This is broadly consistent with the 25% drop in output, estimated during the lockdown

period in Hubei province, China. The rate of excess depreciation of idle capital at the rate of

6.5% per month or δ̃ = 0.065/30 daily. As we will see, this implies a 10% erosion of the value

of capital in our �rst scenario, which lines up with the drop in commercial real estate prices

since the pandemic started � see CPPI (2020).

The two scenarios, which di�er in the sensitivity of lockdown policy to observed infection

increases, i.e. the parameter ζI . In scenario 1, we set ζI = 300, which generates an initial

lockdown that lasts for 2 months. This version of the model predicts waves of re-infection and

new lockdowns in the months to come, echoing predictions by the Center for Disease Control.

Scenario 2, which considers a much less aggressive response by setting ζI = 50, has only one

lockdown episode.

15Section VI studies a version without default ampli�cation and �nds that it generates similar patterns,
albeit with slightly smaller magnitudes, as our benchmark economy.
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Table 1 summarizes the resulting parameter choices.

Parameter Value Description
Preferences:
β 0.95 Discount factor
η 10 Risk aversion
ψ 0.50 1/Intertemporal elasticity of substitution
γ 0.40 Share of consumption in the period utility function
Technology:
α 0.40 Capital share
δ 0.06 Depreciation rate
σ̂ 0.28 Idiosyncratic volatility
Debt:
χ 1.06 Tax advantage of debt
θ 0.70 Recovery rate
µ 0.2 Default-obsolescence feedback
$ 0.5 Default-obsolescence elasticity
Disease / Policy:
R0 3.5 Initial disease reproduction rate
Rmin 0.8 Minimum U.S. disease reproduction rate
σE 1/52 Exposure to infection transition rate
γI 1/18 Recovery / death rate
ζI 300 (50) Lockdown policy sensitive to past infections
θ̃ 0.19 Capital idling required to reduce transmission
δ̃ 0.002 Excess depreciation (daily) of idle capital

Table 1: Parameters Number in parentheses is used in scenario 2.

Numerical solution method Since curvature in policy functions is an important feature

of the economic environment, our algorithm solves equations (20) − (19) with a non-linear

collocation method. Appendix A.B describes the iterative procedure. In order to keep the

computation tractable, we need one more approximation. The reason is that date-t decisions

(policy functions) depend on the current estimated distribution (ĝt(φ̃)) and the probability

distribution h over next-period estimates, ĝt+1(φ̃). Keeping track of h(ĝt+1(φ̃)), (a compound

lottery) makes a function a state variable, which renders the analysis intractable. However,

the approximate martingale property of ĝt discussed in Section I o�ers an accurate and com-

putationally e�cient approximation to this problem. The martingale property implies that the

average of the compound lottery is Et[ĝt+1(φ̃)] ≈ ĝt(φ̃), ∀φ̃. Therefore, when computing policy

functions, we approximate the compound distribution h(ĝt+1(φ̃)) with the simple lottery ĝt(φ̃),

which is today's estimate of the probability distribution. We use a numerical experiment to

show that this approximation is quite accurate. The reason for the small approximation error
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is that h(ĝt+1) results in distributions centered around ĝt(φ̃), with a small standard deviation.

Even 30 periods out, ĝt+30(φ̃) is still quite close to its mean ĝt(φ̃). For 1-10 years ahead, where

most of the utility weight is, this standard error is tiny.

To compute our benchmark results, we begin by estimating ĝ2019 using the data on φ̃t

described above. Given this ĝ2019, we compute the stochastic steady state by simulating the

model for 5000 periods, discarding the �rst 500 observations and time-averaging across the

remaining periods. This steady state forms the starting point for our results. Subsequent

results are in log deviations from this steady state level. Then, we subject the model economy

to two possible additional adverse realizations for 2020, one at a time. Using the one additional

data point for each scenario, we re-estimate the distribution, to get ĝ2020. To see how persistent

economic responses are, we need a long future time series. We don't know what distribution

future shocks will be drawn from. Given all the data available to us, our best estimate is

also ĝ2020. Therefore, we simulate future paths by drawing many sequences of future φ̃ shocks

from the ĝ2020 distribution. In the results that follow, we plot the mean future path of various

aggregate variables.

IV Main Results

Our goal in this paper is to quantify the long run e�ect of the COVID crises, stemming from

the belief scarring e�ect, i.e. from learning that pandemics are more likely than we thought.

We formalize and quantify the e�ect on beliefs, using the assumption that people do not know

the true distribution of aggregate economic shocks and learn about it statistically. This is the

source of the long-run economic e�ects. Comparing the resulting outcomes to ones from the

same model under the assumption of full knowledge of the distribution (no learning) reveals

the extent to which beliefs matter.

But �rst, we brie�y describe the disease spread, the policy reaction and the economic shocks

these policies generate.

Epidemiology and economic shutdown. Figure 1 illustrates the spread of disease, in both

scenarios, as well as the response, which results in capital idling. Recall that Scenario 2 has

ζI = 50, i.e. a policy that is six times less responsive to changes in the infection rate than the

ζI = 300 policy in scenario 1. As a result, it also has signi�cantly less idle capital and a faster

spike in infection rates.

For our purposes, the su�cient statistic in each scenario is the realization for φ̃2020. In

scenario 1, the COVID-19 shock implies φ̃t = 0.9, i.e. the loss of value due to obsolescence

is equal to 10% of the capital stock. In scenario 2, only 5% of capital is lost to obsolescence:
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Figure 1: Disease spread and capital dynamics.
Parameters listed in Table 1. Scenario 1 uses an aggressive lockdown policy ζI = 300, while scenario 2 uses a

more relaxed policy of ζI = 50.

φ̃t = 0.95. The target for the initial, transitory impact is line with most forecasts for 2020: a

9% (or 6%) annual decline in GDP. This is likely a conservative estimate for Q2 2020, but more

extreme than some forecasts for the entire year.

How much belief scarring? We apply our kernel density estimation procedure to the

capital return time series and our two scenarios to construct a sequence of beliefs. In other

words, for each t, we construct {ĝt} using the available time series until that point. The resulting
estimates for 2019 and 2020 are shown in Figure 2. The di�erences are subtle. Spotting them

requires close inspection where the dotted and solid lines diverge, around 0.90 and 0.95, in

scenarios 1, and 2 respectively. They show that the COVID-19 pandemic induces an increase

in the perceived likelihood of extreme negative shocks. In scenario 1, the estimated density for

2019 implies near zero (less than 10−5%) chance of a φ̃ = 0.90 shock; the 2020 density attaches
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a 1-in-70 or 1.4% probability to a similar event recurring.
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Figure 2: Beliefs about the probability distribution of outcomes, plotted before and
during the COVID-19 crisis.
The �rst panel shows the realizations of φ̃. The second and third panels show the estimated kernel densities for

2019 (solid line) and 2020 (dashed line) for the two scenarios. The subtle changes in the left tail represent the

scarring e�ect of COVID-19.

As the graph shows, for most of the sample period, the shock realizations are in a relatively

tight range around 1, but we saw a large adverse realizations during the Great Recession of

0.93 in 2009. This re�ects the large drops in the market value of non-residential capital stock.

The COVID shock is now a second extreme realization of negative capital returns in the last

20 years. It makes such an event appear much more likely.
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Figure 3: Output with scarring of beliefs (solid line) and without (dashed line).
Units are percentage changes, relative to the pre-crisis steady-state, with 0 being equal to steady state and −0.1

meaning 10% below steady state. Common parameters listed in Table 1. Scenario-speci�c parameters are:

Scenario 1: φ̃2020 = 0.90 Scenario 2: φ̃2020 = 0.95.

E�ect on GDP Observing a tail event like the COVID-19 pandemic changes output in a

persistent way. Figure 3 compares the predictions of our model for total output (GDP) to an
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identical model without learning. The units are log changes, relative to the pre-crisis steady-

state. In the model without learning, agents are assumed to know the true probability of

pandemics. As a result, when they see the COVID crisis, they do not update the distribu-

tion. This corresponds to the canonical �rational expectations� assumption in macroeconomics.

The model with learning, which uses our real-time kernel density estimation to inform beliefs,

generates similar short-term reactions, but worse long-term e�ects. The post-2020 paths are

simulated as follows: each economy is assumed to be at its stochastic steady state in 2019

and is subjected to the same 2020 φ̃ shock; subsequently, sequences of shocks drawn from the

estimated 2020 distribution.

The scenarios under learning correspond to what one might call a V-shaped or tilted-V

recession: the recovery after the shock has passed is signi�cant but not complete. Note that the

drop in GDP on impact is a calibration target � what we are interested in its persistence, which

arguably matters more for welfare. The graph shows that, in Scenario 1, learning induces a

long-run drop in GDP of about 4%. The right panel shows a similar pattern but the magnitudes

are smaller. Of course, agents also learn from smaller capital obsolescence shocks. These also

scar their beliefs going forward. But the scarring is much less, producing only a 3% loss in

long-run annual output.

Higher tail risk (i.e. greater likelihood of obsolescence going forwards) increases the risk

premium required on capital investments, leading to lower capital accumulation. It is impor-

tant that these shocks make capital obsolete, rather than just reduce productivity, because

obsolescence has a much bigger e�ect on capital returns than lower productivity does. Labor

also contracts, but that is a reaction to the loss of available capital that can be paired with

labor. When a chunk of capital becomes mal-adapted and worthless, that is an order of mag-

nitude more costly to the investor than the temporary decline in capital productivity. Since

most of the economic e�ect works through capital risk deterring investment, that lower return

is important to get the economic magnitudes right.

Turning o� belief updating When agents do not learn, both scenarios exhibit quick and

complete recoveries, even with a large initial impact. Without the scarring of beliefs, facilities

are re-�tted, workers �nd new jobs, and while the transition is painful, the economy returns to

its pre-crisis trajectory relatively quickly. In other words, without belief revisions, the negative

shock leads to an investment boom, as the economy replenishes the lost e�ective capital. While

the curvature in utility moderates the speed of this transition to an extent, the overall pattern

of a steady recovery back to the original steady state is clear. This is in sharp contrast to

the version with learning. Note that since the no-learning economy is endowed with the same

end-of-sample beliefs as the learning model, they both ultimately converge to the same levels.
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But, they start at di�erent steady states (normalized to 0 for each series). This shows that

learning is what generates long-lived reductions in economic activity.

Decomposing long-run losses. Next, we perform a simple calculation to put the size of the

long-run loss in perspective. Speci�cally, we use the stochastic discount factor implied by the

model to calculate the expected discounted value of the reduction in GDP. These estimates,

reported in Table 2, imply that the representative agent in this economy values the cumulative

losses between 57% and 90% of the pre-COVID GDP. Most of this comes from the belief scarring

mechanism.

Scenario 2020 GDP drop NPV(Belief Scarring) NPV(Obsolete capital)

I. Tough -9% -52% -38%
II. Light - 6% -33% -24%

Table 2: New present value costs in percentages of 2019 GDP.

Note that the 1-year loss during the pandemic is 6-9% of GDP. The cost of belief scarring

is �ve to six times as large, in both cases. The cost of obsolete capital is about four times as

large as the damage done during the pandemic. Figure 4 illustrates the losses each year from

the capital obsolescence and belief changes. The area of each of these regions, discounted as

one moves to the right in time, is the NPV calculation in the table above. The one-year cost is

a tiny fraction of this total area.
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Figure 4: Long-term costs of the pandemic.

Of course, that calculation misses an important aspect of what we've learned � that pan-

demics will recur. Since our agents have 70 years of data, during which they've seen one

pandemic, they assess the future risk of pandemics to be 1-in-70 initially. That probability
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declines slowly as time goes on and other pandemics are not observed. But there is also the risk

there will be more pandemics, like this. This is not really a result of this pandemic. But that

risk of future pandemics is what we should consider if we think about the bene�ts of public

health investments. The pandemic cost going forward, in a world where a pandemic has a

1/70th probability of occurring each year, is given in Figure 5. Note that the risk of future

pandemics costs the economy about 7-12% of GDP. This is similar to the one-year cost during

the COVID crisis.
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Figure 5: Long-term costs of with future pandemics.
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Figure 6: Without belief scarring, investment surges.
Results show average aggregate investment, with scarring of beliefs (solid line) and without (dashed line). Com-

mon parameters listed in Table 1. Scenario-speci�c parameters are: Scenario 1: φ̃2020 = 0.90 Scenario 2:

φ̃2020 = 0.95.
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Investment and Labor. Figure 6 shows the e�ect of belief changes on investment. When

agents do not learn, investment surges immediately (as the economy replenishes the obsolete

capital). With learning, investment shows a much smaller surge (starting in 2021), but even-

tually falls below the pre-COVID levels.
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Figure 7: Labor with scarring of beliefs (solid line) and without (dashed line).
Common parameters listed in Table 1. Scenario-speci�c parameters are: Scenario 1: φ̃2020 = 0.90 Scenario 2:

φ̃2020 = 0.95.

In �gure 7, we see that the initial reaction of labor is milder than for investment, but

the bigger di�erences arise from 2021 onwards. When the transitory shock passes, investment

surges, to higher than its initial level, to compensate for the obsolescence shock. But labor

remains below the pre-COVID levels, re�ecting the e�ect of the scarring e�ect on the stock of

capital and through that on the demand for labor.

Defaults, Riskless Rates and Credit Spreads. The scenarios di�er in their short-term

implications for default as well. Default spikes only in 2020, the period of impact, returning to

average from 2021 onwards. But, the higher default rate in scenario 1 (6% relative to 4% in

Scenario 2) contributes to greater scarring (since default ampli�es obsolescence). This result

suggests a role for policy: preventing default/bankruptcy can lead to long-lasting bene�ts. In

Section VI, we present a quantitative analysis of such a policy.

Nearly immediately, after the pandemic passes, default rates in both scenarios return to

their original level. While defaults leave permanent scars on beliefs, the defaults themselves are

not permanently higher. It is the memory of a transitory event that is persistent.

Because defaults were elevated, the pandemic had a large, immediate impact on credit

spreads. However, these high spreads were quickly reversed. Some authors have argued that

heightened tail risk should in�ate risk premia, as well as credit spreads (Hall, 2016). While
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Figure 8: Realized default does not respond much to beliefs.
Results show with scarring of beliefs (solid line) and without (dashed line), often with the two lines on top of

each other. Common parameters listed in Table 1. Scenario-speci�c parameters are: Scenario 1: φ̃2020 = 0.90

Scenario 2: φ̃2020 = 0.95

the argument is intuitive, it ignores any endogenous response of discounting, investment or

borrowing. A surge in risk triggers disinvestment and de-leveraging. Because �rms borrow less,

this lowers default rates back down, which o�sets the increase in the credit spread. We can see

this channel at work in the drop in debt and the lack of change in long-run defaults (Table 3).

The credit spread is the implied interest on risky debt, 1/qt less the risk-free rate rf . The credit

spread in the stochastic steady state under the 2019 belief is less than a basis point higher is the

post-pandemic long-run. Thus, belief revisions can have signi�cant and long-lived real e�ects,

even if the long-run change in credit spreads is very small.

Equity markets and implied skewness. One might think the recent recovery in equity

prices appears inconsistent with a persistent rise in tail risk. The model teaches us why this

logic is incomplete. When �rms face higher tail risk, they also reduce debt, which pushes in the

opposite direction as the rise in risk. Furthermore, when �rms reduce investment and capital

stocks decline, the marginal value of capital rises. Finally, when interest rates and thus future

discount rates decline, future equity payments are worth more in present value terms. These

competing e�ects cancel each other out. In our model, the market value of a dividend claim

associated with a unit of capital is nearly identical under the post-COVID beliefs than under

the pre-COVID ones. In other words, the combined e�ect of the changes in tail risk and debt

reduction is actually mildly positive. While the magnitudes are not directly interpretable, our

point is simply that rising equity valuations are not evidence against tail risk.

If credit spreads and equity premia are not clear indicators of tail risk, what is? For that, we
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2019 Scenario 1 Scenario 2
Baseline level change level change

Credit Spreads 0.837% 0.842% +0.5 bps 0.838% +0.1 bps
Debt 2.75 2.56 -0.19 2.63 -0.12
Default 2.0% 2.0% 0 2.0% 0
Risk free rate 3.66% 3.46% -20 bps 3.54% -11 bps
Equity market value 0.44 0.45 +0.01 0.44 0
SKEW 102.7 111.3 +8.6 104.2 +1.5

Third moment E
[(
Re − R̄e

)3]
-1.5 -9.8 -8.3 -2.6 -1.1

Table 3: Changes in �nancial market variables: Baseline, Scenarios 1 and 2.
Baseline is the steady state pre-pandemic, under 2019 beliefs. Columns labelled �change� are the raw di�erence

between the long-run average values under 2019 and 2020 beliefs in each scenario. They do not capture any

changes that take place along the transition path or during the pandemic. The aggregate market capitalization in

our model is the value of the dividend claim times the aggregate capital stock. Third moment is E
[(
Re − R̄e

)3]×
104, where Re is the return on equity. The expectation is taken under the risk-neutral measure. For the no-

learning model, all changes are zero.

need to turn option prices, in particular out-of-the-money put options on the S&P 500, which

can be used to isolate changes in perceived tail risk. A natural metric is the third moment

of the distribution of equity returns. The last row of Table 3 reports this object (computed

under the risk neutral measure). It shows that the perceived distribution after the shock is

more negatively skewed.16

This might sound inconsistent with the behavior of the SKEW index reported by the CBOE.

This showed a short-lived spike at the onset of the pandemic, but recovered quite rapidly. To

understand this pattern, note that the SKEW indexes the standardized third moment implied

by options prices, which is obtained by dividing the third moment from the previous paragraph

by the implied standard deviation (or VIX). Tail events typically lead to a spike in market

volatility, both realized and implied. This increase in VIX tends to mechanically lower the

skewness. More generally, the SKEW index confounds changes in the third moment with the

changes in the second moment, which often re�ects many other factors. This is the main reason

why we focus on the (non-standardized) third moment. As we saw, this measure clearly reveals

the persistent change in beliefs and is consistent with evidence from newspapers and surveys in

Barrero and Bloom (2020).

16It is straightforward to compute this from the SKEW and VIX indices reported by the CBOE. The third

central moment under the risk-neutral measure is E
(
Re − R̄e

)3
= 100−SKEW t

10 ·VIX 3
t . This calculation reveals

that, between February and May 2020, the market implied third moment also became signi�cantly more negative
(from -0.04 to -0.09).
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V Liquidity and Interest Rates

In this section, we augment the baseline model to include a liquidity friction. This is motivated

by evidence showing liquidity becoming more scarce following the onset of the pandemic � see

Boyarchenko et al. (2020). As we will show, a liquidity motive ampli�es the e�ects of tail risk

on rates of return for liquid assets, such as Treasuries. This helps bring this dimension of the

model's predictions closer to the observed drops in recent months. We also present evidence

from bond markets consistent with the rise in liquidity premia.

Recall that, in the baseline model, riskless rates fall in response to higher demand for safe

assets. Just as �rms react to the increased tail risk by de-leveraging, investors would like to

protect themselves against low-return states by holding more riskless assets. They cannot all

hold more. Therefore, the price increases (the rate of return falls) to clear the market. Table

3 reports the riskless rate falls by 20 bps (10 bps) in Scenario 1 (Scenario 2). The sign of this

change is consistent with what we saw following the onset of the pandemic, but the magnitude

is not: interest rates, especially in the Treasury market, fell much more dramatically.

We introduce liquidity considerations using a stylized yet tractable speci�cation, in the

spirit of Lagos and Wright (2005).17 A positive NPV investment opportunity requires liquid

funds. Both capital and government bonds provide liquidity (the former only partially). An

adverse capital obsolescence shock reduces the value of capital and thus the amount of liquidity

it provides. Thus, an increase in the risk of such a shock makes capital liquidity uncertain and

raises the value of riskless bonds, which are always retain their full, liquid value. Thus, higher

tail risk also raises liquidity risk and makes riskless bonds, which serve as liquidity insurance,

even more attractive. This channel ampli�es the e�ect on their return and turns out to be

quantitatively very large. The increased tail risk brought on by the pandemic, combined with

liquidity risk, will turn out to depress interest rates three and a half times as much as in the

model without liquidity risk.

Formally, �rms are assumed to have access to a pro�table intra-period opportunity, yielding

a net return of H(xt) − xt where xt is the amount invested. The net return is maximized at

xt = x∗. But, the �rm faces a liquidity constraint: xt cannot exceed the amount of pledgable

collateral. Formally,

xt ≤ at + d̄kt (22)

where the parameter d̄ indexes the pledgability of capital and at denotes a riskless, fully liquid

asset. This can be interpreted narrowly as government bonds18, but it could also be thought of

17See also Kozlowski et al. (2019).
18For concreteness, we adopt this assumption in our analysis. The bonds are issued by a government, which
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as the total liquidity available from other sources. Note that the liquidity value of capital is a

function of e�ective capital, i.e. net of obsolescence. As a result, shocks to capital obsolescence

in�uence the availability of liquidity.

The supply of the liquid asset is assumed to be �xed at ā. Thus, the amount invested in

the opportunity in t is given by xt = min(x∗, ā + d̄kt). The liquidity premium is the marginal

value (in units of consumption) of an additional unit of pledgable collateral:

µt = H ′(xt)− 1 . (23)

The return on government bonds, i.e. the liquid asset, is characterized

1

Ra
t

= Et [Mt+1(1 + µt+1)] . (24)

The �nal model alternation is that the liquidity premium shows up in the �rst term of the

optimality condition for capital (16), which becomes Et
[
Mt+1(R

k
t+1 + d̄µt+1)

]
.

Parameterization. To set values for the liquidity parameters, we follow the strategy in

Kozlowski et al. (2019). We use the following functional form for the bene�t to invest on liquid

assets: H(x) = 2ι
√
x − ξ. The parameter that governs how much of capital is a pledgeable,

liquid asset, d̄, is set to 0.16 to match the ratio of short-term obligations of US non�nancial

corporations to the capital stock in the Flow of Funds. The liquid asset supply ā = 0.8 and

the return parameter ι = 1.4 are chosen so that the ratio of liquid assets to capital is 0.08 and

their return in the pre-COVID steady state equals 2%. Finally, the parameter ξ = 1.94 is set

so the net return of the project is close to zero (on average) in the pre-COVID steady state.

Riskless rates with liquidity premia. The purpose of this extension was to explore how

liquidity considerations a�ect scarring-induced changes in riskless rates. To evaluate this, we

compute riskless rates in the stochastic steady states associated with the pre- and post-COVID

beliefs. These are presented in Table 4. The model predicts that the yield on liquid bonds

drops by 67 bps in the new steady state. In contrast, the return on a riskless but completely

illiquid asset falls only by 8 bps: in other words, the liquidity premium rises by 59 bps.

The table also shows changes in various market interest rates between January and July

2020. The yield on the 1y and 5y Treasuries were almost 1.4% lower in July 2020 (relative to the

beginning of the year). Note that these are not directly comparable to the model numbers. The

latter compare steady-states and so are most appropriately thought of as long-run predictions

while the current data obviously re�ect short-term, more transitory considerations as well. We

balances its budget with lumpsum taxes/transfers.
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Pre-COVID Post-COVID Chg

Model
Riskless rate (liquid) Ra

t − 1 2.12% 1.46 % -67 bps
Riskless rate (illiquid) 4.97% 4.89 % -8 bps
Data
1y Treasury yield (nominal) 1.56% 0.14% -142 bps
5y Treasury yield (nominal) 1.67% 0.28% -139 bps
5y forward rate (real) -0.09% -0.98% -89 bps
AAA Yield 2.53% 1.48% -105 bps
AAA Spread (rel. to 5y Treasury) 0.86% 1.20% 34 bps

Table 4: Implications for interest rates with liquidity frictions, model vs data. Data comes from
FRED. Pre-COVID (post-COVID) data are for January 1, 2020 (July 16, 2020).

therefore construct a proxy for the long-run rates using forward rates implied by the Treasury

yield and long-term in�ation expectations. Speci�cally, we use the instantaneous rate 5 years

forward from the Treasury yield curve and 5y5y in�ation expectations19 to calculate the change

in long-term real rates. This shows a decline of about 89 bps, smaller than short-term rates

and closer to the model's predictions.

Next, the table also reports the change in the yield on AAA corporate bonds. These

securities carry very little default risk, but are not as liquid as Treasuries. As a result, the yield

spread on these bonds relative to Treasuries is often viewed as a proxy for liquidity premia �

see, e.g., Krishnamurthy and Vissing-Jorgensen (2012) and del Negro et al. (2017). In recent

months, this spread rose by 34 bps, consistent with increased liquidity scarcity. The model

liquidity premium reported in the table shows a larger rise. This is to be expected since the

model object is de�ned as the spread of a completely illiquid security whereas AAA bonds are

probably partially liquid.

Figure 9 shows the time path of the natural rate of interest. Notice that the short-run

�uctuations are much larger than the long-term e�ects reported in the table. This is consistent

with short-term market disruptions that are now settling down.

Finally, in interpreting recent data, it is worth pointing out that the last few months have

seen unprecedented policy interventions in bond markets, which almost certainly have con-

tributed to the drop in interest rates on both liquid and illiquid assets � see Boyarchenko et al.

(2020). Our analysis completely abstracts from such interventions20 so it is perhaps not too

surprising that the model under-predicts the fall in interest rates. Overall, these results suggest

195y5y in�ation expectations are the expectations of in�ation over the �ve-year period, starting �ve years
from today. Source: FRED, Federal Reserve Bank of St. Louis. The series tickers are THREEFF5 and T5YIFR
respectively.

20We do evaluate the e�ects of a �nancial policy in the following section.
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Figure 9: Belief scarring lowers riskless rate in the long-run.
Results show the return on a riskless asset, in scenario 1, with scarring of beliefs (solid line) and without (dashed

line). Common parameters listed in Table 1. Scenario-speci�c parameters are� Scenario 1: φ̃2020 = 0.90.

a quantitatively meaningful role for the belief scarring mechanism in the recent behavior of

interest rates.

VI The Role of Financial Policy

The COVID-19 pandemic has sparked an unprecedented policy response. These responses

fall into three broad categories: social distancing and other mobility restrictions, transfers to

households and �nancial assistance to �rms. We explored the consequences of more lax social

distance policy in constructing scenarios for our baseline results. Transfers to households has an

important role to mitigate the economic fallout, but does not directly a�ect productive capacity,

the key object in our analysis. Financial assistance to �rms, on the other hand, can help the

economy maintain productive capacity, for example by preventing widespread bankruptcies. In

our setting, such a policy would have bene�cial long-run e�ects as well, since they mitigate the

consequences of belief scarring. In this section, we use our baseline model to quantify these

long-run bene�ts. We �nd that the longer-term e�ects of a policy of debt relief are as much as

10 times larger than the short-run e�ects.

The need for policy intervention in the model stems from the presence of debt and the

associated risk of bankruptcy. Bankruptcy is socially costly because it exacerbates capital

obsolescence. Therefore, we model �nancial policy as designed to prevent/limit bankruptcies

by reducing �rms' e�ective debt. This could take the form of the government or other policy-
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maker buying up the debt from private creditors or o�ering direct assistance to �rms. Before

examining the e�ects of such a policy, we perform a simple exercise to quantify the costs of

bankruptcy in our baseline model. This is the cost that �nancial policy might plausibly remedy.
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Figure 10: Default feedback increases long-run e�ects.
Results show with scarring of beliefs (solid line) and without (dashed line), often with the two lines on top of

each other. Common parameters listed in Table 1. Scenario-speci�c parameters are: Scenario 1: φ̃2020 = 0.90

Scenario 2: φ̃2020 = 0.95

E�ect of the default-obsolescence feedback. To understand the role of this feedback

rule, suppose that obsolescence is entirely exogenous, i.e. it does not vary with default. This

amounts to setting µ = 0 in (11). Figure 10 shows the GDP impact of the COVID-19 shock

under our benchmark speci�cation (in the left panel) and without default feedback (in the right

panel). The broad patterns are similar with belief revisions accounting for a signi�cant portion

of the impact, but the magnitudes are slightly smaller in the right panel (GDP falls by just

under 4% in the long-run, relative to a 5% drop in the benchmark). This di�erence between

the two panels is the e�ect of the the default-obsolescence feedback.

VI.A Financial Assistance Policy.

We consider a simple policy that prevents bankruptcy by reducing �rms' debt burden, specif-

ically a reduction in each �rm's debt by 10%. This in turn mitigates the e�ective capital

obsolescence and consequently beliefs are slightly less pessimistic going forward. We then sim-

ulate the model with these new beliefs and calculate the short- and long-term GDP e�ects,

reported in Table 5.

The table shows that �nancial assistance of this magnitude only saves 1% of GDP in 2020.
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No assistance 10% debt reduction Bene�t

GDP drop in 2020 -9% -8% 1%
NPV of long-term output loss
from belief scarring -52% -45% 7%
from obsolescence -38% -34% 4%

Table 5: Firm Financial Assistance Policy: No Assistance vs. 10% Debt Reduction
Results are for scenario 1 (φ̃2020 = 0.90). Numbers shown are in percentages of the pre-COVID steady-state

GDP.

From that metric alone, one might judge the cost of the policy to be too high.21 However, pre-

venting bankruptcies in the short-run also helps reduce losses over time. The present discounted

value of those savings are worth 11% of 2019 GDP. Of that 11%, 7% comes from ameliorating

belief scarring and another 4% comes from the direct e�ects of limiting capital obsolescence.

This exercise shows that considering the long-run consequences can signi�cantly change the

cost-bene�t analysis for �nancial policies aimed at assisting �rms.

VII What if we had seen a pandemic like this before?

In our benchmark analysis, pre-COVID beliefs were formed using data that did not witness

a pandemic (though it did have other tail events like the 2008-09 Great Recession). But,

pandemics have occurred before � Jorda et al. (2020) identify 12 pandemics (with greater than

100,000 deaths) going back to the 14th century. This raises the possibility that economic agents

in 2019 had some awareness of these past tail events and believed that they could happen again.

To understand how this might change our results, we assume that the pre-COVID data sample

includes the 1918 episode. Unfortunately, we do not have good data on capital utilization and

obsolescence during that period,22 so we simply use the time series for the capital return shock

φ̃t from 1950-2020 as a proxy for the φ̃t series from 1880-1949. In other words, we are asking:

What if we had seen all of this unfold exactly the same way before?

The previous data does not change the short-term impact of the shock. But, it does cut the

long-term e�ect of in half. Just before the pandemic of 2020 struck, our data tells us that there

has been one pandemic in nearly 140 years. We assess the probability to be about 1-in-140.

After 2020, we saw two pandemics in 141 years. Therefore, we revise our perceived probability

21Strictly speaking, in our model with a representative agent and lump-sum taxes, there is no real cost
to implementing this policy. But, obviously, in a more realistic setting with heterogeneity and distortionary
taxation, taking over 10% of corporate debt would entail substantial costs/dead-weight losses.

22See Correia et al. (2020) and Velde (2020) for analysis of the economic e�ects of the 1918 over the short-
to medium-term.
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from 1-in-140 to 2-in-141. That is about half the change in probability, relative to the original

model where the probability rose from zero to 1-in-70.

But considering data from so long ago does raise the question of whether it is perceived as

less relevant. There is a sense that the world has changed, institutions are stronger, science

has advanced, in ways that alter the probability of such events. Such gradual change might

logically lead one to discount old data.

In a second exercise, we assume that agents discount old data at the rate of 1% per year.

In this case, two forces compete. The presence of the 1918 events in the sample reduces the

surprise of the new pandemic as before, albeit with a much smaller weight. The countervailing

force is that when old data is down-weighted, new data is given a larger weight in beliefs. The

larger role of the recent pandemic in beliefs going forward makes belief scarring stronger for

the next few decades. These forces more or less cancel each other out leaving the net results

indistinguishable, in every respect, from the original results with data only from 1950.

Of course, more recently, we saw SARS, MERS and Ebola arise outside the U.S. Other

countries may have learned from these episodes. But the lack of preparation and slow response

to events unfolding in China suggests that U.S. residents and policy makers seem to have

inferred only that diseases originating abroad stay outside the U.S. borders.

VIII Conclusion

No one knows the true distribution of shocks to the economy. Macroeconomists typically as-

sume that agents in their models know this distribution, as a way to discipline beliefs. For

many applications, assuming full knowledge has little e�ect on outcomes and o�ers tractabil-

ity. But for unusually large events, like the current crisis, the di�erence between knowing these

probabilities and estimating them with real-time data can be large. We argue that a more plau-

sible assumption for these phenomena is to assume that agents do the same kind of real-time

estimation along the lines of what an econometrician would do. This introduces new, persis-

tent dynamics into a model with otherwise transitory shocks. The essence of the persistence

mechanism is this: once observed, a shock (a piece of data) stays in one's data set forever and

therefore persistently a�ects belief formation. The less frequently similar data is observed, the

larger and more persistent the belief revision.

When we quantify this mechanism, our model's predictions tell us that the ongoing crisis

will have large, persistent adverse e�ects on the US economy, far greater than the immediate

consequences. Preventing bankruptcies or permanent separation of labor and capital, could

have enormous consequences for the value generated by the U.S. economy for decades to come.
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A Solution

A.A Equilibrium Characterization

An equilibrium is the solution to the following system of equations:

1 = EMt+1

[
Rkt+1

]
Jk(vt) (25)

Rkt+1 =
(1− α)φα+νt+1 k̂

α
t+1l

1−α
t+1 + (1− δ)φt+1k̂t+1

k̂t+1

(26)

1− γ
γ

ct
1− lt

=
(1− α)yt

lt
(27)

(1− θ)Et [Mt+1vtf (vt)] =

(
χ− 1

χ

)
Et [Mt+1 (1− F (vt))] (28)

ct = φα+νt k̂αt l
1−α
t + (1− δ)φtk̂t − k̂t+1 (29)

Ut =

[
(1− β) (u (ct, lt))

1−ψ
+ βE

(
U1−η
t+1

) 1−ψ
1−η
] 1

1−ψ

(30)

where

lnφt = ln φ̃t − µF (vt)
1−$

vt =
levt+1

Rkt+1

Jk(vt) = 1 + (χ− 1) vt (1− F (vt)) + (χθ − 1)h (vt)

Mt+1 =

(
dUt
dct

)−1
dUt
dct+1

= β
[
E
(
U1−η
t+1

)] η−ψ
1−η

Uψ−ηt+1

(
u (ct+1, lt+1)

u (ct, lt)

)−ψ

A.B Solution Algorithm

To solve the system described above at any given date t (i.e. after any observed history of φ̃t), we recast it in

recursive form with grids for the aggregate state (k̂) and the shocks φ̃. We then use an iterative procedure:

� Estimate ĝ on the available history using the kernel estimator.

� Start with a guess (in polynomial form) for U(k̂, φ̃), c(k̂, φ̃), l(K̂, φ̃).

� Solve (25)-(28) for k̂′, lev′, l using a non-linear solution procedure.

� Verify/update the guess for U, c, l using (29)-(30) and iterate until convergence.
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