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1 Introduction

Structured products are typically originated in over-the-counter (OTC) markets, where

asymmetric information and market power have been shown to be prevalent frictions.1

In these markets, issuers may face prices that are not fully competitive, especially when

only few financial institutions are well-positioned to acquire new securities. For example,

as most institutions are subject to similar regulatory constraints, holding costs can increase

simultaneously for many market participants, leaving only few institutions well positioned

to provide liquidity.

Motivated by these observations, we study the security design problem of a privately

informed issuer who possesses multiple assets and faces liquidity suppliers, or buyers, that

are potentially endowed with market power. Our analysis reveals how the allocation of

market power has relevant and robust implications for security design that contrast with the

takeaways from models considering only competitive environments. To isolate the effect

of market power, we consider both competitive and non-competitive markets.

When buyers act competitively, our results echo the findings of the existing literature

(e.g., DeMarzo 2005) — pooling all assets into one security is optimal for the issuer. As

diversification reduces an issuer’s informational advantage, pooling assets helps alleviate

adverse selection problems, which is in the interest of the issuer when prices are set com-

petitively, since in this case, the issuer fully internalizes the benefits of improving the effi-

ciency of trade.

In contrast, when an issuer receives non-competitive offers for his securities, pool-

ing assets still has the advantage of reducing adverse selection concerns, but it now also

1For evidence that OTC trading often involves heterogeneously informed traders, see Green, Hollifield,
and Schürhoff (2007), Jiang and Sun (2015), and Hollifield, Neklyudov, and Spatt (2017). For evidence that
OTC trading tends to be concentrated among a small set of players, see Cetorelli et al. (2007), Atkeson,
Eisfeldt, and Weill (2014), Begenau, Piazzesi, and Schneider (2015), Di Maggio, Kermani, and Song (2017),
Hendershott et al. (2017), Li and Schürhoff (2019), and Siriwardane (2019).
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comes at a cost, namely, a potential reduction in the issuer’s information rents. Counter

to conventional wisdom, a privately informed issuer may prefer not to pool assets in this

case, especially when the potential gains from trade are large relative to the information

asymmetry between the issuer and prospective buyers. In fact, any pooling decision that

achieves perfect diversification is never optimal for an issuer facing market power on the

demand side. We provide explicit, sufficient conditions under which the issuer’s best op-

tion is to simply sell all assets separately. Under these conditions, separate sales are not

only privately optimal but also achieve the first-best level of total trade surplus. In contrast,

when assets are pooled, both the issuer’s private surplus and the total surplus from trade

are strictly lower, as diversification invites strategic buyers with market power to choose

pricing strategies that lead to inefficient rationing. As pooling affects the shape of the

distributions characterizing information asymmetries between issuers and buyers, it alters

how elastically trade volume responds to prices, which is crucial in settings with market

power. In particular, pooling would typically worsen inefficient rationing when selling as-

sets separately leads to little or no exclusion of buyer types. Diversification causes payoff

distributions to have thinner tails, which, in turn, leads to less elastic trade volume in the

right tail of the distribution and greater rationing in equilibrium.

Our results highlight how, in recent years, liquidity shortages among major institu-

tions actively trading in OTC markets might have been an important driver of the dramatic

declines in asset-backed security (ABS) issuances, which occurred concurrently with an

increase in the volume of assets sold separately.2 Our analysis shows that, when liquidity

becomes scarce and concentrated among few market participants, the benefits of pooling

assets highlighted in the literature can be outweighed by an associated increase in the sever-

2In 2015, issuance volume of ABS in the U.S. was 60% lower than it was in 2006, while the issuance
volume of CDO was 80% lower. In contrast, the total issuance volume in fixed income markets was 3%
higher in 2015 than in 2006. For more data, see the Securities Industry and Financial Markets Association:
http://www.sifma.org/research/statistics.aspx.
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ity of market power problems. In periods of scarce liquidity, the benefits from unloading

the assets are typically large for the issuer, but the few traders with excess liquidity gain

market power. These two conditions, when combined, increase the relative benefits of the

separate sale of assets versus the issuance of pooled securities. In that sense, it is during

time periods when trade is most valuable but potentially impeded by the presence of market

power that our new insights become most relevant. Relatedly, our paper sheds light on the

consequences of regulating the liquidity of financial institutions that are often on the buy

side of the structured securities market.

Early contributions by Subrahmanyam (1991), Boot and Thakor (1993), and Gorton

and Pennacchi (1993) have emphasized the diversification benefits of pooling assets when

securities are sold in competitive/centralized markets that are subject to asymmetric infor-

mation problems. Our paper focuses on the impact of market power on the decision to

pool assets and derives novel insights that shed light on the securities issued in decentral-

ized markets. The two papers closest to ours are DeMarzo (2005) and Biais and Mariotti

(2005). Specifically, our focus on the decision to pool assets relates our analysis to De-

Marzo (2005) who builds on the signaling-through-retention framework with price-taking

buyers of DeMarzo and Duffie (1999) and shows that the pooling of assets dampens an

issuer’s ability to signal individual assets’ quality through retention. However, when the

number of assets is large and the issuer can sell debt on the pool of assets, this “infor-

mation destruction effect” is dominated by the above-mentioned benefits of diversifying

the risks associated with the issuer’s private information about each asset’s value. Issuing

debt on a large pool of assets reduces residual risks and the information sensitivity of the

security being issued.3 In contrast to DeMarzo (2005) whose setup can be thought of as

a centralized market where (price-taking) buyers compete for assets, we consider the case

3See also Hartman-Glaser, Piskorski, and Tchistyi (2012) who model a moral hazard problem between
a principal and a mortgage issuer and show that the optimal contract features pooling of mortgages with
independent defaults, as it facilitates effort monitoring.
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of an issuer who faces buyers endowed with market power, capturing a realistic feature of

many over-the-counter markets.

Our focus on the role of market power in an issuer’s security design decision relates

our analysis to Biais and Mariotti (2005) who analyze a model where the security design

stage is followed by a stage where either the issuer or the prospective buyer chooses a

trading mechanism (i.e., a price-quantity menu) for selling the designed security. When

the buyer can choose the trading mechanism, he effectively screens the issuer, trading off

higher volume with lower issuer participation. In contrast, when the issuer can choose the

mechanism, the setup becomes equivalent to one with multiple competitive buyers. Biais

and Mariotti (2005) show that issuing debt on a risky asset is optimal in both cases, since

the debt contract’s low information sensitivity helps avoid market exclusion.4 However,

unlike our paper, Biais and Mariotti (2005) only consider the case of an issuer wishing to

sell one asset.

Axelson (2007) studies an uninformed issuer’s decision to design securities that are

(centrally) traded in a uniform-price auction with privately informed buyers. Axelson

(2007) finds that pooling assets and issuing debt on these assets is always optimal when

the number of assets is large, otherwise selling assets separately might be optimal if the

signal distribution is discrete and competition is high enough. Since the issuer is unin-

formed and buyers compete for assets through an auction, Axelson’s (2007) analysis is

silent about how security design can be used to prevent being monopolistically screened by

liquidity providers, which is a key result of our analysis.5

4Gorton and Pennacchi (1990), Dang, Gorton, and Holmstrom (2015), Farhi and Tirole (2015), and Yang
(2019) also study the optimal information sensitivity of securities issued in markets with asymmetric infor-
mation, These papers highlight the benefits of designing securities that split cash-flows into an information-
sensitive part and a risk-less part. These papers are, however, silent about how pooling imperfectly correlated
assets affects the issuer’s ability to extract surplus when facing buyers with market power, which is the focus
of our paper.

5See also DeMarzo, Kremer, and Skrzypacz (2005) and Inderst and Mueller (2006) who study optimal
security design problems with informed buyers and only one asset.
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Palfrey (1983) analyzes a firm’s decision to bundle products (or assets) sold in a second-

price auction. In his model, customers have private information about their heterogenous

valuations for the products. Selling the products separately is optimal when the sum of

the expected second-highest valuation for each product is higher than the expected second-

highest valuation for the bundle of all products. This comparison depends on the number

of prospective customers and the distribution of their product-specific valuations. Unlike

Palfrey (1983), our analysis examines how the degree of competition among buyers with

identical valuations affect pooling decisions. The cross-buyer heterogeneity in valuations

that is central for Palfrey’s (1983) results does not play a role for our findings.

In the next section, we describe our model and provide an illustrative example in which

the issuer sells a pool of a continuum of assets. This example highlights that the presence of

market power on the demand side greatly affects the issuer’s benefits from pooling assets.

Section 3 presents our main analysis of both a competitive market and one with market

power. Section 4 discusses the robustness of our results to various alternative specifications

of the environment. The last section concludes.

2 The Environment

Suppose an issuer has n ≥ 2 fundamental assets to sell. These assets are indexed by i

and the set of all assets is denoted by Ω ≡ {1, ..., n}. Each asset i produces a random

payoff Xi at the end of the period. The assets’ payoffs Xi are assumed to be identically and

independently distributed according to the cumulative distribution function (CDF) G(·)

with a probability density function (PDF) g(·) that is positive everywhere on its domain

χ ≡ [0, x̄].

Market participants and their liquidity needs. As is common in the security design litera-
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ture, agents are risk neutral but can differ in their liquidity (or hedging) needs, which are

captured by their discount factors. In the analysis that follows, we will study and compare

two (polar) market scenarios to highlight the importance of market power in the decision

whether to pool assets.

In the first scenario, we assume that several deep-pocketed traders are better equipped

to hold claims to future cash-flows than the issuer is (who needs liquidity today). Whereas

the issuer applies a discount factor δ ∈ (0, 1) to future cash-flows, these prospective buyers

apply a discount factor of 1. Thus, the ex ante private value of each fundamental asset

is δ E(Xi) for the issuer and E(Xi) for any of these buyers. As a result, there are gains

from transferring the issuer’s assets to such a buyer in exchange for cash. Since there are

multiple buyers who value assets more than the issuer in this scenario, these buyers make

competitive bids for the securities offered by the issuer.

In the second scenario, we assume that only one buyer is better equipped to hold claims

to future cash-flows than the issuer is; that is, only one buyer has a discount factor of one.

In this case, the one buyer with a superior liquidity position has market power; he is the

only one bidding for the issuer’s securities.6 This scenario captures the idea that in some

time periods, most potential counterparties in the market face similar regulatory constraints

or liquidity needs as the issuer, potentially leading to concentration on the demand side. For

both scenarios, we will occasionally refer to the prospective buyers with a discount factor

of 1 as “liquidity suppliers” (in line with the literature; see, e.g., Biais and Mariotti 2005).

Timing and information structure. Our specification of the timeline follows the existing

literature (see, e.g., DeMarzo and Duffie 1999, Biais and Mariotti 2005). First, the issuer

designs the securities he plans to sell. Second, the issuer becomes informed about the

realizations of each asset payoff Xi. Third, the buyer(s) make(s) take-it-or-leave-it offers

6Going forward, we will refer to this scenario as monopolistic demand or monopolistic liquidity supply.
In this context, the buyer can also be referred to as a monopsonist.
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to the issuer. Fourth, the issuer decides whether or not to accept any of these offer(s) in

exchange for the securities; if multiple buyers offer an identical price that is accepted by

the issuer, the security is randomly allocated among the highest bidders. Finally, all payoffs

are realized.

Assuming that the issuer does not have private information at the initial security design

stage increases the tractability of the analysis and shares similarities with the shelf registra-

tion process commonly used in practice (as also argued by DeMarzo and Duffie 1999, Biais

and Mariotti 2005). In that process, issuers first specify and register with the Securities and

Exchange Commision the securities they intend to issue. Then, potentially after several

months, issuers bring these securities to the market. In the meantime, the issuer has typ-

ically obtained additional private information about future cash-flows. In Section 4, we

discuss the robustness of our main insights to changes in this timeline that would introduce

signaling concerns at the security design stage.

An illustrative example. Before proceeding with our main analysis, we present a simple,

yet generic example that illustrates how the issuer’s benefits from pooling assets crucially

depend on the allocation of market power. Suppose the issuer owns a continuum of assets

of measure one with i.i.d. payoffs Xi with finite mean and variance. The issuer considers

selling the pool of these assets to the prospective buyer(s).

First, we analyze the market scenario in which multiple prospective buyers have abun-

dant liquidity (that is, they have a discount factor equal to one). In this case, they effec-

tively compete in quotes à la Bertrand and offer a price that is equal to the expected security

payoff conditional on the issuer accepting the offer. When the issuer offers the assets as

one pool, the law of large numbers applies, that is, perfect diversification implies that the

pool’s payoff is
∫ 1

0
xidi = E[Xi] almost surely. As a result, adverse selection concerns are

completely eliminated, and the competitive buyers offer a price p̂ = E[Xi] for this pool.

7



The maximum total surplus from trade, E[Xi] · (1 − δ), is attained and the issuer fully

internalizes this surplus. That is, the issuer achieves the optimal expected payoff. The fact

that pooling the continuum of assets eliminates information asymmetries is unambiguously

beneficial when facing competitive buyers, as the issuer then fully internalizes the resultant

improvements in trade efficiency (see also Theorem 5 in DeMarzo 2005).

In contrast, consider the market scenario in which only one prospective buyer has liq-

uidity to purchase the issuer’s assets (i.e., only one buyer has a discount factor of one).

Acting as a de-facto monopolist, this buyer can choose the price that maximizes his ex-

pected payoff. In this case, this optimally chosen price is the issuer’s reservation price for

the pool of assets, that is, p∗ = E[Xi]δ. As in the scenario with multiple prospective buy-

ers, pooling the continuum of assets yields perfect diversification and eliminates adverse

selection concerns. Yet, now that the demand side has market power, fully eliminating

these information asymmetries has no upside for the issuer. Facing no informational dis-

advantage, the monopolistic liquidity supplier then charges a price that leaves the issuer

indifferent between trading the security and not trading at all.

This generic result for asset pools that achieve perfect diversification strikingly high-

lights the relevance of market power for the optimality of pooling assets from the per-

spective of the issuer. In the presence of such market power, the issuer’s only source of

surplus are information rents, which require retaining some private information. Thus,

any pooling that leads to perfect diversification (as was the case in this example) is never

optimal for an issuer when facing a prospective buyer with market power. Instead, the

issuer prefers to retain some private information, which requires deviating from the pool-

ing of all assets. Being at an informational disadvantage, buyers with market power then

strategically choose prices that can jeopardize the realization of gains from trade. When

deciding whether to pool assets, the issuer therefore faces an intuitive trade-off: he can

only extract rents when retaining some private information, but he still partially internal-

8



izes the inefficiencies emerging from adverse selection and the exercise of market power

under asymmetric information. As a result, he may only choose to pool a subset of assets

in order to achieve partial diversification (but not perfect diversification). Understanding

these channels and how they affect the design of optimal securities is the focus of our main

analysis below.

3 Main Analysis

We now formalize our paper’s main insights. The issuer decides on the pooling of the n

underlying assets and on the securities that are written on each of the pools. Formally, the

issuer chooses a partition of the set Ω, that is, he groups the n assets into m ≤ n disjoint

subsets denoted by Ωj with j ∈ {1, ...,m}. The corresponding m pools of assets then have

the payoffs:

Yj ≡
∑
i∈Ωj

Xi,∀j. (1)

The CDFGj of Yj and the associated density gj are then defined on the compact interval

χj ≡ [0, ȳj], where ȳj ≡
∑

i∈Ωj
x̄. Going forward, we follow the convention of using

capitalized letters for random variables and lower-case letters for their realizations. In line

with the existing literature (e.g., Myerson 1981), we assume that these distributions satisfy

a regularity condition that ensures that first-order conditions in the trading game with a

monopolistic buyer are sufficient conditions for the optimal pricing decisions.

Assumption 1. For any partition of Ω, the elasticity functions:

ej(y) ≡ gj(y)

Gj(y)
· y, ∀j (2)
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are weakly decreasing on their respective support χj .

Throughout our main analysis below, we will discuss examples with distributions sat-

isfying Assumption 1 (see also the Appendix for additional illustrations). When inter-

preting elasticity functions, it is helpful to note that they represent the ratio of the local

density gj(yj) to the average density Gj(yj)/yj . These quantities will play an important

role in determining a monopolistic buyer’s optimal pricing strategy. We also denote by

e(xi) ≡ g(xi)
G(xi)

· xi the elasticity function of each fundamental asset i.

The issuer chooses for each pooled payoff Yj a security that is backed by that payoff.

Specifically, the security payoff Fj is contingent on the realized cash-flow Yj according to

the function ϕj : χj → R+ such that Fj = ϕj(Yj). We impose the standard limited liability

condition:

(LL) 0 ≤ ϕj ≤ Idχj
,

where Idχj
is the identity function on χj . In addition, as in Harris and Raviv (1989),

Nachman and Noe (1994), and Biais and Mariotti (2005), we restrict the set of admissible

securities by requiring that both the payoffs to the liquidity supplier and to the issuer be

non-decreasing in the underlying cash-flow:

(M1) ϕj is non-decreasing on χj .

(M2) Idχj
− ϕj is non-decreasing on χj .

The sets of admissible payoff functions for the securities is therefore given by {ϕj : χj →

R+| (LL), (M1), and (M2) hold}.
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3.1 Competitive Demand

In this subsection, we analyze the (benchmark) scenario in which the issuer faces multiple

liquidity suppliers that have a discount factor of one. In this case, the issuer receives com-

petitive ultimatum price quotes, a feature that is common in the literature (see, e.g., Boot

and Thakor 1993, Nachman and Noe 1994, Friewald, Hennessy, and Jankowitsch 2015)

and delivers results that are consistent with DeMarzo’s (2005) seminal analysis of pooling

decisions in a competitive environment.7

3.1.1 Optimality of Pooling Assets

Echoing the existing literature, our analysis of this scenario predicts that issuing debt on

the pool of all assets is optimal for the issuer.

Proposition 1. If E[Xi] ≥ δx̄, the issuer is indifferent between selling assets separately

and selling them as a pool. If E[Xi] < δx̄, the issuer optimally pools all n assets and issues

a debt security on this pool.

To provide intuition for this result we will discuss the proof of Proposition 1 in the main

text. At the trading stage, the issuer has perfect knowledge of the realizations xi of future

cash-flows Xi. Since the payoff of any security Fj is only contingent on Yj =
∑

Ωj
Xi,

the issuer also perfectly knows the realization fj = ϕj(yj) of Fj . Suppose the issuer uses

a simple equity security (what DeMarzo and Duffie (1999) refer to as a “passthrough”

security). If E[Xi] ≥ δx̄, he can sell the assets separately (as equity), each at price p =

E[Xi], since at this price, even the highest issuer type x̄ finds it optimal to trade. The issuer

obtains the same total payoff when pooling the assets and selling an equity security on the
7DeMarzo (2005) considers a setting in which the issuer can post price-quantity menus. In contrast, we

follow Biais and Mariotti’s (2005) representation of the competitive market environment. See Section 4 for a
discussion of how retention would affect our results.
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pool. Since the potential gains from trade are large enough (δ is sufficiently low), adverse

selection does not impede the efficiency of trade even when assets are sold separately. The

first-best level of total trade surplus is achieved, and the issuer fully internalizes this surplus.

In contrast, if E[Xi] < δx̄, the sale of an equity security on a single asset leads to

adverse selection, since the highest issuer type x̄ would not accept a price equal to E[Xi].

Similarly, the sale of an equity security on a pool of ñ assets leads to the exclusion of

some issuer types, since the highest issuer type ȳj = ñx̄ would not accept a price equal

to E[Yj] = ñE[Xi]. In this case, it is useful to recall the following result from Biais and

Mariotti’s (2005) analysis of a setting with one underlying asset:

Lemma 1. Given an underlying asset with random payoff Y and E[Y ] < δȳ, the issuer

optimally designs a debt security with the highest face value d such that a buyer just breaks

even when purchasing this debt security at a price p = δd.

Proof. See Proposition 4 in Biais and Mariotti (2005).

Independent of his pooling choice that determines the underlying assets with payoffs Yj ,

the issuer optimally uses a debt security when E[Xi] < δx̄ and equivalently, E[Yj] < δȳj .

To determine the issuer’s optimal pooling decision, it is useful to first consider buyers’

expected net profits. A buyer purchasing debt with face value d at a price p = δd obtains

the following expected net profit:

∫ d

0

ygj(y)dy + [1−Gj(d)]d− δd =(1− δ)d−
(
Gj(d)d−

∫ d

0

ygj(y)dy

)
(3)

=(1− δ)d−
∫ d

0

Gj(y)dy, (4)

where the last step follows from integration by parts. Next, we compare buyers’ expected

net-payoff from the sales of separate debt securities to that from the sale of a debt secu-
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rity on an underlying pool of assets. Consider first that the issuer sells ñ individual debt

securities with face value d. Further, suppose that each debt security is written on a sepa-

rate underlying asset and the price in each transaction is δd. Then buyers’ total expected

net-profit (which may be negative)8 is:

ñ ·
(

(1− δ)d−
∫ d

0

G(x)dx

)
= (1− δ)ñd−

∫ ñd

0

G
(y
ñ

)
dy, (5)

where we used a change in variables, with y = ñx. In contrast, consider now that the issuer

pools the ñ assets and issues one debt security with face value dj = ñd and buyers purchase

this debt at price δdj . In this case, buyers’ total expected net-profit (which again may be

negative) is:

(1− δ)ñd−
∫ ñd

0

Gj(y)dy. (6)

The following lemma sheds light on the relative magnitude of the profits in (5) and (6).

Lemma 2. The distribution of the pooled payoff Yj =
∑ñ

i=1Xi second-order stochastically

dominates the distribution of the payoff ñXi, that is,

∫ s

0

[
G
(y
ñ

)
−Gj(y)

]
dy ≥ 0 (7)

for any s ∈ [0, ȳj].

Proof. See Appendix.

Lemma 2 implies that buyers’ total expected net-profit is higher in the scenario with

pooling (i.e., (6) is greater than (5)). Next, recall that, according to Lemma (1), the optimal
8At this point in the proof, the considered supposition does not impose that the buyers’ participation

constraint is satisfied. That is, the expected net-profit can be negative.
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face value in each scenario would be set such that buyers break even, that is, the optimal

face values would ensure that (5) and (6) are each equal to zero. The above result implies

that if buyers break even at a face value d∗ on separate sales (first scenario), then they make

positive profits on the pooled sale if the face value is set equal to ñd∗ (second scenario). It

follows that the issuer can choose a face value d∗j ≥ ñd∗ on the pool while still ensuring

that the buyers can break even (as buyers’ expected net-profit is a continuous function of

dj). Finally, observe that when issuing debt with break-even face values under each of the

two scenarios, the issuer’s total profits are (1 − δ)δñd∗ and (1 − δ)δd∗j , respectively, and

the issuer extracts the full gains from trade in the competitive market. Since d∗j ≥ ñd∗, the

issuer obtains a higher expected net-profit when pooling the ñ assets and issuing debt with

face value d∗j .

In sum, the argument for the optimality of pooling in this setting is intuitive. With

competitive liquidity suppliers, the issuer extracts all the gains from trade and, thus, fully

internalizes any improvements in trade efficiency. As a result, when adverse selection con-

cerns impede trade, the issuer seeks to minimize the information asymmetry between him

and his prospective buyers by pooling assets. As pooling leads to diversification, it reduces

the information asymmetry and its associated inefficiencies. In other words, the issuer does

not face a trade-off when facing competitive buyers — reducing information asymmetry is

always weakly beneficial. We will, however, show below that the unambiguous optimality

of pooling ceases to hold when the supply of liquidity becomes imperfectly competitive.

3.2 Monopolistic Demand

In this subsection, we derive our paper’s main results by considering the scenario in which

the issuer faces an imperfectly competitive demand, a feature that is relevant for our under-

standing of OTC markets in practice. In this setting, only one buyer has a discount factor
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of one, which imparts him the advantage of being a monopolistic liquidity supplier.9

We start by examining this buyer’s optimal pricing decision. Biais and Mariotti (2005)

show that for a given security offered, the optimal mechanism for the liquidity supplier

with market power can be implemented via a take-it-or-leave-it offer (see also Riley and

Zeckhauser 1983). Specifically, the prospective buyer makes an ultimatum price offer pj to

maximize his ex-ante profit from purchasing a security with payoff Fj:

Pr(δfj ≤ pj)(E[fj|δfj ≤ pj]− pj) =

∫ pj/δ

0

(ϕj(y)− pj)gj(y)dy. (8)

The optimal price pmj set by this buyer identifies a marginal issuer type that is just willing

to accept this price: fmj = pmj /δ. Issuer types with security payoffs below the threshold

value fmj participate in the trade, whereas issuer types with payoffs above fmj are excluded

(i.e., they reject the offer).

3.2.1 Optimality of Separate Equity Sales

We now establish our first main result, which identifies a sufficient condition for the strict

optimality of selling assets separately. This result also provides the necessary and sufficient

condition under which selling assets separately yields the first-best level of trade surplus.

Proposition 2. Suppose that the following condition holds:

e(x̄) ≥ δ

1− δ
, or equivalently δ ≤ δ̄, (9)

9While we consider the case in which only one buyer has a discount factor of one, similar outcomes
arise when there are multiple buyers with a discount factor of one, but these buyers face position limits (see
Section 4 for additional details). The central feature of our analysis is the presence of some degree of market
power, that is, a buyer can strategically affect the prices of the securities being offered. Biais, Martimort, and
Rochet (2000) show that this type of strategic pricing behavior also arises when multiple risk averse liquidity
suppliers compete in mechanisms (see also Vives 2011).
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where δ̄ ≡ e(x̄)
1+e(x̄)

. Then the following results obtain:

(i) The issuer optimally sells each asset separately to a monopolistic buyer, that is,

Ωj = {j} and ϕj(Xj) = Xj for j = 1, ..., n. (10)

The first-best level of total surplus from trade, n(1 − δ)E[Xi], is achieved and the

issuer collects nδx̄, obtaining a surplus of nδ(x̄− E[Xi]).

(ii) If the issuer pools any of the assets, the total surplus from trade is strictly below the

first-best level n(1−δ)E[Xi], and the issuer’s surplus is strictly below nδ(x̄−E[Xi]).

Suppose, for example, that the payoffs of the fundamental assets follow a uniform dis-

tribution, Xi ∼ U[0, 1], then Proposition 2 states that selling each asset separately is strictly

optimal for the issuer whenever δ ≤ δ̄ = 0.5. To provide intuition for the central results

provided in Proposition 2, we develop the proof here in the main text. First, consider part

(i) of the proposition. Suppose that the issuer sells an equity claim on a pool j, such that,

ϕj(Yj) = Yj . When designing the optimal security, the issuer anticipates the buyer’s op-

timal pricing response. Using equation (8), we can write the buyer’s marginal benefit of

increasing the threshold type fmj = ymj for fmj ∈ [0, ȳj) as:

(1− δ)fmj gj(fmj )− δGj(f
m
j ). (11)

This last equation highlights the generic trade-off that a buyer with market power faces

when choosing the price he plans to offer. When marginally increasing the threshold type

by increasing the price, the buyer benefits from extracting the full gains to trade (1− δ)fmj

from this type, which has the local density gj(fmj ). Yet, the associate price increase of mag-

nitude δ also comes at the cost of paying more when trading with all infra-marginal types,
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which have measure Gj(f
m
j ). In net, the buyer benefits from increasing the marginal buyer

type if expression (11) takes a strictly positive value (for any fmj < ȳj). This condition can

be equivalently expressed as a condition applying to the above-defined elasticity function:

ej(f
m
j ) >

δ

1− δ
. (12)

Now suppose the issuer simply sells all assets separately. Then the condition e(x̄) > δ
1−δ

together with Assumption 1 ensures that the buyer’s optimal price quote for each asset is

pi = δx̄, allowing the issuer to collect nδx̄. In this case, the marginal issuer type is the

highest type on the support [0, x̄] and trade occurs with probability one, ensuring that the

first-best level of surplus from trade is achieved. The issuer cannot collect a total payment

greater than nδx̄ from the monopolistic buyer since the best possible payoff that all assets

can deliver jointly is nx̄, and a buyer with market power would never offer a price above

δnx̄, even if he believed that this maximum payoff on all assets was attained.

To address part (ii) of the proposition, we show that the issuer’s surplus and the total

surplus are strictly lower when assets are pooled. First, we introduce the following result:

Lemma 3. For any set Ωj that contains more than one element (i.e., if there is pooling),

the following condition is satisfied:

ej(ȳj) = 0 <
δ

1− δ
. (13)

Proof. See Appendix.

This lemma states that if the issuer pools assets and issues an equity security on the

pool, the elasticity for this security at the upper bound of the support ȳj is zero, implying the

exclusion of a positive measure of types. The elasticity is zero at the upper bound ȳj since
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the density for the outcome that two assets simultaneously achieve their highest possible

value x̄ is zero. The intuitive reason for this result is diversification: the more diversified

pool of assets is less likely to generate an extreme outcome than each idiosyncratic asset

separately. Figure 1 illustrates this result for the case where each separate asset follows a

uniform distribution. The figure compares, after rescaling the domains (see caption details),

the shapes of the PDFs of a single asset, a pool of two assets, and a pool of four assets. The

graph illustrates the familiar notion that diversification leads to a more peaked distribution

with thinner tails.
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Figure 1: Effect of pooling on the shape of the probability density function. The graph considers
a setting with four assets (n = 4), each of which has a payoff Xi ∼ U[0, 1]. The graph plots the
PDF of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the PDFs’ shapes
relative to their respective domains ([0, 1], [0, 2], and [0, 4]), the graph rescales the horizontal axis
to represent the interval χj = [0, ȳj ] for each PDF gj .

These changes in the shapes of the PDFs map into corresponding changes in the elas-

ticity functions ej(yj), which govern the pricing behavior in the trading game (see equa-

tion (12)). Figure 2 confirms that as soon as two assets are pooled, the elasticity at the

upper bound of the support ȳj shrinks to zero. A thinner right tail of the PDF implies a

lower elasticity in the right tail of the distribution (recall that the elasticity is the ratio of the

local density gj(yj) to the average density Gj(yj)/yj). Facing a less elastic response from
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the issuer in that part of the domain, a monopolistic buyer has stronger incentives to offer

lower prices, which leads to the exclusion of high issuer types. If ñ ≥ 2 assets are pooled

in a set Ωj , then the buyer optimally chooses a marginal issuer type strictly below ȳj = ñx̄,

since ej(ȳj) = 0 < δ
1−δ . Correspondingly, the price offered by the buyer is strictly below

δñx̄ for a pool of ñ assets, and the issuer obtains an expected payoff from pooling that is

strictly below δñx̄.
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Figure 2: Effect of pooling on the shape of the elasticity function. The graph considers a setting
with four assets (n = 4), each of which has a payoff Xi ∼ U[0, 1]. The graph plots the elasticity
function of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the elasticity
functions’ shapes relative to their respective domains ([0, 1], [0, 2], and [0, 4]), the graph rescales the
horizontal axis to represent the interval χj = [0, ȳj ] for each elasticity function ej .

To conclude the proof of part (ii) of Proposition 2, we address whether the issuer, after

pooling assets, could still obtain an equally beneficial payoff as in the case of separate sales

by designing an optimal security Fj = ϕj(Yj) on the pooled payoff Yj . The following

lemma characterizes the optimal security on a given underlying asset Yj when an equity

security leads to rationing.

Lemma 4. When the trading of an equity security on a payoff Yj leads to the exclusion of

issuer types (i.e., if e(ȳj) < δ/(1 − δ)) but sustains trade with positive probability (i.e., if

e(0) > δ/(1− δ)), the optimal security from the perspective of the issuer is a debt security
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with face value dmj , i.e., ϕ = min[Idχj
, dmj ], where dmj is the largest d such that:

∫ d

0

fjgj(fj)dfj + [1−Gj(d)]d− δd︸ ︷︷ ︸
Net-payoff from offering price δd

−
∫ fmj

0

(fj − δfmj )gj(fj)dfj︸ ︷︷ ︸
Net-payoff from offering price δfmj < δd.

≥ 0, (14)

and where fmj solves:

ej(f
m
j ) =

δ

1− δ
. (15)

That is, the optimal debt contract specifies the highest face value such that the buyer weakly

prefers offering a price δd for the debt that is always accepted by the issuer over offering a

lower price that is only accepted by issuer types below the threshold type fmj .

Proof. As each of the pooled payoffs Yj satisfy the regularity condition stated in Assump-

tion 1, these results follow from Propositions 3, 4, and 5 in Biais and Mariotti’s (2005)

analysis of a setting with one underlying asset.

Since any pooling of ñ ≥ 2 assets in a set Ωj leads to exclusion when an equity security

is offered (as ej(ȳj) < δ/(1− δ)), Lemma 4 implies that the best possible security written

on that pool is a debt security with face value dmj . Yet, since dmj < ȳj = ñx̄, selling this

debt security will also deliver a payoff to the issuer that is strictly below the one he obtains

from selling the ñ assets separately. Thus, the effects of diversification cannot be undone

by designing a security that pays as a function of the pooled (diversified) cash-flow Yj . This

concludes our proof of Proposition 2.

In sum, when separate sales of assets are efficient, pooling assets leads to strictly worse

outcomes, both in terms of the issuer’s surplus and the total trade surplus. This result

emerges as pooling generically leads to a payoff distribution with thinner tails, and equiva-

lently, a less elastic response to price quotes in the right tail of the payoff distribution (see
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Figure 2). A less elastic response causes a liquidity supplier with market power to opti-

mally set prices that lead to inefficient rationing, harming both the issuer and total trade

efficiency. Thus, in contrast to the previously analyzed scenario with competitive liquidity

suppliers (see Proposition 1), pooling assets may hurt the issuer when the demand side has

market power.

3.2.2 Optimality of Separate Debt Sales

Proposition 2 provided the condition under which selling assets separately, as equity, is

optimal for the issuer and attains the first-best level of trade surplus. We will now show

that even when this condition is violated, it may be optimal for the issuer to sell assets

separately. However, in those cases, the issuer will opt for separate debt securities rather

than equity securities.

Proposition 3. Suppose now that each elasticity function ej is strictly decreasing on its

respective support χj (recall that Assumption 1 only required them to be weakly decreas-

ing). There exists a δ∗ ∈
(
δ̄, 1
]

such that for all δ ∈
(
δ̄, δ∗

)
, it is strictly optimal to issue a

separate debt security on each asset payoff Xi.

To prove this result, it is useful to introduce additional notation. Let Π(δ) denote the

issuer’s profit, as a function of the parameter δ, from selling one underlying asset separately,

and issuing an optimal security on that underlying asset. Further, let Πñ(δ) denote the

issuer’s profit, also as a function of δ, from pooling ñ assets and issuing an optimal security

on that underlying pool. The basic idea of the proof is to establish that these profits are

continuous functions of δ, and to use the fact established in Proposition 2, which is that for

δ = δ̄, selling assets separately yields the issuer a strictly higher expected profit than from
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pooling assets:

ñΠ(δ̄) > Πñ(δ̄). (16)

First, suppose the issuer issues equity securities. In that case, for all δ ∈
[

ej(x̄)

1+ej(x̄)
,

ej(0)

1+ej(0)

]
,

the monopolistic buyer would target an interior marginal issuer type fmj satisfying:

ej(f
m
j ) =

δ

1− δ
⇔ fmj (δ) = e−1

j

(
δ

1− δ

)
, (17)

where ej is an invertible function, since it is assumed to be strictly decreasing on its support.

Thus, for all δ ∈
[

ej(x̄)

1+ej(x̄)
,

ej(0)

1+ej(0)

]
, this marginal issuer type fmj is a continuous function

of the discount factor δ. This result is useful, since as shown in Lemma 4, the optimal

debt security, which will be issued for δ > ej(x̄)

1+ej(x̄)
, is implicitly characterized as a function

of this marginal issuer type obtained when issuing an equity security. Specifically, the

optimal security from the perspective of the issuer is a debt security with face value dmj ,

ϕ = min[Idχj
, dmj ] where dmj is the largest d such that:

∫ d

0

fjgj(fj)dfj + [1−Gj(d)]d− δd −
∫ fmj

0

(fj − δfmj )gj(fj)dfj ≥ 0, (18)

where fmj = e−1
j ( δ

1−δ ). Note that this optimal face value dmj is then also a continuous

function of δ. This continuity result holds for any set Ωj , including the case where Ωj

includes only one asset.

Finally, note that if all the optimal face values dmj are continuous functions of δ, then
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the issuer’s profit functions Π(δ) and Πñ(δ) are also continuous functions of δ since:

Π(δ) = δdm(δ)− δ
∫ dm(δ)

0

fg(f)df − δ[1−G(dm(δ))]dm(δ) = δ

∫ dm(δ)

0

G(f)df,

(19)

Πñ(δ) = δdmñ (δ)− δ
∫ dmñ (δ)

0

fg(f)df − δ[1−G(dmñ (δ))]dmñ (δ) = δ

∫ dmñ (δ)

0

Gñ(f)df,

(20)

where we use integration by parts to simplify the expressions.

Given equation (16) and the continuity of functions Π(δ) and Πñ(δ), we know that there

is also a non-empty region (δ̄, δ∗) such that when δ lies in that region, we have:

ñΠ(δ) > Πñ(δ), (21)

that is, selling ñ ≥ 2 assets separately (with debt) is strictly better for the issuer than selling

debt on a pool of ñ assets. The upper bound of the region, δ∗, is implicitly defined by the

lowest δ such that ñΠ(δ) = Πñ(δ).

The main insight from Proposition 3 is that even when the potential gains to trade are

smaller than required by the condition stated in Proposition 2, pooling assets may still

be suboptimal for the issuer. The main difference relative to the result of Proposition 2

is that once separate equity securities do not trade fully efficiently, switching to separate

debt securities is optimal. Yet, as the design of these debt securities is still intimately

linked to the monopolistic liquidity supplier’s incentives to inefficiently screen the issuer

(the marginal issuer type from equity sales enters equation (18)), the elasticity of trading

volume is still an important determinant of the issuer’s net-profit. As pooling assets reduces

this elasticity in the right tail of the payoff distribution (see Figure 2), it is undesirable

to do so when the marginal issuer type from separate equity sales is sufficiently high, or

23



equivalently, when the liquidity differences between the issuer and the buyer are sufficiently

large (i.e., δ is sufficiently low).

3.2.3 Optimality of Pooling Assets when Adverse Selection is Severe

Unlike with competitive demand where it is always optimal to pool assets for the issuer,

the predictions for the scenario with monopolistic demand are more nuanced and feature a

trade-off between the benefits of diversification and the preservation of information rents.

Propositions 2 and 3 have highlighted that the optimality of separate sales emerges when

trade is particularly valuable, that is, when the prospective buyer and the issuer differ more

in terms of their liquidity. In contrast, when potential gains from trade are smaller, adverse

selection concerns and the exercise of market power lead to larger inefficiencies when as-

sets are sold separately. Lower gains from trade (i.e., higher values of δ) cause the liquidity

supplier to choose a more aggressive pricing strategy, which leads to the exclusion of a

larger range of issuer types when equity securities are issued. In fact, whenever δ > e(0)
1+e(0)

the trading of separate securities (whether it is equity or debt) fails completely as the elas-

ticity function e(x) then lies below δ/(1− δ) everywhere on the support — all issuer types

are excluded. Yet, as suggested by Figure 2, pooling assets increases the elasticity in the

left tail of the distribution, and thus can allow sustaining trade when separate sales would

lead to trade breakdowns. Thus, when adverse selection concerns are severe, relative to

the magnitude of the potential gains from trade, the trade-off faced by the issuer is tilted

toward favoring the pooling of assets.

Proposition 4. Suppose that the issuer has n > δ
1−δ assets. Then at least one of the subsets

Ωj will optimally consist of n∗ assets, where n∗ > δ
1−δ .

Proposition 4 highlights that for sufficiently high values of the discount factor δ the

issuer optimally pools multiple assets into a security. This result is directly linked to the
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previously mentioned fact that trade breaks down completely whenever the elasticity of an

underlying asset at the lower bound of the support is lower than δ/(1−δ). Let eñ(0) denote

the elasticity function associated with a pool of ñ assets. If eñ(0) < δ
1−δ , then trade will

break down with probability 1 for any security written on this pool. Yet, as suggested by

Figure 2, the elasticity at the lower bound increases when more assets are pooled, a fact

that is established in the following lemma.

Lemma 5. A pool of ñ assets has the elasticity eñ(0) = ñ at the lower bound of the support.

Proof. See Appendix.

Since trade breaks down completely whenever eñ(0) < δ
1−δ , the issuer can only attain

a positive expected surplus when the elasticity of an underlying asset, evaluated at the

lower bound, exceeds δ
1−δ . Since, as shown in Lemma 5, this elasticity for a pool of ñ

assets is exactly equal to ñ, the issuer will at least pool n > δ
1−δ assets to ensure that he

can attain an expected surplus greater than zero. At the same time, we know from our

earlier analysis that pooling an infinite number of assets is also suboptimal for the issuer,

as perfect diversification leads him to obtain zero surplus. Thus, even when the issuer has

a continuum of assets, he prefers to pool only a subset of the assets, or none at all.

Propositions 2, 3, and 4 have highlighted that the trade-offs faced when deciding whether

to pool assets are intimately linked to the magnitude of the potential gains from trade. When

they are sufficiently large (i.e., δ is sufficiently low) it is optimal to sell assets separately. In

this case, the liquidity supplier is less worried about being adversely selected by the issuer

and is more cautious in exercising his market power. Moreover, we have shown that when

the issuer sells assets separately, the elasticity with which he responds to price changes is

larger in the right tail of the distribution than when he is pooling assets. This elasticity in

the right tail is relevant when the potential gains from trade are sufficiently large, causing
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the marginal issuer type to reside in that part of the distribution. Yet, when the potential

gains from trade are sufficiently small, adverse selection concerns and the exercise of mar-

ket power lead to complete market breakdowns when assets are sold separately. In this

case, the issuer has to reduce the amount of asymmetric information to ensure that trade

can occur at all. He thus pools assets. In particular, Lemma 5 reveals that the elasticity in

the left tail of the support rises with the number of assets that are pooled, allowing trade to

occur once sufficiently many assets have been pooled.

4 Robustness

In this section, we discuss the robustness of our main insights to various changes in the

environment.

Risk aversion. In line with the existing literature, we have assumed that agents are risk

neutral. It is worth noting that, even if we allowed for risk aversion, pooling assets would

not by itself lead to better risk sharing among traders. This is because the issuer offers

to sell all assets to the buyer(s) independent of whether he pools the assets or not. With

risk-averse agents, the main impediment to risk sharing would be the fact that the issuer’s

private information may result in socially inefficient trade breakdowns, which is already a

force at play in our baseline model.

Correlated asset payoffs. In our setup, the fundamental payoffs Xi are identically and

independently distributed. The highlighted trade-off between information rents and diver-

sification that is associated with pooling assets would, however, also apply if assets’ payoffs

exhibited some correlation. Pooling imperfectly correlated payoffs would still lead to quali-

tatively similar effects on the shape of the payoff distribution — a pool’s payoff distribution

would still feature thinner tails. As a result, the elasticity function of a pool’s payoff would
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decrease near the upper bound of the support, increasing a monopolistic buyer’s incentives

to inefficiently screen the issuer. Just like in our baseline model, this downside of pool-

ing assets could then also dominate the diversification benefits highlighted in the existing

literature, rendering it optimal for the issuer to sell assets separately.

Multiple constrained buyers. The main result of our paper, that is, pooling assets might

be suboptimal when liquidity suppliers have market power, is derived in an environment in

which only one buyer has a discount factor of one, but is deep-pocketed. Similar results

obtain in the presence of multiple buyers, provided that these buyers face position limits,

wealth constraints, or risk aversion. Consider a simple extension of our baseline model

in which the aggregate position limit across all prospective buyers (measured in units of

underlying assets) is marginally smaller than the total quantity of assets up for sale. In

this case, each buyer’s price setting strategy is identical to the one derived in our baseline

model — as the total supply always exceeds the total demand, a buyer faces a residual

supply curve that is unaffected by other buyers’ pricing strategies.10 As a result, the issuer

still faces the trade-offs featured in our baseline model.

Signaling through retention. In the scenario with competing liquidity suppliers, allowing

the issuer to signal asset quality through partial retention, as in DeMarzo (2005), would

yield results that are (unsurprisingly) consistent with DeMarzo (2005) — issuers with as-

sets of higher quality would retain a higher fraction of the issue.11 Signaling would then

allow the high issuer types to separate themselves from the low types and would resolve

the lemons problem for high values of δ. In contrast, when facing a liquidity supplier with

market power, the issuer can be worse off by signaling asset quality. Since the liquidity

supplier makes a take-it-or-leave-it offer, he is able to extract all the surplus from trade
10The result that capacity constraints can hamper competition is well known in the literature, see, for

example, Green (2007).
11See also Williams (2019) who studies the optimality and efficiency of security retention in the presence

of search frictions.
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when he is able to infer the issuer’s type. In this case, the issuer’s profit from implement-

ing fully revealing retention policies is therefore weakly lower than his profit without any

signaling through retention (see also Glode, Opp, and Zhang 2018, for related arguments).

Moreover, as mentioned earlier, Biais and Mariotti (2005) show that for a given security

offered by the issuer, the monopolistic buyer’s optimal mechanism is a take-it-or-leave-it

offer for the total supply of the security, rather than a menu of price-quantity offers that

could result in the issuer using retention to signal asset quality.

5 Conclusion

This paper studies the optimality of pooling assets when security issuers face a market in

which liquidity is scarce and buyers endowed with such liquidity may have market power.

Unlike in competitive environments, we find that selling assets separately may be preferred

by issuers, in particular when liquidity differences between the buy side and the sell side

of the market are sufficiently large. While our results suggest that the dramatic decline of

the ABS market post crisis may represent an efficient response by originators to drastic

changes in liquidity and market power in OTC markets, it also highlights the potential

welfare implications of liquidity constraints imposed on financial institutions in the new

market environment.

In future research, the principles uncovered by our analysis could also be applied to

shed light on firms’ capital structure decisions, specifically, to firms’ choices regarding

the maturity structure of their debt. To illustrate the mapping between this problem and

our setup, suppose a firm generates cash-flows in different time periods and is privately

informed about these future cash-flows. Each cash-flow can be viewed as one of the funda-

mental assets from our baseline setup. The firm then decides whether to pool all cash-flows

across time (e.g., by issuing an equity claim or a perpetual debt claim) or not (e.g., by is-
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suing multiple zero coupon bonds of different maturities). Our analysis suggests that when

firms face investors with market power, it is relatively more beneficial for them to issue

multiple debt securities with different maturities, a practice that is indeed quite common.
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Appendix A: Proofs Omitted from the Text

Proof of Lemma 2: Without loss of generality, suppose i = 1. We can express ñX1 as

follows:

ñX1 =
ñ∑
i=1

Xi +

[
(ñ− 1)X1 −

ñ∑
k=2

Xk

]
, (A1)

where
[
(ñ− 1)X1 −

∑ñ
k=2Xk

]
has a conditional expected value of zero:

E

[
(ñ− 1)X1 −

ñ∑
k=2

Xk

∣∣∣∣∣
ñ∑
i=1

Xi

]
= (ñ−1)E

[
X1

∣∣∣∣∣
ñ∑
i=1

Xi

]
−

ñ∑
k=2

E

[
Xk

∣∣∣∣∣
ñ∑
i=1

Xi

]
a.s.
= 0.

(A2)

It directly follows that ñX1 is a mean-preserving spread of Yj , and the distribution of Yj

thus second-order stochastically dominates the distribution of ñX1.

Proof of Lemma 3: Consider the convolution of Yñ =
∑ñ

i=1 Xi and Xk where k > ñ, that

is, Yñ+1 ≡ Yñ +Xk, . Since these Yñ and Xk are independent, we can write:

gñ+1(yñ+1) =

∫ x̄

0

gñ(yñ+1 − x)g(x)dx. (A3)

Now evaluate gñ+1 at the upper bound of the support ȳñ+1 = (ñ+ 1)x̄:

gñ+1((ñ+ 1)x̄) =

∫ x̄

0

gñ((ñ+ 1)x̄− x)g(x)dx = 0, (A4)

since the density gñ is equal to zero for any outcome above ñx̄. As a result, the elasticity

eñ+1(ȳñ+1) = gñ+1(ȳñ+1)ȳñ+1/G(ȳñ+1) is also zero for all ñ ≥ 1, that is, as soon as at

least two assets are pooled, such that ñ + 1 ≥ 2, the elasticity of the pool will be zero at

the upper bound ȳñ+1.
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Proof of Lemma 5: First, suppose that g(0) > 0 and g′(0) is finite. By L’Hôpital’s rule,

the elasticity is:

lim
y→0

g(y)y

G(y)
= lim

y→0

g′(y)y + g(y)

g(y)
=
g′(0)0 + g(0)

g(0)
= 1. (A5)

Next, suppose that g(0) = 0, g′(0) > 0, and g′′(0) is finite. Then the elasticity is:

lim
y→0

g(y)y

G(y)
= lim

y→0

g′(y)y + g(y)

g(y)
= lim

y→0

g′′(y)y + 2g′(y)

g′(y)
= 2. (A6)

Then, suppose that g(0) = 0, g′(0) = 0, g′′(0) > 0, and g′′′(0) is finite. The elasticity is:

lim
y→0

g(y)y

G(y)
= lim

y→0

g′(y)y + g(y)

g(y)
= lim

y→0

g′′(y)y + 2g′(y)

g′(y)
= lim

y→0

g′′′(y)y + 3g′′(y)

g′′(y)
= 3.

(A7)

More generally, if the n-th derivative of the density function g is the first derivative to be

positive and finite, then the elasticity is (n+ 1).

It remains to be shown that if the density function of one underlying asset is positive at

the lower bound (i.e., g(0) > 0), then if we construct a pool of ñ assets, the first derivative

of the density function of this pool that is positive (and non-zero) is the (ñ−1)-th derivative.

Consider the convolution of Yñ =
∑ñ

i=1Xi and Xk where k > ñ, that is, Yñ+1 ≡

Yñ +Xk. Since these Yñ and Xk are independent, we can write:

gñ+1(yñ+1) =

∫ x̄

0

gñ(yñ+1 − x)g(x)dx, (A8)

and for 0 ≤ yñ+1 ≤ x̄ we can write:

gñ+1(yñ+1) =

∫ yñ+1

0

gñ(yñ+1 − x)g(x)dx. (A9)
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Thus, the derivatives become:

g′ñ+1(yñ+1) =gñ(0)g(yñ+1) +

∫ yñ+1

0

g′ñ(yñ+1 − x)g(x)dx, (A10)

g′′ñ+1(yñ+1) =gñ(0)g′(yñ+1) + g′ñ(0)g(yñ+1) +

∫ yñ+1

0

g′′1(yñ+1 − x)g(x)dx, (A11)

g′′′ñ+1(yñ+1) =gñ(0)g′′(yñ+1) + g′ñ(0)g′(yñ+1) + g′′ñ(0)g(yñ+1) +

∫ yñ+1

0

g′′′ñ (yñ+1 − x)g(x)dx.

(A12)

Hence, when evaluated at yñ+1 = 0, we obtain the following derivatives:

g′ñ+1(0) =gñ(0)g(0), (A13)

g′′ñ+1(0) =gñ(0)g′(0) + g′ñ(0)g(0), (A14)

g′′′ñ+1(0) =gñ(0)g′′(0) + g′ñ(0)g′(0) + g′′ñ(0)g(0). (A15)

Next consider the following iteration:

• Suppose we have ñ = 1. Then g1(0) = g(0) > 0 and adding an asset yields g2(0) = 0

(see above integral), and g′2(0) = g1(0)g(0) = g(0)2 > 0.

• Suppose we have ñ = 2. Then, as just shown, g2(0) = 0 and g′2(0) > 0. Now if we

add an asset, then it yields g3(0) = 0 (integral equation), and g′3(0) = g2(0)g(0) = 0.

Now consider g′′3(0) = g2(0)g′(0) + g′2(0)g(0) = g′2(0)g(0) > 0.

• Suppose we have ñ = 3. Then, as just shown, g3(0) = 0, g′3(0) = 0, and g′′3(0) >

0. Now if we add an asset, then it yields g4(0) = 0 (integral equation), g′4(0) =

g3(0)g(0) = 0, and g′′4(0) = g3(0)g′(0) + g′3(0)g(0) = 0. Now consider g′′′4 (0) =

g3(0)g′′(0) + g′3(0)g′(0) + g′′3(0)g(0) = g′′3(0)g(0) > 0.

• ...
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More generally, every time we add an asset to the pool, the next-higher derivative of the

density function turns to zero, while leaving the derivatives thereafter positive.

Appendix B: Additional Examples of Distributions

In this Appendix, we provide additional examples of distributions satisfying the assump-

tions of our setup (including Assumption 1). The figures below show the effects of pooling

on the shapes of the PDF and the elasticity function.
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Figure 3: Effect of pooling on the shape of the probability density function. The graph considers
a setting with four assets (n = 4), each of which has a payoff Xi that follows a beta distribution,
with shape parameters α = 4 and β = 4, that is truncated on the interval [0.001, 0.999]. The graph
plots the PDF of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the PDFs’
shapes relative to their respective domains, the graph rescales the horizontal axis to represent the
interval χj = [0, ȳj ] for each PDF gj .
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Figure 4: Effect of pooling on the shape of the elasticity function. The graph considers a setting
with four assets (n = 4), each of which has a payoff Xi that follows a beta distribution, with shape
parameters α = 4 and β = 4, that is truncated on the interval [0.001, 0.999]. The graph plots the
elasticity function of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the
elasticity functions’ shapes relative to their respective domains, the graph rescales the horizontal
axis to represent the interval χj = [0, ȳj ] for each elasticity function ej .
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Figure 5: Effect of pooling on the shape of the probability density function. The graph considers
a setting with four assets (n = 4), each of which has a payoff Xi that follows a beta distribution,
with shape parameters α = 2 and β = 3, that is truncated on the interval [0.001, 0.999]. The graph
plots the PDF of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the PDFs’
shapes relative to their respective domains, the graph rescales the horizontal axis to represent the
interval χj = [0, ȳj ] for each PDF gj .
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Figure 6: Effect of pooling on the shape of the elasticity function. The graph considers a setting
with four assets (n = 4), each of which has a payoff Xi that follows a beta distribution, with shape
parameters α = 2 and β = 3, that is truncated on the interval [0.001, 0.999]. The graph plots the
elasticity function of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the
elasticity functions’ shapes relative to their respective domains, the graph rescales the horizontal
axis to represent the interval χj = [0, ȳj ] for each elasticity function ej .
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