
NEER WORKING PAPER SERIES

TIlE SENSITIVITY OF TESTS OF THE INTERTEMPORAL ALLOCATION OF
CONSUMPTION TO NEAR-RATIONAL ALTERNATIVES

John H. Cochrane

Working Paper No. 2730

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 1988

This research is part of NBER's research program in Economic Fluctuations.
Any opinions expressed are those of the author not those of the National
Bureau of Economic Research.



NEER Working Paper #2730
October 1988

THE SENSITIVITY OF TESTS OF THE INTERTEMPORAL ALLOCATION OF
CONSUMPTION TO NEAR-RATIONAL ALTERNATIVES

ABSTRACT

This paper presents calculations of the utility cost to consumers of

following alternative decision rules in the environments specified by tests

of the intertemporal allocation of consumption on aggregate data. The
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of large deviations from the optimal decision rule- -consumption equal to

current income, for example--are on the order oflc to $1 per quarter. They

are interpreted to suggest that the theory does not make predictions that are

robust to small inaccuracies of modelling, including small costs of

transactions and information, and that those small costs can account for

rejections of the theory as it is applied to aggregate US data.
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The Sensitivity of Tests of the Intertelaporal Allocation of

Consumption to Near-Rational Alternatives

*
John H. Cochrane

The theory of the intertemporal allocation of consumption is at the

heart of macroeconomics and finance. Many studies have tested the theory

using aggregate data, in particular as tests of the permanent income

hypothesis and the consumption based capital asset pricing model, and they

often reject the versions of the theory that they specify. However, it's not

clear whether these statistical rejections imply a robust rejection of the

basic theory (in favor of. say, "liquidity constraints") or whether they are

driven by the many simplifying assumptions of tractable and empirically

useful models. The tests have also been criticized (among other reasons) for

exploiting "too fine" predictions of the theory, for example that all

individuals adjust their consumption on a weekly or monthly basis in response

to changes in prospective returns on the stock market.

As one way to address and quantify these doubts, this paper presents

calculations of the utility cost to consumers of following alternative

decision rules in the environments specified by the tests. For example, one

calculation finds the utility loss suffered by an individual who sets

consumption equal to income in each period rather than following the optimal

decision rule specified by the permanent income hypothesis in the environment

of Flavin's (1981) test.
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These utility costs are typically lOc to $1 per quarter (or 30 to 300

per month), that is, a steady stream of 100 to $1 per quarter would

compensate the consumer for the utility loss he incurs by following the

alternative decision rule. The utility costs are small because cyclical

changes in consumption are small and because the utility costs of deviations

from an optimum are an order of magnitude smaller than the deviation itself.

For example, the standard deviation of the growth rate of quarterly real per

capita nondurable consumption in postwar US data is 0.86 percentage points,

and its level in 1986 was about $3500 per year, implying a change of about

$7.50 each quarter. Now suppose the representative consumer makes a mistake,

and consumes $7.50 too little this quarter and (l+r) x $7.50 too much next

quarter, thereby washing out the phenomenon of cyclical consumption changes.

A simple calculation given below shows that this "mistake" implies at most a

6.50 utility loss if the consumer's relative risk aversion coefficient is 1

and a 650 utility loss if his relative risk aversion coefficient is 10.

Why do we care about the utility costs of alternative decision rules?

Suboptimal decision rules that cost a trivial amount of utility or profit are

called near-rational. Near-rational behavior can be most easily interpreted

as small mistakes: people don't literally maximize, they follow heuristic

decision processes that we model by maximization. Their actual decisionsmay

deviate from the optimal decision rules if the utility costs of doing so are

trivial. Using this interpretation, Akerlof and Yellen (l985a, 1985b and

1987) argued for the principle that the predictions of a theory should be
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robust to near-rational behavior, and Akerlof (1979) applied this idea in the

same way as in this paper to show that large deviations form optimal money

holdings carry trivial costs.

In a second interpretation, the small mistakes are made by economists in

modelling the world rather than by the agents we study. Empirically useful

forms of economic theory gloss over many complexities of the decision problem

that consumers actually face. There are small costs of transactions,

information acquisition, decision, attention, etc., as well as the

(hopefully) small effects of modelling simplifications to one consumption

good, known forms for the distributions of stochastic processes, simple

depreciation schedules for durable goods, etc. We can't know precisely what

effect including these small corrections would have on the predictions of the

theory until we work out a theory that includes them, but we can use the

range of alternate decision rules that cost the consumer (say) $1 per quarter

of utility as a guide to the range of behavior we might expect the theory to

predict if a small (fixed) cost of $1 per quarter were properly included.

More precisely, suppose we calculate the achieved level of utility as a

function of decision rule parameters. Then we can use this (indirect)

utility function to measure the economic power, just as we use the likelyhood

funâtion to measure its statistical power. The range of alternative decision

rule parameters that generate utility within (say) $1 of the optimum is the

range against which the theory has little economic power, just as the range

of alternative decision rule parameters within a given fraction of the
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maximum likelihood is the range against which the theory has little

statistical power.

it may happen that a test can statistically reject the optimal decision

rule in favor of alternatives with small utility costs, or that the

likelihood function is more curved than the utility function. This situation

indicates that a statistical rejection might be driven by modelling

simplifications rather than by a failure of the basic theory. Though

macroeconomics is often accused of not having enough data to statistically

reject any model, such a situation indicates the opposite: that tests are

able to statistically distinguish alternatives that are not well

distinguished economically.

One limitation of this interpretation of utility loss calculations is

that we should not expect near-rational decision rules to persist if there

are institutions that can remove them. For example, consumers might be able

to sign over their income streams to a firm, which then makes their

consumption decisions for them and collects the surpluses available from

reducing many consumers' small mistakes, or from reducing their small

information costs if there are increasing returns in the activities

corresponding to those costs. Pension plans, Christmas clubs, and mutual

funds may in part perform these services for the problems of life-cycle and

intra-year consumption allocations and for portfolio decisions. However, I

know of no institutions that make cyclical allocations for the

consumer-changes in consumption in response to changes in aggregate income or
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rates of retuxn-which is the focus of the empirical literature and of this

paper.

For this reason, propositions derived from dynamic optimization by firms

alone1 may be less sensitive to near-rational criticism. A suboptimal

decision that costs IBM .1% of its profits is a small mistake from the firm's

viewpoint, but quite valuable to a manager if he can improve the decision and

capture some of the increased profit. Also, a firm that does not optimize

can be taken over by a better set of managers. But there is no analogy to the

market for corporate control at the level of the individual consumer.2

The body of this paper takes two approaches to argue that the range of

decision rules that cost less than about $1 per quarter is in fact large, and

encompasses alternative decision rules that are economically extreme and that

can account for statistical rejections in the environments of common tests of

the intertemporal allocation of consumption on aggregate data. Section 2

shows that first order deviations from an optimum carry only second order

utility losses, so there are always alternative decision rules for which the

ratio of utility losses to the magnitude of the deviation are as small as one

likes. Section 3 calculates the exact utility losses of following a variety

of specific alternative decision rules in environments that are typical of
tests in the empirical literature.
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L. klur Rationality and ft Intertemporal Allocation 2.L Consunrntion

One reason to suspect that the costs of alternative decision rules are

small is that first order "mistakes" in decisions have second order

consequences for utility, or that there are always decisions close to the

optimal one for which the ratio of utility losses to the deviation from the

optimum can be made as small as one wishes. These points have been most

recently popularized by Akerlof and Yellen in essentially static contexts.

This section extends them to the dynamic and stochastic case considered by

the theory of the intertemporal allocation of consumption.3

The basic idea is most simply expressed in the context of the

constrained maximization of a differentiable function f(a)

(2.1) max f() s.t. — —
w2, ... — w4.

(a)

where is a vector of choice variables. The first order conditions are

* M

(2.2) Df(a) — df(x )/dx —

where denotes an optiim andA are lAgrange multipliers. Consider a

deviation — + ax, that satisfies the budget constraints, so m'aa — 0

i—l, . . .Z1. The effect of this deviation on the objective is

(2.3) f() — f(*) ÷ 1/2 t' D2f ax + O(1aa13)

In words, (1) feasible first order deviations in choice variables have second

order consequences. The definition of derivative and limit in (2.2) imply

that (2) there are suboptimal feasible choices x+ — ÷ ax for which the

ratio of the size of the utility losses to the size of the deviation are as
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small as one wishes. Formally stated, for all c > 0, there is a 6 such that

any A that satisfies the constraints ;'x — 0 i — 12,. ii, and is smaller
than 6, 0 < aI < 8, has a ratio of utility losses to magnitude of deviation

smaller than the given e,

f(*) - f(* +
(2.4)

ItaI

A version of the second statement holds near rather than precisely at

the optimum: if f is twice differentiable, we can always choose a point near

the optimum and a deviation from that point so that the ratio of losses to

the deviation is arbitrarily small. This is shown in the appendix.

A simple and typical version of the consumer's problem is:

(2.5) max U((c0,c1, . . .)) — E $tu(c)
(c0,c1, . .1 t0

(2.6) s.t. 1) — ak + -

t-l
2) lim ( II R1 )1. k — 0 a.s.

t-c 1—0

3) k0 given

where c — consumption, y — an endowment stream, -' nonhuman wealth at the

beginning of period t (decisions at time t affect k+1. not kt) and is the

ex-post real interest rate between time t and time t+l (when stochastic, Rt

is not known until the beginning of t+l). The second constraint rules out

borrowing a dollar and rolling over the debt forever; it allows the period

to period budget constraint given in (2.6) to be written in present value
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form

t+l

(2.7) k0 — E (IIRY (c - a.s.
t—O t—l

Let s denote the state of the economy at date t. For example, s can

be a list of the current and past values of all relevant shocks. Then, the

the consumer chooses a consumption plan (c1(s1), c2(s2), . . .) (the list

extends over all dates and states) to maximize (2.5). The plan specifies how

much to consume at each date t in each possible state s at that date.4

When finitely many states can happen each period and the problem has

a finite horizon T, the consumption plan has a finite number of elements (one

for each date-state combination), and the budget constraint specifies a

terminal condition for each of a finite number of states at the last date, so

the consumer's dynamic, stochastic problem (2.5) - (2.6) is isomorphic to the

static analysis of (2.1) - (2.4). Denote the optimal consumption plan

* * 1 * 2
(2.8) —

(c1(s ), c2(s ), . .. c..(s

where the list extends over all dates and states. Equations (2.3) - (2.5)

apply directly, so (1) deviations to an alternate plan

+ +1 + 2 +T
(2.9) —

(c1(s ), c(s ), ... c,(s

have only second order effects on expected utility, and (2) there is always

an alternate plan for which the ratio of losses to the deviation is as small

as one wishes, where "small" is defined with the Euclidean norm.

To make the same statements in an infinite-period or continuous-state
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context, in which the consumption plan has an infinite number of elements,

consider a deviation that satisfies the budget constraint. Let {c) and {c)

denote the optimal and alternative plans, where {c) satisfies the budget

constraints in (2.6) - (2.7). Define the difference between the two plans

Ac — 4 - c, so the budget constraint (2.7) implies

(2.10) ( a1 Ac — 0. a. s..
t—0 1—0

Now consider suboptimal rules of the form c + aAc. If c is an

optimum and u is differentiable, we must have

d
(2.11) —. E E pt(* + atc ) — E flt?(*)A — 0

t—0 a—U t—0

The familiar statement of the Euler equation follows from particular

choices for Act. For example, Ac — 0, except Ac 1 at t in state s, and

— at time t+l in states following s yields

(2.12) u'(c) — fi E [ a u'(c+1)I t]

(2.11) implies directly that (1) first order deviations c * that

respect the budget constraint have second order consequences. Alternately,

(2) there are suboptimaL consumption plans c .r aAc for which the ratip of

losses to deviations is as small as one wishes. Formally, the definition of

a derivative in (2.11) states that for any c > 0 there is an a > 0 such that

the ratio of losses to the size of the deviation, measured by a, is smaller

than the chosen c,
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* *
tJUc)) - UUc +.atc))

(2.13) c

II

The only real difference between this statement and the corresponding one for

the finite date and state case is that the size of deviations is

measured by a, instead of by the Euclidean norm of (2.4).

This formulation differs slightly from that in Akerlof and Yellen

(1987). They consider a static maximizer whose objective was the one period

maximization f(x ar). They describe uncertainty by the evolution of a over

time, and their central result is that "inertial behavior"-not changing x in

response to a change in ahas second order effects. Here I consider an

intertemporal maximizer, and the central proposition is that plans {x) near

(x) have second order costs, which follows directly from the first order

conditions.

L. Calculations f Utility Losses

"Second order" does not necessarily mean small: 10062 is larger than

.Olc for a range of €. This section computes the actual utility costs of

some economically interesting alternatives.

Utility costs depend on the consumer's environment (how much income he

has, how variable that income is, and how rates of return vary over time), on

the consumer's preferences (how he values deviations), and on the alternative

10



decision rules we consider. The environments, preferences and alternatives

in the empirical literature that tests the theory of the intertemporal

allocation of consumption using aggregate data are similar, so there is some

hope that the calculations in typical environments below are reasonable

approximations to the utility loss of a wide variety of similar tests.

Many studies only test for misallocation of nondurable consumption

($2,308 1982 dollars per capita in 1947, $3,484 in 1985), but they use broad

definitions of income, up to and including CM? ($7,330 1982 dollars per

capita in 1947, $14,823 in 1985). If we specify the time series process for

income and ask the consumer for the optimal level of consumption in a model

like (2.5) - (2.6) we get a total consumption series, which averages about

the same value as the income series. To produce a consumption series whose

level is comparable to that of nondurable consumption, the calculations

assume an income process whose average value is $3,000 per year, and whose

time series properties are the sac as CNP (we can interpret this as a

constant fraction of aMP devoted to nondurable consumption). Utility costs

scale fairly well with income, so the costs in tests that use broader

consumption aggregates are easy to extrapolate from calculations that use

$3000 per year.

Host tests specify either a quadratic or constant relative risk aversion

utility function, and either specify or estimate a risk aversion coefficient

between 1 and 10, and occasionally as high as 30. The calculations in this

paper use those utility functions. Other forms for the utility function
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could raise (or lower) the costs of deviations.5

The alternatives in each case are motivated by the alternatives that

typical tests have found in each environment. Sections 3.1-3.4 study

economically interesting alternatives, including excess sensitivity and

smoothness in the face of income shocks and slow reactions to changes in

interest rates. Section 3.5 studies the costs of tolerating predictable Euler

errors, which is typically the basis of statistical rejection.

3.1 A Simple Upper Bound

Consider a small increase Ac in consumption at date t, balanced by

future reductions in consumption. By taking Ac as the standard deviation of

aggregate consumption, we will produce a cost per quarter of "mistakes" that

would swamp the variation in aggregate consumption, and hence void any

predictions the theory can make. This calculation can also be interpreted as

an upper bound for the costs of following "reasonable" alternate rules, since

alternatives cannot deviate from the optimum by much more than one standard

deviation if they hope to be a plausible description of the data.

By the first order conditions for optimization, this perturbation has no

first order effects. Its second order effects must be greater than the

second order effects of changing ct alone, which are

(3.1.1) AU a 1/2 u''(c) (Ac)2.
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Converting to dollars by dividing by the marginal utility of consumption,

AU
1 c u''(ct) Ac 1 Ac

(3.1.2) dollar loss — a —
Act

— — y __E
Act

u'(c) 2
u'(ct) ct 2

ct

where y is the relative risk aversion Coefficient.

Equation (3.1.2) is a lower bound for the effects of the perturbation,

because it ignores the second order effects of the future changes in

consumption needed to restore the budget constraint. We can derive upper

bounds for the total effect of the perturbation by considering specific

patterns of future consumption change. For example, if the consumer

reestablishes the budget constraint at t÷l by Ac+1 — RAc, the dollar

value of the change in utility due to the change at t+l is

AU 1 fi u"(c1) (Ac+1)2 1 Ac
(3.1.3) a— a _7_Act

u'(ct)
2 u'(c) 2

where the last approximation is for a 1/fl and near 1, and ct a The

change in utility from the total perturbation is less than the sum of the

second order effects due to the change at time t, (3.1.2), and the change at

time t+l, (3.l.3):6

1 Ac AU Ac(3.1.4) — 7 Act —
Act2 c u'(c) c

This equation captures much of the intuition of the calculations that

follow: even if "mistakes" Ac are as large as the standard deviation of
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consumption, that standard deviation is on the order of $10 per capita and

Ac/c is about 1%, so utility costs are less than ioc with risk aversion i —

and less than $1 with y — 10.

Table 1 presents some evaluations of equation (3.1.4). There is a body

of evidence that nondurable consumption is essentially a random walk (see

Campbell and Deaton (1987) or Cochrane and Sbordone (1988)), so table 1 takes

Ac/c as the standard deviation of quarterly growth rates of nondurable per

capita consumption, and c as its level in 1947 and 1985. The utility losses

range from 4C to $1.94 per quarter for values of the risk aversion

coefficient y between 1 and 30.

The essence of these calculations can also be found (in a completely

different context) in Lucas (1987). Lucas calculated that the utility gain

available from eliminating "cycles" in consumption was small compared to

increases in the "trend", which implies that the utility costs of

"misbehaving" over the cycle are similarly small.

3.2. "Excess Sensitivity" and "Excess Smoothness" Tests of the Permanent

Income Rypo thesis

Following Flavin (1981), consider an environment designed to represent

detrended time series. Labor income is treated as an endowment, and is given

exogenously by
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(3.2.1) — (l-p)3 + fl1 + i.i.d, E(c) — 0, var(c) — 2

The consumer maximizes a quadratic utility function

(3.2.2) U — -1/2 Efit (c -

He can borrow and lend freely at a constant interest rate a — (1+r) equal to

the discount rate, fi — 1/(1+r), so the period to period budget constraint is

(3.2.3) ki — (l+r) k + y - c; lime k+1 — 0 a.s.

where k is accumulated capital or nonhuman wealth. The consumer's optimal

decision rule is7

(3.2.4) c — nc + rfl fr E (y4)t t
—0 -'

For the AR(l) income process (.2.1), this decision rule becomes

(3.2.5) ct — rk + ÷ m (y ) m' — l+r-p

In summary, we can characterize the evolution of optimal consumption

over time by the system

(3.2.6) — (l-p)j' + 't-l +
* * — *

— rk + y + in (y - y)

* * * * *
k+j — (1+r) k + - ct — k + (1-rn) - y)

(The asterisks on consumption and capital stock distinguish them from

suboptimal versions that follow.)

Flavin and following authors aimed their tests at the alternative
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hypothesis that consumption is too sensitive to current income y. We can

generate "excessively sensitive" consumption with decision rules with higher

than optimum marginal propensities to consume

(3.2.7) — (l-p)5r + +

+ + — +— rk÷y+m(y-y)
+ + + + +— (l+r)k + yt - c — + (i-rn )(y - y)

÷ *
where m .' m

These alternate decision rules respect the budget constraints. By

iterating the capital accumulation rule in (3.2.7), capital accumulation

follows

(3.2.8) 1c - 1c + (l-m)Z(Y -

From (3.2.8) and the assumption that the present value of income is finite,

it follows that lim — a

In this model it is possible to calculate the level of expected utility

the consumer achieves by following any decision rule of the form (3.2.7).

The calculation is presented in the appendix. The result is that the loss of

time 0 expected utility (AU) suffered by a consumer who follows marginal

propensity C instead of the optimal m* is

(l+r)2 c ÷ * 2(3.2.9) AU—
2 (in -in)

2 r (l+r-p )
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To convert this time 0 utility loss to dollars per quarter (the

perpetuity of x dollars each quarter that would compensate the suboptimizing

consumer), divide the utility loss by the marginal utility of a dollar at

time 0,u'() — - y), and multiply by r, since an additional dollar of

income at every date is worth hr dollars of extra capital stock at time 0:

r AU (l+r)2c2 (IC -

(3.2.10) dollar/quarter loss — - —
2 — —

u'(y) 2 (l+r-p ) (c - y)

Another measure of the utility loss is the dollar value of the time 0 utility

loss as a fraction of the present value of the consumer's income stream,

which is his total wealth when he has no initial capital stock. This present

value is

(3.2.11) pv - fi
]

- / r

Hence,

AU (l+r)2o2 (m - m*)2
(3.2.12) time 0 dollar loss / pv —

—
— — — —

u'(y).pv 2 (1+r-p ) y (c - y)

The flow loss (3.2.10) divided by the expected value of the income flow y is

equal to the ratio of total loss to wealth (3.2.12). The present value of

income is $60,750 in the calculations that follow.

Table 2 presents some evaluations of utility losses, (3.2.10) and

(3.2.12). I used the following parameters, designed to evaluate a test using

aggregate nondurable consumption data: 1) the real interest rate is 5% per

year; 2) p—. 95 from an OLS autoregression of detrended quarterly per capita
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real GNP; 3) — $3000/year. conformable to the level of nondurable

consumption, as explained above; 4) a — $120/4 x $3000/$l4000 — $6.43. C

from the ClIP autoregression was $120. I divided this by 4 quarters/year so

the units are quarterly consumption, and multiplied by nondurable

consumption/ClIP so the units are comparable to nondurable consumption.

5) Ic0 — 0. Other k0 simply increase both the optimal and alternative

consumption by rk0 in each period.

Table 2 presents utility costs for several values of the bliss point :

$937.50, $1125, and $1500, or 5/4, 3/2, and 2 times initial income and

initial consumption of $750. The choice of bliss point has no effect on the

utility loss (3.2.9) because the utility function is quadratic, but it

affects the dollar value of that loss by changing the marginal utility of a

dollar.

The bliss point has not been a focus of empirical work as has the

coefficient of risk aversion, so it is less clear what range of values is

reasonable. Many studies do not report their estimated bliss point when it

is identifiable, and the implied bliss points of many studies are negative or

less than consumption (see Lewbel (1987)). Since quadratic utility is

usually justified as a local approximation to a more reasonable utility

function, we can assess how reasonable a bliss point is by calculating the

local coefficient of relative risk aversion. This is

-cu"(c) c 1
(3.2.13) (c,) — —

—
—

—u'(c) (c-c) c/c - 1
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so it is controlled by the ratio of the bliss point to consumption. This

formula is also the coefficient of risk aversion to time 0 gambles, defined

as (k + j/r) V''(k)/V'(k). This can be verified from the formula for the

value function V(k) in the appendix. Table 2 Includes a calculation of this

quantity for each choice of bliss point. Table 2 stops at a bliss point of

1.25 times initial consumption and initial income, corresponding to a

relative risk aversion coefficient of 4 at initial consumption. In

simulations of the model with lower bliss points (say, 1.1 times initial

consumption for y — 10), consumption typically exceeded the bliss point

within a few periods, suggesting that the linear quadratic model

approximation is not useful in this range, because its results will depend

too heavily on past bliss point behavior.

The costs in table 2 are less than 65c per quarter, or .09% of time zero

wealth, and are mostly on the order of 1-bc per quarter or .01% of time 0

wealth. Figure 1 provides some intuition for the small size of the costs by

contrasting a simulation of too sensitive consumption (m+ — 1) with the

optimal consumption path (m* — .2). I included the origin of the vertical

axis to emphasize that even with this extreme overreaction to current income,

the level of consumption is not that affected. Since the consumer values

deviations of the level of consumption from its optimal path, high frequency

deviations cost very little.

For comparison, Flavin's point estimate of the excess marginal

propensity was .355, so the corresponding costs are about those of the m —
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m*+.355 .6 row of Table 2, or between 2 and 9' per quarter and less than

.01% of time 0 income.9

Mankiw and Shapiro (1985). Campbell and Deaton (1987) and West (1988)

criticized Flavin and her followers for using detrended data rather than

assuming a process for income with a unit root. In the simplest case income

follows a pure random walk.

(3.2.14) — +

in which case the optimal consumption and capital stock evolve according to

* *
(3.2.15) c — rk + y.

— (l÷r)k + y- c —
*

Campbell and Deaton and West test models of this type and find that aggregate

consumption is "too smooth."

We could capture "excess smoothness" by the same kind of alternate

decision rules as in equation (3.2.7), with alternate marginal propensities

at < 1. However, this choice produces an alternative decision rule with

several undesirable properties when income follows a random walk. When

income y follows a stationary process.y stays near its unconditional mean

so variation in at in the decision rule ct — rk + + m(y - y) has a

bounded effect on consumption. When is a random walk, however, -

gets unboundedly large, so varying at has a big effect on consumption.

Furthermore, since the spectral density of - y) is concentrated at low

frequencies, the excess smoothness that these decision rules capture is not
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the economically interesting higt frequency or period to period failure to

adjust, but a low frequency failure to adjust.

A way to capture excess smoothness that avoids these problems is to let

the consumer respond to a long moving average of past income rather than to

today's income alone:

1 N

(3.2.16) c — rIc + — X
Ni-i j—O

Table S presents the utility loss from following this "too smooth" decision

rule. Even when the consumer smooths the last ten years of income to

determine current consumption, the utility loss is less than $1.28 per

quarter. An explicit formula for the utility losses in this case is

algebraically complicated. The calculation of utility losses is detailed in

the appendix.

For comparison, Campbell and Deaton (table 6) report point estimates

for the ratio of the actual to predicted innovation variance of (Ac/y1)

between .456 with a standard error of .20 and .147 with a standard error of

.16, depending on which consumption variable they use and the number of

included lags. Under the long moving average alternative, the innovation in

Ac is y/(N+1), so the inverse of the square root of Campbell and Deaton's

ratios, between l// — 1.48and l// — 1.16, is roughly comparable to

(N+l). Hence, their finding of excess smoothness corresponds to a less than

one period moving average of income, and carries utility costs of .ic to 2.7c

per quarterJ°
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3.3 Euler equation tests and sensitivity to interest rate changes.

The second major category of tests of the intertemporal allocation of

consumption are the Euler equation tests, following Hall (1979) and Hansen

and Singleton (1983). The first-order conditions or Euler equations for

maximization of the consumer's problem given in equations (2.5)-(2.6) are

(3.3.1) u'(c) — fi E [a u'(ct1) ]

Hence, if we define 6t÷l by

(3.3.2) log u'(c) — log + log u'(c+1) +

then E(S÷iItime t information) — 0, which is the basis of tests.

Euler equation tests are often used to test optimal responses to

fluctuations in the conditional distribution of asset returns rather than

optimal adjustment to income changes (in part because the models usually

can't be solved for optimal adjustments to income). Hence, I examine the

alternative to (3.3.1) that consumers fail to take optimal account of

fluctuations in (real) rates of return.

To create a time-varying returns series, I generated quarterly real

interest rates by an AR(l),

(3.3.3) a — Pat1 + (t-p) +

I picked the mean interest rate — 1 + .05/4 and its standard deviation

— .05/4 to give a generous variation over time in interest rates. This
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variance is roughly the variance in ex-ante returns that Poterba and Summers

(1987) and Cochrane (1988b) argue is necessary to explain long horizon stock

market data; it is also about the same as the variance of ex-post real

interest rates. A lower variance of interest rates will give rise to less

variance in both optimal and alternate consumption paths, and so lower

utility costs.

I assume that consumers perfectly foresee the path of interest rates.

This makes the calculations simpler; by making only part of the variation

predictable we would again get less variance in optimal and alternate

consumption and lower costs. Then, the optimal consumption path satisfies

the Euler equation

(3.3.4) u'(c) — fi R u'(c÷1)

With constant relative risk aversion utility u — (c1-l)/(1-), the Euler

equation is

(3.3.5) / c — (fi

For an alternate decision rule, suppose consumers react slowly to

interest rate changes, by setting consumption growth proportional to a moving

average of past interest rates. Define the alternative consumption rule

by:

(3.3.6) c1 / c — ( fi Rif

where
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1 N

(3.3.7) —
(N+l) J—0

Table 4 presents evaluations of the cost of following this alternative

for various parameter values. I performed the calculations as follows: 1) I

generated an interest rate path for 200 quarters using equation (3.3.3) and

took a (l÷N)-period moving average of the interest rate, as in equation

* +(3.3.7); 2) starting with c0 — c0
— $750/quarter, I generated optimal and

alternative consumption paths by (3.3.5) and (3.3.6); 3) I multiplied the

alternative path by a constant, so that the present value of the optimal and

alternate paths is the same; 4) I evaluated the achieved utility of the

optimal and alternate consumption series by

*(l-.y) - 1 c+U7) - 1
(3.3.8)

t U— Eflt
t

t—0 l- t—0 l-

5) I converted the utility losses to a dollar quarterly flow by dividing the

utility loss, AU — U - U, by the marginal utility of a time 0 dollar,

and by the present value of a constant one dollar flow, 1 +

[1JR1i. To maintain comparability, I used the same interest rate path for

each value of the parameters. The parameters are & — 1.012 per quarter

(corresponding to 1,05 per year), CR — .012 (.05 annual) , c0— $750 per

quarter ($3000/year). fi — 14, and p— .841 (.5 annual

The costs in table 4 rise the longer the moving average of interest

rates used to define c+, and the costs are higher for more persistent
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interest rate movements. Both allow the alternate path to drift further away

from the optimal path. Raising the coefficient of risk aversion 'y lowers the

costs of deviating from the optimal path. This occurs because less risk

averse consumers adjust their consumption by greater amounts in response to

given interest rate changes. Perfectly risk neutral consumers would set

consumption to +w every time C 1/fl and vice versa. The greater difference

between optimal and alternative consumption paths for less risk averse

consumers more than offsets the lesser value placed on these differences.

3.4 Costs of ignoring information

In most studies, the strongest statistical evidence against the theory

comes from predictability of Euler equation errors, rather than from a

statistical rejection of the optimal decision rule in favor of a

well-specified alternative as above. Evidence that E(6÷1IXt) is not zero,

where is any variable observed at time t, is the basis for rejection of

the model.

But consumers may rightly ignore information variables if the utility

gained by using them to better adjust consumption does not outweigh the costs

of obtaining and processing the information. If this is so,evidence of

forecastability of Euler errors is not evidence against the basic theory of

intertemporal optimization, and the variable X loses its status as an

instrument. This section presents calculations of the utility costs of

tolerating such predictable Euler errors.
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Start with the upper bound derived in section 3.1, that the utility

costs resulting from a perturbation Ac are

AU Ac

(4.1.1) dollar loss — £ y _! Ac
u'(c) c

Now, suppose that the Euler error, — log(c1/c)-log(flR) in the CRRA

case and 6t+l — ct+lct in the linear-quadratic case, is predictable using a

variable or vector of variables X. We can approximate the utility costs-how

much utility the consumer loses by not readjusting consumption in response to

the information variables XbY considering a perturbation from the optimum,

Ac in (4.1.1), equal to the standard error of the predictable change in

consumption.

In what follows, I'll consider the case of constant interest rates, so

that the standard deviation of consumption changes is equal to the standard

deviations of the Euler error 6t+1' (The standard deviation of forecastable

returns is typically about the same or less than that of consumption, so this

approximation is not misleading.)

Table S presents some evaluations of (4.1.1) for different values of the

predictability of consumption changes or growth rates, where an of 1.00

correposnds to the standard deviation of consumption changes ($6.43) from

table 1. The top four rows of table Sgive four different and equivalent

measures of the assumed predictability of returns for their column. The top
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row gives the ratio of the standard deviation of predictable consumption

growth or change to total consumption growth or change. The next row gives

the corresponding B? (the square of the top row). This is the of a

regression of consumption growth or change on the information variable

The third row gives the standard error of the predictable component in growth

rate units, and the fourth row in changes or dollar units. The table entries

are calculated by (4,1.1), with tc — the standard error of predictable

change in dollars (fourth row) (or Ac/c — the standard deviation of

predictable growth, third row), c — $300014 and as given in the first

column. The entries are thus dollars per quarter utility losses from

tolerating the given predictability of consumption changes or growth rates.

Comparing to Table 1, the perturbations tc here are simply fractions of the

perturbations Ac in table 1. Since utility losses are proportional to

they are linear in the assumed of a regression, and are equal to

the losses of table 1 at an B? of 1.00.

typical values for B? of regressions that predict consumption growth or

changes are below .1. I know of no study that claims an above .2. The

column of table 5 with R2 — .25 shows that tolerating this overall

predictability carries utility costs less than lC to l4 per quarter for

risk aversion -y 10, and 40C per quarter for the extreme of i — 30. The

predictability of consurapcton due to an individual variable is typically

smaller; if consumers ignore that variable and hence invalidate its use as an

instrument, their utility costs are determined by the R2 of that

varaible alone, and hence even lower than the lQ - l4C range.
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._ Concludinz Remarks

The calculations presented above suggest that in the majority of current

tests of the intertemporal allocation of consumption on aggregate data,

economically and statistically significant departures from •the optimal

decision rule have small utility costs, less than $1 per quarter or 30c per

month. This suggests that the theory of the intertemporal. allocation of

consumption, applied to a representative consumer with certain typical

preferences and used to explain aggregate phenomena in a period of mild

consumption volatility such as the postwar U.S. • does not generate

predictions of behavior that are robust to small misspecifications by

economists or small "mistakes" by consumers, in the sense that both

economically and statistically extreme alternatives (for example, consumption

proportional to income, or consumption growth that is predictable with an

of .25) carry trivial utility costs.

In particular, the utility costs of deviations from an optimal path

depend on the absolute deviation of the alternate path from the optimal path.

Hence, high frequency deviations like lagged responses, temporary misuse of

information, failure to adjust consumption immediately in response to the

information content of typical observable macro variables, and so forth, have

especially low utility costs. But it is the exact timing of the use of

information and the exact timing of consumption changes that has been the

focus of recent empirical work.

28



These observations are both good and bad news for macroeconomic

applications of the theory. On one hand, they imply that the alternative

behavior that typical tests search for and alternative behavior that can

cause the tests to reject can be generated by small ($1 per quarter) costs of

information acquisition or processing, transactions, etc., so finding those

alternatives is not strong evidence against the basic theory that consumers

intertemporally optimize. On the other hand, it implies that the theory as

it stands provides few predictions about the relationship between aggregate

consumption and asset price or aggregate quantity fluctuations that are

robust to $1 "mistakes" or misspecifications.

These results are not a criticism of dynamic economic theory or its

empirical application in general. Dynamic optimization by fins may be

exempt because of fins' larger size and different structure. Studies of

consumption in microeconomic data sets, in which income and investment

opportunities show orders of magnitude greater variation over time and across

individuals than in aggregate data, may well escape the criticism of this

paper. Large utility costs could appear in studies that use aggregate data,

if they include nonstandard utility functions with at least two orders of

magnitude greater risk aversion, other freçuencies (life-cycle allocation

instead of cyclical allocation or period to period orthogonality), or data

sets from other times or countries with orders of magnitude greater

varaibility in consumption. If a theory departs from the representative

consumer setup of most current empirical work to a disaggregated framework in

which the cyclical variation in consumption is due to only a few people, the
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costs of misbehavior to those people may be high.

Nonetheless, the calculations and the existence of alternatives with

arbitrarily small ratios of costs to deviations presented in this paper

suggest that calculations such as these are a worthwhile robustness check in

these other environments as well.
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Table 1

Upper bound for utility loss from a perturbation Ac

Assumed c and Ac

Ac/c Ac 5 10 30

.86% $5.00 4.3c 22c 43c $1.29

.86% $7.50 6.50 32 650 $1.94

Losses are computed as -y Ac/c Ac (see equation (3.1.4)). The assumed values

for c and Ac are motivated by the following (end — real nondurable

consumption per capita):

— standard deviation of quarterly percent growth of cnd

— .86% x cnd per quarter in 1947 ($577)

— standard deviation of cnd - cnd1
— .86% x $3000 per year / 4

— .86% a cnd per quarter in 1986 ($871)

Risk aversion coefficient y

1

.86%

$5

$6.05

$6.43

$7 . 50
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Table 2

Utility Loss from Excess sensitivity

Bliss point and (risk aversion coefficient)

$937.50 (4) $1125 (2) $1500 (1)

$/q $/pv $/q $/pv $/q $/pv

— 0.0 4.10 0.01% 2.10 0.00% 1.00 0.00%

m—0.2 0 0 0 0 0 0

— 0.4 4.10 0.01% 2.10 0.00% 1.00 0.00%

— 0.6 16.40 0.02% 8.20 0.01% 4.10 0.01%

— 0.8 37.00 0.05% 18.50 0.02% 9.20 0.01%

int — 1.0 65.70 0.09% 32.90 0.04% 16.40 0.02%

The column marked M$/qlt gives the dollar per quarter utility cost of

following the indicated marginal propensity to consume, or c — rk + +

calculated by equation (3.2.10). The column marked "$/pv" gives the

tine 0 dollar utility cost as a percent of the time 0 present value of

income, equation (3.2.12). The local risk aversion coefficient corresponding

to each bliss point is l/(a/c-1). The parameters are interest rate r —.012

(5 percent per year), AR(l) coefficient on income p — .95, standard error of

income AR(1) a.— $6.43, Initial — mean income y0 — — $300014. The optimal

* rmpc is m —
1+r-p

— .2
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Table 3

Utility Loss from "too smooth" consumption when income is a random walk

Bliss point and (risk aversion coefficient)

The entries in the table are the dollar per quarter utility loss and the

total utility loss / time 0 value of income. Income is a random walk;

the optimal marginal propensity is 1, and the alternative is that consumption

responds to a long moving average of past income

+ + 1 N

(N+l) j-.O
-

The calculations are detailed in the Appendix.
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$937.50 (4) $1125 (2) $1500 (1)

$/q $/pv $/q $/pv $/q $/pv

N+l — 2

N+l — 4

— 8

N+l — 20

— 40

2.8c. .004% l.4c .002% 0.7c .001%

9.7Q .013% 4.9c .006% 2.4c .003%

24.0c .032% l2.0 .016% 6.0c .008%

65.4 .087% 32.7c .044% 16.3c .022%

$1.28 .170% 64.Oc .085% 32.0c .043%



Table 4

Dollar loss / quarter from smoothing interest rates

Risk aversion i and Moving average of past interest rates

autocorrelation p 1 year 5 years 10 years

7—2 p— .841 5c 76C $1.45

-7—5 p—.81.l 2C 30c 56c

lc 15c 28

-r—5•i'— 0 0 8 26

The entries are the dollar cost per quarter of using a moving average of

past interest rates in the place of the one period rate. To calculate the

entries 1 1) generated an interest rate path for 200 quarters and took an N+l

period moving average of the interest rate; 2) generated optimal and

alternative consumption paths; 3) multiplied the alternative path by a

constant, so that the present value of the optimal and alternate paths is the

same; 4) evaluated the achieved utility of each consumption series; 5)

converted the utility losses to a dollar quarterly flow. I used the same

interest rate path for each entry. The parameters are — 1.012 per quarter

(1.05 per year), — .012 (.05 annual) , c0— $750/quarter ($3000/year) —

l/(l.012) or l/(l,05) annual. p — .841 (corresponds to p —.5 annual).
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TabI.e 5.

Utility costs of tolerating predictable Euler errors

Assumed predictability

0.01 0.05 0.10 0.25 0.50 0.90 1.00

R2 — (cPt/Act0t)2 0.00 0.00 0.01. 0.06 0.25 0.81 1.00

cPted/c (%) 0.01 0.04 0.09 0.21 0.43 0.77 0.86

($) 0.06 0.32 0.64 1.61 3.21 5.79 6.43

1 0.00; 0.01; 0.06; 0.34; 1.38; 4.46; 5.51;

— coeff. of 2 o.ooc 0.03; o.i.1; 0.69; 2.76; 8.93; 11.0;

relative risk 5 o.oo; 0.07; 0.28; 1.72; 6.89; 22.3; 27.6;

aversion 10 o.oic 0.14; o.ss; 3.44; 13.8; 44.6; 55.1C

30 0.02 0.41; i.&sc 10.3; 41.3 $1.33 $1.65

Utility costs are in dollars per quarter. The top four rows give four

measures of the assumed predictability of consumption growth or changes,

which equal the Euler error with constant interest rates. The table entries

predictable 2
are calculated as 7 (tc ) Ic.
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Appendix

i. Near-Rationality near an optimum.

If the objective is twice differentiable, first order deviations have

second order effects even if we don't start precisely at an optimum. The

problem is

max f(x)
(x)

Expand f about a point x° near x. Then

a f' (x°) ax + f"(x°) ax2

We can expand the derivatives around the optimum x*as well:

o * * a *
f'(x ) a f'(x ) + f(x )(x - x )

o * * 0 *
f(x)af"(x)÷f'''(x)(x -x)

so, keeping only second order terms,

a f_(x*) (Ax (x0 - x*) + ax2)

For fixed x°, deviations Ax have first order losses, but the ratio of losses

to deviations can be made arbitrarily small by choosing small enough regions

for x° as well as small enough Ax.

V > 0 3 6, v s.t. IxOx*J < 6 and Ax < v c al/ax < €.

This point carries over to the consumer's problem.
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II. Attained Expected Utility for Linear-Quadratic Problems.

A. General Problem.

The general problem can be stated as: find

(A.l) tJ(X) — EtE$J R

where X evolves according to

(A.2) — at-i + . E(E÷1) — 0 ; E() — S

is a vector of state variables; the decision rule relating consumption to

state variables has been substituted in to derive (A.l) and (A.2). Either

substituting (A.2) in (A.l), or guessing a quadratic form and verifying it,

we have

(A.3) U(X) — P + hr Trace(PS)

where

(A.4)

j —o

or

(A.5) P — ft ÷ A'PA

(See Sargent (1987).) Different decision rules will yield different values

for A. and hence different achieved utilities
U(X).

B. Utility losses from excess sensitivity

For the model in equations (3.2.1) - (3.2.3) with decision rules of the

form (3.2.7), the attained level of utility is

(A.6) U — -1/2 E E fl1 (ct+j
-

.1—0
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Define the vector of state variables

(A.7) X — [1 k z]'

where — - y. Then, consumption is

— + —— +
(A.8) - c — rk + y - c + m — [(y-c) r m ) X — F X.
so we may write the objective (A.6) in the form (A.l) with

(-) r(-) m(-)
(A.9) R — -1/2 Fl" — -1/2 r(-) r2 mr

+-— + 2m(y-c) mr r

Xe evolves as follows: using the laws of motion for income and capital,

(A.l0) — pz1 ÷

(A.ll) k+i — (l-s-r) Ic ÷ - ct — + (lm)z
we can write the law of motion for X in the form (A.2) with

10 0 0

(A.12) A — 0 1 (1-rn) , E—
00 p

For this model, I will derive (3.2.14) as an analytic solution to (A.5).

The idea of the analytic solution is the following: from (A.5), form

(A.13) Vec(P) — Vec(R) + $ Vec(A'PA)

where Vec(.) creates a vector by stacking the rows of a matrix. Using

(A.l4) Vec(AB) — (IØA)Vec(B) — (B'øI)Vec(A),

we have

(A.15) Vec(P) — Vec(R) + fi (A'@A')Vec(P).

We can't quite collect terms in Vec P and invert because P is symmetric, so

only the diagonal and one off diagonal side can be chosen independently. To

remedy this problem, let M be a matrix that deletes redundant rows of Vec(P),
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and let N be a matrix that takes N Vec(P) and restores the redundant rows, so

that Vec(P) — N (H Vec(P)). Then, from (A.lS),

(A.l6) N Vec(P) — H Vec(R) + fi N (A' A') (N H Vec?)

so'

(A.l7) (H Vec F) — (I - fi H (A' 0 A') N )1 H Vec(R).

Equation (A.17) can be used to calculate P and hence U — X'PX ÷ 1/r Trace(P2)

for a given A R and S.

For the consumer's problem, denote the elements of P by

abc
(A.18) F— bde

cef

Then, (A.17) becomes

——2a -(y-c) a

b r(-) b

c — 1/2 m(E-) + fi (1-nOb + pc

(A.19) d -r2 d

e -rm (1-m)d +pe

-in2 (lm)2df2p(lm)e+p2f
Solving,

a

b

c (-)/2(l-flp)
(A.20) 4 -r2/2(l-fl)

e -r/(l-$p)2

I -1/(2(l-$p2) (m2+r(1m)2+2pm*(lm))
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And using these, we can evaluate achieved utility X'PX + l/r Trace(PE).

Since rn only enters in f in (A.20), utility losses from following a

different m evaluated at — y or — 0 depend only on lit Trace PS. In

turn'

(A.21) l/r Trace Pt— o2f/r —

— -
C

2 [
m2 + r(l-rn)2 ÷ 2prn*(1rn) ]

2r(l-$p )

a2(l+r) I * 2 *2 l+r+p *—- 21(m-m) -m +
2r(1-flp )L l+r

*
Hence, the utility loss of using m rather than in is

a2(l+r) * 2 (l+r)2u2 * 2
(A.22) AU —

2 (rn-rn ) —
C

(rn-rn
4(l-$p ) 2r(l+r-p )

which is equation (3.2.9) in the text.

C. Utility losses from consumption equal to a long moving average of income

Income follows

(A.23) y — 't-l +

optimal and alternate consumption are

(A.24) c—rk+y
* *— (l+r) lc1 + y1 - c1 —
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1 N+ +
— rk + — I

N+1 j—0
N 1 N

— (1+r)k1 + - c1 — + -i -

jlyt-j
Thus, we can take the state vector as

(A.25) — [1 k (y-)
the matrices A, F and E are

10 1 1 1

o i N/(N-4-l) -1/(N+1) -1/(N+1)

(A.26) A— 00 1 0 0
00 1 0 0
00 0 1
00 0 0

(A.27) F — [ (-) r 1/(N+l) 1/(N+1) (1/N+1)
]

00 0

00 0
(A.28) 2— 000200

To calculate the entries of Table 4, I calculated P using (A.4) and then

trace P2. By using a doubling algorithm, the entries in Table 4 include 213

elements of the sum.

41



References

Akerlof. George A. (1979) "Irving Fisher on his Head: The Consequences of

Constant Threshold-Target Monitoring of Money Holdings" Quarterly

Journal of Economics fl, 169-187.

Akerlof, George A. and Yellen, Janet L. (1985a) "A Near Rational Model of the

Business Cycle with Wage and Price Inertia" The Quarterly Journal of

Economics 1QQ. 824-838.

Akerlof, George A. and Yellen Janet L. (1985b )"C..2 Small Deviations From

Rationality Make Significant Differences to Economic Equilibria?"

American Economic Review fl, 708-720.

Akerlof, George A. and Yellen Janet L. (1987) "The Macroeconomic Applications

of a Dynamic Envelope Theorem" Manuscript, University of California,

Berkeley.

Campbell, John and Deaton, Angus (1987) "Is Consumption COO Smooth?" NBER

Working paper 2134.

Christiano, Lawrence J., Eichenbaum, Martin, and Marshall. David (1987)

"The Permanent Income Hypothesis Revisited" Federal Reserve Bank

of Minneapolis Working Paper 335.

42



Cochrane, John H. (1988a) "Production Based Asset Pricing: an Empirical

Approach to the Link Between consumption and Macroeconomic

Fluctuations", Manuscript. University of Chicago.

Cochrane, John H. (1988b) "Bounds on the Variance of Discount rates Implied

by Long Horizon Predictability of Stock Returns" Manuscript, University

of Chicago.

Cochrane, John H. and Sbordone, Argia M. (1988), "Multivariate Estimates of

the Permanent Components of GNP and Stock Prices" • Journal of Economic

Dynamics and Control fl, 255-296..

Epstein, Larry C. and Zin, Stanley S. (1987) "Substitution, Risk Aversion and

the Temporal Behavior of Consumption and Asset Returns I: A Theoretical

Framework" Manuscript, The University of Toronto and Queen's University.

Flavin, Marjorie A. (1981) "The Adjustment of Consumption to Changing

Expectations about Future Income." Journal of Political Economy fl,

974-1009.

Hall, Robert E. (1978) "stochastic Implications of the Life Cycle-Permanent

Income Hypothesis: Theory and Evidence." Journal of Political Economy

M. 971-88.

Hansen, Lars Peter (1987) "Calculating Asset Prices in Three Example

43



Economies" in Bewley, T.F., ed., Advances in Econometrics: Proceedings

of the Fifth World Congress Cambridge University Press

Hansen, Lars Peter and Singleton, Kenneth J. (1983) "Stochastic Consumption,

Risk Aversion and the temporal Behavior of Asset Returns," Journal of

Political Economy 21. 249-265.

Jones, Stephen R. J. and Stock, James H. (1987), "Demand Disturbances and

Aggregate Fluctuations: The implications of Near-Rationality" Economic

Journal 22. 49-64.

Kocherlakota, Narayana R. (1988), "What are the Preferences of the

Representative Consumer?" Manuscript, Northwestern University.

Lewbel, Arthur (1987) "Bliss Levels that Aren't" Journal of Political Economy

j, 211-215.

Lucas, Robert E. Jr. (1987), Models of Business Cycles. Basil Blackwell, New

York.

Mankiw, N. Gregory, and Shapiro, Matthew 1). (1985) "trends, Random Walks and

the Permanent Income Hypothesis" Journal of Monetary Economics fl,

165-174.

Poterba, James M. and Summers. Lawrence (1987) "Mean Reversion in Stock

44



Prices: Evidence and Implications" NEER working paper 2343

Sargent, Thomas, Dynamic Macroeconomic Theory (1987) Harvard University

Press, Cambridge Mass.

tjest, Kenneth 0. (1988) The Insensitivity of Consumption to News About

Income" Journal of Monetary Economics fl, 17-34.

45



Footnotes

*Department of Economics, University of Chicago. 1126 E. 59th St., Chicago

111. 60637. I am grateful to George Akerlof, Martin Eichenbaum, Elizabeth

fama, Lars Hansen and two anonymous referees for many helpful comments. This

research was supported in part by a grant from the National Science

Foundation.

tFor example, Cochrane (l988a) presents an asset pricing model derived from

firm's first order conditions.

2J economic theory of the contracting problems that prevent the emergence of

markets in the ownership of people or other institutions that could remove

the small surpluses of cyclical mis-allocation is beyond the scope of this

paper. Beyond the obvious agency questions and the unobservability of

utility (as compared to earnings), the fact that cyclical allocations ($7.50

more this quarter, $7.50 less the next) are so small compared to other

elements of individual consumption decisions is probably part of the reason

that we do not observe such institutions.

3Jones and Stock (1987) also consider this extension.
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41n a more formal presentation, we specify an underlying probability space

(O,F,P), and a nondecreasing sequence of sub a-algebras of F, s, that

comprise the consumer's information set. s can be generated by current and

past observations of a collection of observed random variables x(t). Then

the object that the consumer chooses is a sequence of random variables

c:Q 9 9. where each c is measurable with respect to St.

5Non-state-separable preferences (see Epstein and Zin (1987) or Kocherlakota

(1988)) are typically adopted to plausibly use a value of the coefficient of

risk aversion or intertemporal substitution around 30. Utility costs are

roughly linear in the coefficient of risk aversion, so one needs risk

aversion coefficients of 100 or so to get an order of magnitude increase in

utility costs, or $10 per quarter. On the other hand, utility functions that

include durability ("nondurable consumption" includes clothes) allow greater

variation in consumption for the same utility costs.

6The consumer's problem can often be written as a dynamic program,

V(k, At) — max u(c) ÷ $EV(Rtk + y - c, A+j)
(c

Where At is a listing of shocks. Then, the second order effects are

1 * * 2AU a [ u(c) + $E Vkk(kt+l. A1) ] Ac

Since u(c÷1) < vkk(lct+l. At+1) < 0 the same approximate bounds follow.

Since the functional form of V is often not known, the upper bound in (3.1.4)

is easier to use for order-of-magnitude calculations.
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7To derive the consumer's optimal decision rule, express the budget

constraint in present value form:

1c + t+j — a.s.

The consumer's first order conditions (2.2) are c — ( ). Then, take

the expected value of the budget constraint, plug in the first order

conditions to obtain the decision rule:

+ sEp E(Y÷j) —
O

- c / r

(Hansen (1987) and Lichenbaum Christiano and Marshall (1988) derive similar

decision rules in more general versions of this model.)

8We can also vary the coefficient on the 1c term in the consumption decision

rule, to r+ instead of r. As long as l+r-rtl 'C 1/fl the budget constraint

will be satisfied.

9Assessing whether this alternative could generate Flavin's statistical

*
rejection is a little more subtle. Though Flavin's estimate of rn-rn was

nearly 2 standard errors away from 0, the weight of flavin's statistical

evidence came from combined excess sensitivity to eight lags of income rather

than from contemporaneous income alone, and from the predictive power of all

eight lags of income for consumption changes. However, the excess smoothness

alternative considered here generates about the same predictability of

consumption changes (R2) as is found in a replication of flavin's regression

of consumption changes on eight lags of income, which is a more precise

indication that this alternative can account for the statistical rejection.
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10
The weight of Campbell and Deaton s statistical evidence also came from

predictability of Euler equation errors rather than rejection of the optimal

innovation variance of c/y in favor of these alternatives. The excess

smoothness alternative generates predictable consumption changes (R2)larger

than those found by Campbell and Deaton, so it can also account for the

statiflical rejection.

more complex environments, for example those that include stochastic

interest rates, we can find utility costs as in the linear quadratic case, by

solving a Bellman-like equation

V(k. shocks) — u(c) + flEV(k+1, shocks+1).

after we specify the alternative decision rule relating c to k etc.
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