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ABSTRACT

We rank counties in the United States of America with respect to population health. We utilize 
the five observable county health variables used to construct the University of Wisconsin 
Population Health Institute’s County Health Rankings (CHRs). Our method relies on a factor 
analysis model to directly compute weights for our rankings, incorporate county population sizes 
into the variances, and allow for spillovers of health stock across county lines. We find that 
demographic and economic variation explain a large portion of the variation in health rankings. 
We address the importance of uncertainty caused by imputation of missing data and show that the 
use of rankings leads to inherently greater uncertainty. Analyzing the health of counties both 
within and across state lines shows substantial degrees of disparity. We find some disagreement 
between our ranks and the CHRs, but we show that much can be learned by combining results 
from both methods.
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1. Introduction:

Over time, both the prevalence and importance of rankings have grown considerably.  Whether 

designed to compare universities, products, cities, or nations, rankings produced using a wide 

array of inputs regularly influence the decisions and opinions of individuals, firms, and 

governments (Marginson and van der Wende 2007, Giffinger and Gudrun 2010, Wolff et al. 

2011, Qui et al. 2018). Rankings are generally well suited for combining complicated outcomes 

into a single easily understood measure that is comparable across units. This approach is 

especially important in cases where a quality of interest is difficult or impossible to observe 

using a single variable. 

     A prime candidate for the use of rankings is the measurement of county-level health. Given 

health’s multidimensional nature, researchers and policymakers often rely on rankings to 

combine information from multiple sources into a tractable outcome. For health at the county-

level, rankings may compel individuals within counties to take more active roles in improving 

the health of their communities. Policymakers can also use these rankings directly or as a 

framework for understanding which interventions prove effective in improving the health of a 

county’s residents. 

     While county health rankings are important to policymakers, researchers, and other interested 

parties, creating them is challenging for two primary reasons. First, no single observable 

outcome captures county health. To overcome this restriction, a consistent method for combining 

information from different inputs is needed. The second difficulty is the need to account for 

uncertainty in the rankings. There may be considerable levels of uncertainty for smaller counties 

which often have less reliable data. Furthermore, since many observed health variables have 
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large amounts of missing data, uncertainty in the final rankings should incorporate error caused 

by the noisy imputation procedures used to replace missing values. 

     The most commonly used rankings of county health come from the University of Wisconsin 

Population Health Institute’s (UWPHI’s) County Health Rankings (CHRs). The CHRs produce 

rankings of county health for each state which have been used both directly and indirectly by 

local policymakers concerned with crafting interventions to improve the health of their 

communities.1 While the CHRs are easy to calculate and interpret, there are several potential 

concerns with their design. First, the CHR of each county is calculated using a weighted average 

of five normalized manifest variables, the weights for which are subjectively determined rather 

than estimated using data. These deterministic weights rely on the assumption that each 

variable’s relative contribution to the measure of county health is known. The second issue is 

that the CHRs do not incorporate uncertainty into their final rankings even though a significant 

number of missing observations are imputed. Without a measure of uncertainty, knowing 

whether differences in ranks between counties are statistically significant or not is impossible. 

Finally, the CHRs only rank counties within the same state, making it impossible to examine the 

relative health of counties across state lines. While certain questions of interest involve within-

state comparisons, there are many cases where a set of national rankings is required.  

     In this paper, we use a Bayesian spatial factor analysis model to estimate rankings of county 

health. Our approach has several advantages. First, the variable weights used in our model are 

estimated directly. By estimating factor weights, we allow the data to determine the relative 

contribution of each variable to our health measure rather than relying on expert opinion. 

 
1 For examples of how the CHRs have been used in policy, see http://www.countyhealthrankings.org/explore-health-

rankings/use-data/communities-using-rankings-data. 
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Second, we summarize the posterior distribution of health rankings for each county instead of 

providing a single point estimate. With a distribution of rankings, we can evaluate uncertainty 

regarding the rank and relative health of each county. Third, we allow for spatial correlation in 

the variance of our rankings to capture potential health spillover effects across county borders. 

The variance of our estimates also changes inversely with county population, capturing the 

increased uncertainty of data sampled from less populated counties. Finally, our model directly 

incorporates the estimation error produced by imputing missing data into the overall uncertainty 

of our estimates. 

     We estimate our model with the data used to calculate the CHRs in 2015. Rather than 

restricting our results to within-state rankings, we estimate county health ranks jointly for the 

entire nation. Our study builds on the work of Hogan and Tchernis (2004) who use the spatial 

factor analysis model to produce census-tract-level rankings of material deprivation in Rhode 

Island, and Courtemanche et al. (2015) who use the CHR variables to estimate within-state 

health rankings for counties in Texas and Wisconsin. In addition to addressing the technical 

limitations of other rankings, our results allow for the direct comparison of county health across 

state lines. Comparing the health of all counties to one another allows us to discern essential 

characteristics of county health throughout the country. 

     We find significant differences between the manifest variable factor weights estimated by our 

model and the deterministic weightings used by the CHRs. Our model assigns less weight to 

early mortality and low birthweight and more weight to outcomes of physical and mental health 

among adults. Our mean posterior health rankings generally agree with those of the CHRs, but 

there is more disagreement between the two measures towards the middle of the rank 

distribution. The level of agreement between both rankings suggests a higher level of certainty 
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regarding the relative health of the most and least healthy counties versus those of average 

health.  

     Looking at our rankings of county health across the nation, we find a large degree of health 

disparity both within and across states. While some states have relatively tight distributions of 

county health, many contain a disparate mix of healthy and unhealthy counties. We also find that 

the healthiest counties in some of the unhealthy states fall well below the average health level for 

counties in high performing states. Using data from Chetty and Hendren (2018), we show that a 

county’s level of adult economic mobility among children born to low-income households has a 

significant impact on its health ranking. Furthermore, we find that the effect of economic 

mobility and race covary with one another, suggesting a complex relationship between a 

county’s racial makeup, economic mobility, and population health. 

     We also show that there is a substantial degree of uncertainty in our model’s rankings, 

implying that any single set of rankings represents only one of many plausible orderings. The 

level of uncertainty varies considerably across counties, however. For example, we are more 

certain of relative health among the set of counties in the bottom 10% of health according our 

model and the CHRs. We find that most of these “bottom 10%” counties are in one of five states, 

further illustrating the underperformance of certain areas when compared to the national 

distribution.    

     Finally, we examine causes of the uncertainty in our rankings as well as methods which can 

reduce the overall level of uncertainty. We show that the amount of uncertainty can be decreased 

for most counties using alternative imputation procedures that ignore imputation error in the final 

estimation. Furthermore, we find that the use of rankings rather than directly using estimates of 
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latent county health drives a substantial portion of the uncertainty in our results. Given that 

rankings inflate the level of uncertainty in a county’s health, it is even more concerning that 

traditional measures like the CHRs do not include a measure of uncertainty.  

     The remainder of the paper is structured as follows. Section 2 discusses methodology 

underlying the CHRs and our model. Section 3 provides an overview of our approach to 

imputing missing data. In Section 4, we discuss the data used in the study. Section 5 presents our 

results and Section 6 concludes.       

 

2. Methods: 

We begin with an overview of the University of Wisconsin Population Health Institute’s 

(UWPHI’s) County Health Rankings (CHRs). Rather than jointly ranking all counties in the 

nation, the UWPHI produces separate sets of CHRs for each state. Creating these state-level 

rankings begins by choosing which counties to rank as the UWPHI does not produce CHRs for 

certain counties due to data concerns. Among the ranked counties, any missing observations are 

imputed using the state mean. Each outcome variable is then normalized as z-scores. A weighted 

average of these z-scores is used as the health score for each county. Finally, within-state health 

rankings are produced by ordering the health scores of each county.2 

     Our model builds on the assumption that the CHR’s five observed variables are 

manifestations of a single latent construct - county health. In contrast to the CHR’s deterministic 

weights, we use data to estimate the strength of the relationship between each manifest variable 

 
2 For additional information regarding the CHR’s methodology, see https://www.countyhealthrankings.org/explore-

health-rankings/our-methods/rankings-overview 
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and latent health. We assume a linear relationship between the latent health variable and 

observable outcome variables with a Gaussian error structure such that 𝑌𝑖 = 𝜇 + 𝜆𝛿𝑖 + 𝑒𝑖, where 

𝑌𝑖 is a vector of the observed outcome variables for county i, 𝜇 is a vector of outcome variable 

specific means, 𝜆 is a vector of outcome specific factor loadings, 𝛿𝑖 is the scalar-valued latent 

health of county i, and 𝑒𝑖 is a vector of Gaussian distributed idiosyncratic error terms. We further 

assume that the error terms are uncorrelated both within- and across-counties, implying that 

𝑉𝑎𝑟(𝑒𝑖) ≡ Σ = 𝑑𝑖𝑎𝑔(𝜎𝑗
2), where j indexes the set of observed manifest variables. Stacking over 

all n counties, the model can be written in hierarchical form as:  

𝑌|𝛿~𝑁(𝜄𝑛⨂𝜇 + Λ𝛿, 𝐼𝑛⨂Σ),  𝛿~ 𝑁(0, 𝐼𝑛⨂𝜇) 

where Λ = 𝐼𝑛⨂𝜆, 𝜄𝑛 is an 𝑛 × 1 vector of 1’s, and 𝐼𝑛 is an 𝑛 × 𝑛 identity matrix. 

     We next alter our model to incorporate uncertainty from population size. We assume that the 

variances of our latent factor and idiosyncratic errors are both decreasing in county population. 

Defining 𝑀 = 𝑑𝑖𝑎𝑔(𝑚𝑖), where 𝑚𝑖 is the population of county i, the model is written as: 

𝑌|𝛿~𝑁(𝜄𝑛⨂𝜇 + Λ𝛿, 𝑀−1⨂Σ)  𝛿~ 𝑁(0, 𝑀−1) 

The intuition behind this specification is that larger counties have less sampling error in their 

manifest variables and are less likely to have populations on the extreme ends of the health 

distribution relative to smaller counties. 

     We next add spatial correlation into the model to produce our final specification. The 

presence of spatial spillovers implies that the health of each county is partialy determined by the 

health of its neighboring counties, a feature we incorporate with spatial dependence at the factor 

level. With the addition of a spatial correlation matrix Ψ, the model is specified as: 
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𝑌|𝛿~𝑁(𝜄𝑛⨂𝜇 + Λ𝛿, 𝑀−1⨂Σ)  𝛿~ 𝑁(0, M−1/2Ψ𝑀−1/2) 

     We model spatial dependence in the latent health factor as a conditionally autoregressive 

process in which a county's health is determined by the mean health of its neighbors. We define 

county i’s neighbors as the set of counties 𝑅𝑖 which are geographically adjacent to it. Latent 

health for county 𝑖 conditional on the health of its neighbors is then modeled such that: 

𝛿𝑖| {𝛿𝑗: 𝑗 ∈ 𝑅𝑖}~ 𝑁 (∑ 𝜔𝛿𝑗

𝑗∈𝑅𝑖

, 1) 

This conditional autoregressive model yields the spatial correlation matrix Ψ = (𝐼𝑛 − 𝜔𝑅)−1, 

where 𝜔 is a spatial correlation parameter to be estimated and R is the neighborhood adjacency 

matrix with elements 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 1 if counties i and j are adjacent, and 0 otherwise (including that 

𝑟𝑖𝑖 = 0).  

     Using a Bayesian approach to estimate our model, we also specify prior distributions for our 

parameters. We use a set of conjugate non-informative priors which simplify the derivation of 

the conditional posterior distributions without contributing significant information to our 

estimates. This specification implies that the posterior distributions of our model are informed 

almost entirely by the data rather than the prior distributions. The posterior distribution of model 

parameters and county ranks are then estimated using Markov Chain Monte Carlo methods (Chib 

and Greenberg 1996). More specifically, we use a Gibbs sampling algorithm (Gelfand and Smith 

1990) with a Metropolis-Hastings step (Chib and Greenberg 1995) for the estimation of 𝜔. The 

details of our prior distributions and estimation algorithm are discussed in Hogan and Tchernis 

(2004).  
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3. Missing Data: 

The CHRs deal with missing data in two ways: not ranking certain counties with missing data 

and imputation. Given that we would like to lose the fewest possible number of counties, we 

choose to impute missing data for all counties with at least one non-missing outcome variable.  

     While there are many ways to impute data, the CHRs replace missing observations with state-

level means. There are two primary concerns with this approach. First, using state-level means 

does not incorporate the inherent uncertainty of the imputation process into the final rankings. 

The second issue is that rankings for counties with more missing data are likely to be biased if 

they are systematically different from counties with little to no missing data.  

     As an alternative to state-level means, we use a posterior imputation procedure. Our posterior 

imputation method consists of adding one step to our Gibbs sampling routine wherein we sample 

missing manifest variable observations using the first level of our model conditional on the 

current iteration’s draws of latent health and parameter estimates. This approach allows us to 

holistically incorporate uncertainty from missing data into the posterior distributions of our final 

rankings. We evaluate the impact of different imputation procedures on our estimates in Section 

6 using state averages and Predictive Mean Matching (PMM).  

 

4. Data: 

We use the set of CHR manifest variables in 2015 which includes one mortality measure and 

four morbidity measures. The mortality measure used is years of potential life lost before age 75 

(YPLL) which is compiled by the National Center for Health Statistics (NCHS) using the 2010-

2012 mortality files. Three morbidity measures come from the Behavioral Risk Factor 

Surveillance System Survey (BRFSS) using 2006-2012 data: percentage of adults reporting fair 
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or poor health (FP%), average number of reported physically unhealthy days (PUD), and average 

number of reported mentally unhealthy days (MUD). The final morbidity variable is the 

percentage of live births with low birth weight (LBW) which comes from the 2006-2012 NCHS 

natality files. 

     Among the set of all 3,142 U.S. counties and county equivalents, 79 are not officially ranked 

by the CHRs. The three states with the most unranked counties are Texas with 17, Nebraska with 

15, and Montana with 10. Of the officially ranked counties, 142 are missing YPLL rate, 400 

counties are missing FP%, 334 are missing PUD, 552 are missing MUD, and 99 are missing 

LBW. Given the considerable amount of missing data, it is especially important to consider how 

noisy imputation procedures influence the overall uncertainty of relative health and its 

subsequent ranking. 

 

5. Results: 

We now present our results. First, we discuss the factor loadings and normalized squared 

correlation coefficients of the five manifest variables. Second, we examine the levels of across- 

and within-state variation in our health rankings. Third, we estimate regressions of our posterior 

mean health rankings and each of the five manifest variables on a set of socioeconomic outcomes 

to see which observable factors best explain county health. Fourth, we compare our data-driven 

posterior mean rankings to a set of rankings produced using the CHR’s methodology and discuss 

how well both measures agree with one another. Fifth, we evaluate the level of uncertainty 

present in our primary results. Sixth, we examine the set of counties in the bottom 10% of health 

according to the ranks produced by our model and the CHRs. Seventh, we analyze how the 

amount of uncertainty changes under different imputation strategies. Finally, we discuss the 
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increase in uncertainty inherent to the use of rankings rather than directly using estimates of 

underlying health.   

 

Factor Loadings and Normalized Squared Correlation Coefficients: 

Table 1 shows the posterior mean and 95% confidence interval of each manifest variable’s factor 

loading, residual standard deviation, and normalized squared correlation coefficient. Following 

Hogan and Tchernis (2004), the normalized squared correlation coefficients signify the 

proportion of variation in latent county health that is explained by each manifest variable, giving 

us a comparable measure to standard index variable weights. 

     Looking at the mean posterior factor loadings of our five manifest variables, we find that the 

rate of fair/poor health and years of potential life lost rate have the largest and second largest 

loadings, respectively, while the factor loadings for rate of low birth weight, physically 

unhealthy days, and mentally unhealthy days are substantially smaller. When considering the 

posterior standard deviations of each residual, however, we see that years of potential life lost 

rate, number of mentally unhealthy days, and rate of low birth weight have posterior mean 

residual standard deviations larger than their mean factor loadings. The relative magnitudes of 

both the mean factor loading and residual standard deviation features directly into our 

normalized squared correlation coefficients. We find that rate of self-reported fair/poor health 

and number of physically unhealthy days explain the largest shares of variation in latent county 

health at 0.28 and 0.27, respectively. Both years of potential life lost rate and number of mentally 

unhealthy days have mean normalized squared correlation coefficients of 0.18 while rate of low 

birth weight explains the smallest portion of variation in latent health at 0.08.  
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     Comparing our normalized squared correlation coefficients in Table 1 to the weights used by 

the CHRs, we find a considerable amount of disagreement regarding the relative contribution of 

each manifest variable. While years of potential life lost rate is assigned the weight of 50% in the 

CHRs, we find that it captures only 18% of the variation in latent county health according to our 

model. Furthermore, self-reported rates of fair/poor health and average number of physically 

unhealthy days receive a weight of 10% under the CHRs while we find that they explain the 

most variation in our latent factor at 28% and 27%, respectively. The rate of babies born low 

birth weight explains the least amount of variation in county health according to our estimation 

but receives the second highest weight in the CHRs at 20%. We find the most agreement 

between our squared correlation coefficients and the CHR’s weights for number of mentally 

unhealthy days, but the two measures still differ by roughly 80%. The CHR weights of all five 

manifest variables do not fall within the posterior 95% credible intervals of the squared 

correlation coefficients estimated using our model.       
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Table 1: Posterior Means and 95% Confidence Intervals of Model Factor Loadings, Residual Variances, 

and Normalized Squared Correlation Coefficients 

 Factor Loadings 

(95% CI) 

Residual Standard 

Deviations 

(95% CI) 

Normalized 

Squared Correlation 

Coefficients 

(95% CI) 

YPLL Rate 19.25 

(18.45, 20.01) 

22.20 

(21.53, 22.92) 

0.18 

(0.17,0.19) 

Self-Reported 

Fair/Poor Health 

57.30 

(55.23, 59.32) 

39.30 

(37.56, 40.99) 

0.28 

(0.27,0.29) 

Physically 

Unhealthy Days 

9.74 

(9.37, 10.10) 

7.52 

(7.23, 7.81) 

0.27 

(0.26,0.29) 

Mentally 

Unhealthy Days 

7.43 

(7.06, 7.79) 

9.48 

(9.19, 9.78) 

0.18 

(0.15,0.20) 

Low Birth Weight 

Rate 

10.90 

(10.16, 11.67) 

23.53 

(22.91, 24.17) 

0.08 

(0.07,0.09) 

 

 

Comparing County Health Rankings Within and Across States: 

While the official CHRs separately rank county health by state, there are often cases that require 

comparisons across state lines. Figure 1 shows box plots of the mean posterior health rankings 

produced by our model separated by state, with lower rankings corresponding to better 

population health levels and higher rankings representing worse population health. The figure 

illustrates a considerable degree of disparity in the rankings of county health both across and 

within states. For example, the healthiest county in Mississippi, DeSoto, has a mean posterior 

rank roughly 1,000 ranks away from the state’s median, making it an extreme within-state 
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outlier. However, while DeSoto is the best performing county within Mississippi it falls below 

the median county rank of 31 healthier states. Therefore, even though DeSoto is found to be the 

healthiest county in Mississippi, it performs worse than average in most states and would even be 

an unhealthy outlier in some of the nation’s healthiest states. A system that only ranks counties 

within states would make this comparison impossible as DeSoto would be indistinguishable from 

the top ranked counties of the other 49 states. 

     We can make a similar comparison for the least healthy counties located in otherwise healthy 

states. Counties in Iowa are the nation’s healthiest at the median, but the state also has a few 

unhealthy outliers. The least healthy county in Iowa, Appanoose, has a mean posterior rank of 

2,289, placing it nearly 2,000 ranks away from the state’s median rank. While Appanoose is 

considered an extremely unhealthy county within Iowa, it still outperforms the median county in 

eight of the nation’s least healthy states. If we were to simply rank the counties in Iowa, 

Appanoose would remain the worst ranked county but the degree to which the county 

underperforms relative to its peers would be masked.    

     The within-state county health disparities shown in Figure 1 are also unobservable if counties 

are ranked separately on a state-by-state basis. For example, Michigan, New York, and Illinois 

have counties with mean posterior ranks at nearly every point of the national distribution, 

implying that the three states include a mix of the country’s most and least healthy counties. 

Alternatively, while the median county health rank in Deleware is worse than Michigan, New 

York, and Illinois, its distribution of health is much tighter. This indicates lower levels of within-

state disparity in Delaware. Again, these comparisons cannot be made when rankings are 

calculated separately for each state. 
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Figure 1: Box Plots of Posterior Mean Rankings of County Health by State 

 

 

Explaining County Health Ranks: 

We now turn to the factors associated with a county’s health ranking. To investigate which 

variables significantly predict ranks, we first estimate regressions of our model’s mean posterior 

ranks on a set of county-level socioeconomic outcomes including total population, the 
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percentage of residents with less than a high school education, average income, income Gini, 

percentage of black residents, and the percentage of Hispanic residents.3 We then include 

measures of a county’s adult economic mobility among children born to low-income families. 

For ease of interpretation, all independent variables are normalized as z-scores.    

     Table 2 shows results from three separate regressions of our mean health rankings on the set 

of county outcome z-scores. Beginning with Column 1 of Table 2, we see that a county’s 

percentage of residents without a high school education, average income, income Gini, and 

percentage of Hispanic residents all have statistically significant effects on mean posterior health 

ranks while total population and percentage of black residents do not. Having a higher proportion 

of residents with less than a high school education and greater levels of income inequality predict 

worse health rankings and counties with higher average incomes are expected to be better ranked 

than lower-income counties. The percentage of Hispanic residents is also positively correlated 

with health, implying that there may be a beneficial health return to specific features of a 

county’s racial and ethnic diversity.  

     Column 2 of Table 2 shows results from a regression of our posterior mean ranks on each of 

the variables in Column 1 along with the addition of a variable capturing the effect of living in a 

county during childhood on adult income mobility among children born to low-income parents. 

This variable comes from the work of Chetty and Hendren (2018) which we refer to from here 

on as CH. The CH variable shows an estimated percent change in future household income at 

age 26 relative to the national average caused by spending one additional year of childhood in 

the county for a child born to parents with incomes at the 25th percentile of the national 

 
3 On average, black, Hispanic, and white residents make up roughly 95% of a county’s population. We therefore 

exclude percent white as a reference group in our regressions in order to avoid high degrees of multicollinearity.  
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distribution. Positive (negative) values of the CH variable correspond to a positive (negative) 

effect from spending a year of childhood in the county on relative levels of adult income for 

children born to lower-income families. While the CH variable likely captures many things, we 

refer to it as county economic mobility throughout the remainder of this study. Like other 

socioeconomic variables used in our regressions, we normalize our CH variable as a within-

sample z-score. 

     With the addition of county economic mobility, we find the estimated effects of a county’s 

percentage of residents without a high school education, average income, income Gini, and 

percentage of Hispanic residents remain relatively unchanged compared to our results in Column 

1. Alternatively, total population and the percentage of black residents become statistically 

significant at the 1% and 0.1% levels, respectively. Both effects are negative, implying that 

counties with larger populations and higher percentages of black residents are predicted to have 

better health all else equal after controlling for economic mobility. We also find that higher 

levels of economic mobility among children born to low-income parents has an economically 

and statistically significant effect on a county’s mean posterior health ranking with greater 

income mobility predicting better health. This finding suggests that providing disadvantaged 

children with greater opportunity for economic advancement may prove beneficial to a county’s 

health level.  

     Finally, to test if economic mobility has a differential effect on county health rankings for 

counties with different racial and ethnic makeups, we include interaction terms of the CH 

economic mobility variable with the percentage of black residents and the percentage of 

Hispanic residents in Column 3 of Table 2. After including our interaction effects, we find that 

the effects of total population, percentage of residents without a high school education, average 
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income, and income Gini change only trivially. Alternatively, we find that the percentage of 

black residents becomes statistically insignificant while its interaction effect is significant at the 

0.1% level. Our results suggest that counties with higher percentages of black residents see lower 

returns to increases in economic mobility while the percentage of black residents alone does not 

have a statistically significant effect on a county’s health ranking keeping economic mobility 

fixed. Alternatively, the coefficient on percentage of Hispanic residents remains statistically 

significant at the 0.1% level while the interaction of percent Hispanic and economic mobility is 

much smaller in magnitude and only marginally statistically significant. Like the percentage of 

black residents, our findings suggest that counties with higher percentages of Hispanics see 

smaller returns to economic opportunity. Unlike percent black, we find that increases in the 

percentage of Hispanic residents living in a county has a beneficial effect on county health that is 

independent of its relationship to economic mobility. 

     We now estimate regressions of our five manifest variables on the same set of county-level 

socioeconomic variables. These estimates allow us to examine the degree to which each manifest 

variable covaries with our socioeconomic outcomes. This approach provides information 

regarding the relative contribution of each manifest variable to the overall change in our mean 

ranks.  

     Table 3 shows regressions of mean rank and our manifest variables on the set of county-level 

outcomes. All dependent and independent variables are normalized as z-scores in order to 

provide coefficients which are comparable across regressions. Looking at the results of Table 3, 

we see that the overall effect of total population on our mean ranks is largely driven by changes 

in years of potential life lost rate and rate of low birth weight. The relationship between total 

population and YPLL rate is in line with recent work showing that urban areas often have better 
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longevity at age 65 due to greater health care quality, availability, and utilization (Finkelstein et 

al. 2019). These differences in the health care environment between urban and rural areas may 

also explain the negative relationship between low birth weight and total population. The percent 

of individuals living in a county with less than a high school education corresponds to 

significantly worsened outcomes for all five manifest variables with the largest effects for the 

rate of fair/poor health and average number of physically unhealthy days. The same is true for 

county-level income Gini, but the effect is largest for YPLL rate. Alternatively, average county 

income level corresponds to significant improvements in each of the five manifest variables with 

the largest change being YPLL rate.  

     Looking to our measures of race and race interacted with economic mobility, we find several 

interesting relationships. Starting with the percentage of black residents living in a county, we 

find that increases in percent black lead to various effects on PUD and MUD depending on a 

county’s level of economic mobility. For a county with an economic mobility score of 0, 

implying that spending an additional year in the county has neither a positive nor negative effect 

on adult earnings for children born to low income parents, increases in percent black lead to 

expected improvements in number of positive physical and mental health days. Interestingly, the 

beneficial effect of percent black on PUD and MUD is larger in counties with lower levels of 

economic mobility and smaller in counties with higher economic mobility. For the percentage of 

babies born low birth weight, increases in percent black lead to substantial increases in LBW%. 

Furthermore, the effect of percent black on birth weight is independent of economic mobility. 

This finding is supported by the literature on differential probabilities of low birth weight by race 

which finds that black mothers are more likely to give birth to low birth weight babies due to 
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factors such as maternal age at time of birth and ingrained institutions related to systemic 

disadvantage among African Americans (CDC 2002, Love et al. 2010, Ncube et al. 2016).  

     Finally, we evaluate the effects of county Hispanic percent and Hispanic percent interacted 

with economic mobility on our manifest variables. Like percent black, increases in percent 

Hispanic lead to decreases in YPLL rate, rate of fair/poor health, PUD, and MUD. Unlike 

percent black, however, these effects are largely independent of economic mobility with the 

interaction only being marginally statistically significant for the regression of YPLL rate. 

Furthermore, the effect of percent Hispanic on LBW% is negative while the coefficient on 

percent Hispanic interacted with economic mobility is positive. This relationship implies that 

increases in a county’s share of Hispanic residents produces higher levels of LBW% among 

counties with higher economic mobility and lower LBW% in counties with worse economic 

mobility.  
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Table 2: Regression of Mean Ranks on Socio-Economic Outcome Z-Scores 
 (1) (2) (3) 

 Mean Posterior Rank Mean Posterior Rank Mean Posterior Rank 

Total Population 7.160 -25.69** -20.54* 

 (6.936) (8.006) (9.028) 

    

No Highschool% 373.5*** 361.7*** 333.7*** 

 (24.30) (21.73) (22.53) 

    

Mean Income -345.1*** -313.6*** -332.2*** 

 (17.98) (16.78) (17.85) 

    

Gini 176.7*** 123.9*** 130.2*** 

 (13.26) (13.25) (13.34) 

    

Black% -12.76 -119.3*** -35.74 

 (11.62) (12.68) (19.96) 

    

Hispanic% -167.3*** -151.7*** -167.8*** 

 (15.52) (14.89) (14.67) 

    

CH  -247.6*** -290.5*** 

  (15.79) (18.47) 

    

CH * Black%   115.8*** 

   (18.69) 

    

CH * Hispanic%   47.66* 

   (18.87) 

N 2832 2798 2798 

adj. R2 0.573 0.616 0.621 

Robust standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3: Regressions of Mean Rank and CHR Manifest Variable Z-Scores on Socio-Economic Outcome Z-Scores 

with CH Interactions 
 (1) (2) (3) (4) (5) (6) 

 Mean Posterior 

Rank Z-Score 

Years of 

Potential Life 
Lost Rate Z-

Score 

Rate of Fair/Poor 

Health Z-Score 

Avg Number of 

Physically 
Unhealthy Days 

Z-Score 

Avg Number of 

Mentally 
Unhealthy Days 

Z-Score 

Rate of Low 

Birth Weight Z-
Score 

Total 

Population 

-0.0233* -0.0500*** -0.0209 0.00137 0.0245 -0.0332** 

 (0.0102) (0.0123) (0.0135) (0.00842) (0.0127) (0.0104) 

       

No 
Highschool% 

0.378*** 0.270*** 0.493*** 0.427*** 0.312*** 0.151*** 

 (0.0255) (0.0293) (0.0298) (0.0311) (0.0303) (0.0257) 

       
Mean Income -0.376*** -0.380*** -0.295*** -0.266*** -0.205*** -0.0966*** 

 (0.0202) (0.0213) (0.0224) (0.0215) (0.0218) (0.0177) 

       
Gini 0.147*** 0.214*** 0.133*** 0.105*** 0.0656*** 0.121*** 

 (0.0151) (0.0186) (0.0171) (0.0189) (0.0186) (0.0157) 

       
Black% -0.0405 -0.0561* -0.0408 -0.248*** -0.221*** 0.490*** 

 (0.0226) (0.0281) (0.0298) (0.0304) (0.0374) (0.0256) 

       
Hispanic% -0.190*** -0.306*** -0.136*** -0.259*** -0.233*** -0.0763*** 

 (0.0166) (0.0219) (0.0197) (0.0203) (0.0196) (0.0216) 
       

CH -0.329*** -0.168*** -0.142*** -0.283*** -0.386*** -0.178*** 

 (0.0209) (0.0285) (0.0224) (0.0253) (0.0290) (0.0210) 
       

CH*Black% 0.131*** -0.00951 0.0860** 0.103*** 0.117*** 0.00538 

 (0.0212) (0.0262) (0.0282) (0.0289) (0.0345) (0.0257) 
       

CH*Hispanic% 0.0540* 0.0595* 0.00649 0.0240 0.0400 0.0930*** 

 (0.0214) (0.0235) (0.0210) (0.0200) (0.0213) (0.0235) 

N 2798 2798 2798 2798 2798 2798 
adj. R2 0.621 0.537 0.519 0.401 0.295 0.612 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Comparing CHRs to Posterior Mean Ranks: 

We now compare the similarity of our model’s mean posterior health rankings to a set of joint 

rankings for all U.S. counties created using the official CHR methodology. Figure 2 shows the 

posterior mean ranks produced by our model on the x-axis along with the corresponding CHR of 

each county on the y-axis. While the two rankings generally agree with one another, the posterior 

mean rankings of our model most closely match those of the CHRs for counties at the top and 

bottom of the rank distribution. Alternatively, there is less agreement between both sets of 

rankings for counties towards the middle of the distribution. This comparison implies that 
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particularly healthy and unhealthy counties are relatively easy to identify and rank compared to 

counties towards the middle of the national distribution.          

 

Figure 2: CHR Ranks vs. Posterior Mean Ranks 

 

 

Mean Rankings and Uncertainty: 

Since our Bayesian methodology produces draws from a posterior distribution of health rankings 

rather than a single point estimate, we can utilize both the mean and 95% confidence interval of 

each county’s rank distribution when presenting our results. Figure 3 shows the ordered posterior 

mean ranks of each county along the 45-degree line with their corresponding 95% confidence 
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intervals represented by the solid horizontal lines. Graphically, we see a significant amount of 

uncertainty in the county health rankings produced by our model with the 95% rank confidence 

intervals of some counties reaching across the entire distribution of rankings. We also find less 

uncertainty among counties with posterior mean ranks towards the distribution’s left and right 

tails, further supporting that we have greater certainty about the relative health rankings of very 

healthy and unhealthy counties. There is, however, a significant amount of uncertainty in health 

rankings for counties at all points of the distribution.  

     The degree of uncertainty found in our rankings suggest that single point estimates provide 

very little information regarding the relative health ranking of many counties.  For policymakers 

concerned with the health of poorly performing counties, lower levels of uncertainty allow for 

greater accuracy when selecting at-risk counties for policy interventions or evaluation. We 

discuss these counties in more detail below. Additionally, with less uncertainty policymakers and 

researchers can more easily identify the nation’s healthiest counties in order to study what 

conditions produce better health. For counties with rankings towards the distribution’s middle, 

however, considerable uncertainty implies that we can only tentatively determine their health 

relative to similar counties. 
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Figure 3: Mean Posterior Ranks and 95% Confidence Intervals 

 

Identification of the Least Healthy Counties: 

While uncertainty in our model’s rankings can make it difficult to measure relative health, we 

have shown that this is not the case for all counties. Some counties have smaller mean posterior 

rank 95% confidence interval (95% CI) ranges which provides greater assurance that our mean 

estimates accurately reflect underlying relative health. Additionally, certain counties see more 

agreement between the mean posterior health rank produced by our model and the CHRs. If both 

methods capture aspects of underlying health, we may be more certain regarding the true health 

of a county when the two approaches produce similar rankings.  

     To highlight cases where relative health is easier to identify, we examine the set of counties 

which are most likely to be ranked in the bottom 10%. Counties in this bottom 10% group must 
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satisfy two to three criteria. First, the county’s mean posterior ranking must fall within the 

bottom 10% of rankings according to our model. Second, the county must also be in the bottom 

10% according to the CHRs. These two criteria allow us to include counties which are found to 

be among the least healthy regardless of which model is used. Finally, among the set of counties 

with mean posterior ranks and CHRs in the bottom 10%, we evaluate the subset of counties with 

95% CIs that do not cross the 90th percentile threshold. This further restriction provides additonal 

assurance that the counties in question truly belong in the bottom 10%. 

     Figure 4 shows the mean posterior rank, 95% CI, and CHR for counties in our bottom 10% 

group according to their mean posterior rank and CHR. We show the same measures for the 

subset of counties whose 95% CI also falls within the bottom 10% range in Figure 5. We find 

209 counties that are in the bottom 10% according to their mean posterior rank and CHR. 

Among these 209 counties, 189 have 95% mean posterior rank confidence intervals that fall 

within the bottom 10% range. Unsurprisingly, some states have no counties in our bottom 10% 

group while other states have several. Of the 209 counties shown in Figure 4, 121 are in one of 

five states: Mississippi, Alabama, Kentucky, West Virginia, and Arkansas (MAKWA). The 

mean posterior rank of counties in MAKWA and non-MAKWA states are identified in our two 

figures as red and blue, respectively. 

     Figures 4 and 5 provide a few key takeaways. First, while our approach differs substantially 

from the CHRs in certain respects, these differences do not necessarily carry over into 

subsequent rankings. By ranking 3,141 total counties, 314 will necessarily be in the bottom 10% 

under each model. We find 209 counties that are in the bottom 10% according to both, meaning 

that the two methods generally agree for nearly two-thirds of all potential counties. Furthermore, 

all but 20 of these counties have 95% rank confidence intervals that fall entirely within the 
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bottom 10% range. While Figure 3 shows that many counties have high levels of uncertainty 

regarding their mean posterior rank, relative health among the nation’s least healthy counties is 

far more certain.  

     Finally, we show that a small number of states contain most counties in our bottom 10%. Like 

our state-level examination of mean posterior rank distributions, we find that counties in the 

south are overrepresented among the bottom 10%. In addition to making up more than half of all 

bottom 10% counties, most of the bottom 10%’s least healthy counties are also in one of five 

MAKWA states. Only 3 of the 20 worst performing counties are in a non-MAKWA state and all 

20 are located in the south. The share of MAKWA counties in the bottom 10% according to our 

model and the CHRs further solidifies the poor health of southern counties relative to the 

national average.  
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Uncertainty Under Different Imputation Methods: 

As discussed previously, there are a considerable number of counties which are missing 

observations for one or more of the five manifest variables. While our primary results utilize 

posterior imputation to predict and replace missing observations, we can estimate our rankings 

under various imputation procedures. A significant difference between posterior imputation and 

alternative methods is that posterior imputation incorporates the uncertainty from missing data 

directly into the posterior distribution of each county’s health rankings while other imputation 

procedures do not. We therefore expect a significant increase in the degree of uncertainty for 

counties with missing data using posterior imputation versus traditional imputation approaches. 
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     Figure 6 shows density plots for the distribution of 95% rank confidence interval magnitudes 

produced by our model under different approaches to dealing with missing data. Figure 6A 

shows the density of posterior rank confidence intervals estimated using posterior imputation. 

We see from the figure that the density is heavily right-skewed with the confidence interval of 

some counties stretching across hundreds of ranks. Figure 6B shows the density of 95% rank 

confidence interval magnitudes produced by our model using Predictive Mean Matching (PMM) 

to impute missing data rather than posterior imputation.4 As opposed to similar methods like 

naïve imputation using linear regression, the PMM algorithm preserves many features of the 

observed data since all missing values are imputed using the non-missing observation of its 

nearest neighbor.  

     Compared to Figure 6A, the 95% rank confidence intervals produced using PMM vary in 

magnitude significantly less than the ranks produced under posterior imputation. Since the 

uncertainty of missing data is not directly incorporated into our posterior rank distributions using 

PMM, counties with missing data have tighter confidence intervals on average relative to our 

primary results. Comparing the change in 95% rank confidence intervals more formally, the 

average percent change in interval magnitude from PMM to posterior imputation is roughly 

897% with a median of 81%. Compared to PMM, nearly 45% of counties see a percent increase 

of 100% or more under posterior imputation and roughly 18% of counties see an increase greater 

than 1,000%.  

 
4 PMM imputes data in two stages. The first stage involves predicting values of each manifest variable for all 

counties in the data set using linear regression. In the second stage, the algorithm matches the predicted manifest 

variable value of each county with the most similar predicted value among the set of counties without missing data. 

This county is known as the missing county’s “nearest neighbor.” The missing value of the county is then imputed 

using its nearest neighbor’s observed manifest variable value. 
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     Alternatively, we can use state averages to impute missing data. We show the density of 95% 

rank confidence interval magnitudes produced using state-average imputation to replace missing 

data in Figure 6C. Like our PMM estimates, we find that the rank confidence interval 

distributions are much tighter on average and less heavily skewed using state-average imputation 

compared to our posterior imputation results. Around 47% of counties see a 100% or greater 

increase in their 95% rank confidence interval magnitude when moving from state-average 

imputation to posterior imputation and 18% of counties see a change of 1,000% or more. 

     While the smaller rank confidence interval magnitudes produced using alternative imputation 

strategies may seem attractive, they do not holistically incorporate the uncertainty of missing 

data in the same way as posterior imputation. Since we would expect to have less confidence in 

the rankings of counties with significant amounts of missing data a priori, ignoring this 

uncertainty may be undesirable. We can examine the relationship between uncertainty from 

missing data and our uncertainty in health ranks in another way by looking at Figure 6D which 

shows the density of 95% rank confidence interval magnitudes produced by our model using 

only the set of counties that have no missing data. As Figure 6D shows, the density of confidence 

interval magnitudes produced using only counties with full information is very similar to the 

densities produced using PMM and state-average imputation. This similarity suggests that using 

traditional imputation procedures which ignore the uncertainty from missing data produces 

deflated levels of uncertainty akin to only using data without any missing observations, leading 

to artificially high levels of certainty regarding the relative health ranking of counties. 
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Figure 6: Density Plots of 95% Confidence Interval Magnitudes Using Different Imputation Procedures 

  

  

      

Using Mean Posterior Draws of Latent County Health vs. Posterior Mean Ranks: 

As an alternative to rankings of county health, one could use the estimates of latent county health 

produced by our model directly. While rankings are often more convenient to interpret, they have 

an inherent disadvantage compared to directly using estimates of county health. Specifically, the 

amount of variation in each county’s posterior rank distribution is driven by two factors: 

sampling variation in their own latent factor’s posterior distribution and sampling variation in the 

overlapping latent factor distributions of counties with similar levels of health. To see this, 

assume we have a sample containing only two counties, county A and county B. Let county A 
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have a mean posterior latent health draw of 1 in iteration 𝑡 while county B has a mean posterior 

health draw of 1.5, implying that county A has a rank of 1 and B has a rank of 2. Now, at 

iteration 𝑡 + 1 assume that county A draws a mean posterior latent health of 1.6 and county B 

draws another sample at exactly 1.5. While the mean posterior latent health level of county B has 

not changed across iterations, the variation in county A’s latent factor will cause the ranks of 

both counties to reverse. Since sampling variation in the latent factor of counties with 

overlapping distributions of health can produce movement in a county’s rank independently of 

variation in their own mean posterior health distribution, the level of uncertainty in relative 

county health is almost certainly higher when using rankings rather than the estimates of latent 

health directly.  

     To investigate the differences in uncertainty between these two approaches more closely, 

Figure 7 shows ordered mean posterior latent health values on the 45-degree line along with 95% 

posterior mean confidence intervals shown as horizontal lines. Graphically, we see that using 

posterior means of latent county health directly produces significantly lower levels of overall 

uncertainty than we find using ranks in Figure 3. 

     Examining the degree to which changes in the uncertainty of our results under different 

imputation strategies is driven by the choice to use ranks, we consider percent changes in the 

posterior 95% confidence interval magnitudes for both posterior distributions of health rankings 

and posterior distributions of mean latent health caused by switching from PMM to posterior 

imputation and state average imputation to posterior imputation. While posterior imputation still 

produces significantly higher levels of uncertainty relative to the alternative imputation 

strategies, the average percent change in uncertainty is substantially smaller when using mean 

posterior latent health directly instead of rankings. More formally, the average increase in 95% 
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confidence interval magnitude caused by switching from PMM to posterior imputation is 319% 

when using posterior means of latent county health compared to an average increase of 998% 

when using ranks. Similarly, switching from state average imputation to posterior imputation 

leads to an average increase of 661% using posterior means of latent county health compared to 

an average increase of 1,031% when using ranks.  

     Given that many deterministic measures like the CHRs only provide rankings, the inflation in 

uncertainty inherent to ranking a continuous underlying factor is especially important when 

interpreting estimates. Our methodology gives practitioners the choice to directly utilize 

estimates of the latent factor for each county rather than having to rely on rankings. While 

directly using the latent factor produces a measure with less uncertainty, it comes at a cost since 

point estimates of county health have no direct scale or interpretation aside from their direction 

and magnitude relative to other counties in the sample.    
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Figure 7: Model-driven Posterior Means of 𝛿 with 95% Confidence Intervals 

 

 

6. Conclusion: 

In this paper, we produce rankings of health for all counties in the United States using a Bayesian 

spatial factor analysis model. We utilize the five observable variables used to construct the 

County Health Rankings (CHRs) produced by the University of Wisconsin Population Health 

Institute. Our estimation approach has several advantages over the CHR’s methodology. First, 

our model estimates factor loadings for each manifest variable using information present in the 

data rather than deterministic weightings that are subject to expert opinion. Second, we produce a 

measure of uncertainty in our rankings which is directly influenced by a county’s population size 
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and amount of missing data. Finally, we rank all counties in the nation simultaneously rather 

than separately by state, allowing us to compare the health of counties both within and across 

state lines. 

     Compared to the CHRs, we find that the normalized squared correlation coefficients produced 

by our model attribute significantly less weight to Years of Potential Life Lost (YPLL) and the 

rate of Low Birth Weight (LBW) while Self-Reported Fair/Poor Health (FP%) rate, average 

number of Physically Unhealthy Days (PUD), and average number of Mentally Unhealthy Days 

(MUD) receive significantly higher weightings. These differences suggest that the CHRs may 

attribute too much weight to outcomes of early mortality and birth weight and too little weight to 

adult physical and mental health status. 

     Our study also contributes to the literature on health disparity measurement (Bleichrodt and 

van Doorslaer 2006, Nesson and Robinson 2017). Comparing the health of counties across state 

lines, we find a significant amount of disparity in the rankings of counties relative to different 

states as well as among counties within the same state. While county health is some states has a 

relatively tight distribution, most have a mix of healthy and unhealthy counties. Additionally, the 

healthiest counties in some of the unhealthiest states often fall below the average of healthier 

states. Since the CHRs only rank county healthy separately for each state, it cannot be used to 

makes these types of comparisons. 

     We investigate which county-level variables predict the health rankings produced by our 

model. In addition to total population, the percentage of residents with less than a high school 

education, average income, income Gini, percentage of black residents, and percentage of 

Hispanic residents, we include a county economic mobility variable created by Chetty and 
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Hendren (2018) (CH) which capture the effect of spending an additional year of childhood living 

in a county on adult income for children born to low-income parents. While the effect of 

increasing a county’s percentage of black residents is found be statistically insignificant in a 

regression excluding economic opportunity, the effect of having higher percentages of both black 

and Hispanic residents becomes beneficial to health after accounting for adult economic 

mobility. Furthermore, we find that the effect of racial diversity on health varies with a county’s 

level of economic mobility. Increased economic mobility predicts better health rankings, but the 

effect is smaller for counties with higher percentages of black residents and Hispanic residents. 

Furthermore, the effect of percent black on health only operates through its interaction with 

economic mobility while increasing the percentage of Hispanic residents has a beneficial effect 

that is independent of economic mobility.      

     We also find that our rankings harbor a considerable degree of uncertainty. While the relative 

rankings of counties towards the middle of the distribution harbor the most uncertainty, there is 

significant ambiguity regarding the relative health of counties at every points of the distribution. 

This is not the case for all counties, however, which we illustrate by examining the set of 

counties in the bottom 10% of health according to their mean posterior ranking, 95% mean 

posterior ranking confidence interval, and CHR.  

     One source of uncertainty in our rankings comes from incorporating the inherent uncertainty 

of missing data directly into our model using posterior imputation. We show that using 

alternative imputation procedures like Predictive Mean Matching (PMM) and imputation using 

state averages produces far tighter rank confidence intervals. While this may seem like an 

attractive feature, these alternative imputation methods abstract from the uncertainty of 

estimating ranks for counties that are missing data for one or more manifest variables. 
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Furthermore, we highlight how the use of ranks rather than direct measures of latent health 

inflates the uncertainty of our estimates. This finding further illustrates the importance of 

recognizing uncertainty in the rankings of deterministic frameworks like the CHR.   

     The primary limitation of our study is data quality. More specifically, roughly 23% of all 

counties in the data set are missing observations for one or more manifest variable. While one of 

our study’s primary aims is to illustrate a serious treatment of these missing data, the use of more 

complete data would result in better precision. 

     In addition to the use of variables with less missing data, future research would benefit from 

the use of longitudinal data on observable county health outcomes rather than cross-sectional 

data taken from a single year. While the manifest variables used in this paper are available in 

earlier periods, the three variables collected from the Behavioral Risk Factor Surveillance 

System (BRFSS) become unreliable for smaller counties. With longitudinal data covering an 

adequate amount of time, researchers can not only measure the health of counties at a given point 

but also how the health of counties evolves across time. Being able to measure this time-variant 

aspect of county health is crucial to understanding the potential policies and factors which are 

effective at improving or worsening a county’s health in the long term. 
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