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“counterfactual” vehicle cannot be observed, but its fuel economy can be estimated. A quasi-
experiment in California allows us to show that subsidized buyers of EVs would have, on 
average, purchased relatively fuel-efficient cars had they not gone electric. The actual 
incremental pollution abatement arising from EVs today is thus substantially smaller than one 
would predict using the fleet average as the counterfactual vehicle. We discuss implications for 
climate policy and how to accurately reflect EV choice in integrated assessment models.
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1 Introduction

Policy-makers in the U.S. and worldwide view adoption of electric vehicles (EVs) as central to

addressing urban air pollution, lowering carbon emissions and reducing petroleum consump-

tion. The long-run vision is one of a fully electrified transportation sector powered by clean,

renewable energy and achievable through a combination of generous subsidies and govern-

ment mandates.1 The setting for this paper, California, provides one such example. California

is at the forefront of the EV transition in the world.2 Still, this transition remains in the early

stage. Less than 5 percent of the California light-duty vehicle fleet is electric and, according

to the California Energy Commission, roughly 27 percent of California’s electricity is obtained

from renewable sources. Both of these are increasing rapidly. California’s Governor Brown

issued an Executive Order that calls for 1.5 million zero-emission vehicles statewide by 2025 as

part of a goal to reduce petroleum use in cars and trucks by 50 percent by 2030. Moreover, Cal-

ifornia’s Renewable Portfolio Standard calls for 50 percent of electricity to be generated from

renewable sources by 2030, and Senate Bill 100 mandates a path to a 100 percent renewable

grid by 2045.

EV adoption contributes to emissions reductions according to the difference between emis-

sions produced from driving EVs and the emissions that would have been produced from the

car that otherwise would have been bought (the so-called “counterfactual” vehicle). Holding

driving patterns constant, EV emissions are primarily determined by the composition of elec-

tricity generation on the grid, which is relatively easy to observe. Knowing the fuel economy of

the “counterfactual” vehicle if less straightforward, but is equally important for the calculation

of EV net benefits. Intuitively, a household that switches to an EV will generate large environ-

mental benefits if it displaces a gas guzzler, and small benefits if it displaces a gas sipper or

another EV.3 Importantly, to determine emissions savings it is insufficient to simply observe

what car is sold, exchanged or retired when a household buys an EV, since that likely does not

reflect the true “counterfactual”.

Every estimate of the pollution abatement benefits of EVs either implicitly or explicitly

1Some countries have also announced intentions to ban conventional vehicle sales, including France and the United
Kingdom (by 2040), Norway (by 2025), India (by 2030), and China.

2In 2020, roughly half of all EVs on the road in the US are in California, representing close to 10 percent of the global
fleet.

3Although not the focus of this paper, there are also important considerations on the supply side. If EV penetration
proceeds far in advance of electric grid transformation, the maximum potential environmental benefits will be capped
as a result of powering transportation with fossil fuels. Furthermore, as Jenn et al. (2016) notes, interactions between
policies may offset the environmental benefits of electric vehicles by allowing automakers to more flexibility sell less
efficient vehicles.
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assumes a counterfactual vehicle. In most cases, researchers use some a combination of stated

preference data and/or assume a particular model pair for comparison (e.g. Holland, Mansur,

Muller and Yates (2016), Archsmith, Kendall and Rapson (2015)), but these assumptions are

rough approximations and not based on empirical evidence. In this paper, we present a causal

estimate of the fuel economy of the cars that are displaced when California households buy

EVs.

Our approach builds on Muehlegger and Rapson (2018) that documents a causal increase in

EV purchases induced by a major California EV subsidy policy called the Enhanced Fleet Mod-

ernization Program (EFMP). The pilot program began in July 2015, and over the first two years

allocated roughly $72 million in state funding. The eligibility rules of this program expose

some households to thousands of dollars of subsidies for EV purchases, while withholding

those subsidies from others in a way that allows for a “treatment versus control” compari-

son. This allows us to compare the distribution of vehicles purchased in locations in which

the EFMP induced people to adopt fuel-efficient EVs to the distribution in locations where

consumers were ineligible for the program.

We find evidence that (1) the program increases the average fuel efficiency of the set of

vehicles purchased in a zip code, but that (2) subsidy participants would have purchased rel-

atively fuel-efficient vehicles in the absence of the program. Our results imply that, in the

absence of the program, households would have purchased vehicles with an average fuel

economy of approximately 35 miles per gallon (MPG). That is substantially higher than the

average fuel economy of light-duty passenger vehicle purchased in California over our sam-

ple period (22 MPG). Our results align qualitatively and quantitatively with a complementary

paper, Xing et al. (2019), which estimates a structural vehicle choice model using survey data

on second choices. Our paper relies on a different source of variation (arising from policy), a

different empirical estimation strategy (differences-in-differences) and focuses on a different

sub-population (middle- and lower-income households), yet the qualitatively similar results

support the importance of such considerations for policy.

Our results are directly relevant to policy and climate change abatement modeling efforts

due to the expectation that gasoline-powered vehicles will be common even decades from now.

Most forecasts, including the models that underlie the Intergovernmental Panel on Climate

Change fifth assessment, project only partial adoption of EVs through 2100.4 Yet assumptions

4Quoting Sims et al. (2014), ”Uncertainties as to which fuel becomes dominant, as well as on the role of energy
efficiency improvements and fuel savings, are relevant to the stringent mitigation scenarios.(van der Zwaan et al. (2013))
Indeed, many scenarios show no dominant transport fuel source in 2100, with the median values for electricity and
hydrogen sitting between a 22–25% share of final energy, even for scenarios consistent with limiting concentrations
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about EV emissions benefits (as determined by assumptions about the counterfactual vehicle)

in academic and policy circles, as well as in practice, are often overly optimistic. As one exam-

ple, the U.S. Department of Energy’s Alternative Fuel Data Center emissions calculator uses

the fleet-average as a point of reference in their EV benefit tool for consumers.5

In cases where the true counterfactual vehicle is more fuel-efficient than what is assumed,

the analyst dramatically overstates the true greenhouse gas savings. The extent of overstate-

ment (holding reference vehicles constant) depends on the composition of the marginal source

of electricity powering the EV. We show that if the EV is charged by an efficient natural gas

generator, the implied CO2 emissions savings would be overstated by roughly six times; if the

EV is charged by a 50/50 mix of natural gas and renewables, CO2 savings would be overstated

by fifty percent. We hope it goes without saying that these are very large discrepancies that,

if ignored and unaddressed, will contribute to persistent underperformance of climate change

mitigation efforts relating to transportation electrification.

Our results have implications for how to accurately model emissions benefits from EVs.

Integrated assessment models6 make implicit or explicit assumptions about the vehicle that

would have been purchased. Those assumptions appear to be ad hoc, unintentional, or moti-

vated by modeling simplicity. Whereas GCAM chooses a logit nesting structure that implies

a more fuel efficient counterfactual car, another model, E3ME-FTT-GENIE, assumes the fleet

average counterfactual vehicle. To our knowledge, there is not an awareness of the importance

of these modeling choices, despite the large implied emissions abatement differences.

This paper makes three main contributions. First, we provide quasi-experimental evidence

on the environmental benefits of an ongoing electric vehicle incentive program targeting low-

income and middle-income households. Although historical adoption of electric vehicles has

been heavily titled toward high-income households, electrifying the entire transportation sec-

tor obviously requires adoption by low- and middle-income households. This paper provides

some of the first evidence about their choice patterns, and the environmental benefits arising

from EV adoption among these households.

Second, our results show that the typical low- or middle-income EV buyer in California

differ from the average car buyer. This insight leads to important climate policy implications.

Policymakers aiming to induce substitution away from gas-guzzlers may wish to not only

to 430–530 ppm CO2eq in 2100.” These forecasts are consistent with Leard (2018) that documents a preference for
gasoline-powered vehicles even at price-parity.

5https://afdc.energy.gov/vehicles/electric_emissions_sources.html
6E.g. the Global Change Analysis Model (GCAM (2020 (accessed August 27, 2020)), the National Energy Modeling

System (NEMS, EIA (2020 (accessed August 27, 2020)), and E3ME-FTT-GENIE (Knobloch et al. (2020))
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subsidize cleaner technologies, but also to push for policies that disincentivize combustion of

polluting fuels. This observation reinforces the importance of a carbon price or gasoline tax as

policy instruments.

Third, the demand-side substitution away from conventional vehicles, which we document,

has important fiscal implications due to the reliance on gasoline taxes for road infrastructure

maintenance. Like many other states, gasoline consumption per capita in California has de-

clined over the past decade. Absent recent state fuel tax increases, tax revenues and fuel con-

sumption are comparable to levels a decade ago. A widespread transition to electric vehicles

would accelerate a transition away from fuel taxes as a primary means of support for infras-

tructure investment.7 Our work directly speaks to whether EVs are more likely to displace

relatively high (or low) fuel economy vehicles which contribute less (or more) to fiscal coffers

on a per-mile basis, and to the speed at which the transition to alternative methods of financing

infrastructure might need to occur.

2 Data

We obtained data, covering 2015 to 2017, from a third-party data source that aggregates in-

formation about all vehicles purchased and registered within California. We observe total

monthly vehicle purchases made by consumers (i.e., excluding fleet or government purchases)

in each of California’s roughly 8,000 census tracts at the make-model-model-year level (e.g.,

2013 Toyota Camry). We match vehicles by make, model and model-year to fuel economy

data from www.fueleconomy.gov8 and construct the distribution of fuel economy ratings for

purchased vehicles for each census-tract-month during our study period.

As expected, the distribution of fuel economy, plotted in Figure 1 is heavily skewed - the

vast majority of vehicles purchased during our study period are those with combined fuel

economy ratings between 20 and 30 miles per gallon. This is partially driven by the fact that

our vehicle purchase data includes both new and used vehicles, and used vehicles tend to have

7Davis and Sallee (forthcoming) document that electric vehicles have led to a $250 million decrease in gasoline tax
revenues, and go on to explore the optimal electric vehicle mileage tax.

8We string-match our transaction data to make and model makes from the EPA fuel economy rating database in
three steps. First, we match models names across the two datasets, conditional on fuel and engine type. For vehicles
that do not match, we then remove drive-train information from both datasets (e.g., AWD), again conditioning on fuel
and engine type. We hand-code the remaining matches. Where multiple trim lines exist, we assign the fuel economy
rating of the most popular trim line for the model. But, in a few instances, due to the coarse nature of the data on engine
type (e.g., both plug-in and conventional hybrids are classified as HEVs), there are a few instances where a single model
might offer versions with different engine technologies. We examine the robustness of our results to assumptions about
the fuel economy of these models in our appendix table and find little evidence that assumptions about this small
subset of vehicles meaningfully impacts our conclusions.
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lower fuel economy.

Figure 1: MPG distribution, Light-duty vehicles purchased in CA, 2015-2017

Note: The figure plots the number of units sold in California between 2015 and 2017,
binned by fuel economy (measured in miles per gallon).

Figure 2 plots the quarterly trend in both CA vehicle sales (in millions of units on the pri-

mary axis) and mean fuel economy (in miles per gallon on the secondary axis). Although sales

did not meaningfully change over the study period, average fuel economy rose modestly, as

consumer preferences shift towards higher fuel economy vehicles and new, more fuel efficiency

engine technologies (e.g., battery-electric vehicles) grow in popularity.

3 Program Details

To examine fuel economy of the displaced vehicles, we leverage variation from the EFMP pi-

lot. We have previously examined the impact of the pilot program on the adoption of electric

vehicles in Muehlegger and Rapson (2018). We briefly summarize the important details of the

program here.9 The EFMP offers incentives to low- and middle-income households to replace

current vehicles with cleaner and more fuel efficient vehicles. During out study period, EFMP-

eligibility was limited to two pilot regions: San Joaquin Valley and the South-Coast Air Quality

Management District (i.e., roughly the Los Angeles metropolitan area). Within these locations,

9For more detail, please see Muehlegger and Rapson (2018).
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Figure 2: Sales and mean fuel economy of purchased vehicles

Note: The figures plots quarterly sales in California (on the primary axis, in millions of units)
and the mean fuel economy of those vehicles (on the secondary axis, in miles per gallon).

eligibility was limited to households with incomes < 400% of the federal poverty line with

lower income households receiving more generous incentives. In addition, households within

“disadvantaged communities” (DACs) as defined by the CalEPA EnviroScore, were eligible for

more generous incentives.

Figure 3 maps zip code boundaries for the Southern two-thirds of California. Regions in

grey are the San Joaquin Valley and South Coast AQMDs, the two AQMDs that piloted the

EFMP over our study period. The zip codes in pink are those that contain a disadvantaged

census tracts. Thus, means-tested households in zip codes that are both grey and pink would

be eligible for the subsidy. Outside of the grey and pink boundaries of the two participating

AQMDs and disadvantage zip codes, households would be ineligible.

Although the EFMP offered large incentives (up to $9,500 for low income households living

in disadvantaged zip codes to purchase battery electric and plug-in hybrid vehicles), smaller

incentives were also offered if qualifying households purchased a “conventional” hybrid ve-

hicle. From publicly available data on program participation, we observe 2,474 participants

in the program. Table 1 reports the number and average fuel economy (in gallons per mile or

GPM-equivalent) of the battery-electric vehicles (BEV), a plug-in hybrid vehicles (PHEV) and
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Figure 3: Map of EFMP pilot regions and Disadvantaged Zip Codes

Note: Figure maps zip code boundaries in California. Regions in grey are the two EFMP pilot
regions (i.e., San Joaquin Valley and South Coast Air Quality Management District). Zip codes
in pink are zip codes that partially or wholly contain a census tract classified as disadvantaged
by the CalEPA EnviroScore 2.0.
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hybrid vehicles (HEV) purchased through the program. Hybrid vehicles were the most popu-

lar category purchased by program participants - roughly 45% of participates choose a hybrid

vehicle. Roughly 38% chose a plug-in hybrid - the remainder chose battery electric vehicles.

The average fuel economy (in gallons per mile) of the different vehicles lines up as expected.

Hybrid vehicles are the “least” fuel efficient of the three (at 0.0269 GPM or roughly 37 miles

per gallon), although they are still substantially more fuel efficient than the average conven-

tional vehicle. Plug-in hybrids are slightly more fuel efficient at close to 40 miles per gallon

equivalent while battery electric vehicles are the most fuel efficient at over 100 miles per gallon

equivalent. For reference, we also report the average fuel economy of all 18.6 million vehicles

purchased by consumers in California between 2015 and 2017. All of the vehicles purchased

under the program are substantially more fuel efficient than the average vehicle, with a fuel

economy of roughly 22 miles per gallon.

Table 1: Vehicle Fuel Efficiency (2015-2017)

Number of Vehicles Mean GPM

EFMP Subsidy Vehicles

BEV 431 .0093
HEV 1106 .0269
PHEV 937 .0249
All EFMP Vehicles 2474 .0231

All CA Vehicle Transactions 18.6 M .0452

Notes: calculated from EFMP participant records, fleet data and
the fueleconomy.gov website.

Average fuel economy by engine type mask substantial variation within group. We plot the

distribution of vehicle fuel economy for the three groups of vehicles in Figure 4. For ease of

interpretation, we group vehicles by their combined miles-per-gallon rating (or MPGe rating

for battery electric vehicles). While plug-in hybrid vehicles are more fuel efficient on average

than conventional hybrid vehicles, the fuel economy distributions of the two groups of vehicles

overlap substantially. In contrast, battery electric vehicles are substantially more fuel efficient

than all plug-in and conventional hybrid vehicles.

Since EFMP program eligibility is set at the zip-code level, we aggregate our census tract-

level sales up to the zip-quarter level, and follow the rules of the EFMP program to deter-

mine whether households in a particular zip code are eligible for the most generous incentives.

Specifically, if a zip code: (a) contains partially or wholly a census tract classified as disadvan-

taged by the CalEPA EnviroScore 2.0, and (b) is located in either the San Joaquin Valley Aid

District or the South Coast Air Quality Management District, we classified the zip code as eligi-
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Figure 4: Fuel Economy of EFMP Vehicles

Note: Figure plots the number of vehicles purchased using a Plus-Up incentives offered through
the EFMP pilot program through the end of 2017, classified by fuel economy rating (in MPG or
MPGe) and by the type of engine technology.

ble for the EFMP Plus-Up program. According to program rules, zip codes that do not contain

a disadvantaged census tract or are outside of the pilot region are classified as not eligible for

the program.

The gradual shift in fuel economy noted statewide in Figure 2 is present in both the EFMP-

eligible and ineligible zip codes. Figure 5 plots the annual distributions of vehicle fuel effi-

ciency (measured in gallons per mile or the equivalent thereof) for the “treated” locations (i.e.,

disadvantaged zip codes in the pilot regions) and “control” zip codes. The left panel of Fig-

ure 5 shows how the distribution of GPMs of the transacted vehicles has shifted downward

from 2014 to 2017 in the treated zip codes (DAC = 1, AQMD = 1). The right panel of Figure

5 shows the same thing but for untreated zip codes (DAC = 0 or AQMD = 0). This highlights

one advantage of our empirical approach. As average fuel economy is changing throughout

California over this period if we were to simply compare mean fuel economy in EFMP-eligible

zip codes before and after the introduction of the program, we might misattribute the gen-

eral trend towards more fuel efficient vehicles to the EFMP program. Rather, by comparing

similar locations inside and outside of the pilot regions, we can control for state-wide trends

10



Figure 5: Distribution of GPM for “Treated” and “Untreated” zip codes

(a) Treated Zip Codes (b) Untreated Zip Codes

Note: The figures plot the annual distributions of fuel economy ratings, measured in gallons
per mile (or gpm equivalent), for census tracts eligible for the EFMP Plus Up Incentive (left)
and the census tracts ineligible for the EFMP Plus Up incentive (right).

in purchases and better isolate effect of the program as distinct from shifting preferences for

Californians.

4 Empirical Approach

Our empirical strategy is based on the implementation rules for the EFMP pilot program. To

be eligible for the most generous subsidies, applicants must live within DACs within the pi-

lot program regions. The eligibility rules allow us to compare locations that are similar with

respect to demographic characteristics, pre-program adoption patterns and their level of “dis-

advantage” as measured by the Cal EPA EnviroScore, but which differ in eligibility by whether

or not they are located within the two pilot air districts.

We compare the average fuel economy of vehicles purchased in disadvantaged zip codes

inside and outside of the two participating AQMDs, before and after the start of the EFMP pilot

program. We regress the average fleet fuel economy in a zip-month on λzt, the fraction of pur-

chases that receive an EFMP subsidy relative to all vehicle transactions in the zip-quarter. We

include zip-code fixed effects to control for time-invariant zip code preferences related to fuel

economy and region-time fixed effects to control for unobservable changes in the preferences

for fuel economy inside and outside the pilot regions.

Formally, we estimate

Yzt = β1λzt + νtA + γz + εzt (1)
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where our dependent variable Yzt is the average fuel economy of vehicles purchased by house-

holds in zip z in month t. In the tables below we scale up λzt from fractions to percentage

points, and interpret the coefficient β1 as changes in GPM by a one-percentage-point increase

in the share of transactions that received the EFMP plus-up subsidy.

Our primary parameter of interest is the fuel efficiency of the marginal vehicle replaced as

a result of the incentive. From our estimate of the impact of the incentive on average fuel

efficiency, we can back out an estimate of the fuel efficiency of the vehicle which would have

been purchased, absent the incentive. To illustrate the intuition, suppose we observe two zip

codes that are identical but for their EFMP eligibility status. If the average fuel efficiency in the

EFMP-eligible zip code increases significantly when an electric vehicle is purchased through

the program relative to the fuel efficiency in a zip code in which households are not eligible,

it suggests that the electric vehicle is substantially different than the vehicle that would have

been purchased absent the subsidy. In contrast, if the average fuel efficiency does not differ

between the two locations when electric vehicles are purchased through the EFMP program, it

suggests that the subsidized vehicle was similar in fuel efficiency to the vehicle that would have

otherwise been purchased absent the subsidy. To estimate the fuel efficiency of the marginal

replacement vehicle, we subtract our estimated coefficient from the average fuel efficiency of

the vehicles chosen under the program.10 For each regression specification, we report the fuel

economy rating (in MPG) of the marginal replacement vehicle in at the bottom of each result

column.

4.1 Alternative specifications

Whether the empirical strategy above provides an accurate estimate of the impact of the EFMP

program on the average fuel economy in a location depends on an assumption that that fuel

economy in locations that avail themselves of the program would have followed a similar path

absent the program to locations that either did not participate or were not eligible. Evidence

in favor of this assumption can be found in parallel trends in fuel economy across treated and

control zip codes before the introduction of the program. If treated and control locations dif-

fered along some dimensions that affect trends in fuel economy, we might misattribute ex post

differences in fuel economy to the program. Thus, we consider three additional specifications:

(1) a “matched” specification, (2) a triple-differences specification, and (3) a within-zip code

specification.

10We derive this relationship in the appendix.
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In the “matched” specification, we use nearest-neighbor matching (Abadie and Imbens

(2006)) to pair disadvantaged zip codes in participating AQMDs with “control” disadvan-

taged zip codes in non-participating AQMDs, where we match zip codes by pre-period trends

in GPM. Although all disadvantaged zip codes have somewhat different socio-demographics

than non-disadvantaged zip codes, the eligible set of DACs might differ along dimensions that

are correlated with trends in fuel economy preferences. The “matched” specification places ad-

ditional weight on zip-code that have more similar trends in fuel economy in the pre-program

period.

The “triple-differenced” specification includes as an additional set of controls the non-

DACs in the pilot and non-pilot regions. To the extent that fuel economy in pilot and non-pilot

regions were trending differentially over time, the additional set of non-DACs in and out of

the pilot regions allow us to control for those differences. Formally, the specification includes

a full-set of interaction fixed effects, νtA, φtD and γz, capturing shocks common to the pilot

region, shocks common to DACs and time-invariant zip-level differences.

Yzt = β1λzt + νtA + φtD + γz + εzt (2)

Finally, we consider a “within-zip” specification that focuses only on the treated zip codes

and identifies the coefficients from quarter-by-quarter variation the number of people who

receive subsidies within each “treated” zip code. As above, we include zip code fixed effects,

the coefficient estimate identified from a comparison of a given zip code in a quarter in which

many people purchase a vehicle through the EFMP program to that same zip code in a quarter

in which few people receive a subsidy.

5 Results

We present our results in Table 2. Column (1) corresponds to our primary “difference-in-

differences” specification from equation (1). Columns (2) through (4) correspond to our al-

ternative “matched”, “triple-differenced” and “within-zip code specifications. In panel A,

the explanatory variable of interest is the fraction of transactions (in percentage points) in a

zip*quarter purchased via an EFMP subsidy. Across all columns, we estimate negative coef-

ficients that are within a narrow range. These coefficients are consistent with the subsidized

vehicles being more fuel-efficient than the average vehicle purchased in a zip-quarter. Inter-

preting the coefficient in column (1), if 10 percent of vehicles in a zip-quarter receive an EFMP

13



subsidy, the mean fuel efficiency (measured in gallons per mile) decreases by -0.00055 gallons

pre mile. This is equivalent to increasing the average fuel economy of purchased vehicles (with

a mean fuel economy of roughly 23 percent) to an average of roughly 23.3 miles per gallon.

The relatively modest increase is reflective of two features of the EFMP program. The first is

that roughly 80 percent of the vehicles purchased under the EFMP program during this period

were plug-in or conventional hybrid vehicles. Although both are more fuel efficient than the

fleet average, they are significantly less fuel efficient than battery electric vehicles, which were

purchased much less frequently under the program.

The second relates to what vehicle would have been purchased absent the incentive. By

combining our estimates in Panel A with information about the average fuel efficiency of ve-

hicles purchased under the EFMP program, we can obtain an estimate the fuel economy of

the counterfactual vehicles that would have been purchased absent the incentive. To be clear,

we don’t observe this hypothetical purchase in our data; rather, we observe the purchases and

average fuel economy in locations that are similar to the EFMP-eligible zip codes (i.e., also clas-

sified as “disadvantaged” by CalEPA), but were not eligible for the EFMP incentive by virtue

of being located outside the pilot regions. Under the assumption that the similar, but ineligible

location is reflective of what might have happened absent the EFMP program, we can back-out

an estimate of the fuel economy of the vehicle that would have been purchased absent the sub-

sidy. We report the fuel economy of the “marginal replacement” vehicle at the bottom of panel

A.

Absent the subsidy, our results suggest that individuals who purchased vehicles during

the study period would have tended to purchase relatively fuel efficient vehicles, with fuel

economy averaging roughly 35 miles per gallon as alternatives. This moderates the impact of

the EFMP program on environmental outcomes and fuel consumption, as it suggests program

participants would have purchased “gas-sippers” rather that “gas-guzzlers” in the absence of

the program.

5.1 Estimates by vehicle type

In this section we explore the possibility that the alternative vehicle that would have been cho-

sen absent the incentive might vary by type of EV purchase. That is, the (unobserved) coun-

terfactual vehicle may be different for households that purchase a BEV, households purchasing

a PHEV, and households purchasing a conventional HEV. We directly test this by estimating

separate coefficients for each engine type. Specifically, we estimate the average fuel efficiency

14



Table 2: Effect of EFMP Incentives on fleet GPM, main results

Panel A: Impact of fraction of vehicles subsidized on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

% point EFMP Transactions -0.000055∗∗ -0.000045∗ -0.000050∗∗ -0.000055∗∗
(0.000024) (0.000025) (0.000025) (0.000024)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89
Marg. repl. MPG 35.0 36.3 35.7 35.0

Panel B: Impact of average subsidy on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

Avg. PU Subsidy -0.0016∗∗∗ -0.0013∗∗ -0.0015∗∗ -0.0016∗∗∗
(0.00055) (0.00057) (0.00058) (0.00055)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89

Dependent variable is average GPM in a zip*quarter. Standard errors are clustered by zip code.
Columns 1, 2, 3 and 4 reported regression results for the unmatched Differences-in-Differences, the
matched Difference-in-Differences, the Triple-difference and the within-zip code specifications, re-
spectively. In panel A, the explanatory variable of interest is the fraction of transactions (in percent-
age points) in a zip*quarter purchased with an EFMP subsidy. In Panel B, the explanatory variable
of interest is the average plus-up subsidy (in thousands of dollars) received by buyers across all
vehicles purchased in a zip*quarter.

in a zip-month as a function of the share of transactions receiving EFMP plus up, by each en-

gine type (BEV, PHEV and HEV). As we did above, we then subtract the coefficients from the

average fuel efficiency of the each engine type to estimate the fuel efficiency of the replaced

vehicle.

We present the estimates of the specification in 3. Unsurprisingly, we find that battery elec-

tric vehicles purchased under the EFMP program have the largest impact on fleet fuel economy.

This is consistent with Figure 4, which shows that BEVs are substantially more fuel-efficient

than either plug-in or conventional hybrid vehicles. Despite these considerations, we do not

find strong differences when we estimate the marginal vehicles that would have been pur-

chased in the absence of the program.

5.2 Implications for Emissions Abatement

The true emissions abatement contribution of an EV purchase is a function of three main fac-

tors: 1) the difference between the fuel economy of the EV and the car that otherwise would

have been purchased, 2) the amount the car will be driven (vehicle-miles traveled, or VMT),

and 3) the upstream emissions profile of the electricity generators that power a plug-in EV. In

this section, we use our estimates of counterfactual vehicle fuel economy to calculate the im-
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Table 3: Effect of EFMP Incentives on fleet GPM , by vehicle type

Panel A: Impact of fraction of vehicles subsidized on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

% point EFMP BEV Transactions -0.00018∗∗ -0.00011 -0.00018∗∗ -0.00018∗∗
(0.000085) (0.000072) (0.000085) (0.000085)

% point EFMP PHEV Transactions -0.000044 -0.000035 -0.000029 -0.000044
(0.000048) (0.000037) (0.000049) (0.000048)

% point EFMP HEV Transactions -0.000011 -0.000023 -0.000011 -0.000011
(0.000042) (0.000042) (0.000042) (0.000042)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89
MR MPG BEV 37.1 48.9 37.1 37.1
MR MPG PHEV 34.2 35.2 36.0 34.2
MR MPG HEV 35.7 34.2 35.7 35.7

Panel B: Impact of average subsidy on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

Avg. PU BEV Subsidy -0.0037∗∗ -0.0024 -0.0037∗∗ -0.0037∗∗
(0.0018) (0.0015) (0.0017) (0.0018)

Avg. PU PHEV Subsidy -0.0011 -0.00091 -0.00078 -0.0011
(0.00097) (0.00072) (0.00099) (0.00097)

Avg. PU HEV Subsidy -0.00032 -0.00080 -0.00035 -0.00032
(0.0017) (0.0017) (0.0017) (0.0017)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89

Dependent variable is average GPM in a zip*quarter. Standard errors are clustered by zip code.
Columns 1, 2, 3 and 4 reported regression results for the unmatched Differences-in-Differences, the
matched Difference-in-Differences, the Triple-difference and the within-zip code specifications, respec-
tively. In panel A, the explanatory variable of interest is the fraction of transactions, by engine type,
(in percentage points) in a zip*quarter purchased with an EFMP subsidy. In Panel B, the explanatory
variable of interest is the average plus-up subsidy, by engine type, (in thousands of dollars) received by
buyers across all vehicles purchased in a zip*quarter.

plied CO2 abatement under two different electricity grid generation profiles. Throughout, we

hold VMT constant at the California state average (14,453 miles per driver per year).11

Roughly speaking, the marginal source of electricity generation in much of the US is an effi-

cient combined-cycle natural gas generator. It may be dirtier in some places (e.g. the Midwest)

and cleaner in others (California and regions with a substantial endowment of hydroelectric-

ity). While several recent papers have estimated the marginal emissions profile of EVs (e.g.

Holland, Mansur, Muller and Yates (2016) and Archsmith, Kendall and Rapson (2015)), here

we acknowledge that the grid composition is changing and readers with interests across vary-

ing jurisdictions may wish to apply different grid emissions profiles. We thus use two reference

points: one in which EVs are charged by a natural gas plant (0.418 kg of CO2 per kWh12), and

a second that uses 50 percent natural gas and 50 percent carbon-free electricity (0.209 kg of

11U.S. Federal Highway Administration
12U.S. Energy Information Administration
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CO2 per kWh). These assumptions conform to actual policy and other contributions to the

literature.13

Table 4: Implied CO2 savings (kg per EV per year)

Table 4 reports estimates of annual CO2 savings per EV. Comparing results across columns,

one can see the inverse relationship between EV CO2 savings and fuel economy of the compar-

ison vehicle. Abatement relative to the (fuel-efficient) counterfactual vehicle that we estimate

in this paper is substantially lower than when the reference vehicle is less efficient, as would be

the case with a reference vehicle reflective of new (or new and used) vehicle purchases over the

same period. To the extent EV subsidies are intended to promote CO2 abatement, the policy

implications are profound. Our results imply relatively modest CO2 abatement from recent

subsidies and suggest that, if future EV buyers are similar to those encouraged to buy by the

subsidy, future estimates of the carbon abatement will overstate the true estimates of abate-

ment. If a policy-maker were to assume the reference vehicle is an average new car purchased

over our sample period. The true CO2 savings would be less than one-sixth what may be ex-

pected if the grid is powered by natural gas. For cleaner grids, the error would be smaller but

still substantial – roughly 33 percent less emissions reductions than anticipated when the grid

emissions profile is halfway between natural gas and zero-carbon.

6 Conclusion

In a world where the electric grid is 100 percent renewable and the vehicle fleet is 100 percent

electric, calculating emissions abatement from vehicle choices is straightforward. There is no

need to understand what vehicle is replaced because no cars are polluting. However, for the

foreseeable future, fossil fuels will continue to generate a significant fraction of electricity and

13The California cap-and-trade program assumes a generic electricity source emits 0.428 kg of CO2 per kWh (Boren-
stein, Bushnell, Wolak and Zaragoza-Watkins (2019)).
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the internal combustion engine will likely remain the primary engine technology for light duty

vehicles. Any effort to estimate or forecast emissions abatement from EV adoption requires

taking a stand on what vehicle was displaced by the EV purchase.

In this project we estimate the fuel economy of this counterfactual vehicle. We implement

multiple variants on a simple empirical design that allows us to estimate the distribution of

fuel economy of cars that would have been purchased if an EV had not. The eligibility rules of

this program expose some households to thousands of dollars of subsidies for EV purchases,

while withholding those subsidies from others. We exploit the quasi-experimental nature of

the EFMP program rollout, which allows us to compare the distribution of fuel economy of

cars purchased by households living in EFMP-eligible zip codes to that of cars purchased in

EFMP-ineligible zip codes. Our results are robust to changes in specifications, with estimates

of the replaced vehicle fuel economy falling within a very narrow range.

We find evidence that EVs increases the average fuel efficiency of vehicles purchased, but

that subsidy participants were most likely to have purchased relatively fuel efficient vehicles

in the absence of the program. This second point has important implications for climate policy

due to the fact that it moderates the potential air emissions or fuel savings benefits of EVs.

If the “reference” vehicle were assumed to have a fuel economy equal to the average new

car purchased, which is common in transportation emissions models, a policy-maker would

dramatically overstate the true greenhouse gas savings. The extent of overstatement depends

on the composition of electricity generation sources powering the EV. If the EV is charged by

an efficient natural gas generator, the implied CO2 emissions savings would be overstated by

roughly six times; if the EV is charged by a 50/50 mix of natural gas and renewables, CO2

savings would be overstated by fifty percent.

For those wishing to maximize environmental benefits of EV adoption, these insights high-

light the importance of increasing prices on polluting activities. A carbon price, which can

be achieved through taxes or tradable permits under a binding CO2 cap, would make it more

expensive to operate cars with high levels of pollution. In turn, a growing body of evidence in-

dicates that consumers account for most, if not all, of the ongoing flow of these increased costs

when they choose what car to buy.14 The results presented in this paper lend further evidence

why carbon prices should be prioritized in the suite of climate change mitigation policies.

14See, for example, Busse et al. (2013), Allcott and Wozny (2014), Sallee et al. (2016), and Grigolon et al. (2018).
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A Appendix

A.1 Estimating the marginal replacement vehicles

We report rough estimates of the fuel efficiency of the marginal replacement vehicle, using

the potential outcome framework with never-takers (NT), compliers (C), and always-takers

(AT). We consider this framework in the context of the intent-to-treat in with the difference-in-

difference specification. Defining zi as the intent to treat indicator, and Di to be the treatment

“take-up”, i.e. the adoption of EVs. Given that the observation i is at the zip-year level, we

interpret that within each observation, a fraction of it has Di = 1, and 0 for the rest. The

fractions of populations within zip-quarter that fall into each of the treatment- and assignment

blocks are shown as follows:

Table A.1: Potential treatment framework: Share of population within each treatment-assignment
(ITT) status

zi = 0 zi = 1
Di = 0 πNT + πC πNT

Di = 1 πAT πAT + πC

Our outcome of interest is the fuel efficiency measure (average-gallons per mile), which will

be expressed as a function of Di.

E[Yi|zi = 1] = πNTE[Y(0)|NT] + πCE[Y(1)|C] + πATE[Y(1)|AT] (3)

E[Yi|zi = 0] = πNTE[Y(0)|NT] + πCE[Y(0)|C] + πATE[Y(1)|AT] (4)

The ITT estimate should therefore give us

E[Yi|zi = 1]− E[Yi|zi = 0] = πC(E[Y(1)|C]− E[Y(0)|C]) (5)

In our specifications, we scale the treatment by the zip-year level realizations of πC
i . Given

that the share of compliers are small and has minimal effect to the shares of always-takers and

never-takers, and assuming that there are no heterogeneous treatment effects by the realized

complier shares, zi is 0 if in the non-assigned zip-years and πC
i for assigned zip-years

Ei[Yi|zi = πC
i ]− Ei[Yi|zi = 0] = πC

i (E[Y(1)|C]− E[Y(0)|C]) (6)
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So the coefficient on the share variable estimates (E[Y(1)|C]− E[Y(1)|C]). To estimate the

replacement vehicle fuel efficiency, i.e. E[Y(0)|C]), we subtract the replaced vehicles’ average

fuel efficiency (E[Y(1)|C]) from the coefficient of πC
i .

A.2 Endogeneity and Instrumental Variables

Given that the denominator of the main regressor λzt is all vehicle transacted including ICEs

transacted in the zip-quarter, rather than EVs only, we believe that the endogeneity issue is

less of a concern. We still address this issue by constructing an instrument for the EFMP-share

(and an analogous instrument for average subsidies). We instrument for EFMP-share (over all

types of vehicles transacted) using the count of EFMP transactions in zip z at time t, normalized

by average total (including ICE) number of transactions in that zip in all quarters except the

current one, scaled by the ratio of sales in all other zips in AQMD*DAC in the current time

period relative to others.

Formally, denoting the number of post-period quarters as T, the quarter in which the EFMP

program becomes active as t∗ and average number of transactions in zip z in quarter t as Qzt =

∑i 1(zip = z,time = t), we construct the instrument for EFMP-share as follows, where Q is now

total transactions including ICEs:

IVzt =
∑i 1(Subsidyizt > 0, zip = z, time = t)

∑r 6=t,r≥t∗ Qzr
T−1

∑x 6=z Qxt
∑r≥t∗ ∑x 6=z Qxr/T−1

(7)
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A.3 Robustness checks

Due to the level of aggregation of our data, we need to make several assumptions when map-

ping make-model-model-years to fuel economy ratings.

In our data, we cannot definitively identify from our data whether BMW I3s, that are tech-

nically classified in our data as battery-electric vehicles, have ”range-extender options” that

allow for a gasoline engine to recharge the battery. The range extender option provides func-

tionality very similar to a plug-in hybrid vehicle (with commensurately lower fuel economy).

In addition, our data contains information on fuel type, (gasoline, diesel, hybrid, and elec-

tric), but does not offer distinctions between PHEVs and HEVs. This is an issue for the follow-

ing models (model years in parentheses):

• Ford C-Max (2013-17)

• Ford Fusion (2013-18)

• Honda Accord (2014)

• Hyndai Sonata (2016-17)

• Toyota Prius (2012-15)

We test the robustness of our analysis to each of these groups of vehicles for which we

cannot definitively assign fuel economy ratings. For the former (the BMW I3), we run specifi-

cations excluding the I3 from the fleet and find little impact on our results, consistent with the

modest market share of the vehicle. For the latter group of vehicles, for which we do not know

whether a given vehicle is a plug-in or conventional hybrid, we perform a bounding analysis,

first under the assumption that all of the vehicles have the most ”optimistic” fuel economy rat-

ing (as if all the vehicles sold were PHEVs) and then under the most ”pessimistic” assumptions

(that all the vehicles sold were conventional HEVs). We present our main specification under

all three assumptions below.
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Table A.3: Effect of EFMP Incentives on fleet GPM, dropping BMW I3

Panel A: Impact of fraction of vehicles subsidized on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

% point EFMP Transactions -0.000057∗∗ -0.000052∗∗ -0.000052∗∗ -0.000057∗∗
(0.000023) (0.000022) (0.000024) (0.000023)

Observations 9230 12194 21294 6643
R-Squared 0.88 0.93 0.89 0.89
Marg. repl. MPG 34.7 35.4 35.4 34.7

Panel B: Impact of average subsidy on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

Avg. PU Subsidy -0.0017∗∗∗ -0.0015∗∗∗ -0.0015∗∗∗ -0.0017∗∗∗
(0.00056) (0.00050) (0.00058) (0.00056)

Observations 9230 12194 21294 6643
R-Squared 0.88 0.93 0.89 0.89

Dependent variable is average GPM in a zip*quarter. Standard errors are clustered by zip
code. Columns 1, 2 and 3 are OLS regressions for the unmatched Differences-in-Differences, the
matched Difference-in-Differences and the Triple-differenced specifications, respectively. Columns
4 presents the results restricting the sample to eligible zip codes (i.e., DACs within the relevant
pilot regions). We dropped BMW I3 from the sample, because we could not be confident as to
which of the transactions in our data had range extenders (which would make it a PHEV, and has
significantly worse implied fuel efficiency than the pure BEV version).

Table A.4: Effect of EFMP Incentives on fleet GPM, with “optimistic” fuel type as-
sumption

Panel A: Impact of fraction of vehicles subsidized on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

% point EFMP Transactions -0.000055∗∗ -0.000044∗ -0.000050∗∗ -0.000055∗∗
(0.000024) (0.000025) (0.000025) (0.000024)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89
Marg. repl. MPG 35.1 36.3 35.7 35.1

Panel B: Impact of average subsidy on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

Avg. PU Subsidy -0.0016∗∗∗ -0.0013∗∗ -0.0015∗∗ -0.0016∗∗∗
(0.00055) (0.00057) (0.00058) (0.00055)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89

Dependent variable is average GPM in a zip*quarter. Standard errors are clustered by zip
code. Columns 1, 2 and 3 are OLS regressions for the unmatched Differences-in-Differences, the
matched Difference-in-Differences and the Triple-differenced specifications, respectively. Columns
4 presents the results restricting the sample to eligible zip codes (i.e., DACs within the relevant pi-
lot regions). The dependent variable for the treated group is constructed such that for make-model
years for which we are uncertain about the engine type (PHEV or HEV, BEV or PHEV) we take the
more fuel efficient type.
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Table A.5: Effect of EFMP Incentives on fleet GPM with “pessimistic” fuel type as-
sumption

Panel A: Impact of fraction of vehicles subsidized on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

% point EFMP Transactions -0.000055∗∗ -0.000045∗ -0.000049∗∗ -0.000055∗∗
(0.000024) (0.000025) (0.000025) (0.000024)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89
Marg. repl. MPG 35.0 36.3 35.7 35.0

Panel B: Impact of average subsidy on average GPM
(1) (2) (3) (4)

DinD Matched DinD Triple Diff Within Treatment Zip

Avg. PU Subsidy -0.0016∗∗∗ -0.0013∗∗ -0.0015∗∗ -0.0016∗∗∗
(0.00055) (0.00057) (0.00058) (0.00055)

Observations 9230 12246 21294 6643
R-Squared 0.88 0.92 0.89 0.89

Dependent variable is average GPM in a zip*quarter. Standard errors are clustered by zip
code. Columns 1, 2 and 3 are OLS regressions for the unmatched Differences-in-Differences, the
matched Difference-in-Differences and the Triple-differenced specifications, respectively. Columns
4 presents the results restricting the sample to eligible zip codes (i.e., DACs within the relevant pi-
lot regions).The dependent variable for the treated group is constructed such that for make-model
years for which we are uncertain about the engine type (PHEV or HEV, BEV or PHEV) we take the
less fuel efficient type.
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A.4 Geographical units

One challenge in constructing the dataset is that policy assignment into the EFMP is done at

the zip-code level, while the transaction data is at the Census tract level. In order to reconcile

the discrepancies in the geographical units, we construct a merged dataset in which the unit of

observation is zip-quarter. This is done by weighting the tract level observations by the share

of geographical overlap with a given zipcode. We show the cross tabulation of treatment status

at the tract level and that at the zipcode level. We see that there is one tract-zip overlap in which

the tract was treated but the zip was not. This is fixed in the analysis data.

Table A.6: Cross-tabulation of tracts to zipcodes

DAC zip
DAC tract 0 1 Total

No. % No. % No. %
0 7,727.0 55.6 6,178.0 44.4 13,905.0 100.0
1 1.0 0.0 3,834.0 100.0 3,835.0 100.0
Total 7,728.0 43.6 10,012.0 56.4 17,740.0 100.0

Figure A.1 shows the number of zipcodes that a given Census tract overlaps.

Figure A.1: Number of zip codes within census tracts
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