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1 Introduction

Financial crises have a common character. There is a pre-crisis period that is marked by

a runup in credit, leverage, low risk spreads, and an expansion in output. Credit and

asset valuations appear frothy before a crisis. The transition to the crisis is sharp. There

are losses to the financial sector, defaults and bank runs, a jump in risk spreads, and a

contraction in credit and output. The aftermath of the crisis is a gradual recovery in credit,

output, and fall in risk spreads. These patterns emerge from a large and growing body of

research examining financial crisis episodes across countries and time, dating back to the

19th century. See Bordo et al. (2001), Borio and Lowe (2002), Claessens, Kose and Terrones

(2010), Reinhart and Rogoff (2009a), Schularick and Taylor (2012), Jordà, Schularick and

Taylor (2011), Laeven and Valencia (2013), Jordà, Schularick and Taylor (2013), Baron and

Xiong (2017), Muir (2017), Baron, Verner and Xiong (2021), and Krishnamurthy and Muir

(2024). This empirical research describes and quantifies these common patterns.

Theoretical research on crises has fallen into two categories. The first emphasizes frictions

in financial intermediation that drive an amplification mechanism. The key idea is that

the fragility of the financial sector, measured typically as high bank credit growth or low

levels of equity capital-to-assets, is an endogenous state variable. An unexpected large-loss

event hitting the economy in a state where the financial sector is fragile sets in motion

mechanisms whereby the shock is amplified, there is disintermediation, a rise in risk spreads

and contraction in output. Recovery takes time, tracking a gradual re-intermediation. The

amplification model speaks directly to the transition to crisis and the aftermath of the crisis.

See work by Gertler and Kiyotaki (2010), He and Krishnamurthy (2013), Brunnermeier and

Sannikov (2014), He and Krishnamurthy (2019), and Li (2019).

The second line of research emphasizes the role of information and beliefs, and harkens

back to Kindelberger (1978). There are two key ideas in this research. First, agents ex-

perience a period of prosperity and come to believe that risks are low. Second, the crisis

is an informational event – a “Minsky (1992) moment” – where risk is reassessed, leading

to swings in asset prices, credit, and macroeconomic outcomes. In the work of Gorton and

Ordonez (2014) and Dang, Gorton and Holmström (2020), the shift in beliefs occurs because

financial sector information is hidden, by design, during prosperous periods, and a crisis is

the event when negative information comes to light and agents reassess risks. The shift

from no information to information is at the heart of their narrative of crises. The work

of Bordalo, Gennaioli and Shleifer (2018) has instead argued that a sharp shift in beliefs

in a crisis reflects a change from over-optimistic to over-pessimistic beliefs. Extrapolative

expectations are at the heart of their narrative of the belief shift in a crisis.

This paper builds a model that integrates both of these elements, frictional financial

intermediation and time-variation in beliefs, into a quantitative macro-finance model. Our
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objective is to understand the extent to which these mechanisms can account qualitatively

and quantitatively for the macro crisis patterns, and to clarify which elements of these

mechanisms are essential. Our model has a financial intermediary sector subject to capital

constraints and financed in part by demandable debt. There are two sources of shocks, a

Brownian shock to the return on capital and an illiquidity shock where the market for capital

assets temporarily freezes up, and debtors refuse to roll over their debts, as in a bank run.

In this latter state, sales of capital assets by banks incur a liquidation cost, or alternatively,

loans against capital are charged an illiquidity premium. The economy transits through

booms and busts driven by the Brownian shock and its impact on the dynamics of real

capital and the equity capital of the financial sector. Crises are events where the financial

sector intermediates a large fraction of the real capital of the economy, financing this with

debt, and the illiquidity shock occurs. In this high bank-credit state, there are runs on

banks leading to disintermediation, declines in asset values, and a reduction in output. The

illiquidity shock captures a financial panic, such as occurred in both fall 2008 and spring

2020, with differences in macroeconomic outcomes driven in part by differences in financial

sector fragility. We also note that our illiquidity shock impacts the economy indirectly

via a financial amplification mechanism and not directly via its impact on productivity

and output. This approach to modeling leads to endogenous crises in which the financial

sector’s fragility is the key factor. The modeling is motivated by our objective to shed light

on financial crises such as the 2008 global financial crisis. The financial frictions model

of our paper is a variant of Li (2019). It draws on ingredients from the recent macro-

finance literature on financial crises and intermediation frictions, and particularly He and

Krishnamurthy (2013); Brunnermeier and Sannikov (2014); Gertler and Kiyotaki (2015).

Relative to this literature, where dynamics are driven by one state variable that sum-

marizes the net-worth or wealth share of the financial sector, we introduce a second state

variable capturing time-variation in beliefs. Bankers in the economy make decisions based

on their beliefs about the likelihood of the illiquidity shock. The illiquidity shock is a

Poisson event, the intensity of which follows a hidden two-state Markov process. Agents

infer the state and hence the likelihood of the illiquidity shock based on history. A string

of no-shock realizations leads them to believe that shocks are unlikely (i.e., the true state

is the low-intensity state). A shock occurrence leads them to think that shocks are more

likely (i.e., the true state is the high-intensity state). After an extended period with no

shocks, banks downplay liquidity risk and increase leverage. The shock triggers a “Minsky

moment:” agents’ belief regarding liquidity risk rises and is then amplified and propagated

to the macroeconomy depending on the fragility of the financial sector.

We consider two flavors of the learning mechanism, a Bayesian updating process closest

to Moreira and Savov (2017) and non-rational updating process, along the lines of Bordalo,

Gennaioli and Shleifer (2018), where beliefs over-react to current news.1

1The diagnostic updating process is motivated by the work of Bordalo, Gennaioli and Shleifer (2018),
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We report three principal results. First, the model with financial frictions and a time-

varying belief process matches the main features of the pre-crisis, crisis, and aftermath.

Second, a model with only financial frictions, where dynamics are governed by a state vari-

able measuring banker’s wealth share, generates the amplification needed to match crisis and

post-crisis patterns but fails to match the pre-crisis froth evidence. That is, both a financial

friction mechanism and a mechanism involving fluctuations in beliefs are needed to match

the crisis cycle evidence.2 Third, while belief fluctuations are essential, whether one needs a

Bayesian belief process or the non-rational diagnostic process to fit the crisis patterns is more

murky. The diagnostic belief model, calibrated to the evidence from Bordalo, Gennaioli and

Shleifer (2018), matches the crisis patterns qualitatively. But so does the Bayesian belief

model. These two learning variants each fit different dimensions of the data better (and

worse), with the diagnostic model’s principal success over the Bayesian model being that

the model’s pre-crisis froth is quantitatively closer to the data. Within the bounds of how

much one can push the quantitative fit of our parsimonious equilibrium model, both models

fit the moments we consider. A key driver of this invariance result is that we recalibrate

the model’s parameters when we consider alternative learning models.3 Thus, we conclude

that a financial amplification mechanism plus a belief mechanism provides a parsimonious

account of the central crisis facts.

The main contribution of this paper is to bridge the recent theoretical work on non-linear

macro-finance models (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014;

Di Tella, 2017) with the empirical literature on financial crises cited earlier. The models in

this theoretical literature feature non-linearities and are solved using global methods. Thus

these models are well-suited to characterize the non-linear dynamics in financial crises. But

the work thus far is either purely theoretical or aims to match a single crisis-event (e.g.,

the 2007-2009 financial crisis in He and Krishnamurthy (2019) and Gertler, Kiyotaki and

Prestipino (2020)). The empirical crisis literature on the other hand has largely documented

systematic patterns in the data rather than assess this data from the standpoint of models.

Our paper bridges this gap.4

and is also related to the models of Greenwood, Hanson and Jin (2019) and Maxted (2019). Bordalo,
Gennaioli and Shleifer (2018), Bordalo et al. (2019b), and Bordalo et al. (2020) examine data on survey
forecasts of financial and economic variables. They show that these forecasts are hard to square with rational
expectations and instead propose a model of diagnostic expectations that matches these data. We use their
model and parameterization of diagnostic expectations to study crises. Their survey evidence concerns
data that largely varies at business cycle frequencies. We assess how this model of behavior can extend to
explaining rare financial crises. Ma, Paligorova and Peydro (2021) presents survey evidence that assessments
by banks over the downside tail of recession risks, more than the mean of economic forecasts, explain bank
lending decisions. Their evidence motivates our modeling of learning about downside illiquidity risk.

2In the appendix, we consider the case of a model without financial frictions but with fluctuations
in beliefs over a production disaster. That variation of the model fails to even qualitatively match the
association between credit variables and crises.

3In the appendix, we consider other variants of belief distortions including optimism and pessimism, and
show that these models once recalibrated to the same moment targets also do better than the static belief
model, but not demonstrably better than the Bayesian or diagnostic belief models.

4Another contribution of our paper to the non-linear macro finance work is the model. A major dis-
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This paper’s objective of matching the boom-bust of the crisis cycle is closest to that

of a few other papers that precede ours.5 Boissay, Collard and Smets (2016) develop a

dynamic model of banking crises that generates the pattern in line with the data that credit

booms precede credit market collapse and crises. The key idea in the model is that banks’

absorption capacity is reduced during a boom, with the economy potentially hitting a cliff

where the credit market collapses. Thus, the probability of a financial crisis rises in the

boom. Relative to their analysis, we aim to match the asset market fact that risk premia

and credit spreads are low during the boom, which we reconcile with the learning mechanism

of our model. Greenwood, Hanson and Jin (2019) present a model where lenders extend

credit based on beliefs over the default probabilities of borrowers. There is a feedback

between realized default and beliefs regarding default probabilities, similar to the model of

this paper, that creates a persistence and amplification mechanism. Like us, their paper

aims to match facts on credit growth, credit spreads, and risk premia. But their model

is not a full macroeconomic model, and thus does not speak to other macroeconomic data

such as output and the conditional distribution of output growth. Their model also does not

have an intermediary sector, so it cannot assess the role of intermediary frictions relative to

beliefs. Maxted (2019)’s macro-finance model is closer to ours. There is an intermediation

sector that is central to crisis dynamics. The paper also considers a full macroeconomic

setting, and can thus speak to the macro data. A key point of difference relative to our

model is that Maxted (2019)’s diagnostic belief modeling extrapolates the mean growth of

capital productivity, whereas in our model, beliefs over a tail illiquidity shock are distorted.

Finally, this paper also contributes to a larger literature on beliefs and learning in macroe-

conomics models. Closest to our paper is Kaplan, Mitman and Violante (2020) who dissect

the U.S. housing boom-bust cycle around the 2008 crisis to evaluate the role of beliefs and

financial constraints in driving the cycle. They conclude that a shift in beliefs during the

boom is essential to matching the cycle. Note that we consider banking crises and not hous-

ing crises, and broaden our scope to include patterns across many crisis episodes. Gorton

and Ordonez (2014) and Asriyan, Laeven and Martin (2022) build models where informa-

tion quality deteriorates during a boom, setting the stage for a crisis. Van Nieuwerburgh

and Veldkamp (2006) show that asymmetry in learning about productivity can generate

advantage of the current models is that they are computationally challenging, and current models restrict
attention to one or two-state variables following a Brownian diffusion process. In this paper, we present and
solve a model with two state variables and endogenous jumps. Our methodology helps broaden the scope of
the literature to encompass richer dynamics with sudden and large disruptions, which are plausibly central
to financial crises.

5There are other recent macro-finance papers, not explicitly about the boom-bust cycle, but that aim to
match crisis facts. Gertler, Kiyotaki and Prestipino (2020) introduces bank runs into a macro-intermediation
model. Beliefs, modeled via a sunspot, play a role in driving crisis dynamics. The objective of their paper
is to study the 2007-2009 financial crisis rather than disentangling mechanisms underlying the crisis cycle
facts. Camous and Van der Ghote (2021) builds on Maxted (2019) and considers diagnostic expectations
and financial frictions in a multi-sector model. The model can generate a build-up of instability and a
safety trap with low growth. Gopalakrishna (2020) introduces state-dependent bank exit into a quantitative
continuous-time macro-finance model and generates a slow recovery in line with empirical evidence.
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asymmetries in business cycles. Simsek (2013) explores the interaction of beliefs and credit,

building a model where beliefs over upside versus downside payoffs have an asymmetric

impact on asset valuations, total credit and fragility of the economy. Simsek (2013) studies

the role of belief heterogeneity, which is absent in our model with homogeneous beliefs.

Motivated by the slow recovery from the 2008 recession, there is research tying learning to

slow recoveries.

In Fajgelbaum, Schaal and Taschereau-Dumouchel (2017), information flows slowly in

times of low activity and uncertainty remains high, discouraging investment. Liu, Wang

and Yang (2020) show that the uncertainty and learning about banks’ peers can lead to a

slow recovery. In Kozlowski, Veldkamp and Venkateswaran (2020), agents learn about the

parameters of the economic shock process, and a large negative shock realization as in a

deep recession alters agents’ estimates of these parameters, leading to a persistent impact

of the shock on economic growth. Bordalo et al. (2019a) introduce diagnostic beliefs into a

relatively standard real business cycle model. Their model helps to understand the role of

diagnostic beliefs in driving business cycles. Farboodi and Kondor (2020) present a model

of time-varying sentiment in an adverse selection rational learning model that generates a

credit cycle that is qualitatively in line with the facts.

The rest of this paper is as follows. In Section 2, we review general patterns of the crisis

cycle in the data. In Section 3, we set up a model that combines financial intermediation

frictions and beliefs regarding an illiquidity shock. In Section 4, we solve and explain how

we calibrate the the model(s). In Section 5, we evaluate the model, explaining its fit and

the role of beliefs. We then conclude in Section 6. An appendix follows.

2 The Crisis Cycle

This section reviews broad patterns of the crisis cycle, drawn from the empirical literature

on crises. Along the way, we list (numbered below) specific quantitative estimates from the

literature which guide our modeling exercise.

What is a financial crisis? Jordà, Schularick and Taylor (2011) state:

In line with the previous studies, we define financial crises as events dur-

ing which a country’s banking sector experiences bank runs, sharp increases in

default rates accompanied by large losses of capital that result in public inter-

vention, bankruptcy, or forced merger of financial institutions.

We focus on events, as per the quotation, as financial crises. These events are banking crises

and do not necessarily include currency crises or sovereign debt crises unless such events

coincide with a banking crisis. Jordà, Schularick and Taylor (2011)’s dating of banking
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crises is closely related to the approach of Bordo et al. (2001), Reinhart and Rogoff (2009a),

and Laeven and Valencia (2013). Bordo and Meissner (2016) discuss the approaches that

researchers have taken to crisis-dating as well the drawbacks of different approaches.

1. We target an unconditional annual frequency of financial crises of 4%. In an article written

for the Annual Review of Economics, Taylor (2015) reports the historical frequency of

financial crises to be 6%. This data point is obtained from a sample of countries in both

developing and advanced stages, and covers the period after 1860. The Handbook of

Macroeconomics chapter by Bordo and Meissner (2016) reports numbers in the range

of 2 to 4% across the studies by Bordo et al. (2001) and Reinhart and Rogoff (2009a).

Another evidence comes from Jordà, Schularick and Taylor (2013), which reports that the

average frequency of crises is 3.6% using data from multiple countries. Sufi and Taylor

(2022) report an unconditional probability of crises of 2.5%.

Figure 1: Mean path of credit spread, bank credit, and GDP across a sample of 40 financial
crises. Units for spread path are 0.5 means that spreads are 50% above their average for a
given country. Units for credit path are that 0.5 indicates that 3-year growth in credit/GDP
is 0.5σs above the trend for a given country. Units for GDP path are such that −5 means
that GDP is 5% below trend for a given country, where the path is normalized to be 0 at
t = −6. Source: Figure 1 of Krishnamurthy and Muir (2024)

Figure 1 plots the mean path of credit spread, credit, and GDP across a sample of 40

international financial crises identified by Jordà, Schularick and Taylor (2013) and Laeven

and Valencia (2013) and studied by Krishnamurthy and Muir (2024). Date 0 on the figure

corresponds to the date of a financial crisis. The top-left panel plots the path of the mean

credit spread, relative to the mean spread for country-i and other countries at time t, from

6-years before the crisis to 5-years after the crisis. The units here are that 0.5 means that

spreads are 50% (approximately 0.50σs) larger than the country’s time-series average spread,

while -0.2 means that spreads are 0.2σs below the country’s time-series average. The data

is annual from 15 countries spanning a period from 1879 to 2013.

We see that spreads run below their average value in the years before the crisis. They

rise in the crisis by 0.7σ, going as high as 1σs over their mean value in the year after the

crisis date, before returning over the next 5 years to the mean value. The half-life of the

credit spread recovery is 2.5 years in this figure.
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The middle panel plots the path of the quantity credit, measured as the 3-year growth

in bank credit divided by GDP. The credit variable is demeaned by the sample growth rate

in credit for country-i and normalizing by the standard deviation of credit growth for the

country. The value of 0.5 for time 0 means that credit/GDP growth is 0.5σs above the

country trend. We see that credit grows faster than average in the years leading up to

the crisis at time zero. After this point, credit reverses so that by time +5 the variable is

substantially below the country average.

The right panel plots GDP as an average percentage change from 6-years before the crisis,

after demeaning by the sample growth rate in GDP for country-i. GDP is above average

trend in the years preceding the crisis. GDP falls below trend in the crisis and remains low

up to 5 years after the crisis.

Transition to crisis: A crisis is characterized by a sharp jump in credit spreads, a reversal

in the quantity of credit and a decline in GDP. From the data underlying Figure 1:

2. Credit spreads rise by 0.7σs in the first year of the crisis.

3. GDP declines by 9.1%. Reinhart and Rogoff (2009b) report a peak-to-trough decline in

GDP across a larger sample of crises of 9.3%. Sufi and Taylor (2022) report a 5-year

decline in GDP from the date of crisis of around 5.7%. Cerra and Saxena (2008) report

output losses from banking crises of 7.5% with these losses persisting out to 10 years. We

will use the 9.1% number in our quantitative exercise.

The rise in credit spreads in the year of the crisis is mirrored in other asset prices.

Reinhart and Rogoff (2009a) report that equity prices decline by an average of 55.9% during

banking crises. Muir (2017) shows that the dividend-price ratio on the stock market and the

excess return on stocks rises during the crisis, indicated a generalized rise in asset market

risk premia. Muir (2017) reports that the peak dividend-price ratio in a crisis rises by 43%

relative to its pre-crisis level.

Aftermath and cross-sectional severity of crises:

4. The half-life of the recovery of the credit spread to its mean value is 2.5 years.

5. There is variation in the severity of the crisis. Figure 2 presents data on the variation in

the severity of the crisis, as measured by peak-to-trough GDP growth around a financial

crisis. The figure reflects significant variation in crisis severity. The data is from a sample

of 42 financial crises studied by Krishnamurthy and Muir (2024).

6. The variation in the severity of the crisis is correlated with the increase in spreads mea-

sured at the transition into the crisis. Krishnamurthy and Muir (2024) report a coefficient

of−2.11 from a regression of 3-year GDP growth following a crisis on the increase in credit

spreads from the year before the crisis to the year of a crisis.
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Figure 2: The figure presents a histogram of the peak-to-trough fall in GDP around 42
financial crises studied by Krishnamurthy and Muir (2024).

7. The variation in the severity of the crisis is correlated with the pre-crisis increased in

credit/GDP. Krishnamurthy and Muir (2024) report that one-sigma increase in bank

credit/GDP over the 3 years preceding the crisis is correlated with a 2.06% decline in

3-year GDP growth following the crisis. Mian, Sufi and Verner (2017) show that a one-

sigma increase in private debt-to-GDP growth over the last 3 years is associated with a

2.1% decline in output over the next 3 years.

Pre-crisis period: In the pre-crisis period, credit markets appear frothy, reflecting low

credit spreads and high credit growth. In particular,

8. Conditioning on a crisis at year t, and looking at the 6 years prior to the crisis, Krishna-

murthy and Muir (2024) show that credit spreads are 0.45σs below their country mean

(where this country mean is defined to exclude the crisis and 5 years after the crisis).

9. Conditioning on a crisis at year t, the preceding 3-year growth in credit/GDP is 0.5σs

above country mean. The relation between a lending boom and subsequent crisis is well

documented in the literature. See Gourinchas et al. (2001), Schularick and Taylor (2012),

and Baron and Xiong (2017).

Predicting Crises: There is also evidence that periods of frothy conditions predict and

not just precede crises. There are three quantitative estimates that we will aim to match.6

10. Schularick and Taylor (2012) find that a one-standard deviation increase in credit growth

over the preceding 5 years (= 0.07 in their sample) translates to an increased probability

6Greenwood et al. (2020) present further evidence in line with froth predicting crises. In post-war cross-
country data, they document that periods of high credit growth coupled with periods of high returns in the
stock market substantially increase the likelihood of a financial crisis. We discuss how our model can speak
to their quantitative estimates in Section 5.7.
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of a financial crisis of 2.11% over the next year.7 Sufi and Taylor (2022) report that

when previous 5-year credit growth is in its highest sextile, the probability of a crisis

quadruples.

11. Conditioning on an episode where credit spreads are below their median value 5 years

in a row, Krishnamurthy and Muir (2024) estimate that the conditional probability of a

crisis rises by 12.9% over the next 3 years.

12. Baron and Xiong (2017) find that a one-standard deviation increase in credit growth over

the preceding 3-years increases the probability of bank equity crash, defined as decline

in bank equity by over 30% in the next year, by 5.4%.

3 A Model of Financial Crises with Amplification and

Sentiment

In this section, we present a model of financial crises that incorporates both a financial

amplification mechanism and a role for sentiment. We fix a probability space (Ω,F ,P) and

assume all stochastic processes are adapted to this space and satisfy the usual conditions.

The economy evolves in continuous time. It is populated by a continuum of a unit mass of

two classes of agents, households, and bankers. For clarity, aggregate variables are in capital

letters, and individual variables are in lower case letters. The basic setup is a variant of Li

(2019), which is drawn from Brunnermeier and Sannikov (2014) and Kiyotaki and Moore

(1997).

3.1 Agents and Assets

Households maximize expected value of the discounted log utility,∫ ∞
0

e−ρt log(cht )dt (1)

and bankers optimize expected value of the same form of discounted log utility,∫ ∞
0

e−ρt log(cbt)dt (2)

The expectation could be either Bayesian or diagnostic, as we will specify later.

Output is produced by capital. We will simplify by assuming that the capital is held

directly by either banks or households. In a richer and more realistic model, the capital will

7This comes from Table 2 of their paper which is a Logit specification, and we report the marginal
probability from that specification.
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be held and operated by firms that receive loans from banks or households, along the lines

of Holmstrom and Tirole (1997). We simplify by collapsing firms into banks, and assuming

the banks own the capital.

We assume that credit flowing through banks allows the economy to achieve higher output

and returns to capital. Intermediation is a socially valuable service and disintermediation in

a crisis reduces output. We capture this feature by assuming that banker-operated capital

has productivity Ā which is higher than the household-operated capital productivity of A.

The dynamic evolution of productive capital owned by agent j ∈ {banker, household} is

dkj,t
kj,t

= µKt dt− δdt+ σKdBt (3)

where the rate of new capital installation µKt is endogenously determined through invest-

ment, δ is the exogenous depreciation rate, and σK is exogenous capital growth volatility.

Denote the price of productive capital as pt (i.e., “q” in the standard Q-theory). Invest-

ment undertaken by an owner, either banker or household, of productive capital is chosen

to solve:

max
µKt

ptµ
K
t − φ(µKt ),

where φ(·) is an investment adjustment cost:

φ(µK) = µK +
χ

2
(µK − δ)2. (4)

That is, we assume quadratic costs to investment, leading to the q-theory of investment

pt = φ′(µKt ) ⇒ µKt = δ +
pt − 1

χ
. (5)

The dynamics of capital price pt is denoted as

dpt
pt−

= µptdt+ σpt dBt − κpt−dNt, (6)

where µpt , σ
p
t , and κpt− are all endogenously determined. The “minus” notation (i.e. pt−)

reflects a pre-jump asset price, as will be made clear.

3.2 Financing, Liquidity Risk, and Bank Runs

The Brownian shock dBt in equation (3) reflects business cycle fluctuations in the effective

productivity of capital. We introduce a second shock that we call a “financial illiquidity”

shock. We model this as a Poisson shock dNt that triggers illiquidity and bank runs, and a

possible financial crisis if the endogenously determined banking sector fragility is sufficiently
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high.

Since banker held capital is more productive than household held capital, there is room

for an intermediation relationship whereby households provide some funds to bankers to

invest in capital. We assume that the only form of financing is short-term (instantaneous)

debt at the endogenous interest rate rdt . Bankers cannot raise equity, long-term debt, or

other forms of financing. When we refer to bank equity, we mean the net-worth of bankers,

wbt . That is, the financing side of the model is one of inside equity and outside short-term

debt. These model simplifications do sweep aside important issues, but we nevertheless

go down this path because we aim to build a simple quantitative amplification mechanism

and see how well it matches data, rather than explore the corporate finance foundations of

intermediary models.

We assume that in the event of an illiquidity shock, all short-term debt holders run to

their own bank and withdraw financing in a coordinated fashion. Raising resources to cover

this withdrawal is temporarily costly. We assume that a cost of α is incurred when capital

is liquidated to meet the funding withdrawal during the illiquidity shock. We can think of

this cost as liquidation cost or, alternatively, the cost can be mapped into a premium on

raising emergency financing from other banks or other households in the economy against the

capital. In this latter case, we need to step outside the modeling and interpret the illiquidity

event lasting longer than dt. Then, α is proportional to the spread over the riskless rate

that the bank pays to obtain funds over the illiquidity episode (if the event lasts dt then

a financing spread maps into a cost of order dt). Finally, we assume that the cost is not

dissipated but is paid to households proportional to their wealth. This assumption is not

essential to the analysis but ensures that the illiquidity shock has no direct impact on output.

In terms of primitives, the occurrence of the liquidity shock leads to a transfer of wealth

between bankers and households, where the quantity of the wealth transfer is endogenous to

the state of the economy, as we explain in equation (32). There are other financial shocks the

literature has explored, such as a tightening of financial constraints (Jermann and Quadrini,

2012), which can deliver similar dynamics.

The illiquidity shock captures a financial panic, such as occurred in both fall 2008 and

spring 2020, with differences in macroeconomic outcomes driven by differences in financial

sector fragility. We also note that our illiquidity shock impacts the economy indirectly via

a financial amplification mechanism and not directly via its impact on productivity and

output as would arise in a rare consumption disasters model (Barro, 2006). In Appendix

A.9 we consider a version of the model with a productivity disaster, but not a financial-

frictions-driven amplification mechanism.

Note also that we do not model a Diamond and Dybvig (1983) bank-run game. We

simply assume that the shock leads all debtors to pull their funding. It is possible to model

11



the game in detail following Li (2019) whose model is the basis for this paper. However, we

learn from that study that the model’s positive implications are almost the same with and

without the deeper model of the bank-run game.

3.3 Beliefs and Crises

The intensity of the illiquidity shock process dNt follows a two state continuous-time Markov

process, λ̃t ∈ {λL, λH}. This intensity changes from λL to λH at rate λL→H , and changes

from λH to λL at rate λH→L. Neither bankers nor households observe λ̃t. Instead they all

infer λ̃t from observing the history of Nt, i.e., via realizations of the shock process.

We denote the Bayesian expectation as λt = Et[λ̃t]. Using Bayes rule,

Lemma 1 (Bayesian Belief Process).

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λt− − λL)(λH − λt−)

λt−
dNt (7)

Therefore, if illiquidity occurs, the expected intensity λt jumps up. As time goes by,

without further illiquidity shocks, the expected intensity λt gradually falls.8

3.4 Diagnostic Expectations

We also consider a version of our model where agents overweight recent observations moti-

vated by the diagnostic belief model of Bordalo, Gennaioli and Shleifer (2018). We adapt

their model to our continuous time dynamic equilibrium environment.

Denote the Bayesian belief for the probability of λ̃t = λH as πt, and the diagnostic belief

for the probability of λ̃t = λH as πθt . Then we define the diagnostic beliefs as

πθt = πt ·
(

πt
Et−T [πt]

)θ
1

Zt
(8)

1− πθt = (1− πt) ·
(

1− πt
Et−T [1− πt]

)θ
1

Zt
(9)

where Zt is a normalization to ensure that (8) and (9) add up to 1. We call the lag T as the

“look-back period,” which is one in the discrete time model of Bordalo, Gennaioli and Shleifer

8In theory, when λt → λL, the drift of dλt can be positive. The reason is that the underlying intensity
process λ̃t switches between λL and λH and the average is between the two values, so when λt is close to
λL the dynamics of λ̃t dominates the information effect and dλt is positive. However, states with positive
dλt are transient, i.e., λt never get back to those states once it drifts outside. In the long run, those states
are reached with zero probability and do not matter quantitatively.
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(2018). In our case, the diagnostic beliefs of the process are simply distorted Bayesian

beliefs with the benchmark from T time ago. The process πθt features both overreaction and

underreaction, depending on the gap between current πt and past πt−T .

Denote the diagnostic belief for the expected intensity of illiquidity shocks as

λθt = Eθ
t [λ̃t] :

∆
= πθt λH + (1− πθt )λL

where Eθ is the expectation with respect to the probability distribution under the diagnostic

belief. Then we have the following result:

Lemma 2 (Diagnostic Belief Process). The diagnostic belief λθt = Eθ
t [λ̃t] is

λθt = λL + (λt − λL)
(λH − λt) + (λt − λL)

(
λTt −λL
λH−λTt

/ λt−λL
λH−λt

)
θ
(λH − λt) + (λt − λL)

(10)

where λTt = Et−T [λ̃t] is the expected value of λ̃t under the Bayesian expectation.

In Figure 3(a), we plot the evolution dynamics of the Bayesian and diagnostic belief

processes, where the diagnostic belief process is described by (10). We note that when

θ = 0, λθt = λt so that the diagnostic belief is the same as the Bayesian belief. When θ is

above 0, the pre-illiquidity shock belief is lower than the Bayesian belief, and then jumps

to a higher level after an illiquidity shock. Right after an illiquidity shock, there is over

pessimism. However, after one year, the perceived frequency of the illiquidity shock is below

the Bayesian belief so that diagnostic agents are overly optimistic.

In Figure 3(b), we plot the belief λθt against the underlying state λt. In the Bayesian

case, this is the 45 degree line. In the diagnostic case, we can see that the diagnostic agent

belief is optimistic relative to the true state when λ is low, and pessimistic when λ is high.

The diagnostic map is not one-to-one because the diagnostic belief process also depends on

the look-back period T (although the dependence is small relative to the dependence on the

current state λt). In the graph we present the average relationship by fitting a spline to

the simulated data. The parameters used in this graph are as described in the calibration

section.

In the appendix, we study and present results for other forms of belief distortion, param-

eterizing the distortion following the logic underlying Figure 3(b). That is, we consider a

case of optimism where the agent belief is distorted primarily for the low λ states, as well as

a pessimism case where the distortion is for the high λ states. More broadly, our modeling

approach is flexible enough to consider other forms of belief distortion.
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Figure 3: Illustration of the Diagnostic Belief. In panel (a), we simulate the diagnostic
belief under different values of θ. The parameter θ ≥ 0 means the strength of the behavioral
feature of the diagnostic belief, and it becomes the Bayesian belief when θ = 0. Other
parameters are set the same as the calibrated diagnostic belief model. The diagnostic belief
process is fully described by (10). As θ increases from 0 to 1, the believed frequency of
illiquidity shocks in a pre-crisis boom decreases by 30%. In panel (b), we illustrate the
average relationship between current Bayesian belief and current diagnostic belief, by fitting
a best spline on the simulated data (the mapping is not one-to-one because diagnostic belief
also depends on the history of λt).

3.5 State Variables and Decisions

We define the total wealth of banks as W b
t and the total wealth of households as W h

t . The

wealth share of bankers is,

wt =
W b
t

W b
t +W h

t

. (11)

Then we have three state variables: wt, the expected jump intensity λt, and total productive

capital Kt. We construct an equilibrium where all relevant objects scale linearly with Kt.

This reduces the computational problem to a model with two state variables, wt and λt.

Denote wbt as the wealth of an individual banker. Similarly, denote wht as the wealth of an

individual household. Let the value functions for banker and household be V b(wbt , wt, λt) and

V h(wht , wt, λt), respectively, at time t. To guarantee a non-degenerate wealth distribution,

we assume bankers randomly transit to becoming households at rate η.9 Bankers take this

transition possibility into account in their optimization problems.

In solving their decision problems, agents compute the current state and expectations

over the evolution of the state. In the Bayesian model, these expectations are rational so

9Without this assumption, the banker, who earns a higher return on capital, will come to own almost all
of the wealth of the economy.
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that the forecast evolution of the state corresponds to the true evolution of the state. In the

diagnostic case, the agent’s assessment of the current state λθt is formed via the diagnostic

heuristic. But, importantly, the agent does not understand that he is non-rational, nor

does he know that any other agent is non-rational, and this is common knowledge.10 As

a result, when computing the expectation Eθ
t in the agent’s decision problem, the agent

forecasts that the law of motion for λθt is given by the Bayesian (rational) law of motion in

(7). Consequently, the policy rules for the agent (consumption and portfolio choices) are

mathematically the same function of the state as in the Bayesian case, except that the belief

is now the diagnostic belief. When we simulate the model we keep track of both λθ and λ.

In what follows, we will discuss the policy rules and model solution under the Bayesian

belief. The diagnostic model solution comes from replacing λ with λθ in the policy functions.

Bankers

Each banker can invest in productive capital and borrow/lend from households or other

banks via short-term debt at interest rate rdt . Note that short-term debt is riskless even

though the price of capital will jump in equilibrium. This is because a forward-looking

banker with log utility will never make a portfolio choice that leaves him with negative

wealth in any state.

Denote the banker’s portfolio choice (as a fraction of the banker’s wealth wbt ) in productive

capital as xKt . Then the borrowing from household is

xdt = xKt − 1. (12)

We will later show that banks always borrow from households and take leverage so we always

have xdt ≥ 0.

Starting from time t, the time that banker will switch to becoming a household is denoted

as τ , which is exponentially distributed with rate η. A banker with wealth wbt solves the

problem,

V b(wbt , wt, λt) = sup
cbt≥0, xKt−≥0

E[

∫ τ

t

e−ρ(s−t) log(cbs)ds+ e−ρτV h(wbτ , wτ )
∣∣wbt , wt ], (13)

subject to the solvency constraint

wbt ≥ 0. (14)

The second part of the objective function is the transition to a household, which changes

10One could consider a model where a single diagnostic agent thinks they are unbiased but other agents
are biased. This is in the spirit of the heterogenous belief models (Simsek, 2013). We conjecture that in such
a model the equilibrium impact of belief distortions will be weakened (e.g., bankers will take less leverage if
they observe that other bankers are over-levered).
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the continuation value from V b to V h. The dynamic bank budget constraint is:

dwbt
wbt−

= xKt−(µRt− +
Ā

pt−
)dt︸ ︷︷ ︸

exp. return from capital

− xdt−r
d
t−dt︸ ︷︷ ︸

deposit funding

−
cbt−
wbt−

dt︸ ︷︷ ︸
consumption

+ xKt−(σK + σpt−)dBt︸ ︷︷ ︸
volatility of capital

− (xKt−κ
p
t− + α(xdt−)+)dNt︸ ︷︷ ︸

losses in illiquidity shock

,

(15)

where (xd)+ = max{xd, 0} measures the net borrowing from households, and the “non-

dividend” component of capital return is:

µRt = µpt︸︷︷︸
price appreciation

− δ︸︷︷︸
depreciation

+ σKσpt︸ ︷︷ ︸
Ito term

+ µKt −
φ(µKt )

pt︸ ︷︷ ︸
net investment return

. (16)

In equation (15), the bank obtains returns from capital investment and pays the funding

costs to depositors and dividends (i.e., banker consumption) to bank shareholders, subject

to the Brownian risks of capital volatility, and losses caused by the liquidity shocks. The

return from capital can be classified into a dividend component denoted by Ā/pt, and a non-

dividend component denoted by µRt , which as shown in equation (16) consists of capital price

appreciation, capital depreciation, the Ito term on capital price volatility, and finally the

net investment returns. During a liquidity shock, the banker suffers from both an exogenous

liquidation cost (α) and a valuation drop (κpt−) on their capital holdings. Note that the net

funding withdrawal that has to be fulfilled during an illiquidity episode by selling productive

capital is (xdt−)+.

Households

Each household chooses the consumption rate cht and capital holding yKt as a fraction of

household wealth for the following objective

V h(wht , wt, λt) = sup
cht ≥0, yKt ≥0

E[

∫ ∞
t

e−ρ(s−t) ln(chs )ds
∣∣wht , wt ], (17)

subject to the solvency constraint

wht ≥ 0, (18)

and the budget constraint

dwht
wht−

= yKt−(µRt− +
A

pt−
)dt︸ ︷︷ ︸

exp. return from capital

+ ydt−r
d
t−dt︸ ︷︷ ︸

deposit interest

−
cht−
wht−

dt︸ ︷︷ ︸
consumption

+ yKt−(σK + σpt−)dBt︸ ︷︷ ︸
volatility of capital

− κht−dNt︸ ︷︷ ︸
liquidity exposure

(19)
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where in the liquidity shock, they also suffer losses on their holdings of capital, but receive

a transfer (the exogenous liquidation cost paid by the banker):

κht− = yKt−κ
p
t−︸ ︷︷ ︸

valuation drop

−α(xdt−)+ wt−
1− wt−︸ ︷︷ ︸

transfer

. (20)

Relative to the bank budget constraint in (15), the household budget constraint (19) differs

mainly in two ways: First, households earn a lower dividend return compared to bankers,

A/pt < Ā/pt; Second, during the liquidity shock, households earn a transfer equal to the

liquidation cost paid by bankers (the second term in (20)). In practice such a transfer is

likely intermediated by the central bank which provides the emergency funding to the bank

and rebates the profits to households. We have omitted this step in our modeling. We also

note that our modeling implies that there is no direct destruction of output in a liquidation

shock, which ensures that the liquidity shock is purely financial with no direct impact on

aggregate output.

3.6 Equilibrium Definition

Denote the share of capital owned by bankers as,

ψt =
xKt W

b
t

xKt W
b
t + yKt W

h
t

. (21)

Then the aggregate production of consumption goods is

Yt = (ψtĀ+ (1− ψt)A)Kt. (22)

Because Ā > A, output is increasing in ψt.

Given that bankers and households are homogeneous, we can express the dynamics of

aggregate wealth as,
dW b

t

W b
t−

=
dwbt
wbt−
− ηdt, (23)

dW h
t

W h
t−

=
dwht
wht−

+ η
W b
t−

W h
t−
dt, (24)

where the second terms in (23) and (24) are due to the transition of bankers to households.

We derive a Markov equilibrium where all choices only depend on the state variables

wt and λt. Let ĉb = cb/wb be the consumption of a representative banker as a fraction of

the banker’s wealth, and ĉh = ch/wh similarly. The following formalizes the equilibrium

definition.

Definition 1 (Equilibrium). An equilibrium is a set of functions, including the price of
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capital p(wt, λt), bank debt yield rd(wt, λt), household consumption wealth ratio ĉh(wt, λt) and

capital holdings yK(wt, λt), banker consumption wealth ratio ĉb(wt, λt) and capital holdings

xK(wt, λt), such that

• Consumption, investment and portfolio choices are optimal.

• Capital good market clears

W b
t x

K
t +W h

t y
K
t = ptKt. (25)

• The aggregate non-financial wealth of households and banks equal to total value of capital

W b
t +W h

t = ptKt. (26)

• Consumption goods market clears

ĉbtW
b
t + ĉhtW

h
t = (ψtĀ+ (1− ψt)A)Kt − itKt. (27)

3.7 Leverage, Risk and Liquidity Premia

For an individual bank, the net funding withdrawal that has to be fulfilled during an illiq-

uidity episode by selling productive capital is (xdt )
+ = (xKt − 1)+. In Appendix A.3, we

prove that:

Lemma 3. In equilibrium, banks always borrow from households and take leverage, i.e.,

xKt ≥ 1.

The statement is true because banks earn higher returns on holding productive capital

than households. Thus, we have

(xdt−)+ = xdt−. (28)

Then the bank budget constraint (15) can be rewritten as

dwbt
wbt−

= −
cbt−
wbt−

dt+rdt−dt+x
K
t− (µRt− +

Ā

pt−
− rdt−)︸ ︷︷ ︸

capital excess return

dt+xKt−(σK + σpt−)dBt︸ ︷︷ ︸
Brownian risks

− (αxdt− + xKt−κ
p
t−)dNt︸ ︷︷ ︸

losses in illiquidity shocks

.

(29)

Denote the non-jump component of wealth growth as d̃wbt and the jump component as

∆wbt . With the results in Lemma 3 and the properties of log utility, we write the banker’s
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optimization problem as:

max
cbt ,x

d
t ,x

K
t

log(cbt) +
1

ρ

Et−[
d̃wbt
wbt−

]/dt− 1

2

(
d̃wbt
wbt−

)2

/dt+ λt−
(
log(wbt− + ∆wbt )− log(wbt−)

)
(30)

The objective has the familiar mean-variance form over the evolution of wealth that comes

from log-utility, plus an extra component due to the jump illiquidity shock. Denote the

return to a bank on holding capital as dRb
t . Then we have the following first order condition

for the excess return earned by the banker in purchasing capital funded by deposits:

Et−[dRb
t ]− rdt− = (σK + σpt−)2xKt−︸ ︷︷ ︸

Brownian risk premium

+λt−(α + κpt−)
xKt−κ

p
t− + αxdt−

1− xKt−κ
p
t− − αxdt−︸ ︷︷ ︸

liquidity risk premium

, (31)

where the first term is the required compensation for taking on Brownian risk. The two

sources of Brownian risk are the exogenous capital shock, σK , and the endogenous capital

price risk, σpt . The second term is a liquidity risk premium. Deposits are subject to run

risk, in which case the bank has to sell capital, suffering the exogenous loss of α and the

endogenous fire sale loss of κpt−. This possible loss requires a compensation, which is the

liquidity risk premium.11

Equation (31) can also be used to understand the leverage decision of a banker, which is

xdt . In particular, consider how news that leads the banker to revise upwards his estimate

of λt will affect leverage. Since purchasing capital funded by runnable deposits exposes the

banker to liquidity risk, this higher liquidity risk will lead the banker to take on less leverage.

Figure 10 in Section 5.6 graphs this negative relationship in the calibrated model.

Finally, turning from a given bank’s decision problem to the macroeconomy, a key factor

in a crisis is the total losses suffered by banks in an illiquidity shock. These losses are pro-

portional to the total debt in the economy, W b
t−x

d
t−, as well as the exogenous and endogenous

liquidation losses, α + κpt−. Thus, the realized losses to the banking sector caused by the

bank run is,

Loss = W b
t−x

d
t−︸ ︷︷ ︸

bank credit

(α + κpt ) +W b
t−κ

p
t . (32)

In the event of an illiquidity shock, W b
t will jump downwards by approximately this loss. As

a result, the capital share ψt will fall which can lead to a financial crisis as we next explain.

11Note that the expected loss under the physical probability is λt−(α + κpt−). The term for the liquidity
risk premium in (31) reflects the risk compensation for being exposed to these losses.
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3.8 State-Dependent Crises
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Figure 4: Price of capital and bank credit as a function of wt, pre- and post- dNt shock.

Figure 4 graphs the price of capital in blue as a function the banker’s wealth share, w,

which is one of the state variables in the equilibrium (λt is the other state variable). We note

that the price of capital is increasing in w up to a point and then is flat thereafter. In the

increasing portion, both bankers and households own capital. As the wealth share increases,

more of the capital is in the bankers’ hands, and hence more of the capital produces a higher

dividend of Ā. This force leads to a positive relationship between the price of capital and

the wealth share. To the right of the dashed line, all of the capital is in the bankers’ hands.

Now, it will be the case that as the wealth share of bankers rises to the right of the dashed

line, the risk premium required by bankers to absorb capital risk falls, which by itself would

raise capital prices. However, because of log utility, the interest rate rises to offset the fall

in the risk premium, and the net effect on the discount rate is to keep the price of capital

constant to the right of the dashed-line.

In the lower part of the figure, we graph total bank borrowing from household which

is W b
t−x

d
t− and labeled bank-credit. As banker wealth share increases, total bank credit

increases as bankers intermediate more of the capital, using borrowing from household.

Bank credit is maximal at the dashed vertical line, where banker’s hold all of the capital,

funded by debt from households. As we go to the right of this point, further increases in

wealth mean that banker wealth – that is, bank equity – rises and hence bank borrowing

from household decreases.

The realization of an illiquidity shock has two impacts on equilibrium. First, λt rises and

the rise in λt causes bankers to become more illiquidity averse and de-lever. This causes

the price function to shift downwards to the black line on the figure labeled p(wt−, λt). The

price reduction is highest around the point where bank credit is highest. Second, the fall in
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price and the exogenous losses due to the bank-run lead to a fall in wt of ∆wt−, and this

loss is amplified as prices are lower at the smaller bank wealth share.

There are three cases of interest. First, if the illiquidity shock occurs when banker

wealth share is high – on the right side of the dashed line in the figure – bankers suffer a

small exogenous liquidation loss because at high banker wealth/low household wealth, xdt−

is relatively low and hence losses from the run are small. Delevering also has a small impact

as bankers own capital with relatively high equity and low debt. The purple dashed-line

of bank credit, W b
t−x

d
t−, shows that bank credit is low for high values of w, and hence the

loss (see equation (32)) is small. Thus, the post-shock wealth share jumps a small distance

to the left, as indicated by the red arrow. But since at this new wealth share, the price of

capital is the same as at the old wealth share, there is no endogenous fall in the price of

capital and κpt− = 0. Additionally, as output is equal to (ψtĀ + (1 − ψt)A)Kt and ψt = 1

both before and after the shock in this case, there is no fall in output. Thus, this first case

is one of no-amplification of the illiquidity shock.

A second small-amplification case arises when w is small. In this case, most capital is

held by households, which means the banking sector is small and W b
t−x

d
t− is small. The

shock triggers delevering of bankers, but given that bankers hold little capital, households

also absorb little capital and hence the price reduction (gap from blue to black line) is small.

Thus the losses from the illiquidity shock are small, and as a result the absolute fall in wt

in this case is small (although large in percentage of wt terms, yet the absolute fall is what

matters for macro dynamics). Because the capital price function has some slope in this

region, we will have that κpt− > 0, but the effect is minor. We also have that the change in

ψt and hence the output decline is also small.

The high-amplification case occurs for intermediate values of wb and high values of bank

credit, W b
t−x

d
t−. In this case, which occurs around the vertical dashed line, delevering triggers

a large sale of capital and a large fall in prices. The exogenous loss (proportional to W b
t−x

d
t )

is high, and leads to a further fall in banker wealth share, which leads to an endogenous fall

in the price of capital, which implies further losses to bankers, and so on. The post-shock

capital price traces along the red dashed line, reflecting a downward jump in the capital

price and the banker wealth share state variable. The exogenous loss is amplified in this

case. We also have that ψt falls substantially, causing a large decrease in output. This case

is the financial crisis of the model.

Our model thereby captures an amplification mechanism, where the degree is state-

dependent. The figure illustrates that a summary variable of the state that measures the

extent of amplification is bank credit, W b
t−x

d
t−. In our simulations, we show that bank

credit/GDP forecasts a financial crisis. Not pictured in the figure, but also important to

the model’s mechanism, is the dependence of amplification on λt. We have seen that a low

assessment of λt leads the banker to increase xdt (leverage). Thus, a low λt leads the entire
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curve for bank credit, W b
t−x

d
t− in Figure 4, to shift upwards. A useful intuition to help

understand our model’s results is:

Prob of crisis ∝ Bank credit︸ ︷︷ ︸
↑ as λ↓

× λ︸︷︷︸
Prob of liquidity shock

(33)

We return to this relation in Section 5.

3.9 Spreads and Bank Pricing of Liquidity and Credit

In this section, we define spreads that enable us to align the model with data. First, we

define the spread on a hypothetical instantaneous loan with interest rate rCt and no capital

price risk. While there is no price risk when making this loan, we assume it is subject to

illiquidity costs of α in the event of a bank run. It is straightforward to show12 that the

spread on this loan relative to the deposit rate is:

rCt− − rdt− =
λt−

1− xKt−κ
p
t− − αxdt−︸ ︷︷ ︸

risk-adjusted probability

· α︸︷︷︸
liquidity loss

. (34)

This object is a pure liquidity spread and reflects banks’ concern over liquidity risk. We use

this spread to help calibrate the unconditional mean intensity of the liquidity shock.

Second, we aim to match the crisis-cycle pattern of banks’ credit pricing, which reflect

pre-crisis froth, a sharp tightening in the crisis, and a gradual post-crisis recovery. A natural

model object that will reflect a bank’s credit pricing is Et−[dRb
t ] − rdt− which is the bank’s

required return on holding capital (i.e., loans) over its funding cost. Loosing speaking,

Et−[dRb
t ] − rdt− is a bank’s required loan spread. However, the exact historical data we

match over the crisis cycle is not loan spreads but credit spreads (see Section 2). There is

considerable empirical support for the association between credit spreads and bank lending

standards. See Gilchrist and Zakrajsek (2012). We next define a credit spread that is needed

to map the model to the credit spread data.

We define a zero net-supply defaultable bond, matching the characteristics of the credit

spreads in the data presented in Section 2. These defaultable bonds are priced by the

banker’s pricing kernel. This last point is worth stressing, as the model-defined credit

spread will thus pick-up endogenous variation in bankers’ attitude towards risky lending.

We define the credit spread as the yield differential between a risky zero-coupon bond and

a zero-coupon safe bond with the same expected maturity. We model the default intensity

of the bond as related to the intensity of the illiquidity shock, λt−. In default, the losses

to bond holders are affine in the capital price decline κpt−. Details on this specification, the

12The derivation detail is in Appendix A.6.
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bond pricing solution, and the calibration are provided in Appendix A.7.
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(a) Liquidity Premium (Equation (34))
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(b) Bank Loan Spread (Equation (31))

Figure 5: Credit Spread against Bank Loan Spread and Liquidity Premium in the calibrated
Bayesian Model. In this figure, we show the relationship between credit spread, liquidity
premium, and the bank loan spread. We fix the state w and then trace the relationship
among different spreads along the λ dimension.

Figure 5 plots the credit spread in the calibrated model against the liquidity premium,

rCt− − rdt−, and the loan spread Et−[dRb
t ] − rdt−. The variation in the spreads is generated

by model’s variation in the state variable λt. The figure plots this relation for two different

values of w, one at the median, and one at a higher value of w. The upshot from this figure

is that all of these spreads move together. We use the liquidity premium and the credit

spread as targets for calibration because they have measured data counterparts.

3.10 Solution Methodology and Simulation

The challenge of solving this model comes from both multiple state variables and the en-

dogenous jumps in the state variables. To ensure stability, we use a functional iteration

method that begins with an initial guess of the capital price function p(0)(w, λ), and then

iterates over the equilibrium equation system to get an updated price p(1). This updating

step involves solving a fixed-point problem at each state (w, λ). Then we iterate until at

step k, we have ∫ 1

0

∫ λH

λL

|p(k+1)(w, λ)− p(k)(w, λ)|dλdw < ε

for a small positive number ε.

We simulate the model at a monthly frequency but analyze simulations at a yearly

frequency to be consistent with the data. We set the simulation interval as dt = 1/12
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(a month), and generate the independent Brownian shocks dBt ∼ N (0,
√
dt), as well as

an independent illiquidity shock process λ̃t. Based on the illiquidity shock process λ̃t, we

generate illiquidity shocks dNt that hits with probability λ̃tdt for the time interval dt. Once

shocks are generated, we solve for the dynamics of state variables, including wt, λt, and Kt.

For the static belief model, λt is a constant and equals to the unconditional expectation of

λ̃t. For the diagnostic belief model, we need to generate λθt based on λt. With state variables

determined, we generate all other quantities and prices of the model. We discard the first

one thousand data points of each simulation path collected in this manner. As a result, the

initial values do not affect our computed moments. The simulation approximates picking

initial conditions from the ergodic distribution of the state variables. Finally, we average all

of the monthly quantities for a given year to get an annual data set. For prices, we use the

first observation of every year.

4 Calibration

In order to map model outputs to data, we need to define a financial crisis. Crises are the

events where the growth in bank credit/GDP in a given month falls into the lowest 4%

quantile of the distribution of monthly bank credit/GDP growth rates, and there has not

been another such event in the previous three years. This latter criterion is to ensure that a

longer crisis is still dated as a single crisis, as is done in the empirical literature. This crisis

corresponds to a disintermediation event, and in the simulation almost always involves an

illiquidity shock and bank run, although as crises are endogenous, not all illiquidity events

are crises. We target the 4% number based on fact 1 of Section 2. We also consider a crisis

definition based on bank equity crashes, as in Baron and Xiong (2017), in Section 5.9.

We solve and calibrate three variants of the model. The appendix considers further

models of distorted beliefs including optimism and pessimism as well as a variant without

financial frictions. The variants we study in the main text are:

1. Bayesian (rational) model: Agents form beliefs over the illiquidity state following Bayes

rule, and this belief varies over time.

2. Diagnostic (non-rational) model: Agents form beliefs over the illiquidity state via diag-

nostic expectations, and this belief varies over time.

3. Static-belief model: Agents’ beliefs are constant.

We apply a combination of external and internal moments to calibrate model parameters.

Specifically, we directly set parameter values for those with standard values in the literature.

Then we estimate the rest of parameters based on moments chosen to best reflect the

economics of those parameters.
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Table 1: Externally-Calibrated Parameter Values

Parameter Value Moment Target Source

δ 10% Depreciation rate Literature

ρ 4% Time discount rate Literature

χ 3 Investment adjustment cost Literature

α 0.05 Distress illiquidity costs Data

θ 0.90 Diagnostic belief weight Literature

A list of externally-calibrated parameters for the model (not including the credit spread

which is given in Appendix A.7) are shown in Table 1. We follow the macroeconomics

literature to set annual depreciation rate δ = 0.1 (Gertler and Kiyotaki, 2010), annual

time discount rate ρ = 4% (Gertler and Kiyotaki, 2010), and investment adjustment cost

χ = 3 (He and Krishnamurthy, 2019). For the emergency liquidity costs (α), we do not

have good data for the historical financial crises to pin these down. From data of the 2008

crisis, the effective liquidation loss is about 0.05, which is the value of α · β in Li (2019).

Alternatively, we can interpret this liquidation loss as a funding premium. The value of

α = 0.05 translates to a 10% premium for a illiquidity event that lasts 6 months. Last, in

our investigation of beliefs in the model, we choose the diagnostic parameter θ based on

the research by Bordalo, Gennaioli and Shleifer (2018), Bordalo et al. (2019b), and Bordalo

et al. (2020). These authors estimate θ based on the dynamics of forecasts for financial and

economic variables. We set θ equal to 0.9, which is the value used by Bordalo, Gennaioli

and Shleifer (2018) and Bordalo et al. (2019b).13

Then we proceed to estimate other parameters, reported in Table 2 Panel B. The static

belief model has only one parameter λ̄ governing the crisis frequency process which is con-

stant over time. There are four parameters governing beliefs in the Bayesian model: λH ,

λL, λL→H , and λH→L. We note that as long as λL is close to zero, the impact of its value is

negligible. Therefore, we pick λL = 0.001 directly. The diagnostic model adds θ as one more

degree of freedom (the “look-back period” parameter t0 is set to 1, the implicit value from

discrete-time diagnostic belief process such as Bordalo, Gennaioli and Shleifer (2018)). The

Bayesian belief and diagnostic Belief models are exactly identified, while the static belief

model has two more moments than parameters. After experimentation with the model, we

find that the following moments to be particularly informative for the belief parameters:

The average liquidity premium will reflect banks’ assessment of liquidity risk, and thus

the average value of λ. See equation (34). The spread between P2 rated 3-month commercial

paper and 3-month T-bills in data from 1974 to 2018 is 94 basis points. We target a liquidity

13Bordalo et al. (2020) report an estimate of θ of 0.5.
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Table 2: Internally-Calibrated Parameters and Targeted Moments

Panel A. Moments
Data Static Bayesian Diagnostic

Average liquidity premium 0.90% 0.86% 0.77% 0.70%

Avg credit spread change in crises 70% 9% 56% 55%

Half-life of credit spread recovery (years) 2.5 3.4 2.5 2.5

Output/capital ratio 14% 16% 17% 15%

Avg 3-year output drop in crises -9.1% -8.9% -7.9% -9.2%

Output growth volatility 3.8% 3.6% 2.9% 3.8%

Average bank leverage 5.0 5.1 5.1 5.0

Panel B. Estimated Parameter Values

Parameter Static Bayesian Diagnostic

Avg frequency of liquidity shock λ̄ 0.072 – –

High intensity of liquidity shock λH – 0.561 0.638

Low to high transition λL→H – 0.11 0.11

High to low transition λH→L – 0.47 0.48

Household productivity AL 0.12 0.17 0.13

Bank lending advantage AH − AL 0.055 0.030 0.024

Volatility of capital growth σK 0.06 0.03 0.03

Banker-household transition rate η 0.122 0.055 0.034

premium of 90 basis points. Krishnamurthy and Vissing-Jorgensen (2015) estimate the

average liquidity premium on long-term Treasury bonds relative to AAA corporate bonds

to be 75 basis points. We focus on a short-term bond in our exercise and thus target a

higher spread. Our estimate reported in Panel B implies an average λ for the static model

of 0.072, which translates to a liquidity event once over 13.9 years. In the high illiquidity

state, the λH for the Bayesian and Diagnostic models are around 0.6 implying a liquidity

event roughly every 1.66 years.

The credit spread change during a crisis (fact 2) helps determine λL→H , which affects

the degree of surprise in beliefs due to the realizations of illiquidity shocks. The spike in

the credit spread is 0.7σs. The half-life of credit spread recovery (fact 4) helps determine

λH→L, since the speed of recovery of beliefs after a illiquidity shock is directly affected by

the underlying transition probability. The half-life we target is 2.5 years.

The parameters Ā, A, σK , and η govern the output process both in and out of crises.

The following targets inform these parameter choices. The productivity differential Ā − A
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is most directly related to the average output decline during a crisis (fact 3) of -9.1%. The

output to capital ratio, based on the target from He and Krishnamurthy (2019), helps pin

down the average of productivity parameters, Ā and A. The capital volatility σK is informed

by the average output growth volatility. According to Bohn’s historical data, the volatility

of real GDP growth from 1791 to 2012 for the U.S. is 3.8%.

We map banks in the model to depository institutions and broker dealers in the flow of

funds. Bank equity is defined as total bank assets minus total bank liabilities. Since our

model only captures runnable liabilities, we define effective bank liabilities as total liabilities

minus insured deposits. Then we calculate bank leverage as (bank equity + effective bank

liabilities)/bank equity. Using all data available, we find that bank leverage is approximately

5. This moment disciplines η, the transition rate from bankers to households, which affects

the stationary distribution of leverage in the model. For example, setting η very low leads

to a stationary distribution where almost all of the wealth is in bankers’ hands and average

leverage in equilibrium is very low.

To search for parameter values that best match moments, we need to repeatedly solve the

model for a large combination of parameter values. A simple discretization of the param-

eter space (5 parameters for the benchmark, 7 parameters for the Bayesian and diagnostic

models) renders the task computationally infeasible. To resolve this difficulty, we apply the

Smolyak grid method (Judd et al., 2014) to generate a discretized state space. For each

version of the model, we follow the estimation procedure:

• Discretize the state space of parameters around their initial values. We pick a discretiza-

tion level of 3 in the Smolyak discretization. This results in 177 combinations for the

static belief model, 241 combinations for the Bayesian model, and 389 combinations for

the diagnostic model. Simulate all of these models and collect their moment values.

• Denote the moments in the data as m1, · · · , mJ , and the moments from the model as

m̂1, · · · , m̂J . From all of the parameter combinations, pick the one that minimizes the

objective
J∑
j=1

weightj
|m̂j −mj|

mj

.

Here weightj reflects the importance of a given target in the estimation. We set the weight

for the liquidity premium to be three and the rest of the weights to be one. The average

liquidity premium determines the frequency of illiquidity shocks which is a particularly

important parameter in the model.

• Once we have picked a set of parameters, we search in a smaller region around this set

of parameters and find a new best set of parameters in the smaller region. We iterate

the above process until the difference between the optimized objective value between two

iterations is below a threshold.
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5 Model Evaluation

This section evaluates the models we consider and explains the mechanisms that help the

models match the crisis data patterns.

5.1 Targeted Moments

Table 2 presents the model’s fit in hitting the targets. Although each version of the model

is at least exactly identified (static belief model is overidentified), because the state-space is

restricted, we do not fit all of the moments accurately. The static belief model, in particular,

misses the spread change in the crisis by a wide margin. It is possible to fit this moment

if we increase the exogenous liquidation cost α, but we opt to keep α constant across all of

the models to better illustrate the mechanisms underlying the models.

From Table 2, we see that the main difference in parameters between diagnostic and

Bayesian model are in λH and AH −AL. The diagnostic agent tends to be more optimistic

about the distribution of λ on average, as there is a greater concentration of mass in the

distribution within low λ states. Consequently, holding all other factors constant, both the

diagnostic agent’s mean λ and the average liquidity premium decrease. Then, in order to

match the average liquidity premium, the estimation chooses a λH of 0.638 rather than

0.561 (even with this higher λH , the model still produces an average liquidity premium

that is lower than the data). Holding all else constant, a higher value of λH will lead

to a more significant decline in output and an increase in credit spreads during a crisis.

To match the data moments, the estimation reduces AH − AL from 0.030 to 0.024. This

comparison helps explain one of our main findings: our analysis demonstrates that the

Bayesian and diagnostic models yield comparable outcomes. This is because the estimation

procedure generates distinct parameter values for these models to match the data moments,

subsequently aligning their outputs more closely.

5.2 Average Patterns across Crises

Figure 6 plots the path of the model-generated credit spread, bank credit/GDP and GDP

around a crisis at t = 0. The credit spread and bank credit variables are plotted in units of

standard-deviations from their mean value over the sample. The figure should be compared

to the data in Figure 1. We see that the model is able to generate the jump in spreads,

contraction in credit, and drop in GDP. For both the Bayesian and Diagnostic model, the

magnitudes of the spread spike and GDP decline are also in line with the data. During a

crisis, spreads jump about 45% in the model (that is, 0.5 σs) and 70% in the data. As noted

above, the magnitude of the spread spike in the static belief model is too small relative to
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the data. The magnitude of the credit contraction of around 0.6σs for the Bayesian model is

larger than the data counterpart of 0.33σs. This is likely because in our model all credit is

extended via banks, while in the data, there are other intermediaries involved in the credit

process. Note that we have not explicitly targeted the credit contraction in the calibration.

[FIGURE 6 HERE]

All of the models match the sharp transition in the crisis, driven by the model’s amplification

mechanism, and output that is below trend for a sustained period post-crisis. The figures

also reveal how the pre-crisis patterns vary across the models. In the years before the crisis,

bank credit and GDP are rising while credit spreads are below normal in both dynamic belief

models. In the static belief model, spreads are slightly higher than normal, while credit is

rising. This contrast points to the need for time-variation in beliefs to fit the data.

Figure 7 panel (a) plots the annual volatility of the return on capital around crises. We

compute the monthly return volatility of capital over the previous 12 months based on the

simulation and plot this measure at an annual frequency in the years around the crisis. In

panel (b) we plot the expected instantaneous total volatility of capital returns based on the

model: √
(σK + σpt )

2 + λt(κ
p
t + α)2 . (35)

This measure includes both the Brownian and Poisson shocks, whereas the simulation based

volatility will implicitly condition only on one realization of the Poisson shock at the crisis

date. The simulation based volatility measure rises substantially more than the model-based

measure in the crisis. This is because the crisis features a jump in prices and this observation

has a large impact on the measured volatility for the year after the crisis, pushing the

volatility measure up to nearly 20%. In the total volatility measure this effect is smoothed

out and although volatility jumps at the crisis, it does so because σt(p) and λt rise upon the

realization of the illliquidity shock. The volatility jumps to betwen 5 and 6%.

Other than this difference, the general pattern in both measures is similar. In all three

versions of the model, volatility is low before the crisis and high in the crisis. This pattern is

qualitatively in keeping with the countercyclical behavior of volatility documented in existing

research (Geanakoplos, 2010; Adrian and Brunnermeier, 2016; Danielsson, Valenzuela and

Zer, 2018). The absolute level of the total volatility of the return on capital is low, ranging

from 4% to 5.5% in the Bayesian model compared to historical volatility of U.S. stock market

returns of 16%. This is a common result in a real business cycle model with moderate

investment adjustment costs: quantities adjust rather than prices. Yet the mechanism of

our model is via the fluctuations in the equity value of banks (i.e. net worth of bankers),

which is a levered claim on capital. The unconditional volatility of bank equity in the

Bayesian model is 15.7% (see Appendix A.8), which is in line with the volatility of U.S.
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stock market returns. The empirical research on crises has not offered quantitative targets

to match for volatility dynamics around crises. Comparing volatility dynamics across the

three versions of the model, we see that with belief variation (either Bayesian or diagnostic),

volatility drifts down before crises. There is a “calm before the storm” as in the data. In the

model without belief variation, volatility drifts up because forward looking agents recognize

that risk is rising as the state variable moves closer to the crisis region.

[FIGURE 7 HERE]

The variation in risk as defined in (35) is directly relevant to the banker’s porfolio decision

and thus the equilibrium risk premium. The F.O.C. for the banker gives the risk premium

on capital:

(σK + σp)2xKt + λ
κp + α

1− xKκp − α(xKt − 1)+
. (36)

Figure 7 plots the Sharpe ratio, which is the risk premium in this equation divided by the

volatility in (35). The Sharpe ratio closely matches the countercyclical volatility pattern.

The levels are also in keeping with typical estimates in the literature for the U.S. stock

market, which center around 0.50. Muir (2017) estimate that the dividend/price ratio rises

by 43% at the peak of a financial crisis relative to the pre-crisis average (see Table III

of the paper). In the Bayesian belief model the highest Sharpe ratio in the crisis is 56%

higher than the pre-crisis average, and in the diagnostic model the same increase is 82%.

We also note that the Sharpe ratio dips in the run-up to the crisis in the Bayesian and

diagnostic models, but not the static belief model. We develop this point, which reflects

pre-crisis “froth,” further below. We will also show that our model can match the empirical

association between risk premia and credit growth, as documented by Baron and Xiong

(2017).

The success in matching the mean patterns around crises verifies that our model’s mech-

anisms can speak to the data. In Appendix A.8 we report additional non-crisis moments

from the model simulation, including the model’s average Sharpe ratio, risk free rate, and

asset price volatilities. We also report the volatility of investment and consumption growth.

5.3 Ergodic Distributions

In Figure 8, we graph the ergodic distributions of the state (wt, λt) for the three models.

Underlying movements in w are driven by three forces: the exogenous diffusion shocks to

capital shift wealth, creating paths from the center of the distribution to both right and

left; paths that go to the left are pushed back to the middle because in low w states, risk

premia are high and bankers expected wealth growth is high; the transition rate of bankers

into households, η, result in a drift in w of −ηw, which pushes all paths to the left. The
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result of these forces is a mean-reverting w process and the single-peaked distribution. In

the diagnostic and Bayesian models, the realization of a jump leads to a larger adjustment

in w relative to the static beliefs model, because agents belief shift from the low illiquidity

to the high illiquidity state. As a result, more mass is shifted to low-w states. Broadly, all

three of the models generate a similar left-skewed distribution.

[FIGURE 8 HERE]

5.4 Non-targeted Cross-sectional Moments

Within the sample of crises, there are smaller and larger crises. We measure moments that

vary within these crises and describe the model’s fit of these non-targeted moments. Table

3 summarizes the model and the cross-sectional moments. There are two mechanisms at

work in the model, one involving frictional financial intermediation and the other involving

variation in beliefs.

[TABLE 3 HERE]

5.5 Mechanism 1: Frictional Intermediation and Credit

Figure 9 graphs the histogram of 3-year GDP growth in crises for all three models. In

a model with no financial amplification and only diffusion shocks to AKt, output growth

would be normally distributed. All three models, and notably the static model with only an

amplification mechanism, generates the skew in line with the data. Thus, we conclude that

the left-skewed output growth distribution in the data can be generated by a pure financial

amplification mechanism.

[FIGURE 9 HERE]

In the data, the skewness in output growth matches the skewness of the jump in credit

spreads in the crisis (fact 7). Panel A in Table 3 evaluates the relationship between credit

measures and the fall in GDP. The top row of Panel A shows that all versions of the model

match the data relation between the jump in credit spreads and the subsequent decline in

GDP, with the Bayesian model closest to the data counterpart. The bottom row of Panel

A evaluates the relation between the run-up in bank credit at the start of the crisis and

the subsequent severity of the crisis. This is a relation reported by several empirical studies

(Jordà, Schularick and Taylor, 2013). All of the variants of the model get the signs right,

with the diagnostic and Bayesian model closer to the data counterpart.
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Panel B reports that all of the models are able to fit the negative data relationship

between bank credit and risk premia, with the diagnostic model matching the data most

closely. The panel is not explicitly about financial crises, but more generally about the

relationship between movements in credit and risk premia. In the data, credit growth is

negatively correlated with excess equity returns (Baron and Xiong, 2017). Periods of high

credit growth are followed by low returns, and periods of low credit growth are followed

by high returns. We verify that all of the models we consider deliver this relation, with

the diagnostic model matching the data moment most closely. The models match the data

via time variation in the supply of risk-bearing capacity. The state variables of the model,

such as w, capture variation in the effective risk aversion of the banking sector. When

effective risk aversion is low, banks lend more and credit grows, while risk premia are low;

the opposite pattern holds when risk aversion is high. This mechanism thus delivers the

relation between bank credit and risk premia. The fact that this relationship holds even in

the model with static beliefs bears stressing: a sentiment/belief mechanism is not necessary

to replicate the credit/risk premia relationship.

These observations indicate that the frictional intermediation mechanism, which is the

only mechanism present in the static belief model, can capture the patterns of the economy

in a crisis and its aftermath. Again, it is possible to improve the quantitative fit of the static

belief model for the crisis and if its aftermath if we allow α to vary across models and be

determined via the estimation. We choose not to go down this path because, as we explain

next, this static belief model fails to fit the pre-crisis facts even qualitatively.

5.6 Mechanism 2: Beliefs and Credit

Panels C and D consider the pre-crisis patterns where we see divergence across the models.

In Panel C we see that the static belief model generates a spread that is higher than normal

in the pre-crisis period, contrary to the data. The failure can be understood as follows.

The amplification mechanism of the model, which drives the response of the economy to

the illiquidity shock, is governed by the volume of bank credit. When bank credit is high, a

negative shock triggers a large fall in GDP and a crisis. However, since the credit spread is

forward-looking, variation in the spread is also driven by the high bank credit. As a result,

the static belief model generates an above normal spread before a crisis, contrary to the

data.

The belief models are able to generate a spread with the right sign of the data.14 To

understand the economics here, consider Figure 10. We graph the policy function of bankers,

for both Bayesian and diagnostic models, in choosing borrowing as a function of the true

14 We report the results of a regression of spreads on a dummy that takes the value of one for the 5 years
before a crisis. This regression also includes a control for the 5 years after the crisis so that the pre-crisis
dummy indicates the level of spreads relative to non-crises periods.
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state λ (denoted “rational” in the figure). Bankers in our model lever up to gain high

returns on capital, but at the cost of the illiquidity event where they suffer illiquidity costs

from liquidating capital. Thus there is an illiquidity risk/return tradeoff that drives their

borrowing decision. When λ is low, the illiquidity event is less likely, and the banker chooses

high borrowing; hence, the negative slope in the curves in the figure. A useful relation to

keep in mind is:

Severity of crisis ∝ Bank credit and, {Credit ↑ , Spreads ↓} as λ ↓

When λ is low and credit is high, if an illiquidity shock dNt occurs, then its impact on GDP

will be severe and more likely to result in the large GDP decline of a crisis. Finally, when λ

is low, spreads are low, as is evident from Figure 5. This endogenous relationship between

illiquidity risk and financial fragility generates the low credit spread before crises.

Both the Bayesian and diagnostic model with the calibration of θ = 0.9 generates the

low spread. The diagnostic model strengthens the belief mechanism further relative to the

Bayesian model. Consider the red dashed curve in Figure 10. We plot the banker’s leverage

decision as a function of the true λ (which differs from the agent’s perceived diagnostic λ).

Clearly, at λ of zero, the true and diagnostic λ are the same. But as λ becomes larger than

zero, the diagnostic agent chooses higher leverage than the Bayesian agent. This is because

the diagnostic banker is overoptimistic and thinks λ is lower than it actually is. When the

true λ is larger than a threshold, the banker is on average over-pessimistic and thinks λ is

higher than it actually is, thus choosing lower leverage. As a result, the leverage/lambda

curve steepens under the diagnostic model generating a lower pre-crisis spread than the

Bayesian model.

Quantitatively, Krishnamurthy and Muir (2024) report a range of estimates for the pre-

crisis spread to be below average by 0.26σs to 0.44σs depending on exact specification. Thus,

both the Bayesian and diagnostic model fall within the range of estimates from the data.

[FIGURE 10 HERE]

5.7 Pre-crisis: Predicting a Crisis with High Bank Credit

Next, we quantitatively evaluate the forecasting power of bank credit for crises. Table 3

Panel D, second row, presents the crisis prediction result. For the bank credit regression,

Schularick and Taylor (2012) report that a one-sigma increase in bank credit/GDP increases

the probability of a crisis over the next year by 2.11%. There are other estimates from the

literature that report higher probabilities, as we discuss below.

In the dynamic belief models, we find the variables have the right signs, although the
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models are somewhat high in terms of magnitudes for the credit quantity, and low for the

credit spread variable. The static belief model fails again, generating a sign that is the

opposite of the data.

To understand what drives the mechanism in the dynamic belief models, let us return to

the intuition:

Prob of crisis ∝ Bank credit︸ ︷︷ ︸
↑ as λ↓

× λ︸︷︷︸
Prob of liquidity shock

(37)

There are two competing forces at work. As λ falls, endogenous leverage and bank credit

rises, but the probability of the illiquidity shock falls. If the leverage force is stronger, as it

is in both versions of the calibrated belief models, we match the data relationship between

high credit and higher probabilities of a crisis.

Figure 11 illustrates this further. We plot the density of GDP growth over the next year

conditional on the level of credit/GDP today. The red lines correspond to the Bayesian

model and the dashed-blue lines correspond to the static-belief case. In panel (a) of the

figure, we condition on low bank credit/GDP which as illustrated in Figure 4 is the case

when amplification is low. As a result, the economy is faced with moderate volatility of

GDP but this volatility is confined to the center of the distribution and there is little mass

at the left tail. Next, consider panel (b) which condition on high levels of credit, which can

happen when λ is low and the banker is not illiquidity averse. This is a high amplification

state. The dotted black vertical line on the figure indicates the cutoff we have used to define

a financial crisis. Mass is now pushed from the center of the distribution towards the left-tail

crisis states. Effectively, the more risk-tolerant banker is willing to take on more liquidity

risk when making decisions. There is less risk at the center of the distribution, but more

mass in the tail. As a result, high credit states forecast more left-tail events.

The static belief model has only bank credit as the variable to drive effective risk aversion.

With only this variable driving decisions, the banker chooses leverage in a manner that crises

are avoided when w and credit are higher. As shown in Panel C and D of Table 3, the signs

on the credit-crisis relationship are the opposite of that in the data. This result reinforces a

lesson of our analysis that we do need a model with two state variables to explain the entire

crisis cycle.

[FIGURE 11 HERE]

Panels (c) and (d) of Figure 11 plots the distribution of GDP growth over the next year

conditional on different levels of credit in the diagnostic model relative to the Bayesian

model. We plot the diagnostic model’s distribution in green dashed lines and the Bayesian

model in red. We can see that the forces that work to generate the relation between froth
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and crises are similar but stronger in the diagnostic model compared to the Bayesian model.

As we go from left to right panel in the figure, the mass in the left tail rises.

[FIGURE 12 HERE]

Figure 12 examines the predictive relation in a different way. In the figure, we plot the

banker’s wealth return conditional on high and low values of credit. Recall that our banker

has log utility, so the mean and variance of this distribution are the key statistics driving

banker utility and the leverage decision. The banker’s wealth volatility is highest in the

low credit case (left panel) driven by a significant mass spread between -0.1 and 0.4 at the

center of the distribution. Distress and illiquidity costs are salient to the banker, and thus

he chooses low leverage. In the right panel high credit case, the output distribution is tight

so that over most of the distribution, there is little distress for the banker. While there is

a tail of wealth losses in crisis states, the banker’s decision to take high leverage is largely

driven by the tight central peak of the distribution. The banker understands that the typical

Brownian negative shock will have small effects on his wealth, and is willing to gamble on

avoiding the large tail shock. As a result, the model produces the result that in the Bayesian

model, even if illiquidity events are less likely (low λ), crises are more likely.

[FIGURE 13 and 14 HERE]

Figure 13 panel (a) presents the probability of a crisis over the next three years conditional

on different quintiles of Bank Credit/GDP. These are marginal probabilities based on a

Probit regression of a dummy for the occurrence of a crisis over the next three years on Bank

Credit/GDP. The pseudo-R2 in this regression is 5.7%, which is in line with Schularick and

Taylor (2012)’s analysis of historical crises. We note that the probability is near 20% in the

highest quintile. In their survey, Sufi and Taylor (2022) report based on historical crises

data that when credit growth is in its highest sextile, the probability of a crisis quadruples

from the unconditional value of 2.5% to 10% (see Figure 6a). Note that we calibrate our

model to an unconditional probability of crises of 4%, so that a quadrupling is in line their

estimates. Another estimate in the literature comes from Greenwood et al. (2020) who

report a 37.3% probability of a crisis in the next three years conditional on credit growth

in its highest quintile as well their measure of an “asset price bubble” in its highest tercile.

Note that their predictive regression uses information on both credit growth as well as their

bubble indicator, while our regression only uses credit growth. To provide a sense of how

much more information an econometrican may be able to extract, possibly uncovering a

bubble, in panel (b) of Figure 13, we report the crisis probability now conditioning on

both Bank Credit/GDP and the true λ (as opposed to agents’ perceived λ). Here we see

crisis probabilities in the highest quintile are 45%. Figure 14 presents the same analysis for

the diagnostic model. The probabilities are in the same ballpark as the Bayesian model,
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consistent with our general finding that these models perform about as well as each other.

In the diagnostic model, the true-λ crisis probability rises from 45% to 50%, consistent

with the diagnostic model’s mechanism that agent beliefs are further from the true λ so

that the gain in predictive power from knowing the true lambda is larger. Yet, the gain in

predictability is modest.

5.8 Pre-crisis: Predicting a Crisis with Low Credit Spread

We next turn to the relation driving froth (low credit spreads) and crises as reflected in the

first row Table 3 Panel D. To replicate the spread predictability regressions in Krishnamurthy

and Muir (2024), we define “high froth” as a dummy that indicates whether the credit spread

is below its median value at time t. In Krishnamurthy and Muir (2024), the froth definition

is based on credit spreads being below median over a 5 year period, which is necessary

because a crisis in the data is not sharp 0-1 phenomena as in our model (spreads typically

rise before the historian-dated crisis). We predict the likelihood of a crisis over the next 5

years in the model, in line with the data moment.

As we will explain, the froth relation holds for the belief models in the parameterization

we study, but need not hold generally. Figure 15 draws density plots of next-year GDP

growth for the diagnostic, Bayesian and static belief model conditional on different levels of

the credit spread. We can see that the static belief model gets the sign of the mass shift

wrong. The diagnostic and Bayesian models, on the other hand, succeed in this dimension.

We see again that the relative to the Bayesian model, the diagnostic model shifts more mass

to the left tail when spreads are low, and leverage is endogenously high. We also see that

the larger shift of the diagnostic model brings the coefficient more in line with the data,

albeit still too small. See Table 3 Panel D.

[FIGURE 15 HERE]

The logic behind froth is more nuanced than for the high credit relation of the last

section. We price a corporate bond that defaults in a liquidity shock and where the default

loss is composed of a constant term and another term that is proportional to the capital

price drop κpt−. There are two forces driving variation in the credit spread that are salient

for understanding the mechanisms: (i) lower λ means less illiquidity events and hence lower

spreads; (ii) worse crises mean higher loss-given default (via κpt ) and hence higher spreads.

If we imagine shutting down effect (ii), then we can understand the froth relation easily

from equation (37). Now, if we add back effect (ii), the froth relation is weakened. The

reason is that more crises imply larger losses given default and hence higher ex-ante spreads.

The sign of the froth relation depends quantitatively on the exact cyclicality of recoveries

in default and thus the relation between λ and spreads. We have calibrated our model to
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the history of recoveries on BAA bonds in the U.S., as reported by Moodys.

5.9 Bank equity crises

Baron and Xiong (2017) and Baron, Verner and Xiong (2021) define financial crises in terms

of large (<30%) declines in bank equity values. They note that many of the crisis patterns

documented in the narrative crisis dating literature (e.g., Laeven and Valencia (2013), Jordà,

Schularick and Taylor (2011)) hold for this quantitative definition of financial crisis. In this

section we define an equity-crash crash as an event where the return on bank equity in a

given quarter is below −X%, where X is chosen to yield a frequency of bank equity crashes

of 4%. Because crashes can cluster in our simulation, we define the crash-crisis as the first

crash that occurs after at least 3 years of no crash-crises. Thus we are effectively defining

a crash as a single crisis. In our simulations, X = 42% for the Bayesian model and 41% in

the diagnostic model.

Table 4 Panel A reports the declines in GDP in the 3 years subsequent to the crash-crisis.

Baron, Verner and Xiong (2021) report that a crash-crisis is followed by a GDP decline of

around 4.5%. Our numbers are larger than theirs. They also consider a definition of crisis

which involves a crash and a banking panic. In this event, they show the GDP declines are

about 6%. This latter definition is more in line with our model, as a crash almost always

occurs with a liquidity shock. We also report the interaction regression, describing how

bank credit pre-crisis worsens GDP outcomes in an equity crash. Analogous to our earlier

results, bank credit is a vulnerability indicator for GDP declines in a crisis. Note that this

is a regression we do in the model, but is not presented in Baron, Verner and Xiong (2021).

Table 4 Panel B presents predictive regressions, analogous to Table III of Baron and Xiong

(2017), of bank credit/GDP on the likelihood of an equity crash. Baron and Xiong (2017)

report that the the marginal probability of an equity crash rises by around 5.4% (column 7,

top row of their table) in response to a one-sigma increase in bank credit/GDP growth. We

run this regression in our simulated data and evaluate the change in the probability of an

equity crash for a one-sigma increase in bank credit/GDP, evaluated at the mean value of

bank credit/GDP. Our model regressions are in line with the data, although the magnitudes

are higher than the data regression.

[TABLE 4 HERE]

We have not reported these regressions for the static belief model. That model implies

the wrong sign relative to the data. We can see this in Figure 16, which is a plot of the

return on bank equity from month t to t+ 1 if an illiquidity shock occurs against the time t

value of bank credit/GDP. Over the entire range, we see that the relation is positive rather

than negative.
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6 Conclusion

Financial crises have clear regularities. The 2008 global financial crisis was not a unique

event. Over the last two decades, researchers have documented a number of common empiri-

cal patterns of financial crises. The main contribution of our paper is to apply a model in the

class of the recent non-linear macro-finance models (He and Krishnamurthy (2013); Brun-

nermeier and Sannikov (2014); Di Tella (2017); Gertler, Kiyotaki and Prestipino (2020)) plus

a learning mechanism (Moreira and Savov (2017); Bordalo, Gennaioli and Shleifer (2018))

to matching these patterns. We have shown that our model with a financial amplification

mechanism plus belief dynamics, either driven by Bayesian or extrapolative expectations,

is able to generate patterns on the crisis cycle consistent with the empirical literature on

financial crises. The model matches the pre-crisis froth and debt build-up. It matches the

sharp transition to a crisis, the left-skewed distribution of output declines and asset price

declines, and the slow post-crisis recovery. The quantitative fit of the model does leave

room for improvement: the model generates froth pre-crisis, but not as much as the data,

and while the association between credit and subsequent crises is positive, it is too strong

relative to the data.

Our research also helps to clarify the role of beliefs and learning in matching the crisis

cycle. In our model, the crisis is triggered by a “Minsky moment;” a shock that sharply

shifts agents’ beliefs regarding liquidity risk and is then amplified and propagated to the

macroeconomy depending on aggregate bank credit. The work of Gorton and Ordonez

(2014) and Dang, Gorton and Holmström (2020) argues that such a shift in beliefs occurs

because financial sector information is hidden, by design, during normal periods, and a crisis

is the event when negative information comes to light. The shift from no-information to

information is at the heart of their narrative of crises. The work of Bordalo, Gennaioli and

Shleifer (2018) has instead argued that a sharp shift in beliefs in a crisis reflects a change

from over-optimistic to over-pessimistic beliefs. Extrapolative expectations are at the heart

of their narrative of the belief shift in a crisis. In both of these narratives, the pre-cursor

to a crisis is a period where agents’ perceive risk to be low, either because risk is hidden or

because it is misperceived. Our work suggests that either of these narratives fit the variation

in beliefs over the crisis cycle as needed to match the crisis cycle facts. Indeed, it is likely

that other models of belief fluctuation such as Kozlowski, Veldkamp and Venkateswaran

(2020) where agents update their models of tail risk based on the realization of tail risk can

likely also be used to address the macro crisis-cycle facts.

There are a number of directions to take this research. The crises in our model center

around intermediaries and their levered holdings of capital. There is evidence that fluctua-

tions in some forms of capital, such as housing capital and capital in the non-tradable sector,

have more explanatory power for financial crises (Jordà, Schularick and Taylor, 2015; Müller

and Verner, 2020). There is also evidence that credit growth in banks, firms and households
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matter differently for crisis outcomes (Mian, Sufi and Verner, 2017). Additionally, the

model features a single intermediary sector, closest to a hedge fund, and does not reflect the

heterogeneity of the intermediary sector, which includes hedge funds, broker-dealers, asset

managers and commercial banks. In our model, the leverage of the intermediary sector is

pro-cyclical, in line with broker-dealers’ and hedge funds’ market-value leverage measures,

and not counter-cyclical as with commercial banks’ book leverage measures.15 Expanding

the model to incorporate these elements can shed light on the mechanisms underlying these

data patterns. Our analysis has also sidestepped normative issues, and particularly how a

planner may act differently across the belief models. The model falls into the class of models

where an asset price enters a financial constraint. In these models there is an externality

that can motivate policy intervention (Lorenzoni, 2008; Dávila and Korinek, 2018). In the

distorted belief model, we also need to consider whether the planner is omniscient or uses

agents’ distorted beliefs in computing welfare. This gives rise to additional considerations

as outlined in the theoretical analysis of Dávila and Walther (2020). While we do not tackle

these issues, given a set of welfare assumptions, our quantitative framework can be utilized

to assess the magnitude and efficacy of policy interventions. We leave this topic for future

research.

Figures and Tables

15See He, Khang and Krishnamurthy (2010); Adrian and Shin (2010); He, Kelly and Manela (2017);
Adrian, Etula and Muir (2014); Kargar (2021) on differential leverage dynamics in the intermediary sector.
Begenau et al. (2020) summarize the literature’s findings and provides a model to understand intermediary
leverage dynamics.
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Figure 6: Dynamics of Different Models Around Crises. Credit spread and bank credit are
measured as standard-deviations from the mean value. For example, credit spread rising to
0.2 means that it is larger than the value at year 0 by 0.2σs. GDP is measured in terms of
deviation from the long-run mean value.
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(a) Measured Volatility around Crises
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(b) Total Volatility around Crises
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(c) Sharpe Ratio around Crises

Figure 7: Volatility and Sharpe Ratio. In (a) we plot the realized volatility measured from
the previous 12 months of returns from the simulation over the years around a crisis. In (b)
we plot the total volatility around a crisis, where total volatility is defined in equation (35).
In (c) we plot the Sharpe ratio around a crisis, where Sharpe ratio is defined as the total
risk premium in equation (36) over the total volatility defined in equation (35).
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Figure 8: Stationary Distribution of State Variables in Each Model
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Figure 9: GDP Growth after Crises. We plot the 3-year GDP growth after crises in the
model, and peak-to-trough GDP growth in the data around crises.
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Figure 10: Expected Distress Frequency and Bank Credit/GDP. This figure plots bank
credit/GDP as a function of the rational belief λ, given the same state variable w. We
simulate the diagnostic model to derive the model-implied relationship between rational λ
and the diagnostic belief λθ, and show the corresponding bank credit/GDP.
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Figure 11: Density of Next-Year GDP Growth Conditional on Bank Credit/GDP. Cutoffs
are 30% quantile and 90% quantile of bank credit/GDP.
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(b) Static Belief v.s. Bayesian: High Bank Credit

Figure 12: Density of Bank Equity Returns Conditional on Bank Credit/GDP. Cutoffs are
30% quantile and 90% quantile of bank credit/GDP.
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Figure 13: Bayesian Model, Probability of Crisis over next 3 years, by Quintile
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Figure 14: Diagnostic Model, Probability of Crisis over next 3 years, by Quintile
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Figure 15: Density of Next-Year GDP Growth in Bayesian and Diagnostic Models Condi-
tional on Credit Spread. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 16: Bank Credit/GDP and Next-Month Bank Equity Returns in the Static-Belief
Model
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Table 3: Model Simulation and Data: Non-targeted Moments

Panel A: Credit Spread, Bank Credit, and Crisis Severity

Dependent variable: GDP Growth from t to t+ 3

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4) (5) (6) (7) (8)

∆credit spreadt∗crisist −4.88 −2.87 −3.44 −2.11

(bank credit
GDP )t∗crisist −0.98 −2.18 −3.49 −2.06

Observations 821 821

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one sigma
change in spreads and bank credit/GDP.

Panel B: Bank Credit and Risk Premia

Dependent variable: Average realized excess returnt+1

Static Belief Bayesian Diagnostic Data

(bank credit
GDP )t −0.01 −0.01 −0.02 −0.02

Observations 867

Note: Model excess return is defined as the return to capital minus the risk-free rate. Data excess return is
from Online Appendix of Baron and Xiong (2017) (Table 3, column 1 of Panel B). To ensure comparability,
the model return to capital has been normalized to equal the standard deviation of returns reported by
Baron and Xiong (2017).

Panel C: Credit Spread Before Crises

Dependent variable: credit spreadt

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4)

pre-crisis indicator 0.25 −0.25 −0.30 −0.44

Observations 802

Note: regression is: st = α + β · 1{t is before a crisis} + controls. For the model, “pre-crisis” is defined as
within 1 year before the next crisis. For the data, “pre-crisis” is defined as within 5 years before the next
crisis. For both model and data, controls include an indicator of within 5 years after the last crisis. The
data regression has more controls such as country fixed effect.

Panel D: Predicting Crises

Dependent variable: Probability of Crisis

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4) (5) (6) (7) (8)

Frotht → −5.94 5.67 7.40 12.90
crisis(next 3 years)

(bank credit
GDP )t → 0.13 4.05 3.85 2.11

crisis(next year)

Observations 604 1272

Note: Froth in the model measures if the credit spread is below the median at date t. In the data regression,
froth measures if credit spread is below the median over t − 5 to t (see Krishnamurthy and Muir (2024)).
In both model and data we run a Logit regression of crisis occurring over the next 3 years on the froth
measure and report the probability. Bank credit/GDP is the current ratio of bank credit over GDP. The
data regression of crisis over the next year on bank credit/GDP is from Schularick and Taylor (2012), and
we report the probability of the crisis based on the Logit regression of Table 2.
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Table 4: Using Bank Equity Crash to Define a Crisis

Panel A: Crisis, Bank Credit and Severity

Dependent variable: GDP Growth from t to t+ 3

Bayesian Diagnostic Data
(1) (2) (3) (4) (5)

crisist −8.24 −10.04 −4.50

(bank credit
GDP

)t∗crisist −2.18 −3.49

Observations 2548

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one
sigma change in spreads, and bank credit/GDP. The coefficient in column (5) is from Table I (column
4) of Baron, Verner and Xiong (2021).

Panel B: Predicting Equity Crashes

Dependent variable: equity crash from t+ 1 to t+ 3

Bayesian Diagnostic Data

(1) (2) (3)

(bank credit
GDP

)t 9.26 9.60 5.40

Observations 316

Note: The coefficient on Bank Credit/GDP is the sensitivity of crisis probability (%) to a one standard
deviation increase in bank credit/GDP. The data regression is from Table III (column 7) of Baron and
Xiong (2017).
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Online Appendix to

“Dissecting Mechanisms of Financial Crises:

Intermediation and Sentiment”

Arvind Krishnamurthy and Wenhao Li

A Model Solutions

A.1 Proof of Lemma 1

We will derive the Bayesian belief process λt in two different ways. The first method is

by applying the theorem in Liptser and Shiryaev (2013). The second one is by taking

the continuous-time limit of a discrete-time process. The reason that we show the second

method is because we will use the connection between discrete-time and continuous-time

processes to prove the results for the diagnostic belief in Lemma 2.

Method 1

We can represent the Poisson process of bank-run as

Nt =

∫ t

0

1λ̃s=λL
dNL

t +

∫ t

0

1λ̃s=λH
dNH

t = At +Mt,

where NH
t and NL

t are two independent Poisson processes, Mt is a martingale, and At is a

previsible process

At =

∫ t

0

(1λ̃s=λL
λL + 1λ̃s=λH

λH)dt.

Denote FNt = σ{Ns, 0 ≤ s ≤ t}, θ̃ = 1λ̃t=λH , and

θt = E[θ̃t|FNt ] = P (λ̃t = λH |FNt ).

Then according to Theorem 18.3 of Liptser and Shiryaev (2013), the compensator of Nt that

is measurable with respect to FNt is

Āt =

∫ t

0

E[(1λ̃s=λLλL + 1λ̃s=λHλH)|FNs−]ds =

∫ t

0

((1− θs−)λL + θs−λH)ds.

Moroever, the compensator of θt is∫ t

0

(
1λ̃s=λH

(−λH→L) + 1λ̃s=λL
λL→H

)
ds,
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and the FNt− measurable version is∫ t

0

(θs−(−λH→L) + (1− θs−)λL→H)ds.

Finally, the martingale component of θ̃t is independent from the jumps in Nt. Thus we can

apply Theorem 19.6 of Liptser and Shiryaev (2013) to get

dθt = (θt−(−λH→L) + (1− θt−)λL→H) dt+ E[λ̃t(
dAt
dĀt
− 1)|FNt−]d(Nt − Āt)

= (θt−(−λH→L) + (1− θt−)λL→H) dt

+ E[1λ̃t=λH (
1λ̃t=λLλL + 1λ̃t=λHλH

(1− θt−)λL + θt−λH
− 1)|FNt−](dNt − ((1− θt−)λL + θt−λH)dt)

= (θt−(−λH→L) + (1− θt−)λL→H) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
(dNt − ((1− θt−)λL + θt−λH)dt)

= (θt−(−λH→L) + (1− θt−)λL→H − θt−(1− θt−)(λH − λL)) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
dNt.

Denote λt = E[λ̃t|FNt ]. We can get the motion of λt from

λt = E[1λ̃t=λH |F
N
t ]λH + E[1λ̃t=λL|F

N
t ]λL

⇒ θt =
λt − λL
λH − λL

.

which results in

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λt− − λL)(λH − λt−)

λt−
dNt.

Method 2

Consider a discrete-time Markov process λ̃k with two states λH and λL. We define ∆t∗λ̃k
as the probability of an illiquidity shock within a single period. The transition probability

from high to low is λH→L∆t, and the transition probability from low to high is λL→H∆t.

We note that as ∆t→ 0, this discrete-time Markov chain converges to the continuous-time

Markov chain in our main model.

Agents observe the realizations of illiquidity shocks, and update their beliefs. Denote

the crash realization process as Nk ∈ {0, 1}, and the filtration as Fk = σ{N1, N2, · · · , Nk}.
Denote the updated belief at period k as λk = E[λ̃k|Fk], with λ̃k the state of the hidden

Markov process. In each period, the financial distress shock first realizes, and then the agent

updates belief for that period.

Suppose that the belief on the probability at high state λH is πk at period k. Then the
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relationship between πk and λk is as follows:

λk = πkλH + (1− πk)λL.

Observing Nk+1 = nk ∈ {0, 1}, the belief πk+1 is

πk+1 = P (λ̃k+1 = λH |Nk+1 = nk+1, πk)

=
P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk)

P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk) + P (Nk+1 = nk+1|λ̃k+1 = λL, πk)P (λ̃k+1 = λL|πk)

Note that the probabilities P (λ̃k+1 = λH |πk) and P (λ̃k+1 = λL|πk) can be calculated from

the Markov one-step transition(
πk

1− πk

)T (
1− λH→L∆t λH→L∆t

λL→H∆t 1− λL→H∆t

)
=

(
πk(1− λH→L∆t) + (1− πk)λL→H∆t

πkλH→L∆t+ (1− πk)(1− λL→H∆t)

)T

.

which results in

P (λ̃k+1 = λH |πk) = πk(1− λH→L∆t) + (1− πk)λL→H∆t,

and

P (λ̃k+1 = λL|πk) = πkλH→L∆t+ (1− πk)(1− λL→H∆t).

Therefore, the belief πk+1 is

πk+1 =
((nk+1λH∆t+ (1− nk+1)(1− λH∆t))(πk(1− λH→L∆t) + (1− πk)λL→H∆t))(
(nk+1λH∆t+ (1− nk+1)(1− λH∆t))(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+(nk+1λL∆t+ (1− nk+1)(1− λL∆t))(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

) .

Now it is easier to separately discuss nk+1 = 0 and nk+1 = 1. Suppose that no financial

distress shock happens (nk+1 = 0), then we have

πk+1 =
(1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)(
(1− λH∆t)(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

) .

Suppose that a financial distress shock happens (nk+1 = 1), then we have

πk+1 =
λH∆t (πk(1− λH→L∆t) + (1− πk)λL→H∆t)(
λH∆t(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+λL∆t(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)
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=
λH (πk(1− λH→L∆t) + (1− πk)λL→H∆t)(
λH(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+λL(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

) .

Note that taking ∆t → 0 will result in πk+1 = πk when nk+1 = 0. This is reasonable,

because this is like calculating µtdt for the λt process in continuous time, which is a small

order term. An appropriate way to derive the time limit is to calculate

lim
∆t→0

πk+1 − πk
∆t

|nk+1=0,Fk

= lim
∆t→0

1

∆t

 (1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λH∆t)(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))


= lim

∆t→0

1

∆t

(
(1− πk)(1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

= lim
∆t→0

1

∆t

(
(1− πk) (πk − πkλH→L∆t+ (1− πk)λL→H∆t− λHπk∆t)
−πk (πkλH→L∆t+ (1− πk)(1− λL→H∆t)− λL(1− πk)∆t)

)
(removing ∆t2 terms)

= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk).

Therefore, we have

lim
∆t→0

πk+1 − πk
∆t

|nk+1=0,Fk
= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk). (A1)

To build an exact connection to λk, we can write λk in terms of πk as

πk =
λk − λL
λH − λL

. (A2)

Then the limit of ∆t→ 0 expressed with λk is

1

λH − λL
λk+1 − λk

∆t
|nk+1=0,Fk

= − λk − λL
λH − λL

λH→L+
λH − λk
λH − λL

λL→H−(λH−λL)
λk − λL
λH − λL

λH − λk
λH − λL

,

which can be simplified as

lim
∆t→0

λk+1 − λk
∆t

|nk+1=0,Fk
= (λL − λk)λH→L + (λH − λk)λL→H − (λk − λL)(λH − λk). (A3)

Suppose that a financial distress shock happens (nk+1 = 1). By taking ∆t → 0, the

updating is

πk+1|nk+1=1,Fk
=

λHπk
λHπk + λL(1− πk)

.
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Using (A2), the updating is
1

πk+1

= 1 +
λL
λH

1− πk
πk

,

λk+1 =
λH(λk − λL)

λk
+ λL =

(λH + λL)λk − λHλL
λk

,

which implies

λk+1 − λk|nk+1=1,Fk
=

(λH + λL)λk − λHλL
λk

− λk =
(λH − λk)(λk − λL)

λk
.

Finally, we express the above with the continuous-time notation dNt and dt to get

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λH − λt−)(λt− − λL)

λt−
dNt,

which is the same as method 1.

A.2 Proof of Lemma 2

To prove Lemma 2, we start with discrete time process and then take the continuous-

time limit. The discrete-time distress frequency process λ̃t is the same as Section A.1.

Specifically, the process has two states λH and λL, with transition probability from high

to low as λH→L∆t, and the transition probability from low to high as λL→H∆t. Agents

observe the realizations of financial distress shocks, and update their beliefs. Denote the

crash realization process as Nk ∈ {0, 1}, and the filtration as Fk = σ{N1, N2, · · · , Nk}.
Denote the updated belief of the hidden process λ̃t at period k as λk, and this belief is

conditional on Fk. Also denote the probability πk = P (λ̃k = λH), which implies

λk = πkλH + (1− πk)λL.

We choose the period length ∆t so that n(∆t) = T/∆t is an integer, where T is the

“look-back period” for the diagnostic belief. Then we denote the reference probability for

the diagnostic belief at period k as

πTk = P (λ̃k = λH |πk−n(∆t)).

We already know from method 2 of Section A.1 that when ∆t → 0, the continuous-

time limit of the Bayesian belief process results in (7). Our task now is to prove that the

discrete-time diagnostic belief process converges to a continuous-time process as in (10). By
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definition, the diagnostic belief at period k is

πθk = πk · (
πk
πTk

)θ
1

Zk
,

1− πθk = (1− πk) · (
1− πk
1− πTk

)θ
1

Zk
,

with

Zk =
1

πk · ( πkπT
k

)θ + (1− πk) · ( 1−πk
1−πT

k
)
θ
.

which implies

πθk = πk(
πk
πTk

)θ
1

πk(
πk
πT
k

)θ + (1− πk)( 1−πk
1−πT

k
)
θ

= πk
1

πk + (1− πk)(
πT
k

1−πT
k
/ πk

1−πk
)
θ
.

Therefore, if πTk < πk, then πθk > πk, leading to an overreaction. Now we can replace the

probability with λt. Define the expected λ̃k under the diagnostic belief as λθk. Then we have

λθk − λL = (λk − λL)
(λH − λk) + (λk − λL)

(
λTk−λL
λH−λTk

/ λk−λL
λH−λk

)
θ

(λH − λk) + (λk − λL)
,

where

λTk = πTk λH + (1− πTk )λL.

The key is to derive πTk and λTk under the limit of ∆t→ 0 while keeping t = k∆t constant.

Using the probability transition matrix, we get(
P (λk = λH |πTk )

P (λk = λL|πTk )

)′
=

(
πk−T

1− πk−T

)′(
1− λH→L∆t λH→L∆t

λL→H∆t 1− λL→H∆t

)T

,

where the ′ notation denotes transpose of a matrix. The limit of the above expression with

∆t→ 0 is effectively the transition of a continuous time Markov chain, with rate matrix

Q =

(
−λH→L λH→L

λL→H −λL→H

)
.

A decomposition reveals that the two eigenvalues of this matrix are 0 and −(a + b), where

a = λH→L and b = λL→H . The associated eigenvector formed matrix is

Q̄ =

(
1 −a
1 b

)
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with the inverse

Q̄−1 =
1

a+ b

(
b a

−1 1

)
Then we can decompose

Q = Q̄

(
0

−(a+ b)

)
Q̄−1.

Then the transition for t units of time is

Q̄

(
1

e−(a+b)t

)
Q̄−1 =

1

a+ b

(
b+ ae−(a+b)t a− be−(a+b)t

b− be−(a+b)t a+ be−(a+b)t

)

Using the t notation (t = k ∗∆t), and taking the limit ∆t→ 0 while keeping t unchanged,

we have

lim
∆t→0

(
P (λk = λH |πTk )

P (λk = λL|πTk )

)T

=

(
P (λt = λH |πt−T )

P (λt = λL|πt−T )

)T

=

(
πt−T

1− πt−T

)T
1

a+ b

(
b+ ae−(a+b)T a− be−(a+b)T

b− be−(a+b)T a+ be−(a+b)T

)

∆
=

(
aHπt−T + aL(1− πt−T )

bHπt−T + bL(1− πt−T )

)T

,

where (
aH bH

aL bL

)
=

1

a+ b

(
b+ ae−(a+b)T a− ae−(a+b)T

b− be−(a+b)T a+ be−(a+b)T

)
. (A4)

Therefore, the intensity process follows

λθt − λL = (λt − λL)
(λH − λt) + (λt − λL)

(
λTt −λL
λH−λTt

/ λt−λL
λH−λt

)
θ
(λH − λt) + (λt − λL)

, (A5)

where

λTt − λL = aH(λt−T − λL) + aL(λH − λt−T ), (A6)

λH − λTt = bH(λt−T − λL) + bL(λH − λt−T ). (A7)

When the total transition rates a+ b are low, we have aH ≈ 1, aL ≈ 0, bH ≈ 0, and bH ≈ 1.

Then we have λTt ≈ λt−T . When λTt > λt, i.e., the likelihood of a crisis is decreasing, then

the subjective probability is even lower, with λθt < λt. When λTt < λt, i.e., the likelihood

of a crisis is increasing, then the subjective probability is even higher, with λθt > λt. These

predictions are perfectly consistent with the spirit of the diagnostic expectations. The extent

of such extrapolation is larger as θ becomes larger, and we have λθt = λt when θ = 0.
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A.3 Proof of Lemma 3

To save on notation, we omit the subscripts t and t−.

Suppose that in equilibrium, xK < 1. This implies that (xd)+ = (xK − 1)+ = 0, which

leads to the following first order conditions for households and bankers:

µR +
Ā

p
− rd = (σK + σp)2xK + λκp

1

1− xKκp
,

µR +
A

p
− rd = (σK + σp)2yK + λκp

1

1− yKκp
.

Subtracting the above two equations, we obtain

Ā− A
p

=

(
(σK + σp)

2
+

λ(κp)2

(1− xKκp)(1− yKκp)

)
(xK − yK). (A8)

The first bracket on the right hand side is always positive, since the nonnegative wealth

constraint implies xKκp < 1 and yKκp < 1. However, from market-clearing conditions (25)

and (26),

wxK + (1− w)yK = 1.

Suppose that xK < 1, then we must have

yK > xK ,

which implies that the right-hand side of (A8) should be negative. This is a contradiction

since the left-hand side of (A8) is positive.

Importantly, all of the above derivations go through regardless of whether we use the

Bayesian Bayesian belief or the diagnostic belief, as long as bankers and households have

the same belief.

In summary, we have xK ≥ 1 in equilibrium. In other words, bankers borrow from

households in the debt market.

A.4 First-Order Conditions

In this section, we derive bank and household first-order conditions. To save on notation,

we omit the subscripts t and t−.

From equation (28) and a bank’s optimization problem in (30) and (29), we obtain the
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first-order condition over xK ,

µR +
Ā

p
− rd = (σK + σp)2xK + λ

κp + α

1− xKκp − α∆x
. (A9)

As a result, the excess return on capital is

E[dRb] = µR +
Ā

p
− rd − λ(κp + α)

= (σK + σp)2xK + λ(α + κp)
xKκp + αxd

1− xKκp − αxd
.

(A10)

Using the HJB equation for households combined with household budget dynamics in

(19), we obtain the first-order condition over yK as

µR +
A

p
− rd ≤ (σK + σp)2yK + λ

κp

1− κh
,with equality if yK > 0. (A11)

In equation (A11), the left hand side is the yield spread on productive capital over bank

debt, while the right hand side includes the risk-adjusted losses of productive capital in

liquidity shocks. When the yield spread is lower than the cost, households do not hold

productive capital and set yK = 0.

Combining (A11) and (A9), we have

Ā− A
p
≥ (σK + σp)2(xK − yK) + λ

κp + α

1− xKκp − α∆x
− λ κp

1− κh
,

where the equality holds when yK > 0.

A.5 Equilibrium Solutions

With log utility, the optimal consumption rule is ċb = ċh = ρ. Then we simplify the

equilibrium conditions into the following equations:

ρ =
ψAH + (1− ψ)AL − i

p
. (A12)

xKw + yK(1− w) = 1. (A13)

ψ =
xKw

xKw + yK(1− w)
= xKw, (A14)
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Next, we derive the dynamics of state variables. We apply Ito’s lemma on the definition of

wealth share in (11) to derive the dynamics of w,

dw

w
∆
= µwdt+ σwdB − κwdN

= (1− w)
(
µb − µh + (σh)

2 − σbσh − w(σb − σh)2 − η
)
dt

+ (1− w)(σb − σh)dB − (1− w)
1− 1−κb

1−κh

1 + w( 1−κb
1−κh − 1)

dN.

(A15)

All variables in the right hand side should have subscripts t− which we omit. Then we can

apply Ito’s lemma on price function p(w) to get
µp = pwwµ

w +
1

2
pww(wσw)2 + pλµ

λ(λ)

σp = pww(1− w)(σb − σh)

κp = 1− p(w 1− κb

1− κh − w(κb − κh)
, λ))/p(w, λ).

(A16)

To fully characterize the economy, we also need to know the derive the dynamics of

aggregate capital quantity K ( although all policy functions are scalable with respect to K).

Denote the Ito process for K as

dK

K
= µKdt− δdt+ σKdB, (A17)

We collect the system of equations for jumps from (6), (15), and (20) as follows:
κb = xKκp + αxd

κh = yKκp − αxd w
1−w

κp = 1− p(w 1−κb
1−κh−w(κb−κh)

, λ+ κλ(λ))/p(w, λ).

(A18)

From (15), (19), and (A16), we collect the exposure to Brownian shocks as
σp = pww(1− w)(σb − σh)
σh = yK(σK + σp)

σb = xK(σK + σp).

(A19)

Diagnostic Beliefs

We solve the model with diagnostic beliefs as follows. As households act as if their beliefs

are the true ones, their policy functions are the same as the model with Bayesian beliefs.

However, the true (physical) frequency of jumps differ from that of the agents’ beliefs. There

are two steps to clear the market during a jump with diagnostic beliefs. First, the agents
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interpret λθt as the Bayesian belief. After a crisis shock dNt, the market price of capital

switches to the level under this “Bayesian belief”. Second, the realization of belief, however,

is different from the Bayesian expectation, because of the diagnostic belief formation. Now

an additional price adjustment is needed to clear the market under the diagnostic belief.

A.6 Loan Spread

To price the loan spread, denote the bank holding of this risk-free but illiquid loan as

xCt . Then the equivalent bank optimization problem in (30) will have two additional terms

involving xCt :

...+ xCt−(rCt− − rdt−)dt− xCt−αdNt,

which gives the FOC on xCt−,

rCt− − rdt− =
λt−

1− xKt−κ
p
t− − αxdt− − αxCt−

α.

Since the illiquid loan is in zero supply, we use the existing bank SDF to price the loan and

we have xCt− = 0 and

rCt− − rdt− =
λt−

1− xKt−κ
p
t− − αxdt−

α.

A.7 Credit Spread

In this section, we define the credit spread used in the calibration, derive the jump differential

equation for the credit spread and provide the solution methodology.

Define τ as the expected maturity of the bond. We assume that the bond matures based

on the realizations of a Poisson event with intensity 1/τ . This modeling allows for a simple

recursive formulation for bond pricing. Moreover, we suppose that a fraction of the maturity

events result in default, while another fraction result in full repayment. In particular, we

assume that a bond matures in two cases: (1) conditional on the financial illiquidity dNt

shock, the bond matures with probability π; (2) conditional on another independent Poisson

process dN τ
t (with intensity λτt ), the bond matures with probability 1. The two intensities

sum up to a fixed number, i.e.,

πλt + λτt = 1/τ, (A20)

where τ can be interpreted as the maturity of the bond. We can see that

1/τ ≥ πλH ,
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and therefore,

τ ≤ 1

πλH
,

which is the maximum maturity of bonds that we can define with this method.

Each risky bond has a face value of 1. One unit value of a risky asset is continuously

posted to back this risky bond, i.e., the bond is fully collateralized if the bond matures

as long as there is no jump in the value of the risky asset. If dNt hits when the bond

matures, the underlying risky asset’s value jumps downwards by m · κpt− + κ̂0. The first

term varies with economic conditions. It contains capital price drop κpt−, and a multiplier

m that measures the exposure of the collateral to capital price decline. The second term

here a constant “baseline” loss given default. If maturity occurs with no illiquidity event,

we assume that the bond pays back in full. Thus, the loss function upon maturity for the

risky bond is

κ̂t = (m · κpt− + κ̂0)dNt. (A21)

This structure gives a time-varying default probability. Specifically, when a bond ma-

tures, the probability of default is

πλt
πλt + λτt

= τπλt. (A22)

Therefore, the unconditional probability of default is τπλ̄, where λ̄ is the unconditional

average of the expected illiquidity frequency.

Denote the current market value of this risky bond, priced using the banker’s pricing

kernel, as vt = v(wt, λt), and the value of the safe bond as v̄t. Then we define the credit

spread as

St(pT ) =
1

τ
log(1/vt)−

1

τ
log(1/v̄t). (A23)

We expect St ≥ 0, given that risky bonds may default, and default occurs in high marginal

utility states. Solving for this credit spread involves solving an endogenous jump equation

with second-order derivatives.

HJB Equations

From Ito’s lemma, we have

dv(w, λ) =
∂v(w, λ)

∂w
(wµwdt+ wσwdBt) +

1

2

∂2v(w, λ)

∂w2
w2(σw)2dt

+
∂v(w, λ)

∂λ
µλ(λ)dt+ (v(w + ∆w, λ+ ∆λ)− v(w, λ))dNt.

Denote
dv(w, λ)

v(w, λ)
= µvdt+ σvdBt − κvdNt.
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Matching the coefficients, we have

v(w, λ)µv =
∂v(w, λ)

∂w
wµw +

1

2

∂2v(w, λ)

∂w2
w2(σw)2 +

∂v(w, λ)

∂λ
µλ(λ),

v(w, λ)σv =
∂v(w, λ)

∂w
wσw,

v(w, λ)κv = v(w, λ)− v(w + ∆w, λ+ ∆λ).

From banker’s perspective, the optimization problem is

dwbt
wbt

= ...+ xvt−(
dvt
vt−
− vt− − (1− κ̂t)

vt−
ξtdNt − κvt−(1− ξt)dNt +

vt− − (1− κ̂t)
vt−

dN τ
t ),

with λτt = 1/τ − πλt, ξt ∈ {0, 1}, P (ξt = 1) = π, and {ξt} is an i.i.d. process that is

independent from everything else. The jump κvt− is the amount of decline of bond price

upon the distress shock if the bond does not mature during the financial distress shock.

Rewriting the above and omitting the time subscripts, we have

dwb

wb
=

(
rf + xK(µR +

AH

p
− rf ) + xd(rf − rd) + xv(µv − rf )− ρ

)
dt

+
(
xK(σK + σp) + xvσv

)
dBt−(xKκp+αxd+xvξ

v − (1− κp − κ̂0)

v
+xv(1−ξ)κv)dNt−xv

v − 1

v
dN τ

t .

where I have omitted the subscripts t and t− for simplicity. To solve the price of the safe

bond v̄, we can simply replace the notation v with v̄, and set the term κp and κ̂0 both to

zero.

The first order condition over xv is

µv−rf−λπ
v−(1−κp−κ̂0)

v

1− (xKκp + αxd + xv v−(1−κp−κ̂0)
v

)
−λ(1−π)

κv

1− (xKκp + αxd + xvκv)
−λτ

v−1
v

1 + xv v−1
v

− (σv)2xv︸ ︷︷ ︸
compensation for change in risk - bearing capacity

− xKσv(σK + σp)︸ ︷︷ ︸
compesnation for covariance

= 0.

Given that in equilibrium xv = 0, we have

µv − rf = λπ
1

1− κb
v − (1− κp − κ̂0)

v
+ λ(1− π)

1

1− κb
κv + λτ

v − 1

v
+ xKσv(σK + σp),

with

λτ =
1

τ
− πλ.

Therefore, the excess return has three components: (1) the compensation for losses during

a distress shock, (2) the compensation for losses (negative losses mean positive benefits)

in a maturity event without distress shock, and (3) the compensation for exposure to the
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volatility risk dBt, where the price of risk is xK(σK + σp). This equation together with the

matched coefficients form an HJB equation for the value of bonds,

∂v

∂w
wµw +

1

2

∂2v

∂w2
w2(σw)2 +

∂v

∂λ
µλ − rfv = xK(σK + σp)

∂v

∂w
wσw

+ λπ
1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1).

(A24)

Solution Methods

We will use the “false time derivative” method, by introducing a time dependence of v.

Define such a function as ṽ(w, λ, t). Following a similar derivation as (A24), we can get the

HJB equation for ṽ as

∂ṽ

∂t
= λπ

1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1)

+xK(σK + σp)
∂v

∂w
wσw + rf ṽ −

(
∂ṽ

∂w
wµw +

1

2

∂2ṽ

∂w2
w2(σw)2 +

∂ṽ

∂λ
µλ
)
.

We can start with a function ṽ that satisfies ṽ(0, λ, T ) = v(0, λ), and ṽ(1, λ, T ) = v(1, λ),

and has linear interpolation in other regions. By taking T large enough, we are going

to have convergence before t reaches 0, i.e., two iterations have close to zero differences.

Denote the converged solution as ṽ(w, λ, 0). From the property of convergence, we must

have ∂ṽ(w, λ, t)/∂t|t=0 = 0. As a result, ṽ(w, λ, 0) satisfies the original PDE of v(w, λ),

which implies that v(w, λ) = ṽ(w, λ, 0).

Next, we show how to solve the boundary conditions at w = 0 and w = 1.

Boundary Conditions

We note that w = 0 and w = 1 are two absorbing boundaries. At both w = 0 and w = 1,

we have p = p or p̄ forever, and µw = σw = κp = 0. Thus, we can simplify the HJB equation

(A24) into

∂v(w, λ)

∂λ
µλ(λ)− rf (w, λ)v(w, λ) = λπ

1

1− κb(w, λ)

(
v(w, λ)− (1− κ̂0)

)
+ λ(1− π)

1

1− κb(w, λ)
κv(w, λ)v(w, λ) + λτ (λ)(v(w, λ)− 1), w ∈ {0, 1}.

(A25)

Suppose that κv = 0 when λ = λ∗ (defined as µλ(λ∗) = 0). Then we get

v(0)(w, λ∗) =
λ∗π 1

1−κb(w,λ∗)
(1− κ̂0) + λτ (λ∗)

λ∗π 1
1−κb(w,λ∗)

+ rf (w, λ∗) + λτ (λ∗)
, w ∈ {0, 1}.

Denote the value function at iteration k as v(k)(w, λ). Then for w = 1 or w = 0, the
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algorithm works as follows:

• Step k: Solve for the jump κvv = v(w, λ)− v(w+ δw, λ+ δλ) using v = v(k). Denote this

value as ∆v(k). With such jump solved, we translate the jump equation (A25) into an

ODE of v(w, λ), w ∈ {0, 1} as a function of λ. The ODE solution starts with the initial

value v(w, λ∗) = v(k)(w, λ∗), w ∈ {0, 1}. Solve this ODE and denote the solution as v(k+1).

• Stop if ∫ λH

λL

|v(k+1)(w, λ)− v(k)(w, λ)| dλ < ε, w ∈ {0, 1},

for a small ε > 0.

Finally, we notice that once the λ = λ∗, it will not go up or down unless there is a dNt

shock. Once we know the jump component, we can solve v(w, λ∗) along the w dimension as

an ODE. The ODE is

∂2v

∂w2
=

(
λ∗π 1

1−κb (v − (1− κp − κ̂0)) + λ(1− π) 1
1−κbκ

vv

+λτ (v − 1) + xK(σK + σp) ∂v
∂w
wσw + rfv − ∂v

∂w
wµw

)
1
2
w2(σw)2 ,

for w 6= 0, 1.

Credit Spread Calibration

There are four parameters relevant for the credit spread, including average maturity (τ),

the conditional probability of bond maturing in a liquidity shock (π), loadings of loss given

default on capital value change (m), and the fixed component of loss given default (κ̂0). We

calibrate them using four moment conditions as follows.

• In our baseline calibration, we target the an average maturity of τ = 7 years, which is the

average maturity of bonds used in Krishnamurthy and Muir (2024).

• According to Chen, Collin-Dufresne and Goldstein (2008), the 10-year BAA (AAA) de-

fault rate is 4.89% (0.63%). The difference in their default rates is 4.26%. We use 4% as

our target. In the model, the default rate is

πλ̄ = 0.04,

where λ̄ is the average frequency of financial illiquidity, which is 12.8% according to our

calibration. Therefore, we have π = 0.31.

• The total loss given default is m · κpt + κ̂0 if a illiquidity shock dNt hits, where κpt is the

percentage decline of capital price pt during a crisis shock. The price jump component

κpt is large during crises but close to zero otherwise. We calibrate the loss given default
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to that of BAA bonds, which from Moodys data has been 55% on average over the last

three decades and rose by 10% during the 2008 crisis. As a result, we set m so that m ·κpt
during crises is 10% larger than other defaults. Then we set the average of losses during

default to 55% to get κ̂0.

Finally, we should note that we define our spread measures in units of standard-deviation

differences relative to the unconditional mean value of the credit spread. This is what

Krishnamurthy and Muir (2024) do in their empirical work. As a result of this normalization,

the results are relatively insensitive to the exact values of the credit-spread calibration.

A.8 Additional Moments

Table A1: Additional Moments

Volatilities Static Bayesian Diagnostic
vol(liquidity premium) 0.6% 0.6% 0.9%
vol(risk-free rate) 0.3% 0.7% 0.7%
vol(annual bank equity return) 18.2% 15.7% 15.9%
vol(investment yearly growth rate) 4.2% 3.4% 4.4%
vol(consumption growth return) 2.2% 1.6% 1.8%
mean(risk free rate) 3.1% 7.4% 3.7%
average total Sharpe ratio of capital return 0.49 0.48 0.41

Table A1 reports other asset pricing moments from our model. We report the volatility

of asset prices and returns. Based on U.S. data from 1934 to 2020, the volatility of the

liquidity premium in the 0.37 and the volatility of the risk-free rate in the U.S. is 3.5%.

The volatility of banking-sector equity yearly return in the U.S. from 1973 to 2020 is 26%,

somewhat higher than the model counterparts. The volatility of consumption growth is in

line with historical data, while that of investment growth is smaller relative to the historical

data.

One notable difference from the table is that the risk free rate is much higher in the

Bayesian model. Digging into this further, we find that this result is because the calibrated

productivity parameters AH and AL are higher in the Bayesian model than the other two

models so that the growth of output is higher, leading to the higher risk free rate.

The average Sharpe ratio on the capital return in all three models are in line with

historical Sharpe ratios for the U.S. equity market.
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A.9 Model without Financial Frictions

In this section, we discuss the model results when we shut off financial frictions. We show

that this variation of model fails to match most of the empirical facts, so that the financial

friction is needed to explain the crisis cycle facts.

To meaningfully discuss a model without financial frictions but with belief variation, we

need to consider an economy where the liquidity shock reduces aggregate resources (and is

not just a transfer shock as in our main model), such as the models of consumption disasters

(e.g., Wachter (2012); Gabaix (2012)). Consider this case. Since we have a production

economy, we directly specify the losses in production in a disaster. Suppose that the dynamic

evolution of productive capital owned by agent j ∈ {banker, household} is

dkj,t
kj,t

= µKt dt− δdt+ σKdBt − κKt dNt (A26)

and the belief regarding the disaster shock dNt follows the same process as our main model.

The key departure from our main model is that the dNt shock is now a direct shock to

the efficiency units of capital, instead of a financial shock that indirectly affects output.

Agents in the economy believe that the actual shock frequency is λbelieft , which is a function

of the underlying rational belief λBayesiant . We assume κKt > 0 and follows an independent

distribution from other variables. As we there are no financial frictions, banks can issue

equity to households and perfectly share risks. Since bankers earn a higher return on capital,

households optimally only hold bank equity and earn dividends equal to Ā on capital instead

of A. Given identical log preferences and no financial constraints, we can aggregate across

agents and study an economy populated by only bankers.

Define the total wealth as Wt. The consumption-good market clearing implies

ρWt = ĀKt − itKt.

Wealth is the total value of capital:

ptKt = Wt.

The above two equations together imply

ρpt = Ā− it.

Since it = φ(µKt ) = φ(δ + (pt − 1)/χ), we obtain

ρpt = Ā− φ(δ + (pt − 1)/χ).
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which implies that the value of capital is constant, regardless of the fluctuations in the

frequency of disaster shocks dNt. The main reason is that although the risk premium

increases when the frequency of dNt rises, the risk-free rate endogenously falls, and thus the

net effect on asset price cancels out (the exact offset is due to log utility).

We note that since banks and households receive the same return on assets, the ratio

between banker wealth to household wealth is constant and equal to w0. Thus, the economy

only has two state variables, λbelieft and Kt, while asset prices and allocations are only driven

by λbelieft . Furthermore, bank lending to firms (holding of capital) is always w0Kt, and since

the output is always ĀKt, bank credit/GDP ratio is constant, w0/Ā. As a result, this model

cannot match any of the empirical facts about the association between bank credit and

macroeconomic outcomes.

Next, we define crises and analyze cross-section severity of crises. To allow for richness

of the model, we assume that the fall in capital quantity, κKt , upon a Poisson shock is

drawn from the same distribution FK(·) independently each time. Since total output is

ĀKt, the output drop is equal to the change in capital κKt . We define a crisis in the same

way as the main paper, i.e., a dNt shock that causes the fall in output to be below the 4%

quantile. An economy has a crisis when κK > κ̄ where κ̄ solves λ̄(1 − FK(κ̄)) = 0.04 and

λ̄ is the average intensity of Poisson shocks. It is easy to prove that the crisis indicator

1{κKt > κ̄}dNt is independent of all information before the crisis, including quantities and

prices. Consequently, in this model, crises are not predictable with the credit variables.

Furthermore, the cross-sectional severity of crises, κKt 1{κKt > κ̄} can also not be predicted

using credit information from before the crisis.

Nevertheless, the credit spread in this economy will vary with λbelieft , since losses on debt

claims on firms will be related to the dNt shock. Denote the credit spread as s(wt, λ
belief
t ).

We can easily prove that the model does not feature “froth” (i.e., low credit spread) before

crises, since conditional on crises, the expected credit spread is the same due to independence

between (κKt , dNt) and the belief λbelieft . Formally,

E[s(w0, λ
belief
t− )|dNt = 1, κKt > κ̄] = E[s(w0, λ

belief
t− )].

Intuitively, crisis severity or likelihood does not have an endogenous relationship with belief

or “froth” before crises, and thus this model is unable to generate the empirical pattern.

We can also prove that a low credit spread predict less rather more likely crises. Formally,

conditional on credit spread below the mean value s̄, the expectation of a crisis event is:

E[1{dNt = 1, κKt > κ̄}|s(w0, λ
belief
t− ) < s]

=(1− F (κ̄))E[λbelieft− |s(w0, λ
belief
t− ) < s].
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Given that credit spread s(w0, λ
belief
t− ) increases in λbelieft− , we find that

E[λbelieft− |s(w0, λ
belief
t− ) > s] > E[λbelieft− |s(w0, λ

belief
t− ) < s].

Thus, low credit spreads indicates that crises are less likely, instead of more likely.

Furthermore, we can also show that the spike of the credit spread in a crisis is unrelated

to crisis severity. This is because

E[s(w0, λ
belief
t )− s(w0, λ

belief
t− )|dNt = 1, κKt > κ̄]

=E[s(w0, λ
belief
t− + κbelieft− )|dNt = 1, κKt > κ̄]− E[s(w0, λ

belief
t− )]

=E[s(w0, λ
belief
t− + κbelieft− )]− E[s(w0, λ

belief
t− )].

where the second equality is due to the independence between κKt and the frequency of

crises.

In summary, a model without financial frictions but with a production (and thus con-

sumption) disaster can generate a time-varying credit spread. However, it cannot generate

the following main facts about crises:

• Conditional on crises, high bank credit predicts more severe crises (since bank credit/GDP

is constant in the model).

• Bank credit/GDP predicts excess returns.

• Conditional on crises, credit spread before a crisis below its unconditional average.

• Low credit spread predicts more frequent crises; in this model the opposite will occur.

B General Beliefs

The solution method of our model offers an avenue to evaluate alternative belief processes

beyond the Bayesian and diagnostic models of the main text. That is, as long as agents

think they are Bayesian, the model’s policy rules are the same as that of the Bayesian model.

As with our analysis of the diagnostic model, we simply need to simulate beliefs under an

alternative belief process to evaluate the impact of alternative beliefs.

The more general way of formulating beliefs is to write

dλbelieft = Atdt+BtdNt

where At and Bt are adapted stochastic processes.
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In the case of Bayesian beliefs, At and Bt can be written as linear functions of λt,

capturing all of the history dependence. In the case of diagnostic beliefs both A and B are

functions of λt and λt−T where T is the reference point for diagnostic expectations and λt

and λt−T are the Bayesian beliefs.

We will proceed in the following steps:

• First, we show that the historical reference point λt−T is quantitatively not important for

the diagnostic belief model. The model’s performance can be summarized via mapping

from λt to λbelieft .

• Second, we illustrate how belief distortion in different states λt affect key model moments.

• Finally, we separate the diagnostic belief into an optimism portion and a pessimism por-

tion, and we separately calibrate these two versions and show quantitative results under

these different forms of beliefs.

First, we write the diagnostic belief as

dλbelieft = A(λt, λt−T )dt+B(λt, λt−T )dNt

where λt is the rational belief process. Then we plot the functions A(λ, λ0) and B(λ, λ0) –

where since t does not matter, our notation is that λ0 is the reference point – as functions

of λ in both the Bayesian case and the diagnostic belief case. In Figure A1, we show three

values of λ0: high λ0 (90% quantile of the stationary distribution), average λ0 (mean of the

stationary distribution), and low λ0 (10% quantile of the stationary distribution). We find

that the basic properties of the drift and jump functions are quantitatively similar across

all scenarios. In Figure A2, we plot λdiagnostict (λt, λt−T ) as a function of λt = λBayesiant for

three values of λ0 = λt−T . Again, we find that the functions are very similar across different

values of λ0.

The above results indicate that we can ignore the dependence on λt−T without much loss.

Furthermore, we note that directly specifying the distorted behavioral belief λbelief (λBayesian)

as a function of the Bayesian belief is a convenient way to understand the impact of the

distorted belief.

Next, we consider different cases of optimism and pessimism in different regions of the

state space, λt = λBayesian.

1. Pessimism for all λt ∈ (λL, λH).

2. Optimism for all λt ∈ (λL, λH).

3. Pessimism for low λt, but Bayesian otherwise.
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(a) High λ0 (90% quantile of stationary distribution)
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(b) Average λ0 (average of the stationary distribution)
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(c) Low λ0 (10% quantile of stationary distribution)

Figure A1: Drift and Jump of Bayesian and Diagnostic Belief Process, with Reference
λ0 = λt−T .
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Figure A2: Diagnostic Belief λDiagnostict as a Function of λBayesiant , with Reference Belief
λ0 = λt−T
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Figure A3: General Behavioral Belief
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4. Pessimism for high λt, but Bayesian otherwise.

5. Optimism for low λt, but Bayesian otherwise.

6. Optimism for high λt, but Bayesian otherwise.

We plot the functions in each case in Figure A3. Then we simulate the model under each

case, keeping all other parameters of the model as the same. Results are reported in Table

A2. Note that these results are comparative statics and the model is not recalibrated in

each case. Our key findings are as follows:

• Average liquidity premium is sensitive to whether on average the behavioral belief is

optimistic or pessimistic.

• Average output/capital ratio is insensitive to beliefs.

• Average output drop in a crisis is directly related to the difference of λbelief between when

the underlying λ is high and low, not the absolute amount of optimism or pessimism.

• Bank leverage is highly related to whether on average the behavioral belief is optimistic

or pessimistic.

• Low pre-crisis credit spread is directly affected by the difference of λbelief between high λ

and low λ, not the absolute amount of optimism or pessimism. For example, case 1, 2, 4,

and 5 all feature large differences in λbelief for high and low λ, and thus a very low credit

spread before crises. Case 3 and 6 have small differences in λbelief for high and low λ, and

thus not a very low credit spread before crises.

Table A2: Model Moments and Different Cases of Alternative Beliefs

Alternative Beliefs
Moments Bayesian case 1 case 2 case 3 case 4 case 5 case 6
Avg liquidity premium (%) 0.77 2.04 0.40 1.34 0.86 0.52 0.66
Avg credit spread change in crises 0.56 0.45 0.47 0.41 0.52 0.51 0.40
Half-life of credit spread (yrs) 2.50 3.00 1.42 1.25 3.17 2.50 1.00
Output/capital ratio 0.17 0.15 0.15 0.15 0.15 0.15 0.15
Avg 3-year output drop in crises -0.08 -0.06 -0.09 -0.03 -0.11 -0.11 -0.04
Output growth volatility 0.03 0.03 0.04 0.03 0.04 0.04 0.03
Avg bank leverage 5.1 1.9 7.8 2.2 4.0 7.5 3.9
Lower Credit Spread -0.29 -0.04 -0.24 0.15 -0.16 -0.28 0.08

In summary, there are two aspects that are important for the quantitative results:

1. On average, whether the belief is optimistic or pessimistic.
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Figure A4: Functional forms of Different Beliefs Derived from Diagnostic Beliefs

2. The difference between λbelief when the underlying λ is high v.s. when the underlying λ

is low.

Thus far we have discussed these effects as a comparative static exercise. An important

lesson from our analysis is that recalibrating the model to match the same targets tends to

lessen the quantitative differences between the models. We next discuss this effect focusing

on two of the cases we have presented: case 4 and case 5.

We define an optimistic belief as

λoptimistict = min{λt, λdiagnostic(λt, λ0)}

and a pessimistic belief as

λpessimistict = max{λt, λdiagnostic(λt, λ0)}

where for simplicity we use the average value of λt in the calibrated Bayesian model as λ0,

so the comparison with the Bayesian model does not involve a change of reference point

for the behavioral belief. We note that since the recalibration will change the parameters

λH , λH→L etc., the optimistic belief and pessimistic belief mappings will adjust accordingly.

Figure A4 plots these cases from the model simulation.

Table A3 presents the model’s fit of moment targets and Table A4 reports the resulting

estimates for the parameter values. The last two columns consider the optimism and pes-

simism cases. From the top panel of the table, we note that the models match the targets

as well as the other belief variants.

We can see the impact of optimism when considering the true frequency of the liquidity

shocks. The optimistic agent’s beliefs are that λ is lower than the true λ in the states where

λ is low. That by itself will lead to too low an average liquidity premium. Thus the model
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Table A3: Calibration Moments for Alternative Beliefs

Data Bayesian Optimistic Pessimistic
Average liquidity premium 0.90% 0.77% 0.88% 0.92%
Avg credit spread change in crises 70% 56% 61% 56%
Half-life of credit spread recovery (years) 2.5 2.5 2.0 2.6
Output/capital ratio 14% 17% 14% 14%
Avg 3-year output drop in crises -9.1% -7.9% -10.1% -9.1%
Output growth volatility 3.8% 2.9% 3.4% 2.6%
Average bank leverage 5.0 5.1 4.8 4.9

Table A4: Calibrated Parameter Values for Alternative Beliefs

Explanation Parameter Bayesian Optimistic Pessimistic
High intensity of liquidity shock λH 0.56 0.84 0.77
Low to high transition λL→H 0.11 0.11 0.11
High to low transition λH→L 0.47 0.40 0.64
Household productivity AL 0.17 0.14 0.13
Bank lending advantage AH − AL 0.03 0.02 0.02
Volatility of capital growth σK 0.03 0.03 0.03
Banker-household transition rate η 0.05 0.03 0.04

recalibrates and sets λH higher (row 3 of the lower panel) in order to match the average

liquidity premium. As a result, the true frequency of liquidity shock rises substantially.

By itself, this would mean that crises would lead to a large fall in GDP, larger than the

calibration target of row 5 in the top row. The calibration then adjusts the parameter

AH − AL which is closely related to the output decline in the crisis, reducing this gap and

thereby matching the output decline in the crisis. A similar logic applies to the pessimism

case, although here the model hits the liquidity premium target by increasing the transition

rate λH→L so that the model spends less time in the high λ pessimistic states.

Finally, we replicate two of the model simulations linking bank credit and subsequent

outcomes. In both cases we see that the belief variants of optimism and pessimism produce

results that are similar to the Bayesian and diagnostic models in terms of matching the

data.
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Table A5: GDP Growth and Credit Spread (General Beliefs)

Dependent variable: GDP Growth from t to t+ 3

Bayesian Overoptimistic Overpessimistic

(1) (2) (3) (4) (5) (6)

∆credit spreadt∗crisist −2.87 −3.61 −3.08

(bank credit
GDP

)t∗crisist −2.18 −3.79 −3.53

R2 0.12 0.12 0.13 0.13 0.16 0.16

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one
sigma change in spreads, and bank credit/GDP.

Table A6: Bank Credit Predicting Capital Excess Returns (General Beliefs)

Dependent variable:

Average realized excess return t+1

(1) Rational (2) Optimistic (3) Pessimistic

(bank credit
GDP

)t −0.01 −0.01 −0.01

Observations
R2 0.01 0.01 0.01

Note: Model excess return is defined as the return to capital minus the risk-free rate. Data
excess return is the excess equity index return from Online Appendix Table 3 of Baron and Xiong
(2017). To ensure comparability, the model return to capital has been normalized to equal the
standard deviation of returns reported by Baron and Xiong (2017).
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