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1 Introduction and Summary

Heterogeneity is all around us. Besides the obvious dimensions of heterogeneity (income

and wealth), people of similar wealth and income have different saving rates and attitudes

towards risk. While it is hard to argue with the existence of heterogeneity, this survey

asks a question with a less obvious answer: Does heterogeneity matter for asset pricing?

Specifically, does it matter for the market price of risk?

Intuitively, it would seem that the answer should be a clear yes. The saving and portfolio

choices of the median retiree and a rich entrepreneur are likely to be very different. As a

result, the relative wealth share of these different groups of people should matter for both

interest rates and risk premiums.

Yet, most leading asset pricing models tend to be “representative” agent models, i.e.,

models where the distribution of wealth, income, consumption and the associated dynamics of

these quantities are all irrelevant for asset pricing.1 One possible justification for abstracting

from all distributional considerations was given in a seminal paper by Grossman and Shiller

(1982). That paper revisited and substantially relaxed the assumptions of the Breeden

(1979) aggregate consumption CAPM. Specifically, Grossman and Shiller (1982) showed that

Breeden’s aggregate-consumption-CAPM continues to determine risk premiums, even if risk

sharing is imperfect, so that each consumer experiences a different consumption growth.

The argument is powerful and quite simple, since it essentially boils down to three equa-

tions. Specifically, Grossman and Shiller (1982) starts with the first order condition that if

agent i is trading without frictions in some asset with (random) gross return Rt+δ between

t and t + δ and also in the riskless asset with (certain) gross return Rf
t+δ, then portfolio

optimality requires that

Et

{
u′
(
cit+δ

) (
Rt+δ −Rf

t+δ

)}
= 0, (1)

where u′
(
cit+δ

)
is the marginal utility of agent i. Assuming that the agent trades frequently,

1Three leading such paradigms are Campbell and Cochrane (1999), Bansal and Yaron (2004), Barro
(2006).
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so that δ is small, and proceeding heuristically, a first order expansion of u′
(
cit+δ

)
around cit

gives2

− u
′ (cit)

u′′ (cit)
Et

{
Rt+δ −Rf

t+δ

}
≈ Et

{(
cit+δ − cit

) (
Rt+δ −Rf

t+δ

)}
. (2)

Defining aggregate consumption as Ct ≡
∫
i
citdi, and integrating both sides of (2) across i

gives

Et

{
Rt+δ −Rft+δ

}
'

(
−
∫
i

u′
(
cit
)

u′′
(
cit
)di)−1

× Et
{

(Ct+δ − Ct)
(
Rt+δ −Rft+δ

)}
=

(
−
∫
i

u′
(
cit
)

citu
′′
(
cit
) cit
Ct
di

)−1

× Et
{(

Ct+δ − Ct
Ct

)(
Rt+δ −Rft+δ

)}
. (3)

Equation (3) is remarkably similar to Breeden’s aggregate consumption CAPM. It states

that the excess return on an asset is given by the product of two terms. The first term

is a consumption-weighted3 “harmonic average” of the relative risk aversions − citu
′′(cit)

u′(cit)
of

the different investors. The second term is the expected product of aggregate consumption

growth with the excess return.

One immediate implication of (3) is that even in the presence of heterogeneity, the con-

ditional aggregate consumption CAPM continues to hold. Other than affecting the weights

in the harmonic average of relative risk aversion, heterogeneity in individual consumption

growth rates – whatever the reason for this heterogeneity – does not impact the risk pre-

mium. In particular, income risks that can cause idiosyncratic consumption fluctuations due

to imperfect risk sharing are irrelevant for risk premia. To exaggerate for the sake of clarity,

the risk premium in an economy with and without uninsurable idiosyncratic risks will be the

same as long as all agents have the same risk aversion.

The Grossman and Shiller (1982) result relies on one approximation step (equation 2).

This approximation step is innocuous if asset prices and consumption growth are both dif-

2A first order Taylor expansion implies that u′
(
cit+δ

)
' u′

(
cit
)

+ u′′
(
cit
) (
cit+δ − cit

)
. Substituting this

approximation inside (1) and re-arranging gives (2).
3The harmonic average of yi with weights xi is defined as

(∫
i
xi
(
y−1
i

)
di
)−1

.
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fusions. Indeed, in the continuous time limit that they consider, the approximation becomes

exact, because of Ito’s Lemma.

Even though the Grossman and Shiller (1982) result would appear to indicate a dead end,

the almost forty years that followed its publication saw the development of a very active

literature on the interactions between heterogeneity and asset pricing. Indeed, it seems

that there is renewed interest in this question in recent years because of a broader trend in

macroeconomics and finance to understand the economic implications of rising income and

wealth inequality.

As it always happens with irrelevance results in economics (e.g., Modigliani Miller The-

orem, Ricardian Equivalence, Revenue Equivalence, etc.), the Grossman and Shiller (1982)

result is a useful pedagogical framework to explain how different papers in the literature

“break” the irrelevance. With this in mind, in this survey I attempt a taxonomy of the dif-

ferent papers against the backdrop of Grossman and Shiller (1982). I classify the papers in

two broad categories. The first broad category contains three strands depending on whether

the source of heterogeneity is due to preferences, beliefs, or access to markets. The second

broad category comprises papers with income heterogeneity and incomplete risk sharing. In-

side this category there are again three main strands capturing models with (lack of) intra-

or inter-cohort risk sharing and models that assume recursive preferences in a framework of

imperfect risk sharing.

The first strand of the first broad category (section 2.1) contains models of risk aversion

heterogeneity, typically in a framework where agents have expected utility preferences. These

models are not departures from Grossman and Shiller (1982), since equation (3) continues

to hold. Indeed, most of the papers in this literature assume that agents trade continuously

and therefore equation (3) is exact, not approximate. The key feature of these models is

the observation that if agents have different risk aversions then the consumption distribution

evolves dynamically, favoring the bold in good times and the meek in bad times.

Specifically, the most interesting feature of these models is the countercyclicality of the

market price of risk, or “Sharpe ratio”: Because the relatively less risk averse agents choose
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to be more exposed to aggregate shocks (as compared to the more risk averse agents), a

positive aggregate shock increases their wealth and consumption weight, driving down the

equilibrium Sharpe ratio. By contrast, a negative shock to aggregate consumption raises the

Sharpe ratio. This negative correlation between aggregate shocks and changes in the market

price of risk is a prediction that these models share with the Campbell and Cochrane (1999)

representative agent model. In both types of models the aggregate consumption CAPM holds

conditionally, but not unconditionally. The variations in “habits” that cause fluctuations in

risk aversion in the Campbell and Cochrane (1999) model resemble the variations in the

consumption weights of the heterogeneous agents in models of preference heterogeneity. As

section 2.3 shows, the counter-cyclicality of the Sharpe ratio is a remarkably robust result in

models of preference heterogeneity. These models also contain interesting implications on the

determination of equilibrium interest rates and bond risk premia, which are also discussed

in section 2.1.

The second strand of the first broad category (section 2.2) comprises models of belief

heterogeneity. These models assume that some investors may have different beliefs than

others, possibly not resulting from superior information, but from different priors or plain

irrationality. In such models, equation (1) may not hold for some investors, as they use a

different expectation operator. In terms of asset pricing implications, however, models of

belief heterogeneity and preference heterogeneity are very closely related. In particular, the

Sharpe ratio with heterogeneous beliefs is a consumption-weighted average of the Sharpe

ratios that would obtain in homogeneous belief economies populated by only one of the con-

stituent groups. Just as luck favors the bold in models of preference heterogeneity (in terms

of increasing their wealth- consumption- share), luck favors the optimists in models of belief

heterogeneity. Section 2.2 presents the formal connections between belief and preference

heterogeneity.

The third strand of the first broad category (section 2.4) are models where equation (1)

holds for some investors but not for others. For instance if investor i is not even participating

in the market for the risky asset, then equation (1) does not apply to her. The implication
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is that when aggregating across all agents to get from equation (2) to (3), one should only

aggregate across the subset of agents that participate in the risky market. As section 2.4

shows, models of this type closely resemble models of heterogeneous preferences, where non-

participants are viewed as investors with infinite risk aversion for the purposes of pricing the

risky assets.

Overall, the three strands of the literature mentioned sofar belong to the same broad

category, since they share more similarities than differences. In this survey I present and

analyze them as part of a unified model in an effort to highlight these similarities. One could

even argue that these models do not invalidate the core of the Grossman and Shiller (1982)

result: While equation (1) may fail for some of the investors, at the end a conditional version

of the aggregate consumption CAPM continues to hold, with the consumption weights acting

as conditioning variables in the jargon used by finance econometricians.

The next broad category of papers can again be split into three strands and comprises

models that assume identical investors experiencing idiosyncratic income and endowment

shocks that cannot be insured due to some market failure. The papers in this group collide

with a strong implication of Grossman and Shiller (1982), namely that in any model with

diffusive (i.e., continuous) consumption and asset processes, heterogeneity should not matter

in the continuous-time limit.

To be specific and give an example of this tension, one of the most influential papers in

this literature is the paper by Constantinides and Duffie (1996). In a discrete time framework,

the paper shows that a judicious specification of cross sectional income heterogeneity allows

one to support any given stochastic discount factor (in a specific class) as an equilibrium

outcome. Moreover, this stochastic discount factor may differ from the one implied by the

aggregate consumption CAPM. Yet, the Grossman and Shiller (1982) result would seem to

allow only the stochastic discount factor implied by the aggregate consumption CAPM as

an equilibrium outcome, no matter what is assumed about income heterogeneity.

It would be natural to conjecture that the discrepancy between the two papers lies in the

usage of discrete versus continuous time methods. If true, this would be a source of concern,
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since it would indicate that if one were to shrink the assumed time interval in Constantinides

and Duffie (1996) to zero, the results of the paper could be jeopardized.

Section 3.1, which discusses the first strand of the second broad category of the literature,

reconciles the results of Constantinides and Duffie (1996) and Grossman and Shiller (1982).

Using a minor modification of Constantinides and Duffie (1996) that allows consideration

of the continuous time limit, this section shows that the key insight of Constantinides and

Duffie (1996) is invariant to the assumed decision interval. The results of Grossman and

Shiller (1982) do not apply because the continuous-time process is not a diffusion, but a

process with discontinuous sample paths. Because of this, equation (2) does not hold, even

in continuous time.

Reconciling the results of Constantinides and Duffie (1996) and Grossman and Shiller

(1982) is not just a matter of resolving a mathematical conundrum. The discussion illumi-

nates that for income heterogeneity to matter, it has to affect the covariance between higher

order moments of individual consumption growth and asset returns. If consumption and

asset price processes are diffusions, these higher order moments don’t matter in the continu-

ous time limit, since Ito’s Lemma implies that the marginal utility of consumption behaves

(locally) like a linear function. If consumption is a discontinuous function of time, then this

locally linear relation fails and higher order moments start to matter.

Section 3.2 discusses the second strand of the second broad category, namely models

where the risk sharing imperfection is not due to missing markets but rather due to missing

market participants. Specifically, rather than assuming that existing cohorts cannot trade

claims to their personal incomes with each other (which is the implicit market failure in

models such as Constantinides and Duffie (1996)), the models in section 3.2 assume that it

is impossible to trade with unborn agents. This results in a lack of inter-cohort risk sharing.

While starting from different assumptions and setups, the lack of inter- and intra-cohort risk

sharing imply identical stochastic discount factors.

The reason for the similarity between the two types of models is quite intuitive. The

source of risk premia in models like Constantinides and Duffie (1996) is an agent’s fear that
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if there is a large redistribution amongst the existing cohorts of agents, she might end up

being among the losers rather than the winners. Because of risk aversion, she overweights

the possibility of being among the losers and demands a risk premium for assets with bad

payoffs when redistribution is high. In models of imperfect inter-cohort risk sharing investors

fear that an incoming cohort of agents might introduce the next big company that will

displace the companies owned by current cohorts. Therefore any assets that are prone to

this displacement command a risk premium.

Section 3.3 discusses the third strand of the second broad category. Models in this

strand make make endowment heterogeneity matter by using recursive preferences rather

than expected utility. In a seminal paper, Bansal and Yaron (2004) highlighted that if

agents are not neutral to the timing of the resolution of uncertainty, then expected returns

do not only reflect compensation for “short run” risk, but also for risks that are associated

with consumption growth over the “long run”. Mathematically, this means that equation

(1) does not hold and the Grossman and Shiller (1982) argument fails at its origin.

Recursive preferences alone could be an irrelevant extension if individual consumption

growth is i.i.d.. However, models with heterogeneous agents can easily lead to slow-moving

predictable components in individual consumption growth, even if aggregate consumption

growth is i.i.d. This is especially true in models where different birth cohorts experience

different integrated consumption paths over their life time due to lack of inter-cohort risk

sharing.

One interesting feature of recursive preferences is that they do not require a strong high-

frequency co-movement between consumption inequality changes and asset returns to make

income heterogeneity matter for the risk premium. Indeed over the short run there need not

be any relation at all, and yet income heterogeneity can matter for asset returns.

The last section of the survey (section 4) addresses two further observations relating to

equation (1). Section 4.1 discusses models, where for each risky asset, equation (1) applies

only to a subset of agents. Section 4.2 discusses the validity of (1) in the presence of

asymmetric information.
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Section 4.1 discusses a multi-asset economy where all agents participate in some risky as-

sets, but no agent participates in all asset classes. Models of this sort can feature equilibrium

arbitrages. In such models it is natural to consider the incentives of agents to exploit the

arbitrages by modeling pricing and participation decisions as joint outcomes. Interestingly,

the presence of an arbitrage leads to a non-convexity in agent’s optimization problems, which

in turn leads to heterogeneous portfolio and participation decisions, even in the absence of

any initial heterogeneity. In a sense, the extent of heterogeneity and equilibrium risk premia

are jointly determined in response to endogenous participation decisions. Models of this sort

are particularly well suited to study portfolio flows, leverage and asset price determination

as joint outcomes.

Section 4.2 discusses the possibility that investors may have superior information com-

pared to the econometrician. By itself, this is not a problem for the Grossman and Shiller

(1982) argument, because the Euler equation (1) “conditions down” from the perspective of

the econometrician. If, however, short selling constraints prevent equation (1) from holding

for every investor and every asset, then agents may (endogenously) choose to not partici-

pate in certain asset classes. This means that the model features effectively heterogeneous

stochastic discount factors. Models of this sort have important implications for portfolio

biases, and performance evaluation.

In terms of presentation, this survey doesn’t simply outline these models. All sections

contain a simplified mathematical model that illustrates not only the economic ideas, but

also the techniques that can be used to analyze these models. The reason for presenting

these techniques is that models with heterogeneity can become intractable. One of the goals

of this survey is to introduce the reader to some basic techniques to keep the mathematical

strucuture tractable.

To be concrete, there are two difficulties when dealing with heterogeneous agents models.

The first and obvious difficulty is that the wealth distribution becomes a state variable. And

second, these models tend to be non-stationary, since the innate differences between the

agents lead to different consumption growth rates, which end up driving the consumption
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levels of different agents arbitrarily far apart in the long run.

I address these problems by placing the models within a “perpetual youth” framework.

In such framework, new generations arrive constantly with new units of the aggregate en-

dowment. This constant flow of wealth towards each group ensures their long term survival.

Moreover, the solution of the model boils down to the solution of a system of differential

equations. However, most of the insights and the analysis don’t even require that one be

able to solve these differential equations, so I relegate their formulation to the appendix.

After every section there is a literature review. Given the overwhelming size of the

literature, the reader should view this literature review merely as providing some indicative

pointers, not as an exhaustive list. It would be a mistake to presume that papers not included

in the literature review are less important than the ones cited. The choice of which papers

to cite was mostly dictated by the proximity of these papers to the ideas and techniques

developed in each section.

2 Heterogeneous preferences, beliefs, and limited par-

ticipation models

2.1 Heterogeneous preferences

The models of heterogeneous preferences, beliefs and limited participation can be presented

in a unified framework. This section develops this framework in the context of heterogeneous

preferences. The next two sections reuse this model with minor modifications to incorporate

different beliefs and access to markets.

Time is continuous. This assumption is quite helpful to make the model tractable and

obtain sharp results. To ensure stationarity, I assume the arrival of new agents who are

endowed with new “trees”. Per unit of time a mass of agents π is born. Existing agents face

a constant hazard rate of death π. By the law of large numbers, the surviving population of

agents who were born at time s ≤ t is πe−π(t−s) and total population is constant and equal

to
∫ t
−∞ πe

−π(t−s)ds = 1.
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Arriving agents at time t are equally endowed with shares to a “tree” born at time t.

Letting s ≤ t denote the time of “birth” of a tree, its time-t dividends are given by

Dt,s = δe−δ(t−s)Dt.

Accordingly, the total endowment of this economy is

∫ t

−∞
Dt,sds =

(∫ t

−∞
δe−δ(t−s)ds

)
×Dt = Dt.

The aggregate endowment Dt follows a geometric brownian motion with some mean µD and

some volatility σD

dDt

Dt

= µDdt+ σDdBt, (4)

where Bt is a standard brownian motion.

It should be noted here that in a typical perpetual youth, or overlapping generations

model, the endowment of agents takes the form of labor income. The choice to endow agents

with new trees rather than labor income is a (rather innocuous) shortcut to accelerate the

presentation of the main results.4

Agents optimize their life-time consumption5

Et

∫ ∞
t

e−(ρi+π)(u−t) c
1−γi
u,t

1− γi
du (5)

where γi, ρi denotes the risk aversion (discount factor) of agent i ∈ {A,B} . Without loss of

generality, γA < γB, so that agents of type A are the less risk averse agents. A fraction ν of

agents is of type A and 1− ν of type B.

Once born, agents can trade with other agents (who are also alive at the same time) in

4The reader who wants to see how to modify the setup to allow for income is referred to Gârleanu and
Panageas (2015).

5Note that the discount rate is ρi + π to reflect the hazard rate of death π. See Gârleanu and Panageas
(2015) on the specification of preferences in the presence of death.
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complete markets. The associated stochastic discount factor in this economy is Ht. The goal

of the analysis is to determine the dynamics of this stochastic discount factor.

2.1.1 Model Analysis

To start, note that the assumption of complete markets makes an agent’s optimization

problem simple to solve. Specifically, the consumers born at time t maximize (5) subject to

the intertemporal budget constraint

Et

∫ ∞
t

e−π(u−t)
(
Hu

Ht

)
ciu,tdu =

1

π
Pt,t, (6)

where 1
π
Pt,t denotes the (per-cohort member) value of the shares of the tree born at time t.

Multiplying both sides of (6) by Ht and attaching a Lagrange multiplier λ to (6) gives

max
cu,t

Et

{∫ ∞
t

e−π(u−t)

(
e−ρ

i(u−t) c
1−γi
u,t

1− γi
du− λHucu,t

)
du

}
+ λ

1

π
HtPt,t,

which results in the first order condition

e−ρ
i(u−t)c−γ

i

u,t = λHu. (7)

Equation (7) is the familiar requirement that the marginal utility of consumption be pro-

portional to the stochastic discount factor.

Evaluating (7) at time t implies that c−γ
i

t,t = λHt, and hence the consumption growth of

a consumer of type i is

ciu,t
cit,t

= e
− ρ

i

γi
(u−t)

(
Hu

Ht

)− 1

γi

. (8)

Equation (8) is intuitive. Inspection of the right hand side shows that all consumers of

type i that belong to the cohort born at time t experience the same consumption growth

between times u and t. This reflects the assumption of a complete market, which allows
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perfect risk sharing within a cohort.

In equilibrium, the consumption market needs to clear at each time t. To analyze the

implications of market clearing, recall that a fraction let xit denote the consumption share

accruing to type-i agents

xit ≡
νi
∫ t
−∞ πe

−π(t−s)cit,sds

Dt

, (9)

where νi = ν if i = A and νi = 1 − ν if i = B. In other words, νi is the population weight

of agents of type i, while xit is their consumption weight. Market clearing requires that

xAt + xBt = 1. (10)

Substituting (8) into (9) leads after some re-arranging to

xit ≡
H
− 1

γi

t × νi
∫ t
−∞ πe

−π(t−s)cis,se
− ρ

i

γi
(t−s)

H
1

γi

s ds

Dt

. (11)

Equation (11) provides a key relationship between the consumption share of type i agents

and the stochastic discount factor Ht. This relationship can be used to derive the joint

dynamics of the consumption share, the interest rate and the Sharpe ratio.

2.1.2 Volatility of xit and countercyclical Sharpe ratios

To start, is useful to recall a standard result in asset pricing, namely that the dynamics of

the stochastic discount factor are given by

dHt

Ht

= −rtdt− κtdBt, (12)

where rt is the interest rate and κt the market price of risk (or Sharpe ratio). Applying Ito’s

Lemma to the right hand side of (11) and using (12) and (4) shows that xit follows a diffusion
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dxit = µixdt+ σixdBt, where

σix ≡
(
κt
γi
− σD

)
xit. (13)

The market clearing requirement (10) requires that σAx +σBx = 0.6 This is intuitive, since

any movement in the consumption share of type-A agents must be offset by an opposing

movement in the consumption share of type-B agents. Combining (13) with (10) and the

associated requirement σAx + σBx = 0 leads to

κt =

 ∑
i∈{A,B}

xit
(
γi
)−1

−1

× σD. (14)

Equation (14) shows that the Sharpe ratio is proportional to the harmonic average of the

risk aversions of the two agents times the volatility of the aggregate endowment (σD).

The weights of this harmonic mean are time-varying since xit changes over time. Indeed,

combining (13) with (14) leads to

σix ≡ σD ×

 (γi)
−1∑

i∈{A,B}
xit (γi)−1 − 1

xit. (15)

Equation (15) shows that xAt is procyclical and xBt is countercyclical. Given the nor-

malization γA < γB, the term inside brackets in equation (15) is positive when i = A and

negative when i = B. Hence, a positive shock to the aggregate endowment increases the

consumption share of type-A agents and reduces the consumption share of type-B agents.

This procyclicality of the consumption share of the less risk averse agents implies that the

Sharpe ratio is countercyclical. Inspection of equation (14) shows that when the share of the

less risk averse agents xAt increases (which happens in response to a positive aggregate shock),

the Sharpe ratio declines. In that sense one can think of an economy with heterogenous agents

as being equivalent to an economy with a representative agent but with a risk aversion that

6This can be proven by applying Ito’s Lemma to both sides of (10).
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declines in response to good aggregate shocks and increases in response to bad aggregate

shocks.

The economic force behind this countercyclicality of aggregate risk aversion is simple.

Less risk averse agents choose to bear more aggregate risk than less risk averse agents.

Because of this higher exposure to aggregate risk, a positive aggregate shock leads to an

increase in their consumption share. Being a harmonic weighted average of risk aversions,

the market price of risk declines, reflecting the increased weight of the relatively more risk

tolerant agents.

This basic mechanism that links the movements of the wealth distribution with the

countercyclicality of the Sharpe ratio is a common feature in almost all models with het-

erogeneous agents, whether the source of heterogeneity stems from preferences, beliefs, or

access to markets, as will become evident in the subsequent sections.

To complete our characterization of equilibrium, we next turn attention to the deter-

mination of the drift of xit and the implications for the equilibrium interest rate and the

stationarity of the consumption shares

2.1.3 Drift of xit, equilibrium interest rate rt, and stationarity of the consump-

tion distribution

Applying Ito’s Lemma to (11) and using (12) leads after some simplifications to the following

expression for the drift of xit :

µix =

(
rt − ρi

γi
− µD + σ2

D +
1

2

(
κt
γi

)2(
1

γi
+ 1

)
− κtσD

γi
− π

)
xit + πνi

cit,t
Dt

. (16)

In turn, market clearing implies that µAx + µBx = 0, since the two consumption shares have

to always add up to one. Combining µAx + µBx = 0 with (10) and (16) gives the following
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expression for the interest rate

rt =

 ∑
i∈{A,B}

xit
γi

−1

︸ ︷︷ ︸
inverse weighted average of IES

× (17)

×


∑

i∈{A,B}

xit
ρi

γi︸ ︷︷ ︸
weighted discount rate

+ µD−σ2
D −

∑
i∈{A,B}

xit

(
1

2

(
κt
γi

)2( 1

γi
+ 1

)
− κtσD

γi

)
︸ ︷︷ ︸

+

weighted precautionary savings

π

1−
∑

i∈{A,B}

νicit,t
Dt


︸ ︷︷ ︸

deaths-births

 .

While the expression for the equilibrium interest rate is long, it has the same basic structure

as the interest rate in a standard representative investor economy. Indeed if xAt = 1 and

π = 0, the expression for the interest rate simplifies to r = ρA + 1
γA

[
µD + 1

2
σ2
D

(
1
γA

+ 1
)]
,

which is the interest rate that one would obtain in an economy populated by a single,

infinitely-lived, representative agent of type A. A similar expression obtains when xBt = 1

and π = 0.

For intermediate values of xit, the interest rate can be expressed as a product of two

terms. The first term is the consumption-weighted average of the intertemporal elasticity of

substitution (IES) of the two agents. (Recall that with CRRA preferences the IES is just

the reciprocal of the risk aversion). The second term is the sum of a) a weighted sum of

discount rates, b) the aggregate growth rate, c) a term reflecting a weighed average of the

precautionary savings motives and d) a term that captures the effect of deaths and births.

There are a few things worth noting about the equilibrium interest rate:

First, since the interest rate is the product of a weighted IES and a summation term that

also depends on consumption weights, the interest rate in a heterogenous-agents economy

cannot be expressed as some weighted average of the interest rates in a pure type-A or pure

type-B economy.

Second, the dependence of the interest rate on xAt is ambiguous and depends on several

effects. As xAt increases, the weighted average of the IES increases. Assuming that the

interest rate is positive, (i.e. assuming that the term inside square brackets in equation (17)
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is positive), this effect pushes the interest rate up, reflecting the increased importance of

agents who are more willing to substitute inter-temporally. However, as xAt increases, the

precautionary savings term decreases, reflecting that the agents with the high IES are also

the agents with the low risk aversion. The reduced importance of precautionary savings

pushes the interest rate down, counteracting the effect of higher IES. The behavior of the

term
∑

i∈{A,B} x
i
t
ρi

γi
depends on whether one assumes that ρA < ρB or the reverse. In short,

the dependence of the interest rate on xAt is ambiguous.

Third, in a heterogeneous-agents economy, the interest rate fluctuates as the consump-

tion weights change, even when there is no change in the conditional moments of aggregate

consumption growth (i.e., when consumption growth is i.i.d). This would not be possible in

a representative-agent economy, where the interest rate can only change if the conditional

moments of aggregate consumption growth change. The fact that the interest rate exhibits

variation even when aggregate consumption growth is i.i.d., could be one of the reasons for

the very low estimates obtained from macro-level estimates of the IES. Motivated by repre-

sentative agent models that ignore heterogeneity, researchers in this literature estimate the

IES of the representative agent as the ratio of predictable variations in aggregate consump-

tion growth to predictable variations in the (real) interest rate. In the economy analyzed

above, this ratio would be zero even though any given agent has a strictly positive IES.

Fourth, even if all investors have the same preferences, the resulting interest rate would

differ from the one in an economy populated by a single representative agent with the same

preferences. There would be an additional term π
(

1− ct,t,
Dt

)
, which is due to the presence

of deaths and births. In an economy with deaths and births and no altruistic linkages, the

consumption growth rate of any fixed cohort of agents is not equal to aggregate consumption

growth. The reason is that a fraction of consumption every period accrues to the newly born

agents ct,t
Dt

, while at the same time a fraction π of agents dies, thus increasing the per capita

consumption growth of surviving agents. Section 3.2 discusses this issue in further detail.

As a concluding observation, note that, despite allowing for heterogeneity, the consump-

tion distribution is stationary. Specifically, note that equation (13) implies that limxit→0
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σix = 0, while (16) implies that limxit→0 µ
i
x = πνi

cit,t
Dt

> 0. This means that as the consump-

tion share of one type of agents approaches zero, the diffusion process starts resembling a

deterministic process with positive growth. (Section 2.2.3 goes into some further details on

the issue of stationarity). The economic intuition behind stationarity is that – irrespective

of the past path of the economy – there are constantly new agents of type i arriving with

new units of wealth. Indeed, note that as one group starts approaching extinction (i.e., as xit

approaches zero), it is exclusively the properties of the entering cohort of type i agents that

matter for the dynamics of xit (specifically, the mass πνi of the cohort times its consumption

relative to aggregate consumption,
cit,t
Dt

.)

2.1.4 Completing the construction of equilibrium

Taking stock, equations (14) and (15) provide the Sharpe ratio κt and the volatility of xit

as functions of xit. Equations (16) and (17) provide the drift µx and the interest rate rt as

functions of xit and the endogenous quantity
cit,t
Dt
. The determination of

cit,t
Dt

requires the usage

of the budget constraint of an agent who enters the economy at time t. Specifically,

Et

∫ ∞
t

e−π(u−t)
(
Hu

Ht

)
ciu,tdu =

1

π
Pt,t =

δ

π
Et

∫ ∞
t

e−δ(u−t)
(
Hu

Ht

)
Du,tdu, (18)

which states that the present value of consumption should equal the value of the shares that

an agent is endowed with, which in turn should equal the present value of the dividends

accruing to the stock. Defining

git ≡ Et

∫ ∞
t

e−π(u−t)
(
Hu

Ht

)(
ciu,t
ct,t

)
du, and pt ≡ Et

∫ ∞
t

e−δ(u−t)
(
Hu

Ht

)(
Du,t

Dt,t

)
du, (19)

the intertemporal budget constraint (18) can be expressed compactly as

cit,t
Dt

=
δ

π

pt
git
. (20)
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The term pt can be interpreted as the price-to-dividend ratio in this economy, while the term

git is the wealth-to-consumption ratio for an agent of type i. The appendix shows that pt and

git are functions of xit and solve a pair of differential equations, similar to the ones that one

finds in the derivatives literature. This implies that
cit,t
Dt

is a function of xit. Accordingly both

σix and µix are functions of xit, i ∈ {A,B} which in turn means that xit, is a Markov process.

2.1.5 Summary

If one had to isolate the main insight sofar, it is that a model of preference heterogeneity

contains a natural mechanism to render the Sharpe ratio and the interest rate time-varying

even when the aggregate endowment growth is i.i.d.. The time-variation in the Sharpe ratio

is countercyclical, as positive shocks favor the consumption share of the bold agents, who

require lower compensation for risk. The cyclicality of the riskless rate is ambiguous.

2.1.6 Literature review

The methodology presented in this section is based on Gârleanu and Panageas (2015), who

consider a model with heterogeneous risk aversions and heterogeneous inter-temporal elastic-

ity of substitution in a stationary, perpetual youth framework. Blanchard (1985) analyzes the

perpetual youth framework in a deterministic framework without preference heterogeneity.

The literature on risk sharing with heterogeneous risk aversions dates back at least to

Borch (1962). Dumas (1989) is an early contribution, characterizing the risk sharing problem

in a dynamic framework. Wang (1996) considers the risk sharing problem in a dynamic,

exchange economy and derives implications for the term structure of interest rates. Longstaff

and Wang (2012) and Barro et al. (2017) derive implications for credit markets. Bhamra

and Uppal (2013) uses Lagrange’s Theorem to characterize the risk sharing problem with

infinitely lived agents. Gârleanu and Pedersen (2011) considers a model of heterogeneous

preferences with margin constraints.

Chan and Kogan (2002) and Xiouros and Zapatero (2010) consider an alternative ap-

proach to obtaining a stationary consumption distribution, which relies on specifying agents’
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consumption preferences as being relative to aggregate consumption. Santos and Veronesi

(2018) considers an alternative approach to stationarity that relies on a combination of habits

and non-homothetic preferences.

Dumas et al. (2000) considers a planner’s problem with heterogeneous recursive prefer-

ences. Schneider (2017) studies the term structure and bond risk premia in a model with

heterogeneous risk aversion and IES. Recently several papers have used models of heteroge-

neous preferences to study issues related to inequality. Indicative examples include Gomez

(2017), Pastor and Veronesi (2019) , Akira Toda and Walsh (2019). Kargar (2018), uses a

model of heterogenous risk aversions and IES to study heterogeneous intermediation. Kondor

and Vayanos (2019) studies the dynamics of arbitrage in a framework of heterogeneity. Al-

varez and Atkeson (2018) consider a tractable model of random shifts in risk aversion. Calvet

et al. (2019) study the empirical cross-section of household risk aversion and intertemporal

elasticity of substitution.

2.2 Heterogeneous beliefs

2.2.1 Model setup and analysis

For the purposes of this section, all investors have the same preferences (γi = γ, ρi = ρ),

but different beliefs. For instance, suppose that agents of type A believe that the aggre-

gate dividend grows at the rate µ∗ rather than µD, while agents of type B have correct

expectations.

The easiest way to capture this situation is to define ηi ≡ µi−µD
σD

, where µA = µ∗ and

µB = µD, and let

Zi
t ≡ e−

(ηi)
2

2
t+ηiBt (21)

denote the likelihood ratio between the correct probability measure and the probability

measure perceived by agent i. Note that ηB = 0 and ZB
t = 1, which reflects that agent

B is rational. An implication of Girsanov’s theorem is that we can write each agents’
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maximization problem as

Et

∫ ∞
t

e−(ρ+π)(u−t)Zi
u,t

c1−γ
u,t

1− γ
du (22)

The intertemporal constraint of each agent continues to be given by (6). Attaching a La-

grange multiplier and repeating the same steps as in the case with heterogeneous preferences

leads to the following equation describing the evolution of optimal consumption

ciu,t
cit,t

= e−
ρ
γ

(u−t)
(
Zu
Zt

) 1
γ
(
Hu

Ht

)− 1
γ

. (23)

2.2.2 Sharpe ratio and interest rate

Using the optimal consumption process (23) in the definition of xit (equation 9), and applying

Ito’s Lemma (along with the fact that
dZit
Zit

= ηidt) gives the following expression for the

volatility of xit

σix ≡ xit

(
κt + ηi

γ
− σD

)
. (24)

In turn, using the market clearing requirement
∑

i∈{A,B} σ
i
x = 0 and

∑
i∈{A,B} x

i
t = 1 gives

the following expression for the Sharpe ratio

κt = γσD −
∑

i∈{A,B}

xitη
i. (25)

Equation (25) shows that the Sharpe ratio in an economy where some investors have distorted

beliefs is equal to the Sharpe ratio that would obtain in an economy without belief distortions

(γσD) minus a term that represents a consumption-weighted belief distortion. Specifically,

if ηA > 0 (meaning that the perceived growth rate of the aggregate endowment by agent

A is higher than in reality), the Sharpe ratio is lower than γσD, reflecting the optimism of

a fraction of the agents. By contrast, when the economy is populated by some pessimistic

agents
(
ηA < 0

)
, the Sharpe ratio is higher.
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Substituting (25) into (24) and re-arranging gives

σix =
xit
γ

ηi − ∑
i∈{A,B}

xitη
i

 . (26)

The sign of σAx depends on the sign of ηA. If ηA is positive, then σAx ≥ 0, i.e., the consumption

share of optimistic agents is pro-cyclical. Similarly, if ηA is negative, σAx ≤ 0. Since κt is

declining in xAt when ηA > 0 and increasing in xAt when ηA < 0, it follows that the Sharpe

ratio declines in response to a positive shock to the aggregate endowment irrespective of

the sign of ηA. Therefore, as in the case of heterogenous preferences, the Sharpe ratio is

unambiguously countercyclical, irrespective of whether the irrational agents are optimistic

or pessimistic.

Proceeding as in the case with heterogeneous preferences, the drift of xit is given by

µix = xit

[
r − ρ
γ
− µD + σ2

D −
κt + ηi

γ

(
ηi + σD −

1

2

(
κt + ηi

γ

)(
1

γ
+ 1

))
− π

]
+ πνi

cit,t
Dt

, (27)

and upon using
∑

i∈{A,B} µ
i
x = 0 and

∑
i∈{A,B} x

i
t = 1 the interest rate is

rt = ρ+ γµD + γπ

1−
∑

i∈{A,B}

νi
cit,t
Dt

+ γ
∑

i∈{A,B}

xit
κt + ηi

γ

(
ηi − 1

2

(
κt + ηi

γ

)(
1

γ
+ 1

))

Just as in the case of heterogeneous preferences, the interest rate cannot be expressed as

a simple average of its value at xAt = 0 and xAt = 1. As π becomes small, one can however

show that if ηA > 0 (optimism), then the interest rate is higher when xAt = 1 than when

xAt = 0. Optimists believe in higher consumption growth than the rational agents and in an

effort to smooth that perceived upward sloping consumption path, they end up dissaving,

thus increasing the interest rate. (Vice versa in the case of pessimism
(
ηA < 0

)
).

As before, fully characterizing the interest rate rt and the drift µix requires an expression

for
cit,t
Dt
. Obtaining such an expression requires one to impose the budget constraint at time

0 as in section 2.1.4. In the special case where both agents have logarithmic preferences
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(γ = 1) , there is a simple expression for the initial consumption ratio
cit,t
Dt
. In this case the

ratio
cit,t
Dt

is constant and equal to δ
π
.

2.2.3 Long-term “survival” of irrational agents

As in the case of heterogeneous preferences, limxit→0 σ
i
x = 0, while limxit→0 µ

i
x = πνi

cit,t
Dt

> 0,

which means that there is a force to ensure stationarity and long term “survival” of all

agent groups, even the ones that have wrong beliefs. To obtain some further insight into

the role of births and deaths in guaranteeing survival of each agent type, it is useful to

compute a “stochastic steady state value of xBt ”. This value is defined as the consumption

share of rational agents xBt such that µBx (xBt ) = 0. In other words it is the value of the

consumption share of rational agents, xBt , which has neither a tendency to grow or shrink in

expectation. (Since µAx + µBx = 0, it follows that the consumption share of irrational agents

is also drift-less.)

To simplify matters, it is instructive to focus on the case where all investors have loga-

rithmic preferences (γ = 1). Substituting the expressions for the Sharpe ratio (25) and the

interest rate (28) into (27) and solving for the value that sets µBx = 0 results in

xBt = νB
δ

δ −
(
1− xBt

)2
(ηA)2

> νB. (28)

Equation (28) implies that any steady state value xBt that sets µBx = 0 must be such

that the steady state consumption weight (xBt ) of rational agents exceeds their population

weight
(
νB
)
. Since both xAt + xBt = 1 and νA + νB = 1 the implication is that the steady

state consumption weight of irrational agents
(
xAt
)

is below their population weight νA.

Accordingly, rational agents consume more per capita than irrational agents. Whether the

irrationality takes the form of optimism or pessimism ηA < 0 or ηA > 0 is irrelevant, since

only (ηA)2 enters equation (28). What does matter is the magnitude of the belief distortion

(ηA)2.

What allows the survival of irrational agents is the fact that the incoming cohorts of
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both types are endowed with new trees. Interestingly, the steady state value of xBt is not

affected by the rate of death and birth π, but only by the endowment fraction that accrues

to newly-borns per unit of time. This highlights an important aspect of the economic forces

that ensure survival in this model, namely that incoming cohorts of both types are endowed

with a fraction of the endowment irrespective of past history.

I conclude the discussion of survival with a technical remark. I argued earlier that since the

volatility of σx (xit) goes to zero as xit approaches zero, while µx (xit) approaches a positive

number, this model allows for a stationary distribution. While intuitive, this argument

requires an extra step. The exact condition7 to ensure stationarity is that

lim
xAt →0

(
σAx
(
xAt
))2

xAt
< 2

∣∣µAx (0)
∣∣ . (29)

Equation (26) implies that the left hand side of the above expression is zero, and hence

positivity of µAx (0) is sufficient for survival.8

2.3 Multiple types of agents

The assumption so far has been that there are two types of agents, in which case the dis-

tribution of consumption across the two groups is characterized by xAt , the consumption

share of type A agents. (The consumption share of type B agents is simply 1 − xAt ). None

of the conclusions of either the heterogeneous-preferences, or heterogeneous-beliefs model

changes, if instead there are N type of agents having different preferences (or beliefs). All

the equations derived above remain unchanged – other than the fact that all sums of the

form
∑

i∈{A,B} would have to be replaced with the sum
∑

i∈{A,B,C...} .

The central insight, namely that the Sharpe ratio is some weighted average of the Sharpe

ratios that would obtain in the economies populated by type A,B ,C... etc agents continues

to hold, since equation (14) (in the case of heterogeneous preferences) and equation (25) (in

7Gârleanu and Panageas (2020) shows the sufficiency of this condition.
8A similar argument shows that positivity of µix (0) is sufficient for stationarity in the case where investors

have heterogeneous preferences.
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the case of heterogeneous beliefs) continue to hold with the sum running over all groups.

Interestingly, one can extend the insight that the Sharpe ratio is countercyclical. To

start, suppose that the groups A,B,C, .., are defined in order of declining risk aversion (or

declining optimism if investors have different beliefs).

Viewing the Sharpe ratio as a function of the vector −→x t and applying Ito’s Lemma to

obtain the dynamics of dκ (−→x t) shows that the diffusion component of dκ (−→x t) is given by9

∑
i∈{A,B,C...}

∂κ

∂xi
σix = −

 ∑
i∈{A,B,C...}

xit
(
γi
)−1

−2

×

 ∑
i∈{A,B,C...}

(
γi
)−1

σix

 < 0. (30)

In other words, a positive shock to the aggregate endowment reduces the Sharpe ratio.

Importantly, the Sharpe ratio is countercyclical no matter what assumptions one makes

about the magnitude of the preference discrepancies, the fractions, the discount rates, the

initial endowments etc. of each group. These assumptions may impact the quantitative

magnitude, but not the qualitative nature of the result.

In the case of heterogeneous beliefs, the analog of equation (30) is10

∑
i∈{A,B,C...}

∂κ

∂xi
σix = −

∑
i∈{A,B,C...}

ηiσix < 0,

Once again, the assumptions on the magnitude of the belief distortions, the fractions of

each group, their preferences etc. are immaterial. All that matters is that there is some

discrepancy in beliefs between different groups.

9To see that
∑
i∈{A,B,C...}

∂κ
∂xi

σix < 0, note that
∑

i∈{A,B,C...}
xit
(
γi
)−1

> 0. The second term on the right

hand of (30) is also positive since it can be written as ∑
i∈{A,B,C...}

(
γi
)−1

× ∑
i∈{A,B,C...}

(
γi
)−1∑

i∈{A,B,C...} (γi)
−1σ

i
x

(
xit
)
.

The expression immediately above is positive because a)
∑
i∈{A,B,C...} σ

i
x

(
xit
)

= 0, b) the weights

(γi)
−1∑

i∈{A,B,C...}(γ
i)−1 are declining in i and c) σix is declining in i.

10As in the case of heterogenous preferences, the facts that a)
∑
i∈{A,B,C...} σ

i
x = 0, b) ηi is declining in i

by construction, and c) σix is declining in i, imply that that
∑
i∈{A,B,C...} η

iσix > 0.
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2.3.1 Literature review

Methodologically, the presentation in this section combined the approach of Kogan et al.

(2006) with that of Gârleanu and Panageas (2015).

The literature on heterogeneous beliefs and the survival of irrational agents is voluminous.

Scheinkman and Xiong (2003), Chen et al. (2012), Buraschi and Jiltsov (2006), David (2008),

Dumas et al. (2016), Ehling et al. (2017) is a small, indicative sample of applications of such

models in finance. The issue of survival of irrational traders is discussed in Sandroni (2000),

Blume and Easley (1992), Kogan et al. (2006), Yan (2008) and Borovicka (2019).

2.4 Limited participation

Both in the case of heterogenous preferences and heterogenous beliefs agents were assumed

to trade in complete markets. In this section, I show how to extend the analysis to a situation

where some agents don’t participate in the stock market. To simplify matters, suppose that

there are two groups of investors who have the same discount rates and (rational) beliefs.

Agents of type A have risk aversion γA and access to complete markets, while agents of

type B have risk aversion γB = 1 (log preferences) and cannot enter into any contracts that

are contingent on the realization of the brownian motion Bt; put simply agents of type B

cannot dynamically trade stocks. The limited participation assumption of type B agents is

encapsulated in the following assumption on the evolution of their wealth:

dWB
t

WB
t

=

(
rt + π − cBt

WB
t

)
dt. (31)

There are two observations about equation (31).

First, in an effort to save notation, equation (31) is in terms of cBt and WB
t rather than

cBt,s and WB
t,s. The reason is that since all agents of type B face the same hazard rate of

death π and interest rate rt, and have the same homogenous preferences, they choose the

same consumption-to-wealth ratios irrespective of their cohort. Indeed, because γB = 1, it

follows that
cBt
WB
t

= ρ+ π.
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Second, the presence of the term π reflects the assumption of annuitization. Specifically,

since agents have no bequest motives, they enter contracts that require them to surrender

their wealth upon death in exchange for an income stream of πdt while alive. The (com-

petitive) insurance company offering this contract breaks even as it collects a fraction π

of aggregate wealth from the dying agents and distributes it as an income stream to the

surviving agents.11 Mathematically, equation (31) together with
cBt
WB
t

= ρ+ π implies that

WB
t

WB
s

= e
∫ t
s (ru+π−ρ−π)du ⇒ cBt

cBs
= e

∫ t
s (ru−ρ)du. (32)

Assuming momentarily the existence of a stochastic discount factor Ht, defining xAt
(
xBt
)
as

the consumption share of the type A (type B) agents, repeating the calculations of section

2.1 and using equation (32) for the consumption evolution of the type-B agent implies that

σAx =

(
κt
γA
− σD

)
xAt , and σBx = −σDxBt .

Imposing the market clearing conditions σAx + σBx = 0 and xAt + xBt = 1 results in

κt =
1

xAt
γAσD, and σAx =

(
1− xAt

)
σD (33)

Clearly, the Sharpe ratio satisfies κt = γAσD
xAt
≥ γAσD. In other words, the Sharpe ratio

exceeds the one that would obtain in an economy populated by a single representative agent

with risk aversion γA. Morover, the Sharpe ratio is declining in xAt , and since the share of

type A agents is procyclical (σAx = σD
(
1− xAt

)
≥ 0), the Sharpe ratio is countercyclical.

Note that setting γB =∞ in equations (14) and (15) would lead to (33). In other words,

for the purposes of the determination of the Sharpe ratio and the volatility of xAt , the limited

participation model implies the same formulas as a model with heterogeneous preferences

with the more risk averse agent having infinite risk aversion.

Repeating the steps of earlier sections, one can derive the drifts µix and the interest rate

11See Blanchard (1985) for further details.
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rt. The expression for µAx continues to be given by (16). Using (32), the definition of xBt is

now

xBt =
νB
∫ t
−∞ πe

−π(t−s)cBs,se
∫ t
s (ru−ρ)duds

Dt

,

and therefore Ito’s Lemma implies that

µBx =
[
(rt − ρ)− µD + σ2

D − π
]
xBt + πνB

cBt,t
Dt

. (34)

Requiring that markets clear implies that µAx + µBx = 0, which leads to the equilibrium

interest rate

rt =

(
xAt
γA

+ xBt

)−1

× (35)ρ
(
xAt
γA

+ xBt

)
+ µD−σ2

D − xAt

(
1

2

(
κt
γA

)2(
1

γA
+ 1

)
− κtσD

γA

)
︸ ︷︷ ︸

Impact of type A’s precautionary savings

+ π

1−
∑

i∈{A,B}

νicit,t
Dt


 .

Unlike the expression for the Sharpe ratio, the equilibrium interest rate in the presence

of limited participation cannot be obtained by simply setting γB =∞ in the heterogeneous-

preferences model. There are, nonetheless, several similarities between the interest rate in

the two models. In both models, the inverse of the weighted IES of the two agents,12 xAt
γA

+xBt ,

multiplies a term that is seemingly identical across the two models; the main difference is

that in the limited participation model the term reflecting the effect of precautionary savings

only captures the precautionary savings undertaken by agent A. This is intuitive , since only

agent A′s consumption has a positive diffusion component.

I conclude this section with an important caveat. Equation (33) illustrates a potential

problem of models with limited participation, namely that the Sharpe ratio may not be

bounded. Indeed as xAt approaches zero, κt grows without bound. This is unlike the models

12Recall that the type B agents have an IES of one.
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of heterogenous preferences or beliefs, where both the Sharpe ratio and the interest rate are

bounded. Since the Sharpe ratio is unbounded, Novikov’s condition does not automatically

apply. For instance, as is shown by Hugonnier (2012) in the context of the Basak and Cuoco

(1998) model, the marginal utility of the participating investor is not a mathematically valid

stochastic discount factor and valuation bubbles are needed to support the equilibrium. A

full discussion of this issue is beyond the scope of this chapter. (The literature review includes

references for further reading). In that sense the reader should interpret the results on non-

participation as purely formal, i.e. with an understanding that some further assumptions

need to be made to ensure the existence of a stochastic discount factor. For instance one could

assume that when the Sharpe ratio becomes sufficiently high, then some non-participants

may switch to the group of participants, an approach taken by Khorrami (2019a).

2.4.1 Literature Review

Basak and Cuoco (1998) solves a model very similar to the one considered in this section,

but utilizing different techniques. Specifically Basak and Cuoco solve their model by using

the concept of a central planner with state dependent weights. This approach does not apply

in a perpetual youth framework and therefore section 2.4 used a direct approach to solving

for equilibrium. See also Chabakauri (2013) for a different approach to solving models with

heterogeneous investors and portfolio constraints.

The idea that limited stock market participation may be to blame for the poor perfor-

mance of asset pricing models goes back at least to Mankiw and Zeldes (1991). Vissing-

Jorgensen (2002) estimates the intertemporal elasticity of substitution for different groups of

investors, depending on the markets that they choose to participate in. Parker and Vissing-

Jorgensen (2009) discusses who bears aggregate fluctuations.

Slight modifications of the techniques to solve limited participation models can be ap-

plied to a variety of constraints (leverage constraints, shorting constraints, etc.). Indicative

examples include He and Modest (1995), Detemple and Murthy (1997) and Detemple and

Serrat (2003).
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Favilukis (2013) , Guvenen (2005) and Gomes and Michaelides (2008) use numerical

methods to solve models of limited participation and discuss the joint implications of these

models for the equity premium and participation decisions.

Hugonnier (2012) discusses the technical problems that arise in limited participation

models. Khorrami (2019a) discusses entry in such models, which can help keep the Sharpe

ratio bounded.

2.5 Recursive preferences and the Sharpe ratio

Using recursive preferences, Gârleanu and Panageas (2015) solve a model whereby investors

are heterogeneous both in terms of their risk aversion, but also their IES. Specifically, type

A investors have risk aversion γA and IES equal to
(
1− αA

)−1
and investors of type B have

risk aversion γB and IES equal to
(
1− αB

)−1
. Without loss of generality, γA < γB.

In the presence of recursive preferences13 the optimal consumption of agent i is14

ciu,t
cit,t

= e
1

γi

∫ u
t

(
Ξi1(giw)

−1
+Ξi2+π

)
dw

(
giu
git

)Ξi1
γi
(
Hu

Ht

)− 1

γi

(36)

where Ξi
1 ≡ −

αi+γi−1
αi

,Ξi
2 ≡ −

ρ+π
αi

(1− γi) , and git is defined in equation (19). In the special

case where the inverse of the IES is equal to the risk aversion of the agent (1− αi = γi) ,

Ξi
1 = 0 and Ξi

2 = − (ρ+ π) and hence equation (36) reduces to (8).

Using (36) inside the definition of xit (equation (9)), applying Ito’s Lemma to obtain σix,

and requiring that
∑
σix = 0 leads to the following expression for the Sharpe ratio

κt = ΓtσD −
∑

i∈{A,B}

ωit

(
1− γi − αi

αi

)
gi′(xAt )

gi(xAt )
σAx,t, (37)

13For a discussion of recursive preference in continuous time, see e.g., Duffie and Epstein (1992).
14Note that equation (36) differs from equation (A.21) in the appendix of Gârleanu and Panageas (2015),

because in this survey I define git(x
A
t ) as the wealth-to-consumption ratio. Gârleanu and Panageas (2015)

defines git(x
A
t ) as the consumption-to-wealth ratio. This explains some differences between the formulas in

this section and Gârleanu and Panageas (2015).
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where Γt ≡

( ∑
i={A,B}

xit (γi)
−1

)−1

, ωit ≡ (γi)
−1

Γtx
i
t, and gi′ is the partial derivative of gi with

respect to xAt .

The Sharpe ratio is the sum of two terms. The first term (ΓtσD) is identical to equation

(14). The second term is a weighted average of a term that measures the discrepancy from

expected utility
(

1−γi−αi
αi

)
times the volatility of the two agents’ wealth-to-consumption

ratios. When all agents are neutral to the resolution of uncertainty (1− αi = γi), equation

(37) reduces to (14).

When, however, 1 − γi − αi 6= 0 and gi′

gi
σAx,t 6= 0 for some agent i, then the Sharpe is

no longer a simple harmonic average of the Sharpe ratios that would obtain in an economy

populated exclusively by type A or exclusively by type B agents. (In such single-agent

economies the Sharpe ratio would be given by γiσD, since the aggregate endowment growth

is i.i.d.).

The reason for the additional term in equation (37) is that the equilibrium fluctuations

of wealth and consumption shares lead to persistent components in individual consumption

growth, even though the growth rate of the aggregate endowment is i.i.d.. As is well un-

derstood in the literature on “long run risks” these persistent components affect the Sharpe

ratio whenever investors are not neutral to the resolution of uncertainty 1− γi − αi 6= 0.

The fact that the Sharpe ratio is no longer a simple average of the Sharpe ratios that would

obtain in pure type-A or type-B economies, implies that the Sharpe ratio in an economy

with heterogenous recursive preferences may even exceed the Sharpe ratio that would obtain

in an economy populated exclusively by the most risk-averse agents. Gârleanu and Panageas

(2015) provide one such example along with conditions that make the second term of equation

(14) positive. By contrast, in economies with either heterogeneous preferences or beliefs, the

Sharpe ratio is bounded between the Sharpe ratios that would obtain in the respective

single-agent economies.
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Figure 1: Year-over-Year and 8-year average excess returns in the Gârleanu and Panageas
(2015) model plotted against the data.

2.6 Empirical Implications

The recurring theme of all the models presented sofar has been the counter-cyclicality of

the Sharpe ratio. Campbell and Cochrane (1999) emphasized the importance of a counter-

cyclical Sharpe ratio in terms of providing a unified explanation of asset pricing puzzles in a

consumption-based framework.

As a result, it should not come as a surprise that calibrated heterogeneous-agent models

can be successful in terms of explaining the data. Perhaps the most demanding test for an

asset pricing model is to use the historical consumption path as an input and test whether

the model-implied excess returns match up to the historical excess returns.

Figure 1 provides an illustration of such an exercise for the calibrated version of the
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heterogeneous-preferences model of Gârleanu and Panageas (2015).15 As is evident from

Figure 1, the model manages to reproduce the historically observed path of the equity pre-

mium, both at the one- and eight-year horizons, simply by taking consumption data as

an input. The main exception are the two decades after the second World War, where the

model originally under- and then over-pedicts the realized excess returns. Outside of equities,

Schneider (2017) discusses the empirical implications of this model for the term structure

and bond risk premia.

One should not jump to the conclusion that any model featuring a countercyclical Sharpe

ratio will automatically match the data. To provide a simple counter-example, if one were to

take a model of heterogenous agents (say a limited participation model), but with all agents

having unit IES, the price-to-aggregate-consumption ratio would be constant and return

volatility would be counterfactually low, despite the Sharpe ratio being countercyclical. This

happens because the same wealth shifts that cause the Sharpe ratio to decline (increase)

also cause precautionary savings to decline (increase), making the interest rate move in

the opposite direction of the Sharpe ratio, thus cancelling the overall impact of the wealth

movements on the total discount rate. To match the asset pricing data, a heterogeneous-

agents model must not only feature a sufficiently countercyclical Sharpe ratio, but also

have some mechanism to keep the real interest rate stable in response to wealth shifts,

which is a feature of both Campbell and Cochrane (1999) (in the context of a representative

agent model) and Gârleanu and Panageas (2015) (in the context of a heterogeneous agents

model).16

However, the most important distinguishing feature of heterogeneous agents model from

their closest representative-agent relative (the Campbell and Cochrane (1999) model) is the

fact that external habits are unobservable, in contrast to wealth distributions. Heterogeneous-

agents models contain predictions on the joint movement of asset prices and the wealth dis-

tribution, which are absent in representative agent models. The added value of such models

15The reader is referred to the paper for details of the calibration
16Gârleanu and Panageas (2015) achieves a stable interest rate by assuming that investors with a low risk

aversion also have high intertemporal elasticity of substitution. As a result, shifts in precautionary savings
are offset by shifts in the consumption weighted intertemporal elasticity of substitution.
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lies in testing these joint implications, which impart an additional layer of discipline on the

theory. Recent empirical studies of these joint implications include Gomez (2017) (which

studies the implications of these models for the tail of the wealth distribution), Akira Toda

and Walsh (2019) (which focuses on the joint movements of the top wealth shares and equity

prices), and Greenwald et al. (2019), which provides a framework for accounting for equity

valuations in an environment of shifting factor shares.

3 Heterogeneous endowments

3.1 Lack of intra-cohort risk sharing

Cross-sectional data suggest that within any given birth cohort the cross-sectional hetero-

geneity of income is large and generally increasing as the cohort ages. A large literature

in macroeconomics has investigated whether the increasing cross-sectional dispersion of in-

come over the life-cycle of any given cohort also translates into an increasing consumption

dispersion, suggesting incomplete risk sharing within each cohort.

The finance literature has generally taken the lack of risk sharing as given and asked

whether the associated dispersion of consumption growth rates is relevant for risk premi-

ums. At first pass, Grossman and Shiller (1982) would suggest that consumption growth

dispersion caused exclusively by incomplete risk sharing should be irrelevant for risk pre-

miums. Inspection of equation (3) shows that if all agents have the same preferences, then

return differentials between different assets are still determined by the aggregate CAPM, no

matter how cross-sectional consumption heterogeneity is specified.

In a seminal paper, Constantinides and Duffie (1996) reach a conclusion that seems

to contradict the results of Grossman and Shiller (1982). Specifically, in a discrete time

model Constantinides and Duffie (1996) showed that any stochastic discount factor in a

specific class can be supported as the equilibrium stochastic discount factor, if the individual

consumption growth process follows some appropriately specified dynamics. For instance,

an implication of Constantinides and Duffie (1996) is that even if aggregate consumption
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growth is constant, then the discount factor can still be stochastic (e.g., exhibit a positive

risk premium), something that would be impossible in an economy where the aggregate

consumption CAPM holds. In that sense Grossman and Shiller (1982) and Constantinides

and Duffie (1996) seem to contradict each other.

This section reconciles the findings of the two papers. To do this, and compare the

results of the two papers more effectively, it is essential to develop a minimal modification of

the Constantinides and Duffie (1996) model that allows the time interval between decision

to become arbitrarily small. This is important because the Grossman and Shiller (1982)

argument becomes exact only as the time interval shrinks to zero.

Specifically, consider again an endowment economy and simplify things by assuming no

births or deaths, but a continuum of infinitely lived agents (or more appropriately altruisti-

cally linked “dynasties”). This will jeopardize stationarity, but stationarity is irrelevant for

the arguments of this section.

Assume next that each agent’s income follows a process of the form

Ii,t = si,t × Ct −Dt

where Ct is aggregate consumption, Dt are the dividends of the (representative) “Lucas tree”

in this economy and si,t is a share process with the property
∫
i
sitdi = 1 for all t.

The next assumption is key for the results. Suppose that si,t obeys the following process:

si,t+∆ = si,t × exp

{
−(Λt+∆ − Λt)

2
+
(
B

(i)
Λt+∆

−B(i)
Λt

)}
, (38)

where Λt is a positive, increasing, discontinuous, random process and B
(i)
Λt

is a Brownian

motion that is specific to each agent i and independent of all other brownian motions B
(j)
Λt

,

j 6= i. Note that the variance of B
(i)
Λt+∆

− B(i)
Λt

between times t + ∆ and t is not ∆, but is

random and equal to Λt+∆ − Λt ≥ 0. The process Λt is common to all agents, and thus it

controls the cross-sectional dispersion of the increments B
(i)
Λt+∆

− B(i)
Λt

between t and t + ∆.

Because the process Λt can only increase, but not decrease, it cannot be a diffusion. It is
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instead a “jump process”.

Assumption (38) implies that si,t is a martingale. The law of the iterated expectation

together with standard formulas for the expectation of a (conditionally) log-normal variable

imply that Et {si,t+∆} = si,t.
17 Initializing the process at si,0 = 1, we have that for any time

t, Et {si,t} = 1 and a version of the law of large numbers implies that
∫
i
si,tdi = 1 for all

times t.

While the specification (38) is slightly different than the one employed in Constantinides

and Duffie (1996), it preserves the key economic element of that specification, namely the

presence of a shock (Λt+∆ − Λt) that controls the cross-sectional dispersion of
si,t+∆

si,t
. One

advantage of (38) is that it allows a study of the limit as ∆ becomes small, which allows a

comparison with the results of Grossman and Shiller (1982). A further advantage is that si,t

can be chosen to be “infinitely divisible”.18 In practical terms, the assumption of infinite

divisibility helps ensure that all risk premiums are the same (per unit of time) irrespective

of the length of the time-interval ∆.

From this point onward, the construction of an equilibrium follows a “guess and verify”

approach. Suppose that the representative investor maximizes an objective of the form

Et
∑

ti=0,∆,2∆,...

e−ρti
c1−γ
ti

1− γ
∆. (39)

Guess that in equilibrium there is no trade in financial markets, in which case each investor

holds one share of the tree, no bonds, and consumes her endowment and the dividends, so

that ci,t = si,tCt. Next, postulate that the (gross) interest rate and the stock market price

17

Et {si,t+∆} = si,t × Et
{
Et

[
exp

(
−Λt+∆ − Λt

2
+
(
B

(i)
Λt+∆

−B(i)
Λt

))∣∣∣∣Λt+∆ − Λt

]}
= si,t × Et {1} = si,t.

18One possible example is to choose Λt to have increments that are Gamma distributed. In this specific
case, log(si,t) follows a so-called variance-gamma process, which has a known (Laplace) distribution. This
specification is quite tractable and has been used in other contexts in finance (e.g, option pricing) to model
fat-tailed distributions.
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Pt are given by

Rf
t→t+∆ =

1

Ete−ρ∆
(
ci,t+∆

ci,t

)−γ , Pt = ∆× Et
∑

ti=t+∆,t+2∆,...

e−ρti
(
ci,ti
ci,t

)−γ
Dti . (40)

Since the distribution of
ci,t+∆

ci,t
=

si,t+∆Ct+∆

si,tCt
is the same for all i at time t, it follows that

both Rf
t→t+∆ and Pt do not depend on i. This means that the postulated pair Rf

t→t+∆, Pt

would make the Euler equations of all investors hold, if they chose to not trade in the

bond market and simply hold one share of stock. Alternatively phrased, not trading is

optimal. Moreover, if everyone holds a zero allocation in bonds and a unit allocation in

stocks, both the bond market and the stock market clear. So does the consumption market,

since
∫
i
ci,tdi =

(∫
i
si,tdi

)
× Ct.

An alternative way of writing equation (40) is to define the stochastic discount factor

as the expected value (across all agents i) of the marginal utility of their consumption

conditional on Λt+∆ − Λt

Ht+∆

Ht

≡ e−ρ∆E(i)

{(
ci,t+∆

ci,t

)−γ
|Λt+∆ − Λt

}

= e−ρ∆

(
Ct+∆

Ct

)−γ
︸ ︷︷ ︸

Aggregate consumption CAPM

× e
γ(γ+1)

2
(Λt+∆−Λt)︸ ︷︷ ︸

Impact of heterogeneity

, (41)

in which case the law of the iterated expectation implies that (40) can be put in the familiar

form Rf
t→t+∆ =

[
Et

(
Ht+∆

Ht

)]−1

and Pt = ∆× Et
∑

ti=t+∆,..

Hti
Ht
Dti .

An implication of (41) is the following: Suppose that one desired to choose some process

Λt in a way that would lead to some desired stochastic discount factor H∗t as an equilibrium

outcome. Then (41) implies that one would simply have to define the process Λt+∆ − Λt as

Λt+∆ − Λt =
2

γ (γ + 1)

[
logH∗t+∆ − logH∗t + ρ∆ + γ(logCt+∆ − logCt)

]
. (42)

To ensure that Λt is an increasing process, one needs to assume that the right hand side of (42)

is positive, irrespective of the realization of uncertainty. Therefore, log(H∗t )− log(e−ρtC−γt )
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needs to be an increasing process (assumption 6 in Constantinides and Duffie (1996)).

To summarize, the results of Constantinides and Duffie (1996) imply that heterogeneity

matters for asset prices. Even if aggregate consumption growth is constant, the stochastic

discount factor can be stochastic and claims whose value depend on the realization of the

process Λt can exhibit risk premiums. It is important to note that the stochastic process H∗t

cannot be chosen arbitrarily. The discrepancy between logH∗t and the log-SDF that would

be implied by the aggregate consumption CAPM log(e−ρ(t+∆)C−γt+∆) must be an increasing

process.

But shouldn’t the Grossman and Shiller (1982) result imply that the ability to support

such a stochastic discount factor disappears as ∆ approaches zero? The answer is no. The

next example shows that even as the time interval shrinks to zero, the risk premium (per

unit of time ∆) stays constant.

Example 1 Suppose that Ct+∆

Ct
= eg∆, i.e., aggregate consumption grows deterministically.

Define xt+∆ ≡ (Λt+∆ − Λt) , and suppose that xt+∆ is gamma distributed with density:

f (xt+∆) =
βα∆

G (α∆)
(xt+∆)α∆−1 e−βxt+∆

for some parameters α > 0, β > γ(γ+1)
2

and G (α∆) the gamma function evaluated at

α∆. Consider a one-period state-dependent claim with cash flow e−ηxt+∆ for some η > 0.

This claim delivers lower payoffs the higher is the cross sectional dispersion xt+∆. Letting

E (Rt→t+∆) denote the expected return of such a claim, and using the closed-form expres-

sions for the moment-generating function of a gamma-distributed variable gives after some

calculations:

log

(
E(Rt→t+∆)

Rft→t+∆

)
∆

=
1

∆
log

E
(
e
γ(γ+1)

2
xt+∆

)
E (e−ηxt+∆)

E
(
e(

γ(γ+1)
2
−η)xt+∆

)
 = −α log

(
β − γ(γ+1)

2

β − γ(γ+1)
2

+ η

β + η

β

)
> 0.

(43)

There are several observations about (43). First, the expected excess return of the pos-
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tulated claim (per unit of time ∆) is constant and does not depend on ∆. This is despite

the fact that aggregate consumption growth is constant, which would seemingly imply (by

the Grossman and Shiller (1982) argument) that the risk premium should approach zero as

∆ shrinks to zero.

The reason why Grossman and Shiller (1982) does not apply is that the individual con-

sumption process si,t is not a diffusion in this example, but to a process with discontinuous

sample paths (jumps). Intuitively, this happens because Λt is random and discontinuous,

which makes the paths of BΛt discontinuous, despite the fact that Bt itself is continuous in

t. By contrast, for the Grossman and Shiller (1982) approximation to become exact as ∆

becomes small, one has to assume that the underlying data-generating process for individual

consumption growth is a diffusion, so as to apply Ito’s Lemma and make equation (2) hold

as an exact equation.

The above discussion shows that the Constantinides and Duffie (1996) argument does

not depend on whether the model is set up in discrete or continuous time, but rather on

whether the model is set up to make higher order moments of consumption growth relevant.

In a diffusion setup, any non-linear function (such as the marginal utility of consumption)

behaves like a linear function in the continuous time limit. Accordingly, the covariance of an

individual’s marginal utility of consumption with an excess return becomes proportional to

the covariance of the individual’s consumption growth with the same return. But when in-

dividual consumption growth doesn’t have continuous sample paths, then one cannot simply

approximate the marginal utility of consumption with a linear function, since consumption

can experience large moves even as the time interval shrinks toward zero. In these situations,

the covariance of higher moments of individual consumption growth with an asset’s return

become relevant, reflecting the fears of risk-averse agents that if re-distribution abruptly

intensifies (a high jump of Λt+∆ − Λt) they could find themselves among the losers of this

redistribution at the same time as when the asset’s returns are bad.
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3.1.1 Literature review

While most of the discussion in this section focused on Constantinides and Duffie (1996),

there are numerous papers in the literature that have explored the interactions of market

incompleteness and asset pricing. A precursor to Constantinides and Duffie (1996) is Mankiw

(1986). Krueger and Lustig (2010) discuss an irrelevance result in a discrete time model

utilizing a different argument than Grossman and Shiller (1982), which applies to discrete

time models. Lucas (1994), Heaton and Lucas (1996), Telmer (1993), Luttmer (1996),

Angeletos and Calvet (2006), Kogan et al. (2019), Gârleanu and Panageas (2018) all discuss

alternative setups of imperfect risk sharing with asset pricing implications. Storesletten et al.

(2004), Cogley (2002), Brav et al. (2002), Kocherlakota and Pistaferri (2009) are empirical

studies of the implications of incomplete risk sharing for asset pricing.

Several papers in the literature study models of investors facing liquidity or collateral

constraints. In this literature, the investor’s indebtedness is constrained by her ability to

pledge some collateral whenever she wishes to borrow. The most well studied version of such

models considers “liquidity” constraints, which allow an investor to borrow, but only against

the value of the liquid assets in her portfolio. Importantly, borrowing against future labor

income is not allowed.

The difference between discrete-time and continuous-time trading manifests itself in mod-

els of liquidity (or collateral) constraints as well, especially as it pertains to the implications

of such models for risk premia. Indicatively, Alvarez and Jermann (2000) find that solvency

constraints matter for the market price of risk in discrete time, while Detemple and Serrat

(2003) prove that the related concept of liquidity constraints don’t affect the conditional

aggregate consumption CAPM in the continuous-time limit, implying that the quantitative

results of discrete time models will tend to disappear as the trading interval shrinks.

One way to understand the different conclusions of continuous-time and discrete-time se-

tups is to view them through the lens of the “Lagrange-Multiplier approach” of and Marcet

and Marimon (1998). Both He and Pages (1993) and Marcet and Marimon (1998) observe

that models with liquidity constraints (or collateral constraints more generally) lead to an
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optimal individual consumption process that is the product of two terms: a) the consump-

tion process that would result in a frictionless market and b) a non-decreasing, continuous

process that is related to the cumulative sum of the Lagrange multipliers on the liquidity

constraint. Because this second process is non-decreasing, it has bounded variation and zero

quadratic variation in continuous time. The implication of zero quadratic variation is that

the fluctuations caused by this process cannot command a risk price. Detemple and Serrat

(2003) use this insight in general equilibrium to prove the absence of risk premia associated

with liquidity constraints.

The economic intuition is that if asset price processes and consumption processes follow

continuous-time diffusions, the continuity of the paths allows investors to essentially know

(at least over the next small time interval) whether the liquidity constraint is likely to bind

or not. As a result, there is no genuine “shock” or “risk” associated with liquidity constraints

in the continuous time limit. This is unlike the setup of section 3.1, where the discontinuity

of Λt faces the investor with “shocks” even over a small time-interval.

3.2 Lack of inter-cohort risk sharing

In the Constantinides and Duffie (1996) model the lack of risk sharing manifests itself within

existing households. This section presents an alternative way to make heterogeneity matter,

by re-introducing births and deaths and assuming that income risk is imperfectly shared

across cohorts. The goal of the section is to show an equivalence between models featuring

imperfect inter- and intra-cohort risk sharing.

Specifically, consider the following discrete time variant of the perpetual-youth, endow-

ment economy of section 2.1, with the additional assumption that the depreciation (and

arrival) rate of trees is random. Specifically, the dividend process for trees of cohort s, Dt,s,

obeys the dynamics

Dt+∆,s

Dt,s

=

(
Dt+∆

Dt

)
e−δt+∆ ,
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where Dt =
∑

s≤tDt,s is the aggregate dividend process at time t and δt+∆ is a non-negative,

random, and i.i.d. shock across time. The initial dividends of the trees born at time t are

given by

Dt+∆,t+∆ =
(
1− e−δt+∆

)
Dt+∆. (44)

As in section 2.1, assume that the newly-born obtain the new trees. To highlight the differ-

ences from the results of that section, all agents have the same expected utility preferences

and maximize (39).

The Euler equation for in this model is given by

Ete
−ρ∆

(
ct+∆,s

ct,s

)−γ
Rt→t+∆ = 1, (45)

for the return of any asset. Note that the consumption growth entering equation (45) is the

consumption growth
ct+∆,s

ct,s
of a fixed cohort s, not aggregate consumption growth, Ct+∆

Ct
. To

relate the two notions of consumption growth, conjecture that
ct+∆,s

ct,s
is independent of s, so

that
ct+∆,s

ct,s
= ct+∆

ct
. With this assumption, the consumption growth of a fixed cohort is given

by19

ct+∆,s

ct,s
=
ct+∆

ct
=

(
Ct+∆

Ct
− πct+∆,t+∆

Ct

)
eπ∆. (46)

The consumption growth of any fixed cohort is comprised of two multiplicative terms. The

first term is equal to aggregate consumption, but reduced by the consumption fraction ac-

cruing to the newly-born agents. This term captures the idea that a fraction of aggregate

consumption every period is the property of the arriving cohort and should be subtracted

19

Ct+∆ =
∑

s≤t+∆

(
πe−π(t+∆−s)ct+∆,s

)
=

∑
s<t+∆

(
πe−π(t+∆−s)ct,s

ct+∆,s

ct,s

)
+ πct+∆,t+∆

=

(
ct+∆,s

ct,s

)
e−π∆

∑
s≤t

(
πe−π(t−s)ct,s

)
+ πct+∆,t+∆ =

(
ct+∆,s

ct,s

)
e−π∆Ct + πct+∆,t+∆
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from aggregate consumption growth in order to arrive at the consumption growth accruing

to cohorts born before t + ∆. The second term
(
eπ∆ > 1

)
is due to deaths. Since only a

fraction e−π∆ of agents survives from t to t+ ∆, per-capita consumption growth is increased

by eπ∆.

Determining
ct+∆,t+∆

Ct
is particularly easy in this example because all agents have identical

preferences. One can show that applying the budget constraint at birth and using equation

(64) in the appendix leads to

π
ct+∆,t+∆

Ct
=
(
1− e−δt+∆

) Ct+∆

Ct
. (47)

Combining (46) and (47) gives

ct+∆

ct
=
Ct+∆

Ct
e−δt+∆+π

which implies that the stochastic discount factor is

Ht+∆

Ht

= e−(ρ+γπ)∆

(
Ct+∆

Ct

)−γ
eγδt+∆ . (48)

The stochastic discount factor of equation (48) is proportional to the SDF of the previous

section (equation 41), as long as the increments of the process Λt are chosen as

Λt+∆ − Λt =
2

γ + 1
δt+∆.

The remarkable similarity in the SDFs of the two models is not just a coincidence. There

are economic reasons for the correspondence. With lack of inter-generational risk sharing the

existing cohorts of agents fear that a large value of δt+∆ will lead to a large redistribution of

dividends from existing trees toward the new vintages of trees. This redistribution benefits

the (not yet born) entrepreneurs who introduce the new trees; however it hurts the owners

of the existing trees, who understand that a large value of δt+∆ shifts dividend income away

from them (“displacement risk”). To achieve some risk mitigation, the owners of the existing
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firms would have to trade with the not-yet born cohorts, who are also exposed to fluctuations

in δt+∆ but in the opposite direction (the arriving cohorts benefit from large values of δt+∆).

But since trade with the unborn is impossible, the risk δt+∆ is not diversifiable for the existing

cohort and hence becomes priced in the SDF.

There is a close analogy with models featuring lack of intra-cohort risk sharing, such as

Constantinides and Duffie (1996). In such models a large increment in Λt+∆ causes a large

dispersion in income and consumption growth. While this redistribution of the endowment

could turn out to be either good or bad for a given agent, risk aversion makes them more

concerned with the possibility of being amongst the losers of this redistribution rather than

the winners. By overweighting the possibility of losing, their decisions resemble those of

agents in models with imperfect inter-cohort risk sharing, who are certain that a large value

of δt+∆ is associated with a higher displacement for them. As a result, in both setups agents

want a risk premium for assets that perform badly in states of the world where there is more

re-distribution (either within or across cohorts).

These re-distributional fears may offer a potential explanation for the emergence of risk

premia that seem somewhat unrelated to aggregate outcomes, but may affect the distribution

of profits across different firms. For instance, increased “creative destruction”, which redis-

tributes profits both within existing and across existing and arriving firms can lead to the

emergence of a “value premium”. Firms that are more exposed to displacement by entrants

(“value firms”) must deliver a risk premium compared to firms that are less vulnerable to

discplacement (“growth firms”).20

3.2.1 Literature Review

The discussion of lack of inter-generational risk sharing is based on Gârleanu et al. (2012).

Gârleanu and Panageas (2018) shows the connections between lack- of inter- and intra- cohort

risk sharing in a framework where existing investors cannot share the benefits of innovation

neither within, nor across cohorts. Kogan et al. (2019) also present a model where innovation

20See, Gârleanu et al. (2012) and Kogan et al. (2019), Gârleanu and Panageas (2018).
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has redistribution implications across and within investor cohorts.

A recent set of papers (Gomez (2019), Zheng (2019)) investigate the importance of dis-

placement effects for the dynamics of top wealth shares. The key issue in these papers is to

disentangle the dynamics of top wealth shares into an intensive margin (wealth growth of

the existing rich) and a displacement effect (entrants who displace the existing rich from the

top wealth shares).

Indicative examples of papers that use overlapping generations models for asset pricing

are Constantinides et al. (2002), Abel (2003), Geanakoplos et al. (2004), Krueger and Kubler

(2006), Storesletten et al. (2007), Campbell and Nosbusch (2007), Gomes and Michaelides

(2008), Maurer (2017), Farmer (2018). A large fraction of these papers employ discrete-time

setups, with households choosing portfolios and consumption only at a few discrete points

in their life-time (sometimes only once, or twice over the course of their lives). This makes

it hard for many of these models to deliver predictions for returns as the trading frequency

shortens, which can be a source of concern in light of the Grossman and Shiller (1982) result.

For this reason, in this survey I adopted a perpetual youth framework, which allows trading

to be modeled over any frequency without jeopardizing tractability.21

3.3 Recursive preferences

The increased popularity of long run risk models has led several researchers in recent years

to propose alternative mechanisms in order to make heterogeneity matter, by exploiting

recursive preferences. With recursive preferences, the Grossman and Shiller (1982) argument

ceases to apply even if the underlying asset price and individual consumption processes are all

diffusions in the continuous time limit. The reason is that equation (1) no longer holds. The

stochastic discount factor “prices” not only the immediate impact of consumption shocks,

but requires compensation also for consumption risks that affect consumption over the long

run.

21It should be noted, however, that for some papers infrequent trading is a central feature that they
intentionally employ, highlight, and analyze. See, e.g., Abel et al. (2007), Abel et al. (2013), Chien et al.
(2012).
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Of course, by themselves, recursive preferences might make no difference. For instance,

if individual consumption growth is i.i.d. (as in the models of sections 3.1 and 3.2), then

recursive preferences make no difference. However, if the interaction of income heterogeneity

and imperfect risk sharing leads to persistent components in the drift or volatility of indi-

vidual consumption growth, then heterogeneity does matter even if all underlying processes

are diffusions.

To illustrate these ideas, I revisit the baseline continuous-time setup of section 2.1 , but

assuming that a) all investors have identical, recursive preferences with an intertemporal

elasticity of substitution equal to (1− α)−1 and a risk aversion γ > 1 and b) the depreciation

rate is stochastic, so that the dividend process of a tree born at time s is

Dt,s =
(
δse
−
∫ t
s δudu

)
Dt, (49)

where Dt is the aggregate dividend. (By construction
∫ t
−∞Dt,sds = Dt for any positive de-

preciation process δt). Assume furthermore that δt follow some positive, Markov, stationary

diffusion processes

dδt = µδ (δt) dt+ σδ (δt) dBt.

for some functions µδ (δt) , σδ (δt) . To sharpen results, and draw a clear distinction from

Grossman and Shiller (1982) assume that the aggregate dividend is deterministic

Ḋt

Dt

= φ, (50)

i.e., there is no short run risk in this economy, so that the aggregate consumption CAPM

would imply zero risk premia.

To analyze this model, note first that aggregate consumption growth and consumption

growth for any fixed cohort s are related by22

22To arrive at this equation, time differentiate aggregate consumption Ct =
∫ t
−∞ πe−π(t−s)ct,sds and use

the fact that
ċt,s
ct,s

is independent of s.
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Figure 2: An indicative, model-implied path of the price-earnings ratio (left scale) and the
cross- sectional standard deviation of log consumption (right scale) in the Gârleanu and
Panageas (2019) model.

ċt,s
ct,s

=
Ċt
Ct
− πct,t

Ct
+ π. (51)

Equation (51) is the continuous time analog of equation (46). It states that the consumption

growth of a fixed cohort is equal to aggregate growth minus the fraction of consumption

accruing to the newly borns
(
π ct,t
Ct

)
plus the death rate π.

Using the intertemporal budget constraint at birth and equation (64) in the appendix

implies that gt = pt and therefore

π
ct,t
Ct

= δt, (52)
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Substituting (52) into (51) gives

ċt,s
ct,s

= φ+ π − δt. (53)

This implies that the consumption growth of any fixed cohort has a stochastic drift (driven

by the persistent component δt), even though aggregate consumption is deterministic. To

determine the equilibrium risk premium, apply Ito’s Lemma to both sides of equation (36)

and match the diffusion components to arrive at

κt = −α + γ − 1

α

g′ (δt)

g (δt)
σδ (δt) , (54)

where gt = g (δt) is the wealth-to-consumption ratio defined in (19). Equation (54) is the

Sharpe ratio that one would obtain in a Bansal and Yaron (2004) model without any short

run risks. Indeed, if the IES is above one (α > 0), an increase in the depreciation rate

δt lowers expected consumption growth of any fixed cohort s, and hence the wealth-to-

consumption ratio declines g′ (δt) < 0. If investors have preference for early resolution of

uncertainty α + γ > 1, this means that negative news for the drift rate of existing agents’

consumption (and the dividends of existing firms) going forward, require risk compensation.

The takeaway from the above discussion is that imperfect risk sharing across cohorts

leads to a model that resembles a representative-agent long run risks model. The major

difference is that long-run risk in the Bansal and Yaron (2004) model is driven by persistent

and random components in aggregate consumption growth, whereas here long-run risk is

driven by persistent, random components in the consumption growth of a fixed cohort.

Positive innovations to δt are negative news for the long run consumption growth of existing

cohorts. However, δt is a purely re-distributional risk between existing and arriving cohorts.

Aggregate consumption growth is constant.
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3.3.1 Literature Review

The literature that uses heterogeneous-agents models together with recursive preferences

is recent and includes Schmidt (2015), Constantinides and Ghosh (2017), (who utilize re-

cursive preferences in a context of imperfect intra-cohort risk sharing) and Gârleanu and

Panageas (2019) (which utilizes recursive preferences in a context of imperfect inter-cohort

risk sharing).

3.4 Summary and Empirical Implications

Models of imperfect risk sharing are qualitatively different from models that feature hetero-

geneous preferences, beliefs, or access to markets. In models of imperfect risk sharing all

agents have the same preferences, beliefs and access the same markets. However, either some

key markets are missing (i.e., the markets for trading idiosyncratic income shocks), or some

key market participants are missing (the unborn who cannot trade before their birth).

In models of imperfect risk sharing the aggregate consumption CAPM fails both con-

ditionally and unconditionally. In these types of models it is possible to have positive risk

premia even if aggregate consumption is deterministic.

The unifying mechanism behind all the models in section 3 is to drive a wedge between

individual and aggregate consumption growth that is priced. The model of section 3.1

achieves this by exploiting higher-order movements in consumption growth, the model of

section 3.2 achieves this by creating a random redistribution between young and old that

resembles a jump-risk from the perspective of the old, while the model of section 3.3 makes

the displacement activity “smoother” over time and introduces recursive preferences to make

the representative agent unsure about its long term impact.

Ultimately, whether these models are plausible candidates to resolve asset pricing puzzles

boils down to whether these models make empirically plausible predictions about the joint

movement of inequality and asset returns.

Models that utilize expected utilities require a negative, short-run correlation between

innovations to the cross-sectional consumption dispersion and asset returns. Especially as
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Figure 3: Top left plot: Expected real interest rate at the beginning of each year and
“marginal-agent” consumption growth over the year. (For the computation of the expected
real interest rate and “marginal-agent” consumption growth, see Gârleanu and Panageas
(2019)). Top right plot: 10-year moving averages yearly marginal agent consumption growth
and 10-year moving average of expected real interest rate. Bottom left and right plots:
Identical to the top plots, except that marginal-agent consumption growth is replaced with
aggregate consumption growth per capita.

one shrinks the time-interval to zero, this becomes more evident: for heterogeneity to matter,

there have to be joint discontinuous jumps in both cross-sectional variance and risky asset

returns.

One obvious response is that people don’t trade very frequently in reality. Still, the issue

remains that the asset return movements and shocks to inequality have to coincide over the

course of a decision interval.

The model of recursive preferences in section 3.3 is more forgiving on this issue. Even with

the first warning signs that she might be losing from redistribution, an investor wants risk

compensation for assets with bad payoffs if redistributive activity intensifies unfavorably. The

empirical implication is that innovations to inequality and asset returns may look completely
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unrelated in the short run. Indeed in the model of section 3.3 , the cross-sectional variance of

consumption follows a locally deterministic (time-differentiable) process, while asset prices

follow a diffusion with positive volatility. This means that over short time intervals, there

is no correlation between the two series. Figure 2 provides an illustration of this fact. The

figure is from Gârleanu and Panageas (2019), which analyzes a model with similar properties

to the one in section 3.3 .

Before concluding this section, it is worth noting that models of imperfect risk sharing (be

it imperfect inter- or intra-cohort) have interesting implications not just for risk premiums

but also for real interest rates. An implication of equation (41) is that a location shift of

the increments Λt+1 − Λt to the right lowers the interest rate. The reason is that increased

uncertainty about individual-level consumption growth boosts precautionary savings.

The same tendency (namely to obtain low real rates) is also a typical feature of overlap-

ping generations models. As Gârleanu and Panageas (2015) show in a model that features

both capital and labor income, the interest rate in an overlapping generations economy is

generally lower than in an economy with infinitely lived investors, whenever the life cycle

income profile declines with age. The reason is that agents in an overlapping generations

economy cannot count on the income of their children to smooth their consumption and need

to save more for the years when their income drops.

But leaving the level of interest rates aside, overlapping generations economies have

different implications for the consumption growth d log(ct,s) of a fixed cohort versus aggregate

consumption growth d log(Ct), with only the former being relevant for asset pricing. Gârleanu

and Panageas (2019) propose an econometric technique to infer d log(ct,s), (“marginal agent

consumption growth”) utilizing a time-, age-, and cohort- decomposition of log consumption

in cross sectional data.

According to the Euler equation, the drift of d log(ct,s) should reflect the movements of

the real interest rate. Figure 3 shows that the inferred d log(ct,s) co-moves with the real

interest rate better than aggregate consumption growth (per capita). Interestingly, marginal

agent consumption growth starts declining steadily at the onset of the secular decline of the
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real interest rate, which started in the mid-eighties.

I conclude this section with a digression on the co-movement between dividends and

consumption.

3.4.1 Digression: The co-movement between the dividends of the market port-

folio and consumption

Throughout this survey, the focus has been on the properties of the stochastic discount factor.

For an equity premium to arise one has to also establish a link between the stochastic discount

factor and the dividends of the market portfolio.

For instance in the models of sections 3.2 and 3.3, aggregate consumption is deterministic

as are aggregate dividends. But then how can there be an equity premium?23

The short answer to this question is that even though aggregate dividends are determinis-

tic, the dividends of the market portfolio are stochastic and not co-integrated with aggregate

dividends. There is a subtle distinction between the dividends of the market portfolio and

aggregate dividends that pertains not just to this survey, but all asset pricing models.

In the real world the number of companies that are included in the market portfolio

is constantly expanding. While obvious, it is worth stressing that the market value of

all companies in existence at time t equals the present value of the dividends that these

companies (and these companies alone) will produce from t onwards. This is not the same

as the present value of the aggregate dividends from t onwards, since some of the dividends in

the future will be produced by future companies, which are not part of the market portfolio

today.

This idea is reflected in the definition of the price-to-dividend ratio in equation (19),

namely

pt = Et

∫ ∞
t

e−δ(u−t)
(
Hu

Ht

)(
Du,t

Dt,t

)
du.

23Because the stock market is a long-lived claim, it could be that there is an equity premium that is a
pure term premium. So the right question is: How can there be an equity premium above and beyond any
term premium?
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This definition says that the dividend growth in the definition of the price-to-dividend ratio

is the dividend growth of a fixed firm, not aggregate dividend growth Du
Dt
. The two notions

of dividend growth are related as follows: Using the definition of aggregate dividend growth

Dt =
∫ t
−∞Dt,sds, implies the decomposition

Ḋt,s

Dt,s︸︷︷︸
Dividend growth of existing firms

=
Ḋt

Dt︸︷︷︸
Aggregate Dividend Growth

− Dt,t

Dt︸︷︷︸
Dividends of the new entrants

. (55)

The dividend-growth decomposition (55) is just an accounting identity that applies to any

model with an expanding set of firms. A very similar decomposition applies to the capital

gains of the market portfolio, since the ratio of prices to dividends is independent of s.

Indeed, letting Pt,s denote the market value of firms born into cohort s, and Pt =
∫ t
−∞ Pt,sds

denote the market capitalization of these firms gives

dPt,s
Pt,s︸ ︷︷ ︸

Capital Gains of existing firms

=
dPt
Pt︸︷︷︸

Growth in market capitalization

− Pt,t
Pt
dt︸ ︷︷ ︸

Market Value of new entrants

. (56)

By the definition of a self-financing strategy, the return on any portfolio with weights

wt,sds summing to one is defined as
∫ t
−∞wt,sdRt,s, where dRt,s = dPt,s

Pt,s
+ Dt,s

Pt,s
dt. Using the

market weights wt,s = Pt,s
Pt
ds implies that

dRt =

∫ t

−∞
wt,sdRt,s =

dPt
Pt

+
Dt

Pt
dt− Pt,t

Pt
dt. (57)

An equivalent way to arrive at equation (57) is to define a “share” or “divisor” process

St = e
∫ t Ps,s

Ps
ds and treat the entire stock market as a single company with value equal to the

market capitalization Pt, but a time-varying number of shares St. The return “per-share”

of the market portfolio is then defined as the change in the price of each share plus the
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aggregate dividends per share

dRt =
d
(
Pt
St

)
+ Dt

St
dt

Pt
St

. (58)

Mathematically, (58) coincides with (57). Ecomomically, (58) shows that the dividends that

are pertinent for the computation of the market portfolio are the dividends per share Dt
St
.

An equivalent way of thinking about the dividends of the market portfolio in a world

where the mass of productive units (“trees”) is expanding, is to treat the stock market as

consisting of a “representative” firm whose yearly profits are equal to aggregate profits Dt,

but the firm invests Pt,t to purchase the newly arriving productive entities. Accordingly, the

payoff to investors is equal to profits minus investment (Dt − Pt,t ) and the firm’s market

value can be expressed as

Pt = Et

{∫ ∞
t

Hu

Ht

(Du − Pu,u) du
}

= Et

∫ ∞
t

Hu

Ht

(
St
Su

)
Dudu (59)

where the last equation follows from the definition of St.
24

Figure 4 plots the relation between the value of an index Pt
St

and aggregate market capital-

ization, while Figure 5 gives a visual depiction of the relation between aggregate dividends

24To derive (59) multiply both sides by Ht and add −
∫ t

0
HuPu,udu+

∫ t
0
HuDudu to obtain

PtHt −
∫ t

0

HuPu,udu+

∫ t

0

HuDudu = Et

∫ ∞
0

HuDudu.

The right hand side of the above equation is a martingale. Using the definition of St = e
∫ t Ps,s

Ps
ds, one can

write the above equation in differential form:

d (PtHt)−HtPt

(
dSt
St

)
= −HtDt + dMt,

where dMt is a martingale increment. Noting that d (PtHt) − HtPt
dSt

St
= d

(
PtHt

St

)
× St implies that the

above equation can be written as

d

(
PtHt

St

)
= −HtDt

St
+
dMt

St
.

Integrating both sides and taking expectations (noting that dMt is a martingale increment) gives (59).
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Figure 4: Left plot: Logarithm of GDP, logarithm of the CRSP market index (obtained
by cumulating ex-dividend CRSP gross returns), log market capitalization, and log market
capitalization plus the cumulative sum of the logarithm of 1+addition rate to the market.
The addition rate is defined as the market value of additions to the index (valued at the end
of each year) divided by the total value of the index at the end of each year. All series are
deflated by subtracting the logarithm of the CPI. Right plot: Same as left plot, except that
the market index is the S&P 500.

Dt and the dividends per share of the market portfolio Dt
St

. These figures use the time

series of price per share and dividends per share that are used in index construction. In

the data, the number of shares of the index gets adjusted for a multitude of reasons not

captured here (typically corporate payouts or issuances of existing firms). However, as the

figure shows over long horizons, the dominant force in accounting for the discepancy between

the (log) price-per-share of an index and (log) aggregate stock market capitalization is the

cumulative sum of the addition rate Pt,t
Pt
. The same applies to the discrepancy between log

dividends-per-share and log aggregate dividends.

To return to the implications of these accounting identities for the model of section 3.3 , a

positive shock to the depreciation rate δt acts as a permanent shock to both the consumption

of a fixed cohort ct,s and the dividends of existing firmsDt,s. The investor realizes that because

δt is persistent, this shock has a permanent effect on her long run consumption. Therefore

she demands compensation for shocks to δt. The value of the market portfolio, being a long-
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Figure 5: Real S&P 500 dividends per share, aggregate consumption and aggregate dividends
in logarithms. The line “Index Dividends + New Cap” is equal to real log-dividends per
share plus the progressive sum of the logarithm of the cumulative change in the number of
shares of the index that is due to the introduction of new companies.

term claim to dividends-per-share, also drops in response to a shock to δt, and therefore an

equity premium emerges.

4 Further applications: Equilibrium Arbitrage, het-

erogeneous stochastic discount factors

4.1 Equilibrium arbitrage

In models of market incompleteness, either a market, or some key market participants are

missing. However, typically one can price all assets at time t by considering the consumption

growth of a fixed agent at time t.

One possibility, though, is that no agent participates in all asset markets. In these

situations, the existence of a stochastic discount factor is not guaranteed, idiosyncratic risk
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Figure 6: A sample path of the dividend process postulated in equation (60).

may be priced, and there could be an equilibrium arbitrage. Models of this sort become

especially interesting if one introduces a participation decision, so as to study the incentives

of agents to take advantage of the arbitrages, thus eliminating them.

To illustrate the issues that arise in models of endogenous participation and limited

equilibrium arbitrage, this section utilizes the structure proposed in Gârleanu et al. (2015).

The model is a one-period model, whereby investors are aligned on a circle with circumference

normalized to one. An investor in location i ∈ [0, 1) is endowed with a tree that pays a

random, location-specific dividend. The distribution of this dividend is constructed to ensure

that the distribution of the dividend is location-invariant, and that all risk is idiosyncratic.

Specifically, letting Bi denote a brownian motion for i ∈ [0, 1) with B0 = 0, define

Zi ≡ Bi − iB1.

The process Zi is called a “Brownian Bridge”’. While random for all i ∈ (0, 1), the process
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Zi satisfies Z0 = 0, Z1 = 0, i.e., the process starts and ends at zero. Using this definition of

Zi, the time-1 dividend in location i is

Di = 1 + Zi −
∫ 1

0

Zidi. (60)

By construction,
∫ 1

0
Di = 1, i.e., all location-specific risk is diversifiable. Moreover, the

distribution of Di is normal, independent of i, and the correlation between i and j is a

declining function of the distance between i and j on the circle.25 Figure 6 provides an

illustration of this construction by plotting a sample path of of Di (in polar coordinates).

Given the normality of dividends and in order to obtain closed form solutions, investors have

constant absolute risk aversion utilities (CARA).

In this framework investors have a clear incentive to diversify. In the absence of frictions,

each investor in location i would sell her own tree, and purchase a portfolio of all other trees,

which would be riskless. To make matters interesting, participation in some market j 6= i is

an increasing function of the distance between i and j. Gârleanu et al. (2015) assumes that

participation costs start approaching infinity as an investor attempts to invest in all locations

on the circle, so that in equilibrium no investor participates in all markets. (The only market

where all investors participate is the zero-net-supply bond market.) Because no investor can

fully diversify the location-specific asset risk, that risk becomes priced. This leads to an

(unexploitable) arbitrage opportunity: the payoffs of an equally weighted portfolio of all

risky assets (which has a certain payoff of one) costs less than a zero coupon bond with unit

face value

Gârleanu et al. (2015) shows that in this economy an agent’s joint participation-investment

allocation decision is generally non-concave. The non-concavity of the optimization prob-

lem stems from the complementarity between leverage and participation. As an investor

contemplates leveraging her portfolio, she has an incentive to also increase her participation

in more markets in order to further diversify risk. Because idiosyncratic risk is priced, the

lower variance of the portfolio translates into a higher Sharpe ratio, which in turn further

25See Gârleanu et al. (2015) for a proof.
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increases the incentive to leverage. In equilibrium, the investor is faced with two maxima,

one associated with a small participation arc and a positive allocation to bonds, while the

other involving a large participation arc and a leveraged portfolio.

As in Aumann (1966), markets clear by determining the fractions of agents that choose

the first and the second maximum. Specifically, a group of investors participate in a small

arc and choose a positive allocation to bonds, while another mass of agents in the same

location choose to participate in a large arc and borrow. The first group of investors accept

a lower Sharpe ratio and pay less fees, while the latter group of investors obtain a higher

Sharpe ratio and pay more fees for it.

Unlike the other models presented in this survey, in Gârleanu et al. (2015) all investors in

a location are ex-ante identical . Yet, they are heterogeneous ex-post, since the interaction

of participation and leverage decisions makes an investor’s optimization non-convex, leading

ex-ante identical investors to make different portfolio and leverage decisions. Specifically, the

endogeneity of the participation (and leverage) decision separates investors into high-Sharpe

ratio, high-leverage, high-participation strategies and low-Sharpe ratio, low participation,

positive-bond-holding strategies.

Models of equilibrium arbitrages are useful for linking portfolio flows into high- and

low- Sharpe ratio strategies with equilibrium risk premiums. An additional aspect of these

models is that they can lead to multiple, Pareto ranked equilibrium if one imposes leverage

constraints.

4.1.1 Literature Review

The literature on constrained arbitrage is voluminous and any attempt to summarize it

within the confines of this survey would not do it justice. Some indicative papers (chosen to

exemplify the varied approaches taken in this literature) include Basak and Croitoru (2000),

Gromb and Vayanos (2018), Gârleanu and Pedersen (2011), Kondor (2009), Davilla and

Korinek (2017), Liu and Longstaff (2003) among many others.

To highlight some recent contributions, Hebert (2019), Davilla and Parliatore (2019) pro-

59



pose frameworks to measure the welfare costs of equilibrium arbitrages. Zentefis (2019b),

Zentefis (2019a), Khorrami (2019b) utilize models that feature a tradeoff between participa-

tion costs and diversification.

4.2 Asymmetric information and heterogeneous stochastic dis-

count factors

The purpose of this section is not to survey the literature on asymmetric information, which

is voluminous and outside the scope of this survey. Mostly, for reasons of completeness, this

section simply mentions a high-level observation contained in Grossman and Shiller (1982),

when the source of heterogeneity among investors is asymmetric information.

Specifically, the Grossman and Shiller (1982) result applies to cases where the econo-

metrician has a coarser information set than the agents. Indeed, the law of the iterated

expectation implies that

E
(I)
t

[
E

(i)
t

{
u′
(
cit+δ

) (
Rt+δ −Rf

t+δ

)}]
= E

(I)
t

[
u′
(
cit+δ

) (
Rt+δ −Rf

t+δ

)]
= 0

where superscript I in the expectations operator denotes the econometrician’s information

set and i denotes the investor’s information set. Accordingly, it would seem that if agents

are better informed than the econometrician, then different information sets do not affect

the validity of the Grossman and Shiller (1982) result.

One requirement, however, for the this argument to hold is that all investors choose

interior portfolios in all assets. If assets cannot be shorted, then some investors may choose

zero allocations to individual assets that their information set identifies as problematic, thus

leading to endogenous non-participation. When the information asymmetry interacts with

the participation decision, then the Grossman and Shiller (1982) fails. Gârleanu et al. (2019)

provides a model of such a failure of Grossman and Shiller (1982) akin to the failure of the

Euler equation that would obtain in an economy where agents face heterogeneous returns

when investing in the same asset class. As a result, information heterogeneity matters for
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equilibrium prices and the Grossman and Shiller (1982) fails.26

26Besides pricing implications, models of asymmetric information have natural applications to performance
evaluation. Gârleanu et al. (2019) show that some classical results on performance evaluation cease to hold
in a model where information asymmetries and portfolio constraints interact. For instance, the classical
results of Mayers and Rice (1979) and Dybvig and Ross (1985), who show that the return of an informed
investor regressed against the return of any benchmark portfolio (efficient or inefficient) has positive alpha
in the presence of pure “selection” ability, ceases to hold when portfolio decisions are not interior.

61



A Appendix

This appendix derives the differential equations characterizing git and pt.

Using (8) inside (19) implies

git = Et

∫ ∞
t

e
−
(
π+ ρi

γi

)
(u−t)

(
Hu

Ht

)1− 1

γi

du. (61)

Equation (61) shows that git is essentially a present value relation. Using some basic argu-

ments, this present value relationship satisfies an ordinary differential equation. In order to

derive this ordinary differential equation for git, start by multiplying both sides of (61) by

e
−
(
π+ ρi

γi

)
t
H

1− 1

γi

t and add
∫ t
s
e
−
(
π+ ρi

γi

)
u

(Hu)
1− 1

γi du to both sides, which results in

e
−
(
π+ ρi

γi

)
t
H

1− 1

γi

t git +

∫ t

s

e
−
(
π+ ρi

γi

)
u

(Hu)
1− 1

γi du = Et

∫ ∞
s

e
−
(
π+ ρi

γi

)
u

(Hu)
1− 1

γi du. (62)

Observe that the right hand side of equation (62) is a conditional expectation and hence a

martingale. This means that the left hand side must be a martingale as well.

To proceed, conjecture that the equilibrium is Markovian in xAt , which means that

rt, κt, µ
i
x, σ

i
x, g

i
t and pt are exclusively functions of xAt . (This conjecture is verified at the

end of the proof).

This conjecture implies that
cit,t
Dt

= δ
π
pt
git

is a function of xAt . The implication is that rt and

µix can be written exclusively as functions of xAt , (and so can κt and σix) since xBt = 1− xAt .
Applying Ito’s Lemma to compute the drift of the left-hand side of (62) and setting the

resulting expression to zero leads after some simplifications to the following two differential

equations for i = A,B :

σ2
x

(
xAt
)

2

(
gi
)′′

+

(
µAx
(
xAt
)
−
(

1− 1

γi

)
κ
(
xAt
)
× σx

(
xAt
)) (

gi
)′−{(π +

ρi

γi

)
+

(
1− 1

γi

)[
r
(
xAt
)

+
1

γi
κ2
(
xAt
)

2

]}
gi+1 = 0.

(63)

The final step is to obtain an expression for pt, which enters the pair of differential equations

(63) through the dependence of r
(
xAt
)
, µAx

(
xAt
)

on
cit,t
Dt

= δ
π
pt
git
. Asset market clearing implies

62



that aggregate wealth of the two agent groups needs to equal the value of the stock market,

that is

WA
t +WB

t = Pt,

where W i
t is each group’s total wealth and Pt is the value of the stock market. Moreover,

each group’s budget constraint implies that W i
t = git

(
xAt
)
xitCt. Accordingly

∑
i∈{A,B}

xitg
i
t

(
xAt
)

=
Pt
Ct

= p
(
xAt
)
. (64)

Substituting this expression for p
(
xAt
)

into the expressions for r (xt) , µ
i
x (xt) implies that

equations (63) are fully specified ODEs, i.e., can be written in the form F
(
xAt , g

i
(
xAt
)
, g′
(
xAt
)
, g′′
(
xAt
))

= 0. Hence if gi
(
xAt
)
, i ∈ {A,B} solves this pair of differential equations, then the conjecture

that there exists a Markovian equilibrium (i.e., an equilibrium where rt, κt, µ
i
x, σ

i
x, g

i
t and pt

are exclusively functions of xAt ) is confirmed.
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