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ABSTRACT

The previous expansion of EdTech as a substitute for traditional learning around the world, the 
recent full-scale substitution due to COVID-19, and potential future shifts to blended approaches 
suggest that it is imperative to understand input substitutability between in-person and online 
learning. We explore input substitutability in education by employing a novel randomized 
controlled trial that varies dosage of computer-assisted learning (CAL) as a substitute for 
traditional learning through homework. Moving from zero to a low level of CAL, we find 
positive substitutability of CAL for traditional learning. Moving from a lower to a higher level of 
CAL, substitutability changes and is either neutral or even negative. The estimates suggest that a 
blended approach of CAL and traditional learning is optimal. The findings have direct 
implications for the rapidly expanding use of educational technology worldwide prior to, during 
and after the pandemic.
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1   Introduction 

Numerous educational interventions have been used to improve academic achievement and 

increase human capital among schoolchildren in developing countries. Among these interventions, 

technology-based interventions have shown promise relative to other popular interventions such 

as teacher training, smaller classes, and performance incentives (McEwan 2014). It has been 

argued that EdTech, such as computer-assisted learning (CAL), can offset deficiencies that 

commonly plague schools, such as low teacher quality, high rates of teacher and student 

absenteeism, low levels of student motivation, and many students being below grade level, among 

others (World Bank 2018; Economist 2018; Brookings 2019). These arguments are consistent with 

the rapid substitution of EdTech for traditional teaching methods and explosion of expenditures 

on EdTech throughout the world happening even before the pandemic. Furthermore, COVID-19 

greatly accelerated these previous trends resulting, at least in the short run, in a whole-scale 

substitution from traditional learning to EdTech, and a shift to relying on technology especially 

for home- and after-school work which is likely to persist long after schools return fully to in-class 

instruction. 

The previous findings on the effectiveness of CAL, however, are mixed, ranging from null 

effects to extremely large positive effects (Bulman and Fairlie 2016; Escueta 2017; Rodriguez-

Segura 2021; Abbey et al. 2022). To gain insight into this heterogeneity and add a new dimension 

of analysis, we design and implement a randomized controlled trial (RCT) involving 

approximately 6,000 grade 3 students in 343 classes (one per school) from two regions in Russia. 

The RCT includes three treatment arms: i) CAL for 45 minutes per week, ii) a “double dosage” 

CAL for 90 minutes per week, and iii) a control that receives no CAL. Estimates of the two 

treatment effects allow us to explore input substitutability in the use of CAL for the first time in 

the literature. Importantly, CAL use was directly substituted for traditional learning, avoiding 

problems associated with identifying separate technology versus increased learning time effects 

(Ma et al. 2020). 

Although extant evidence is from field experiments, heterogeneity in results may stem from 

variation in the substitutability between CAL and traditional learning. The focus in the previous 

literature on estimating the average productivity of CAL for a fixed amount of time on CAL 

provides only limited evidence on characteristics on how this substitutability might change. It does 

not provide information relevant to important questions regarding input substitutability. In fact, 



surprisingly, there is little evidence in the previous literature on the substitutability of any input in 

the educational production function. 2  Another problem is that evaluating only one level of 

treatment intensity could be misleading if the level chosen for the experiment is too low or too 

high relative to other substitutable inputs (i.e. educational production might be suboptimal). 

Unfortunately, similar to many other inputs in educational production, theory provides only limited 

guidance on optimal levels of substitution. 

This study is the first to discern how the effects of CAL change exogenously with respect 

to usage levels within the same educational setting.3 Our study is also one of the only studies that 

evaluates CAL as a direct substitute for traditional learning instead of being provided as a 

supplemental after-school program, which likely influences impact estimates. Examining the role 

of CAL as a direct substitute for traditional learning is also important as countries increasingly 

mandate limitations on time children spend in after-school programs and on homework.4 Our use 

of CAL is also through homework instead of in-class substitution of CAL software. We provide 

new evidence on the use of CAL for homework. Finally, and perhaps most importantly, direct 

substitution between the two inputs in the field experiment ensures that any changes in educational 

production is due to input substitution and not higher inputs. Our study is one of the first to use an 

experiment to provide evidence on the substitutability of any input in educational production. 

We find positive effects of CAL on math test scores at the base dosage level. Doubling the 

amount of CAL input, we find similar effect sizes relative to the control. We thus find evidence 

that is consistent with a concave relationship between CAL and educational production. Moving 

from zero to the base level of CAL, CAL is a positive substitute for traditional learning. But, 

moving from the base level of CAL to the higher level of CAL, CAL is a similarly productive 

substitute for traditional learning.  

For impacts on language achievement, we find positive effects of CAL at the base level, 

but stronger evidence consistent with concavity. We find that CAL is a positive substitute when 

                                                            
2 For example, the one-to-one laptop or home computer programs that have been previously studied do not structure 
or exogenously determine time use, which is needed to study marginal productivity or input substitutability (e.g. 
Fairlie and Robinson 2013; Beuermann et al. 2015; Cristia et al. 2017; Hull 2019). 
3  Hypothetically, a meta-analysis of estimates from previous studies could be used to provide evidence on the 
characteristics of education production, but the CAL programs used in these studies differ by more than usage time 
(e.g. substitution vs. supplemental program, country, student preparation, grade level, and the presence of additional 
instructional support). 
4 Policies to reduce time on homework exist, for example, in China (MOE, 2018), France (MNE, 2019), and Russia 
(SanPiN, 2010). 



moving from zero to the base level of CAL, but a negative substitute when moving from the base 

level of CAL to the higher level. The findings for math and language in CAL do not differ when 

we shift the focus from mean impacts to impacts throughout the distribution (i.e. quantile treatment 

effects). We find no evidence of differential treatment effects by gender for either dosage level. 

For math and language, we do not find clear evidence of differential treatment effects for high-

ability students relative to low-ability students. 

Our findings contribute to a large literature on the effectiveness of CAL, which provides a 

wide range of estimates from null effects to extremely large positive effects. 5  Generally, 

evaluations of supplemental learning CAL programs find large positive effects on academic 

outcomes (e.g. Lai et al. 2013; 2015; Mo et al. 2014; Bohmer, Burns, and Crowley 2014; 

Muralidharan et al. 2019; Ito et al. 2019; Araya et al. 2020; Blimpo 2020).6 For the less common 

use of CAL as a direct substitute for regular teacher instruction in the classroom or traditional 

learning after school the evidence often shows null effects (Dynarski et al. 2007, Campuzano et 

al. 2009; Linden 2008; Barrow et al. 2009; Carillo et al. 2011; Schling and Winters 2018; Taylor 

2018; Naik et al. 2020; Ma et al. 2022). Related to these studies of CAL, the less structured 

provision of computers and laptops for home and/or school use among schoolchildren tends to 

show null or mixed effects.7 The findings from our experiment suggest that some of the wide range 

of estimates on the effectiveness of CAL might be due to chosen dosage levels in addition to study 

heterogeneity by development level of the country, substitution vs. supplemental program, and 

features of the software. 

The evidence from this analysis helps inform decisions about optimal investment in CAL 

relative to traditional learning. Identifying optimal levels of investment in CAL is especially 

important as governments, schools and families are currently investing heavily in EdTech and 

                                                            
5 See, for example, Banerjee et al. 2007; Linden 2008; Carillo et al. 2011; Angrist and Lavy 2002; Lai et al. 2013, 
2015; Mo et al. 2014; Ma et al. 2022; Taylor 2018; Muralidharan et al. 2019; Rouse and Krueger 2004; Dynarski et 
al. 2007; Barrow et al. 2009; Campuzano et al. 2009;  Rockoff 2015; Falck, Mang, and Woessmann 2018; Ito et al. 
2019; Araya et al. 2019; Blimpo 2020. Also, see Glewwe et al. (2013), Bulman and Fairlie (2016), Escueta (2017), 
Rodriguez-Segura 2021, Abbey et al. (2022) for recent reviews of the literature. 
6 Conducting a meta-analysis of the large number of studies conducted in China, Abbey et al. (2022) find that the 
pooled effect size of the 18 included studies indicates a small, positive effect on student learning (0.13 SD, 95% CI 
[0.10, 0.17]), and the strongest evidence exists for the effectiveness of CAL that is used as a supplement to existing 
learning inputs. 
7 See, for example, Malamud and Pop-Eleches 2011; Fairlie and Robinson 2013; Beuermann et al. 2015; Cristia et 
al. 2017; Malamud et al. 2019; Hull 2019; Fiorini 2010; Fairlie and London 2012; Machin, McNally, and Silva 
2007; Schmitt and Wadsworth 2006; Fuchs and Woessmann 2004; de Melo et al. 2014; Yanguas 2020. 



likely to increase expenditures in the future. This is especially true for the rapidly growing use of 

new technologies and their substitution for traditional learning methods in educating 

schoolchildren in developing countries which was happening prior to COVID and likely has been 

accelerated because of COVID.  

 

2   Research Design 
2.1   Field Experiment 
To explore CAL and traditional learning substitutability, we design and implement an RCT 

involving approximately 6,000 third grade schoolchildren in 343 classes/schools in two provinces 

of Russia.8 The RCT includes three treatment arms: an “X” dosage CAL arm where students 

receive 10 items per subject using the software, which (as communicated to the treatment group) 

is approximately 20-25 minutes per week of math CAL and 20-25 minutes of (Russian) language 

CAL; a “2X” dosage CAL arm in which (as communicated to the treatment group) students receive 

20 items per subject which is approximately 40-50 minutes of math CAL and 40-50 minutes of 

language CAL; and a control arm.9 With this design, we can explore input substitutability in 

educational production across different levels of CAL.  

The field experiment is conducted among primary schools in Russia. Specifically, 343 

schools from 2 regions were sampled to participate in the experiment. In each school, one third 

grade class was sampled, and each class has an average of 18.3 students per class. For each third 

grade class there is one teacher that teaches both math and language. Altogether, 6,253 students 

and their 343 teachers were sampled and surveyed. 

                                                            
8 In some ways, Russia’s educational system resembles the educational systems of other OECD countries. The 
enrollment rate in primary and secondary education is close to 100%. The average class size (21.6 students per teacher 
in our sample —see Table A1) is also roughly the same as the OECD average for primary schools (21 students per 
teacher—OECD 2019a). In other ways, however, Russia’s educational system is closer to that of other middle-income 
countries. Its educational expenditures per primary and secondary school student were low at 4,247 US dollars in 2016 
(adjusted for purchasing power parity—OECD 2019b). This is less than half the OECD average (9,357 US dollars) 
and below Chile (5,324 US dollars) and Turkey (4,505 US dollars), but above Mexico (3,062 US dollars—OECD 
2019b). Russia’s GDP per capita ($10,743 current US dollars in 2017) is further just below Costa Rica (11,677 US 
dollars), and Maldives (11,151 US dollars) and just above Brazil (9,821 US dollars), China (8,827 US dollars), and 
Mexico (8,910 US dollars) (World Bank Database 2019). The two regions where the experiment is conducted, Altai 
Krai (93 schools) and Novosibirsk (250 schools), have GDP per capita below the national average (OECD 2019b).    
9 Unfortunately, the company was unable to provide complete data on CAL usage across the Dosage 1X and Dosage 
2X groups (which was a goal for data collection stated in our pre-analysis plan). Interviews with teachers revealed 
that they generally complied with instructions on use, which is consistent with bi-weekly follow-ups by the provider 
on usage of the software. 



In the second half of October 2018 (near the start of the school year), we conducted a 

baseline survey of the sampled students, their teachers and principals. After the baseline survey, 

we randomized classes to treatment conditions. Students participated in the treatment from 

December 2018 until mid-May 2019.  In mid May 2019, the end of the Russian school year, we 

administered a follow-up survey with students, teachers, and principals. 

 

2.2   CAL 
The provider of the CAL software is the largest technology company in Russia (hereafter 

“the provider”). The provider’s platform has more than 10,000 items across various math and 

language sub-content areas for grades 2 to 4. The items and associated content areas align closely 

with national educational standards and curricula for primary schools, and thus the problems are 

similar to those in traditional assignments. As such, the platform was intended to be used 

throughout the country. After our evaluation, it was widely adopted by schools in many regions. 

The CAL software is of high quality and similar to that used in previous studies. It has a 

graphics-based and attractive user-interface and dynamic, engaging tasks. It allows multiple tries 

per question and provides scaffolded feedback after each student response. The software also 

allows teachers to track and compare the performance of individual students both overall and at a 

granular level in subject-specific content and sub-content areas. Appendix A presents example 

screenshots of these different aspects of the CAL software. 

Students in the treatment group use CAL at home as a partial or full replacement for 

traditional pencil and paper homework. Traditionally, teachers give students a certain number of 

homework exercises in class, ask students to complete the assigned exercises at home (using pencil 

and paper), and then finally turn in the completed exercises in class. For the treated students, some 

or all of the traditional pencil and paper exercises are replaced by time on CAL. Homework, 

whether traditional or replaced by CAL, reviews concepts and allows students to practice and 

solidify their knowledge of what was learned in class.  

 

2.3   Baseline Survey 
We administered three baseline surveys to students and teachers. The student survey collected 

basic background information such as student gender and time spent on math and language 

homework. As part of the baseline survey, we administered proctored exams in four areas: math, 



language, reading, vocabulary (math and language achievement were our pre-determined main 

academic outcomes).10 As noted in Appendix B, the exams have good psychometric properties. 

The teacher survey further collected information on the degree to which teachers use information 

and computing technology (ICT) at home and their self-efficacy with ICT. 

 

2.4   Randomized Design and Statistical Power 
To maximize statistical power, we created the sample strata or blocks by placing the six classes 

with the closest mean grade three math scores in a region in a strata.11 Adjusting for strata, the 

resulting intraclass correlation coefficients were extremely low for our two main outcomes: 0.000 

in math achievement and 0.053 in language achievement. Classes were then randomly allocated 

within strata (conducting randomization once) to one of three different treatment conditions (T1 = 

CAL Dosage 1X, T2 = CAL Dosage 2X, or C = Control or No CAL):  

 

A. CAL Dosage 1X (T1) 115 classes (in 115 schools) 

B. CAL Dosage 2X (T2) 113 classes (in 113 schools) 

C. Control (C) 115 classes (in 115 schools) 

  

The large number of schools per treatment arm, extremely low ICCs, and rich set of baseline 

controls provide substantial statistical power with which to measure effects. 12  Even without 

controlling for baseline test scores, minimum detectable effect sizes (MDESs) are approximately 

0.09 SDs (for math) and 0.12 SDs (for language) for pairwise treatment comparisons.  

 

                                                            
10 Details of the baseline data collection (and proposed analyses) were described in a pre-analysis plan written and 
filed with the American Economic Association registry before endline data were available for analysis 
(https://www.socialscienceregistry.org/trials). Due to minor technical difficulties in the baseline survey (before 
randomization), not all 6,253 students took all four tests. Rather, 6,052 students in the baseline took math and 
vocabulary tests, while 5,838 students took language and reading tests. We deal with missing values for these and 
other baseline controls by including missing value dummies (as detailed in the pre-analysis plan). 
11 Because the number of schools in each region was not divisible by 6, we placed 9 schools (with the closest mean 
grade 3 math scores) in the first region in one stratum and 10 schools (with the closest mean grade 3 math scores) in 
the second region in one stratum.  
12 Based on a previous longitudinal study in primary schools in Russia using the same test instruments, the estimated 
R-squared between the baseline and follow-up scores is approximately 0.50. Other parameters for the power 
calculation include: 18 students per class/school, an alpha of 0.05 and power = 0.8. 

https://www.socialscienceregistry.org/trials


2.5   Balance Checks 
Appendix Table A1 presents summary statistics for the baseline variables as well as tests for 

balance on baseline observables across the treatment arms. The exam scores are standardized as 

z-scores and thus have a mean of 0 and standard deviation of 1. The percentage of students that 

are female is 52% and the average class size is 21.6 students. The table also shows the results 

from a total of 24 tests comparing average variable values among the treatment and control arms. 

These tests were conducted by regressing each baseline variable on a treatment group indicator 

and controlling for strata. For tests of student-level variables, standard errors are clustered at the 

school level.  

Out of the 24 tests, only one was statistically significant (different from zero) at the 10% 

level and none were significant at the 5% or 1% levels. The results from Table A1 indicate that 

balance was achieved across the three arms, especially as a small number of significant differences 

are to be expected (by random chance). A joint test of all baseline covariates simultaneously shows 

no significant difference between T1 and C (p-value: 0.265), T2 and C (p-value: 0. 178) or T1 and 

T2 (p-value = 0.160). Key baseline covariates (baseline math and language test scores, not to 

mention reading and vocabulary scores) were not statistically different between any of the three 

treatment arms (even at the 10% level) with only one exception. There is a slight imbalance in the 

baseline math score between Dosage 2X vs control, but the difference is only marginally 

significant, the difference is negative working against finding a dosage 2X vs control effect, and 

we control for it in the treatment regressions. 

 

2.6   Program (Treatment) Administration 
In both the CAL Dosage 1X and CAL Dosage 2X treatment arms, the provider asked 

teachers to assign CAL items to their classes through their registered accounts.13 Teachers were 

given instructions to use assigned CAL items during homework but were also allowed to use them 

in class.14 The vast majority of teachers reported using CAL for homework (more than 95%).  

One reason that increasing the dosage of CAL could result in increased effectiveness is that 

it might have increased total time on homework. Conversely, if there was crowd-out (i.e. the 

                                                            
13 The dosages were chosen based on numerous pilot interviews that the provider conducted with teachers outside of 
the study sample and prior to the experiment. In the experimental intervention, the provider introduced the online 
educational platform and dosages through separate training webinars with the Dosage X and Dosage 2X teachers.  
14 Interviews with teachers revealed that class use was minimal relative to use for homework. 



substitution between CAL and traditional learning was less than one) then we could find a decrease 

or no increase in effectiveness. To explore this question, we examine total hours spent on 

homework by students by treatment condition. Table 1 reports estimates of total homework hours 

on math and language from regressions with only baseline score controls and with baseline score 

plus additional controls. Although reported hours might be somewhat underreported the 

comparisons are informative. We find precise zero estimates, indicating that, compared to the 

control condition (mean=43 for math and mean=44 for language), neither CAL treatment condition 

(Dosage 1X or Dosage 2X) resulted in greater or lower total time on homework in either subject 

(as reported by students). 15  The frequency of homework assignments also did not differ 

significantly among the treatment control groups. Qualitative interviews further indicate that 

teachers almost always substituted (instead of supplemented) traditional learning activities with 

CAL.16 Teachers in the treatment conditions also did not change the amount of time they prepared 

for their math and language lessons relative to the control group (Table 2). We thus treat CAL and 

traditional learning as being substituted one-to-one when interpreting our results.17  

The dosages of CAL are in line with those used in recent studies. For example, Lai et al. 

(2013; 2015) and Mo et al. (2014) find large positive effects of supplemental CAL programs for 

Chinese schoolchildren (0.12 to 0.18σ in math) from 40 minutes of instruction, 2 times a week. 

Some studies use larger dosages. Bohmer, Burns, and Crowley (2014) find large positive effects 

from an after-school program providing CAL and student coaches in South Africa (0.25σ in math) 

from 90 minutes twice a week, but part of the program includes student coaches. Banerjee, Cole, 

Duflo and Linden (2007) find that 120 minutes per week of CAL improves grade 4 math test scores 

by 0.35 SDs after one year. Muralidharan et al. (2019) find large positive effects of after-school 

Mindspark Center programs in India which include software use and instructional support (0.59σ 

in math and 0.36σ in Hindi) from 90 minutes per session, six sessions a week. However, requiring 

schoolchildren to use CAL in addition to pre-existing homework at these much higher levels is 

just not possible in most countries. As noted above, many countries mandate limitations on time 

                                                            
15 Distributions of total homework time align almost perfectly for the control, Dosage 1X and Dosage 2X groups.  
16 When asked directly about whether they assigned more homework to their class as a result of the intervention, the 
vast majority of interviewed teachers said no. It was also clear from pilot interviews that teachers were highly sensitive 
to assigning additional homework to students because the law sets limits on the total amount of homework time that 
can be assigned to students (1.5 hours per day in all subjects—SanPiN 2010). 
17 We unfortunately do not have data about teaching styles and are thus unable to examine whether the interventions 
changed teaching styles. 



children spend in after-school programs and on homework (e.g. China (MOE, 2018); France 

(MNE, 2019); and Russia SanPiN, 2010); in the United States many school districts have already 

or are considering implementing homework restrictions (Tawnell, 2018).  

 

2.7   Endline Survey and Primary Outcomes 
We conducted the follow-up survey with students and teachers in mid May 2019 at the end of the 

school year. As in the baseline, we administered a 2-hour proctored exam that covers math, 

language, reading, and vocabulary to students. Proctors were independent from the schools. They 

were recruited from regional universities and educational policy organizations, such as regional 

centers of educational assessment. School workers were not allowed to be proctors. We also asked 

students about their homework time on different subjects, and we asked teachers about their 

preparation time for teaching different subjects.  

The primary outcome variables for the trial are student math and language achievement at 

the end of the school year (as measured by the exam). In the analyses, we convert the math and 

language endline exam scores (percent correct) into z-scores (subtracting each students’ endline 

subject-specific score by the average endline subject-specific score of the control sample and 

dividing the standard deviation of the endline subject-specific score of the control sample). Other 

outcome variables include the degree to which students are interested in studying math and 

language subjects (using a standard subjective scale, converted into z-scores), student reports of 

time spent on subject-specific homework (average minutes per week), and teacher reports of time 

spent preparing for teaching different subjects (average minutes per week).18  

 

3   Empirical Methods and Hypothesis Tests 

                                                            
18 Out of the baseline sample of 6,052 students that took the math test in the baseline, 5,552 students (92%) took the 
math test in the endline; an additional 165 students took math in the endline but not in the baseline. Out of the 
baseline sample of 5,838 students that took the language test in the baseline, 5,205 students (89%) took the language 
test in the endline; an additional 360 students took language in the endline but not in the baseline. The missingness 
rates for the math and language analytical samples were 8% and 11% respectively. Balance in baseline covariates 
across pairwise treatment comparisons was maintained among the non-missing students. Out of 24 tests, only two 
were statistically significant (different from zero) at the 10% level and none were significant at the 5% or 1% levels 
(Appendix Table A2), as would be expected by chance.  



Our general approach for estimating treatment effects is to regress math and language outcomes 

on indicator variables for treatment assignment, baseline controls and strata fixed effects using the 

following model:  

 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾1𝐷𝐷1𝑖𝑖 +  𝛾𝛾2𝐷𝐷2𝑖𝑖 + Xij𝛽𝛽 + 𝜏𝜏𝑠𝑠 +  𝜀𝜀𝑖𝑖𝑖𝑖 (1) 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the outcome of interest measured at endline for student i in school j; 𝐷𝐷1𝑖𝑖 and 𝐷𝐷2𝑖𝑖 are 

dummy variables indicating the treatment assignments of Dosage 1X and Dosage 2X; Xij is a 

vector of baseline control variables, and 𝜏𝜏𝑠𝑠 is a set of strata fixed effects.19 In all specifications, Xij 

includes the baseline value of the dependent variable (when available). We also estimate treatment 

effects using an expanded set of baseline controls. For student-level outcomes, this expanded set 

of baseline controls includes all baseline test scores (math, language, reading, and vocabulary), 

student gender, an indicator for whether the teacher uses ICT at home, teacher ICT self-efficacy, 

and class size.20 Standard errors are clustered at the school level. 

The key parameters of interest in Equation (1) are 𝛾𝛾1 and 𝛾𝛾2. These estimates shed light on 

whether the production function is concave in CAL. For example, the finding of a positive estimate 

of 𝛾𝛾1 and an estimate of 𝛾𝛾2 that is less than 2𝛾𝛾1 is consistent with a concave relationship. Estimates 

of 𝛾𝛾1 and 𝛾𝛾2 also allow one to determine if substitution between the CAL and traditional learning 

inputs increases academic achievement. We can specifically examine whether substitutability 

diminishes with higher levels of CAL. Having three treatment arms of different dosage (including 

the control arm where dosage is zero) in the RCT allows us to explore these questions. 

We chose the Dosage 1X and Dosage 2X levels of CAL use because, as noted above, they 

fall within the range of what teachers believe are reasonable amounts, are within policy regulations, 

and line up well with levels implemented in the previous literature. Another important point of the 

experimental design is that we are increasing CAL by substituting away from traditional learning 

which is different than adding a supplemental CAL program. This allows us to isolate changes in 

educational production resulting from input substitution instead of productivity changes due to 

                                                            
19 As pre-specified in our pre-analysis plan, we focus on math and language outcomes. Our primary outcomes are 
math and language achievement as measured by standardized test scores. Course grades for students were not 
available from all schools. 
20 We address missing values for the baseline controls by creating a missing value dummy variable and including it in 
the regression.  



changing input levels. This is an important distinction because schools and students face 

restrictions on in-school and after-school time commitments. 

 

4   Results 
4.1    Math Scores 
Table 3 reports estimates of math test scores on treatment arms. Both specifications with only 

baseline score controls and with baseline score plus additional controls are reported. For Dosage 

1X we find positive and statistically significant effects on math test scores (0.10 to 0.11σ). Using 

CAL increased test scores and the increase at the base level of time resulted in effect sizes that are 

roughly comparable to estimates reported in previous studies at similar dosage levels. For example, 

Lai et al. (2013; 2015) and Mo et al. (2014) find 0.12 to 0.18σ effects in math from CAL programs 

for Chinese schoolchildren from 80 minutes per week. 

After doubling the dosage level, we also find positive and statistically significant treatment 

effects on math test scores. More importantly, however, we find point estimates that are similar to 

the first dosage level. Increasing the dosage level thus resulted in no additional increase in effects 

on math test scores. To our knowledge, these estimates are the first showing no additional effect 

of a higher dosage of CAL beyond the base level.  

One question of interest is whether production in CAL is concave.21 In this case, the 

positive substitutability of CAL for traditional learning diminishes as CAL is expanded beyond 

roughly equal levels. As CAL use is expanded, one possibility is that each additional unit becomes 

less productive because students become less interested or engaged in the graphics- and video-

based learning with more use. Another possibility is that higher levels of CAL use increase the 

likelihood that students become distracted with other software, apps and entertainment on the 

computer. On the other hand, production in CAL might not be concave. An example of this case 

might be that CAL and traditional learning are perfect substitutes for each other across all levels.22 

Having three treatment arms of different dosage (including the control arm where dosage 

is zero) in the RCT allows us to explore this question empirically for the first time. We first 

examine whether the estimates are consistent with concavity by comparing the impact of the 2X 

                                                            
21 A standard Cobb-Douglas production function with equal factor returns, for example, implies concavity because 
of the curvature in isoquants. 
22 A linear production function in which both inputs have similar returns, for example, implies non-concavity. 



dosage to 2 times the impact of the 1X dosage (where both impacts are relative to the control). 

Table 3 reports the results of the test. We find some limited evidence that is consistent with 

concavity in educational production in CAL. 

Turning to the implications for the substitutability between CAL and traditional learning, 

the estimates of the two treatment effects suggest different substitutability depending on the base 

level of CAL. We find that moving from zero to the lower level of CAL, the substitutability of 

CAL for traditional learning is greater than one (i.e. traditional learning can be reduced by more 

than one unit when CAL is increased by one unit), but moving from the lower level of CAL to the 

higher level of CAL the substitutability is equal to one (i.e. CAL and traditional learning are 

perfectly substitutable across this range). These findings also provide some suggestive evidence 

on the general forms of the educational production function as discussed in Bettinger et al. (2021). 

The test of two different levels of CAL is also useful beyond testing for concavity or 

examining input substitutability. For example, testing for the positive effect of each CAL dosage 

is of immediate interest to the CAL provider (the largest technology company in Russia) as well 

as to local and national policymakers in Russia (since, to the best of our knowledge, this is the first 

randomized evaluation of EdTech in Russia). Evaluating only one level of treatment intensity 

could be misleading for identifying whether CAL is effective if the level chosen for the experiment 

is too low or too high. We find positive and statistically significant effects for both treatment levels 

suggesting that different choices of levels of CAL can improve math test scores. 

 

4.2    Language Scores 
We also examine treatment effects on language test scores. The previous literature focuses more 

on math test scores than on language test scores. Languages differ in each country making it 

difficult to choose base levels and compare estimates across studies. Additionally, we might expect 

that educational production in CAL differs between math and language. Although math learning 

is mostly through school and homework, language learning is broader because reading for pleasure 

and family interactions also play key roles in learning.  

Table 3 reports estimates for language test scores. Both specifications with only baseline 

score controls and with baseline score plus additional controls are reported. For Dosage 1X we 

find some evidence of positive and statistically significant effects (at the 0.10 level) on language 

test scores. After doubling the dosage level, the treatment effect estimates become close to zero. 



Table 3 also reports the estimates that provide suggestive evidence on the concavity test. 

For impacts on language achievement we find positive effects of CAL at the base level, but 

stronger evidence that is consistent with concavity in the production function. We find a positive 

substitutability of CAL for traditional learning moving from zero to the lower level of CAL, but a 

negative substitutability moving from the lower level of CAL to the higher level. If the experiment 

had only estimated the treatment effect at the higher dosage level in CAL, the positive effects at 

the lower level, curvature, and changing substitutability would have been missed. 

The findings clearly indicate that there is an optimal amount of CAL use for language that 

represents a relatively balanced approach instead of one with very high levels of usage (or no 

usage). Additionally, if the experiment only provided the higher dosage of CAL then it would have 

concluded with a clear null effect on language test scores. This represents a more general concern 

in tests of the effectiveness of CAL that rely on only one input level. 

 

4.3   Interest in Studying Math and Language 
A common argument for how CAL, or EdTech more generally, works is that it increases interest 

to engage with subject material. If students enjoy learning math, for example, through CAL that 

enjoyment could spill over to learning math more generally. Thus, one reason that substituting 

CAL for traditional learning at the base level might increase math achievement is because CAL 

engages kids and encourages them to study math through its graphics and gamified nature. 

Additionally, any curvature in isoquants could be partly due to diminishing engagement in math 

as CAL is increased relative to traditional learning. Diminishing engagement could be due, for 

example, either to limited attention spans (that benefit from a mix of traditional and computer-

based homework) or greater fatigue (because of the more intense, interactive nature of the CAL 

exercises).  

 Table 4 reports estimates of Equation (1) for whether students are interested in studying 

math and language. The questions underlying the measure do not refer to CAL and are more 

generally focused on interest in math or language. At the base dosage level the math interest of the 

treatment group is 0.09σ higher than the control group. Moving to the higher dosage level in CAL, 

the point estimates become smaller and lose statistical significance from the control, but are not 

statistically different from the Dosage 1X estimates. Although these results are only suggestive, 

they are consistent with the lower use of CAL increasing interest more generally in math and thus 



resulting in higher math test scores. But, when using CAL more extensively and traditional 

learning consequently less, students might have become less interested and motivated in math and 

thus experienced no resulting increase in math test scores. These patterns are consistent with the 

concave educational production function in CAL and related curvature in isoquants. 

The patterns are also strong for interest in studying language. We find large positive 

estimates from the lower dosage of CAL. Interest to study language increases by 0.08-0.09σ 

relative to the control. Doubling the dosage of CAL results in a small negative to no change in 

interest relative to the control. These estimates are consistent with the findings for language test 

scores and are consistent with more concavity in CAL and curvature in isoquants when we focus 

on language relative to math. 

 

4.4   Distributional Effects 
The results from the treatment regressions provide evidence of CAL effects at the mean. Turning 

the focus to other parts of the distribution, we estimate quantile treatment effects regressions to 

test for differential treatment effects across the post-treatment outcome distribution. Appendix C: 

Figures 1 and 2 display estimates and 95 percent confidence intervals for each percentile for the 

Dosage 1X and Dosage 2X effects for math and language test scores, respectively. For math test 

scores we find some evidence that treatment effects are larger in the middle and top of the 

distribution than the bottom of the distribution. For most of the distribution we find positive and 

similar-sized estimates of Dosage 1X and Dosage 2X effects (except possibly at the very top of 

the distribution where there is more noise). 

For language scores, the patterns are consistent with the findings for mean treatment 

effects. Dosage 1X has positive effects throughout the distribution, whereas Dosage 2X has no 

effects. Although the quantile treatment estimates are not as precisely measured they do not change 

the conclusion from the mean impacts reported in Table 3. Mean impact estimates do not appear 

to be concealing differential effects at different parts of the distribution. 

 

4.5   Heterogeneous Effects 
We next examine heterogeneous effects by two important subgroups. We focus on differences 

based on gender and baseline ability (above and below the median). Treatment effects might differ 

by gender because boys and girls use computers differently with much higher levels of video game 



use among boys (Kaiser Family Foundation 2010; U.S. Department of Education 2011; Fairlie 

2017; Algan and Fortin 2018). Exploring heterogeneity by baseline ability might be important 

because, for example, lower ability students might have more room to make gains in test scores 

than high ability students from using CAL, or lower ability students might benefit more from 

engaging video-based and gamified instruction. Differences might not reveal when focusing on 

one treatment level (i.e. average productivity at that point) and instead might manifest in degrees 

of concavity. 

Appendix Tables A3 and A4 report estimates of interactions by gender on achievement and 

interest in subject, respectively. As expected, we find evidence that girls have higher language test 

scores than boys, but similar levels of test scores in math (see OECD 2019a, for example). 

However, even with the difference in language scores, we do not find evidence of differential 

treatment effects by gender at either Dosage 1X or Dosage 2X for either math or language. The 

estimates for interest in math and language also show higher interest in language among girls than 

boys, but no differences in math interest or dosage effects by gender. 

We next examine differences by baseline ability level. Appendix Tables A5 and A6 report 

estimates of interactions between the Dosage 1X and Dosage 2X treatments, and above median 

baseline ability for test scores and interest in the subject, respectively. For math, the main treatment 

effects are positive and significant for both dosage levels. The point estimates for the difference in 

Dosage 1X vs control treatments effects between the bottom and top half of students are not 

statistically significant. The point estimates for the difference in Dosage 2X vs control effects 

between the bottom and top half of students show some evidence of marginal significance. For 

language, we find little statistically significant evidence of positive or negative effects for main 

effects. We find only limited evidence of a positive differential Dosage 2 vs control effect between 

students in the bottom and top half of the baseline language ability distribution). For liking subjects 

the estimates are noisier but generally line up with the test score results.  Overall, we do not find 

clear evidence of differential treatment effects for high-ability students relative to low-ability 

students in either test score. 

 

5   Conclusion 
Billions of dollars are spent on computer-based learning in schools in developing countries each 

year and substantially more has been spent from the accelerated shifts to technology to facilitate 



remote learning resulting from the pandemic, but what are the effects of this massive shift towards 

EdTech? Unfortunately, there is limited theoretical guidance on what optimal levels of CAL 

should be, and the newness of EdTech in developing countries does not provide a long enough 

track record to determine what works, what does not work, and what are the impacts of the 

continued substitution of CAL for traditional learning. The empirical evidence, even from RCTs, 

is decidedly mixed and focuses exclusively on one dosage level in CAL. To remedy this deficiency 

in the literature, we study for the first time the effectiveness of CAL on the educational outcomes 

of school children at different levels of treatment intensity, which sheds light on the substitutability 

of CAL for traditional learning. Our field experiment involving approximately six thousand 

Russian schoolchildren and three treatment arms varying dosage levels in CAL generates 

exogenous variation in CAL use. CAL is substituted directly for traditional learning through 

homework in the experiment. The experiment provides novel evidence on the substitutability of 

inputs not only for CAL but for any input in the educational production function. 

Estimates from the field experiment indicate that CAL increases math test scores at both 

the base and higher dosage levels. As traditional learning is substituted for CAL from the base 

level to the higher level, however, we find similar effect sizes. Taken together, this suggests that 

the substitutability of CAL for traditional learning is positive when moving from zero to the base 

level of CAL, but is neutral when moving from the base level of CAL to the higher level of CAL. 

These estimates are consistent with CAL having a positive return in educational production. 

Turning to language achievement, which has been studied less in the previous literature, we find 

stronger evidence of diminishing substitutability of CAL for traditional learning. The experimental 

estimates for the returns to CAL for language depend on the level chosen. Importantly, if the 

experiment had only estimated the treatment effect at the higher dosage level in CAL, the positive 

effects at the lower level would have been missed. Better knowledge about substitutability is 

important especially as the widespread substitution of EdTech that happened around the world due 

to COVID is not likely going away entirely as we move towards more blended approaches in the 

future. 

A novel and important finding is that educational production does not appear to fit a 

situation in which teachers and students can simply substitute between CAL and traditional 

learning at any level with the same result. For both math and language achievement we find 

evidence of diminishing MRTS of CAL for traditional learning. The marginal costs of shifting 



from a lower level to a higher level of CAL are very low because students already have computers 

and the software is online and can be replicated for essentially no cost. Although there are fixed 

costs of developing the software and keeping it up-to-date, the provider made it free of charge to 

all schools and teachers in the country. In any case, we do not expect that costs will shift the 

optimal levels much beyond what we find without detailed measures of costs. The primary 

constraint in this setting is total homework time mandated by the government. 

Why do we find evidence of diminishing substitutability between CAL and traditional 

learning? One possibility that is at least consistent with our experimental findings is based on 

changes in interest and engagement in the subject matter. We find that for both math and language, 

the base level of CAL resulted in the highest levels of interest. When the dosage level of CAL was 

doubled students reported lower levels of interest. The finding of diminishing substitutability 

might be due to these effects on interest and engagement in subject material. Another possibility 

is that at base level dosages of CAL students gain from being more engaged in learning the material 

through the technology, but at higher dosages they lose out on the positive effects of traditional 

learning. In the end, a blended approach might be the optimal solution for schools and students. 

The blended approach might keep students engaged, but at the same time expose students to more 

beneficial methods of learning or just keep students switching around. The full-scale switch from 

in-person instruction to online instruction due to COVID is a good example of potential negative 

impacts on engagement. 

More research is needed on these important underlying questions regarding how students 

learn using technology and more broadly on the substitutability of other educational inputs. 

Findings from future research along these lines will build on the novel findings presented here on 

substitutability of CAL for traditional learning and help further identify optimal levels of 

investment in CAL, which is imperative as governments, schools and families around the world 

were increasing investments in EdTech and substituting EdTech for traditional learning methods 

even prior to the greater movement towards EdTech in response to COVID.23 And, the shift to 

relying on technology especially for home- and after-school work is not likely to return to pre-

                                                            
23 The COVID pandemic, however, does not provide a good natural experiment for examining the effects of 
substituting towards EdTech because too many other factors changed at the same time (Bacher-Hicks and Goodman 
2021). For examples of research examining the broad impacts of COVID on educational outcomes see, for example, 
Bird, Castleman, and Lohner (2022), Altindag, Filiz, and Tekin (2021), Kofoed, et al. (2021), and Bulman and 
Fairlie (2022). 



pandemic levels, but instead increase to higher levels even after schools return to in-class 

instruction. 
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Table 1: Effects of CAL Dosage 1X and Dosage 2X on Student-Reported Minutes per Week 
of Math and Language Homework 

  (1) (2) (3) (4) 
 Time Math Homework Time Language Homework 
Dosage 1X -1.435 -1.680 -1.170 -1.066 

 (1.429) (1.499) (1.201) (1.253) 
Dosage 2X -0.024 -0.315 0.312 0.200 
 (1.296) (1.362) (1.171) (1.189) 
Diff (Dosage 2X – Dosage 1X) 1.411 1.365 1.482 1.265 
 (1.268) (1.350) (1.134) (1.172) 
Extra Covariates NO YES NO YES 
Observations 5,322 5,322 5,312 5,312 
R-squared 0.059 0.092 0.064 0.098 
Mean Homework 43.02 44.26 

 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home, teacher ICT self-efficacy, and class size.  
4) Cluster (school-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 

 

  



Table 2: Effects of CAL Dosage 1X and Dosage 2X on Teacher-Reported Hours per Week 
Spent on Math and Language Class Preparation 

  (1) (2) (3) (4)  

 Math Preparation Language Preparation  

Dosage 1X -0.272 -0.311 -0.099 -0.106  

 (0.591) (0.591) (0.616) (0.613)  

Dosage 2X -0.090 -0.121 0.196 0.114  

 (0.570) (0.557) (0.618) (0.605)  

Diff (Dosage 2X – Dosage 1X) 0.182 0.191 0.296 0.220  

 (0.555) (0.543) (0.590) (0.571)  

Extra Covariates NO YES NO YES  

Observations 334 334 334 334  

R-squared 0.179 0.199 0.255 0.277  

Mean Preparation 6.33 7.17  
 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control teacher uses ICT at home, teacher ICT self-efficacy, class size.  
4) Robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 

  



Table 3: Effects of CAL Dosage 1X and Dosage 2X on Math and Language Test Scores 

  (1) (2) (3) (4) 
 Math Test Score Language Test Score 
Dosage 1X 0.108*** 0.099** 0.059* 0.053 
 (0.041) (0.039) (0.035) (0.034) 
Dosage 2X 0.101** 0.087** -0.025 -0.015 
 (0.042) (0.039) (0.031) (0.031) 
Diff (Dosage 2X – Dosage 1X) -0.007 -0.012 -0.084** -0.068* 
 (0.041) (0.039) (0.037) (0.036) 
Extra Covariates NO YES NO YES 
Observations 5,717 5,717 5,565 5,565 
R-squared 0.332 0.414 0.434 0.487 
Diff (Dosage 2X - 2*Dosage 1X) -0.115 -0.111* -0.143** -0.121** 
SE (0.071) (0.067) (0.065) (0.062) 

 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (baseline score in math or language). 
Dependent variables are standardized as z-scores (using the mean and SD of the control group). 

3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 
student gender, teacher uses ICT at home, teacher ICT self-efficacy, and class size.  

4) Cluster (school-level)-robust standard errors in parentheses. 
5) For the concavity test reported in the last panel, statistical significance is based on a one-tailed test. 
6) *** p<0.01, ** p<0.05, * p<0.1. 
7) Romano-Wolf stepdown p-values for multiple hypothesis testing calculated for the regressions (adjusting 

for covariates, bootstrapping 3000 times). Estimates of the effects of dosage X and dosage 2X on math 
scores remain statistically significant at the 1% level (p = 0.000). Estimate of the effect of dosage X on 
language scores statistically significant at the 5% level (instead of at the 10% level, p = 0.029), while 
estimate of the effect for dosage 2X on language scores remains statistically insignificant. 

 

  



Table 4: Effects of CAL Dosage 1X and Dosage 2X on Student Interest in Math and 
Language 

  (1) (2) (3) (4) 

 Math Interest Language Interest 
Dosage 1X 0.086** 0.087** 0.094** 0.079** 

 (0.036) (0.036) (0.039) (0.038) 
Dosage 2X 0.049 0.048 0.019 0.022 

 (0.037) (0.037) (0.040) (0.041) 
Diff (Dosage 2X – Dosage 1X) -0.038 -0.038 -0.075* -0.057 
 (0.038) (0.038) (0.039) (0.040) 
Extra Covariates NO YES NO YES 
Observations 5,180 5,180 4,893 4,893 
R-squared 0.132 0.141 0.151 0.176 
Diff (Dosage 2X - 2*Dosage 1X) -0.124** -0.125** -0.169*** -0.136** 
SE (0.064) (0.064) (0.067) (0.067) 

 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (in math or language). Dependent 
variables are standardized as z-scores (using the mean and SD of the control group). 

3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 
student gender, teacher uses ICT at home, teacher ICT self-efficacy, and class size.  

4) Cluster (school-level)-robust standard errors in parentheses. 
5) For the concavity test reported in the last panel, statistical significance is based on a one-tailed test. 
6) *** p<0.01, ** p<0.05, * p<0.1. 

 

  



Appendix Table A1: Balance Check among Treatment Arms (Dosage 2X, Dosage 1X, and No Dosage) and Summary Statistics 

  (1) (2)  (3) (4) (5) (6) (7) (8) 

 
Math  
score 

Language  
score 

 Reading  
score 

Vocabulary  
score 

Female  
(1/0) 

Teacher ICT  
at home 

Teacher ICT  
self-efficacy 

Class  
size 

                   
Dosage 1X -0.055 -0.051  -0.013 0.040 0.014 0.398 0.011 0.085 
 (0.046) (0.039)  (0.045) (0.039) (0.013) (0.749) (0.060) (0.072) 
Dosage2X -0.091* -0.043  0.014 -0.008 0.023 0.748 0.096* -0.035 
 (0.049) (0.042)  (0.044) (0.043) (0.014) (0.697) (0.057) (0.075) 
Dosage 2x – Dosage 1X -0.036 0.008  0.027 -0.048 0.009 0.350 0.084 -0.120 
SE (0.053) (0.043)  (0.044) (0.038) (0.014) (0.718) (0.061) (0.080) 
          
Full Sample          
Mean 0 0  0 0 0.52 2.67 6.06 21.6 
Std Dev 1 1  1 1 0.50 0.47 0.59 6.60 
 
N 6,052 5,838 

 
5,838 6,052 5,742 5,903 5,903 6,253 

R2 0.238 0.159  0.150 0.163 0.011 0.248 0.224 0.236 
 
Notes:  

1) All regressions control for strata (block) fixed effects.  
2) Cluster (school)-adjusted robust standard errors in parentheses.  
3) *** p<0.01, ** p<0.05, * p<0.1. 
4) Joint tests of all baseline covariates simultaneously shows no significant difference between Dosage 1X and Control (p-value: 0.265), Dosage 2X and 

Control (p-value: 0.178) or Dosage 2X and Dosage 1X (p-value = 0.160). 
 

  



Appendix Table A2: Balance Check among Treatment Arms, Non-Missing Students 

  (1) (2)  (3) (4) (5) (6) (7) (8) 

 Math score 
Language 

Score 

 
Reading 

score 
Vocabulary 

score 
Female 
(1/0) 

Class 
size 

Teacher 
ICT at 
home 

Teacher 
ICT self-
efficacy 

                   
Dosage 1X -0.061 -0.050  0.017 -0.049 0.006 0.538 0.018 0.083 
 (0.047) (0.047)  (0.041) (0.040) (0.014) (0.747) (0.060) (0.073) 
Dosage 2X -0.087* -0.005  -0.005 -0.062 0.017 0.855 0.099* -0.030 
 (0.048) (0.045)  (0.044) (0.044) (0.015) (0.706) (0.057) (0.076) 
 
Observations 5,552 5,205 

 
5,205 5,552 5,495 5,958 5,619 5,619 

R-squared 0.187 0.171  0.151 0.164 0.011 0.235 0.243 0.222 
Diff (Dosage 2X - Dosage 1X) -0.026 0.046  -0.022 -0.014 0.012 0.317 0.081 -0.113 
SE (0.051) (0.046)  (0.039) (0.045) (0.014) (0.727) (0.061) (0.081) 

 
Notes:  

1) All regressions control for strata (block) fixed effects.  
2) Cluster (school)-adjusted robust standard errors in parentheses.  
3) *** p<0.01, ** p<0.05, * p<0.1.



Appendix Table A3: Heterogeneous Effects of CAL Dosage 1X and Dosage 2X on Math 
and Language Test Scores, by Student Gender 
  (1) (2) (3) (4) 
 Math Test Score Language Test Score 
Dosage 1X 0.096* 0.076 0.065 0.043 
 (0.051) (0.053) (0.046) (0.055) 
Dosage 2X 0.080 0.050 0.003 -0.004 
 (0.051) (0.056) (0.041) (0.055) 
Female 0.049 -0.040 0.112*** 0.143*** 
 (0.040) (0.044) (0.040) (0.051) 
Female * Dosage 1X 0.025 0.028 -0.009 -0.019 

 (0.058) (0.065) (0.056) (0.072) 
Female * Dosage 2X 0.043 0.040 -0.051 -0.036 

 (0.056) (0.061) (0.053) (0.068) 
Extra Covariates NO YES NO YES 
Observations 5,716 5,716 5,565 5,565 
R-squared 0.333 0.163 0.436 0.139 

 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (baseline score in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home, teacher ICT self-efficacy, and class size.  
4) Cluster (school-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table A4: Effects of CAL Dosage 1X and Dosage 2X on Interest in Math and 
Language, by Gender 
  (1) (2) (3) (4) 
 Math Interest Language Interest 
Dosage 1X 0.093* 0.091* 0.092 0.075 
 (0.050) (0.049) (0.057) (0.056) 
Dosage 2X 0.071 0.068 0.024 0.021 
 (0.053) (0.053) (0.060) (0.060) 
Female 0.011 -0.040 0.242*** 0.275*** 
 (0.052) (0.106) (0.052) (0.106) 
Female * Dosage 1X -0.013 -0.008 0.005 0.007 

 (0.068) (0.068) (0.068) (0.068) 
Female * Dosage 2X -0.043 -0.039 0.003 0.006 

 (0.071) (0.070) (0.073) (0.074) 
Extra Covariates NO YES NO YES 
Observations 5,180 5,180 4,893 4,893 
R-squared 0.132 0.141 0.166 0.177 

 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home, teacher ICT self-efficacy, and class size.  
4) Cluster (school-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 

  



34 
 

Appendix Table A5: Heterogeneous Effects of CAL Dosage 1X and Dosage 2X on Math 
and Language Test Scores, by Student Ability (Above and Below Median Baseline Score) 

  (1) (2) (3) (4) 
 Math Test Score Language Test Score 
Dosage 1X 0.118** 0.125** 0.020 0.027 
 (0.056) (0.051) (0.052) (0.050) 
Dosage 2X 0.140** 0.136*** -0.083* -0.069 
 (0.055) (0.052) (0.048) (0.047) 
High Ability (>50%) 0.571*** 0.483*** 0.211*** 0.139*** 
 (0.049) (0.045) (0.049) (0.044) 
High Ability * Dosage 1X -0.042 -0.074 0.027 0.016 

 (0.063) (0.060) (0.058) (0.054) 
High Ability * Dosage 2X -0.086 -0.106* 0.086 0.091* 

 (0.063) (0.059) (0.057) (0.054) 
Extra Covariates NO YES NO YES 
Observations 5,552 5,552 5,205 5,205 
R-squared 0.381 0.444 0.467 0.510 

 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (baseline score in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home, teacher ICT self-efficacy, and class size.  
4) Cluster (school-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table A6: Effects of CAL Dosage 1X and Dosage 2X on Interest in Math and 
Language, by Student Ability (Above and Below Baseline Median Score) 
  (1) (2) (3) (4) 
 Math Interest Language Interest 
Dosage 1X 0.097* 0.099* 0.086* 0.075 

 (0.053) (0.051) (0.050) (0.049) 
Dosage 2X 0.040 0.040 -0.072 -0.065 

 (0.055) (0.054) (0.054) (0.054) 
High Ability (>50%) 0.150*** 0.115** 0.056 -0.050 
 (0.043) (0.045) (0.047) (0.052) 
High Ability * Dosage 1X -0.021 -0.027 0.008 0.005 

 (0.063) (0.063) (0.065) (0.065) 
High Ability * Dosage 2X 0.021 0.015 0.136** 0.143** 

 (0.067) (0.067) (0.067) (0.065) 
Extra Covariates NO YES NO YES 
Observations 5,034 5,034 4,594 4,594 
R-squared 0.136 0.141 0.155 0.177 

 
Notes:  

1) Dosage 1X is 10 items (approximately 20-25 minutes) of CAL per subject per week, Dosage 2X is 20 items 
(approximately 40-50 minutes) of CAL per subject per week. Left out category is pure control (no CAL). 

2) All columns control for baseline counterpart of dependent variable (in math or language). 
3) Even-numbered columns control for all baseline test scores (math, language, reading, and vocabulary), 

student gender, teacher uses ICT at home, teacher ICT self-efficacy, and class size.  
4) Cluster (school-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix A: Computer-Assisted Learning Software – Example Screenshots 
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Appendix B: Psychometric Properties of the Exams 
 
The exams (collectively known as the PROGRESS toolkit) were specifically developed to assess 
student achievement in grade 3 in Russian schools. The exams are typically (as in our study) 
administrated twice: once at the beginning of the school year and once at the end of the school 
year. 

The exams cover four areas: math, language, reading and vocabulary. Exam items for these 
areas were chosen based on the Russian Federal Standards for primary education. The math and 
language areas include 5 thematic blocks each with respectively 30 and 66 items in total. The 
reading and vocabulary areas include two blocks of items each with 42 and 39 items in total. The 
items are of different formats such as multiple choice, short answer, and matching. All items are 
scored dichotomously. 

The language test is aimed at assessing mastery of the Russian language, its grammatical 
and lexical norms, as well as the ability to apply this knowledge appropriately in context. The 
language test consists of five blocks of items which respectively assess a student’s ability to: (a) 
choose which of two words can best be used in a given sentence; (b) work with synonyms; (c) 
determine the inaccuracy of word usage; (d) choose the phraseological turn appropriate to context; 
(e) choose appropriate language in speech. 

The vocabulary test is aimed at assessing a student’s knowledge of basic vocabulary. It 
consists of two blocks of items which respectively assess the student’s ability to: (a) match pictures 
and words; (b) match meanings and words. 

Finally, the reading test is developed on the theoretical basis of the PIRLS (Progress in 
International Reading Literacy Study) framework, an international assessment designed to 
measure reading achievement at the fourth-grade level. The reading test consists of two blocks of 
items in which students are asked to (a) choose words to fill-in-the-blank of a sentence; (b) reading 
comprehension. 

Testing is conducted during two 40-minute sessions. One session tests language and 
reading, while another session tests math and vocabulary. Testing is computer-based. Students are 
assessed in schools’ computer rooms under the supervision of proctors. 

In our study, the exams exhibited good psychometric properties. The constructs underlying 
the four exam areas (math, language, reading, and vocabulary) were essentially unidimensional. 
All items demonstrated good model fit. We convert percent correct scores into z-scores as is 
standard in the economics literature. Exam reliability (Cronbach’s alpha and Person reliability) 
varied from 0.82 to 0.96. No items demonstrated floor or ceiling effects (during the baseline or the 
endline). There was no evidence of differential item functioning (DIF) by gender or local region.  
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Appendix C: Figure 1: Quantile Effects of Dosage 1X and Dosage 2X (each versus Control) 
on Math Test Scores 
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Appendix Figure 1A: Quantile Dosage X Estimates for Math Test Score
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Appendix Figure 1B: Quantile Dosage 2X Estimates for Math Test Score
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Appendix C: Figure 2: Quantile Effects of Dosage 1X and Dosage 2X (each versus Control) 
on Language Test Scores 
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Appendix Figure 2A: Quantile Dosage X Estimates for Language Test Score
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Appendix Figure 2B: Quantile Dosage 2X Estimates for Language Test Score




