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1 Introduction

In our previous work, McCracken and Ng (2015), we describe and investigate a monthly
frequency database of macroeconomic variables called FRED-MD. At some level, FRED-
MD is not particularly innovative. It is, after all, just a collection of N = 128 standard
U.S. macroeconomic time series, dating back to 1959:01, that have primarily been taken
from FRED, maintained by the Federal Reserve Bank of St. Louis, and organized into
a .csv file. That description, however, misses the point. Our main goal was to facilitate
easy access to a standardized example of a data-rich environment that can be used for
academic research. By automating this data set, and maintaining a website that provides
monthly frequency vintages, those who are interested in conducting research on big data
can focus on the statistical problems associated with big data rather than having to put the
data set together themselves. This frees the practitioner from dealing with issues related
to, for example, updating the data set when new data is released, managing series that
become discontinued, and splicing series from different sources. More prosaically, FRED-
MD facilitates comparison of methodologies developed for a common purpose.

FRED-MD has been successful. It has been used as a foil for applying big data meth-
ods including random subspace methods (Boot and Nibberin, 2019), sufficient dimension
reduction (Barbarino and Bura, 2017), dynamic factor models (Stock and Watson, 2016),
large Bayesian VARs (Giannone, Lenza, and Primiceri, 2018), various lasso-type regres-
sions (Smeekes and Wijler, 2018), functional principal components, (Hu and Park, 2017),
complete subset regression (Kotchoni, Lerous, and Stevanovich, 2019), and random forests
(Medeiros, Vasconcelos, Veiga, and Zilberman, 2019). In addition, these various meth-
ods have been used to study a wide variety of economic and financial topics including
bond risk premia (Bauer and Hamilton, 2017), the presence of real and financial tail risk
(Nicolo and Lucchetta, 2016), liquidity shocks (Ellington, Florackis, and Milas, 2017), re-
cession forecasting (Davig and Hall, 2019), identification of uncertainty shocks (Angelini,
Bacchiocchi, Caggiano, and Fanelli, 2019), and identification of monetary policy shocks
(Miranda-Agrippino and Ricco, 2017). Finally, and perhaps most rewarding, is that it
is described as the inspiration to the development of a Canadian version of FRED-MD
(Fortin-Gagnon, Leroux, Stevanovic, and Surprenant, 2018).

While useful, FRED-MD has a glaring weakness. It does not include quarterly frequency
data and thus does not provide information on Gross Domestic Product, Consumption,

Investment, Government spending, and other macroeconomic series that come from the



National Income and Product Accounts (NIPA). This is unfortunate because there are
plenty of examples in the literature in which a quarterly frequency, data-rich environment is
used for economic analysis. Examples include Stock and Watson (2012a,b), Schumacher and
Breitung (2008), Gefang, Koop, and Poon (2019), Rossi and Sekhposyan (2014), Gongalves,
Perron, and Djogbenou (2017), Carrasco and Rossi (2016), Koopman and Mesters (2017),
and Koop (2013).

In this paper we extend our previous work to a quarterly frequency data set we call
FRED-QD. The data set is currently operational and provided at the same website in
which FRED-MD is maintained. As we did with FRED-MD, FRED-QD is benchmarked
to previous work by Stock and Watson (S&W; 2012a). There, the authors organized a
collection of N = 200 quarterly frequency macroeconomic series dating back to 1959:@Q1 that
they then used to analyze the dynamics of the Great Recession. Our quarterly frequency
version of their data set contains nearly all the series they used but, in addition, includes 48
more series with an emphasis on including series related to Non-Household Balance Sheets.
In total, the data set consists of N = 248 quarterly frequency series dating back to 1959:Q1."
While many of the series are actually quarterly series, some are higher-frequency series that
have been aggregated up to the quarterly frequency - typically as quarterly averages of
monthly series.

It’s worth noting that we provide the data in levels - without transforming them in any
way. As such, some are stationary in levels while others likely need to be transformed by
taking logs, differencing, or both to reasonably be considered stationary. For each series
we provide benchmark transformation codes. If the series was in the S&W data set we
provide their transformation codes. For the additional series, many are taken from FRED-
MD and we therefore provide those benchmark transformation codes. One reason to do this
is to facilitate replication of the factor analysis provided in S&W as well as other results
that may have used a similar data set. Even so, given the well-documented changes in
volatility and persistence of macroeconomic series described in Campbell (2007) and Stock

and Watson (2007), it may be a good idea to reconsider the default transformation codes.

'FRED-QD does not contain ten series that are in the original S&W data set. Using the S&W numbering
system these are #88 (Construction contracts), #130 (Index of sensitive materials prices), #131 (Spot mar-
ket price index of commodities), #165 & #166 (measures of credit spreads & excess bond premia developed
in Gilchrist and Zakrajsek, 2012), #95 & #132 (ISM index of supplier deliveries and ISM commodity price
index), #152 & #164 (3-month Eurodollar deposit rate and its spread with a 3-month T-bill), and #187
(Dow Jones industrials index). In all but two cases, these are series not available in FRED. Three month
Eurodollar deposit rates are in FRED but are not updated on a regular basis because the source (i.e., the
OECD) does not update them regularly. The last of these, #187, has been replaced with the S&P 500
industrials index.



After providing more details on the data, we investigate this possibility through the lens of
unit root tests. While it is often the case that the unit root tests align with the original
transformation codes, the tests are not uniformly supportive.

We then investigate whether factors extracted from FRED-QD are useful for forecasting
macroeconomic aggregates. In particular we focus on whether the unit root-implied trans-
formation codes matter for factor-based forecasting.? Among the series that we forecast we
find that for real and financial series, factors estimated using the unit root-based transfor-
mation codes can provide additional predictive content but are more often dominated by
those using the original transformation codes. In contrast, we find that when forecasting
nominal price series, forecast accuracy is typically better when using factors estimated using
the unit root-based codes. This result coincides with evidence provided by Medeiros et al.
(2019) and Coulombe et al. (2019), who find that treating price inflation as I(0) leads to
better forecasts of inflation than treating it as I(1) - which is precisely what the benchmark
transformation codes recommend.

The remainder of the paper proceeds as follows. Section 2 provides a more detailed
description of the series in FRED-QD, as well as choices that were made when putting
them together. Section 3 presents a brief analysis of the behavior of factors extracted from
our data set with an emphasis on their relationship with factors extracted from the original
S&W data set. Section 4 constructs statistical leverage scores as a means of identifying
which series and data points have the greatest influence on the factors. Section 5 provides
a detailed investigation of the degree to which unit root tests agree with the benchmark
transformation codes. Section 6 investigates the degree to which factors are useful for fore-
casting, with particular attention to whether the unit root determined transformation codes
improve the accuracy of the forecasts relative to the original codes. Section 7 concludes. A

detailed list of the series is provided in the appendix.

2 FRED-QD

As with FRED-MD, the goal of FRED-QD is to provide a readily accessible, easy-to-use
macroeconomic database that can form the basis of research in big data. To do so, we make

the data set publicly available at the same website as FRED-MD so that anyone can have

2Throughout we focus on factors that are I(0). In contrast, Choi and Jeong (2018) provide theoretical
and empirical results comparing the forecast accuracy of factors when one has the opportunity to construct
them so that they are either 1(0) or I(1). In the context of autoregressive models, Diebold and Kilian (2000)
provide simulation evidence on a similar issue.



access.® Importantly, a new vintage of the data set is created on the last business day of each
month. This means that at the end of each month, (i) the most recent data releases have
been added, (ii) revisions to the series in previous quarters have been taken on board, and
(iii) institutional changes to existing series, periodically made by the statistical agencies,
have been appropriately accounted for (e.g., a substitute series is found for a discontinued
series).

Based on feedback we received for the FRED-MD project, the most recent vintage is
always given a hotlink denoted “current.” This allows the user to include that link within
their code and thus always have access to the most recent vintage without having to go to
the website manually and download the file. Previous vintages of the data set are retained
on the website. By retaining the older vintages we facilitate replication of other research
that has used FRED-QD. For example, if a researcher develops a new statistical method
for working with big data, and wants to compare their results with that from an existing
paper, one can go back and find the exact vintage of FRED-QD used in that paper so that
differences in results can be attributed to the method rather than the data set.

On the website, we also provide a “Changes to FRED-QD?” file that keeps a running tally
of modifications that have occurred across the history of FRED-QD. For example, when
creating the September 2018 vintage of FRED-QD, three Non-Household Balance Sheet se-
ries were discontinued and replaced with comparable series. This event, and the subsequent
changes in mnemonics, was documented in the Changes file. It’s worth noting that changes
can also arise due to issues not associated with statistical agencies. For example, legal issues
regarding FRED’s ability to post a given series, or to do so only with a substantial delay,
sometimes arise. Examples of such are provided in the Changes to FRED-MD file, and one
can expect similar issues to ultimately arise in FRED-QD.

With these issues in mind, FRED-QD consists of 248 quarterly series. A full list of
the data is given in the Appendix. FRED-QD seeks to keep roughly the same coverage
as the S&W data set while allowing the experts at FRED to handle data revisions and
definitional changes. The series are classified into 14 groups: NIPA; Industrial Production;
Employment and Unemployment; Housing; Inventories, Orders, and Sales; Prices; Earnings
and Productivity; Interest Rates; Money and Credit; Household Balance Sheets; Exchange
Rates; Other; Stock Markets; and Non-Household Balance Sheets. These groups are similar
to, but not the same as, those used in S&W. The original groups included (i) Housing Starts,
(ii) Housing Prices, and (iii) Stock Prices, Wealth, & Household Balance Sheets, which we

3https://research.stlouisfed.org/econ/mccracken/fred-databases/



have rearranged to form the Housing, Household Balance Sheets, and Stock Markets groups.
In addition, Non-Household Balance Sheets is a completely new group.

Of the 248 series, 70 series were not trivially accessed from FRED and needed some
kind of massaging prior to being comparable to the corresponding series in S&W. A large
portion of those that needed massaging were simply a matter of making nominal series real
using a deflator. For each of these series this procedure is explained in the data appendix.
For the remaining modified series, a summary of the changes is provided in Table 1. For
clarity, all series that required some form of modification are tagged with an “x” to indicate
that the variable has been adjusted and thus differs from the series at source.

When producing each vintage of the data set, an additional quarterly observation is
added only after the first calendar month of the current quarter, which typically means
once the first NIPA data, associated with the previous calendar quarter, is released. For
example, the January, February, and March 2019 vintages of FRED-QD report quarterly
data associated with 2018:Q4 but no data associated with 2019:Q1. The first vintage that
contains any 2019:Q1 data is the April 2019 vintage. Within a calendar quarter, the existing
quarterly values can be revised due to monthly frequency revisions of quarterly series like
GDP or monthly frequency series like Retail Sales.

Due to data availability and the timing of data releases, FRED-QD is not a balanced
panel. As we noted above, we introduce a new calendar quarter to the panel one month
into the following quarter. In this vintage, any series that is released with more than a
one-month lag is treated as missing (e.g., series associated with the Productivity and Costs
release by the BLS). In the following vintage, any series that is released with more than a
two-month lag is treated as missing (e.g., series associated with the Financial Accounts of
the United States (Z.1) data release by the Federal Reserve Board). In the final vintage
for that calendar quarter, all series have typically been released and there are no missing
values.* As an example, the vintages for July, August, and September 2019 were missing 41,
18, and 0 observations associated with 2019:Q)2, respectively. Another, less-regular reason
for missing observations arises during government shutdowns. For example, U.S. statistical
agencies were closed from December 22, 2018 through January 25, 2019. Because this led to
delays in the release of many series, the January 2019 vintage of FRED-QD, which typically
would be missing 40 or so observations associated with 2018:Q4 data, is instead missing 87

observations.

4The S&P PE ratio and dividend yield are taken from Shiller’s website. These series are updated less
consistently than the other series in the dataset. In some idiosyncratic cases, these may be missing for a
longer sequence of vintages.



All but thirty-eight series are available starting in 1959:QQ1. There are a variety of reasons
for series to have missing observations at the beginning of the sample: (1) Some series, like
Housing Permits, simply didn’t exist in 1959:QQ1 and only became available in 1960:Q1.
(2) Similarly, the Michigan Survey of Consumer Sentiment is missing two observation at
the beginning of the sample because the survey was not conducted on a regular basis until
1959:Q4. (3) For other series like the Trade-weighted Exchange Rate, the series is available
in FRED only through 1973:Q1, and we have not found other documented sources with
which to splice the series. (4) Finally, FRED primarily holds NAICS data (though some
older SIC data exist and are used whenever possible) from the Census Manufacturers Survey,
and hence a few Value of Manufacturer’s Orders components like Nondefense Capital Goods
and especially Consumer Goods have a limited history.

In many applications of big data, it is expected that the series are stationary. Since
it is clear that not all of the series in FRED-QD are stationary in levels, we also provide
benchmark transformation codes that are intended to transform the series so that they are
stationary. In each instance, a decision is made to treat the series in levels or log-levels,
and then, based on whether that series is considered I(0), I(1), or I(2), the variable is
differenced to the appropriate degree. For a given series x, these codes take the following
forms: (1) no transformation; (2) Awzy; (3) A2xy; (4) log(xy); (5) Alog(zy); (6) A2log(z);
and (7) A(z¢/xt—1—1.0). For most of the series, these codes are the original transformations
used by S&W. For series that we’ve added, many are monthly series taken from FRED-MD
that we have aggregated to a quarterly frequency. For these series we use the benchmark
transformation codes reported in FRED-MD. Finally, we also provide an indicator that

identifies those series in FRED-QD that were used by S&W to estimate factors.

3 Factor Estimates

In this section we provide an analysis of principal component analysis (PCA)-based factors
extracted from FRED-QD. Principal components remain a simple way of transforming the
information content in a large number of series into a smaller number of manageable series.
Once the components have been extracted they have been used for many purposes, including
recession dating (Stock and Watson, 2016), forecasting (Boivin and Ng, 2005), measuring
uncertainty (Jurado, Ludvigson, and Ng, 2015), and evaluating monetary policy (Bernanke
and Boivin, 2003). Under certain assumptions, principal components provide consistent
estimates of common factors and we will use the two terms interchangeably. We are mainly

interested in differences in the data through the lens of PCA rather than the method itself.



Another motivation for analyzing the factors is that we have purposefully benchmarked
FRED-QD to the large data set of quarterly frequency series used by S&W. In that paper,
the authors extract PCA-based factors and use them to disentangle the causes of the Great
Recession. Hence, as a means of verifying that we have adequately captured the information
in their data set, we also provide a direct comparison of factors extracted from FRED-QD
to those extracted from the original data set used by S&W.? To do so, we use the September
2019 vintage of FRED-QD, but only those observations and series that were used to estimate
factors in the original data set. Keeping in mind that FRED-QD does not have 10 of the
series in the original data set, but provides a substitute for one of them, this ultimately
gives us T' = 211 observations ranging from 1959:Q)1 to 2011:Q?3 and N = 125 or 132 series
when using FRED-QD or the original data set, respectively.

Because FRED-QD has missing values and outliers that we treat as missing,® we estimate
the factors by PCA adapted to allow for missing values. Our approach to doing so is closely
related to the EM algorithm given in Stock and Watson (2002). Each series is demeaned and
normalized to unit variance using the sample means and standard deviations respectively.
If the time ¢t = 1,...,7T observation for series ¢ = 1,..., N is missing, we initialize it to the
unconditional sample mean based on the non-missing values (which is zero since the data are
demeaned and standardized) so that the panel is re-balanced. Based on this panel, and for
a given number of factors r, a T X r matrix of factors F = (f1,..., fr)  and a N x r matrix
of loadings A = (A1,...,A\n)  are estimated using the normalization that N\/N = I,. We
then update the missing values for each series from zero to 5\; ft. This is multiplied by the
standard deviation of the series and the mean is re-added. The resulting value is treated
as an observation for series i at time ¢, and the mean and variance of the complete sample
are re-calculated. The process of demeaning, standardizing, and estimating the factors and
loadings is repeated using the updated panel. The iteration stops when the factor estimates
do not change.”

We then select the number of significant factors . We use the IC), criteria developed in
Bai and Ng (2002), which are generalizations of Mallow’s C), criteria for large dimensional
panels. The number of factors is chosen to minimize the sum of squared residuals while
keeping the model parsimonious. For this analysis, we use the penalty % log(min(N,T)),

which is shown by Bai and Ng (2002) to have good finite sample properties. This criterion

5The data are currently posted on Mark Watson’s website. https://www.princeton.edu/~mwatson/publi.html

5See Section 4 for further discussion.

"The dominant factors are almost identical when the missing values are imputed using the method in Bai
and Ng (2019b).



is referred to as /Cp2. For both the original data set and the subset of FRED-QD used for
this comparison, ICpy selects r = 4 factors.

In Figure 1 we plot the four factors based on each data set. The NBER recession
dates are shaded in grey. Visually, each of the four factors is very similar across the entire
sample.® This is particularly true for the first factor for which the two estimates are nearly
identical and have a correlation exceeding 0.99. The remaining three correlations are only
marginally lower, with values of 0.988, 0.968, and 0.980 for the second through fourth
factors, respectively.

While the figure gives a visual characterization of the similarities of the factors, it is
instructive to provide a more quantitative comparison. We do this by identifying which
series are best explained by the factors. To do so, we regress the i-th series in the data set
on a set of the r factors. For k = 1,...,r, this yields coefficients of determination R;(k)?
for each series 7. Because the factors are orthogonal and organized in decreasing order of
their respective eigenvalues, the incremental explanatory power of factor k for series ¢ is
mR2(k) = R?(k) — R?(k — 1), k =2,...,7 with mR?(1) = R?(1). The average importance
of factor-k is mR%*(k) = + SN mR2(k). Table 2 lists mR2(k) and the ten series with
the highest mR?(k) for factor k. The upper panel does so for the factors estimated using
FRED-QD, while the lower panel does the same but with the original S&W data set. To
simplify interpretation of the factors, we also include the group numbers for each of the ten
series.

A quick look at Table 2 immediately reinforces the visual similarity from Figure 1.
Regardless of which data set is used to estimate the factors, the total variation explained
by all four factors is nearly the same (i.e., 0.41), and the mR?(k) values are nearly the same
as well (i.e., 0.21, 0.09, 0.06, and 0.05 for factors k = 1,...,4). The similarity also carries
over to the top ten series with the highest mRZQ(k‘) values. While the rank ordering of the
series varies a bit, 10, 8, 9, and 9 of the top ten series coincide across the four factors,
respectively. This is convenient because it implies that the interpretation of the factors
remains unchanged when using FRED-QD rather than the original S&W data set. The
first factor is a real activity indicator that weighs heavily on series from the employment,
industrial production, and NIPA groups. The second factor is dominated by forward-looking
series such as term interest rate spreads and inventories. The third factor has explanatory
power concentrated in the prices group as well as housing sector prices. Finally, the fourth

factor is extensively weighted on both the price group and exchange rates.

8The factors have been multiplied by —1 where necessary to make the two estimates positively correlated.



Figure 1 and Table 2 suggest that FRED-QD provides a reasonable replication of the
original data set - at least through the lens of PCA-based factor analysis. Even so, it also
contains additional series not in the original S&W data set, and thus it is reasonable to
wonder if those series provide additional information. Using all of the series and observations
in FRED-QD, IC) selects three additional factors bringing the total up to » = 7. These
are plotted in Figure 2. The first two factors remain closely related to those constructed
using the S&W data set with correlations of 0.99 and 0.96, respectively. Beyond that,
the correlations drop off dramatically with the third and fourth factors only exhibiting
correlations of roughly 0.70.

The similarities and differences are more readily seen in Table 3. There we report the
marginal R? values associated with the seven factors identified using the entirety of FRED-
QD. As expected, the first two factors retain the same interpretation as those reported in
Figure 1 and Table 2. The first is a real activity factor that correlates strongly with series
in the Employment and Industrial Production groups, while the second remains a forward-
looking factor that correlates heavily on interest rate term spreads as well as housing permits
and starts. In contrast, while the third factor from the S&W data set was a mixture of
consumer prices and housing prices, when estimated using FRED-QD, the third factor is a
pure consumer price index with all of the top ten mR?(B) values associated with the Prices
group. In contrast, when using the full FRED-QD data set, the fourth factor appears to
be a second employment-oriented factor rather than a second prices-oriented factor, as we
observed using the S&W data set.

The interpretation of factors four to seven are less clear. While most of these factors
exhibit considerable correlation with series in the Earnings and Productivity group (i.e.,
group 7), a variety of other groups are represented. The fifth factor also correlates with
Employment and both the Household and Non-Household Balance Sheet groups, while the
sixth factor correlates with several series in the Money and Credit group. Finally, the
seventh factor appears to be a weaker version of the fifth factor insofar as it too correlates
heavily with several series in the Household Balance Sheet group. It is useful to note that
these smaller factors are discarded using the criterion in Bai and Ng (2019a) that guards

against outliers, an issue to which we now turn.

4 Qutliers and High Leverage Observations

As previously noted, we estimate the factors after first identifying any outliers. In this

section we provide a brief investigation into the importance of these outliers and the related



concept of high leverage observations. As in S&W, we define an outlier as an observation
that deviates from the sample median by more than ten interquartile ranges. By this defini-
tion, the S&W data set and the corresponding subset of FRED-QD each have seven outliers.
These are identified in 1971:Q1 and 1997:Q1 for a consumer credit series, in 2008:Q4 for
three producer price series, and in 2010:Q2 for federal employment and consumer loans.’
The full FRED-QD data has 30 outliers, 17 of which are found between 2008:Q1 and
2010:QQ4 and are predominantly bank reserves variables. Two interest rate variables and
a prices variable are also identified to be outliers in 1980:Q3/Q4, as well as oil price in
1974:Q1 and six Non-Household Balance Sheets variables between 2017:Q4-2018:Q1. As
exogeneity of these events is questionable, it is also debatable whether they should be re-
moved. In fact, without the outlier adjustment, the ICys criterion identifies eight factors
in the data instead of seven. Nonetheless, the first six factors estimated with and without
outlier adjustments are almost perfectly correlated, suggesting that the effect of outliers on
the largest factors is quite minimal.

The statistics literature makes a distinction between outliers and high leverage points.'?
In a regression context, a data point is said to have high leverage if its x values are far
from the mean of its x; values. FRED-QD has 248 series and 242 quarters, and it seems
likely that some series and some data points are more important than others. As discussed
in Mahoney (2011), statistical leverage scores can be informative about the non-uniform
structure of importance in the data. Consider a T x N data matrix X with singular
value decomposition X = UXV’ and assumed to have a low rank component of rank r.
The factor estimates reported above can be expressed as (F,A') = (VTU,,v/NV,D,). A
different aspect of the eigenvectors will now be explored. Let u(;) be the ¢-th row of the
T x r matrix of left singular vectors Uy, and v(?) be the i-th column of the 7 x N matrix of

right singular vectors V,/. Define the normalized row and column leverage scores as

I3 i 3

p=——2 0 oy 12
Sl 13 >y [l ®]13

As ZtT:1 Py = Zf\i . P" = 1, these probabilities also define an “importance sampling dis-
tribution” for the rows and the columns of X, respectively. The row scores are simply

the diagonal entries of the “hat” matrix sometimes used to detect influential observations

9For the S&W data, these are REVOLSL, WPU0561, PPIDC, PPITM, CES9091000001, and CON-
SUMER. For the subset of FRED-QD data, PPITM is replaced by WPSID61.

10Tn a regression setting with predictors z, an observation is an outlier if the residual or its standardized
variant is far from its mean. An influential point is one whose inclusion changes the estimates. See Chatterjee
and Hadi (1986) and Rousseeuw and Zomeren (1990).
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in regression settings. Here, it is used to evaluate the strength of each row of the top r
left singular vectors, giving information about the relative importance of the time series
data points. The column score evaluates the strength of each column of the top r right
singular vectors and hence is informative about the relative importance of the data in the
cross-section.

We compute the row leverage scores for the full and balanced FRED-QD data with and
without outlier adjustment. The results are similar, and hence to conserve space, in Figure
3 we plot the leverage scores for the full-sample of FRED-QD without outlier adjustment.
If the information is uniformly dispersed over time, each of the T observations should have
a score of % In the FRED-QD data, six data points account for 20% of the mass in p;:
2008:Q4, 2009:Q1, 1975:Q1, 1980:Q4, 1980:(02, and 2009:Q)2. These roughly coincide with
the outliers detected by the method of interquartile range.

Turning to the column leverage scores, each p’ should be % if information in the series is
evenly dispersed. This is apparently not the case, as the (unreported) histogram of p’ is quite
skewed. For the sub-panel of FRED-QD data corresponding to the S&W data set, the series
with the top three scores are the US /Euro exchange rate (EXUSEU), WPSID61, and PPIDC
regardless of whether an outlier adjustment is made. For the full FRED-QD panel, the
series with the top scores are COMPRMS, EXUSEU, GS5 without outlier adjustment, and
NWPIx, S&P 500, and real household networth (TNWBSHNOx) with outlier adjustment.
Apparently, the variables added to the full panel do change the information content of the
panel. Nonetheless, these variables are already known to play an important role in business

cycle modeling. This analysis simply reinforces their importance.

5 Transformation Codes

As we noted earlier, the data set provides benchmark transformation codes that are designed
to make each series stationary. After having made the decision that the series should be
managed in levels or log-levels, the transformation codes are first and second differences
based on whether the series is believed to be I(0), I(1), or I(2). In this section we revisit
the benchmark transformation codes and do so through the lens of unit root tests. In
particular, we apply unit root tests to each series in FRED-QD to see whether or not the
unit root tests imply the benchmark transformation codes.

For each series we apply two variants of the Dickey-Fuller GLS tests as delineated in
Elliott, Rothenberg, and Stock (1996). These two tests differ only in how the number

of autoregressive lags are chosen. One uses the Schwarz’s Information Criterion (SIC) to
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choose the appropriate number of lags, and the other uses a Modified Akaike Information
Criteron (MAIC), developed in Ng and Perron (2001).!! In each case the maximum number
of lags is based on the recommendation in Schwert (1989) and hence for a given sample size
T, kmax = [12(T/100)1/4].

We use the results of these tests to identify the appropriate transformation codes. For
example, recall that for the DFGLS tests, the null hypothesis is that the series is I(1).
Hence, if we fail to reject, the series is differenced and the test is repeated until we reject
the null. Depending on when this algorithm rejects the null determines the transformation
code. For each test, and at each stage of the algorithm, we consider nominally 5% tests of
the respective null.

For brevity we do not report the results of all the unit root tests. Instead, in Figure
4 we provide histograms of the implied transformation codes for all the series.'? In the
top diagonal of the first panel is the histogram of the codes reported in FRED-QD. All
series have transformation codes of either 1, 2, 5, or 6, and hence no series are considered
stationary in log-levels (4) or second differences of levels (3). By far the bulk of the codes
are bs, and hence the series are considered stationary in log-first differences. These patterns
change when we consider the unit root-based transformation codes. The largest changes
occur when using the MAIC variant of the DFGLS test. Here we find that much of the mass
associated with a code of 5 has shifted into a code of 6 leading to more than a doubling of the
number of series that require double differencing in log-levels. That said, some mass from
the 5s has settled into the 4s, suggesting that some of the series may be I(0) in log-levels
rather than log first differences. There is also a modest shift in mass from the 1s and 2s into
3s and hence the tests indicated some of the series are stationary in the second difference
of the levels. In contrast, the SIC-based DFGLS test implies more modest deviations from
the original transformation codes. There remains almost no mass on the 3s and 4s. The
largest deviation from the benchmark codes comes from a shift of mass from the 6s into the
5s and hence the SIC-based test indicates that some of the series have been overdifferenced.

The histograms convey the fact that the unit root tests can imply transformation codes
that don’t align with the benchmark codes. Nevertheless, they do not convey where the

changes are coming from. To address this issue, in Table 4 we report the median transfor-

111 unreported results we chose lag lengths based on the the Sequential t-test (Seq.t), as described in Ng
and Perron (1995). The results were very similar to those for the MAIC and hence we do not report them
for brevity.

12YWe omit nonborrowed reserves from these figures because it is the only series with a transformation code
of 7. This code exists because nonborrowed reserves, which should be positive, turned negative during the
financial crisis. This precludes the use of transformation code 5.
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mation by group. For the MAIC-based tests, much of the shift toward log second differences
occurs in the NIPA, Industrial Production, and Earnings and Productivity groups. In con-
trast, for the SIC-based tests, the biggest change occurs for Prices in which case the test
recommends treating Prices as log first differences instead of log-second differences. Both
versions of the DFGLS tests disagree with the benchmark codes for Housing, of which
several of the series are considered stationary in log-levels and hence do not need to be
differenced.

It’s clear that the unit root tests recommend changes in some of the transformations.
Even so, it’s worth keeping in mind that many of the unit root-implied codes continue to
coincide with the benchmark codes. It therefore need not be the case that factors based
on the benchmark codes deviate significantly from factors based on the unit root codes.
In Figure 5 we plot the first four factors based on the benchmark codes along with the
corresponding factors constructed after using the unit root test determined codes. For the
15 factor, the SIC- and benchmark-implied factors largely coincide and exhibit a correlation
of 0.95. In contrast, the MAIC-based variant deviates substantially from that constructed
using the benchmark codes, with which they have a modest correlation of 0.56. For the
remaining factors, substantial differences exist among the unit root-implied factors and
those based on the benchmark codes.

In Table 5, more detailed evidence on the differences in the factors can be gleaned from
the marginal R? values for the factors plotted in Figure 5. Rather than go through these
in detail we make only a few notable observations. One noticeable distinction among the
factors is that while the MAIC-based factors remain heavily concentrated in the employment
and industrial production groups, the mR?(1) values are substantially lower than those
associated with the benchmark and SIC-based codes. This likely follows from the propensity
of the MAIC-based unit root tests to treat many NIPA and employment series as I(2) rather
than (1), which, apparently, leads to a loss of information due to overdifferencing. Another
is the relatively clear interpretability of the SIC-based factors. The first factor is a clear
employment factor, while the second is a pure consumer prices factor. The third is arguably
an unemployment factor, and the fourth is heavily correlated with producer prices with an

emphasis on energy and, specifically, oil prices.

6 Predictability of Factor-based Models

In this section we investigate the usefulness of factors for predicting macroeconomic aggre-

gates. The structure of the forecasting exercise is motivated by a similar forecasting exercise
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conducted by Stock and Watson (2012b). Specifically, we construct 1- and 4-quarter-ahead
forecasts of Real GDP (log-level), Industrial Production (log-level), the Unemployment rate
(level), and the Federal Funds Rate (level), as well as the CPI, PCE, GDP deflator, and
PPI price indices (each in log-level). These variables were chosen based on the results of
the unit root tests in the previous section, with an eye toward emphasizing the role that
transformation codes have on the predictive content of factors. For each permutation of the
eight dependent variables Y and two horizons h, we have three goals: (1) document that the
FRED-QD factors have predictive content above-and-beyond that contained in a baseline
autoregressive model, (2) document whether the choice of transformation codes can have
a material effect on the predictive content of factors extracted from FRED-QD, and (3)
document those factors that exhibit the most predictive content for the target variables.

In each case, the models used for forecasting take the direct multistep form

p—1
yt(h) =ap+ Zﬁj('h)yt—h—j +6W €£h) (1)
=0
where
Y, if V; is 1(0)
y = Y, — Yion if Y is I(1) . 2)

Y =Y n — hAY; p, if Yy is I(2)

For brevity, when h = 1 we drop the superscript and define yt(l) as y¢. At each forecast origin

(h)

i h is then constructed

the model is estimated by OLS, and the h-step-ahead forecast of y
as
p—1
~(h) _ 4 5(h s(h
oy = ang+ > By + 60 £ (3)
j=0

Forecasts of Y, are then computed in accordance with the order of integration of Y:

o) if Y; is 1(0)
Yin = Y, + yt(}if if Yy is I(1) . (4)

Y: +hAY; + 30 if Yy is 1(2)

Following Stock and Watson (2012b), we fix the number of autoregressive lags p at 4
and only consider a single lag of the factor(s). Since it is not obvious which of the 7 factors
should be used to forecast any particular target variable, and since those factors could vary
by horizon, we consider all 27 — 1 = 127 possible choices of f; as a potential predictor.
Hence, in some cases, f is a scalar consisting of just one of the 7 possible factors, while in

other models f is a vector consisting of up to all 7 factors.
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All models are estimated using a rolling window of 106 (109) observations when h = 1
(4). The first forecast origin is R = 1985:Q1 + h, and the last forecast origin is T =
2018:Q4 — h, for a total of P = 134 (128) forecasts. At each forecast origin we estimate
the factors two different ways. For the first, we use the benchmark transformation codes
provided in FRED-QD. For the second, at each forecast origin we perform unit root tests
on all series in FRED-QD using the past 106 (109) observations when h = 1 (h = 4). Based
on the outcome of these tests, we select transformation codes using the same algorithms
described in the previous subsection. For brevity, we only consider the SIC-based DFGLS
unit root test in this forecasting exercise. Using the MAIC-based unit root test leads
to different results. Owur goal is not to provide the “correct” set of results, but rather
to demonstrate that sticking to previously established transformation codes may lead to
inferior results.!?

It’s important to keep in mind that by taking a rolling window approach to forecasting,
we have potentially time-varying transformation codes and this has multiple effects on our
forecasting exercise. Obviously, different transformation codes lead to distinct estimated
factors as shown in Figure 5. In addition, given our direct multi-step forecasting environ-
ment, different transformation codes also lead to time varying definitions of " . For this

h)

reason we measure accuracy of the forecasts relative to Y rather than y( In particu-

lar, we evaluate accuracy of the forecasts under quadratic loss using mean squared errors
P n(Yign — Yin)

For each target variable Y and horizon h, there is a benchmark AR(4) model that
is estimated using the original (OLD) transformation codes. In addition, there are 127
models that augment the benchmark AR(4), with at least one factor formed using the OLD
transformation codes. The same is done using transformation codes based on the unit-root
testing algorithm (NEW). This leads to 128 more models, including an AR(4) based on the
NEW codes and 127 models that augment this AR(4) with at least one of the seven factors.

For each of the 254 models that include at least one factor, we conduct a one-sided
test of the null that the factors do not contribute finite-sample predictive content relative
to the benchmark AR(4). The null is stated in the context of the test of unconditional
finite-sample predictive ability advocated by Giacomini and White (2006). However, in
contrast to their recommended testing procedure, we follow Coroneo and Fabrizio (2018)

and apply a Fixed-b asymptotic approximation to the test statistic. Specifically, for each

13Tn part we focus on the SIC-based factors because of our intution on what some transformations “should”
be. For example, MAIC-based tests recommend treating real GDP as I(2) in log-levels. This does not strike
us as reasonable.
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model 7 = 1,...,254 that includes at least one factor, the test statistic takes the form
p-1/2 ZZ;RW%-FMAR — ﬁ?+h7j)/d)j where cf)]2 is an estimate of the long-run variance of
0? " hAR ™ 0? n,j- This is estimated using the Bartlett kernel and bandwidth |1.3v/P] +1 as
advocated in Lazarus, Lewis, Stock, and Watson (2018). Critical values for the asymptotic
distribution are approximated using the formula provided in Table 1 of Kiefer and Vogelsang
(2005; p. 1146).

While this testing procedure allows us to ascertain whether the factors exhibit finite-
sample predictive content beyond that in the benchmark AR(4), there is an obvious multiple-
testing problem. To mitigate the potential for multiple testing, we provide complementary
evidence on accuracy using the model confidence set procedure advocated by Hansen, Lunde,
and Nason (2011). This allows us to identify the subset of all 256 models that are statistically
as accurate as the single most accurate model. Note that this information is related to, but
not the same as, the previous test comparing each model to the benchmark. For example,
it could be the case that the benchmark is the best model, and hence factors do not provide
additional predictive content. Even so, many of the factor-based models may be contained
in the model confidence set because they are approximately as accurate as the benchmark.
With this difference of interpretation in mind, we use the Tp Aq = max; jerm |t ;| statis-
tic when implementing the model confidence set procedure. The distribution of this test
statistic is approximated using a circular block bootstrap with block length | = 12 using
software distributed by Sheppard (2018).To help identify the most accurate models, we use
a restrictive significance level of 25% - that is associated with the model confidence set
Mips. 14

Rather than report all of the testing results, we focus on a concise subset that provides
evidence on our three forecasting goals. For each permutation of target variable Y and
horizon h, we report the root mean squared error (RMSE) for the benchmark AR(4), along
with the relative RMSEs associated with the ten most accurate models. An asterisk denotes
whether or not the models were more accurate than the AR(4) at the 5% level using the
Fixed-b critical values. In addition, we report the number of OLD and NEW models that
outperform the benchmark AR(4). Finally, we report the number of models contained in
the model confidence set. Since we want to identify the importance of the transformation
codes, we also specify the number of models in the model confidence set that use the NEW

factors based on the unit-root driven transformation codes.

111 unreported work, we also considered a weaker 10% level of significance. For several of the variables,
nearly all of the models were included in the model confidence set despite, what appeared to be, substantial
differences in MSEs.
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Tables 6 and 7 provide the results. In the first table we focus on the real and financial
target variables, while in the second we focus on the price series. In Table 6 we find
numerous evidence that the factors can provide additional predictive content beyond that
of the benchmark AR(4). For all four target variables and at both forecast horizons, the
number of factor-based models that significantly outperform the benchmark range from as
low as 3 models when forecasting the federal funds rate at the one-quarter horizon, to as
high 142 models when forecasting the unemployment rate at the four-quarter horizon. To
be fair, many of those that outperform the benchmark only do so to a modest degree. The
largest gains occur for the unemployment rate at the four-quarter horizon where accuracy is
improved by a substantial 25%. For the other target variables and/or horizons, the largest
gains range from 17% to as low as 3%.

One obvious feature of Table 6 is the dominance of the factors constructed using the OLD
transformation codes. Across all target variables and horizons, exactly 16 out of a possible 80
top ten most accurate models are based on factors estimated using the NEW transformation
codes. Seven of these instances occur when forecasting GDP growth, another seven occur
when forecasting the federal funds rate, and the remaining two occur when forecasting the
unemployment rate, and in all cases these occur at the four-quarter horizon. In addition,
for all but one permutation of target variable and horizon, there are more models based on
the OLD transformation codes that outperform the AR(4) benchmark.

Among those factor-based models that perform in the top ten, it isn’t obvious that
one particular factor is dominant and should always be used when forecasting. Even so, it
is true that at least one of the first two factors (i.e., 1 or 2) occur in all but two top ten
factor-based models. While that might suggest that those factors associated with the largest
eigenvalues provide the most predictive content, one should not conclude the contributions
are monotone. There are many instances, like that when forecasting industrial production
at either horizon, where the 2"?, 6t and 7*" factors are included, but the 1%, 37, 4% and
5% are not. It’s also worth noting that the number of factors necessary to improve accuracy
relative to the benchmark AR(4) varies across series and, to a lesser extent, horizon. When
forecasting the federal funds rate, maximal gains are achieved when including only two
factors, but when forecasting the unemployment rate, the best models include five factors.
In fact, there are instances in which including all seven factors in the model lead to forecasts
of the unemployment rate and GDP growth that outperform those based on the benchmark
AR(4) model.

Moving to Table 7, that associated with predicting the four price series, we again find
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substantial evidence that the factors can provide marginal predictive content beyond the
benchmark AR(4). In some cases, like when forecasting the GDP-deflator at the four-
quarter horizon, the number of factor-based models that have marginal predictive content
is as low as 42, but in other cases, like when forecasting PPI at the same horizon, the
number is as high as 191. Relative to the benefits of using factor-based models observed
in Table 6, the top gains are typically smaller. When forecasting PPI at the four-quarter
horizon, the gains are as large as 23% but are less than 10% for all other permutations of
target variable and horizon.

But in contrast to the results in Table 6, when forecasting prices, factor-based models
using the NEW transformation codes generally dominate those that use the OLD codes.
Among the 80 possible top ten models, only 19 are based on models that use the OLD
transformation codes. Interestingly, none of these instances occur when forecasting PPI,
which is dominated by factors estimated using the NEW transformation codes. In addition,
relative to Table 6 there tends to be more models in the confidence set that use the NEW
transformation codes. Similarly, relative to Table 6 a larger number of factor models that
use the NEW transformation codes outperform the benchmark AR(4) — and do so especially
at the longer forecast horizon.

In terms of which factors are most useful for forecasting, there is a bit more heterogeneity
when forecasting prices. In Table 6, nearly every top ten model had at least one of the first
two factors based on either the OLD or NEW transformation codes. While it is the case
that a majority of the top ten models in Table 7 contain one of the first two factors, some
of the best models include neither of the first two factors and, instead, include the 4" or
5" factor — this is particularly true when forecasting PPI for either forecasting horizon.
Nevertheless, it remains true that many of the top 10 models contain more than just one

or two factors and, in fact, several include as many as five or six factors.

7 Conclusion

As was the case for FRED-MD, the purpose of introducing FRED-QD is to provide easy
access to a large set of macroeconomic data that can be used to conduct research using “big-
data” methods. The primary difference between the two data sets is simply that FRED-QD
provides quarterly frequency data and, as such, permits the inclusion of lower frequency
series like those from the NIPA releases. Regardless of this difference, like FRED-MD, the
data set has been, and will continue to be, updated by the data specialists at FRED on

a regular basis to account for newly released data, data revisions, and other complicating
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issues that sporadically arise with data collection. We (again!) sincerely thank them for

their support in this work.
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Figures and Tables

Table 1: Series adjusted by FRED-QD

Number Variable Adjustment

60 Unemployment Rate (< 27 weeks) (UNEMPLOY - UEMP270V)/CLF160V

61 Unemployment Rate (> 27 weeks) UEMP270V/CLF160V

80 Help-Wanted Index splice LMJVTTUVUSM647S with Barnichon series

88 Real Manu. and Trade (i) adjust MO602BUSM144NNBR for inflation using PCEPI
(ii) seasonal adjust with ARIMA X12
(iii) splice with NAICS series CMRMTSPL

89 Retail/Food Sales splice SIC series RETAIL with NAICS series RSAFS

90 New orders (durables) splice SIC series AMDMNO and NAICS series DGORDER

92 Unfilled orders (durables) splice SIC series AMDMUO and NAICS series AMDMUO

93 New orders (nondefense) splice SIC series ANDENO and NAICS series ANDENO

130 Crude Oil splice OILPRICE with MCOILWTICO

153 30yr Mortage to 10yr Treasury MRTG - GS10

154 6mth Thill - 3mth Thbill TB6M - TB3M

155 lyr Treasury - 3mth Thbill GS1 - TB3M

156 10yr Treasury - 3mth Thill GS10 - TB3M

157 3mth Commercial - 3mth Tbill CPF3M - TB3M

172 Household/Nonprof Liab to Income TLBSHNO/PI

174 Household/Nonprof Networth to Income TNWBSHNO/PI

178 S&P 100 Volatility: VXO splice Bloom series with VXOCLS

184 Switzerland/U.S. FX filled back to 1959 from Banking/Monetary statistics

185 Japan/U.S. FX filled back to 1959 from Banking/Monetary statistics

186 U.K./U.S. FX filled back to 1959 from Banking/Monetary statistics

187 Cdn/U.S. FX filled back to 1959 from Banking/Monetary statistics

188 Consumer Sentiment splice UMSCENT1 with UMSCENT

220 Help Wanted to unemployed HWI/UNEMPLOY

221 Initial Claims splice monthly series M08297USM548NNBR with weekly ICSA

222 Business Inventories splice SIC series and NAICS series BUSINV

223 Inventory to sales splice SIC series and NAICS series ISRATIO

224 Consumer credit to P.I. NONREVSL/PI

235 Business Liabilities to Income TLBSNNCB/BDI

238 Business Net Worth to Income TNWMVBSNNCB/BDI

240 NonCorp Busi. Liabilites to Income TLBSNNB/BDI

243 NonCorp Busi. Net Worth to Income TNWBSNNB/BDI

244 Business Income (CNCF - FCTAX)/IPDPS
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Figure 1: FRED-QD and S&W Factor Estimates
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Note: This figure shows the estimates of factors 1-4 for both the S&W and FRED-QD data sets. For estimation of
factors in the FRED-QD data set, only series and observations that correspond to those in the S&W data set are
used.
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Figure 2: FRED-QD Factor Estimates
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Note: This figure plots the PCA-based factors estimated using the full FRED-QD data set
based on the benchmark transformation codes.
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Figure 3: FRED-QD Leverage Scores
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Note: This figure plots the statistical leverage score, pt, of each quarter. Blue circles represent quarters where at least
one series’ value was an outlier and are sized relative to how many outliers were detected.
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Table 4: FRED-QD Median Transformation Codes by Group

Group | Group Name OLD | SIC | MAIC
1 NIPA 5 5 6
2 Industrial Production 5 5 6
3 Employment and Unemployment | 5 5 5
4 Housing 5 4.5 4.5
5 Inventories, Orders, and Sales 5 5 6
6 Prices 6 5 6
7 Earnings and Productivity 5 5 6
8 Interest Rates 1.5 1 2
9 Money and Credit 5 5 5
10 Household Balance Sheets 5 5 5
11 Exchange Rates 5 5 5
12 Other 1.5 1 1
13 Stock Markets 5 5 5
14 Non-Household Balance Sheets 5 5 5
All 5 5 5
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Figure 4: FRED-QD Transformation Code Frequency by Group
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Note: Each subpanel provides a histogram of frequencies of transformation codes. “OLD”
refers to the benchmark codes provided in FRED-QD. “SIC” and “MAIC” refer to codes
implied by the associated DFGLS unit root test.
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Figure 5: FRED-QD Factor Estimates by Method of Series Transformation

Factor 1 Estimates

NBER Recession
OLD

1965 1975 1985 1995 2005 2015

Note: This figures plots the first four PCA-based factors corresponding to the benchmark (OLD) codes and those
implied by the unit root tests (SIC and MAIC).
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Table 6: FRED-QD Factor-based Forecasts of Real and Financial Series

Horizon

=1

GDPC1

INDPRO

UNRATE

FEDFUNDS

AR(4) RMSE = 0.0053804

AR(4) RMSE = 0.0088442

AR(4) RMSE = 0.19716

AR(4) RMSE = 0.40622

Top 10 Models

Top 10 Models

Top 10 Models

Top 10 Models

Factors Codes | Ratio | Factors | Codes | Ratio Factors Codes | Ratio | Factors | Codes | Ratio
1,2,5,7 Old 0.94% | 2,6,7 Old 0.86* 1,2,3,5,6 Old 0.83% | 2,6 Old 0.97*
1,2,5 old | 094* | 12,7 old | 087 | 1256 old | 083 |2 old | 0.98*
1,2,3,4,5,6,7 | Old 0.94*% | 2,5,6,7 Old 0.87* 1,2,3,6 Old 0.83% | 24 Old 0.98*
1,2,3,4,5,7 Old 0.95% | 2,7 Old 0.87* 1,2,5,6,7 Old 0.83*% | 2,4,6 Old 0.99
2,5,6 old 0.95% | 2,6 old 0.87* 1,2,3,4,56 | Old 0.84% | 6 old 1.00
1,2 Old 0.95% | 1,2 Old 0.87* 1,2,6 Old 0.84*% | 2,6,7 Old 1.00
1,2,7 Old 0.95% | 1,2,6,7 Old 0.88%* 1,2,3,5,6,7 Old 0.84*% | 2,56 Old 1.00
1,2,5,6,7 old 0.95% | 1,2,6 old 0.89* 1,2,3,6,7 old 0.84* old 1.00
1,2,3,4,5,6 Old 0.95*% | 2,5,6 Old 0.89%* 1,2,3,4,6 Old 0.84*% | 2,3 Old 1.00
1,2,3,4,5 old 0.95% | 2 old 0.89% | 1,2,4,5,6 ol 0.84% | 2,36 old 1.00
# in MCS = 256 # in MCS = 55 # in MCS = 66 # in MCS = 123

# New in MCS = 128
# Old = AR(4) = 57
# New = AR(4) = 3

# New in MCS =9
# Old > AR(4) = 66
# New = AR(4) = 29

# New in MCS = 13
# Old >~ AR(4) = 96
# New = AR(4) = 42

# New in MCS = 45
# Old = AR(4) = 3
# New = AR(4) =0

Horizon

=4

GDPC1

INDPRO

UNRATE

FEDFUNDS

AR(4) RMSE = 0.016498

AR(4) RMSE = 0.037483

AR(4) RMSE = 0.85051

AR(4) RMSE = 1.4129

Top 10 Models

Top 10 Models

Top 10 Models

Top 10 Models

Factors Codes | Ratio | Factors | Codes | Ratio Factors Codes | Ratio | Factors | Codes | Ratio
1.2 New | 0.86% | 2,6,7 Old | 0.88% | 2,3,4,6,7 Old | 0.75% | 1,2 New | 0.92%
1,2,6 New 0.87% | 2,7 Old 0.89* 1,2,3,4,5,7 New 0.75*% | 1,2,7 New 0.94*
1,2,5 New 0.88*% | 2,6 Old 0.90* 2,3,4,6 Old 0.75*% | 1,2,5 New 0.95*
2 New | 0.88* | 2 old | 090% | 236,77 old | o075 |2 New | 0.96
2,6 New 0.89*% | 24,7 Old 0.90* 2,3,4,5,6,7 Old 0.76* | 1,2,5,7 | New 0.97*
1,2,5,6 New 0.89% | 2,5,7 Old 0.91* 2,3,6 Old 0.76*% | 2,7 New 0.99*
2,3,4,5,6 old | 089* | 2467 | 0ld | 091* | 1234567 | 0d | 076* |6 old | 0.99*
1,2,3,4,5 Old 0.89*% | 2,5,6,7 Old 0.91%* 1,2,3,4,5,6 Old 0.76*% | 2,5 New 1.00
2,3,4,6 old 0.90% | 2,5 old 0.91* | 1,2,34,6,7 | New | 0.76* | 2,4,6 old 1.00
1,2,4 New | 0.90% | 2.4 od | 092¢ |12345 old | 0.76* old 1.00
# in MCS = 135 # in MCS = 98 # in MCS = 124 # in MCS = 17

# New in MCS = 51
# Old > AR(4) = 62
# New > AR(4) = 34

# New in MCS = 27
# Old >~ AR(4) = 64
# New = AR(4) =0

# New in MCS = 60
# Old > AR(4) = 78
# New > AR(4) = 64

# New in MCS = 11
#0ld - AR(4) =1
# New = AR(4) =6

Notes to Table 6 and 7: This table lists the 10 forecasting models with the lowest RMSE for four series at the 1-quarter
and 4-quarter horizons. The combination of factors, use of old or new codes, and ratio of RMSE with the benchmark model
(AR(4) w/ old codes) are given. Asterisks denote if the model is significantly better than the baseline at the 5% level using
Fixed-b critical values. The # of total/New models in the MCS and the # of Old/New models significantly better than the
baseline model are also listed for each dependent variable and horizon.
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Table 7: FRED-QD Factor-based Forecasts of Price Series

Horizon = 1

CPIAUCSL

PCECTPI

GDPCTPI

PPIACO

AR(4) RMSE = 0.0051166

AR(4) RMSE = 0.0036182

AR(4) RMSE = 0.0019032

AR(4) RMSE = 0.020314

Top 10 Models

Top 10 Models

Top 10 Models

Top 10 Models

Factors Codes | Ratio | Factors Codes | Ratio Factors | Codes | Ratio Factors | Codes | Ratio
1,4,7 New 0.97% | 1,7 New 0.97* 1 New 0.95% 4 New 0.91%*
1,7 New 0.97% | 1,2,7 New 0.97* 1,4 New 0.95% 4,5,6 New 0.91%*
3,4,5,6,7 Old 0.97% | 2,5,6,7 Old 0.98%* 1,3 Old 0.95% 1,4 New 0.91*
1,3,7 New | 0.97* | 2,6,7 old | 098 | 1,34 New | 0.96% | 4,5 New | 0.91%
3,4,6,7 Old 0.97* | 1,2,6,7 New 0.98%* 1,2 Old 0.96* 4,5,7 New 0.91%*
1,3,4,7 New | 0.98% | 24,6,7 | Old | 0.98* | 1,23 old | 096* |46 New | 0.91%
3,4,5,6 old | 0.98* | 2,46 old | 0.98* | 14,7 New | 0.97% | 1,456 | New | 0.91*
1,6,7 New 0.98*% | 2,6 Old 0.98%* 1,5 New 0.97* 1,4,6 New 0.91%*
1,4,6,7 New | 0.98* | 1,2,3,7 | New | 0.98* | 1,24 New | 0.97% | 456,7 | New | 0.91*
3,4,6 old | 0.98* | 2,56 old | 098 | 1,46 New | 0.97% | 14,5 New | 0.91%
# in MCS = 214 # in MCS = 193 # in MCS = 64 # in MCS = 256

# New in MCS = 105
# Old = AR(4) = 34
# New > AR(4) = 23

# New in MCS = 88
# Old >~ AR(4) = 34
# New > AR(4) = 19

# New in MCS = 33
# Old » AR(4) = 38
# New > AR(4) = 35

# New in MCS = 128
# Old >~ AR(4) = 16
# New = AR(4) = 128

Horizon = 4

CPIAUCSL

PCECTPI

GDPCTPI

PPIACO

AR(4) RMSE = 0.015208

AR(4) RMSE = 0.011441

AR(4) RMSE = 0.006606

AR(4) RMSE = 0.068741

Top 10 Models

Top 10 Models

Top 10 Models

Top 10 Models

Factors Codes | Ratio | Factors Codes | Ratio Factors | Codes | Ratio Factors | Codes | Ratio
1,2,3,4 New 0.90* | 1,2,3,4,7 | New 0.96* 1,2,7 Old 0.94* 2,57 New 0.77*
1,2,3,5 New | 0.91% | 2,5 old 0.96* | 1,2,3,7 | Old 0.95* 2,5 New | 0.77*
1,2345 | New | 091* | 1,234 | New | 0.96* | 1,5 New | 0.95% 2,457 | New | 0.77%
1,2,3,5,7 New 0.91*% | 1,2,3,7 New 0.97* 1,5,6 New 0.95% 4,5,7 New 0.77*
1,2,34,7 | New | 0.92* | 1,23 New | 0.97% | 1,57 New | 0.96* 2,45 New | 0.77*
1,2,3 New | 0.92% | 5 old 0.97* | 1,5,6,7 | New | 0.96* 5,7 New | 0.77*
1,2,3,4,5,7 | New 0.92*% | 4,5 New 0.97* 1,2,5,7 Old 0.96* 5 New 0.77*
234,57 | New | 0.92% | 24,5 old 0.98% | 1 New | 0.96* 2,5,6 New | 0.77*
1,2,3,7 New | 0.93* | 1,2357 | New | 0.98% | 1,6 New | 0.96* 4,5 New | 0.77*
2,3,5,7 New 0.93* | 2,34 New 0.98%* 1,6,7 New 0.96* 2,5,6,7 | New 0.77*
# in MCS = 103 # in MCS = 72 # in MCS = 155 # in MCS = 256

# New in MCS = 71
# Old »~ AR(4) = 26
# New > AR(4) = 84

# New in MCS = 54
# Old = AR(4) = 11
# New > AR(4) = 36

# New in MCS = 85
# Old >~ AR(4) = 19
# New > AR(4) = 23

# New in MCS = 128
# Old > AR(4) = 63
# New > AR(4) = 128
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Appendix

FRED-QD is a quarterly frequency companion to FRED-MD. It is designed to emulate the dataset
used in “Disentangling the Channels of the 2007-2009 Recession” by Stock and Watson (2012, NBER
WP No. 18094) but also contains several additional series. The columns denote the following: (i)
ID denotes the series number, (ii) SW ID denotes the series number in SW (2012), (iii) TCODE
denotes one of the following data transformations for a series z: (1) no transformation; (2) Axy;
(3) A%zy; (4) log(my); (5) Alog(wy); (6) A%log(xy). (7) A(xy/xi—1 — 1.0), (iv) SW FACTORS denotes
whether a series was used in SW (2012) when constructing factors (i.e. 1 is yes and 0 is no), (v)
FRED MNEMONIC denotes the mnemonic we use for the dataset, (vi) SW MNEMONIC denotes the
mnemonic used in SW (2012), and (vii) DESCRIPTION gives a brief definition of the series. The
series are loosely grouped based on SW (2012).

Details on construction of the data will be forthcoming, but a few general comments are in order.
First, if the FRED mnemonic does not end in “x” then the series comes directly from the FRED
database (e.g. PCECC96; real PCE). Otherwise, the series is a modified variant of a series from
FRED (e.g. PCDGx; nominal PCE durables is manually deflated using the PCE price index).
The exception to this rule is the S&P data, which is taken from public sources. Lastly, monthly
frequency series are aggregated to a quarterly frequency using averages.
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