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This paper investigates the effect of firm size and 

ownership structure on technology adoption decisions, 

using data on the electric utility industry. We argue 

that traditional models of technology diffusion are sub- 

ject to sample selectivity biases that may overstate the 

effect of firm size on adoption probabilities. By exten- 

ding conventional hazard rate models to use information 

on both adoption and non-adoption decisions, we differen- 

tiate between firms' opportunities for adoption and their 

underlying adoption propensities. The results suggest 

that large firms and investor-owned electric utilities 

are likely to adopt new technologies earlier than their 

smaller and publicly-owned counterparts. Moreover, the 

selection biases from conventional statistical models can 

lead one to overstate size effects by a factor of two and 

to understate ownership structure and factor cost effects 

by two to four times. 
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1. Introduction 

Economists have long been interested in under- 

standing the determinants of technology diffusion across 

firms and industries.1 An important set of questions in 

this area concerns "Schumpeterian" hypotheses of the 

influence of competition and firm size on innovation. 

Much of the theoretical and empirical work on process 

technology diffusion suggests that firm size may play an 

important role in decisions to adopt new technologies, 

perhaps as a proxy for such factors such as risk aver- 

sion, participation in research and development activi- 

ties, or economies of scale in using the innovation. 

Recent empirical studies yield mixed results, however, on 

the question of whether larger firms are more or less 

innovative than are their smaller counterparts (see 

Oster, 1982, Hannan and McDowell, 1984, and Levin, Levin, 

and Meisel (hereafter LLM) , 1987). 

This paper uses data on steam-electric generating 

technology to analyze patterns of process technology 

diffusion across firms. By restricting the study to the 

electric utility industry, we abstract from competitive 

and market structure effects: virtually all firms 

operate as local monopolies subject either to rate of 

return regulation in the case of investor-owned utilities 

(lOUs) or to other forms of control in the case of most 

1 See for example, Griliches (1957), Mansfield 
(1968), David (1969), and Nasbeth and Ray (1974). 
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government and cooperatively-owned utilities.2 This 

allows us to focus the analysis on the role of firm size 

and two other determinants of technology diffusion sug- 

gested by the theoretical and empirical literature: 

factor cost differences that influence the expected cost 

savings from adopting an innovation and firms' ownership 

structures. The nature of our data also makes it 

possible for us to distinguish between measured size 

effects resulting only from differences in opportunities 

to adopt and those resulting from an underlying propen- 

sity to adopt new technologies quickly. 

Two steam-electric generating technologies are 

analyzed in the paper: high pressure conventional units 

(2400 pounds per square inch (psi)) and very high 

pressure supercritical units (above 3206 psi).3 The 2400 

psi technology was first introduced in 1953 and began to 

2 The existence of de facto exclusive retail 
franchises and rate-of-return regulation need not imply 
that firms have no incentives to undertake cost-reducing 
investments. For investor-owned utilities (bus), 
regulatory lag provides strong incentives to invest in 
cost saving technologies (Joskow, 1974). Other mecha- 
nisms through which investment incentives may operate 
include the threat of municipal condemnation (takeovers) 
and the possibility of wholesale power transactions with 
other utilities. All three of these mechanisms operated 
during our sample period and were particularly prominent 
during the l95Os and l960s, when most of the generating 
units in our sample were planned. 

These technologies are discussed in Joskow and 
Rose (1985). We do not consider nuclear power techno- 
logies; see Sommers (1980) for a study of nuclear power 
technology choice. 



3 

diffuse fairly widely by 1958; the supercritical technol- 

ogy was first introduced in 1957 but diffused much more 

slowly. We use data on 144 utilities that built steam 

generating units between 1950 and 1980 to estimate the 

determinants of firms' decisions to adopt each of these 

technologies. Results from a broad range of statistical 

specifications suggest that larger firms and investor- 

owned utilities tend to adopt new technologies earlier 

than do small firms and municipal or cooperative 

utilities, conditional on equal factor prices. Our 

finding of positive correlations between firm size and 

the speed of technology adoption is similar to the 

conclusions reached by Sommers (1980) with respect to 

nuclear power, by Hannan and McDowell (1984) with respect 

to the banking industry, and by many of the case studies 

in Mansfield (1968) and Nasbeth and Ray (l974). This 

result stands in contrast to Oster's (1982) conclusion 

that large firms were slower to adopt innovations in the 

steel industry and to LLM's (1987) conclusion that firm 

size does not affect technology adoption by grocery 

stores. 

We also find that controlling for differential 

opportunities to adopt is critical to the results. Large 

These studies do not, however, control for 
differential adoption opportunities. As discussed at 
greater length below, this may bias their results toward 
estimating positive relationships even when no relation- 
ship exists. 
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firms have a higher probability of building a new genera- 

ting unit of any kind in a given year, other things 

equal. Failing to account for these higher building 

probabilities leads one to overstate size effects on 

adoption propensities by a factor of two and to under- 

state the effects of ownership structure and potential 

cost savings on adoption propensities for the 2400 psi 

technology. 

The paper is structured as follows: In the next 

section we briefly discuss theoretical and empirical 

models of interfirm technology diffusion. Section 3 

describes the particular innovations we study and the 

factors likely to affect their diffusion. Statistical 

models of adoption decisions are developed and compared 

in section 4 and estimates from these are reported in 

section 5. Conclusions are contained in the final 

section. 

2. The Diffusion of New Technoloies 

Theoretical models of technology diffusion have 

attracted increasing attention in recent years; see 

Stoneman (1986) and David (1986) for overviews. Although 

the specific predictions depend upon the assumptions and 

focus of each model, a common Set of factors that should 

influence the diffusion process tends to emerge. These 

include expected cost savings from adopting the 



innovation, competitive conditions and technological 

characteristics that affect the appropriability of gains, 

and characteristics that influence the expected profit- 

ability of the innovation or firms' "willingness to 

innovate," such as economies of scale or of learning in 

using the innovation, firm participation in complementary 

R&D activity, and discount rates. A diffusion path 

typically is generated by assuming that the cost of 

adopting the innovation declines through time. Firms' 

relative positions along this path are determined by 

their characteristics: firms with lower discount rates 

will adopt before firms with higher discount rates, 

larger firms will adopt sooner than smaller firms if 

economies of scale are important, firms with high factor 

costs will adopt innovations that increase input effi- 

ciency earlier than will firms with low factor costs. 

Early theoretical work assumed that the costs and 

benefits of the innovation were known. More recent 

papers have relaxed these assumptions and emphasized the 

effects of uncertainty. In these models diffusion paths 

can be generated as uncertainty about the technology is 

resolved over time. Adoption decisions are influenced by 

firms' prior estimates of the mean and variance of the 

innovation's returns, their information updating proces- 

ses and risk aversion, and the expected path of future 

technological change. These models suggest that more 
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risk averse firms will be slower to adopt innovations, 

that firms may make mistakes (adopt technologies that are 

ex post unprofitable and fail to adopt those that are ex 

post profitable), and that interfirm diffusion will be 

slower when innovations are perceived to be riskier. 

Institutional characteristics also may play an 

important role in determining the path of diffusion. Of 

these, the theoretical literature has been most concerned 

with possible vintage or "history" effects induced by the 

embodiment of technology in long-lived physical capital. 

As David (1986) notes, new technologies will be rela- 

tively disadvantaged when they are embodied in indivisi- 

ble capitat goods, particularly if capital costs of new 

plant are high relative to the operating cost of existing 

facilities. Not only will this tend to slow the 

diffusion of the new technology throughout the industry, 

it also suggests that the pattern of technology diffusion 

across firms will be dependent upon the history of 

capital investment. Firms that are equally likely to 

adopt a new technology, other things equal, may do so at 

different times if their initial capital configurations 

differ. It seems misleading, however, to characterize 

this as a difference in "innovativeness." 

In this study, we distinguish between early use of 

technology that is observed only because opportunities 

for adoption are more frequent and early use that 
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reflects an early decision to employ a new technology. 

In particular, large firms may adopt innovations sooner 

for reasons that have little to do with technological 

progressiveness, such as their more frequent capital 

additions to replace old (retired) capacity or to meet a 

given growth rate in demand.5 We decompose the firm 

size effect into a component that influences a firm's 

opportunities to adopt an innovation and a component that 

affects its decision to exercise an opportunity to 

introduce the new technology.6 This explicit distinction 

Our notion of innovativeness is quite similar to 
Mansfield's (1968, p. 172) argument that large firms 

should be interpreted as being more progressive only if 
"the difference in the speed of response between large 
and small firms is greater than would be expected if a 

large firm acted as if it were simply the sum of an 

equivalent number of small, independent firms." 
An example may clarify our distinction. Compare two 

utilities: a large firm with 1000 megawatts (Mw) of 

capacity and a small firm with 100 Mw of capacity, each 

growing at 10 percent per year. Assume that both will 
use the new technology at the first available oppor- 
tunity; that is, they are equally "innovative." If new 
units come in 100 Mw increments, the large utility will 
build a unit next year, while the small utility may not 
build a new unit for 10 years. We attribute this gap to 
differences in opportunities, not to differences in the 
propensity to adopt new technologies. 

6 
Our decomposition also can be interpreted as 

separating the factors that affect the probability of 
observing a firm's adoption decision from those that 
affect the adoption decision itself. In this sense, the 
decomposition is a correction for sample selection 
biases. 
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differentiates our work from most previous empirical (and 

theoretical) work on technology diffusion.7 

Finally, a number of factors that have received 

relatively little theoretical attention also may influ- 

ence interfirm diffusion patterns. These include the 

role of human capital investments and labor unions, 

regulatory distortions of technology choices, and 

deviations from pure profit-maximizing objectives (for 

example, by government-owned firms or non-profit enti- 

ties).8 The predicted effects of these are context- 

specific. For example, some forms of regulation may 

speed technology diffusion (Hannan and McDowell, 1984, on 

banking regulation); others may retard it (Oster and 

Quigley, 1977, on building codes). Government ownership 

might allow technology-oriented bureaucrats to adopt 

innovations sooner than would a profit-maximizing manage- 

ment; in other cases, the insulation from profit-maximi- 

zing pressures might permit management to lag in techno- 

logy adoption (Wilson) 

Given the breadth of theoretical predictions and 

their dependence on specific assumptions about the nature 

7 . . . - Oster (1982) captures this distinction by using 
plants rather than firms as her unit of analysis. She 
finds that steel plants owned by large firms tend to take 

longer to adopt innovations than do plants owned by small 
firms, other things equal. 

8 A number of these issues are raised by Nelson and 
Winter (1982) and Stoneman (1986). 
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of the technology and the industry, it is useful to ask 

whether there are any generalizations that can be drawn 

from the empirical literature. Empirical tests of 

interfirm diffusion models have tended to focus on 

possible 'Schumpeterian' effects of firm size and market 

structure on technology adoption decisions. Early 

studies by Mansfield (1968), Romeo (1975), and some of 

the case studies in Nasbeth and Ray (1974) find that 

larger firns tend to adopt innovations sooner than do 

their smaller counterparts, although this relation is not 

universal.9 Much of the early literature was either 

largely qualitative or susceptible to considerable 

statistical and methodological criticism, however. Many 

of the statistical analyses suffer from selectivity 

problems (e.g., Romeo, 1975, uses data only on adopting 

firns in his time-to-adoption analysis) or from pooling 

across noncomparable innovations or industries (see the 

interindustry analysis in Romeo, 1975, and Benvignati, 

1982, for examples). 

Recent work, in an effort to address some of these 

concerns, has employed more sophisticated statistical 

models of the diffusion process. The results continue to 

be mixed, suggesting that no simple generalizations may 

apply in all industries, aster (1982) examines the 

For a number of innovations studied in Nasbeth 
and Ray (1974), small firms lead large firms in techno- 
logy adoption. 
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diffusion of the basic oxygen furnace (BOF) and continu- 

ous casting in the relatively concentrated U.S. steel 

industry. She finds a negative effect of firm size on 

adoption probabilities; large firms tend to adopt both 

innovations later than do smaller firms, although the 

effect is significant only for the BOF. LLM (1987) find 

negative effects of concentration on retail grocery 

stores' decisions to adopt optical scanner systems, but 

positive effects of market share. They report some 

evidence that the largest chains are not among the first 

adopters, but their reliance on a dummy variable for 

large average store size instead of measuring firm size 

makes it difficult to say much about firm size effects. 

In contrast, Hannan and McDowell (1984) find strong 

support for Schumpeterian models of innovation: they 

conclude that the probability of adopting automated 

teller machines (AIMs) rises with both firm size and 

market concentration. They also find significant 

regulatory effects (ATM5 appear to be used to relax unit 

banking and branching restrictions) and ownership effect 

(banks owned by bank holding companies are more likely to 

adopt AIMs) . Sommers (1980) concludes that large 

utilities and members of power pools are more likely to 

try nuclear technologies, although he does not look 
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explicitly at time to adoption and his econometric model 

creates some interpretation problemsJ° 

We extend this body of empirical work in a number of 

dimensions. First, almost all of these studies mix 

"innovativeness" effects with "opportunity" effects; we 

explicitly differentiate between these. Second, we 

consider flexible forms for the time path of diffusion. 

Much of the empirical work to date has assumed that the 

"hazard rate," or probability of adopting an innovation 

conditional on not having already adopted it, is constant 

or nonotonically increasing through time after condition- 

ing on utility characteristics. Finally, adding evidence 

on the determinants of adoption decisions in the electric 

utility industry may help economists to better understand 

differential effects of factors like firm size across 

industries. To accomplish this, we first must describe 

how these factors are likely to influence the innovations 

we study. 

10 Sommers uses a logit model to estimate the 
choice between coal and nuclear technologies conditional 
on building, but he uses only one observation per 
utility: the first adoption (for adopters) or last non- 
adoption (for non-adopters) decision. Utility character- 
istics are measured in the year of that decision, 
implicitly assuming that characteristics that affect 
adoption decisions vary through time but that the time 
path of characteristics prior to the adoption decision is 
irrelevant. These features make it difficult to compare 
his results to those of other studies. 



12 

3. Technological Innovation in Steam Electric Generating 

Technology. 1950-1980 

In an earlier paper (Joskow and Rose, 1985), we 

argued that technological advances in fossil-fueled 

electricity generation over the past thirty years have 

focused on improving the design thermal efficiency of 

generating units by increasing their steam operating 

pressures. Increases in thermal efficiency reduce 

operating costs by enabling utilities to generate more 

electricity from a given amount of fuel. Our 1985 study 

identified two significant steam generating technologies 

introduced after 1950: high pressure subcritical units 

operating at steam pressures around 2400 psi and very 

high pressure supercritical units operating above 3206 

psiJ' These technologies are the focus of the present 

analysis. 

The previous theoretical and empirical literature on 

technology diffusion suggests at least five factors that 

are likely to affect the pattern of inter-utility 

11 
At pressures abve the critical level of 3206 

psi, water heated to 706 F directly vaporizes to dry 
steam. Increasing steam pressure is one way to increase 
design thermal efficiency. This admittedly is only one 
dimension over which generating unit technology has been 
improved, however. Others include higher steam tempera- 
tures, the introduction of reheat cycles and multiple 
bleed point preheat cycles, and larger unit sizes. In 
our 1985 paper, we argue that technological progress in 
thermal efficiency over the last 25 years has focused on 
raising steam pressure conditions. This emphasis is 
maintained in our present study. 



13 

adoption of these technologies. These include: the 

expected cost savings, uncertainty over the distribution 

of expected savings, utility size, utility ownership 

structure, and time.12 We describe their anticipated 

effects below. 

We expect the speed of adoption to be increasing in 

average fuel costs. At their introduction, both techno- 

logies were expected to reduce operating Costs by 

enhancing fuel efficiency. While the design efficiency 

gains were relatively modest (on the order of 2 to 5 

percent), the significance of the ex ante cost savings 

depended on the utility's expected cost of fuel over the 

life of the generating unit. These costs vary consider- 

ably across utilities.13 For the 144 utilities in our 

12 We ignore potential differences in the regula- 
tory environment across IOIJs and focus instead on 
differences in ownership structures. Since municipal and 
cooperative utilities are not regulated in the same sense 
as are lOUs, any differences between the groups may 
reflect both organizational and regulatory effects. All 
investor-owned utilities face essentially the same 
general form of regulation. Within this general struc- 
ture the regulatory environment of course varies over 
time and space. These differences are difficult to 
characterize empirically, however, and we do not believe 
that variables reflecting such differences are likely to 
be correlated with the independent variables that we use. 
It may be worthwhile to introduce measures of variations 
in the competitive and regulatory environment in future 
research. Absent this, our results should be interpreted 
as measuring the influence of the observed factors in the 
presence of regulated local monopoly markets. 

13 
Transportation costs can account for a high 

fraction of delivered coal costs, implying that locations 
near high quality coal sources may face substantially 
lower costs. 
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sample, the ratio of highest to lowest average fuel cost 

per million Btus was 325 percent in 1962 and 393 percent 

in 1972. Such differences in fuel costs should contri- 

bute to significant variation itt the relative attrac- 

tiveness of the new technologies. 

Theoretical models suggest that greater uncertainty 

about a technology's potential will lead to a slower 

diffusion path, all else equal. Although data are not 

available to construct a direct test of the influence of 

uncertainty on adoption patterns, some insight may be 

gained by comparing diffusion paths across the two 

technologies. The 2400 psi units constitute a signi- 

ficant improvement over pre-existing subcritical techno- 

logy although they were not a major departure from that 

technology; the supercritical units represent a more 

radical change from previous boiler technologies.14 

This dichotomy suggests that the uncertainty surrounding 

the ex ante costs and benefits of adopting the super- 

critical technology is likely to have been considerably 

larger than the uncertainty associated with adopting the 

2400 psi subcritical technology. We would expect this to 

shrink the adoption probabilities for the supercritical 

technology and lead to a slower diffusion path. 

14 
Operating at supercritical pressures eliminates 

the need for a substantial amount of equipment associated 
with saturated ("wet") steam, but requires more advanced 
materials and designs to handle the considerable increase 
in steam pressure. 
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The expected speed of diffusion also is dampened by 

the embodiment of generating technology in very long- 

lived capital equipment. Capital costs of powerplants 

are large relative to operating costs and plants are 

designed to have useful lives of thirty years or more. 

As power plants age their utilization patterns typically 

change, moving from base load to cycling to peaking 

operation. Additions of new generating capacity are 

driven primarily by increases in electrical load, rather 

than by opportunities to replace existing capacity with 

capacity that has significantly lower operating costs.15 

Although both 2400 psi and supercritical technologies 

were expected to lower the total cost of generating 

electricity, neither promised sufficient savings to 

warrant scrapping existing facilities and replacing them 

with new generating units.16 This will tend to slow 

diffusion of both technologies and implies that we will 

observe a utility's decision to adopt one of these 

15 
Obviously, generating capacity eventually is 

retired, so that retirements have some effect on the 
demand for additional capacity. During our sample 
period, however, capacity additions dwarf retirements. 
For example in 1970, 28,000 megawatts (Mw) of new 
generating capacity was added, while only 1,000 Mw was 
retired. Edison Electric Institute Statistical Yearbook 
of the Electric Utility Industry/1983, page 12. 

16 This is in sharp contrast to Oster's (1982) 
finding on the economics of replacing existing steel 
furnace technology with the basic oxygen furnace. 
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technologies only when the utility decides to add new 

baseload capacity.17 

There are a number of channels through which firm 

size might influence innovativeness. First, larger 

utilities are more likely to have internal engineering, 

design and maintenance staffs that are both interested in 

and capable of adopting new technologies before substan- 

tial experience has been gained with them (Joskow and 

Rose, 1985). Second, larger utilities are likely to be 

less averse to the risks of early adoption. For utili- 

ties with a large portfolio of generating units, the 

impact of a "mistake" on the cost of service and overall 

profitability will be modest.18 Third, if there are 

economies that lead to lower costs when more plants of a 

given technology are operated by a single firm, larger 

17 
We assume here and throughout the paper that a 

utility's decision to add new baseload capacity is 
independent of its technology choice. This corresponds 
to an assumption that utilities first decide their 
schedule of additions, based primarily on demand growth 
projections and unit retirement schedules, and then 
decide what type of units to build to meet their addi- 
tions schedule. This assumption may not strictly hold; 
if new technologies are scale-augmenting, technology 
choice may have some effect on building schedules. Even 
in this case, the increase in efficient size is unlikely 
to be large relative to the size of the "average" 
generating unit. We therefore maintain the independence 
assumption as approximately correct, and believe that 
accounting for potential correlations is unlikely to 
yield additional insight. 

18 
If the cost impact is small relative to total 

costs, regulators are less likely to notice or penalize a 
utility in regulatory rate hearings. 
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firms may find early adoption more attractive. We find 

some evidence of this type of economy in our earlier work 

(Joskow and Rose, 1985): there appears to be modest 

learning-by-doing that may lower construction costs as a 

utility gains experience with a given technology. 

Finally, if new technologies are scale augmenting, they 

may be more attractive to larger utilities that can 

economically add capacity in large chunks.19 

We also expect larger utilities to build new 

generating units of any kind more frequently than do 

smaller utilities, ceteris paribus. This will result 

from the relationship between size, growth rates, and the 

lumpiness of generating units. Thus, there may be a 

natural numerical relationship between size and speed of 

adoption that arises not from differences in the propen- 

sity to adopt new technologies but instead from differ- 

ences in economic opportunities to add new capacity. As 

a result, failing to account for differential building 

frequencies may induce a positive correlation between 

firm size and the estimated speed of adoption, even if 

the true relation is a positive effect of size on the 

probability of building but no effect of size on the 

probability of adoption conditional on building. 

Distinguishing between these two effects is critical to 

the interpretation of the results. We are not aware of 

19 But see note 16, sura. 
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any other work that controls for the opportunity to adopt 

as we do here. 

Ownership structure may affect adoption probabili- 

ties although the direction of the predicted effect is 

ambiguous. There are three types of utilities in our 

sample: investor-owned (private) utilities, government- 

owned utilities (primarily municipal utilities) and 

cooperatives (primarily rural electric cooperatives) 

The largest group is the investor-owned utilities, which 

are most likely to behave as profit-maximizing firms.20 

Municipal utilities ("munis") and cooperatives ("coops") 

may have objectives other than profit-maximization that 

alter their behavior relative to that of investor-owned 

utilities. Munis and coops also appear to be less likely 

to be involved in R&D activities: 73% of investor-owned 

utilities belong to the Electric Power Research Institute 

(EPRI), as compared to only 37% of munis and 32% of coops 

(EPRI, 1987, p.l). We expect most of these differences 

to lower innovation probabilities for munis and coops. 

There could be offsetting considerations, however. If 

government-owned utilities are more responsive to the 

20 
Regulatory lag and opportunities to make 

wholesale transactions that are subject to relatively 
loose regulatory constraints (Joskow and Schmalensee, 
1983) provide incentives to adopt cost-saving techno- 
logies. Since new generating technologies tend to be 
more capital-intensive than older generating tech- 
nologies, rate of return regulation may provide addi- 
tional incentives (Smith, 1974). 
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interests of power plant engineers, for example, we might 

expect greater pressures to adopt new technologies 

(Joskow, 1976). We expect this to be of potential 

significance only for the largest government- or coopera- 

tively-owned utilities. 

Finally, the expected pattern of diffusion through 

time is unlikely to be monotonic. While much of the 

literature posits constant or increasing hazard rates, we 

expect that adoption probabilities will increase ini- 

tially and then decline for both of our innovations. The 

technologies we explore co-exist in time with each other 

and with older (lower pressure) technologies. Although 

the 2400 psi technology was developed before the super- 

critical technology, for a large part of the sample 

period the 2400 psi and supercritical technologies 

represent competing choices.21 This suggests that the 

probability of adoption for 2400 psi units may decline 

after some date as utilities decide to "skip" a genera- 

tion of technology and move immediately to the newer 

supercricical technology. Declines in the adoption 

probability for the supereritical technology are likely 

to arise not from the development of more advanced 

21 . . A number of utilities reverted to older techno- 
logies after building one or more units with the newer 
technology. For reasons discussed below, this result may 
be expected for the supercritical technology. Less 
explicable is its occurrence for the 2400 psi technology. 
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technologies but from unexpected problems with super- 

critical units. The development of substantial reliabil- 

ity problems and unexpectedly high maintenance costs for 

supercritical units during the mid-1970s appear to have 

reduced or eliminated the expected savings from this 

technology (Joskow and Rose, 1985, and Joskow and 

Schmalensee, 1987). Adoption probabilities for super- 

critical technologies should have decreased after these 

problems were realized.22 

In summary, we expect adoption probabilities for 

each of the two technologies considered in this paper to 

be increasing in firm size and fuel costs. The predicted 

effect of ownership structure is ambiguous, although it 

seems likely that the probability of adopting an innova- 

tion will be higher for investor-owned utilities than it 

is for government and cooperatively owned utilities. 

Finally, we expect that adoption probabilities will vary 

through time, initially rising as uncertainties about the 

technology are resolved and costs decline and ultimately 

falling as even newer technologies become available. 

4. Statistical Models of Technolozy Adoption 

The empirical literature has used a variety of 

approaches to estimate models of technology diffusion. 

22 
One might expect this to increase the adoption 

probability for 2400 technologies, although there is 
little evidence of this in the data. 
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We discuss below two of the most popular classes of 

models with the assumptions implicit in their use. These 

are models based on normal probability distributions, 

including probit and Tobit analyses, and those based on 

failure time or hazard rate specifications. We also 

describe a statistical model of technology adoption that 

we believe distinguishes firm size effects on "innova- 

tiveness" from firm size effects on adoption oppor- 

tunities better than have most previous models. 

Common to our paper and much of the literature on 

technology diffusion is a focus on time to transition or 

first use of a new technology, not on technology choice 

se. In line with this, we characterize firms as 

being either in the "no adoption" state, prior to their 

first use of the new technology, or in the "adoption" 

state, once the technology has been used and forever 

after.23 This emphasis is appropriate if one is con- 

cerned with how long it takes firms in an industry to try 

a new technology rather than with how long it takes firms 

to convert their entire production lines to the new 

technology. This approach seems of particular interest 

23 
As such, our paper belongs in the literature on 

interfirm diffusion patterns; see Hannan and McDowell 
(1984) and LLM (1987) for other recent examples of this 

type of study. Intrafirm diffusion patterns-- the 
penetration of innovations within firms-- have been 
subject to less empirical study. 
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for industries such ss electric utilities, in which 

technology is embodied in long-lived capital.24 

We also assume that a utility's probability of 

adoption is related to its characteristics, such as size 

and average fuel cost, as of some point in time; cross- 

sectional differences in these characteristics drive the 

differences in utility adoption dates. Variations in 

adoption rates through time are determined by forces 

comnon to all utilities, such as the number of other 

firms adopting the technology, improvements in the 

technology through time, or resolution of uncertainties 

about the technology's costs and benefits. Using this 

assumption, which typifies much of the empirical work in 

this area, we work with models that specify the adoption 

probability as: Pr(utility i adopting at time t) — f 
(X.,t), where X. are utility i's characteristics measured 

at some time common to all utilities. 

Normal probability models 

A number of studies have used a normal probability 

distribution to analyze the time until adoption for firms 

or plants, measured from some initial date of 

24 
If capital is long-lived and operating costs are 

low relative to capital costs, replacement of capacity is 
likely to be slow even if firms are aware of technologi- 
cal advances and prepared to adopt them as soon as it is 
profitable to do so. 
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availability.25 This model was implicit in early 

studies that used OLS regressions to estimate the 

determinants of interfirm differences in adoption dates 

(c.f. Mansfield, 1968, and Romeo, 1975). A significant 

shortcoming in many early studies is the failure to 

account for sample selection or censoring problems: 

firms that had not adopted the new technology by the end 

of the sample period frequently were excluded from the 

analysis (Romeo, 1975) or treated as never adopting. 

These biases can be eliminated by including both adopters 

and non-adopters in the sample and using a Tobit model to 

treat end-of-sample censoring on adoption dates; see 

Oster (1982) for a study using this technique. 

A second potential problem arises from the normal 

distribution's range over (-,÷). Presumably a tech- 

nology cannot be adopted prior to some innovation date, 

implying that the time until adoption is distributed over 

(0, +) , where time is set equal to 0 in the year that 

the technology first becomes available. The statistical 

analysis could account for this either by treating the 

distribution as a left-truncated normal or by transfor- 

ming the model. We find the latter course most appealing 

and in our empirical work with the normal probability 

model assume that the log of the time to adoption is 

25 
One could as easily measure time since adoption, 

counting backward from the end-of-sample date (see Oster, 
1982). 
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distributed as a normal random variable, with right 

censoring at the end-of-sample date.26 

To derive the likelihood function based on this 

distributional assumption, define the set of exogenous 

variables that affect firn i's adoption decision as X., 

firm i's time until adoption as t, and the end-of-sample 

censoring date as T. We also define X. = -X. as a 
—1 1 

normalization to ease the comparison between this model 

and the other models discussed below, where the time to 

adoption is a decreasing function of X.$ and fi is the 

paraneter vector from the normal probability model. 

Given these assumptions, the likelihood function is: 

- - N1 N2 
(1) Pr(t1 tN) 

= II ( ( (t. - Xfl)/a ) /a) fl [1 - ) 
j=1 k=1 

where 
- denotes the natural log of the time variable, N1 

is the set of firms that adopt on or before the end-of- 

sample date, N2 
is the set of firms that have not adopted 

by time T, and N = N1 + N2. The parameters fi and a can 

be estimated by maximum likelihood methods. 

This model does not assume any explicit time 

dependence in the adoption probability; systematic 

26 
This follows from an assumption that the time to 

adoption is distributed as a log-normal random variable. 
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variations in adoption dates are attributable only to 

variations in firms' characteristics (X). The model 

does, however assume that the "critical" level of X n 
above which firms choose to adopt the technology, 

declines through time. This can be seen most easily by 

recognizing that the expected time to adoption is 

declining in X: E(t.X) in + 52 — -X + 5a2 

This feature of the model is consistent with the assump- 

tions built into most theoretical models of technology 

diffusion that the cost of adoption or perceived riski- 

ness of the technology declines over time. 

Hazard rate models 

A second class of models used to analyze technology 

diffusion is based on failure time or hazard rate 

specifications (1-{annan and McDowell, 1984, and LLM, 

1987). The hazard rate, h.(t) , 
is defined as the 

probability that firm i will adopt an innovation at time 

c conditional on having not adopted the innovation before 

t. Because these models explicitly focus on transition 

probabilities, they seem particularly suited to study 

patterns of technology adoption across firms.27 

27 
See Kalbfleisch and Prentice (1980) for descrip- 

tions of failure time models and their applications. 
Hazard rate models have been used extensively to model 

unemployment dynamics; see Lancaster (1979) and Nickell 
(1979) for early applications. 
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Although particular distributional assumptions on 

the hazard rate vary across applications, the models 

share a common structure. The unconditional probability 

that firm i will adopt the innovation at time t (the 

density function) is equal to: 

t 

(2) fjt) = h.(t) exp(- 5 h.(r)dr) 
r=O 

and the probability that firm i will not adopt the 

innovation prior to t (the "survivor" function) is equal 

to 

t 

(2) 1 - F(t) - exp(-5 h.(r)dr) 
r=O 

To estimate this model, the form of the hazard rate must 

be specified. In principle, virtually any function that 

satisfies the properties of a conditional probability 

could be used. For concreteness, we consider two 

specifications of the hazard rate. 

The proportional hazards model is perhaps the most 

widely used specification; in the diffusion literature, 

LLM (1987) use this model to estimate the diffusion of 

optical scanners among retail grocery stores. The 

proportional hazards model assumes that the relative 

hazard rates for two firms are constant through time, 

allowing the hazard to be decomposed into separate firm 
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and time components. We can write this as h(t) — 

h0(t)exp(Xj, where h0(t) specifies the evolution of the 

hazard rate over time and X. are fixed firm characteris- 
1 

tics. The time component can be estimated non-para- 

metrically (see LLM, 1987) or parametrically by assuming 

some distribution for h0(t). Our estimates of the 

proportional hazard model parameterize h0(t) using the 

Weibull distribution: h0(t) at1. Under this assump- 

tion, the likelihood function for the data is: 

N2 
N1 

a-i a 

(4) Pr(tl,..,tN)_llwa.t. ) 

II exp(-exp(Xk)T 

j—l 
k—i 

where N and N are as defined earlier and and a are 
1 2 w w 

the parameters of the Weibull proportional hazards model. 

The adoption probability is increasing in X; the 
hazard rate will be monotonically increasing, decreasing 

or constant through time as a is greater than, less than, 

or equal to one. 

Alternatives to the proportional hazards model allow 

the relative probabilities of adoption across firms to 

change through time. This can be accomplished either by 

allowing time-varying firm characteristics to affect 

adoption probabilities (see Hannan and McDowell, 1984) or 



28 

by interacting time and firm effects.28 To allow us to 

compare resuLts across different models, we choose the 

latter approach. Je specify the hazard rate as follow- 

ing a log-logistic distribution: 

a -l a 

(5) h.(t) = 
met 

e 

exp(X.) / (1 + 
e 
exp(X.) 

where subscript e denotes estimates from the log-logistic 

hazard model. This specification allows us to estimate 

the hazard as a function of the constant firm charac- 

teristics (X) used to estimate the Tobit and Weibull 

diffusion models discussed above. As in the Weibull 

hazard model, the adoption probability is increasing in 

X.. The log-logistic specification implies a monotone 

decreasing hazard rate if a � 1 and a hazard that is 

initially increasing then decreasing for a > 1. This 

latter characteristic is particularly appealing for our 

data. The log-likelihood associated with this specifica- 

tion is: 

N a 

(6) LLe 
—E 

{ (1-a.)[ ln(a) + (a-l)ln(ti) * - 21n(1 + 
e 

I 

exp(X,9)) I 
- aln(1 + TCexp(X.fl) } 

28 Hannan and McDowell assume that the adoption 
probability conditional on is constant through time, 
although changes in over time may increase or decrease 
the adoption probabilLty for a firm. 



29 

where a. is a dummy variable equal to one for utilities 

that do not adopt the new technology by T, zero other- 

wise 

Models conditional on building (double-censored models) 

All of the models described above assume that date 

at which utilities would choose to adopt the new technol- 

ogy is known and that the variables included in X affect 

firms' adoption decisions but not their adoption oppor- 

tunities. As described earlier, we think these assump- 

tions are unlikely to be satisfied either in our data set 

or in most technology diffusion studies.29 In parti- 

cular, we expect large firms to build generating units 

more frequently than do small firms, generating spurious 

correlations between firm size and adoption probabilities 

in the earlier models. 

This is illustrated in figure 1. Denote the latent 

(unobserved) adoption value for firm i at time t by 

A(X.,t). Firm i will adopt the new technology at the 

first opportunity after A(X,t) � A*, where A* is the 

"critical" level required for adoption. Each time we 

observe the utility building a new unit we learn one of 

two things. Either the utility uses an old technology, 

29 Similar assumptionsare implicit in many studies 
of unemployment transitions, in which job offers are 
assumed to arrive independently of variables included in 
x. 
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in which case we know A(X.,t) < A*, or the utility adopts 

the new technology, in which case we know A(Xt) � 
Censoring occurs when a utility does not build each year. 

Let t* be the date at which A(X.,t) � A*. We know that 

t* lies somewhere between the date of the last old unit 

(t0) 
and the date of the first new unit 

(t1) 
. For 

utilities that build frequently, the gap between t0 and 

will tend to be small and 
t1 

will be quite close to t* 

(see t and t1 in figure 1). For utilities that build 

infrequently, the gap between t0 and t1 may be large, 

suggesting that t1 may greatly exceed t* (see t0 and t15 
in figure 1). 

If we have data on the units built before the 

utility adopts the new technology, as well as the date at 

which the utility first uses the new technology, we can 

correct this censoring bias by estimating adoption 

probabilities conditional on building a new unit. 

Consider a panel data set with observations on each 

utility over time. For each year, we observe one of 

three outcomes: the utility builds a unit and adopts the 

new technology, the utility builds a unit but does not 

adopt the new technology, or the utility does not build 

30 
Since we are interested in time to first use, 

not in technology choice per se, we only need to observe 
building decisions until the first new technology unit is 
constructed. 
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any unit.31 This suggests a full likelihood function of 

the form: 

(6) Pr(u11, 
. . .u1,) 

— IT pr(utility I builds at t) pr(A(X,t) A*) 
it 

N1 

II pr(utility i builds at t) • pr(A(X., t) < A*) 
lt N 

II pr(utility i does not build at r) 
It N3 

where u. is an observation on utility i's generating 

unit choice in year is the set of utility-year 

observations in which utilities build and adopt the new 

technology, N2 is the set of utility-year observations in 

which utilities build but do not adopt the new technol- 

ogy, N3 is the set of utility-year observations in which 

utilities do not build any units, and 
N1 

+ 
N2 

+ 
N3 

NT. 

We choose a probit specification to model building 

probabilities for each utility and a log-logistic hazard 

specification to model the evolution of the latent 

32 
adoption probabilities. We assume, as discussed in 

note 17, that utilities' building decisions are 

independent of their adoption decisions. This implies 

31 
After a utility builds a unit with the new 

technology it is considered to be in the adoption state 
for the rest of the sample. 

32 
Any of the other models could be used to model 

the adoption probability; we choose the log-logistic 
hazard because it is the most flexible of the models we 
consider. 
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yields the log-likelihood for the double-censored model: 

(7) LL1 { 
5. a. (1n((Z.W)) + a1n(t) + i1 t=1 

- ln(1 + ttexp(X.fl)) ) ÷ b.jl 
- 

( 1n((Z.W)) - ln(1 + t exS(X.1)) ] 

+ - (Z.W)) } 

where b. is a dummy variable equal to one if utility i 

builds a unit at time t, 0 otherwise; a. is a dummy 

variable equal to zero before the utility adopts the new 

technology and one during all other years; 'I' are the 

parameters of the variables 1 in the building probit; and 

the subscript f denotes estimates from the full-maximum 

likelihood, double-censored model. 

Under the independence assumption, this likelihood 

function is separable in the building and adoption 

probabilities.33 We can therefore estimate the para- 

meters of the adoption decision by estimating the 

probability of adoption conditional on building. In this 

light, the biases of the conventional adoption models 

33 While the independence assumption may not be 
strictly true, we believe it is approximately correct for 
this industry and that little would be gained from the 
complexity introduced by allowing for correlated errors. 
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discussed above arise from sample selection biases: 

these models censor observations in which utilities 

decide to build but not adopt the new technology. While 

sophisticated applications of the conventional models 

recognize that the adoption date for non-adopters is 

right-censored at the end of the sample date, the 

applications generally fail to treat the left-censoring 

that arises because utiities' adoption decisions are not 

observed until they build a new unit.34 

In the following section, we report results using 

each of the four specifications we have developed: 

Tobit, Weibull proportional hazards, log-logistic hazard, 

and hazard models conditional on building. We expect the 

first three specifications to yield qualitatively similar 

results, although the magnitude and interpretation of the 

coefficients will vary across the models, due primarily 

to their different implicit assumptions on the evolution 

of the hazard rate through time. The results from these 

models indicate what our estimates would be if we used 

the techniques common in the diffusion literature. We 

are most interested in comparing these estimates to those 

from the model that conditions on building decisions, 

which we consider to be a more correct specification for 

An equivalent statistical treatment for the bias 
is to write the likelihood function as a left- and right- 
censored hazard model, in which we observe tO and tl for 
each utility, and estimate the likelihood function over 
N: IT Pr(tO < t* � ti). 
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our problem. Differences between the first three sets of 

results and those of the double censored problem will 

provide information on the significance of the biases 

introduced by assuming that adoption (or observation) 

opportunities are randomly distributed across firms, 

independently of variables that affect adoption probabil- 

ities. While estimates of the building probability are 

not required to estimate the adoption parameters, we also 

report results from building probit equations to 
illus- 

trate the influence of size on adoption opportunities. 

5. Data and Results 

The statistical models developed in the previous 

section are estimated using data on the building deci- 

sions and technology choices of 144 electric utilities 

over the 1950 through 1980 period. In this section, we 

first describe the data used in the analysis and present 

descriptive statistics on the patterns of technology 

adoption in the industry. We next report estimates of 

adoption patterns for the 2400 psi technology and compare 

the results across different statistical specifications; 

the corresponding results for the supercritical techno- 

logy follow. The section concludes by discussing what we 

learn from the various statistical models. 

Data and descriptive statistics 
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Our data set Consists of information on a census of 

144 electric utilities that built one or more fossil- 

fired steam turbine generating units between 1950 and 

l98O. For these utilities, we collected information 

on the date and technology type of all fossil-fuel steam 

turbine capacity additions, firm size in megawatts of 

capacity, capac.ty growth rates, average fuel cost per 

million Btus, and type of ownership (investor, municipal, 

federal, or cooperative). 

We define X, the set of exogenous variables that 

affect a utility's adoption decision, to include four 

variables: firm size, type of ownership, average fuel 

cost, and (perhaps) time. To allow for nonlinear 

effects of firm size, we include both size and size- 

squared in the equations. The building equation models a 

utility's decision to build zero versus one or more units 

in a given year. We assume that Z, the set of variables 

that influence a utility's building decision, includes 

the utility's size, growth rate, ownership structure 

(perhaps), and time. The model allows for nonlinear size 

effects and time trends by including quadratic terms in 

both utility size and time. 

Missing data forced us to exclude from the 
sample three utilities that built coal-fired generating 
units during this period. The utilities included in the 
sample constructed 1091 units between 1950 and 1980, 
which comprise virtually all fossil-fired steam turbine 
capacity added during the sample period. 
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As discussed earlier, the adoption models are based 

on a constant X. for each firm, raising the question of 

when the characteristics should be measured.36 We 

consider two dates: 1960 and 1970 (due to data collec- 

tion requirements, fuel prices are observed two years 

after each of these dates).37 The first of these allows 

us to measure firm characteristics part-way through the 

diffusion process for the 2400 psi technology and before 

the diffusion process really begins for the supercritical 

technology. If utilities are forward-looking, 1960 may 

be too nyopic. We therefore consider 1970 as an alterna- 

tive. As there is no strong theoretical basis for 

choosing between these, we allow the data to decide which 

is more appropriate. 

Before presenting results from tightly parameterized 

statistical models of the diffusion process it may be 

instructive to examine some simple descriptive statistics 

on the data. Table 1 reports means and standard devia- 

tions for the variables used in the statistical analysis. 

As indicated, the 2400 psi technology had diffused quite 

widely through the industry by 1980, with 93 utilities 

(65 percent) adopting this technology by the end of the 

36 . . . . . Building probabilities may be a function of 
constant or time-varying firm characteristics. 

The choice of dates is somewhat arbitrary; we 
were influenced by data availability in selecting these 
two candidates. 
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sample. The supercritical technology achieved much more 

limited diffusion, with only 39 utilities (27 percent) 

adopting the supercritical technology by 1980. 

This pattern is amplified in table 2, which reports 

the distribution of technology type for the 1091 genera- 

ting units included in our sample. The table highlights 

the co-existence of both old and new technologies over 

long periods: units --tinue to be built using old lower 

pressure technologies twenty or more years after newer 

technologies have been introduced. The relative domi- 

nance of different technologies does shift over time, 

however. The 2400 psi technology supplanted lower 

pressure technologies as the modal choice by the mid- 

l960s and was itself superceded by the supercritical 

technology during the early l970s. As noted earlier, 

however, the 2400 psi technology re-emerged as the 

leading technology during the last part of the 1970s, 

most likely in response to increasing dissatisfaction 

with the operating performance of supercritical units. 

The differences in the diffusion path of the 2400 

psi and supercritical technologies may be illustrated 

best by a graph of the diffusion paths. Figure 2 plots 

nonparametric (Kaplan-Meier) estimates of the survivor 

function for each of the two technologies (see 

Kalbfleisch and Prentice, 1980). As indicated by the 

bottom curve, the probability of adopting the 2400 psi 
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technology is quite small until after 1956. From 1957, 

the hazard rate (which is proportional to the slope of 

the curve) looks fairly constant and relatively large. 

Although it flattens somewhat in the mid-1970s, it 

returns to the previous rate by the end of the period, 

suggesting that continued penetration of the technology 

through the remaining 34 percent of the utilities is 

likely. 

The picture is quite different for the supercritical 

technology. The hazard rates are small until the mid- 

l960s, increase substantially for a 5 year period, and 

then decline again in the early l970s. Virtually no 

utilities adopted this technology after 1975 and it seems 

likely that the technology will never penetrate much 

beyond the 27 percent adoption level achieved by l98O. 

With these diffusion patterns in mind, we now turn to 

parametric estimates of adoption probabilities, to 

determine whether systematic differences across utilities 

explain the positions of individual firms along the 

diffusion curves. 

Results for the 2400 psi technology 

38 . . In future work, one might wish to modify the 
likelihood function to allow the cumulative probability 
of adopting this technology to asymptote over time to 
some level considerably less than one. 
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In this section, we first examine Tobit, propor- 

tional hazards, and log-logistic hazard estimates for the 

diffusion of the 2400 psi technology.39 These allow our 

results to be compared to those of other diffusion 

studies, most of which use a variant of one of these 

models. After discussing these .lts, we examine 

estimates from the hazard model conditional on building 

to determine the extent of biases introduced by the 

exclusion of adoption opportunity information from the 

first three models. 

Table 3 reports results from the first three models. 

As discussed earlier, the exogenous variables in the 

models are utility size and its square, the utility's 

average fuel cost, ownership dummy variables for coops 

and government-owned utilities, and time. Because 

specifications that measure utility size by 1970 capacity 

outperform those that use 1960 measures of size, only the 

former are reported.4° The first three columns report 

Tobit, Weibull proportional hazards, and log-logistic 

hazards results using 1962 average fuel prices. The 

All the likelihood functions used in this study 
were programmed in Fortran and estimated using a maximum 
likelihood routine based on the BHHH algorithm. We are 
grateful to Hank Farber for providing us with the code 
for his optimization routine. 

40 The results using 1960 size measures are quite 
similar, but the standard errors tend to be somewhat 
larger and the fit of the equation somewhat poorer than 
in the corresponding equations that use 1970 capacity. 
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second three columns report similar specifications using 

1972 average fuel prices. Since the Tobit nfodel impli- 

citly assumes a constant hazard through time, time is not 

included in the Tobit specifications. 

The results are quite similar across all six 

specifications. Firm size has a strong, significant, 

positive effect on adoption probabilities. Larger firms 

are likely to adopt the technology earlier than are 

smaller firms, although there are diminishing returns as 

indicated by the negative coefficient on the size-squared 

term. The quadratic peaks at 8,500 to 10,000 Mw of 1970 

capacity, substantially above the sample mean of 1,900 Mw 

but not beyond the sample size range. This suggests that 

for a few large utilities, size has a net negative effect 

on adoption probabilities. The estimated magnitude of 

the size effect is virtually identical across the Tobit 

and Weibuli specifications and is substantially larger in 

the log-logistic specification. 

Fuel prices appear to have some positive impact on 

adoption probabilities, although the effect is statisti- 

cally distinguishable from zero only in the hazard models 

that use 1972 fuel prices. The point estimates for coop 

and government ownership suggest negative effects on 

adoption probabilities, but these are imprecisely 

measured and cannot be statistically distinguished from 

zero. Finally, the hazard nodeis suggest that adoption 
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probabilities initially rise through time. The magnitude 

of the time coefficient in the log-logistic specification 

implies that the hazard diminishes within the sample 

period, suggesting that the Weibull's restriction on a 

monotonic hazard should be rejected. 

To explore how much of the size effect in these 

results might be due to differences in adoption oppor- 

tunities, we next estimated a model of utilities' 

building decisions. Table 4 reports estimates from 

probit models of the building equations.41 The results 

indicate strong positive effects of size on building 

probabilities, although the quadratic terms indicate that 

the size effects peak sooner for the building models than 

they do for the adoption models (between 1600 and 6000 

Mw). This implies that building probabilities decline 

with size over part of the sample of utilities. Capacity 

growth rates also have substantial positive effects on 

building probabilities. Building probabilities rise 

through time, but at a declining rate. Finally, coops 

and munis appear to build less frequently than do 

comparable investor-owned utilities, although the 

estimated effect is fairly unstable and imprecise across 

specifications. 

41 The estimates assume serially uncorrelated 
independent errors. If these assumptions are violated-- 
for example, by negative serial correlation in the 
errors- -the reported standard errors will be inconsistent. 
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These results suggest that at least part of the firm 

size effect in the adoption models may be due to differ- 

ences in the frequency of building, which translate into 

differences in the frequency with which we observe 

technology choices of different types of firms. To treat 

this possible source of bias, we re-estimate the adoption 

probabilities using the full information structure of the 

problem. While we could in principle apply this tech- 

nique to all three models, the Tobit and Weibull model 

impose restrictions on the time path of hazard rates that 

more flexible models reject, so we apply this technique 

only to the log-logistic hazard. This model is esti- 

mated on a panel of annual data on each utility over the 

1950 through 1980 period. 

Table 5 reports adoption probabilities conditional 

on building for a number of specifications of the 2400 

psi technology log-logistic hazard. A comparison of 

table 5 with table 3 suggests quite substantive changes 

from the simple adoption model results. First, the 

estimated effect of firm size on adoption probabilities 

is halved. While larger firms appear to exercise their 

opportunities to adopt the 2400 psi technology earlier 

than do smaller firms, about half the effect of firm size 

on the simple adoption probabilities can be attributed to 

differential building rates. This suggests that models 

that fail to account for systematic differences in 
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adoption or observation opportunities may significantly 

overstate size effects on innovativeness. The quadratic 

term suggests that size effects peak in the same range as 

estimated in table 3. 

Moreover, after treating this source of bias, the 

effects of the other factors in the adoption model become 

much more pronounced. Average fuel costs have a much 

larger estimated effect on decisions to adopt the new 

technology and can be easily bounded away from zero. 

The ownership variables also have a significant effect in 

the full maximum likelihood model. Once differential 

building rates are accounted for, government-owned and 

cooperative utilities are less likely to adopt the 2400 

psi technology than are investor-owned utilities. At 

least part of this effect may be due to the smaller 

effect of firm size. Since munis and coops tend to be 

smaller than are investor-owned utilities, firm size may 

have absorbed part of the ownership effects in the 

earlier results. When the effect of firm size is 

reduced, the differences among the ownership structures 

becomes more apparent. 

Results for the supercritical technology 

These same statistical models can be used to study 

the determinants of adoption probabilities for the 

supercritical technology. As we noted earlier, the 
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greater uncertainty surrounding this technology is likely 

to have slowed its diffusion and the development of 

substantial reliability problems with early supercritical 

units appears to have almost halted its diffusion by the 

end of the 1970s. We are interested in exploring 

whether these factors also affected which firms are most 

likely to have adopted the technology. 

Table 6 presents results from both simple adoption 

probability models and full maximum likelihood models. 

In columns 1 through 3, we report Tobit, Weibull propor- 

tional hazards, and log-logistic hazard results, using 

1970 capacity and 1972 fuel prices. In general, these 

results are much noisier than were those for the 2400 psi 

technology. Utility size has a slightly larger effect on 

adoption probabilities for the supercritical technology, 

although the estimates are within a standard deviation of 

those for the 2400 psi technology. The quadratic in size 

continues to be important and adoption probabilities 

again peak in the 8,500 to 10,000 Mw range. Adoption 

probabilities rise through time (a > 1 in both Weibull 

and log-logistic models), but eventually decline (in the 

log-logistic results). The time paths are statistically 

indistinguishable from those for the 2400 psi technology, 

but the point estimates suggest a somewhat slower 

diffusion rate for supercritical units. The fuel price 

and ownership variables have no clear effect in these 
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equations; the point estimates are unstable and the 

standard errors are enormous relative to the coeffi- 

cients 

We report estimates for the full maximum likelihood 

model in columns 4 and 5 of table 6. Correcting for 

building opportunities has much less impact on the 

results for the supercritical technology than it had for 

the 2400 psi technology. The firm size effect remains 

within 10 to 20 percent of the estimates from simple 

adoption probability models and are substantially larger 

than were the corrected size effects for the 2400 psi 

technology. The hazard rate rises more quickly in the 

full maximum likelihood model, though the difference in 

the coefficient from the simple log-logistic model does 

not appear statistically signficant. The estimated 

effects of fuel prices and ownership structures continue 

to be unstable and very poorly identified. 

These results may be an artifact of the limited 

number of utilities that adopt this technology over the 

sample period (39 of 144). With only one-quarter of the 

sample ever adopting the technology, the data appear not 

to contain enough information to pin down distinctions 

among the adopters and non-adopters. Alternatively, the 

results may reflect the peculiarities of the supercriti- 

cal technology itself. 
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6. Conclusions 

The results presented in this paper provide strong 

evidence that large firms tend to lead the electric 

utility industry in adopting technological innovations. 

For both of the new technologies we analyze, large firms 

were significantly more likely to be among the early 

adopters. There does, however, appear to be an optimum 

size with respect to encouraging the diffusion of 

innovations: for the very largest firms in the industry, 

increasing size reduces the probability of early adop- 

tion. Our results also suggest that Oster's (1982) 

finding of a negative correlation between firm size and 

innovativeness in the steel industry does not generalize 

to all capital-intensive industries. 

Our results also suggest that ownership structure 

can exert am important influence on immovative activity. 

Investor-owned utilities tended to adopt the 2400 psi 

technology earlier than did their municipally-owned and 

cooperatively-owned counterparts in the industry, leading 

to more rapid diffusion of the technology through the 

industry. This finding is consistent with the observa- 

tion that investor-owned utilities also exhibit more 

involvement in industry research and development activi- 

ties and organizations. 

Finally, our analysis provides strong evidence on 

the need to control for differences in building 
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opportunities when analyzing firms' decisions to adopt 

technologies embodied in long-lived capital. Inmost 

cases, we expect to observe more frequent capacity 

additions for larger firms in an industry. This can lead 

econometric results to overstate the correlation between 

firm size and adoption probabilities. Je propose a 

methodology to correct this bias, and find that its 

application to the 2400 psi technol 'r reduces estimated 

size effects by one-half. Moreover, we find that the 

effects of ownership structure and factor cost differen- 

tials are larger and more precisely estimated after 

controlling for the opportunity bias. These results 

suggest that future studies of technology diffusion, and 

other studies that employ hazard rate analysis, may 

benefit from application of this methodology. 
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Table 1 

SAMPLE DESCRIPTIVE STATISTICS 

(144 Utilities) 

Variable Mean Standard Deviation 

Utility Size (hundred MW) 
1960 capacity 9.91 14.75 

1970 capacity 19.26 27.54 

Utility Size2 (hundred MW) 
1960 capacity 314.45 1153.19 
1970 capacity 1124.57 3505.59 

Capacity growth rate (%) 3.27 4.95 

Average fuel cost (cents/million Btu) 
1962 26.51 6.03 

1972 39.48 11.81 

0mership (0,1) 
Investor .70 

Government .17 

Cooperative .13 

2400 psi technolozy 

First adoption 1953 
Percent utilities adopting by 1980 .65 

Mean adoption date (for adopters) 1967.9 

Suercritical technolov 

First adoption 1957 
Percent utilities adopting by 1980 .27 

Mean adoption date (for adopters) 1968.1 



Table 2 

NUMBER OF UNITS BUILT 
BY TECHNOLOGY CLASS AND TIME PERIOD 

Iiin < 2000 psi 2000 psi 2400 psi 3500 si Total 

1950-1954 115 11 2 0 128 
1955-1959 150 57 33 2 242 
1960-1964 71 41 61 7 180 
1965-1969 47 8 64 49 168 
1970-1974 50 13 62 70 195 
1975-1980 29 10 108 31 178 

Total 462 140 330 159 1091 



Table 3 

ADOPTION PROBABILITY ESTIMATES, NOT CONDITIONED ON BUILDING: 
2400 PSI TECHNOLOGY 

Aot-o Prohhflitv Model 
Log- Log- 

Variable Tobit Weibull logistic Tobit Weibull logistic 

Fuel price 
as of: 1972 1972 1972 1962 1962 1962 

Constant .264 

(.499) 

-11.408 
(1.253) 

-16.290 

(1.581) 

.840 

(.639) 

-10.917 

(1.241) 

-15.096 

(1.548) 

Size .070 .070 .118 .070 .068 .120 
(1970) (.014) (.008) (.016) (.014) (.008) (.015) 

Size2 -.00035 -.0004 -.0007 -.00035 -.0004 -.000] 

(1970) (.00009) (.00006) (.00009) (.00009) (.00006) (.00009) 

Fuel Price .003 

(.011) 

.015 

(.008) 

.029 

(.013) 

- .017 
(.021) 

.011 

(.016) 

.010 

(.026) 

Coop -.574 

(.429) 

-.244 
(.439) 

-.263 

(.583) 

-.648 

(.424) 

-.323 

(.427) 

-.380 
(.596) 

Government -.389 

(.331) 

-.413 

(.284) 

-.265 
(.477) 

-.412 

(.331) 

-.418 

(.303) 

-.263 

(.484) 

Tine -- 2.990 
(.310) 

4.319 
(.395) 

-- 2.947 

(.295) 

4.207 
(.387) 

Sigma 1.391 -- -- 1.384 - - - - 
(.172) (.168) 

Log- 
likelihood -235.52 -356.66 -350.92 -234.76 -358.05 -352.98 

Number of 
Observations 144 144 144 144 144 144 

Standard errors in parentheses. 



Table 4 

ESTIMATES OF BUILDING PROBABILITIES: 
PROBIT MODELS 

Variable 1970 Size 1960 Size Time-Varying Size 

Constant -2.375 -2.308 -2.235 

(.106) (.105) (.105) 

Size .020 .024 .004 

(003) (005) (.004) 

Size2 - .0002 - .0004 - .0001 
(.00002) (.00005) (.00003) 

Growth .112 .119 .136 

(.011) (.010) (.008) 

Tiie .119 .121 .123 

(.013) (.012) (.013) 

Tinie2 - .003 - .003 - .003 
(.0004) (.0004) (.0004) 

Coop - .101 - .153 - .291 
(.093) (.093) (.091) 

Government .015 - .044 - .183 
(.077) (.076) (.075) 

Sap1e proportion 
no build .804 .804 .804 

Proportion Correctly 
Predicted .830 .831 .831 

Log-likelihood -1778.97 -1787.22 -1791.67 
Number of Obs. 4464 4464 4464 

Standard errors in parentheses 



Table 5 

ADOPTION PROBABILITY ESTIMATES, CONDITIONAL ON BUILDING: 
2400 PSI TECHNOLOGY 

Variable 1972 fuel price 1962 fuel price 

Constant -15.615 -13.296 

(1.157) (1.055) 

Size .051 .051 

(1970) (.009) (.008) 

Size2 - .0002 - .0002 

(1970) (.00006) (.00005) 

Fuel Price .061 044 

(.009) (.016) 

Coop -1.246 -1.424 

(.401) (.423) 

Government -1.056 -1.092 

(.326) (.331) 

Time 4.386 4.013 

(.305) (.275) 

Log-likelihood -2557.87 -2578.71 

Number of Observations 4464 4464 

Standard errors in parentheses. 



Table 6 

ADOPTION PROBABILITY ESTIMATES: 
SUPERCRITICAL TECHNOLOGY 

Not Conditioned on Building Conditioned on Building 
Log - 

Variable Tobjt Wejbull lo&istic Fuel 72 Fuel 62 

Constant -3.479 -11.315 -15.196 -16.766 -15.389 

(1.625) (2.282) (2.392) (1.448) (1.429) 

Size .122 .085 .100 .090 .092 

(1970) (.046) (.014) 1.020 (.010) (.011) 

Size2 - .0006 - 0005 .0005 - .0005 - .0005 
(1970) (.00025) (.0001) (.001) (.00007) (.00007) 

Fuel Price .007 - .009 .005 .004 - .038 
(1972) (.028) (.016) (.021) (.011) (.021) 

Coop .230 .044 .222 - .603 - .661 
(.960) (.798) (.849) (.657) (.647) 

Government .128 .104 .073 .257 .311 

(1.019) (.741) (.838) (.463) (.453) 

Time -- 2.675 3.639 4.468 4.366 

(.629) (.642) (.407) (.415) 

Sigma 2.344 
(.615) 

Log-likelihood -90.76 -183.39 -178.94 -2496.24 -2494.09 
Number of Obs. 144 144 144 4464 4464 

Standard errors in parentheses. 
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Figure 2 

KAFLAW-MEIER ESTIMATES OF SURVIVOR FUNC7IONS 
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