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Introduction

The extent to which competing products are substitutable is central to empirical In-

dustrial Organization (IO) because it is informative about magnitude of market power

and consumer welfare in differentiated-product industries. The econometric frame-

work proposed by Berry (1994) and Berry, Levinsohn, and Pakes (1995) is the lead-

ing approach for estimating demand in this context, and is increasingly popular as

a revealed-preference method to measure quality and value-added in other empirical

microeconomics fields.1 This class of models can approximate very rich substitution

patterns by relaxing the Independence of Irrelevant Alternatives (IIA) assumption un-

derlying logit/CES type demand structures, while at the same time also accounting for

the presence of product-level unobservable attributes (to the econometrician).

This flexibility however complicates the identification and estimation of substitution

patterns, since the introduction of non-IIA preferences creates a simultaneity problem

associated with the joint determination of market shares and unobserved attributes.

For instance, in a Nested-Logit model (special case of the random-coefficient model),

the price and market shares of products in the same nest are correlated with the model

residual; hence the need for separate Instrumental Variables (IV) (Berry 1994). In

the random-coefficient model, market-shares enter the model non-linearly, and the pa-

rameters governing substitution patterns are estimated using non-linear IV estimators.

This class of estimators is notoriously sensitive to the presence of weak identification;

a problem that is difficult to diagnose (e.g. Stock and Wright 2000).

The problem of weak identification has received little attention in the demand es-

timation literature, and a review of the empirical literature suggests that it is a poten-

tially a pervasive problem. For instance, there are very few direct applications (known

to us) that have found statistically and/or economically significant departures from

IIA preferences relying solely on demand restrictions.2 In addition, commonly used

moment conditions often lead to numerical optimization problems; another symptom

of weak identification in non-linear models.3

1Examples include models of residential and school sorting (e.g. Bayer, Ferreira, and McMillan
2007, Nielson 2017), and models of adverse selection in insurance markets (e.g. Starc 2014).

2For instance, it is common to impose additional “cross-equation” restrictions originating from
equilibrium supply assumptions (see Berry et al. 1995, Berry, Levinsohn, and Pakes 1999, Eizenberg
2014), micro moments (see Petrin (2002) and Berry, Levinsohn, and Pakes (2004)), or by using more
restrictive models of product differentiation such as the nested-logit or GEV models (e.g. Verboven
1996, Bresnahan, Stern, and Trajtenberg 1997).

3See Metaxoglou and Knittel (2014) and Dube, Fox, and Su (2012) for a discussion of numerical
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Our goal in this paper is to develop a new class of strong instruments for estimating

substitution patterns of demand. Strong instruments are relevant instruments that can

flexibly estimate substitution patterns while also circumventing the weak identification

challenges above.4

In order to build strong instruments, we first theoretically examine the source of

weak identification. Weak identification in non-linear problems arises when the residual

function is weakly correlated with the instruments away from the true parameter value.

As with linear models, the strength of this correlation is measured by regressing the

residual function (endogenous variables) on the instruments. We refer to this regression

as the “reduced form” of the model.

The main challenge for empirical work is that the strength of the reduced form rela-

tionship cannot be evaluated empirically without knowing the values of the parameters,

e.g., there is no clear analogue of a first-stage regression that is typically employed for

linear models in the non-linear context. In the demand estimation setting, this is com-

pounded by the fact that the number of exogenous variables grows with number of

products in a market, and therefore with the sample size.

Our main theoretical contribution is to show that this curse of dimensionality can

be solved using implicit restrictions that the demand structure places on the reduced-

form. In particular we show that the reduced-form is a vector symmetric function of

the distribution observed characteristics differences between a given product and the

other products available in the same market. This property is rooted in the symmetry

of the underlying demand function, which is valid in any linear random-utility model

with linear preferences and exchangeable errors.

This result has important implications: an approximation to the reduced-form can

be obtained using basis functions that summarize the distribution of characteristic

differences (i.e. exogenous measures of differentiation). This implies that relevant

instruments should measure the degree of differentiation of a product relative to others

available in the market. Importantly the number of basis functions necessary to explain

the (unknown) reduced-form is invariant to the number of products in the market. We

propose a series of instrument functions that satisfy this property, and label them

problems/solutions in this context.
4An alternative approach to deal with weak instruments is to estimate the model using estimators

that are robust to weak identification (e.g. Stock and Wright (2000)). Conlon (2013) for instance
describes the properties of an Empirical Likelihood-based estimator applied to BLP, and demonstrates
a weak identification problem associated with commonly used instruments.
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Differentiation IVs.

Our second contribution is to the detection of weak instruments. We show that

an instrument is weak if it fails to reject the null hypothesis of IIA preferences. This

hypothesis can be tested by estimating the (linear) reduced-form of the model under

Logit preferences. This reduced-form is also a symmetric function of the distribution

of characteristics differences, and Differentiation IVs can therefore be used to test

the IIA hypothesis. Importantly this test is not accompanied by a statistical criteria

to determine when an instrument function is “too weak”. However, it provides a

useful approach the analyze empirically the sign and strength of the reduced-form

relationships; despite the presence of a large number of endogenous variables, and the

non-linearity of the model.

These two results suggest a sequential approach estimation. First, the theory can

be used to construct candidate instruments; the form of which can vary depending the

structure of the data. Second, researchers can evaluate the strength of the proposed

instruments by testing the IIA hypothesis. We illustrate this approach empirically

using Monte-Carlo simulations, and by estimating a model of demand for new cars.

Our simulation results show that the proposed instruments, by eliminating the

weak IV problem, can improve substantially the precision of the estimates (by a fac-

tor of 10 in some cases), and the numerical performance and speed of the non-linear

optimization algorithms used to estimate the parameters. We discuss how to adapt

our identification strategies to settings with correlated random-coefficients, endogenous

product attributes and large dimension problems. We also compare our results with

the Optimal IV approximation proposed by Berry, Levinsohn, and Pakes (1999), and

a model with endogenous attributes identified using quasi-experiment variation.

We then illustrate the IIA test by revisiting the car application first studied by

Berry et al. (1995). We find statistically significant deviations from IIA along (at

least) three dimensions: price, car size (doors), and air-conditioning. Using measures

of differentiation along these three dimensions as instruments, and show that it is

possible to precisely estimate the random-coefficient parameters (controlling for brand

and market fixed-effects), without relying on restrictions external to the demand model

(e.g. supply-side or external survey data). This is important, since ability to identify

substitution patterns without relying on an equilibrium model of supply is central to

the analysis of firm conduct in Industrial Organization (Bresnahan 1982, Berry and

Haile 2014).
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A growing number of papers using our instruments confirm these results. The

Differentiation IVs introduced in this paper have now been used to obtain precise

estimates of substitution patterns in a variety of applied contexts, ranging from demand

for cars (Miravete, Moral, and Thurk 2018, and Coşar, Grieco, and Tintelnot 2018),

scanner data (Miller and Weinberg (2017), Sullivan (2020), Dube, Hortacsu, and Joo

(2020)), and school choice (Singleton 2019). See also Conlon and Gortmaker (2019)

for additional Monte-Carlo simulation results.

Our paper is related to a set of recent papers that have also raised concerns about

the efficiency of instruments used in standard practice and explored alternative instru-

mental variable strategies for differentiated product demand models. Many of these

papers are focused on approximating the optimal instruments for GMM under the

conditional moment restrictions of the model in the sense of Amemiya (1977) and

Chamberlain (1987). For example, Reynaert and Verboven (2013) discussed the loss of

efficiency associated with commonly used instruments, and analyze the small sample

performance of the approximation to the optimal instruments proposed by Berry et al.

(1999). Salanie and Wolak (2019) propose an estimation and specification selection

procedure based on the Gauss-Newton regression, which also rely on the Jacobian of

the residual function.

The challenge with these approaches is that they require a starting value for the

non-linear parameters that are in a reasonable vicinity of the true value, which itself

requires an initial choice of instruments by the researcher to determine an initial value.

If the initial instrumental variable are weak, these optimal IV refinements will have a

difficult time escaping the weak-IV regime.

Our approach is ultimately complementary to these methodologies by focusing on

the weak instruments problem directly. Differentiation IVs can be used as in input to

these procedures by obtaining initial estimates that are not subject to the weak IV

problems. An approximation to the Optimal IV using these approaches can be used to

obtain further efficiency gains. As discussed in Conlon and Gortmaker (2019), this is

now considered the empirical “best practice” for estimating this class of models. How-

ever Differentiation IV’s have applications beyond sheer efficiency of estimation and

can be used to estimate, test, and compare different models of product differentiation.

This arises because a key advantage of our approach is that our characterization of the

reduced-form does not depend on the distribution of the random-coefficient, or on the

value of the parameters. Having instruments that are agnostic to the parametrization
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of demand heterogeneity allows researchers to to test alternative specifications and gain

applied insights into the appropriate structure of demand for the data at hand.

The instruments that we propose are also similar to the instruments commonly

used to identify nested-logit and spatial differentiation models.5 A key contribution of

our paper is to show that the intuition underlying these instruments for the particular

differentiation structure they apply generalizes to the broader family family of charac-

teristics models with random coefficients. We also derive an instrument function that

can exploit variation in demographic characteristics across markets, similar to the one

proposed by Romeo (2010).

The rest of the paper proceeds as follows. In the next section, we describe the

model, and formally define the weak-identification problem. Sections 2 and 3 present

our main theory results. We first derive our main theoretical result, and illustrate

its implication for parametric and non-parametric estimation of the model. We then

present a series of Monte-Carlo simulations in section 4 to analyze the finite-sample

properties of the instruments. Section 5 applies the instruments to the estimation of

a mixed-logit model of demand for new cars. The appendix include the proof of the

main propositions, and computation details related to the Monte-Carlo simulations

and application.

1 Description of the model

In this section we introduce the general notation that we will use throughout the paper.

We also describe the identifying assumptions and the GMM estimator.

1.1 Model assumptions

Consider a panel data-set summarizing the characteristics and demand of differentiated

products in T independent markets. Each market t is composed of Jt products, and

each product j is characterized by a vector of observed (to the econometrician) product

characteristics xjt ∈ RK and an unobserved characteristic ξjt. We will refer to xt =

(x1t, . . . ,xJt,t) as a summary of the observed market structure - the entire menu of

observed product characteristics available to consumers in market t (i.e. Jt×K matrix).

The vector of prices for market t are denoted by pt = {p1t, . . . , pJt}. Similarly, st =

5See in particular Berry (1994), Bresnahan, Stern, and Trajtenberg (1997), Pinkse, Slade, and
Brett (2002), Davis (2006), Thomadsen (2007), and Houde (2012).
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{s1t, . . . , sJt} is the vector of observed market shares, which is defined such that 1 −∑Jt
j=1 sjt = s0t is the market share of the “outside” good available to all consumers in

market t. We normalize the characteristics of the outside good such that x0t = 0.6 We

impose three assumptions on the model and data-generating process.

Our first assumption, refers to the shape of the indirect utility function generating

choices. We assume that the preference of consumers can be summarized by a linear-

in-characteristics random-utility model with a single-index unobserved quality.

Assumption 1. Each consumer i has linear preferences for products j = 0, 1, . . . , Jt:

uijt = δjt + νippjt +

K2∑
k=2

νikx
(2)
jt,k + εijt (1)

where δjt = x′jtβ+ ξjt is labelled as the “mean utility” of product j, x
(2)
jt is a sub-vector

of xjt (i.e. non-linear attributes), εijt is an IID random-utility shock for product j, and

νi = {νip, νi2, . . . , νiK2} is the vector of random-coefficients for consumer i.

When εijt is distributed according to a T1EV distribution, the aggregate demand

function for product j can be written as follows:

σj

(
δt,x

(2)
t ,pt;λ

)
=

∫ exp
(
νippjt +

∑
k vikx

(2)
jt,k + δjt

)
1 +

∑Jt
j′=1 exp

(
νippj′t +

∑
k vikx

(2)
j′t,k + δj′t

)dF (νi;λ) (2)

where F (νi;λ) denotes the joint distribution of the random-coefficient vector in market

t, where x
(2)
t =

(
x
(2)
1t , . . . ,x

(2)
Jt,t

)
and δt = (δ1t, . . . , δJt,t). We maintain the mixed-logit

parametric functional-form in our simulations below, since it is the workhorse model

used in the literature. However, our theoretical results do not depend on this particular

distributional assumption, and are relevant for a broader family of characteristic mod-

els; including the pure-characteristic and semi-parametric demand models with linear

preferences (e.g. Berry and Pakes 2007 and Compiani 2019).

Our second assumption is related to the conditional distribution of the model resid-

ual. Following Berry et al. (1995) and Berry and Haile (2014), we assume that ξjt vary

independently of the choice-set that consumers face, and vector of price instruments

wt. Assumption 2 formalizes this identifying restriction.

6Thus each characteristic can be interpreted in terms of differences relative to the outside good.
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Assumption 2. The unobserved quality of products has mean zero conditional on the

observed menu of characteristics xt and price instruments wt,

E [ξjt | xt,wt] = 0. (3)

Two broad sources of variation have been proposed in the literature to construct

valid price instruments: (i) markup-shifters, and (ii) cost-shifters. See Berry and Haile

(2016) for a review. In this paper we assume the researcher has access to excluded

price instruments, and focus instead on constructing instrumental variables for market-

shares.

Finally, our third assumption further restricts the joint distribution of the error

term {ξ1t, . . . , ξJt,t}.

Assumption 3. The joint distribution of the unobserved quality of products is ex-

changeable in the identity of products:

Pr(ξj,t < c|ξ1,t, . . . , ξj−1,t, ξj,t, . . . , ξJt,t) = Pr(ξj,t < c|ξι(−j),t)

for any ordering function ι().

In economics terms, this assumption implies that the identity of rival products is

not important to predict the distribution of unobservable attributes. This assumption

is not novel in the literature, and allow us to pool moment conditions across products.

See discussion in Berry et al. 1995 (section 5.1). This assumption does not rule out

the possibility that brand or product fixed-effects are relevant for consumers’ decisions,

and enter the indirect utility function linearly (e.g. Nevo (2001)).

Following Berry (1994), the inverse demand function is used to define the residual

function of the model:

sjt = σj

(
x
(2)
t ,pt, δt;λ

)
j = 1, . . . , Jt

⇐⇒ ρj (st,xt,pt;θ) = σ−1j

(
st,x

(2)
t ,pt;λ

)
− xjtβ j = 1, . . . , Jt (4)

where θ = (β,λ) is the full parameter vector of dimension m. The inverse-demand

function assigns quality levels to each product in order to matches the observed market-

shares, for a given guess of the parameter λ. Existence and uniqueness of this inverse
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mapping follows directly from Berry et al. (1995).7 A simultaneity problem arises

because market shares (and prices) of rival products enter the inverse-demand non-

linearly, and are correlated with the model residual. Importantly, even with exogenous

prices, non-linear least square leads to a biased estimator of (λ,β).8

Theorem 1 in Berry and Haile (2014), shows that the parameters can be identified

by imposing the following conditional-moment restrictions (CMR):

rjt(θ) = E
[
ρj(st,xt;θ)

∣∣xt,wt

]
= E

[
σ−1j

(
st,x

(2)
t ,pt;λ

)
|xt,wt

]
− xtβ = 0 iff θ = θ0. (5)

The second term calculates the expectation of product j’s inverse-demand, conditional

on the menu of product characteristics available in t. This expectation is taken over

the endogenous variables of the model: the vector of market shares and prices.

1.2 Instrument relevance and the curse of dimensionality

The standard approach to estimate θ is to form L ≥ m unconditional moment restric-

tions, consistent with the CMRs defined in equation (5):

E
[
ρj
(
st,pt,xt;θ

0
)
· zjt

]
= 0 If θ = θ0 (6)

where zjt = {xjt, Aj(xt,wt)}. The instrument function, Aj(xt,wt), defines the set of

excluded instruments characterizing the menu of characteristics in market t.

How should the instrument function be chosen? In linear models, excluded instru-

ments are relevant if they exhibit a strong reduced-form correlation with the endoge-

nous variables of the model. In non-linear models, the role of the instruments is to

7See also Berry, Gandhi, and Haile (2013) for a general proof that does not rely on the type-1
extreme-value distribution assumption.

8To see this, consider a model without prices. In this case, the first-order condition of non-linear
least-square with respect to λ is not satisfied at the true value of the parameters because the market
shares enter σ−1j (·):

1

n

∑
j,t

∂σ−1j (st,x
(2)
t ;λ0)

∂λ
· ρjt(st,xt;θ

0)→p E

[
∂σ−1j (st,x

(2)
t ;λ0)

∂λ
· ξjt

]
6= 0.

This echoes the discussions in Jorgensen and Laffont (1974) and Amemiya (1974).
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approximate rj(θ) from equation (5):

rj(θ) ≈ L
[
ρj(st,xt;θ)

∣∣xt,wt

]
= l(zjt;θ),

where l(zjt;θ) is a projection of ρjt(st,x
(2)
t ,pt;θ) onto zjt. The GMM identification

condition can be restated in terms of a zero function:

l(zjt;θ) = 0 if θ = θ0.

Weak identification arises when this condition is nearly satisfied in the population away

from true parameter value:

l(zjt;θ) ≈ 0 if θ 6= θ0.

This leads to an empirical problem: In finite sample it is difficult to detect departures

from θ 6= θ0 and the confidence intervals become large (Stock and Wright 2000).

The avoid this problem, researchers need to find a vector of excluded instruments,

Aj(xt,wt), that can explain the residual function at an arbitrary parameter θ. The

upper bound on the strength of the instruments is given by rj(xt,wt;λ). Ideally, the

chosen instrument function can approximate the function arbitrarily well. Formally,

Donald, Imbens, and Newey (2008) show that an instrument function is efficient if it

satisfies a “spanning condition”: it can approximate any function aj(xt,wt) arbitrarily

well as the dimensionality of Aj(·) goes to infinity.

As discussed in Donald et al. (2008), “low-order approximating functions (e.g.

linear or quadratic) often provide the most information”. Without imposing further

restrictions, this is not the case in the differentiated product context, since even low di-

mension basis functions suffer from a curse of dimensionality problem. Formally, a curse

of dimensionality exists because the reduced-form of the model is a product-specific

function of the entire menu of product characteristics available in the market. Recall

that the number of exogenous variables (xt,wt) is equal to K × Jt, and the number

of endogenous variables in the structural equation is equal to 2 × Jt. In many appli-

cations the number of products is at least as large as the number of markets/periods.

Unless the number of products is assumed to be constant and small relative to the

number of markets, the number of terms necessary to approximate the function grows
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exponentially.9

Therefore, in most settings, it is impossible to approximate the conditional moments

without additional restrictions. This is an important problem for empirical work,

since there is a very large number of valid potential instrument functions satisfying

Assumption 2, most of which weakly identify model.

2 Exchangeability and the choice of instruments

The previous discussion highlights the role of the instruments in approximating the

conditional moment restrictions. In order to derive a class of relevant instrument

functions, it is useful to decompose the expectation of the residual function in two

components:

rjt(θ) = πj(xt,wt)− xjtβ

We refer to πj(xt,wt) = E
[
σ−1j

(
st,x

(2)
t ,pt;λ

)
|xt,wt

]
as the reduced-form of the

model. Let σ−1j (st,pt;λ) = xjtβ
0 + ∆j (λ) + ξjt denotes the inverse demand function

evaluated at parameter λ, expressed as function of the quality gap relative to δjt:

∆jt (λ) = σ−1j (st,x
(2)
t ,pt;λ)− σ−1j (st,x

(2)
t ,pt;λ

0).

Using this notation, the reduced form is approximated by the instruments via a linear

projection:

πjt(xt,wt;λ) = E
[
xjtβ

0 + ∆j (λ) + ξjt
∣∣xt,wt

]
≈ xjtγ1 + Aj(xt,wt)γ2 + 0, (7)

and l(zjt;θ) = zjtγ − xjtβ is the linear projection approximating the conditional

moments.

The reduced-form parameters γ2 determines the strength of the correlation between

the excluded instruments, and the quality gap evaluated at parameter λ. An instru-

ment function is relevant if γ2 is jointly different from zero in the population. For

instance, at λ → 0 6= λ0, the model exhibits IIA preferences, and ∆jt (λ) is positive

9Note that this does not affect the identification result in Berry and Haile (2014), since they
consider data-generating processes with infinitely many products (i.e. T →∞).

10



for products with few substitutes. In contrast, products that are undifferentiated along

the price or x
(2)
jt dimensions are assigned a negative quality gap. When γ2 is (jointly)

close to zero in the population, the instruments are unable to explain this type of

deviations in the assignment of product quality. This leads to a weak identification

problem since the linear projection is not statistically different from zero away from

the true parameters.

Our objective in this section is to develop a theory-driven approach to constructing

instruments that can approximate the reduced-form function πj(xt,wt), while circum-

venting the curse of dimensionality problem. We show that the symmetry of the

demand system implies that the reduced-form can be written as a symmetric function

of the distribution of characteristic differences; a property that breaks the curse of

dimensionality.

We first illustrate this result in the context of a model without endogenous prices.

Section 2.2 relaxes this assumption. Section 2.3 introduces two classes of instrument

functions that satisfy the symmetry property.

2.1 Exogenous characteristics

With exogenous characteristics, we can write the conditional-moment restrictions as a

function of the menu of characteristics xt (dropping wt):

E [ρj (st,xt;θ) |xt] = πj(xt;λ)− xjtβ = 0.

Let us define djt,k = xjt−xkt to be the vector of characteristic differences between

product j and product k in market t, and let djt = (djt,0, . . . ,djt,j−1,djt,j+1, . . . ,djt,Jt)

be the matrix of differences relative to product j. Similarly, d
(2)
jt is a matrix of non-linear

characteristic differences. Furthermore, let ωjt,k =
(
skt,d

(2)
jt,k

)
denotes an ordered pair

associated with each product k = 0, . . . , Jt in the market (including the outside good)

for a given inside product j > 0, and let ωjt = {ωjt,k}k=0,...,Jt
. We now have the

following result which is proven in Appendix A.

Proposition 1. Under the linear in characteristics random utility model the inverse-

demand

σ−1j

(
st,x

(2)
t ;λ

)
= f (ωjt;λ) + Ct(λ), j = 1, . . . , Jt (8)

where Ct is a market-specific constant and f is a symmetric function of ωjt.

11



The proof can be sketched as follows. We first recognize that the identity of products

or the level of product attributes is irrelevant to predict consumers’ discrete choice.

Therefore, we can abstract from the identity of products by expressing the demand

function in terms of characteristics differences relative to product j. Furthermore,

rather than normalizing the quality index of the outside good to zero, we rescale the

quality index to be between zero and one: τjt = exp(δjt)/
(

1 +
∑

j′t exp(δj′t)
)

for all

j = 0, . . . , Jt. This new normalization has the advantage of treating the outside option

symmetrically with respect to the other options, and explains the presence of a market-

specific intercept in equation (8).10 These two normalizations imply that the demand

function for product j is a fully exchangeable function of the structure of the market

relative to product j: mjt =
{

(d
(2)
jt,k, τ0t)

}
k=0,...,Jt

. The inverse mapping associated with

this demand representation maintains the same symmetry and anonymity properties.

There are two key implications of Proposition 1. The first is that the inverse-demand

function σ−1j

(
st,x

(2)
t ;λ

)
is no longer indexed by product j, once we condition on a

vector of state variables ωjt of the products competing with j in a market.11 The second

implication is that f(·) is a symmetric function of the states of the competing products.

Proposition 1 can be viewed as an extentension of the the partial-exchangeability result

obtained in Pakes (1994) to reduce the dimensionality of equilibrium strategies in

differentiated product markets (e.g. investment and pricing).

The following proposition constitutes our main theoretical result, and state that

the reduced-form of the model can be written as symmetric functions of the vector of

characteristic differences.

Proposition 2. If the distribution of {ξ1t, . . . , ξJt,t} is exchangeable, the conditional ex-

pectation of the inverse-demand is a symmetric function of the matrix of characteristic

differences:

πj(xt;λ) = g (djt;λ) + ct(λ)

where ct is a market specific constant.

The proof can be sketched as follows. Recall the expectation operator defining the

reduced-form function in equation (5) is taken over the market shares vector; which cor-

10The market intercept corresponds to: Ct(λ) = ln

((
1−

∑
j≥1D−1(ωjt;λ)

)−1)
, where D(ωjt;λ)

is the (symmetric) demand function for product j.
11Observe that the state ,ωjt,k of a rival k 6= j does not contain its own product characteristic ,xkt

but rather the difference, xkt − xjt, relative to j.
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responds to the demand functions. Since the demand for each product is symmetric,

the density of shares can be re-written as a function of the entire vector of charac-

teristics differences and the joint density of unobservable quality ξjt. This involves

re-ordering the vector of characteristic differences to predict the marginal distribution

of each product’s market share, and does not require knowing the identity of each in-

dividual product (under Assumption 3). This establishes that the expectation of the

inverse-demand is a symmetric function of the matrix djt, because the joint distribu-

tion of market shares and the integrand itself are symmetric functions of characteristic

differences.

Relevant instrument function: Differentiation IVs

Proposition 2 is important because it allows us to allows us to use low order approxi-

mations of the reduced form without the problems of curse of dimensionality discussed

above. A relevant instrument is a function that satisfies the symmetry property, while

summarizing the distribution of characteristics differences relative to product j. Since

these functions measure the degree of differentiation, we label them Differentiation

IVs.

To understand why the symmetry of the reduced-form solves the curse of dimension-

ality problem, consider a special case of the model with a single attribute, xjt. In this

case, the state space is given by a Jt×1 vector with element k given by: djt,k = xkt−xjt.
If we use a monomial basis to approximate π, the first order polynomial can written

as follows:

g(djt;λ) ≈
∑
j′ 6=j

γj′djt,j′ = γ1 ·

(∑
j′ 6=j

djt,j′

)

The equality follows directly from the symmetry of the reduced-form function. Since

we can re-order the products without changing the inverse-demand, g(djt,−j;λ) =

g(djt,ι(−j);λ), the coefficients of the polynomial function must be equal across products.

The second order polynomial approximation takes a similar form:

g(djt;λ) ≈
∑
j′ 6=j

∑
k 6=j

γj′,kdjt,kdjt,j′ = γ1 ·

∑
j′ 6=j

djt,j′

+ γ2 ·

∑
j′ 6=j

(
djt,j′

)2+ γ3 ·

∑
j′ 6=j

djt,j′

2
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The symmetry property restricts the number of basis-functions to at most three.

The first and last terms exhibit little variation across products within a market, es-

pecially when the number of products per market is large. We therefore focus on the

sum of square of characteristic difference as the relevant term to construct the instru-

ment function (Donald et al. 2008). Importantly, this instrument has an economic

interpretation since it measures the (square of) Euclidian distance of product j along

dimension x.

Another common class of basis functions that exploit the symmetry of the function

is the spline. Consider for instance a linear B-Spline. The basis function over sequence

of knots c1, . . . , cM is:

Bm
jt,j′

1 If cm < djt,j′ < cm+1

0 Else.
(9)

This would lead to the following approximation function:

g(djt;λ) ≈
∑
j′ 6=j

M∑
m=1

Bm
jt,j′γj′,m =

M∑
m=1

Nm
jt,j′γm (10)

Where the last equality imposed the symmetry of the function, and Nm
jt,j′ =

∑
j′ 6=j B

m
jt,j′

is the number of rival products located with the neighborhood (cm, cm+1) of product

j. Again this instrument function correspond to a commonly used measure of product

differentiation in the literature.

In summary, Proposition 1 and 2 solve the curse of dimensionality in two ways.

First, by expressing the state of the industry in differences (rather than in levels), it

is no longer necessary to condition on the identity of products to express the inverse-

demand function. This allows us too “pool” observations within and across markets

since the same inverse-demand equation is used to explain the data on all products (j, t).

Second, under Assumption 3, the expectation of the inverse demand is an exchangeable

function of the vector of characteristics difference. This implies that the inverse-demand

is function of the magnitude of characteristic differences, not the identity of competing

products. As the previous example illustrates, this leads to a substantial reduction in

the number of basis functions necessary to approximate the reduced-form.12

12See Altonji and Matzkin (2005) and Farias, Saure, and Weintraub (2012) for a related uses of
symmetric functions.
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2.2 Endogenous attributes

Incorporating endogenous characteristics, such as prices or advertising, adds an addi-

tional simultaneity problem: in equilibrium these characteristics are correlated with

the unobserved quality of products (Berry, Levinsohn, and Pakes 1995).

To see how this changes the reduced-form function, consider the following inverse-

demand with endogenous prices:

σ−1j

(
st,x

(2)
t ,pt;λ

)
= f (ωjt;λ) + Ct(λ).

Element k of the state vector ωjt now includes: {skt,d(2)
jt,k,d

p
jt,k}, where dpjt,k is the price

differences between product j and k. This inverse demand is generated from a model

in which consumers have heterogenous price coefficients (as in Bresnahan (1987) for

instance).

As before, f(·) is a symmetric function of the industry state vector ωjt. Although

the conditional expectation of this function is also symmetric, the conditional mean

restriction used in equation (5) to identify the model is no longer satisfied at θ0:

E
[
σ−1j

(
st,x

(2)
t ,pt;λ

0
) ∣∣xt,pt]− xjtβ0 = g(djt,d

p
jt;λ

0) + ct(λ
0)− xjtβ0 6= 0.

The challenge is that the reduced-form of the model cannot be written as a sym-

metric function of the distribution of characteristics differences {djt,dwjt}. To see this,

recall that the symmetry of the reduced-form arises from the symmetry of the demand

function itself. With endogenous prices, the conditional expectation of the inverse de-

mand is taken with respect to the joint distribution of (st,pt) given (xt,wt), which

is determined endogenously by the conduct of the industry. Except in special cases

such as monopoly or single-product Bertrand-Nash, this distribution is not a symmet-

ric function of characteristic differences. This is because the identity/ownership of

products plays an important role in determining the distribution of markups.

Importantly, this does not mean that it is infeasible to construct valid/relevant

instruments. It simply means that we cannot solve the curse of dimensionality problem

without relying on a heuristic approximation. We proceed in two steps.

First, let p̂jt ≈ E(pjt|xt,wt) denotes an estimate of the reduced-form pricing equa-

tion constructed from observed characteristics. This exogenous price measure can be

constructed using regressions exploiting random variation from cost and/or ownership
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shocks (as in Reynaert and Verboven (2013)), or by solving an equilibrium pricing

game after setting ξjt = 0 (as in Berry, Levinsohn, and Pakes (1999)). The choice of

the approach is application/data specific. For instance, when using a regression ap-

proach, p̂ can be estimated using flexible functional forms or non-parametric regression

techniques to improve the quality of the fit. Since p̂jt is constructed from (xjt,wjt),

the following conditional moment restriction is satisfied:

E [ξjt|xt, p̂t] = 0.

Second, following Berry, Levinsohn, and Pakes (1999), we use the following heuristic

approximation of the reduced-form:

E
[
σ−1j

(
st,x

(2)
t ,pt;λ

) ∣∣xt,wt

]
≈ E

[
σ−1j

(
st,x

(2)
t , p̂t;λ

) ∣∣xt, p̂t]
= g

(
djt,d

p̂
jt;λ

)
+ ct(λ) (11)

The idea behind the heuristic is to distribute the expectation operator over prices

inside of the non-linear function σ−1j (·). The second equality follows from the fact that

after replacing pjt with predicted value p̂jt, we obtain a reduced-form representation

of the reduced-form that is symmetric in {d,dp̂jt}. In what follows, we will construct

instrument functions that exploit the symmetry of this function.

2.3 Practical implications

In this section, we propose two classes of low-order instrument functions that satisfy

the symmetry property, and exhibit variation across products. Depending on the data

and richness of the model, more or less complicated functions can be used. As we

alluded to earlier, the key is to select instrument functions that predict differences in

the inverse-demand of products (within a market) as we vary the main parameters of

the model.

Our first example uses the leading terms of a second-order symmetric polynomial

16



basis function (focussing only on the binary interaction terms):

Aj(xt,wt) =



wjt Price IVs∑
j′ 6=j

(
dp̂jt,j′

)2
, ∀k Isolation j in price∑

j′ 6=j
(
dkjt,j′

)2
, ∀k Isolation j in xk∑

j′ 6=j d
k
jt,j′ × dljt,′ , ∀k 6= l Interaction: k and l

(12)

where dkjt,j′ = xj′t,k − xjt,k measures the difference between product j and j′ along

dimension k. Note that one dimension refers to the price. The interaction terms for

which l 6= k, capture the covariance between two dimensions of differentiation, while

the sum of square measure the isolation of products in the characteristic space.

Our second instrument function is based on the linear B-spline example discussed

above; considering only the characteristics of “close” rivals when summarizing the

market structure facing each product. In most models of product differentiation (e.g.

quality-ladder, hotellling, nested-logit etc), the demand for each product is most heavily

influenced by a small number of alternatives with similar characteristics, which is why

to focus only on the fist Spline segment. For instance in a “mixed-logit quality-ladder”

model, as the variance of the logit shock goes to zero, the inverse demand of product j

is only a function of the characteristics of products located to the right and left in the

quality rank.

This feature suggests the following instrument vector:

Aj(xt,wt) =



wjt Price IVs∑
j′ 6=j 1

(
|dp̂jt,j′| < κp̂

)
, ∀k Isolation of j in price∑

j′ 6=j 1
(
|dljt,j′ | < κk

)
, ∀k Isolation j in xk∑

j′ 6=j 1
(
|dljt,j′ | < κk

)
× dljt,′ , ∀k 6= l Interaction: k and l

(13)

where κk is a proximity threshold (e.g. standard-deviation of xjt,k across all markets).

The second element measures the number of “close-by” rivals along each dimension

of differentiation. The interaction of the indicator function with djt,j′ captures the

correlation in characteristics between firms that are direct competitors. When charac-

teristics are discrete, the indicator variables can be replaced by 1(dkjt,j′ = 0); which can

be thought of as a product-segment indicator. Moreover, additional neighborhoods can
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be constructed to impose additional restrictions on the model (e.g. 0 < |djt,j′ | ≤ κ1,

κ1 < |djt,j′| ≤ κ2, etc.)

The two formulations of the Differentiation IVs in equations (33) and (13) can

include a large number of terms depending on the number of characteristics. In general,

it is advisable to select a subset based on the amount of variation across products

and/or markets. For instance, it is common for some product characteristics to exhibit

very little variation across markets. In Nevo (2001), the non-linear characteristics vary

only at the product level (i.e. x
(2)
jt = x

(2)
j j = 1, . . . , 25), while prices vary both at the

product and the market level. Using exogenous variation in prices across markets, we

can construct instruments as follows:

Aj(xt,wt) =

{
wjt,

∑
j′ 6=j

1
(
|d1j,j′ | < κ1

)
dp̂jt,j′ , . . . ,

∑
j′ 6=j

1
(
|dKj,j′| < κK

)
dp̂jt,j′

}
. (14)

According to this formulation, the magnitude of the heterogeneity associated with

market-invariant characteristic k is identified from (exogenous) variation in the rela-

tive prices of products that are more or less differentiated from product j along that

particular dimension.

Incorporating demographic characteristics in the instrument function is straight-

forward. Appendix A.3 provides an example in which a random coefficient is an ad-

ditive function of income (yit). If the distribution of income can be standardized (i.e.

yit = mt + sdteit, where eit ∼ ψ(eit)), the reduced-form of the model can be written

as a symmetric function of characteristics differences and moments of the demographic

distribution:

πjt(xt;λ) = g
(
djt, sdt · d(2)

jt ;λ
)

+ ct(λ) (15)

In addition, the average utility index (δjt) includes an interaction variable: mt · x(2)jt .

This variable can be used as an excluded instrument (as in Miller and Weinberg (2017)).

Therefore, in this example the instrument vector includes the full vector of products’

own characteristics (including mt · x(2)jt ), as well as moments of the distribution of

characteristics differences interacted with the standard-deviation of yit in market t.

The takeaway is that market-specific moments of the distribution of demographics

should enter the instrument function as interaction terms with product characteristics

and differentiation measures, rather than as stand-alone variables.13

13See Romeo (2010) for a similar argument and simulation results showing the importance of ac-
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How does this formulation differ from the existing literature? Interestingly, the

basis function for the first-order polynomial formulation corresponds to the suggestion

in Berry et al. 1995 of using the sum of product characteristics as instruments. The

logic of using exogenous measures of differentiation has been used in other settings.

However, the relevance of exogenous measures of differentiation is most often justified

by their ability to predict prices (or markups), rather than to identify the non-linear

parameters. There exist two important exceptions: the nested-logit model (e.g. Berry

1994, Bresnahan, Stern, and Trajtenberg (1997)), and models of spatial differentia-

tion (e.g. Pinkse, Slade, and Brett 2002, Davis 2006, Thomadsen 2007, Houde 2012,

Singleton 2019). In both literatures, the standard instruments correspond to different

versions of the proximity measures described in equation (13). From this perspective,

an important contribution of our approach is to formally show that the intuition devel-

oped in these prior literatures remains relevant in the more general random-coefficient

model.

3 Additional implications for estimation and test-

ing

In this section we discuss three additional implications of the exchangeability results

from Section 2 for the identification and estimation of the model. We start by discussing

approximation to the optimal instruments, and the non-parametric estimation of the

model. We then propose a test of instrument relevance that can be used in the case of

the multinomial Logit model with random coefficients.

3.1 Optimal IV approximation

A direct implication of Proposition 2 is that the optimal instruments introduced by

Amemiya (1977) and Chamberlain (1987) can be written as symmetric functions of the

distribution of characteristic differences relative to product j. The following corollary

establishes a direct connection between product differentiation and optimal instru-

ments.

counting for interactions between product characteristics and the mean of demographic attributes in
the instrument vector.
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Corollary 1. If the distribution of {ξ1t, . . . , ξJt,t} is exchangeable, the conditional ex-

pectation of the derivative of the residual function is a symmetric function of the matrix

of characteristic differences:

E

[
∂ρjt (st,xt|θ)

∂λk

∣∣∣∣∣xt
]

= gk (djt;λ) + ct,k(λ), ∀k = 1, . . . , dim(λ)

where ct,k is a market-specific constant.

This implies that it is feasible to find basis-functions that can approximate the

optimal instruments, while avoiding the curse of dimensionality problem. Therefore, a

valid strategy to improve the efficiency of the estimates is to obtain first-stage estimates

using the instruments proposed in this paper, and then construct an approximation

to the optimal IV. The second-stage can be conducted using non-parametric regres-

sions as discussed in Newey (1993), or the heuristic approximation discussed in Berry,

Levinsohn, and Pakes (1999) and Reynaert and Verboven (2013).

This later approach relies on the following instrument function:

E

[
∂ρj(st,pt,x

(2)
t ;θ)

∂θ

∣∣∣xt,wt

]
≈ ∂ρj(st, p̂t,x

(2)
t ;θ)

∂θ

∣∣∣∣
ξjt=0,∀j,t

= Aj(xt,wt|θ). (16)

Since the instrument vector depends on θ, users must first obtain an estimate of the

parameters, denoted by θ1. This leads to a two-step estimator: (i) estimate θ1 by

GMM using instrument vector zjt, and (ii) construct Aj(xt,wt|θ1) and estimate θ̂ by

GMM.

Although this approach works well in practice (Reynaert and Verboven 2013), the

performance of the estimator depends on using strong IVs in the first-stage estimates.

This suggests a strong complementarity between the two approaches as discussed in

Conlon and Gortmaker (2019). The second-stage estimates are more precisely esti-

mated when the Differentiation-IVs are used in the first-stage. In other words, using

stronger instruments in the first stage lead to more precise results in the second stage.

3.2 Non-parametric estimation

Another implication of Propositions 1 and 2 is that it is feasible to construct a consistent

semi-parametric estimator of the linear-in-characteristics random-coefficient model. To
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see this, consider the following quasi-linear indirect utility:

uijt = xjtβ − pjt + ξjt + x
(2)
jt λi + εijt (17)

where (εi, λi) ∼ F (εi, λi), and δjt = xjtβ−pjt+ξjt. We treat the distribution of hetero-

geneity as non-parametric, and focus on the semi-parametric estimation the demand

model.

The inverse demand function of this model can be written as:

pjt = xjtβ − σ−1j
(
st, x

(2)
)

+ ξjt.

This corresponds to a partial linear regression model with an endogenous non-parametric

function. This is one of the two examples studied in Ai and Chen (2003), and the con-

ditional moment restriction can be used to construct a Sieve minimum distance (SMD)

estimate for β and b. This requires approximating the structural (inverse-demand)

and reduced-form equations using two linear Sieves.14 This estimator breaks the curse

of dimensionality in the number of products by using basis functions that satisfy the

exchangeability conditions implied by Proposition 1 and 2.

Compiani (2019) demonstrates that Bernstein polynomial can be used in this con-

text. In small sample, the inverse demand can also be approximated using the “distance-

metric” approach proposed by Pinkse, Slade, and Brett (2002).

3.3 Testing for instrument relevance

One important challenge when evaluating the strength of the excluded instruments is

that the reduced-form function depends on an unknown parameter vector λ. To get

around this problem, we propose a more practical measure of relevance, based on the

ability of the instruments to reject the Independence of Irrelevance Alternative (IIA)

hypothesis. This test relies on the assumption that εijt is distributed according to a

T1EV distribution.

With data on individual choices, Hausman and McFadden (1984) propose the fol-

lowing IIA test: estimate the model by including characteristics of rival products in the

indirect utility of consumers, and test the exclusion restriction implied by the multi-

14When the price enters the inverse-demand non-linearly, the same reduced-form representation can
be used, but it would rely on the heuristic discussed in Section 2.2.
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nomial logit model. A similar exclusion restriction can be tested using the aggregate

inverse-demand function at λ = 0 (Berry 1994):

σ−1j
(
st,pt,xt;β

0,λ = 0
)

= ln sjt/s0t

= xjtβ
0 + αpjt + ∆j(st,pt,x

(2)
t ;λ = 0) + ξjt

Where, as in Section 1.2, ∆j(·) measures deviations from IIA in the true model (i.e.

quality-gap). We construct an “IIA-regression” by taking expectation of shares and

prices, conditional on the menu of product characteristics. This leads to a reduced-form

regression relating the log of the odds-ratio to the matrix of product characteristics.

Definition 1 (IIA-test). If Assumption 2 is valid, the IIA hypothesis can be tested by

estimating the following regression:

E[ln sjt/s0t|xt,wt] = xjtβ + αE [pjt|xt,wt] + E
[
∆j(st,x

(2)
t ,pt;λ = 0)|xt

]
+ 0

≈ Aj(xt,wt)γ = xjtγ0 + γpp̂jt + A−wj (xt,wt)γ2, (18)

where A−wj (xt,wt) is a partition of the instrument vector that excludes product j’s price

IV (wjt). The null hypothesis of IIA preferences correspond to: H0 : γ̂2 = 0.15

Note that the IIA regression corresponds to the reduced-form of the model evalu-

ated at λ = 0, and therefore suffers from a curse of dimensionality problem. Using

Proposition 2 we can express this conditional expectation as a symmetric function of

the distribution of characteristic differences. Corollary 2 formalizes this result.

Corollary 2. If the distribution of {ξ1t, . . . , ξJt,t} is exchangeable and the price heuris-

tic defined in equation (11) provides a good approximation to the reduced-form, the

IIA regression can be written as a symmetric function of the matrix of characteristic

differences:

E [ln sjt/s0t|xt,wt] = xjtβ + αp̂jt + E
[
∆j(st,pt,x

(2)
t ;λ = 0)|xt,wt

]
≈ xjtγ1 + γpp̂jt + h(dxjt,d

p̂
jt) + h0t (19)

15Without controlling for the characteristics of rival products available in market t, the IIA regres-
sion suffers from an omitted variable bias. When the instrument is a rich enough control function,

in the sense that E
[
∆j(st,pt,x

(2)
t ;λ0)|xt,wt

]
≈ A−xj (xt,wt)γ1, the omitted variable bias disap-

pears and γ̂0 is a consistent estimate of the parameters determining the average willingness to pay of
consumers (β0).
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where h0t is a market-specific intercept.

The key implication of this corollary is that the IIA hypothesis can be tested by

measuring the strength of the correlation between market shares and measures of prod-

uct differentiation. There exists several ways of testing the exclusion restriction that

product differentiation is independent of demand.

Perhaps the most intuitive approach is to estimate the multinomial Logit model by

2SLS while controlling for the Differentiation IVs:

ln sjt/s0t = xjtγ̂1 + γ̂ppjt + A−wj (xt,wt)γ2 + error,

where the cost shifters wjt are used as an excluded instrument for price. In this

case, the IIA-test corresponds to the null hypothesis H0 : γ̂2 = 0. This test can be

implemented without solving for the non-linear demand function using standard Wald

or F tests, and is therefore robust to mis-specification of the demand model. As we

show below, the sign of the coefficient γ2 is informative about the nature substitution

patterns under the true underlying model. This regression can therefore be used to

guide the specification of the random-coefficient model (e.g. which characteristic should

be interacted with a random-coefficient).

An equivalent approach to test the IIA hypothesis is to estimate a mis-specified

model using both wjt and A−wj as instruments. In this case, the IIA-test corresponds

to an over-identification test measuring the validity of the exclusion restrictions formed

by the price instruments and the Differentiation IVs. This can be done using the

Sargan-Hansen J-test. We discuss both approaches in the application below.

In both cases a rejection of the null hypothesis implies that the excluded instru-

ments detect statistically significant differences between the true and the multinomial

Logit inverse-demand functions. We interpret this as a measure of the relevance of

the instrument function. The predicted value A−wj (xt,wt)γ̂2 quantifies the expected

deviations from IIA under the true model by estimating a (potentially) mis-specified

model. As we discussed in Section 1.2, failure to reject the IIA hypothesis when λ0 6= 0

is consistent with weak-identification.

Of course, the instruments can be “strong” and fail to reject the IIA hypothesis. If

that is the case, the researcher should infer that the underlying data-generating process

is well approximated by a model with IIA preferences (λ0 = 0). Alternatively, if the

the data does not exhibit enough variation in product characteristics, either within or
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across markets, it might not be feasible to find statistically significant deviations from

IIA. In this case, the previous discussion suggests that the non-linear model will be

weakly identified, and inference methods robust to weak identification should be used.

The previous discussion suggests a sequential approach to estimation. First, re-

searchers should evaluate the strength of the proposed instrument function by testing

the IIA hypothesis. If the null hypothesis cannot be rejected, the analysis should pro-

ceed with the Logit model. Otherwise, the instrument function can be used to estimate

a richer model, and test the validity of the over-identifying restrictions.

4 Monte-Carlo simulations

In this section, we analyze the finite sample properties of the Differentiation IVs de-

scribed in the previous section. We consider two random-coefficients models with exoge-

nous characteristics: (i) independent random-coefficients: and (ii) correlated random-

coefficients. Appendix B provides more details on the data-generating process and the

numerical algorithm used for estimation. We use an iterative nested-fixed-point Gauss-

Newton Regression (GNR) algorithm, combined with a Newton-Raphson non-linear

equation solver, to solve the non-linear GMM problem. This procedure is very robust

in settings with strong instruments. We perform all numerical integrations by discretiz-

ing the distribution of the random coefficients, and use the same grid and weights in

the monte-carlo and estimation steps; therefore avoiding any mis-specification due to

simulation errors. We provide a pseudo-code description of our approach in Appendix

B.2. We also provide sample Phython and Ox codes on our website.16

4.1 Independent random-coefficients

In this section we illustrate the weak IV problems associated with a commonly used

instrument function, and validate the IIA test as a measure of the relevance of the

instrument function. We then illustrate how the Differentiation IVs can alleviate the

problem.

Consider the following IID random-coefficient model with exogenous characteris-

16The codes are available here: https://jfhoude.wiscweb.wisc.edu/research-in-progress/
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Figure 1: IIA test with weak and strong instruments

(a) Weak IV: Sum (b) Strong IV: Euclidian distance

tics:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + λkηik) · x(2)jt,k + ξjt + εijt (20)

where sjt is the observed aggregate market share of product j in market t, and ηik ∼
N(0, 1). Using the previous notation, λ = {λ1, . . . , λK2} denotes the vector of K2

non-linear parameters. We assume that the number of products is fixed (J = 15), and

the number of market is equal to T = 100.

We compare the performance of three instrument functions:

Sum of characteristics IV: Aj(xt) =

xjt,
J∑

j′ 6=j
xj′,t


Quadratic Diff IV: Aj(xt) =

xjt,∑
j′

(
d1jt,j′

)2
, . . . ,

∑
j′

(
dKjt,j′

)2
Local Diff IV: Aj(xt) =

xjt,∑
j′

1
(
|d1jt,j′ | < sd1

)
, . . . ,

∑
j′

1
(
|d1jt,j′ | < sdK

)
where K is the number of characteristics (excluding the intercept), and sdk is the

standard-deviation of xjt,k.

Figure 1a illustrates the IIA-test graphically in the single-dimensional model with

weak instruments. Each dot represents a product/market combination, and the line
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corresponds to a linear regression of r̂jt on the instrument.17 As the figure illustrates,

the sum of rival characteristics is uncorrelated with the inverse demand evaluated at

λ = 0, even though the true model exhibits substantial deviations from IIA (λ0 = 4).

The R2 and the slope of the regression are both indistinguishable from zero. In other

words, the moment conditions are (nearly) satisfied away from the true parameter

value (λ0 = 4), implying that the model is weakly identified. Importantly, this weak

identification problem is not caused by a small sample problem (N = 1500). Also the

DGP leads to substantial variation in the instrument across markets and products,

since we intentionally used a small number of products in our example, J = 15. See

Armstrong (2016) for discussion of the weak instrument problem for prices when J is

large. In contrast, the performances of the Differentiation IVs is nearly identical when

using a large number of products, since the IVs exhibit substantial variation across

products within the same market even when Jt grows large.

Figure 1b illustrates the correlation between the residual function at λ = 0 (Logit)

and the Euclidian distance of product j (i.e. strong instrument) for same model.18

Unlike the sum of rival characteristics, the Euclidian distance is strongly correlated

with the model residual evaluated at λ = 0; the R2 of the regression removing the

effect of xjt is over 0.35 (compared to 0.0006 in Figure 1a). The Euclidian distance

is therefore a good predictor of the inverse-demand function away from the true pa-

rameter. Importantly, the sign of the correlation is an important indicator of the

model specification. A positive coefficient on distance indicates that the availability

of close substitutes reduces the probability of buying j, or equivalently that products

with similar attributes are close substitutes. In contrast, a negative coefficient would

be inconsistent with the random-coefficient model of demand (i.e. presence of similar

rivals increase demand). If that was the cause, it would likely indicate a violation of

the conditional independence assumption.19 Misspecification of this type would lead

to an estimate of the random-coefficient parameter equal to zero (corner), since the

model cannot rationalize this reduced-form relationship (see Houde (2012) for a dis-

cussion of mis-specification in the context of a model of spatial differentiation). It

is therefore important in applied work to measure the strength and the sign of the

17To represent the test graphically we project the instrument onto the product characteristics, and
plot the residual on the x-axis.

18The Euclidian distance instrument is defined as: IVdist
jt =

√∑15
j′ 6=j

(
x
(2)
j′,t − x

(2)
jt

)2
.

19For instance, this correlation can be explained by an (unobserved) increase in the willingness-to-
pay for a certain attribute that cause entry of products with the same attributes.
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reduced-form correlation between differentiation and demand prior to estimating the

structural model.

This positive relationship between differentiation (or distance) and the inverse de-

mand at λ = 0 is captured by the differentiation instrument used in Figure 1b. In

other words, products located in denser areas of the product space have relatively

small market shares. The inverse demand evaluated at λ = 0 rationalizes this feature

by assigning high quality to products that are relatively isolated, and low quality to

products with many substitutes. A clear violation of the moment conditions.

The results of 1, 000 Monte-Carlo replications with weak instruments are summa-

rized in Table 1a. We estimate the log of λk in equation (20), instead of λk directly,

to account for the strictly positive support of the parameter space. The table reports

the mean bias and RMSE for the transformed parameters, averaged across parameters

(λ0k = 4 for all λk). Table 2 summarizes the small-sample performance for the two IVs

across all specifications, and calculates the average asymptotic standard-errors. Tables

3a and 3b summarize the full set of simulation results, including the weak identification

and IIA tests, and the local minimum statistics.

To demonstrate the ability of the IIA-regression to detect the presence of weak

instruments, we compare the distribution of the IIA-test with a formal local identi-

fication test evaluating the rank of matrix E
[
∂ρj

(
st,xt;θ

0
)
/∂θT · zjt

]
. We use the

rank-test proposed by Cragg and Donald (1993) to test the null hypothesis of under-

identification under homoskedastic errors. The bottom panel of Table 1a reports the

results of the two tests.

We test the null-hypothesis of IIA preferences by testing the joint null hypothesis

that γ̂1 = 0. As the figures suggest, we cannot reject the hypothesis of IIA preferences

across all four specifications. We reach the same conclusions using the rank-test results.

The null hypothesis of under-identification (i.e. rank less than m), cannot be rejected

with probabilities ranging between 60% and 92% on average across the specifications.20

Next, we look at the finite-sample performance of the GMM estimator under weak

identification. Note that in 8.4% of the samples, of λ̂1 are estimated to be less than

0.001, which can be interpreted as a corner solution to the GMM optimization prob-

lem. This is a robust feature of weak instruments that has been documented by other

researchers analyzing the BLP model (e.g. Reynaert and Verboven (2013)). Weak

20We use a 10% confidence level calculated using Stock-Yogo critical values to calculate the rejection
probabilities (Stock and Yogo (2005)).
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Table 1: Monte-Carlo simulation results for exogenous characteristics model with weak
and strong instruments

(a) Weak instruments

K2 = 1 K2 = 2 K2 = 3 K2 = 4
bias rmse bias rmse bias rmse bias rmse

λk 0.136 2.643 0.06 2.46 0.09 2.25 0.12 2.301

1(Local-min) 0.189 0.514 0.594 0.661
Range(J-stat p-value) 0.167 0.189 0.212 0.210
Rank-test 1.265 0.464 0.259 0.178

p-value 0.615 0.813 0.886 0.919
IIA-test 1.327 1.296 1.486 1.944

p-value 0.426 0.422 0.356 0.237

(b) Strong instruments

bias rmse bias rmse bias rmse bias rmse
K2 = 1 K2 = 2 K2 = 3 K2 = 4

λk 0.002 0.122 -0.003 0.1275 0.0015 0.129 -0.003 0.142

1(Local) 0.000 0.000 0.000 0.000
Rank-test – F (1) 1202.104 564.033 330.399 206.417

p-value 0.000 0.000 0.000 0.000
IIA-test – F (K) 359.409 363.224 321.730 276.135

p-value 0.000 0.000 0.000 0.000

Data generating process: J = 15 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1).
The parameter values are given by: β0 = −3, β1 = 1, β2 = 1, λk = 4 for all k. Number of simulations:
1,000. The bias and RMSE are averaged across parameters: λk = {λ1, . . . , λK}.

instruments imply that the normal distribution is a poor approximation of the finite-

sample distribution of the parameter estimates, and causes the presence of frequent

outliers (leading to corner solutions).

Another consequence of weak instruments is the lack of precisions in the estimates.

The RMSEs range from 2.2 to 2.6 across specifications; or more than 50% of the true

parameter value (i.e. λk = 4 for all k’s). The precision of the estimates is poor across

all four specifications, and remains constant as we increase the complexity of the model.

A third consequence of weak instruments is the presence of numerical optimization

problems. To illustrate this point, for each simulated sample, we launched the opti-

mization routine at 10 random starting values (centered around the truth), and use a

Nelder-Mead (or Simplex) algorithm to find the local minimum. The indicator variable
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Table 2: Simulation results for the exogenous characteristic model with Differentiation
IVs

Diff IV: Quadratic Diff IV: Local
bias rmse asym-se bias rmse asym-se

K2 = 1 0.000 0.030 0.031 -0.000 0.032 0.032
K2 = 2 -0.001 0.032 0.031 -0.001 0.033 0.032
K2 = 3 -0.000 0.032 0.033 -0.000 0.033 0.034
K2 = 4 -0.001 0.035 0.035 -0.002 0.037 0.036
K2 = 5 0.000 0.039 0.039 -0.000 0.040 0.040
K2 = 6 -0.001 0.045 0.044 -0.001 0.046 0.045
K2 = 7 0.002 0.048 0.050 -0.003 0.051 0.052

Data generating process: J = 15 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1).
The parameter values are given by: β0 = −3, β1 = 1, β2 = 1, λk = 4 for all k. Number of simulations:
1,000.

1(Local-min) is equal to one if the algorithm converged to more than one solution.

Using this procedure, we find large number of “local minima”. The frequency of this

problem is increasing with the dimensionality of the parameter space. When K2 = 4,

66% of the samples exhibit multiple minima out of 10 starting values, compared to

19% when K2 = 2. The link between weak instruments and numerical problems is

easy to understand. Weak identification implies that the moment conditions are almost

satisfied away from the true parameter, which leads to non-convexities and flat GMM

objective function. This makes it difficult for Newton and quasi-Newton algorithms to

find the global minimum when instruments are weak.

The next row of Table 1a illustrates the magnitude of the differences between these

different local solutions. The average differences in the J-statistic p-values imply that

the over-identifying restrictions are rejected with a p-value of roughly 20% on average

using the largest local minimum, compared to 40% with the global minimum solu-

tion. These differences are consistent with the numerical problems documented by

Metaxoglou and Knittel (2014).

We now turn to the simulation results obtained with the quadratic Differentiation

IVs. We obtain similar results with the Local Differentiation IVs. Table 1b presents the

average bias and RMSE across parameter (λk). Both specifications allow us to reject

the null hypothesis of under-identification (rank-test), as well as the IIA hypothesis.

In addition, the frequency of local optima is equal to zero across all specifications;

meaning that the Newton optimization algorithm always converges to the same solution
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Table 3: Monte-Carlo simulation results for exogenous characteristics model with
strong instruments

(a) Differentiation IV: Quadratic

bias rmse bias rmse bias rmse bias rmse
K2 = 1 K2 = 2 K2 = 3 K2 = 4

λk 0.002 0.122 -0.003 0.1275 0.0015 0.129 -0.003 0.142

1(Local) 0.000 0.000 0.000 0.000
Rank-test – F (1) 1202.104 564.033 330.399 206.417

p-value 0.000 0.000 0.000 0.000
IIA-test – F (K) 359.409 363.224 321.730 276.135

p-value 0.000 0.000 0.000 0.000

(b) Differentiation IV: Local

bias rmse bias rmse bias rmse bias rmse

λk 0.002 0.126 -0.0003 0.13 0.002 0.133 -0.003 0.148

1(Local-min) 0.000 0.000 0.000 0.000
Rank-test – F (1) 1050.015 523.760 322.288 204.402

p-value 0.000 0.000 0.000 0.000
IIA-test – F (K) 297.544 298.073 262.636 222.932

p-value 0.000 0.000 0.000 0.000

irrespectively of the starting values. The precision and bias of the parameter estimates

are also small across all specifications. The average RMSEs of λ̂k are roughly 17

times smaller with the two instruments defined above, compared with the sum of rival

characteristics used in Table 1a.

We also find that minimal loss in precision from adding random-coefficients. The

average RMSEs increase from 0.03 to 0.05 when we vary the number of random-

coefficients from one to seven. This is encouraging since the sample size is fairly small:

15 products × 100 markets.

Finally, Table 4 compares the bias and precision of the estimates between non-linear

least-square and GMM. The first two specifications reproduces the bias and RMSE

results from the specification with four random-coefficients. The non-linear least-square

(NLS) estimates correspond to a specification where the parameters are obtained by

minimizing the sum of square residuals. This specification leads to biased estimates
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Table 4: Monte-Carlo simulation results with NLS and GMM

Diff. IV (quad.) Sum Characteristics NLS
Parameter Bias SE Bias SE Bias SE
λ1 -0.003 0.142 0.218 2.348 .227 .0238
λ2 -0.004 0.141 0.099 2.297 .225 .0239
λ3 -0.001 0.137 0.113 2.378 .226 .0238
λ4 -0.005 0.146 -0.075 2.207 .225 .0239

arising because of the simultaneity of market shares. Column (3) shows that this leads

to an average downward bias of roughly 10% (i.e. λ0k = 2). The main advantage

of least-square is the precision of the estimates. The asymptotic standard errors are

equal to 0.023; significantly smaller than the RMSE with GMM. This highlights the

tradeoff between bias and precision induced by the choice of instruments. With weak

instruments researchers should put a lot more importance of least-square results, given

the large mean-square error associated with GMM.

4.2 Correlated random-coefficients

Next, we consider a model with correlated random-coefficients:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + νik) · x
(2)
jt,k + ξjt + εijt, j = 1, . . . , 50 and t = 1, . . . , 100,

where νi ∼ N (0,Σ), and K2 = 4. We use a larger sample for this example: Jt = 50

instead Jt = 15. This reflects the fact that the number of non-linear parameters is

substantially larger with correlated random-coefficients: from 4 to 10.

To generate the data, we set the diagonal element of Σ equal to 4; the same value

used in the previous simulations. The covariance terms are chosen such that there is

an equal number of positive and negative parameters, equal to either −0.5 or 0.5. See

Table 13 in the Appendix.

Note that we estimate Choleski decomposition of Σ = C ′C, rather than Σ directly.

This allows us to write indirect utility of consumers as a linear function of parameters

and K2 standard-normal random-variables: νi = C ′ηi where ηi ∼ N (0, I). To ensure

that Σ is positive semidefinite, we constraint the diagonal elements of C to be posi-

tive by estimating the log of Ck,k. Let λ denotes the lower-diagonal elements of this

transformed matrix.
To construct our instrument function, we use the second-order polynomial form of
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Table 5: Simulation results for the correlated random-coefficient model

Σ·,1 Σ·,2 Σ·,3 Σ·,4

E
st

im
a
te

s Σ1,· 4.003
Σ2,· -1.997 4.000
Σ3,· 1.997 -1.996 3.991
Σ4,· 2.010 -2.000 2.006 4.010

R
M

S
E

Σ1,· 0.228
Σ2,· 0.132 0.232
Σ3,· 0.156 0.145 0.217
Σ4,· 0.156 0.143 0.154 0.217

IIA test (F) 157.637
Cragg-Donald statistic (F) 474.053
Nb endogenous variables 10
Nb IVs 15

Data generating process: J = 50 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1).
The parameter values are given by: β0 = −3, β1 = 1, βk = 1 for all k. Table 13 in the Appendix
presents the variance-covariance matrix of νik. Number of simulations: 1,000.

the Differentiation IVs with additional interaction terms between each characteristics
pairs:21

Aj(xt) =

xjt,
∑
j′ 6=j

d1jt,j′ × d1jt,j′ , . . . ,
∑
j′ 6=j

dljt,j′ × dljt,j′ ,
∑
j′ 6=j

d1jt,j′ × dl+1
jt,j′ , . . . ,

∑
j′ 6=j

dKjt,j′ × dKjt,j′

 .

This results in 15 excluded restrictions: (i) five quadratic differentiation measures

along each dimension (one special regressors and four non-linear characteristics), and

(ii) ten unique interaction pairs.

The simulation results are summarized in Table 5. The top panel reports the

average estimated parameters (transformed) of the variance-covariance matrix, the

middle panel reports the RMSE associated with each parameter, and the bottom panel

reports the averages of the IIA-test and the Cragg-Donald rank test statistics. Both

tests confirm that the instruments are strong, and that the IIA hypothesis is easily

rejected. The average bias and RMSE are also small, despite the richness of the

model. The differentiation IVs are able to accurately identify both the magnitude

and correlation in taste heterogeneity across consumers.

21Similar interactions can be constructed with the local differentiation instruments:
∑

j′ 1(|dljt,j′ | <
κl)d

k
jt,j′ . The results are similar using this specification of the instruments, but we find that the

quadratic form tends to be more stronger.
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Figure 2: Distribution of estimated price random-coefficient parameter
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It is worth noting that this specification is substantially richer than any random-

coefficient model that has previously been studied with aggregate data by researchers,

both in empirical applications and Monte-Carlo simulations. Although we obtain these

results in a “controlled” environment, this result confirms the ideas in Berry et al. 1995

and Berry and Haile (2014) that it is feasible to estimate very flexible substitution

patterns using aggregate data on market shares and product characteristics.

4.3 Endogenous prices

To analyze the performance of the Differentiation IVs when prices are endogenous we

consider a model with a single random-coefficient on price:

uijt = β0 +β1x
(1)
jt + (βp +λpνi) · pjt + ξjt + εjt, j,= 1, . . . , 15 and t = 1, . . . , 100. (21)

where ln νi ∼ N (0, 1).22

To generate a second simultaneity problem, we generate prices using a Bertrand-

Nash pricing game with single-product competitors. Prices are determined by the

22Unlike the previous examples, we approximate the distribution of νi using a fixed sample of 100
pseudo random-numbers.
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Table 6: Monte-Carlo simulation results for endogenous price specification

(a) Distribution of parameter estimates

(1) (2) (3) (4)
True Diff. IV = Local Diff. IV = Quadratic Diff. IV = Sum

bias se rmse bias se rmse bias se rmse

λp -4.00 0.02 0.27 0.28 0.02 0.53 0.55 1.03 158.25 2.10
βp -0.20 0.01 0.37 0.37 0.01 0.31 0.32 -0.67 201.29 1.38
β0 50.00 -0.26 3.92 3.92 -0.28 7.36 7.45 -9.82 26.41 20.65
βx 2.00 -0.02 0.46 0.45 -0.02 0.47 0.47 0.34 1.11 0.83

(b) Weak identification tests

(1) (2) (3)
IV = Local IV=Quadratic IV = Sum

Frequency conv. 1 1 0.94
IIA-test 109.48 53.90 1.88

p-value 0 0 0.34
1st-stage F-test: Price 191.80 442.10 138.94
1st-stage F-test: Jacobian 214.60 58.40 27.85
Cond. 1st-stage F-test: Price 252.23 479.96 7.92
Cond. 1st-stage F-test: Jacobian 280.31 82.44 6.19
Cragg-Donald statistics 170.19 54.45 4.09

Stock-Yogo size CV (10%) 16.87 13.43 13.43
Nb. endogenous variables 2 2 2
Nb. IVs 4 3 3

Data generating process: J = 15 and T = 100, β0 = 50, βx = 2, βp = −0.2 and λp = −4. Number
of simulations: 1,000.

following vector of first-order conditions:

p∗jt = cjt − σj(δt,p∗t ;λp)
[
∂σj(δt,p

∗
t ;λp)

∂p∗jt

]−1
The marginal cost, cjt = γ0+x

(1)
jt γx+wjt, is constant, and the cost-shock wjt is observed

by the econometrician. We use this variable below to construct a price instrument. The

data is generated by finding a solution to equation (22) for 1000 × 100 independent

markets.23 This leads to 1,000 simulated panels of market shares and characteristics.

We follow the steps described above to construct the instrument function. We

first construct an exogenous price index, p̂jt, using the predicted values from a linear

23The data-generating process for the marginal cost and characteristics is given by: ξjt ∼ N (0, 1),

x
(1)
jt ∼ N (0, 1), wjt ∼ N (0, 0.1).
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regression of pjt on the exogenous characteristic and the cost shifter wjt:

p̂jt = π̂0 + π̂1x
(1)
jt + π̂2wjt. (22)

We use a linear functional form for expositional purposes. In applications, richer

functional forms might lead to further efficiency gains by improving the fit of the

reduced-form regression (see Reynaert and Verboven (2013) for a discussion).

We then construct the Differentiation IVs using the empirical distribution of differ-

ences in p̂jt and x
(1)
jt . In particular, as before, we consider two alternative measures of

differentiations:

Quadratic Diff IV: zjt =

{
xjt, ωjt,

∑
j′

(
d
(1)
jt,j′

)2
,
∑
j′

(
dp̂jt,j′

)2}

Local Diff IV: zjt =

{
xjt, ωjt,

∑
j′

1
(
|d(1)jt,j′ | < sd1

)
,
∑
j′

1
(
|dp̂jt,j′| < sdp̂

)}

where d
(1)
jt,j′ = x

(1)
j′t − x

(1)
jt and dp̂jt,j′ = p̂j′t − p̂jt. Note that ωjt is added to the list of

instruments since we need two independent sources of variation to identify βp and λp

(i.e. own cost shifters, and cost and characteristics of rival products).

The simulation results are reproduced in Figure 2 and Table 6. In addition to the

two sets of instruments defined above, we also report the results using the “sum of

rival characteristics” in order to illustrate effect weak instruments. The bottom panel

reports the results of the weak identification and IIA tests.

Table 6b confirms the weak identification results obtained in the models with exoge-

nous characteristics. In this example, the “Local Differentiation IV” tends to perform

better than the “Quadratic Differentiation IV”. The two measures of weakness, the

IIA-test and the Cragg-Donald statistic, are on average roughly 2.5 times larger in

column (1) than in column (2).

To illustrate the dual role of the instruments in this context, Table 6b also report

the results of two first-stage F tests: (i) one that simply regresses price and the Jaco-

bian on the exogenous variables, and (ii) one that first “projects-out” the exogenous

variation induced by the other endogenous variable before computing the first-stage

F test. The second test was proposed by Angrist and Pischke (2009) and Sanderson

and Windmeijer (2016) to adjust the standard first-stage tests for cases with multiple
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endogenous variables.24

In our example, the standard F-tests conducted using the sum of rival characteristics

incorrectly suggest that weak instruments is not a concern (i.e. 138.94 and 27.85). This

is because one of the instrument is very strong (i.e. cost shifter ωjt). However, once we

account for the fact that we have more than one parameters to identify with a single

strong instrument, the conditional first stage F-tests are in line with the results of the

Cragg-Donald and the IIA tests; both F-tests are significantly below the Stock-Yogo

critical values on average.

Table 6a summarizes the distribution of the estimated parameters across the three

IV specifications. Looking first at specification (3), we see again that using weak

instruments lead to substantial loss in precision and large biases. The RMSE for λp is

equal 2.10, and the average bias is significantly above zero (1.03). This upward bias is

partially offset by a “downward” bias in βp (i.e. −0.67), but the net effect is positive:

weak instruments in this example biases the slope of the demand towards zero.

This bias is eliminated in panel (2) and (3) when we use the stronger differentiation

IVs. The RMSEs are also substantially reduced. Relative to the sum of rival charac-

teristics specification, we obtain a 7.5 times improvement in precision for σ̂p with the

local differentiation IV, and a 4 times improvement with the quadratic differentiation

IV. Figure 2 illustrates this point graphically by plotting the distribution of σ̂p for the

three specifications. As with the exogenous characteristics, weak instruments lead to

a non-Gaussian distribution of the parameters, characterized by large outliers and a

mass around zero. The two other distributions are symmetric and bell-shape, centered

around the true parameter, and do not exhibit outliers.

4.4 Natural Experiments

An often expressed criticism of the main identifying assumption in Berry et al. 1995,

is that firms endogenously choose product characteristics (observed and unobserved).

This violates Assumption 2 either because of the endogenous selection of products,

and/or because of a contemporaneous correlation between ξjt and the attributes of own

24We use weak-identification tests designed to test the relevance in linear IV models, by evaluating
the Jacobian of the residual function at the true value of the parameters. In practice we obtain similar
results when constructing the tests at the GMM estimates instead, but there are no critical values
available in the literature for this test. Deriving the limiting distribution of these statistics under
weak-identification is beyond the scope of this paper.
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and rival products.25 This invalidates the use of the entire distribution of characteristic

differences to identify substitution patterns.

An alternative approach is to look for natural experiments that exogenously change

the menu of product characteristics available to consumers. Such experiments can

be induced directly by researchers (e.g. Conlon and Mortimer (2015)), caused by

technology changes that induce market-structure changes (e.g. Houde (2012)), or by

government regulations that generate suboptimal product offering (e.g. zoning). To

illustrate this, consider the following mixed-logit Hotelling demand model:

uijmt =

ξjmt − λ(νi − xjmt)2 + εijmt If j > 0,

εijmt If j = 0.

where j = 1, . . . , 15 indexes products, m = 1, . . . , 100 indexes markets, and t = 0 or 1

indexes the pre/post natural experiment periods. In this example, the non-linear char-

acteristic of products, xjmt, measures their location in the product space, and the

random-coefficient, νi, measures the “ideal” address of consumers. We assume that

both variables are uniformly distributed between 0 and 10. The goal is to estimate the

travel cost of consumers: λ.

We consider a natural experiment associated with the entry of a new product in each

market at location x∗ = 5 in the post-period (i.e. t = 1). Within each market, distance

to x∗ measures the strength of the “treatment”. The characteristics of incumbent

products are constant across periods (i.e. xjmt = xjm).

We introduce a correlation between ξjmt and xm as follows:

E(ξjmt) = 0 and corr(ξjmt,EDjm) = a < 0

where EDjm =
√∑

j′(xjm − xj′m)2 is the Euclidian distance of incumbent product

j. The parameter a creates a standard simultaneity problem: products facing close

substitutes have higher unobserved quality. Since characteristics are constant across

the two periods, this correlation can be absorbed by conditioning on product/market

fixed-effects. Assumption 4 formalizes this quasi-experimental design assumption.

Assumption 4. The change in the unobserved quality of products is mean zero con-

25See Ciliberto, Murry, and Tamer (2016) for a recent examination of this problem.
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ditional on the observed menu of characteristics and product/market fixed-effects µmt:

E [∆ξjm|µjm,xmt] = 0,

where ∆ξjm = ξjm1 − ξjm0 and ξjm1 = µjm + ∆ξjm

To construct the instruments, we consider two distance measures similar to the

Differentiation IVs discussed above:

w1
jm = 1(|xjm − x∗| < κ)

w2
jm = (xjm − x∗)2

where the threshold κ is defined as the standard deviation of xjm across all prod-

ucts/markets. Let zjm = {1, w1
jm, w

2
jm} denotes the instrument vector. This leads to

the following moment condition:

mn(λ) =
1

n

∑
m

∑
j

[ρj(sm1,xm1;λ)− ρj(sm0,xm0;λ)] · zjm = ∆ρ(λ)Tz/n

where n is the number of unique market/product observations. Using this specification,

the structural parameters of the model are identified solely from the quasi-experimental

variation. In particular, the reduced-form is approximated by a difference-in-difference

regression, in which the “control” group is defined as the set of products located rela-

tively far from the exogenous new entrant.

Figure 3 illustrates the ability of this identification strategy to eliminate the simul-

taneity bias associated with the endogenous location of products. The dash curves

correspond to the Kernel density of the parameters estimated using the “difference-in-

difference” moment conditions (3a), or the full “Differentiation IVs” moments (3b).26

The data generating process is designed so that the correlation between ξjmt and

the Euclidian distance between rival products is a = −0.25. As Figure 3b illustrates,

this leads to an attenuation bias in the estimate of the travel cost parameter obtained

using standard instruments (λ̂ ≈ 1.89, compared to λ0 = 4). Since products located in

“denser” regions of the product space have higher quality, the GMM specification that

exploits variation in the distance to all products wrongly infer that consumers have

26The Differentiation IVs specification combines the sum of square of characteristic differences (i.e.
quadratic IV), and the number of competing products within one standard-deviation (i.e. local IV).
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Figure 3: Monte-Carlo simulated distribution of the travel cost parameter estimates
with endogenous product locations
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Data generating process: xjm ∼ U [0, 2], ξjmt = ξ̄jm+∆ξjmt, where ξ̄jm = −0.25
(
EDjm − EDm

)
+

ζjm, ζjm ∼ N(0, 0.5) and ∆ξjmt ∼ N(0, 0.25). Consumer addresses: νi ∼ U [0, 2] approximated using
100 equally spaced grid points. Number of Monte-Carlo replications: 1,000. Sample size: M = 100,
Jm0 = 15 for all m, Jm1 = 16 for all m, T = 2.

a small disutility from distance. Figure 3b illustrates that the difference-in-difference

moment conditions eliminate this bias. The distribution is centered around λ0 = 4,

and the average bias is less than 1% of the parameter value.

Comparing the two distributions, it is important to note that by exploiting solely

the variation created by the entry of a new product, the difference-in-difference GMM

estimator is less precise, and the distribution of λ̂ is less well approximated by the

normal density than the specification that uses the larger set of instruments. In Figure

3b the p-value associated with Shapiro-Wilk normal test is 11%, compared to less than

1% in Figure 3a. This suggests that the asymptotic approximation used to conduct

inference on λ is less likely to be valid when the model is estimated solely using quasi-

experimental variation; therefore requiring larger sample sizes or inference methods

that are robust to weak identifications. Alternatively, additional equilibrium restric-

tions can be used to solve the simultaneity problem (as in Ciliberto, Murry, and Tamer

(2016)).
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4.5 Comparison with other approaches

Finally, we conclude this section by comparing the performance of the Differentiation

IVs, with the approximation to the optimal IV proposed by Berry, Levinsohn, and

Pakes (1999) and Reynaert and Verboven (2013).

Recall that, abstracting away from concerns related to heteroskedasticity, the in-

strument vector that minimizes the asymptotic variance of the parameter estimates is

given by the conditional expectation of the Jacobian of the residual function (Amemiya

(1977), Chamberlain (1987)):

A∗j(xt) = E

[
∂ρj(st,xt;θ)

∂θ

∣∣∣xt] =

{
−xjt, E

[
∂σ−1j (st,x

(2)
t ;λ)

∂λ

∣∣∣xt]}

This is very intuitive: Because the asymptotic distribution of (λ,β) is derived from

a first-order approximation of the residual function, the most efficient instruments

correspond to the best-predictor of the slopes of that function with respect to each of

the parameters.27

This efficiency bound cannot be achieved in practice since the model is semi-

parametric in ξjt. Rather than using non-parametric regression techniques to esti-

mate A∗j(xt) (as in Newey (1990)), Berry, Levinsohn, and Pakes (1999) proposed the

following heuristic approximation to the optimal IV:

E

[
∂ρj(st,x

(2)
t ;θ)

∂θ

∣∣∣xt] ≈ ∂ρj(st,x
(2)
t ;θ)

∂θ

∣∣∣∣
ξjt=0,∀j,t

= Ãj(xjt|θ). (23)

Since the instrument vector depends on θ, users must first obtain an estimate of the

parameters, denoted by θ1. This leads to a two-step estimator: (i) estimate θ1 by

GMM using instrument vector zjt, and (ii) construct Ãj(xjt|θ1) and estimate θ̂ by

GMM. The second step corresponds to a just-identified system of moment conditions.

When prices enter non-linearly in the model, a similar heuristic can be used to

avoid taking an expectation over the second set of endogenous variables:

E

[
∂σ−1j (st,pt,x

(2)
t ;θ)

∂λ

∣∣∣xt,wt

]
≈
∂σ−1j (st,pt,x

(2)
t ;θ)

∂λ

∣∣∣∣
pjt=p̂jt,ξjt=0,∀j,t

= Ãj(xjt|θ),

(24)

27See Newey (1993) for an illuminating discussion.
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Table 7: Optimal IV approximation with alternative initial parameter values

Normal RC Hotelling
λ1 bias rmse λ1 bias rmse

Optimal IV approx.:
(1) 0.5 0.001 0.027 4 -0.003 0.140
(2) 1.5 0.001 0.026 2 -0.004 0.126
(3) 2 0.001 0.026 0 -0.079 0.509
(3) 2.5 0.001 0.026 -1 -0.344 1.687
(4) 3 0.002 0.028 -2 -0.282 1.254

Differentiation IV — 0.001 0.031 — 0.017 0.310

Data generating process: J = 15 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1).
The parameter values are given by: β0 = −3, β1 = 1, βk = 1, λ = 2 for all k. Number of simulations:
1,000.

where p̂jt ≈ E(pjt|xt,wt) is a “reduced-form” model for prices independent of ξjt.

Reynaert and Verboven (2013) conducted a series of Monte-Carlo simulations to

illustrate that this heuristic leads to substantial efficiency gains over the standard

instruments proposed in Berry et al. 1995 (i.e. sum of rival characteristics). One

remaining question however is to what extent the approximation remains valid when

the first-stage estimates are not consistent, which is the case for instance with weak

instruments. To illustrate when consistency is likely to matter, we first study two

simple mixed-logit models: (i) normal random-coefficient, and (ii) Hotelling. These

two models satisfy our “linear-in-characteristic” random-coefficient assumption and

have the following indirect-utility function:

Normal RC: uijt = δjt + ληix
(2)
jt + εijt

Hotelling: uijt = δjt − λ
(
ηi − x(2)jt

)2
+ εijt.

where ηi ∼ N (0, 1) and x
(2)
jt ∼ N (0, 1). For our purpose, the key distinction between

these two models is that the value of λ in the “Normal RC” model only affects the

magnitude of the elasticity of substitution, and not the relative ranking of each prod-

ucts’ cross-elasticty (which is function only of x’s). In contrast, in the Hotelling model,

when λ goes from positive to negative, the identity of the “closest” competitor changes

from the “closest” x to the “furthest” x. It is easy to see that this Hotelling model is

a special case of the linear-in-characteristics random-coefficient model.
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Table 7 summarizes the results of 1,000 Monte-Carlo replication simulations. The

first five rows correspond to different values of the initial parameter used to evaluate the

Jacobian. In both specifications, the true value of parameter is λ0 = 2. The numbers

in bold correspond to GMM results obtained by setting the first-stage parameter equal

to the true parameter value . The rest of the rows correspond to different levels of

inconsistencies. For the “Normal RC” mode, we consider a grid between 0.5 and 3.

For the Hotelling model, we consider grid between −2 (wrong sign) and 4.

Looking first at the “Normal RC” model, the performance of the optimal IV approx-

imation estimator is remarkably robust to inconsistencies in the first-stage parameter

values. The efficiency gains from using the “true” parameter value are fairly small (i.e.

0.026 vs 0.028). This is consistent with the results presented in Reynaert and Verboven

(2013).

The results from the “Hotelling” specification are quite different. The first two rows

show that using using an inconsistent first-stage parameter with the correct sign does

not reduce dramatically the precision of the estimates (i.e. 0.14 vs 0.126). However,

using first-stage values that are inconsistent and have the wrong sign leads to large

attenuation biases and very imprecise estimates. The RMSE in the last two rows are

more than 10 times larger than in specification (2) (i.e. true λ). This suggests that

the consistency of the first-stage estimate is important for the validity of the heuristic

approximation approach, especially when the substitution patterns depend on the sign

of the parameter values.

The last row of Table 7 reports the results obtained with the Differentiation IVs.

To obtain these results we combine the sum of square of characteristic difference,

and the number of local competitors. When using an unbiased first-stage parameter,

the optimal IV approximation improves the precision of the estimates by 60% in the

Hotelling model, and by 17% in the Normal RC model. However, these efficiency gains

are quickly eliminated when the first-stage parameter is set far from θ0. This is an

important advantage of the Differentiation IVs, since their exact structure does not

depend on the availability of consistent estimates, or on prior the knowledge of the

model of differentiation (e.g. Hotelling versus normal).

The previous examples are very stylized. Another setting in which the sign and

magnitude of θ determines substitution patterns is the correlated random-coefficient

model studied in Section 4.2. To illustrate the importance of using consistent estimates

in the first-stage, we implement the optimal IV approximation using pseudo-random
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Table 8: Monte-Carlo simulation results for correlated random-coefficient specification
with optimal IV approximation and inconsistent initial parameter values

Choleski Opt. IV: θ1 ∼ N(0, 1) Opt. IV: θ1 ∼ N(0, 4) Diff. IV: Quad.
matrix True bias rmse se bias rmse se bias rmse se

(1) (2) (3) (4) (4) (5) (6) (7) (8) (9)
log c11 0.69 0.00 0.22 5.42 0.01 1.22 11.92 -0.00 0.03 0.03
log c22 0.55 -0.01 0.19 2.50 -0.16 2.36 192.70 -0.00 0.04 0.04
log c33 0.49 -0.02 0.15 0.46 -0.44 2.69 ++ -0.00 0.04 0.04
log c44 0.46 -0.22 1.83 ++ -1.78 5.57 ++ -0.00 0.04 0.04
c21 -1.00 0.01 0.47 4.51 0.03 0.77 781.85 0.00 0.06 0.06
c31 1.00 0.00 0.33 0.86 -0.02 0.63 23.48 -0.00 0.07 0.07
c32 -0.58 0.02 0.27 2.69 0.03 0.56 285.80 0.00 0.07 0.08
c41 1.00 0.00 0.23 1.37 0.00 0.58 333.93 0.00 0.07 0.07
c42 -0.58 0.01 0.23 2.69 0.04 0.50 484.88 0.00 0.08 0.08
c43 0.41 0.00 0.23 1.59 0.03 0.52 ++ 0.00 0.08 0.08

values that are not centered around the truth. The point here is not to replicate the

results from Reynaert and Verboven (2013), but rather to highlight the importance of

using consistent estimates in the first stage.

The results are summarized in Table 8. In columns (2)-(4), each element of θ1 is

drawn from a standard-normal distribution, while in columns (4)-(6) they are drawn

from a normal distribution with a standard-deviation of 2. The results are in line

with the single-address Hotelling example. Using inconsistent parameter estimates to

approximate the optimal instruments leads to a weak identification problem, associated

with very noisy and often biased parameter estimates. In addition, as we increase the

variance of θ1, the precision and bias of θ̂ both increase substantially. The contrast

with the Differentiation IVs is quite striking: the average RMSEs are roughly 5 times

smaller with the Differentiation IVs than with the less noisy optimal IV approximation.

A valid strategy to improve the efficiency of the estimates is to obtain first-stage

estimates using the instruments proposed in this paper, and then construct an ap-

proximation to the optimal IV. The second-stage can be conducted using the heuristic

approximation discussed in Berry, Levinsohn, and Pakes (1999) and Reynaert and

Verboven (2013), or using non-parametric regressions as discussed in Newey (1993) for

instance.

We illustrate the performance of the former approach using the model with en-

dogenous prices studied in Section 4.3. Table 9 summarizes the results. The top-panel
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Table 9: Monte-Carlo simulation results for endogenous price specification and optimal
IV approximation

Diff. IV = Local Diff. IV = Quadratic Diff. IV = Sum
True bias se rmse bias se rmse bias se rmse

1s
t-

st
ag

e λp -4 0.02 0.27 0.28 0.02 0.53 0.55 1.01 2.66 2.09
β0 50 -0.26 3.92 3.92 -0.28 7.36 7.45 -9.63 26.48 20.46
βx 2 -0.02 0.46 0.45 -0.02 0.47 0.47 0.34 1.11 0.83
βp -0.2 0.01 0.37 0.37 0.01 0.31 0.32 -0.66 1.76 1.37

2n
d
-s

ta
ge λp -4 0.00 0.24 0.23 0.00 0.24 0.23 0.01 0.26 0.31

β0 50 -0.07 3.99 3.84 -0.06 3.72 3.65 0.05 4.32 4.61
βx 2 -0.01 0.48 0.47 -0.01 0.41 0.41 0.03 0.52 0.51
βp -0.2 0.01 0.36 0.36 0.00 0.31 0.32 -0.03 0.40 0.40

corresponds to the GMM estimates obtained using three alternative Differentiation

IV: (i) local competition, (ii) sum of square of characteristic differences, and (iii) sum

of rival characteristics. In each specification we use the residual cost-shock, ωjt, as

a price instrument. In the bottom-panel, we use the GMM results from the corre-

sponding specification to construct an approximation to the optimal IV, as described

in equation (23). Each entry is averaged over 1,000 Monte-Carlo replications.

The results suggest that the Berry, Levinsohn, and Pakes (1999) approximation

successfully corrects the weak identification problem. For instance, the sum of rival

characteristics specification is associated with very noisy estimates of λp in the top

panel, but the average bias and RMSE are mostly comparable across columns in the

bottom panel. Similarly, the RMSE of λp estimated with the quadratic Differentiation

IVs is roughly 50% smaller in the second-stage. The efficiency gains are much smaller in

the first specification (17%), mostly because the local Differentiation IVs are stronger

instruments in this case.

Importantly, the simulation results illustrate a strong complementarity between

the two approaches. The second-stage estimates are more precisely estimated when

the Differentiation-IVs are used in the first-stage. In other words, using stronger in-

struments in the first stage lead to more precise results in the second stage. This

should be thought of as a lower bound on the efficiency gains of using strong versus

weak first-stage instruments. As we saw in the “Hotelling” vs “Normal RC” examples

above (see Table 7) the efficiency loss from using inconsistent initial parameter values
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is small in the multiplicative random-coefficient specification. Also, Reynaert and Ver-

boven (2013)’s simulation results suggest that the heuristic approximation is becoming

weaker as the the number of random-coefficients increases beyond four. It is likely that

the complementarity between the two approaches would increase with the number of

non-linear parameters, since the performance of the Differentiation-IVs is very stable

across different dimensions of consumer heterogeneity.

5 Application: Demand for new cars

In this section, we apply our testing and identification strategy to study demand for new

cars between 1971 and 1990. Our objective is twofold. First, we use this application to

illustrate our suggested approach to select instruments, and conduct inference. Second,

we use the car application to demonstrate that it is feasible to identify the model solely

using demand restrictions, and without relying on external moment conditions coming

from a pricing model (as in Berry et al. (1995)) or survey data (Petrin (2002), and

Berry et al. (2004)).

We use the panel data-set analyzed first by Berry et al. (1995). We enrich the

model used in Berry et al. (1995) by controlling for market and brand fixed-effects (as

in Nevo (2001)). In particular, we consider the following payoff function:

uijt = xjtβ + βppjt + Make FE + Year FE + ξjt + λppjt/yi +
K∑
k=1

λkxjt,kηik + εijt (25)

where yi ∼ LN(µyt , σ
y
t ), and ηik ∼ N(0, 1). We use 25 brands to construct our make

variable; grouping smaller European and Asian brands together. The distribution

of household income is approximated by a log-normal distribution with time-varying

location and spread parameters. The other random coefficients assumed to be IID

normally distributed. We use 500 Halton draws to integrate the random coefficients

(see Train 2009).

We use a sequential approach to determine the set of instruments and the random

coefficient specification. We first conduct a series of reduced-form specification tests to

evaluate the the strength of price and differentiation instruments, and then estimate

the model by non-linear GMM. Note that we use the reduced-form specification tests

to guide the specification of the random-coefficient model estimated in the second step.
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Table 10: Multinomial Logit demand for cars and IIA tests

(1) (2) (3) (4) (5)
VARIABLES

Price (x1000) -0.153*** -0.152*** -0.127*** -0.009 0.000
(0.040) (0.039) (0.034) (0.012) (0.011)

Distance: Pred. price 0.016*** 0.016*** 0.014***
(0.004) (0.004) (0.004)

Distance: Nb. doors 0.027** 0.022
(0.014) (0.013)

# same attribute: Air 0.009**
(0.004)

Observations 2,217 2,217 2,217 2,217 2,217
Weak IV (K-P) 34.82 35.88 57.79 59.49 37.76
J-test 0.891 0.894 3.202 19.23 29.96
J-test (p-value) 0.345 0.344 0.0736 0.000709 0.000870
Degree of over-id. 1 1 1 4 10
Joint test: γk = 0 (chi2) 16.19 17.41 17.56
Joint test (p-value) 5.74e-05 0.000166 0.000542

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

We approximate the reduced-form model of price using cost shifters wjt:

pjt = xjtπ1 + wjtπ2 + Make FE + Year FE + ujt. (26)

Let p̂jt denotes the OLS predicted price. We use this variable to measure the quality

differentiation of cars in the market.

We use two cost-shifters as instrument for prices. We use the weight of the car

interacted with ratio of steel and bauxite prices to approximate the cost differential

associated with this strategy. Our second price instrument is an indicator variable

equal to one after a model started to be produced in the U.S.. By 1990, 10% of cars

sales were produced by foreign brands established in the US.28 The first-stage F-test

associated with these two instruments is reported in the first three columns of Table

10. Depending on the controls, the Kleibergen-Paap statistics ranges from 34 to 57,

confirming that the two variables are strong predictors of prices.

Next we analyze the reduced-form model by estimating the multinomial Logit model

(i.e. µij = 0). Recall that we can test the null hypothesis of IIA preferences by

28We use the following list of off-shored models and dates: VW Rabbit (1979), Honda Accord
(1981), VW Golf (1985), Honda Civic (1986), VW Jetta (1986), and Toyota Camry (1989).
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evaluating the validity of the exclusion restrictions implied by the assumption that the

characteristics of rival products are independent of the unobserved product attributes

ξjt (conditional on own characteristics fixed-effects). We implement two versions of

this test.

First, we estimate the model under the null while controlling for differentiation

variables (denoted by zdistjt ):

ln sjt/s0t = βppjt + xjtβx + zdistjt γ + Make FE + Year FE + ejt. (27)

This equation is estimated by (linear) GMM using wjt as instruments for price. This

approach is feasible only because the two IVs (material price and offshoring) are con-

structed independently of our measures of differentiation. Price instruments that are

constructed from the characteristics of rival firms would be invalid if the true model is

not Logit, leading to a biased estimate of βp.

We use measures of product isolation among selected car attributes to construct

zdistjt . For continuous variables, we measure differentiation along dimension k using the

Euclidian distance.29 For price, distance is calculated using p̂jt. For discrete attributes

(e.g. domestic or air) we use the number of products with the same attribute as a

measure of differentiation.

In this application we focus on three attributes: price, number of doors, and air con-

ditioning. We use these three variables as Differentiation IVs, and we assign random-

coefficients to each characteristic. Other attributes were analyzed as well (e.g. mileage,

HP, car size, etc), but we find that differentiation along other dimensions are not cor-

related with the inverse-demand under Logit.

Columns (1)-(3) in Table 10 test the hypothesis that γ = 0 using three sets of the

differentiation variables. The IIA-tests are reported at the the bottom of the table. The

test evaluates the joint hypothesis that γ̂gmm = 0. In this case the p-value measures

the ability of the instruments to identify deviations from IIA (i.e. lower p-value =

stronger instruments).

We find strong evidence that product isolation along the price dimension leads to

higher market shares; a clear violation of the IIA hypothesis. The positive reduced-

form coefficient λp is consistent with a quality-ladder model of demand, in which the

price is inversely proportional to quality (as in Bresnahan (1987)). Differentiation in

29We obtain similar results using the number of nearby products. However the Euclidian distance
is more strongly correlated with demand in this application.
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Table 11: Mixed-logit car demand results

VARIABLES NLS GMM
(1) (2) (3) (4) (5)

λp −0.722∗ −2.267∗∗ −2.525∗∗ −0.768∗∗ −0.854∗∗

(0.38) (1.00) (1.17) (0.31) (0.34)
λdoor 0.318∗ 0.594∗∗∗ 0.631∗∗∗ 0.458∗∗∗ 0.456∗∗∗

(0.19) (0.19) (0.18) (0.17) (0.15)
λair 0.733 1.833∗∗∗ 0.977

(1.14) (0.66) (0.72)
λIntercept 1.817 7.167∗∗ 7.563

(2.63) (3.36) (6.20)
βprice 0.052∗∗ 0.109∗∗∗ 0.143∗∗∗ 0.064∗∗∗ 0.059∗∗∗

(0.02) (0.03) (0.05) (0.01) (0.01)

Overid. test (J) 0.221 0.119 12.599 14.142
Overid test (p-value) 0.638 0.730 0.006 0.000
Overid. restrictions 1.000 1.000 3.000 5.000

Robust-clustered standard errors in parenthesis
*** p<0.01, ** p<0.05, * p<0.1

Additional controls: Year fixed-effects, Firm FE.
Additional characteristics: Air, Doors, HP/WT, DPM, Size, Weight.

terms the number of doors is also positively correlated demand, although the reduced-

form parameter is less precisely estimated. Similarly the number of cars with the same

“Air” attribute is positively correlated with demand. The joint hypothesis test that

the effect of differentiation on demand is zero is rejected with a p-value less than 1%.

An equivalent approach is to test the over-identification restrictions associated with

the combined set of instruments: cost-shifter and differentiation. Columns (4)-(5)

implement this test by estimating the model under the null that λk = 0 without

controlling for zdistjt . Column (5) uses the same differentiation measures as in Column

(3), which leads to four restrictions. Column (6) uses a richer set of differentiation

measures (see below). The results of the Sargan-Hansen J-test are reported in the

bottom panel.

Both sets of moment restrictions are clearly violated, confirming the strenght of

the instruments. Importantly, this violation is not caused by the cost-shifters, since

we cannot reject the validity of the exclusion restrictions in columns (1)-(3). Note also

that the estimated price coefficient is no longer different from zero; consistent with

the idea that the differentiation instruments are correlated with prices and the average

willingness-to-pay of consumers under the multinomial Logit specification.
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Table 12: Definition on the differentiation variables used in the car application

Specifications
VARIABLES Definitions (1) (2) (3) (4)

zdistjt,p̂

√∑
j′(p̂j′t − p̂jt)2 X X X X

zdistjt,door

√∑
j′(xj′t,door − xjt,door)2 X X X X

zdistjt,air

∑
j′∈Jt

1(xj′t,air = xjt,air) X X X

zcovjt,1

∑
j′∈Jt

(p̂j′t − p̂jt)(xj′t,door − xjt,door) X X
zcovjt,2

∑
j′∈Jt

(p̂j′t − p̂jt)(xj′t,door − xjt,door) X X
zcovjt,3

∑
j′∈Jt

(p̂j′t − p̂jt)21(xj′t,air = xjt,air) X
zcovjt,4

∑
j′∈Jt

(xj′t,door − xjt,door)21(xj′t,air = xjt,air) X

zintjt,1 p̂jt ×
(∑

j′∈Jt
(p̂j′t − p̂jt)

)
X X

zintjt,2 xjt,door ×
(∑

j′∈Jt
)xj′t,door − xjt,door)

)
X X

Number of Diff. IV 2 3 7 9

The GMM results from the mixed-logit model are presented in Table 11. The first

column reproduces the results obtained from non-linear least-square. As discussed

above, those results are biased, but the precision of the parameters is not affected by

the choice of instruments. The comparison with GMM is a useful indicator of validity

and relevance of the instruments.

Table 12 formally defines the differentiation measures used as instruments in each

specification. The first column uses the Euclidian distance. The second add the num-

ber of products with the same Air attribute. The third and fourth column add ad-

ditional interactions between product characteristics differences. We augment the set

of instruments to identify a random-coefficient on the intercept. We use the sum of

product characteristics interacted with each product’ own attribute as instruments (i.e.

p̂jt, doors). This captures the fact that in a quality ladder model, low quality cars are

closer substitutes with the outside option than higher quality cars. We also incorporate

the interaction of product characteristics differences to impose additional restrictions.

Table 14 in the Appendix confirms the strenght of these instruments using a series of

Sanderson and Windmeijer (2016)’s conditional F-tests associated with each of the five

endogenous variables of the model. See Appendix C for more details.

The random coefficient on door and prices are the most precisely estimated co-

efficients. Note that the overall price coefficient is the sum of βp and λp/yi. This
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coefficient is negative across all consumer types, except households above the 99th in-

come percentile. In 1990, the product-level price elasticity ranges from -0.3 to -3, with

a median equal to -1.2. The fact that a large number of products exhibit inelastic

residual demand suggest that the model is still mis-specified.

The coefficient on doors and air imply a larger degree of horizontal differentiation.

Some consumers strongly prefer two-doors car, while others need the largest number of

doors possible (given prices). There is exists a similar amount of heterogeneity across

consumers in the taste for air conditioning.

The variance of the random-coefficient on the intercept measures substitution to-

wards the outside good. The point estimate associated with λintercept is large in mag-

nitude, suggesting that consumers who are in the market for a new car (i.e. high

ηi,intercept) are more likely to substitute to another model if their first choice is not

available (rather than not buying a car). The coefficient is less precisely estimated

however, given the fact that the panel is fairly short (20 years).

The comparison between column 1 (NLS) and (5) (GMM) confirms that the in-

struments correct for an attenuation bias in the random-coefficient parameters. In all

cases, the asymptotic standard errors from NLS and GMM are comparable, consistent

with the idea that the instruments are strong.

Conclusion

In this paper, we have analyzed the theoretical and small-sample properties of a new

family of instruments used to estimate substitution patterns: the Differentiation IVs.

We demonstrate that exogenous measures of differentiation (or proximity in character-

istics) solves the weak identification problem associated with commonly used moment

conditions.

Importantly, these instruments are derived from two common assumptions on the

primitives of the demand model: (i) linear-in-characteristics indirect utility function,

and (ii) exchangeability of the residual demand shocks. We use these two restrictions

to establish that the reduced-form of the model is a vector-symmetric function of

characteristic differences; a property that solves the curse-of-dimensionality problem

in the reduced-form.

Our approach to identification and estimation also suggest a natural methodology to

conduct empirical work and report results when estimating demand for differentiated-
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products. Prior to estimating the model, researchers should first conduct an analysis

of the reduced-form of the model, by estimating the IIA regression described in Section

1. Our simulation results demonstrate that the model is weakly identified if the IIA

hypothesis cannot be rejected (only weakly rejected). This test is easy to implement,

and can be useful to help identifying strong moment restrictions. Furthermore, after

estimating the model, Differentiation IVs can be used to conduct specification tests

evaluating the validity of alternative modeling choices. In particular, the relevance of

the instruments is independent of the assumptions regarding the distribution for the

random-coefficients (e.g. normal, log-normal, correlated), or the functional form of

the utility function (e.g. vertical form vs Hotelling). This feature allow researchers to

conduct non-nested specification tests, based on the validity of the over-identification

restrictions.
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ONLINE APPENDIX - NOT FOR PUBLICATION

A Proofs and additional derivations

A.1 First Proposition

Proposition 1 can be restated as follows. For simplicity we remove the t subscript

associated with each matrix, and drop the parameter vector from the conditioning

variables.

Proposition 1. In the linear characteristics model the market inverse function can be
expressed as

σ−1j (s0, s1, . . . , sJ ;x) = G

(
sj,
{
sk,d

(2)
jk

}
k 6=j

)
+ C

where djk = xk − xj and C is a constant that is common to all products j = 1, . . . , J .

The proposition implies that all the cross sectional variation in the inverse function

comes from the component

G
(
sj, {sk,djk}k 6=j

)
= G

(
sj,F j

(
s, d(2)

))
where we have equivalently expressed the second argument as the empirical distribution

of
(
sk,d

(2)
jk

)
among products k 6= j (which includes the outside good 0 in this sample).

It is important to note that from this empirical distribution, we can only recover the

set of the differences djk but cannot isolate the difference with respect to any particular

product, and also cannot recover xj itself from this distribution (because we cannot

identify the outside good in this set). This brings to light that the cross sectional

variation in the inverse function does not actually depend on a product’s level of own

xj, but rather the distribution of differences djk for k 6= j this product faces.

We will spend the rest of this section proving the result.

Step 1

The first step is to re-parameterize the demand function σj
(
δ1, . . . , δJ ,x

(2)
)

in terms

of

tj =
exp (δj)∑J
l=0 exp (δl)

.
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The advantage of this re-parameterization is that it is an alternative location normaliza-

tion (requiring that all products t’s to sum to one) that does not create an asymmetry

between the outside good 0 and the inside goods j > 1. This will be analytically more

convenient than the standard normalization of δ0 = 0. But they are mathematically

identical. In particular observe that

Tj = log (tj) = δj + C

where C is a constant that is common to all products in a market (that can be solved

by recognizing log t0 = −C).

Let θi = (vi1, . . . , viK2 , εi0, . . . , εiJ) denotes the vector consumer taste parameters

with joint CDF Φ(·). We can thus express demand in terms of this re-parameterization,

i.e.,

u (tj,xj,θi) = Tj +

K2∑
k=1

vikx
(2)
jk + εij

and

Dj (t0, . . . , tJ) =

∫
1 [u (tj, xj, θ) ≥ u (tk, xk, θ) ∀k = 0, . . . , J, k 6= j] dΦ (θ) . (28)

We then have that

Dj
(
t0, . . . , tJ ,x

(2)
)

= Dj

(
δ1, . . . , δJ ,x

(2)
)
.

This is because preferences are translation invariant. Moreover we have that

logD−1j
(
s0, . . . , sJ ,x

(2)
)

+ C = D−1j
(
s0, . . . , sJ ,x

(2)
)
.

Our strategy moving forward is to show that

D−1j
(
s0, . . . , sJ ,x

(2)
)

= D−1
(
sj,
{
sk,d

(2)
jk

}
k 6=j

)
. (29)

Then defining G = logD−1 will give us the Theorem.
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Step 2

We now establish 3 properties of Dj
(
t1, . . . , tJ ,x

(2)
)

: symmetry, anonymity, and trans-

lation invariance. Each of these properties will then be preserved by the inverse map-

ping D−1j . To establish these properties let us define a product j’s state ωj as

ωj = (tj,xj)

and note that

Dj
(
t0, . . . , tJ ,x

(2)
)

= Dj
(
ωj,ω−j,x

(2)
)
.

The following two properties are relatively straightforward to show using the definition

of demand (28) and the symmetry of the idiosyncratic errors (εij). The first property

is

Definition 2. The function Dj
(
ωj,ω−j,x

(2)
)

is symmetric if Dj
(
ωj,ω−j,x

(2)
)

=

Dk
(
ωj,ω−j,x

(2)
)

for any k 6= j.

This implies we can write Dj
(
ωj,ω−j,x

(2)
)

= D
(
ωj,ω−j,x

(2)
)
.

Definition 3. The function D
(
ωj,ω−j,x

(2)
)

is anonymous if D
(
ωj,ωι(−j),x

(2)
)

where

ι(·) is any permutation of the indices −j.

We note that symmetry and anonymity are the same properties that Doraszelski

and Pakes (2007) use to reduce the dimensionality of value functions in dynamic games.

These properties can be established for the demand functions Dj.
There is one last property of demand we will exploit which is the following:

Definition 4. The function D
(
ωj,ω−j,x

(2)
)

is translation invariant if for any c ∈ RK

we have that

D
(
ωj + (0, c) ,ω−j + ~(0, c),x(2)

)
= D

(
ωj,ω−j,x

(2)
)

where ~(0, c) is the J dimensional vector consisting of elements (0, c).

This property can be established using the linearity of the characteristics utility uij

in xj. It is important to note that the second argument in D includes the outside good.
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Step 3

Now define the relevant state for the inverse mapping as

mj = (sj,xj) .

Then

D−1j
(
s0, . . . , sJ ,x

(2)
)

= D−1j (mj,m−j) .

Using the above properties of the demand function D, we can establish precisely the

same properties for D−1j , namely symmetry, anonymity, and translation invariance.

Thus we have that

D−1j (mj,m−j) = D−1
(
mj +

〈
0,−x(2)

j

〉
,m−j +

〈
0,−x(2)

j

〉)
= D−1

(
sj,
{(
sj,d

(2)
jk

)}
k 6=j

)
where the first equality follows from symmetry and translation invariance, and the

second equality follows from anonymity. We have thus succeeded in establishing (29)

and hence Theorem 1.

A.2 Second Proposition

Let x = (x0, . . . , xJ) be the entire market menu of product characteristics. We assume

here for simplicity that x is fully independent of ξ = ξ1, . . . , ξJ . Consistent with the

symmetry of the model, the distribution Fξ is assumed to have a symmetric distribu-

tion. Then we have the following result which suffices to establish Proposition 2 in the

paper.

Proposition 2. The conditional expectation of interest in the model can be expressed

as

E

[
D−1

(
sj,
{(
sj,d

(2)
jk

)}
k 6=j

)
| x
]

= E

[
D−1

(
sj,
{(
sj,d

(2)
jk

)}
k 6=j

)
| {djk}k 6=j

]
= E

[
D−1

(
sj,
{(
sj,d

(2)
jk

)}
k 6=j

)
| Fj (d)

]
where Fj (d) is the empirical distribution of the sample of differences {djk}k 6=j.
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Assume that the djk can be canonically ordered (based on some complete ordering

in RK , such as the lexicographic ordering) such that d̃j1 ≤ · · · ≤ d̃jK where d̃jl is the

lth largest from the {djk}k 6=k. Then we can express

D−1
(
sj,
{(
sj,d

(2)
jk

)}
k 6=j

)
= D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃

(2)

j1 , . . . , d̃
(2)

jJ

)
where s̃j0 is sj and s̃ji is the market share corresponding to the product with difference

d̃
(2)

ji . Now it can be shown that the distribution

Fs̃j0,s̃j1,...,s̃jJ |x = Fs̃j0,s̃j1,...,s̃jJ |d̃j1,...,d̃jJ .

That is d̃j1, . . . , d̃jJ is a sufficient statistic of the market menu x to determine the

distribution of the shares (s̃j0, . . . , s̃jJ). We then have that

E

[
D−1

(
sj,
{(
sj,d

(2)
jk

)}
k 6=j

)
| x
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃

(2)

j1 , . . . , d̃
(2)

jJ

)
| x
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃

(2)

j1 , . . . , d̃
(2)

jJ

)
| d̃j1, . . . , d̃jJ

]
= E

[
D−1

(
sj,
{(
sj,d

(2)
jk

)}
k 6=j

)
| Fj (d)

]

A.3 Derivation of example with demographic differences

Consider the following single dimension example (Nevo 2001):

uijt = δjt + bitx
(2)
jt + εijt, bit = λyyit + ηi. (30)

The random coefficient is composed of a demographic component yit that is distributed

according to (known) CDF Dt(y), and a residual component νi that is normally dis-

tributed with mean zero and variance λ2η. The vector of non-linear parameters contains

two elements: λ = {λy, λη}.
Assume that the distribution of demographic characteristics can be well approxi-

mated using the following affine transformation of random variable ei:

yit = mt + sdtei such that Pr(ei < x) = Ψe(x).

where {mt, sdt}t=1,...,T and Ψe(x) are known transformation of the observed distribution
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Dt(y).

We can use this standardization to express the aggregate demand function:

σjt(δt,x
(2)
t ;λ) =

∫ ∫ exp
(
δjt + λyyitx

(2)
jt + ληηix

(2)
jt

)
1 +

∑Jt
j′=1 exp

(
δj′t + λyyitx

(2)
j′t + ληηix

(2)
j′t

)ψη(dηi;λη)dΨe(yit; mt, sdt)

=

∫ exp
(
δ̃jt +

∑K2

k=1 vikx̃
(2)
jt,k

)
1 +

∑Jt
j′=1 exp

(
δ̃j′t +

∑K2

k=1 vikx̃
(2)
jt,k

)ψ(vi;λ)dvi

= σj(δ̃t, x̃
(2)
t ;λ). (31)

where x̃
(2)
jt =

{
sdtx

(2)
jt , x

(2)
jt

}
is an expanded vector of non-linear characteristics, vi =

{ei, ηi}, and is the joint density of vi defined from φη(·) and Ψe(·).
Note that the change of variables allows us to eliminate the t subscript from the

demand function, and expand the state space by adding two new interactions: (i) the

mean of yit times x
(2)
jt , and (ii) the standard-deviation of yit times x

(2)
jt .

Under this new parametrization of the model, we can use directly Proposition 2 to

write the reduced-form of the model as follows:

πjt(xt;λ) = g
(
djt, sdt · d(2)

jt ;λ
)

+ ct(λ) (32)

The argument can easily be extended to multiple dimensions of heterogeneity, as

long as the distribution of demographic characteristics can be standardized across mar-

kets. For instance, the quadratic basis function becomes:

Aj(xt,wt) =



wjt,Mt · x(2)
jt Own excluded characteristics∑

j′ 6=j

(
dkjt,j′

)2
, ∀k Isolation of product j along dimension k

Mt ·
∑

j′ 6=j

(
dkjt,j′

)2
, ∀k Product isolation × demographics∑

j′ 6=j d
k
jt,j′ × dljt,′ , ∀k 6= l Interaction between dimension k and l

Mt ·
∑

j′ 6=j d
k
jt,j′ × dljt,′ ∀k 6= l Characteristics interaction × demographics

(33)

where Mt is now a vector of moments characterizing the joint distribution of demo-

graphic characteristics in market t. Focussing on the quadratic term, the added instru-

ments capture how product differentiation asymmetrically impacts the inverse-demand

of product j depending on the distribution of demographic attributes of consumers. See
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Miravete, Seim, and Thurk (2018) for an example of this type of instrument function.

B Monte Carlo Simulation Designs and Algorithms

B.1 Monte Carlo Simulations

We use the following parametrization for the independent random-coefficients specifi-

cations:

• Σk,k = λ = 4 for all k = 1, . . . , K2

• νik ∼ N(0, 1) for all k = 1, . . . , K2

• εij ∼ T1EV(0, 1)

We use the following covariance matrix for the correlated random-coefficient exam-

ple:

Table 13: Random Coefficient Covariance Matrix

c1 c2 c3 c4
r1 4.000
r2 -2.000 4.000
r3 2.000 -2.000 4.000
r4 2.000 -2.000 2.000 4.000

The data-generating process for all numerical exogenous characteristics examples

in Sections 4 and 4.3 is described as:

• Number of products (Jt): 15

• Number of market (T ): 100

• Observed characteristics: xjt,k ∼ N(0, 1) for all k = 1, . . . , K

• Cost shifter: ωjt ∼ N(0, 1)

• Unobserved quality: ξjt ∼ N(0, 1)
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B.2 Computational Procedure

All numerical simulations and optimizations were done using the matrix programming

language Ox (Doornik 2007). We use a nested fixed-point algorithm to solve the non-

linear GMM problem:

minθ ngn(θ)W ngn(θ)T (34)

whereW n is an L×L efficient weighing matrix, and gn(θ) = ρ(θ)TZ/n is the empirical

counterpart of the moment conditions defined in equation (6).

The residual function is obtained by inverting the demand function for a candidate

parameter vector λ. We use the following Newton-Raphson method root-finding algo-

rithm to solve this problem separately for each market t. Following Berry et al. 1995,

the algorithm solves the following non-linear system of equation:

fj(δ) = ln sjt − lnσj(δt,x
(2);λ) = 0 ∀j = 1, . . . , J. (35)

We discretize the distribution of random coefficients to approximate the demand

function. To avoid creating an estimation bias, we use the same grid points when

simulating and estimating the model. In the multi-dimensional models, we use the

quartiles of the standard-normal along each dimension. With a single dimension, this

leads to S = 4 consumer types. With two dimensions, S = 16. Etc. The weights

assigned to each consumer type sum to one, and are proportional to the normal density.

Algorithm 1 (Demand Inversion). Initiate the algorithm at vector of quality δ1t (e.g.

solution evaluated at last iteration parameter’s guess). Iteration l:

1. Evaluate the predicted demand via Monte-Carlo simulation:

σj(δ
k
t ,x

(2);λ) =
∑
i

ωi
exp(δljt +

∑
k λkνikxij,k)

1 +
∑

j′ exp(δlj′t +
∑

k λkνikxij′,k)

2. Use the implicit theorem to calculate the J × |λ| Jacobian matrix of the zero-

function f(δ) above:

F (δl) =
〈
−1/σ(δl,x(2);λ)

〉
◦
〈
−∂σ(δl,x(2);λ)

∂δT

〉−1〈
∂σ(δl,x(2);λ)

∂λ

〉
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3. Updating:

δl+1 =

δ
l + f(δl) If ||f(δl)|| > ε1

δl + F (δl)−1f(δl) If ||f(δl)|| ≤ ε1

4. If ||f(δl)|| < ε2, stop. Else repeat step 1-3.

This root-finding algorithm use two tolerance variables (ε1 and ε2). The first one

determines the threshold after which the algorithm starts to use Newton-Raphson

steps. We set ε1 = 0.1. When this value is increased, the algorithm is equivalent to

the contraction-mapping algorithm proposed by Berry et al. 1995. The advantage of

the Newton-Raphson steps is that it converges at a faster rate than the contraction-

mapping. However, it can diverge when the starting values are too far from the truth.

We set the overall convergence criteria equal to: ε2 = 10−16. Note also that this algo-

rithm is easily parallelizable, since a fixed-point vector needs to be calculate separately

for each market.

Since the GMM objective function is a quadratic form, the Gauss-Newton Regres-

sion (GNR) algorithm is a computationally efficient method for finding the minimum

(see for instance Newey (1993)). Each optimization step is obtained by estimating a

linear GMM problem corresponding to a linear approximation of the residual function.

Algorithm 2 (Gauss-Newton Regression). Initiate the algorithm at parameter θ1.

Iteration k:

1. Invert demand system at θk: ρj
(
st,xt;θ

k
)

= σ−1j

(
st,x

(2)
t ;λk

)
− xjtβk

2. Evaluate the Jacobian of the residual-function using the implicit function theorem:

∂ρj
(
st,xt;θ

k
)

∂θT
=

−xjt, ∂σ
−1
j

(
st,x

(2)
t ;λk

)
∂λT

 = Y jt(θ
k)

3. Compute the Guass-Newton step using linear GMM:

ρjt(θ
k) = Y jt(θ

k)b+ ejt ⇒ b̂ =
(
(Y TZ)W n(ZTY )

)−1
(Y TZ)W n(ZTρ)

4. Update parameter vector:

θk+1 = θk + b̂
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5. Stop if ||b̂|| < ε. Else repeat steps 1-5.

The Gauss-Newton algorithm has good convergence properties when the moments

are strong. This is because strong instruments imply a lot of curvature in the GMM

objective function, which is therefore well approximated by a quadratic function. In

contrast, weak instruments are associated with little or no curvature in the objective

function, which leads to convergence problems. We use the GNR algorithm in all

specifications using Differentiation IVs. To estimate the model with weak instruments,

we use a Nelder-Mead (or Simplex) algorithm to find the local minimum

The Gauss-Newton algorithm also highlights the fact the model can be represented

by a linear GMM problem. Step (3) corresponds to a Gauss-Newton regression. The

solution, θ̂, is implicitly defined by setting the linear parameters of Gauss-Newton

regression to zero: b̂(θ̂) = 0. This defines a linear (local) reduced-form for the GMM

problem:

ρ(θ̂) = Zπb+ v1 (36)

J(θ̂) = Zπ + v2 (37)

where J(θ̂) is a n×|λ| matrix containing the slopes of the inverse demand with respect

to each of the non-linear parameters (i.e. Jjt,k(θ) = ∂σ−1j

(
st,x

(2)
t ;λk

)
/∂λk), π is a

K×|λ|matrix of reduced-form parameters, and (v1,v2) are the reduced-form residuals.

Standard rank conditions for local identification of the model requires that the moment

conditions contain enough excluded instruments correlated with the slope of the inverse

demand (i.e. the endogenous variables of the model).

C Gauss-Newton regression and weak IV tests

We analyze the weakness of the instruments by estimating a Gauss-Newton (GN)

regression. The GN regression is most often used to minimize GMM or non-linear

least-square problem. The solution to the non-linear GMM problem can be obtained as

a sequence of linear GMM regressions obtained from a quadratic approximation of the

moments. Salanie and Wolak (2019) uses this property to construct a “fast” estimator

of the mixed-logit model. The GN regression can also be used to conduct inference on

θ̂gmm, since the variance-covariance matrix of θ̂gmm is the same as linear coefficients

from the GN regression. See Davidson and MacKinnon (2001) for a discussion of the
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usefulness of “artificial regressions” for testing and inference in econometrics.

Conditional of a vector of parameters (θ = β, λ), the GN regression is given by

linear structural and reduced-form equations:

ρ(θ) = J(θ)b+ v1 (38)

J(θ) = Zπ + v2 (39)

where J(θ̂) is a n×|θ| matrix containing the slopes of the inverse demand with respect

to each of the non-linear parameters. That, is Jjt,k(θ) = ∂σ−1j

(
st,x

(2)
t ;λk

)
/∂λk if

θk = λk (non-linear parameter), and Jjt,k(θ) = −xjt,kif θk = βk (linear parameter).

This system of equations contains |λ|+1 endogenous variables: the Jacobian associated

with each of the random coefficient parameter and price. The solution to the non-linear

GMM problem is defined as b̂(θgmm) = 0, since b̂ is the score of the GMM problem.

We use the GN regression evaluated at θ̂gmm to conduct inference on the parameters,

and test the rank condition of the non-linear GMM problem.

Table 14 reports the Sanderson and Windmeijer (2016)’s conditional F-tests associ-

ated with each of the five endogenous variables of the model. We construct these weak

IV tests using the Jacobian function of the residual evaluated at the GMM estimates.30

The statistics are all above standard levels for first-stage F-tests, consistent with the

idea that the instruments generate enough independent variation in the moments to

identify all five parameters.

Note that we do not report the p-values associated with each test. This is because

the F-tests are evaluated at the estimated parameters, rather than at the true.31 This

implies that standard statistical significance tables are not necessarily applicable. Our

simulations results however show that statistics evaluated at θ0 and θ̂ are highly corre-

lated, even in the presence of weak instruments. We therefore interpret the magnitude

of the tests as measure of strength.

Below is a sample STATA code to estimate the Gauss-Newton regression to con-

duct inference and tests for weak instruments. The code uses two input files. “Re-

sults gnr $spec.dta” is a spreadhseet containing the product characteristics, instru-

ments, and Jacobian functions. “Results wmatrix $spec.dta” is a square matrix con-

taining the (inverse) weighing matrix used for the minimization of the GMM problem.

30See Appendix C for more details.
31In general, the distribution of the test is sensitive to the weakness of the instruments, since the

Jacobian function depends on the unknown θ0. See Wright (2003) for a discussion.
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Table 14: First-stage Weak IV tests using the car data

Variables
Specifications Test statistics λprice λdoors λair λintercept βprice

(1) SW - F 19.32 111.88 34.35
(2) SW - F 12.04 77.98 81.55 20.70
(3) SW - F 20.50 66.49 90.19 185.68
(4) SW - F 14.73 61.89 41.22 36.44 116.12

The code uses the user-written ado file “ivreg2” which estimates linear GMM model,

and runs a battery of specification tests. The Jacobian functions of the inverse demand

are calculated analytically using the implicit function theorem (see Nevo (2000)).

#delimit;

use "Results_gnr_$spec.dta", clear;

reshape long diffiv_, i(model year) j(iv);

sum iv;

global nb_diffiv=r(max);

global diffiv;

forvalues i=0/$nb_diffiv {;

global diffiv $diffiv diffiv_‘i’;

};

global iv $priceiv $diffiv;

/* Weighting matrix */

use "Results_wmatrix_$spec",clear; /* Load weighting matrix */

mkmat $x Intercept $iv , matrix(A); /* Create matrix type */

mat rownames A=$x _cons $iv ;

mat colnames A=$x _cons $iv;

mat W=invsym(A);

/* Load residual, characteristics, jacobian and IVs */

use "Results_gnr_$spec", clear;
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format * %9.6g;

/* GN IV regression with weighting matrix W */

ivreg2 xi $x ($endovar =$iv), r wmatrix(W) cluster(model) ffirst;

mat V=diag(vecdiag(e(V)));

mat se_$spec=vecdiag(cholesky(V))’;

mat colnames se_$spec=se_$spec;

mat spec_test_$spec=(e(idstat),e(idp),e(j),e(jp),e(jdf))’;

mat rownames spec_test_$spec= KP_test KP_pv J_test J_pv J_df;

/* Save weak IV tests */

clear;

mat F=e(first);

svmat2 F, rnames(stats) names(col);

keep if stats=="SWF" | stats=="SWFp";

gen spec="$spec";

list;

mat list F;

save results/WeakIV_test_$spec, replace;

use results/Car_demand_estimates_$spec, clear;

rename Var1 est_$spec;

mkmat est;

mat rownames est_$spec= $endovar $x _cons;

/* Save GMM results to spreadsheet */

clear;

svmat2 est_$spec, rnames(param);

svmat2 se_$spec;

local nparam=_N;

local N=_N+5;

set obs ‘N’;
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svmat2 spec_test_$spec, rnames(stats);

local i=1;

local row=‘nparam’+1;

foreach var in KP_lm KP_pv J_test J_pv J_df {;

replace est_$spec=spec_test_$spec1[‘i’] if _n==‘row’;

replace param=stats[‘i’] if _n==‘row’;

local row=‘row’+1;

local i=‘i’+1;

};

drop stats;

drop spec_test_$spec1;

save "results/GMM_results_$spec", replace;
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