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Errata

Due to the vagaries of the word processing system and the travel of

the authors several errors crept into this version. In particular,

Section 6, "Swamy Estimates," should be disregarded. It is superseded by

the comparably titled appendix. Also, as several references are not

included, a complete listing follows:
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manufacturing firms in Japan, covering the 13 year period 1967-1979, and

focus on the wide dispersion in the estimated slope coefficients in all

three countries. The main question asked is: "Is this dispersion real?"

Could it be just a reflection of sampling variability or is it an

indication of real heterogeneity? We estimate the "true" dispersion using

three different approaches: Maximum Likelihood, regressions of squares and

cross-products of residuals, and Swamy's "residual" method, and try to

interpret the somewhat different answers which emerge. In particular, we

investigate the "reality" of the estimated heterogeneity by looking at its

stability over time and by relating it to differences in capital shares and

the industrial structure. We conclude that the observed heterogeneity is

not "real." It is caused by some non-stable misspecification of our simple

model, implying that we are unlikely to discern different but stable

individual production relations in samples of this size which contain only

a limited number of the economically relevant variables.
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1. INTRODUCTION AND MOTIVATION

Our paper is about heterogeneity in production relations at the micro

level and a quest for an interpretation of it. We have been studying, for

a number of years, the relationship between output and inputs, between

labor productivity and the capital-labor ratio, and between technological

change and investment in R&D. We have worked primarily with firm level

data in France, the U.S. and Japan and used the production function

framework, and especially the Cobb-Douglas form, as an organizing device

for our analysis.1 In this work we were struck both by the surprising

amount of variability in the basic economic ratios at the micro level and

by a number of "anomalies" in the results of conventional analyses of such

data. Since the usual approaches impose a common specification with

constant parameters across the different units, it is at least possible

that some of the apparent anomalies in our results could be due to the

neglect of the parameter heterogeneity.

We ask, in this paper, if the observed heterogeneity is "real" in some

sense and if it makes a difference for our major conclusions. It will turn

out, however, that it is much more difficult to provide a clear answer to

the first part of this question and we will, therefore, make only very



little progress on the second one. To illustrate the problem and to

describe some of the major aspects of our data we shall focus, primarily,

on analyzing estimates of the capital coefficient in a constant returns

Cobb-Douglas. production function and their potential heterogeneity across

different firms. We shall make a number of simplifying assumptions to make

the problem tractable and to help us to communicate our major results. In

particular, we shall abstract from various issues of simultaneity andother

obvious specification errors and conduct analysis under the assumption of

constant returns to scale (CRS).2

The story begins with our data: We have collected, constructed,

cleaned, and analyzed annual data on the output and inputs of about 450

manufacturing firms each in France and the U.S. and 850 firms in Japan, for

the years 1967 through 1979. We imposed common production function

coefficients across firms, and often also across industries within

manufacturing, in order to provide us with a framework for an analysis of

the sources of productivity growth in different countries and also to help

us in exploring the contribution of R&D. We estimated simple production

functions as a first step in such analyses. Continued experience with the

data has convinced us that most of the encountered problems cannot be cured

by fancier functional forms. We did not work with "complete systems" of

production relations. These require the availability of relevant

individual firm input and output prices at the micro level, something which

is not within the feasible set at the moment.

Table 1 shows the result of fitting a standard CRS Cobb-Douglas

production function to various dimensions of the data. We present three

estimates of the capital coefficient (elasticity) in two settings: levels
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and first differences. The first column gives the "total" results, the

result of pooling all the data and imposing a common intercept and common

slope on all the observations. The data sets are then divided into their

"between" and "within" components, the first being equivalent to estimating

the equation on averag€ ., over 13 years, for each firm, while the second

allows each firm to have its own intercept and gets its estimate from the

"within-firm" time series variations. It allows thereby for the presence

of correlated individual firm effects in the sense of Mundlak (1978) and

Chamberlain (1984). It should be noted also, that all the equations

contain a set of fourteen industry specific year dummy variables, allowing

thereby for flexible and industry specific time trends. The first

difference estimators are conceptually Close to the "within" estimators in

the sense that they also allow for the presence of individual firm

constants by differencing them out of the data. Their "between" component

is equivalent to the "longest" difference: i.e., it estimates the

coefficients from the average growth rate of the variables over the whole

13 year period. The "within" first differences estimator allows also for

individual firm differences in trends.

The overall results are not particularly surprising. Total and

between estimates are close together [the bulk of the variance in the data

is between firms and accounts for about 88 percent of the total variance in

the logarithm of labor productivity in all three countries] and are higher,

especially for France and Japan, than the within estimates. Japan tends to

have the highest capital elasticity (except in the "within" first

differences). Only in the U.S. data are the "between" and "within"

differences minor. These differences are even more striking, also in the
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U.S. data, if one does not impose the constant returns to scale assumption

(see Mairesse, 1988). These are the kind of "anomalies" that have

preoccupied us for some time.

Now the fact that "within" estimates of economic coefficients tend to

be lower than "between" estimates is not new and has been much commented on

in the past. The very simple model that underlies these estimates may be

subject to many misspecifications which could account for such

discrepancies. An incomplete list would include the assumption of constant

returns to scale, the use of gross rather than net output measures and the

omission of measures of material use, R&D capital, and other aspects of

quality of labor and capital; the lack of measures of input utilization and

the associated simultaneity problems and short-run versus long-run

productivity movements issues, and the possibility of serious measurement

error in most of our variables. Some of these issues have already been

explored in other contexts and on other occasions. Several of the others,

especially issues of capacity utilization and measurement error we plan to

pursue further in the near future. Here we want to explore the underlying

heterogeneity in firm responses as another possible source of the observed

anomalies in our results.

The reason why we thought of this as a promising line of attack is

that if firms really differ in their response coefficients, estimates based

on different cuts of the data would represent a different weighting of the

underlying distribution of parameters. For example, "between" estimates of

production coefficients would weight the individual coefficients in

proportion to the square distance between their input ratios and the

economy or industry wide averages while "within" estimates of the same
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coefficients would weight the same individual parameters by the relative

variance of their input ratios over time. Thetwo weight structures are

very different and if there were some correlation between such weights and

the underlying true parameters, the resulting average parameters could

differ quite a bit fron each other even if the underlying parameter

distribution was stable in some sense. A negative correlation of the

individual parameters with the "within" weights could account for the

finding that the "within" estimates are, in general, smaller than the

"between." Such a correlation could arise if firms whose environments are

changing more rapidly and whose capital-labor ratios fluctuate more have

managed to acquire technologies with less responsive, smaller capital

coefficients.

To see whether this could indeed provide at least a partial

explanation for our observed results we embarked on the task of estimating

a separate production function for each of our firms in all three countries

and summarizing the massive results in some comprehendible fashion. It was

clear from the beginning that with only 13 observations for each firm we

could estimate only rather simple, few parameter relationships, and that

the individual results were unlikely to be very precise. We were hoping to

make up what we were losing in precision at the individual level by a

clearer picture of the distribution of the parameters across firms. We

were not prepared, however, for the amount of heterogeneity that we

encountered in our data.

Besides allowing for the possible heterogeneity across firms one could

also relax the assumption of the constancy of the slope parameters in the

time dimension. Then we would be discussing the issue of "stability"
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rather than "heterogeneity." It turns out that "instability" may be the

main problem with our data rather than heterogeneity and we shall explore

this a bit towards the end of this paper. The original emphasis of most of

our work in this paper, is, however, on the appropriate characterization of

the "individuality" of our firms.

In the next section we shall outline briefly the various

specifications of coefficient heterogeneity considered by us and the

interrelation between them. In section 3 we shall take a first look at our

major results: the observed variances of the individual parameters and

estimates of their "true" heterogeneity. In sections 4 and 5, we shall

estimate these variances directly within the framework of the random

coefficients model, using maximum likelihood methods and the more flexible

approach of regressing the squares and the cross-products of residuals on

comparable squares and cross-products of the independent variables. In the

last section, we look for other ways of testing the "reality" and relevance

of our findings, and try to provide interim conclusions.

2. THE GENERAL FRAMEWORK

We estimate a number of different specifications of coefficient

heterogeneity using both level and first differences data. Our general

framework can be described by the following simple equation:

— ÷ +

where is logarithm of output per employee of firm i in year t, is

the logarithm of capital per employee, and is a disturbance distributed

independently of the In this formulation the intercept parameters
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a. and the slope parameters . are allowed to differ across firms and

different versions of the model correspond to different assumptions as to

how they differ. There is also a parallel first differences formulation:

= Th(x. — x.1) + —

The different models we look at can be summarized as follows:

Levels First Differences

A. ai_a,j_ a.

B. Ea. — a, E(ai — a)2 a2, . — b. ETh , E(. — fl)2

C. Ea. — a, E$. — Th a
a, Ufi c. distinct and fixed.

D. a distinct and fixed,
fl.

—

E. a. and fl. distinct and fixed.1 1

These different combinations of assumptions can be described as follows:

(A) both coefficients constant across firms (the usual linear regression

assumption on pooled data); (B) random intercepts and constant slopes (the

simple error components or random effects model); (C) both intercepts and

slopes random across firms (the random coefficients model); (D) firm

specific intercepts and a common slope parameter (the fixed effects or

covariance model); (B) firm specific, fixed and different, interceptsand

slopes (the fixed coefficients model). The content of the distinction

between "random" and "fixed" or firm "specific" effects is partly in the

assumption that the former are independent of the other variables in the

equation, the x's (i.e., the firm effects are "uncorrelated," E(a1Ix) — a);
7



an assumption that is not imposed on the data in fitting the fixed effects

versions of this model. Note that the uncorrelation assumption applies to

the absence of a relationship between the individual parameters and the

individual x's and not to the absence of a relationship between the

parameters themselves.4 We will indeed be estimating a covariance between

the intercept and slope parameters also in the "random" effects model but

our main emphasis will be on the slope parameter and its variance.

Since differencing eliminates the individual intercepts, we are left

with only three comparable first difference versions, all with no

intercepts: (a) a single common slope; (b) randomly differing slopes; and

(c) firm specific slopes. Versions E and c, which allow for complete

heterogeneity across firms, are the most general ones and all the other

versions are nested within them and could be tested for as different

restrictions on these more general models. Note that we have been

particularly explicit about the structure of the variance-covariance matrix

of the disturbances (s). In most of what follows we shall assume that

there is no serial correlation (or heteroskedasticity) beyond that which

arises from the presence of the individual firm effects which are to be

modeled explicitly; or that the serial correlation has been adequately

eliminated or reduced by the first difference transformation. The issue of

the correct specification of E is considered in the Appendix where we try

to deduce the correct sampling errors for our individual firm estimates.

Note also that we have not allowed for time variation in these parameters.

The variability over time in the aj would be absorbed in the . Allowing

also to vary over time would strain our already overextended
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computational framework.5 But we shall come back to this possibility in

discussing some of our results below.

3. A FIRST LOOK AT THE MAJOR RESULTS

Table 2 presents the results of estimating the simple production

function separately for each firm. It lists the averages and observed

dispersions of the estimated capital coefficients across firms both for the

"level" version, which is now a "within" equation with a separate constant

and slope for each firm, and the first difference version which allows, to

some extent, for serial correlation in the residuals from these equations.

For comparison purposes we list also similar statistics for five other

variables [which are not regression coefficients]: the annual levels [in

logarithms] and the annual growth rates of labor productivity and of

capital intensity, and the "share of capital" in value added which could be

thought of as another independent estimate of the capital coefficient. The

first row of the table thus gives the averages for the individual firm

capital coefficients and for the firm means of the various variables; the

second, their observed dispersion in the data. The average values for the

estimated coefficients are remarkably close to their least squares

counterparts in Table 1, the "within" levels and the "total" first

differences ones, but their dispersion is immense. The estimated standard

deviations do not provide, however, an adequate impression of this

dispersion. At this point a picture is worth more than several paragraphs

of description.

Figure 1 plots the distribution of the capital coefficients for France

[the pictures are very similar for Japan and the U.S.] against their
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estimated precision [the inverse of their standard errors]. The estimated

range is enormous: for a coefficient with a prior mean of about 0.3 and a

reasonable range between .1 and .5 we get an actual range from —1.7 to

+2.3, with more than a third of the estimates being actually negative!

We did expect to see some heterogeneity at the individual level and

did assume that it would be magnified by the large sampling errors arising

from the rather short time series available for their estimation, but we

were not really prepared for this amount of dispersion. We turned then to

an attempt to determine more precisely the amount of "pure" sampling

variance in the results and the complementary effort to determine the

"real" amount of dispersion in these estimates and an exploration of the

sense in which this dispersion is indeed "real," if any.

The next two lines in Table 2 attempt to provide a first round answer

to this question. Line 3 lists the estimated "true" dispersion or

heterogeneity of the coefficients based on the methodology described in

Swamy (1970 and 1971). Among the different estimates of coefficient

heterogeneity, the Swamy estimates are the most straightforward to obtain.

They are computed as the difference between the observed variance of the

individually estimated firm coefficients and an average of the

corresponding sampling variances. Being based on the individual regression

estimates, they are robust to the possibility of correlated effects

(between the aj and and the x's) contrary to the maximum likelihood

estimates and those based on the regression of the squares and cross-

products of the residuals. But since these estimates are computed as a

difference, they may yield negative values, and may be seriously affected

by even small biases in the estimates of the observed and sampling

10



variances. This would be the case, in particular, if the errors are

heteroskedictic and/or serially correlated. A positive serial correlation

in both the errors and the x's can account for part of the discrepancy that

we see between our Swamy estimates of in levels and in first

differences. (See the Appendix for a discussion of the sensitivity of the

Swamy estimates to the misspecification of the variance-covariance matrix

of the errors.)

However, what is most striking in our Swamy estimates is their order

of magnitude: of about 0.20 to 0.25 in first differences (o — 0.05)

and between 0.30 to 0.55 in levels (o from 0.10 to 0.30). These estimates

are still much too large to be indicators of a credible amount of

heterogeneity given our prior about the possible magnitude of the capital

elasticities (8 — .3, 0.1). It is interesting to stress, in contrast,

the much smaller estimated "true" dispersion in the capital share: of

only 0.10 (ci — .01) and the effectively zero estimate for the "true"

dispersion in the growth rates of labor productivity and capital intensity.

As far as these two last variables are concerned, Gibrat's Law applies and

we find not race of persistent individual firm differences in them: all

the observed variability is either common to all firms within an industry

or is transitory.

The fourth line in Table 2 lists the F statistics for the hypothesis

of equality of these coefficients [variables] across firms. Given the

large number of degrees of freedom in our data all these F statistics are

very "significant" at conventional significance levels [the critical F

ratios barely exceed one for our sample sizes]. One can question, however,

whether they should be used in this fashion in such large samples, reducing
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the probability of Type II error as our sample sizes increase but keeping

the Type I error constant. A more symmetric treatment of the inference

problem, advocated by Learner (1978), would lead to the use of much higher

values for the "critical" F (about 11 for our data) and much less certainty

in rejecting the hypothesis of homogeneity.

Another way of getting an impression of the "significance" of such

numbers is to compare them to the F's computed for the between firms

dispersion in labor productivity, capital intensity, and capital share.

These are on the order of 90 and 11 to 21, respectively, as against 3 to 4

for the capital elasticity. Now that is heterogeneity!

A related view of the testing problem is indicated by Figure 2 which

plots the frequency distribution of the estimated t-ratios for the

individual capital coefficients and superimposes on it the theoretically

expected t-distribution for this sample size (11 degrees of freedom). It

is clear from this picture that the rejection of the homogeneity assumption

comes from the presence of too many extreme values and is not the result of

just a few outliers. We can use it also to ask the heterogeneity question

in a slightly different multiple comparisons framework (see Scheffe (1959)

for its relation to the standard F test): since we are looking at a large

number independent test statistics, what is the right critical value for a

single statistic given that we want to keep a combined 5 percent

significance level for the testing process as a whole? For (approximately)

500 comparisons, as in the French sample, the individual significance level

should be set at about .0001 or a critical t-value of about 6.3 instead of

the conventional 2.2 level. A single observation of a t-ratio in excess of

6.3 would be enough to reject the hypothesis that all the observations

12



arise from the population with the same mean and differ only from each

other because of sampling variability. But in the French data we have 12

such observations !
6

This first round look at the dispersion in our data leaves us with

rather ambiguous conclusions. The observed dispersion in the estimates of

individual firm capital coefficients is very large and not really credible

as an indicator of "reasonable" heterogeneity. The idea that the results

could be due just to sampling variability is not supported by standard

statistical tests, but the level at which the observed statistics fail the

homogeneity hypothesis is not particularly impressive. The latter point of

view is reinforced by the fact that the estimates of sampling error and the

associated F-statistics, as we already noted, are very sensitive to the

underlying distributional assumptions and especially to the assumption of

homoskedasticity and serial independence (see Appendix).

4. MAXIMUM LIKELIHOOD ESTIMATES

In Tables 3 and 4 we present several ML estimates for our three

samples and our different specifications. We estimated the specifications

B, C, and b, using the maximum likelihood framework. In each case the log

likelihood function is the sum of individual firm likelihood values

expressed in terms of the summary statistics for each firm and the

2 2 2parameters to be estimated: a, , , a, c, and a (see Swamy 1971,

sect. 4.3.d). For the constant parameters and the fixed effects cases, the

maximum likelihood estimates are equivalent to different OLS versions and

we have used the latter. For D they are the "within" estimators and for

the E and c specifications they are the previously described individual
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firm estimates. These ML estimates, contrary to those presented in

Table 2, assume either the independence of the 's or the independence of

both a. and . from the x's, i.e., the absence of "correlated effects."

They also assume that e and the coefficients a and are distributed

normally, or more generally that their distribution belongs to the linear

exponential family (see White 1981, 1982; Courieroux, Monfort and Trognon

1984). The standard errors of the estimates under the normality assumption

(computed from the inverse of the information matrix) are given in the

first line of parentheses; the more general standard errors robust under

heteroskedasticity and non-normality are given in the second line of

parentheses. Column 2 gives the estimated values of the log likelihood,

allowing one to compute directly the various likelihood ratio (LR) tests

for the randomness of the parameters (i.e., the nullity of the variances

and/or 02) or for their equality across firms (i.e., the equality of

and/or a for all i). We shall turn first to the tests of heterogeneity,

before looking at the orders of magnitude themselves. Table 5

recapitulates the 2LR values per degrees of freedom p of the tests (where p

is the number of restrictions or additional parameters) and the

corresponding critical values of the or F statistics at the one percent

level of significance: x2001 (p)/p F001(p,).

The pattern of the results is quite similar for all three samples.

All of the rejections appear to be very significant statistically. There

are, however, large differences between them, if one takes an eclectic view

of comparing gains in likelihood per additional parameters. In this sense,

the largest benefit comes from relaxing the constancy of the intercept

parameter a. With only one additional parameter c7, the random effects

1.4



specification is extremely parsimonious, this one parameter being

"equivalent" to about 80% of the (N—i) additional parameters of the fixed

effects specification. The additional improvement arising out of the

relaxation of the constancy of the slope parameter, although less dramatic,

is still quite sizeable. Again the random coefficient specification

performs relatively well (the additional variance parameter is

"equivalent" to about 30 to 40 percent of the residual variance reduction

achieved by the N—i firm specific coefficients 3. in levels, and about 15

to 25 percent of it in first differences).

The LR tests of equality of the slope parameters /3 (D if E and a if C

are equivalent to the usual F tests (Chow tests of stability or

homogeneity) that have been discussed in the introduction (with our large

number of observations, 2LR/p values are in fact equal or almost so to F

values; they differ here only because the F given in Table 2 is based on a

different weighting). As we have noted already, although they are very

"significant" at conventional significance levels, they are not all that

"high" if one takes into consideration our large sample sizes and follows

Learner's view of using a critical value which increases with the number of

degrees of freedom.

We are, however, primarily interested in the order of magnitude of our

heterogeneity estimates. The more relevant numbers are the estimated

variances (c) for the two random coefficient specifications C and b. The

figures in brackets in Tables 3 and 4 given for the fixed coefficient

specifications are the empirical variances of the firm-specific estimated

As expected they are much greater than the estimated "true" c, most

of the differences corresponding to the sampling variances (i.e., the

15



variances due to the errors in the model) and our limited study period.

Although unaffected by the imprecision of the individual estimation of the

., the estimated remains large, and far too large for numbers which a

priori we would expect to be of the order 0.01 (o — 0.10) and not to

exceed 0.04 (o — 0.20).

There is a rather clear pattern in this regard in the results for the

three samples. The c's estimated in first differences are much smaller

than those estimated in levels, but they still seem too large, being about

0.06 in France and Japan, and 0.04 in the U.S. (the corresponding estimates

in levels are about 0.15, 0.21 and 0.07, respectively). The reason why the

variances are so different when estimated in levels and in first

differences (and nearer to what we would deem acceptable for the latter) is

unclear. A plausible explanation is, of course, the possibility of

correlated effects, since maximum likelihood estimation in levels assumes

that the random intercept effects a. are uncorrelated with the capital-

labor ratio. Going to first differences disposes of that problem. The

fact that our estimates of the (mean) capital elasticity tend to be

higher (clearly for Japan, more or less so also for France, but rather the

opposite for the U.S.) in specifications which are affected by the presence

of correlated effects (A, B, and C) is another indication of the same

phenomenon. There may be also some coherence in the observed discrepancies

in the estimated and in levels and first difference: they are both

quite wide for Japan and both modest for the U.S., France being in a

somewhat intermediate position.

Another explanation for the discrepancies in the (not the fi) is the

positive correlation of the errors in the regression, and hence their
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negative autocorrelation in first differences. This would cause a positive

bias in the level estimates of since the x themselves are strongly

positively correlated, but only a negligible one in the first difference

estimates, the differenced ax's being only weakly serially correlated.

5. ESTIMATES FROM REGRESSIONS ON SQUARES AND CROSS-PRODUCTS OF RESIDUALS

There is another way of estimating the variance components of

heterogeneity suggested by the random coefficients model literature. This

method (developed among others by Hildreth and Houck (1968), Goldfeld and

Quandt (1972), Amemiya (1977) and more recently by MaCurdy (1981, 1985))

relies on the fact that the variances and covariances of the dependent

variable y, conditional on the explanatory variable x, are linear functions

of the relevant squares and cross-products of the x's. Thus, if the mean

parameters of the model have been estimated consistently in a first stage

and the corresponding residuals u computed in this stage, it can be shown

that regressing their squares and cross-products on the corresponding

squares and cross-products of the x's yields consistent estimates of the

variance parameters. Since these different regressions constitute a system

of related equations (with appropriate cross-equations restrictions on the

parameters), they can be estimated more efficiently (given the mean

parameters) by quasi generalized least squares (QGLS).

Letting and be the residuals from the simple OLS estimates of

our model in levels and in first differences (A and a), we have two systems

of equations across firms (the observations being over i). The first one

in levels consists of T equations on squares, of (T—1) on cross-products

lagged by one year, of (T—2) on cross-products lagged by two years,... or a
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total of T(T+l)/2 — 91 of them. Similarly in first differences there are

such (T—l) equations on squares for a total of T(T—l)/2 — 78.

Assuming that e's are uncorrelated over time, they can be written

respectively as:

2 22 2 2
u. — a x + 2a x. + (a + a ) + v.
it it a8 it a e it

(SCP) (t—l,.. .T)

u1, — x. x, + a (x. + + a2 +

(t't'; tl,...T; t'—l,...T)

2 2. 2 2
£U. a ux. +u +W.it it gE it

(SCP') (t—l,...(T—l))

Auft Aui, — a Ax Ax +

(tøt'; t—l,...(T—l); t'—l,...(T—l))

We have estimated these two systems by OLS and QGLS (but shall report

here only on the latter). Although somewhat cumbersome (because of the

number of equations), this approach is more flexible than the ML method.

It is easier to investigate various assumptions about the error terms or

the random parameters themselves within this framework. In particular, we

can accommodate serial correlation of the errors by not imposing the
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assumption that the intercepts of the different cross-product equations of

the system in levels are equal and allow also for non-stationarity of the

errors by not assuming them to be equal within various groups of equations.

Similarly, we can allow for unsynchronized random shocks on our response

parameter fi by relaxing the equality constraints on the coefficients of the

squares and cross-products of the x's in different ways.

It is also possible to use first stage residuals corresponding to

alternative variants of the (first order) specification of our model. In

the case of the French sample, we have allowed for the possibility of

systematic (synchronized) changes over time in the capital elasticity ,

and for correlated (with the x's) firm effects by including all the

available in the first stage regressions (using what is known as

Chamberlain's H matrix approach, 1984).

The results of our main computations are summarized in Tables 6, 7,

and 8, respectively, for the fully constrained estimates, and for those

constrained only within groups of equations and for those obtained from the

different year squares equation and from four years apart cross-products

equation. Compared to our previous ML estimates, there is a pleasant

surprise: the fully constrained estimates of in levels are much

smaller, and now they are also quite close to the first difference

estimates. Both types of estimates, however, stay on the high side of what

would seem a priori reasonable: the estimated range from 0.03

— 0.18) for the U.S. in first difference, to 0.06 (o — 0.25) for Japan

in levels.

While these results do not change our main conclusions significantly

they do raise some new puzzles. It is not clear why our earlier IlL
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estimates of in levels and those summarized in Table 6 should be so

different: in particular they are both affected similarly by correlated

intercept effects and by serial correlation of the errors (at least if we

impose the full set of equality constraints on the intercepts in the system

of square and cross-product regressions). It is also puzzling why our new

2. 2.
estimates of (in levels) and of c (in levels and first differences) are

smaller than their ML counterparts. These anomalies point to some, still

unclear, misspecifications in our model.

The incompletely constrained estimates (in Tables 7 and 8) may shed

some light on this mystery. They show that there is much instability in

our results, especially in first differences. The example of the French

sample is most striking. We find a first difference estimate of of

about 0.12 for the squares equations, with corresponding estimates for

individual year equations varying from 0.08 up to 0.42 (in 1974/73). This

estimate goes down to 0.04 in the four year apart cross-products equations

with corresponding separate estimates ranging again from —0.l8(!) to 0.16.

It drops down again to —0.04 (!) in six year apart cross-product equations,

and up again to 0.10 in the eleven year apart cross-product equations. For

the other two samples, the pattern is roughly similar, though less extreme.

The estimates of in levels are much more stable; they do indicate,

however, a clear downward trend when we go from those estimated on squares

to the estimates based on the twelve year lagged cross-products. This

could be due to some form of random shocks in unsynchronized but

strongly correlated over time, in addition to the fixed heterogeneity

component fi.. Such shocks unfortunately do not seem to account for what we
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see in first differences, and we have not been able (yet) to characterize

the instability in these estimates satisfactorily.

6. SWAMY ESTIMATES

Among the differeflt types of estimates of coefficient heterogeneity,

the Swamy estimates are the most straightforward to obtain. As already

noted, they are computed as the difference between the observed variance of

the individually estimated firm coefficients and an average of the

corresponding sampling variances. Since the Swamy estimates are based on

the individual estimates, they are robust to correlated effects. However,

being computed as a difference, they may be affected by even small biases

in the estimated sampling variances, which could be the case if the errors

e in our model are heteroskedastic and/or serially correlated. In

particular, the serial correlation both in the errors and the x's will

account for part of the discrepancy between the Swamy and ML estimates of

in levels and those in first differences. In order to have a clearer

appreciation of the sensitivity of the estimates to these (second order)

misspecification, we have computed the Swamy estimates under alternative

assumptions for the variance-covariance matrix of the errors.

7. EXTENSIONS AND INTERIM CONCLUSIONS

It is not easy to summarize our various results. There are two

numbers worth keeping in mind: our prior expectation about a reasonable

heterogeneity in the true fl's is a standard deviation of 0.1. The observed

standard deviation at the individual level is about 0.5 (0.4 in first

differences). A direct subtraction of an estimate of the sampling variance
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(the Swamy method results in a "residual' estimate of the true dispersion

between 0.4 in levels and 0.2 in first differences, the latter still

being about twice as high as our prior expectations. More "direct"

estimates of which associate it with the coefficient of the squared x's

(or their crossproducts) in the squares and crossproducts of residuals

regressions or their maximum likelihood analogues, hover also, at their

lower range, around 0.2. Thus, allowing for sampling variability or

estimating the dispersion directly, still yields estimates that are "too

high.

At this point there are two possibilities: we could accept the 0.2

estimate as real and revise our expectations. If we allow for the fact

that our simple production function equation may be seriously misspecified

(there may be decreasing or increasing returns to scale, capacity

utilization fluctuations may matter, capital may be mismeasured, etc.),

then it may be reasonable to expect the in a misspecified equation to

have a different prior distribution. For example, a more agnostic view

would still keep it between zero and one but would not be surprised by a

standard deviation of 0.2. An alternative, though not mutually exclusive

view, would lead us to inquire into the "reality" of this heterogeneity and

its stability over time. Unless the misspecification is in some sense

permanent, it is not particularly interesting.

We have actually explored a number of first order extensions of this

model and found that they do not reduce the estimated significantly.

Neither letting go of the constant returns assumption or using value added

output measures and allowing thereby for the presence of the materials

input (in French and Japanese data) changes our results significantly. The
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"improvement" in the specification is counterbalanced by the decline in the

t1net" variance of the capital-labor ratio from which the fl's have to be

estimated.8 The impact of capacity utilization fluctuations remains still

to be explored because we do not have a good handle on it in our data.

Moreover, its effect i unlikely to be "stable," it would differ from

period to period, which leads us to our second way of looking at this

problem.

We also worried about the possibility that the observed heterogeneity

is just an artifact of a few outliers that using some alternative more

"robust" approach may make it go away. A look at Figure 1 will convince

one that our results do not depend just on a few outliers. Nevertheless,

we pursued two approaches towards robustness. In one approach, we

eliminate all firms whose within variance in X was either very small or

extremely large. This had essentially zero effect on our estimated "true"

2.
it reduced the observed variance and the estimated sampling variance

about equally. The other approach, computing a robust estimate of the

observed variance of the fl's from their interquartile range and subtracting

the median of the estimated sampling variances rather than their mean

resulted also in only minor changes in the final estimates, reducing

somewhat the estimated in levels, from .19 to .15, but raising it for

the first differences based estimates, from .05 to .08. (The reported

numbers are for Japan but the results are similar in all three countries.)

It is clear that the "over-dispersion" that we observe (see Cox 1983 for

related use of this term) is not the result of a few errant firms, but is

actually a pervasive aspect of our data and our approach to them.
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Why do we care about heterogeneity? If people differ in their

response coefficients and if we contemplate some experiment which will

impinge differentially on them, then it would be valuable to know how they

differ and how this is related to any policy change we may wish to pursue.

If they do differ but these differences are not permanent, then knowing

their heterogeneity today may not help us any tomorrow. This leads us to

question also the time stability of the /3's and not just their cross-

sectional heterogeneity. One way of asking this question is to divide our

period into two, redo the analysis, and investigate the question whether

the estimated heterogeneity is the "same" in both periods, whether the

estimated within period /3's are correlated with each other.9

The results of reestimating our model for each firm in each of the

countries, separately for the two subperiods: 1967-1973 and 1974-1979, and

— 1 F 4
.IJuLpJ.L.L1L LLL I.JL L Lat..J.J1L '•'i
given in Table 9. These correlations (the last two columns of row 4) are

remarkably low, on the order of .05 to .1, implying a rather substantial

time instability in these estimates and throwing serious doubt on the

"reality" of the previously estimated heterogeneity levels. Row 3 shows

the associated estimates of based on their between periods covariance.

They are much lower than the total period based estimates and are now much

closer to what we might think is a priori reasonable. Moreover, the levels

and first differences based estimates are now very close to each other.

For comparison purposes we also list similar numbers for the average

output-per-man ratios and capital shares. The heterogeneity in them is

much more "permanent" and so is also the heterogeneity in the intercepts

(not shown here). For example, in France the between periods "permanent"
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variance accounts for 95 percent of the total for the average

output-per-man ratio and for 90 percent of the total variance in the

average capital share. At the same time, the estimated variance of the 8's

from the between periods covariance is only 6 percent of the total period

estimates in levels and 28 percent in the first differences based

calculations. It is obviously a much less stable aspect of average firm

The most common way of allowing for heterogeneity in such data is to

estimate separate equations for different industries. We have already done

something along these lines by allowing separate industry-time constants.

But we can ask the additional question: Does the estimated heterogeneity

have any "industrial" content? A priori, we would think that it should

have some. Otherwise, the "reality" of the estimated dispersion in the

may be doubtful and also the usefulness of knowing it, even if it were

present. To check on this, we can run an analysis of variance of the

estimated individual slope coefficients using the same 14 industries

breakdown which we have already used in defining the time-industry dummy

variables. We have computed this for our sample of Japanese firms with the

result that the industrial structure, in the form of 14 industry dummy

variables, accounts for less than 5 percent of the observed variance in the

in first differences, and even less in levels (less than 2 percent).

Hence, consistent differences between industries in the parameters of the

production function are not significant contributors to the firm

heterogeneity as estimated by us.

Another way of asking about the "reality" of the observed dispersion

in the 's is to ask how they are correlated with other estimates of the
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same thing. Under the assumption of competition and constant returns to

scale the capital share should roughly equal . Even if one relaxes these

assumptions and allows for deviations from purely competitive conditions or

constant returns to scale, one would still expect a significant positive

correlation between these two measures. The facts summarized in line 5 of

Table 9 are, however, rather different. The observed correlations are

insignificant. Even if one takes the maximal number of .04 for France and

adjusts it upward for the attenuation due to sampling error in these

averages, one would still get Only .05 for this correlation, which is much

too small to allow us to think of one of these measures as being a

reflection of the other. It appears that the estimated dispersion in the

s has little to do with what we may think are the reasonable sources for

it.

Having been aletted to the possibility of time-instability in these

estimates we can now also look for it in the regression based estimates of

their variances. Unless the 's are stable over time, the regressions based

on the crossproducts of the residuals across different years and the

crossproducts of the x's, rather than on their squares, should yield much.

smaller estimates. This would he true because the time instability in the

B's should show up in the residual but not be strongly correlated over

time. Since this effect may be masked by the presence of correlated

effects in the data (the correlation of the intercepts with the x's, which

is assumed away in such estimation), only the first differences or II matrix

residuals based calculations are relevant here.11 Looking at the last

three columns of Table 7 indicates clearly that the crossproduct based

variance estimates are much lower and unstable. The parallel fl matrix
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residual based results summarized in Table 10 also indicate that when one

estimates this variance from "distant" cross products one gets a much lower

estimate of it. In short, whatever it is that these individual fl's measure

it is not a very stable aspect of firm behavior.

Moreover, there i some evidence that this instability is year

specific. If we break our data into even and odd years, rather than the

early and later periods, the correlations between the fl's are much higher:

.5 versus .05 for the two periods cut (in France). Thus, the fluctuations

in fi are not random from year to year. This can also be seen in Table 8,

where we exhibit the separate estimates of cr based on squared residuals

from different years. It is quite clear that something happened around

1974 which is not very well captured by the model or by allowing for

heterogeneity in the fl's across firms rather than across time.

What can we conclude about the average of our estimated fl's, the

capital elasticity of output, rather than its dispersion? The major

conclusion is that we have not solved the between-within puzzle.

Heterogeneity is not the answer to it. This can be seen by comparing the

means of the individual fl's to either the between or the within estimates

which are reproduced, for convenience sake, in Table 12. Except for the

U.S., lines 1 and 2 differ significantly (as do also lines B and D in

Table 3), but lines 2 and 3 do not. Line 3 is the unweighted average of

the individual fl's, line 2 is the weighted average and the two are

remarkably close, implying that the weighting scheme of the "within"

estimator is not the culprit for its "lowness." There do appear to be real

correlated effects (between the a.,, the individual constants, and the x's)

in the cross-sectional dimension (at least in France and Japan). There is
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no evidence, however, of a significant correlated effect in the a's. Line

3 (or 5) which does not assume that the /3's are uncorrelated with the X's

turns out to be essentially the same as line 4 (or 6) which imposes the no-

correlation assumption on these estimates. Line 3 is also effectively the

same, as we have already seen, as line 2, which weights these estimates by

the individual firm variance of the

In a sense this evidence of no real relation between the individually

estimated /3's and the capital-labor ratios is another indication of the

"unreality" or irrelevance of their estimated dispersion. What is

impressive in this table is, however, the closeness of the various

estimates of the mean /3 among the se of estimators which allow for a

dispersion in the &s. Even noting the slight reversal for Japan and U.S.

in the lower part of this table which recapitulates some of the first-

differences based results, there is a sense in which the average response

coefficients appear to be rather well estimated.

What is then the answer to the rhetorical question in the title of

this paper? It is negative given the current status of our data and the

variables available to us. Without data on factor prices at the micro

level and information on actual capacity utilization, it is unlikely that

we could derive stable production relationships at the individual firm

level. Moreover, the simple production function model, even when augmented

by additional variables and further non-linear terms, is at best just an

approximation to a much more complex and changing reality at the firm,

product, and factory floor level. While it is possible to get reasonable

estimates of the average response coefficient which are consistent across

different data sets and different estimation methods, there does not appear
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to be much promising content in the estimated dispersion. In this sense,

if we are interested in the average behavior of productivity then

"aggregation", or more correctly pooling, i.e., estimating a common

coefficient across a large number of firms, may not be "necessarily bad"

(cf. Grunfeld and Griliches, 1961).

Much more could be said about the various estimates than we have been

able to do here. We could do more exploring of the differences that arise

from the assumption of correlated individual effects ("random" versus

"fixed" effects estimates), from different treatments of serial correlation

in the disturbances, and from the results of alternative estimation methods

(see the Appendix for some additional discussion of these topics). But the

main problem facing us is the inadequacy of the underlying simple

production function model. We need to figure out ways of allowi.ng for the

discrepancy between recorded inputs and actually used levels, for lags, and

for the simultaneity in the various behavior relations associated with the

production process. As always, much work remains to be done, but then one

needs also to start somewhere.
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1. For examples of this work see Griliches and Mairesse, 1983, 1984, and

1985, and Mairesse, 1987.

2. What is visible in this paper is only the tip of an iceberg of a great

deal of work with these data. There are many interesting but tangential

issues, both substantive and econometric, which could be taken up as we

traverse this range of topics.

3. Using the notations and framework given in the next section, the

between estimates can be written as

— E b. d where
b ii

- - y)/(x. - ) and d = (x - )2/ E (. -

While the within estimates are equivalent to

A2b — S pw , where
w

- S (xjt - Xyft - y)/ S (Xft
-
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and w — E (x. — — )2/ E (x. — x. )2
t

it 1• it J.

The argument in the text assumes that
/3,,

which implies the

absence of "correlated effects" (.'s related to the x's). E(b) will be

less than if there is a negative correlation between the 8's and

the w's.

4. Since the x's are also economic choice variables, this
assumption may

not be reasonable for either the a's or the /3's. In a non-constant returns

case, with x (the capital-labor ratio) fully variable, it would be

proportional to /3.7(1 — /3.). This could introduce a correlated effects

problem in the cross-sectional estimates, but would not be a problem in the

time-series dimension, where most of the variability in x would come from

changes in the relevant factor prices.

5. See Hsjao (1986) for more elaborate versions which allow for

variability in both dimensions.

6. Both figures 1 and 2 plot the levels based
/3k.

The corresponding

graphs for the first differences based /3. are similar in shape but the

dispersion is smaller. In the French sample, there are only three

whose t-ratios fall outside the 6.3 range.

7. It is possible to speculate at length why different methods of

estimation give us different results. We have done so a bit already in

discussing them. It is basically an indication of some additional

misspecificatjon in our model, a point to which we shall come back below.

8. This can be illustrated by conside.ing parallel results which do not

include separate time-industry constants, putting all of the trend effects

into the capital-labor ratio. Such estimates yield, obviously, a much
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higher (e.g., 0.41 versus 0.16 in first differences for Japan), but also

a much smaller dispersion (an observed of 0.31 versus 0.43) and the

implication of no true heterogeneity, all of the observed dispersion being

attributable to sampling variability. Thus, adding statistically important

variables, the sectoral year-dummies, and reducing thereby the potential

misspecification of the model, increases the estimated heterogeneity of 's

instead of reducing it.

9. One could, of course, pursue more general models of true instability,

letting it — + + or = + 6.A. See Hsiao (1986) and Cragg

(1987) for such extensions. There are also more general approaches

possible to the definition and testing of parameter heterogeneity and

stability. See Dutta and Leon (1986) for example.

10. The correlation between the constants estimated separately for the two

periods is 0.45 for France. Adjusted for their respective sampling

variances, the "deattenuated" between periods correlation is 0.88, implying

a large measure of stability for this aspect of firm behavior. A

comparable deattenuation of the between periods correlation coefficient for

the slopes raises it only from 0.05 to 0.18.

11. The correlated effects model can be written as (see Chamberlain,

1984):

— + Thx. +

and

— ' x + i.

where x is the vector (xil,...xjT) of all the x's in the different periods

for individual i. The estimated residual from the overall Because the
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residual square and cross-product equations we estimate ignore the non-

corresponding square and cross-product x terms, they are likely to

overestimate a. First differences, which eliminate the a's or the II

matrix residuals, which include the terms in the equation and leave

only the rj. in the residual, do not suffer from this problem.

12. These numbers are either very close (or very different) and hence we

did not bother to subject them to formal Hausman (1978) tests.
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Appendix: Swamy Type Estimates and Their Sensitivity to

HeteroskedastiCity and Serial Correlation

Since the Swamy type estimates can be very sensitive to second-order

manipulation of our model, we have computed them under alternative

assumptions for the variance-covarianCe matrix of the errors. A worthwhile

extension of this work would be based on more robust estimates of the

variances involved, using nonparameteric methods such as the Jacknife or

Bootstrap.

We use the following matrix notation, in addition to that given in

section 2 of the text: A is the (2,2) variance-covarianCe matrix of the

coefficients (i.e., 611 ' 22 612 2l — Ei is the (T,T)

variance-covarianCe matrix of the errors for firm i (E — E( E'i) X

is the (T,2) matrix of observations on x for firm i and the constant (i.e.,

X. — (x.., 1T' and stands for the (2.2) vector of mean coefficients

(i.e., — (,a)'). The individual firm OLS estimates and their

corresponding sampling variances are as follows:

— (XX)1Xy

— (X X.) X: . X. (X

The observed variance-covariaflCe matrix of the individual firm OLS

estimates is

N N

— (. — f3)(. — )' with — E .
i—i 1 1 i—i 1

34



We can show that:

V(.) VE(. X. ,fl.,) + EV(.jX.,fl.) + EV(L IX. ,fl.)

E(V(IX8.) can be estimated by the average sampling variance:

E assuming that are uncorrelated across
i—i

firms, and thus the true variance-covariance matrix of the coefficients

can be estimated by:

- V($.) -

This formula generalizes that given by Swamy, where heteroskedasticity is

allowed only across firms, i.e., E. = a21.

Thus, different assumptions about ., yield alternative estimates of

i. This is conditional, however, on obtaining consistent estimates of E

in the panel data context, with N going to "infinity" for a fixed T. The

most simple case is that of homoskedasticity and independence of the

errors:

N
E — I and V(.) — a2 (X x.Y'. It is also possible to allow1 6 1 N c . 1 1Ll

2
for heteroskedasticity across firms (as Swamy originally did): — a I,

1
the sampling variance being computed then as the arithmetic average of the

1N 2 1
individually estimated sampling variances: E a

(X1 X) . [The
i—l 1

Swamy estimates in Table 2 are computed in this way]. We also consider the

case of heteroskedasticity within firms, where is a diagonal matrix

(White, 1980) which depends on X...1 In order to deal with serial

correlation, we assume a given autocorrelation (T,T) matrix of the errors

TCOR corresponding to an autoregression of the first order with

autocorrelation parameter p — .5 in levels (and the corresponding
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autocorrelation matrix in first differences). Following Solon (1984), a

close examination of the first three serial autocorrelation coefficients of

the residuals computed both from the fixed effects specifications in levels

and in first differences, indeed suggests that a first order autoregression

with a p of about .5 would be an adequate description of the error process.

To take into account the serial correlation of the errors, we have also

used the Cochran-Orcutt transformation to compute the Swamy estimates in

quasi-difference form (i.e., — and

(x. — O.Sx.1)).
The various estimates of the "true" variance in the coefficients, that

we can compute under these different assumptions are given in Table 12. We

also present in this table the corresponding QCLS estimates of the mean fi.

These results are only given for the French sample, since they are very

similar for our other two samples.

The direction of the potential biases that we see in the estimated ci

is what one might have expected, but their magnitude is more of a surprise.

Allowing for heteroskedasticity across firms or within firms increases the

estimated by about 0.01 to 0.03. This increase is relatively minor for

the level estimates, but is more serious for the first difference

estimates, since they are much smaller than the former and of about the

same order of magnitude. Such bias, however, corresponds to a negative

correlation (across or within firms) between the variance of the residuals

and the corresponding squares of the x's (or tx's), which may be in part

spurious (due to sampling errors or outliers: very small or very large

squares of the x's or tx's).
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Taking into account the serial autocorrelation of the errors, affects

our level estimates severely, changing the estimated from about 0.18 to

0.13. This is confirmed by the quasi-differenced estimates, which are even

smaller, with estimated of about 0.08. The first differences based

estimates of the sampling variance are not, however, biased by the

(negative) serial correlation in the. differenced errors, because the

differenced ax's are practically uncorrelated over time (contrary to the

x's in levels which are strongly positively correlated). It is interesting

to note that there is little difference in the various QGLS estimates of fi

corresponding to the various weighting schemes. Contrary to the variance

estimators, they are all consistent under the alternative (second order)

misspecification of the variance-covariance matrix of the errors.
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APPENDIX NOTES

1. There is an identification problem in discussing heteroskedasticity in

the context of random coefficient models. The only heteroskedasticity that

matters here is one that is a function of the x's but that, in principle,

should be in the definition of it The random coefficients model is, in

fact, a particular model of heteroskedasticity. Since our main focus is on

the variability of in the i (individual) dimension, it is sufficient

for us to define . — f3. + e.
,

where the distribution of e. may be a
it 1 it it

function of xt and throw them (L) into the definition of the overall

disturbance 6.
it
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Table 1: Alternative Estimates of Production Function Coefficients

Regress ions

Dependent Variable: Log Q/L

Levels First Differences

Total Between Within Total Between Within

FRANCE
1967-79

0,303
(0,009)

0,313
(0,031)

0,196
(0,011)

0,260
(0,014)

0,163 0,266
(0,039) (0,014)

N 441
T—13

2
R

0,362

0,174

0,338

0,192

0,133

0,052

0,122

0,064

0,024 0,119

0,038 0,066

JAPAN
1967-79

0,452
(0,007)

0,469
(0,023)

0,278
(0,009)

0,183
(0,010)

0,359 0,170
(0,029) (0,010)

N — 845
T — 13

R2

0,375

0,292

0,343

0,326

0,148

0,082

0,118

0,031

0,026 0,115

0,151 0,026

UNITED STATES
1967-79

fi 0,221
(0,007)

0,222
(0,024)

0,213
(0,008)

0,289
(0,009)

0,178 0,294
(0,030) (0,009)

N — 462
T — 13

R2

0,286

0,154

0,266

0,163

0,106

0,096

0,099

0,149

0,019 0,097

0,073 0,153

Log Q/L — Logarithm of output per employee.

— coefficient of log C/L. C/L — capital per employee.
Estimated standard error in parentheses.

— standard deviation of estimated residuals.

All equations contain also individual industry level year constants.



Table 2: Variability: Different Indicators

Country and
Indicator

Variables Coefficients

First
Levels Differences

Log Output
per Employee

Log Capital
per Employee

Capital
Share

Levels
Growth
Rates Levels

Growth
Rates

FRANCE
(N — 441)

Average 16.91 .045 10.51 .046 .256 .194 .232

Sb Observed
dLspers ion

.375 .025 .526 .030 .096 .542 .414

"True"

dispersion

•373 Q* .524 0* .094 .440 .213

F test 90.7 .4 132.1 .7 21.2 2.9 1.4

JAPAN
(N — 845)

Average 29,51 .087 14.71 .107 .316 .273 .161

Sb Observed
dLspersion

.418 .028 .508 .031 .103 .625 .434

"True'
dsersinn c

-p

.415 0* .506 0* .098 .539 .258

F test 87.6 .6 122.3 .8 11.1 3.9 1.5

UNITED STATES
(N — 462)

Average 29.81 .021 16.21 .051 - .219 .283

Sb Observed
dispersion

.291 .020 .528 .030 - .403 .321

"True"

dispersion

.289 0* .526 0* - .323

F test 81.5 .4 126.5 .5 - 2.8 1.9



Notes to Table 2

The averages are the simple arithmetic means, except for the levels of

the output per employee and of the capital per employee where they are

the geometric means in thousand dollars per employee in 1970 prices.

Thus the averages of the individual estimates of the capital

coefficients are simply — E , and that of the variables
x.:

1

1 1x —— E E x. —— E x..NT . it N . iit 1

• The observed dispersions Sb are the standard deviations between firms,

i.e.:

—
(N—l)

or

2 1 2
s8 — E (xi— x..)

• The true dispersions are computed by adjusting the observed dispersions

for sampling variability. For the capital coefficients, they are the

Swamy estimates:

2 2 1 2 2 2 2— s — E v1, where the sampling variance v1 — Se! Z (xjx.)

being the estimated variance of the errors in the individual
I

regressions. For the variables, we have similarly:

"2" 2 12 2 1 2—
Sb — s, where SW

N(T—1)
E E (xj_xj,)

See Mairesse, 1988, for more detail.

With this notation, it can be shown that the F tests can be computed

2 22simply as: F — b'bfl



Table 3: Maximum Likelihood Estimates on Levels

2
Specifications L(ML) a

e

2
a a
a

2

aa

FRANCE

(A) a — Ct, — Ct 2949.2 0.303 0.1315

(0.009) (0.0025)
(0.032) (0.0097)

(B) a — Rd, — Ct 7511.2 0.210 0.0192 0.114

(0.011) (0.0004) (0.008)
(0.028) (0.0011) (0.010)

(C) a — Rd, — Rd 7890.2 0.212 0.0148 0.123 —0.018 0.145

(0.022) (0.0003) (0.009) (0.008) (0.014)

(0.022) (0.0007) (0.013) (0.009) (0.019)

(D) a — Fs, — Ct 8702.3 0.196 0.0192 [0.118]

(E) a — Fs, — Fs 9732.1 [0.194] [0.01461 [0.194] [—0.054] [0.294]

JAPAN

(A) a — Ct, — Ct 5290.9 0.452 0.1404

(0.007) (0.0019)
(0.023) (0.0065)

(B) — Rd, — Ct 13255.8 0.303 0.0239 0.121

(0.009) (0.0003) (0.006)
(0.021) (0.0008) (0.007)

(C) a — Rd, — Rd 14112.7 0.291 0.0176 0.135 —0.010 0.213

(0.019) (0.0003) (0.007) (0.007) (0.014)

(0.019) (0.0006) (0.008) (0.008) (0.016)

(D) a — Fs, — Ct 15476.4 0.278 0.0238 [0.118]

(E) a — Fs, fi — Fs 17700.3 [0.273] [0.0173] [0.207] [0.020] [0.391]

UNITED STATES

(A) a — Ct, — Ct 4507.1 0.221 0.0820

(0.007) (0.0015)
(0.034) (0.0084)

(B) a — Rd, fi
— Ct 9232.2 0.214 0.0122 0.069

(0.008) (0.0002) (0.005)
(0.019) (0.0007) (0.008)

(C) a — Rd, — Rd 9530.2 0.225 0.0100 0.068 —0.001 0.069

(0.016) (0.0002) (0.005) (0.004) (0.007)

(0.016) (0.0006) (0.008) (0.005) (0.008)

(D) a — Fs, fi
— Ct 10468.0 0.213 0.0122 [0.071)

(E) a — Ps, — Fs 11374.1 [0.219] 0.0099 [0.122] [—0.023] [0.163]



Notes to Table 3

Ct -- constant; Rd -- random; Fs -- firm specific (fixed effects).

() - - first line: usual standard errors obtained from the maximum
likelihood method.

() - - second line: "robust" standard errors obtained from the pseudo-
maximum likelihood method (White, 1980 and 1982; Gourieroux, Trognon,
1984).



Table 4: Maximum Likelihood Estimates in First Differences

2
Specifications L(ML) P E

2

a

(a) ,9 — Ct 8506.7 0.260 0.0148

(0.014) (0.0003)

(0.022) (0.0007)

(b) p — Rd 8577.6 0.246 0.0137 0.064

(0.019) (0.0003) (0.010)

(0.019) (0.0007) (0.010)

(c) — Fs 8904.5 [0.232) [0.0139] [0.172]

JAPAN

(a) — Ct 16588.9 0.183 0.0140

(0.010) (0.0002)

(0.015) (0.0005)

(b) p — Rd 16684.2 0.168 0.0131 0.061

(0.014) (0.0002) (0.007)

(0.014) (0.0004) (0.007)

(c) — Fs 17308.4 [0.161] [0.0132] [0.188]

UNITED STATES

(a) — Ct 10071.5 0.289 0.0097

(0.009) (0.0002)

(0.018) (0.0004)

(b) p — Rd 10186.1 0.300 0.0088 0.040

(0.014) (0.0002) (0.005)

(0.014) (0.0004) (0.005)

(c) fi — Fs 10554.0 [0.283] [0.0089] [0.103]



Table 5: Likelihood Ratio Tests of Homogeneity versus Random or Fixed Coefficients
Heterogeneity

FRANCE JAPAN UNITED STATES

Tests x0 01(p)/p —
.

p 2LR/p p 2LR/p p 2LR/p F001(p,)

(A) if (B): — 0 1 9124.0 1 15929.8 1 9450.2 6.

(B) if (E): 2 — — 0 2 4941.0 2 8821.8 2 5023.2 4.6

(B) if (E): — 0, a2 0 1 758.0 1 1713.8 1 596.2 6.6

(A) if (0): a. — a 440 26.2 844 24.1 461 25.9 1.

(A) if (E): a. — a, . — 880 15.4 1688 14.7 922 14.8 1
(D) if (E): 9. — 9, a. a 440 4.7 844 5.3 461 3.9 L

(a) if (b): — 0 1 141.8 1 190.6 1 229.2 6.6

(a) if (c): . — 440 1.8 844 1.7 461 2.1 1

Li?. - likelihood ratio. p - degrees of freedom.



Table 6: Estimates from Systems of Regressions of Squares and Cross
Products of Residuals, Fully Constrained

2
CT

E

2
Ci Ci

a.8

2
Ua

FR Levels 0.003 0.042

(0.003)

0.001

(0.003)

0.078

(0.007)

JA Levels 0.002 0.062

(0.002)

—0.009

(0.003)

0.084

(0.006)

U.S. Levels 0.002 0.052

(0.002)

—0.001
(0.002)

0.030
(0.004)

FR First Dif. 0.007

(0.000)

0.051

(0.003)

-- - -

JA First Dif. 0.008

(0.000)

0.041
(0003)

- - --

U.S. First Dif. 0.004
(0.000)

0.032

(0.002)

-- --

- - for levels computed as the difference between the intercepts of the

square and cross-product coefficients. For first differences, it is

an estimate of a2
(e—ti)



Table 7: Estimates from System of Regressions on Squares and Cross Products of Residuals.
Unconstrained Across Groups of Equations

Coefficients
from

EquatLons
of

FR

2a
fi

Levels

a

JA

2
a

Levels

a

U.S.

2
a

Levels

a

FR FD

2
a

fi

JA FD

a
$

U.S. FD

2
a
fi

SQ 0.037 0.003 0.055 —0.009 0.056 —0.012 0,117 0.106 0.082

CPI 0.036 0.003 0.055 —0.009 0.056 —0.002 0.083 0.027 0.047

CP2 0.036 0.002 0.055 —0.009 0.055 —0.002 0.022 0.006 0.048

CP3 0.035 0.002 0.056 —0.009 0.055 —0.002 0.031 0.024 —0.011

CP4 0.035 0.002 0.056 —0.009 0.054 —0.002 0.042 —0.005 —0.006

CPS 0.034 0.002 0.056 —0.009 0.052 —0.002 0.031 0.035 0.003

CP6 0.035 0.001 0.055 —0.010 0.050 —0.002 —0.041 0.046 0.006

CP7 0.034 0.000 0.055 —0.010 0.048 —0.002 —0.015 —0.004 0.020

CPS 0.033 —0.000 0.055 —0.010 0.045 —0.002 —0.003 0.050 —0.008

CP9 0.033 —0.001 0.055 —0.010 0.042 —0.002 0.070 0.008 0.048

CP1O 0.034 —0.001 0.054 —0.010 0.039 —0.002 0.101 —0.010 —0.014

CP11 0.032 —0.001 0.052 —0.010 0.035 —0.002 0.095 0.099 0.017

CPI2 0.030 —0.003 0.050 —0.010 0.033 —0.002 -- -- --

Dependent variables:

SQ -. squared residuals; CPh -- cross-products of residuals h periods apart.



Table 8: Estimates from Regressions on Squares and Four Year Apart Cross-

products of Residuals, Unconstrained Across Equations (OLS Estimates)

Levels Chamberlain's II First Differences

FR JA U.S. FR JA U.S.JA U.S.FR

1979 .035 .034 .127 .107 .124 .104

1978 .042 .033 .149 .076 .363 .070

1977 .035 .036 .184 .149 .094 .185

1976 .053 .024 .154 .182 .103 .202

1975 .033 .032 .191 .183 .099 .170

1974 .055 .063 .157 .490 .080 .155

1973 .019 .045 .170 .231 .136 .114

1972 .021 .046 .163 .186 .128 .089

1971 .034 .048 .150 .129 .091 .146

1970 .017 .043 .136 .154 .135 .105

1969 .006 .026 .078 .125 .085 .087

1968 .009 .042 .059 .095 .136 .078

1967 .015 .035 .027

1979-75 .040 .034 .165 —.178 .019 —.089

1978-74 .045 .045 .160 .163 —.050 .005

1977-73 .027 .043 .185 .098 .056 —.071

1976-72 .036 .043 .172 .056 —.012 .180

1975-71 .038 .046 .171 —.033 —.107 —.023

1974-70 .031 .059 .145 —.001 .044 —.103

1973-69 .011 .042 .122 .067 .062 .040

1972-68 .020 .055 .099 .072 —.074 .019

1971-67 .021 .053 .073



observed

048
"true" (tp) - -

"true" (bp) - -

Corr bp

Corr (sc,8)

- - computed from the dispersion of the separately estimated
coefficients (or the firm variable means). From Table 2.

estimated "true" dispersion, based on the total period
1967-79 (tp). From Table 2.

estimated from the covariance between the separately
estimated capital coefficients in the two periods (or the
means of the variables).

- - observed correlation between the separately estimated
capital coefficients in the two periods.

- - correlation between the average capital share and the
estimated (total period) capital coefficients.
Unavailable for the U.S.

Table 9: The Instability of Heterogeneity Estimates
1967-79 versus 1967-73 and 1974-79

Country
and

Labor

productivity
Capital
Share

Capital Coefficients (48)

Levels First Differences

France

Sb
observed

"true" (tp)

"true" (bp)

Corr bp

Corr (s,)

Japan

observed

048 "true" (tp)

(748 "true" (bp)

Corr bp

Corr (s,)

U.S.

Sb observed

048 "true" (tp)

"true" (bp)

Corr bp

.375 .096 .542 .414

.373 .094 .440 .213

.365 .089 .110 .113

.90 .76 .05 .05

.04 —.01

.418 .103 .625 .434

.415 .098 .539 .258

.405 .094 .186 .180

.88 .68 .06 .09

—.01 .02

.291 .403 .321

.289 .323 .218

.282 .152 .154

.09 .12



Table 10: Summary of Heterogeneity of Estimates for France

Levels First Differences

°j
2

floj
2

'8

0. Observed .542 .293 .414 .171

1. Swamy (tp) .440 .194 .213 .045

2. Maximum Likelihood .382 .014 .253 .064

3. SQ and CF (total) .205 .042 .226 .051

4. ir residuals SQ and CF .187 .035 n.r. n.r.

5. ir residuals "distant" CF .119 .014 n.r. n.r.

6. Between periods .110 .012 .113 .013

1. From Table 2.

2. From Tables 3 and 4.

3. From Table 6.

4. and 5. Computed from residuals of regressions in which each was

regressed on all (13) x's.

5. Based only on regressions of cross-products 10 years or more apart.

6. From Table 9.

n.r. - - not relevant.



Table ii: Alternative Estimates of the Capital-Output Elasticity

Levels France Japan United States

1. Between .313 .469 .222

(.031) (.023) (.024)

2. Within .196 .278 .213

(.011) (.009) (.008)

3. Average of Individual .194 .273 .219

(.026) (.022) (.019)

4. ML Random Effects .212 .291 .225

(.022) (.019) (.016)

First Difference

5. Average of Individual .232 .161 .283

8's (.020) (.015) (.015)

6. ML Random Effects .246 .168 .300

(.019) (.014) (.014)

Lines 1 and 2 from Table 1, lines 3-6 from Table 3. Standard errors for
lines 3 and 5 computed from the observed variance across firms divided by
N—i.
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