
NBER WORKING PAPER SERIES

OUTPUT AND ATTRIBUTE-BASED CARBON REGULATION UNDER UNCERTAINTY

Ryan Kellogg

Working Paper 26172
http://www.nber.org/papers/w26172

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2019

This paper has benefited from comments and suggestions from conference and seminar audiences 
at the AERE Summer Conference, Columbia, the Energy Institute at Haas Energy Camp, the 
Maryland Workshop on Environmental Taxes, Stanford, and UCSD. I thank Benjamin Leard, 
Joshua Linn, and Virginia McConnell for kindly sharing their data on U.S. fleet-average vehicle 
attributes. The views expressed herein are those of the author and do not necessarily reflect the 
views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2019 by Ryan Kellogg. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



Output and Attribute-Based Carbon Regulation Under Uncertainty
Ryan Kellogg
NBER Working Paper No. 26172
August 2019
JEL No. D81,Q54,Q58

ABSTRACT

Output-based carbon regulations—such as fuel economy standards and the rate-based standards 
in the Clean Power Plan—create well-known incentives to inefficiently increase output. Similar 
distortions are created by attribute-based regulations. This paper demonstrates that, despite these 
distortions, output and attribute-based standards can always yield greater expected welfare than 
“flat” emission standards given uncertainty in demand for output (or attributes), assuming locally 
constant marginal damages. For fuel economy standards, the welfare-maximizing amount of 
attribute or mileage-basing is likely small relative to current policy. For the electricity sector, 
however, an intensity standard may yield greater expected welfare than a flat standard.

Ryan Kellogg
University of Chicago
Harris School of Public Policy
1307 East 60th Street
Chicago, IL  60637
and NBER
kelloggr@uchicago.edu

A data appendix is available at 
http://www.nber.org/data-appendix/w26172

A repository with all code and a link to all data is available at 
https://github.com/kelloggrk/Public_OutputBasedRegs



1 Introduction

Environmental economists have long extolled the virtues of Pigouvian taxation or cap-

and-trade pollution permit systems as efficient public policies for correcting environmen-

tal externalities, and especially for addressing carbon emissions. While such programs

have begun to appear—the European Union’s and California’s cap-and-trade programs and

British Columbia’s carbon tax are notable examples—many policies in practice deviate from

economists’ favorite prescription. In the United States, carbon regulations frequently ex-

press the maximum permissible quantity of emissions (or minimum permissible quantity of a

“clean” input) as a function of the output of an underlying good or of attributes such as the

good’s size or weight. For instance, state-level renewable portfolio standards mandate that

renewable electricity generation meet a minimum share of total generation (or capacity), fuel

economy standards mandate a maximum amount of fuel use in proportion to vehicle miles

traveled, and the Obama Clean Power Plan allowed states to regulate CO2 emissions as a

proportion of total electricity generation.

Output-based standards generate well-understood incentives to distort output, as first

recognized in Kwoka (1983). Holland, Hughes, and Knittel (2009) makes this point clearly in

the context of California’s Low Carbon Fuel Standard, an intensity standard on the embodied

carbon in transportation fuel that creates an incentive to produce more fuel overall, since

doing so slackens the constraint on CO2 emissions. This intuition applies broadly. Fuel

economy standards, for example, lead to the well-known “rebound effect” that causes an

increase in vehicle miles traveled (see Gillingham (forthcoming) for a survey of the recent

literature on rebound). As for settings where the emissions standard is a function of goods’

attributes rather than output, Ito and Sallee (2018) shows that basing fuel economy standards

on vehicles’ weight or footprint results in inefficiently over-sized vehicles.

In this paper, I ask whether output or attribute-based emissions regulation can actually

be economically advantageous relative to a “flat” emissions standard in the presence of

uncertainty about future abatement costs. The intuition is straightforward. Under cap-and-
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trade, the quantity of emissions is fixed so that shocks, whether to demand or supply for

the underlying good, or to abatement cost itself, cause fluctuations in marginal abatement

cost. Assuming that the marginal damage from carbon emissions is locally constant—a

reasonable assumption for a global stock pollutant like CO2 (Newell and Pizer 2003)—this

variation reduces welfare relative to the first-best, following the arguments from Weitzman

(1974). Output or attribute-based regulations can dampen these marginal abatement cost

fluctuations and their associated welfare losses because emissions are allowed to vary as

shocks occur.1

Can the flexibility benefits from output or attribute-based standards outweigh the welfare

losses from the distortions that they impose? To the best of my knowledge, this question

has not been addressed despite the ubiquity of these policies. Holland, Hughes, and Knittel

(2009) briefly notes that intensity standards may yield welfare benefits in an uncertain envi-

ronment, but because the model in that paper is deterministic it does not explore this point

in depth. Similarly, Anderson and Sallee (2016) and Ito and Sallee (2018) raise but do not

answer the question of whether attribute-based fuel economy standards are advantageous

relative to a non-attribute-based standard in the presence of uncertainty.

I begin by building a partial equilibrium model in which there is a single good, the

production or consumption of which is associated with CO2 emissions. CO2 emissions have

a constant external marginal cost as well as private costs and benefits (e.g., increases in

emissions may be associated with larger fuel costs and lower expenditures on energy-efficient

capital). Consumers and producers in equilibrium choose both the emissions level and either

the good’s quantity or the value of one of its attributes. The model can therefore address

emissions standards that are a function of output (like the Low Carbon Fuel Standard)

and standards that are a function of an attribute (like footprint-based U.S. fuel economy

standards). Thus, output and attribute-based standards are in fact conceptually equivalent,

a point that has gone unnoticed in prior work.

1Compliance flexibility was, in fact, one of the justifications offered for the U.S. footprint-based fuel
economy standards. See, for instance, Lutsey (2015).
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Agents’ demand for output and emissions in the model is affected by two exogenous

shocks that are uncertain when the regulator sets its policy. First, there may be direct

shocks to marginal abatement cost—agents’ willingness to pay for emissions reductions—

holding output (or attributes) fixed. Fuel prices are perhaps the most salient example of

this form of uncertainty. Second, there may be shocks to the marginal value of the good’s

output or attribute, holding emissions fixed. For instance, income shocks may lead agents

to want to consume more electricity, more miles traveled, or larger vehicles. These shocks

lead indirectly to uncertainty about marginal abatement cost, since marginal abatement cost

typically increases with output, holding emissions fixed.

Under a flat emissions standard, either form of uncertainty leads to an expected welfare

loss relative to the first-best, since marginal abatement cost diverges from marginal dam-

age. The first-best welfare outcome can be achieved by a Pigouvian tax or by an emissions

standard that is indexed directly to the exogenous source of uncertainty (gasoline prices,

for example, as shown in Kellogg (2018)).2 But what happens to expected welfare if the

emissions standard is instead a function of the endogenously-determined output or attribute

of the good, as is common in current policy?

I show that the welfare properties of output or attribute-based standards depend crucially

on which type of uncertainty is present. If uncertainty is due only to shocks to marginal

abatement cost, basing an emissions standard to the good’s output or attributes always

strictly reduces welfare relative to a flat standard. This result is a generalization of the

finding in Kellogg (2018) that an attribute-based fuel economy standard strictly reduces

welfare when the only source of uncertainty is the future price of gasoline. The intuition

for this result stems from the fact that both the welfare cost of the distortion to the good’s

output or attribute and the welfare benefit from increased flexibility are second-order. I

show that the former effect dominates.

2Pizer and Prest (2016) shows that the first-best outcome can also potentially be achieved using a non-
indexed emissions standard with retroactive quantity updating and banking and borrowing provisions that
extend beyond the policy revision horizon.
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When there are shocks to the marginal value of output, however, expected welfare can

always be strictly increased by at least a small amount of output-basing (the same argument

holds for attributes). This result is driven by the fact that the flexibility benefits of an

output-based standard are now first-order, while the welfare costs of the induced distortions

remain second-order. I show that the optimal amount of output-basing increases with: (1)

uncertainty in future output (relative to the magnitude of the unpriced externality); (2) the

extent to which emissions are affected by output shocks in the absence of regulation; and (3)

the inelasticity of output with respect to the good’s cost. It is, moreover, possible that an

intensity standard—an emissions standard that is a linear rather than merely affine function

of output—yields greater expected welfare than a flat standard.

Is this possibility result important in practice? I quantitatively evaluate the welfare ef-

fects of output and attribute-standards by calibrating the model to three policy settings:

(1) an attribute-based fuel economy standard (holding miles traveled fixed); (2) a fuel econ-

omy standard with endogenous miles traveled (holding vehicle attributes fixed); and (3) an

output-based CO2 standard for electric generation. In each case, I calibrate the model using

estimates from previous studies, and I estimate uncertainty in the net demand for output

and attributes using their historic volatility.

I find that, even with generous parameter assumptions and estimates of uncertainty

in the demand for vehicle size, the U.S. footprint-based fuel economy standard yields lower

expected welfare than a “flat” non-attribute based standard, and that the welfare-maximizing

footprint-based standard is nearly flat. Similarly, when I treat miles driven as endogenous,

I find that a regulation imposing a ceiling on total gasoline consumption yields greater

expected welfare than a fuel economy standard. These results are mostly driven by the

fact that uncertainty about the future demand for miles traveled, and especially about the

demand for vehicle size, is fairly small.

In contrast, I find that the welfare-maximizing emissions standard for the U.S. electricity

market is substantially output-based. Depending on parameter inputs, an intensity standard
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may even deliver greater expected welfare than a flat standard. This result is driven by the

large uncertainty about the future demand for electric power and by the fact that emissions

vary substantially with output shocks. These industry features are also documented in

Borenstein et al. (forthcoming), which finds substantial uncertainty in the future business-

as-usual emissions path for California’s electricity sector.

My result that output and attribute-based standards can increase expected welfare re-

lates to other work that has raised normative justifications for intensity standards. Holland

(2012) and Fowlie, Reguant, and Ryan (2016), for instance, show that in the presence of

market power or unregulated emissions in substitute sectors, intensity standards can welfare-

dominate a flat standard (or a Pigouvian tax), since the implied subsidy to output mitigates

the pre-existing market distortions. This paper can be viewed as an extension of this second-

best logic to settings where flat standards (though not Pigouvian taxes) fail to achieve the

first-best due to uncertainty in the economic environment.

This paper also relates to previous research that has studied intensity targets. Ellerman

and Wing (2003), Quirion (2005), Newell and Pizer (2008), Heutel (2012), and Zhao (2018)

consider the consequences of indexing aggregate CO2 emission limits to GDP and conclude

that indexing can improve expected welfare relative to a non-indexed policy.3 This literature,

unlike the modeling framework I develop here, models intensity targets such that they do

not generate output distortions. Zhao (2018), for instance, models a policy that adjusts

an aggregate emissions cap each year in response to GDP shocks but is implemented as

a standard cap-and-trade program, so that firms do not have an incentive to distort their

output. Such a policy would dominate the distortion-inducing regulations that I model here.

In practice, however, emissions standards are overwhelmingly indexed to quantities and

attributes that are manipulable by firms or consumers rather than to exogenous variables

such as GDP or fuel prices. Renewable portfolio standards, energy efficiency standards, fuel

3Indexed regulation is not always superior to non-indexed regulation in these papers because they model
either an upward-sloping marginal damage function (appropriate for local pollutants or for global, long-run
CO2 regulation) or noise in GDP measurements that is not associated with emissions.
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economy standards, the Clean Power Plan, and California’s Low Carbon Fuel Standard all

generate incentives to distort output or goods’ attributes.

The paper proceeds as follows. Section 2 introduces the modeling framework, and then

section 3 delivers the main theoretical results of the paper: output or attribute-based emis-

sions standards never increase expected welfare when only the marginal abatement cost is

uncertain, but they do improve welfare relative to a “flat” standard when the marginal value

of output (or an attribute) is uncertain. Section 4 examines the quantitative implications of

this result in three policy applications. Section 5 concludes.

2 Model setup

This section introduces the model that I use throughout the paper. The model is similar

to that in my previous work on fuel economy and gasoline price uncertainty (Kellogg 2018).

Because the main objective of the model is to distill intuition, I abstract away from other

potential market failures such as market power, emissions leakage, or incomplete information.

The model considers a single carbon-emitting good that is supplied by competitive firms

and demanded by price-taking, fully-informed consumers. In what follows, I frequently refer

to firms and consumers collectively as “agents”. The exposition below is framed in terms of

agents’ choices over the good’s quantity, but with a simple re-labeling (replace every “Q”

with an “A”), the model could instead apply to choices over one of the good’s attributes.

2.1 Private agents’ supply, demand, and equilibrium

The good’s overall output (and consumption) is given by Q, and CO2 emissions are denoted

by E. Agents’ choices of Q and E are affected by two additional variables: η and F . η

denotes factors that shift preferences for (or costs of) additional output Q, and F denotes

factors that affect the private costs of additional emissions E.

The model is designed to be as general as possible regarding the specific objects rep-
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resented by Q, E, η, and F . But to briefly fix ideas, the three applications considered in

section 4 will use them to represent:

1. Attribute-based fuel economy standards: Q denotes the average footprint of

vehicles sold, E denotes the average fuel economy of vehicles sold, η represents taste

or income shocks that affect the marginal value of footprint, and F denotes the price

of fuel. Miles traveled are fixed.

2. Fuel economy standards with endogenous miles traveled: Q denotes average

lifetime miles traveled per vehicle, E denotes lifetime average gasoline use per vehicle,

η represents taste or income shocks that affect the marginal value of driving, and F

denotes the price of fuel. Vehicle attributes are fixed.

3. Electricity generation: Q denotes total electricity consumption, E denotes total

CO2 emissions, η represents taste or income shocks that affect the marginal value

of electricity, and F denotes the relative price of high-emission versus low-emission

generation fuels.

Similar to Kellogg (2018), I posit a private net benefits function B(Q,E, η, F ) that cap-

tures the difference between consumers’ utility (not including any externalities) and firms’

production cost. I assume that B(Q,E, η, F ) is twice continuously differentiable and, in

the spirit of Weitzman (1974), that it can be well-approximated by a second-order Taylor

expansion. This assumption substantially enhances the analytic tractability of the model,

and I maintain it throughout the paper. I show in appendix B that B(Q,E, η, F ) can be

micro-founded as a summation of individual agents’ private benefit functions, and that it will

be a sufficient statistic for utilitarian total private welfare under the regulations I consider

given: (1) restrictions on heterogeneity in agents’ valuations of Q and E; (2) inclusion of

compliance credit trading in any emissions standard; and (3) equal and constant marginal

utility of income (and welfare weights) across all agents.4

4The last of these restrictions rules out distributional preferences as a rationale for output or attribute-
based policies.
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I assume that there are diminishing net returns to both Q and E so that, letting BQQ

and BEE represent the second derivatives of the net benefit function, BQQ < 0 and BEE < 0.

For example, consumers receive declining marginal utility from miles driven, and reducing

vehicles’ fuel use per mile becomes increasingly costly as vehicles become more and more

fuel efficient. I also assume that the cross-partial BQE ≥ 0 to reflect the fact that in most

applications, reducing emissions is more costly when Q is large.

I define η and F so that BQη > 0, BQF = 0, BEη = 0, and BEF < 0. η should be

thought of as an income or preference shock that affects demand for Q, though it could also

represent a marginal production cost shifter. F should be thought of as the price (= marginal

cost) of carbon-intensive fuel, where increased fuel prices decrease the net marginal benefit

from emissions. It could also, in principle, represent the state of firms’ emissions control

technology. The restriction that F does not directly affect the demand for Q is consistent

with an assumption that consumers have quasilinear utility in fuel expenditures.5

Absent regulation, agents in equilibrium will choose Q and E so that the private first-

order conditions (FOCs) are satisfied: UQ(Q,E, η, F ) = 0 and UE(Q,E, η, F ) = 0. In

addition to the assumptions above, sufficient conditions for an interior equilibrium are: (1)

BQ(0, E, η, F ) > 0 and BE(Q, 0, η, F ) > 0 (i.e., consumers’ marginal utilities of Q and E

at zero are strictly greater than firms’ marginal costs); and (2) satisfaction of the second-

order condition (SOC) BQQBEE−B2
QE > 0. In addition, application of the implicit function

theorem yields the comparative statics dQ/dη > 0, dQ/dF ≤ 0, dE/dη ≥ 0, and dE/dF < 0,

with all inequalities strict iff BQE > 0.6

5The quasilinearity assumption is common in empirical vehicle fuel economy choice models, such as Busse,
Knittel, and Zettelmeyer (2013), Allcott and Wozny (2014), and Sallee, West, and Fan (2016).

6Formulas for these derivatives are derived and presented in appendix A.
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2.2 The externality and regulatory responses

The total external cost of emissions is given by φE, so that marginal damage is equal to

φ, a constant that is proportional to the social cost of carbon.7 The full-information social

planner’s problem is then given by:

max
Q,E

B(Q,E, η, F )− φE (1)

The planner’s FOCs are given by BQ(Q,E, η, F ) = 0 and BE(Q,E, η, F ) = φ,8 and the

SOC is identical to that in the private agents’ problem. Intuitively, the planner’s solution

involves a lower E than the private optimum, and then conditional on the choice of E the

planner chooses the same Q as private agents.

I model the regulator’s problem in two stages. In the first stage, the regulator must

commit to a policy without knowing what the realized values of η and F will be in the second

stage (the parameters governing the benefits function are, however, common knowledge).

V (η) and W (F ) denote the regulator’s stage 1 rational beliefs about the distributions of

η and F , which have support on [ηL, ηH ] and [FL, FH ], respectively. I denote the density

functions by v(η) and w(F ), and I denote the expected values of η and F by η̄ and F̄ . Then

in stage 2 agents choose Q and E given the policy and the realized η and F . I model stage 2

as a single compliance period, though it would be straightforward to the extend the model

to multiple compliance periods, each with a different realization of η and F .

7Per Weitzman (1974), and as in Kellogg (2018), the results of the paper are unchanged if φ is defined as
the expected value of uncertain marginal damages, so long as the stochastic component of marginal damage
is uncorrelated with η or F . In this case, what the paper describes as “first-best” is first-best subject to
incomplete information about marginal damage.

8I assume that BE(Q, 0, η, F ) > φ, so that the planner’s problem has an interior solution.
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3 When do output and attribute-based standards im-

prove expected welfare?

It is easy to show that a Pigouvian tax τ on emissions E achieves the full-information first-

best, since in that case the agents’ welfare maximization problem is identical to that of

the social planner. What if a tax policy is not available, and the regulator must instead

use an emissions standard? This section considers the welfare effects of an output-based

standard, in which emissions E are constrained to lie below a function µ(Q) of output. I

focus attention on affine output-based standards µ(Q) = µ0 + γQ, which encompass “flat”

standards whenever γ = 0 and intensity standards whenever µ0 = 0 and γ > 0.

What are the welfare-maximizing levels of µ0 and γ? In particular, is the optimal reg-

ulation output-based, so that γ > 0? I first show that if there is only uncertainty over F ,

then optimal regulation requires γ = 0. The argument follows that in Kellogg (2018) for

why attribute-based fuel economy standards are never optimal in the face of gasoline price

uncertainty. The heart of this section of the paper then considers regulation when there is

uncertainty over η. I show that the welfare-maximizing value of γ is generically non-zero

and will be strictly greater than zero unless η and F have a large positive correlation.

3.1 Optimal standards under uncertainty in F

Suppose that η is fixed and known by the regulator in period 1, so that there is no uncertainty

in the marginal value of Q (I henceforth suppress η in the notation for the remainder of this

subsection). What are the welfare-maximizing regulatory parameters µ0 and γ?9 It is useful

to begin by building intuition for agents’ choices of Q and E in the absence of regulation.

Appendix A provides formal comparative statics for how Q and E vary with F , and these

relationships are illustrated by the upward-sloping line in Q-E space in figure 1, panel (a).

9This subsection closely follows section 6 in Kellogg (2018), replacing a from that paper with Q, and
replacing G with F .
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Intuitively, both output and emissions decrease as F rises from FL to FH .10

At the social optimum, agents internalize the externality φ. The effects of doing so on Q

and E are equivalent to an increase in F , so the socially optimal Q and E, for a given value

of F , are simply given by a southwestward shift away from the agents’ preferred Q and E

along the choice line in figure 1, panel (a).

Figure 1, panel (b) imposes a “flat” non-output-based standard that is optimally set

at µ0 = µ∗ and binds whenever F ≤ F̂ (µ∗). Following Kellogg (2018), the optimality of

µ∗ implies that it satisfies the FOC that its marginal compliance cost, conditional on the

standard binding, equals marginal external damage. Formally, µ∗ satisfies:

1

W (F̂ (µ∗))

∫ F̂ (µ∗)

FL

BE(Q(µ∗, F ), µ∗, F )w(F )dF = φ. (2)

Note that when the flat µ∗ standard binds, agents’ choice of Q is always given by Q∗, as

shown in figure 1, panel (b), regardless of the realization of F .11 Equivalently, the level set

of agents’ private welfare B(Q,E, F ) that corresponds to agents’ optimal choice of Q and E

when constrained by the standard always has a point of tangency at (Q∗, µ∗) for any F < F̂ .

Panels (c) and (d) of figure 1 illustrate agents’ choices under an output-based standard

that rotates the flat µ∗ standard around the point (Q∗, µ∗). When γ > 0, agents’ choices

of Q and E now vary with F when the standard binds, since increasing Q allows agents to

increase E. The covariance between Q and F is proportional to γ (see appendix A for formal

comparative statics), so that little variation in Q and E is induced when γ is small (panel

(c) of figure 1), but variation in Q and E is substantial when γ is large (panel (d)).

10Q and E are affine in F under the second-order Taylor expansion assumption from section 2.1.
11This result follows from the construction that BQF = 0.
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Figure 1: Agents’ choices, social optima, and regulations under uncertainty in F

(a) Agents’ unrestricted choices and social optima
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(d) Heavily output-based regulation
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Note: Q denotes the good’s output (or an attribute), and E denotes emissions. When unconstrained by

regulation, agents’ choices lie on the thin upward-sloping black line between the points XL and XH , where a

lower realized fuel price F leads to higher choices of Q and E. The socially optimal set of outcomes is given

by a southwestward shift along this line, so that socially optimal choices lie between X∗
L and X∗

H . FL and FH

denote the lowest and highest possible fuel prices, respectively. The output-based standard µ(Q) = µ0 + γQ

binds only for fuel prices less than F̂ (µ0, γ). See text for details.

The optimal values for µ0 and γ come from solving the regulator’s problem:

max
µ0,γ

∫ F̂ (µ0,γ)

FL

(B(Q(µ0, γ, F ), E(µ0, γ, F ), F )− φE(µ0, γ, F ))w(F )dF

+

∫ FH

F̂ (µ0,γ)

(B(Q(F ), E(F ), F )− φE(F ))w(F )dF. (3)
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The FOCs are given by (4) and (5) below, where the notation suppresses the dependence

of BQ, BE, dQ/dµ0, dQ/dγ, dE/dµ0, and dE/dγ on µ0, γ, and F :

FOCµ0 :

∫ F̂ (µ0,γ)

FL

(
BQ

dQ

dµ0

+BE
dE

dµ0

− φ dE
dµ0

)
w(F )dF = 0; (4)

FOCγ :

∫ F̂ (µ0,γ)

FL

(
BQ

dQ

dγ
+BE

dE

dγ
− φdE

dγ

)
w(F )dF = 0. (5)

I show in appendix C that FOCs (4) and (5) reduce to:

FOCµ0 :
−(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

∫ F̂ (µ0,γ)

FL

(
φ+BEF (F̂ (µ0, γ)− F )

)
w(F )dF = 0; (6)

FOCγ :
γW (F̂ )(BQEγ +BQQ)

(BEEγ2 + 2BQEγ +BQQ)2
(φ2 −B2

EFσ
2
Fc) = 0, (7)

where σ2
Fc is the variance of F conditional on the standard binding.12

FOCµ0 implies that the optimal value of µ0 should be such that the fuel price F̂ at which

the standard just binds is invariant to γ. Thus, the standards in panels (b), (c), and (d) of

figure 1 all intersect agents’ unrestricted choice line at the same “pivot point” (Q∗, µ∗).

FOCγ is solved by setting γ = 0 so that the optimal standard, when there is only

uncertainty in F , is flat rather than output-based.13 The intuition for this result flows from

the fact that output-based regulation’s welfare effects stemming from both the distortion to

Q and the flexibility in E are second-order in γ. The argument for why the distortion to Q is

second-order is standard: output-based regulation’s implicit subsidy to Q creates a Harberger

deadweight loss triangle (Ito and Sallee 2018). The flexibility benefit is also second-order

because: (1) the response of Q to shocks to F is proportional to γ (as illustrated in figure 1,

panels (c) and (d)); and (2) changes in E are given by the product of γ with changes in Q.

Thus, dE/dF is proportional to γ2 (also see equation (29) in appendix A).

12That is, σ2
Fc ≡ Var(F |F ≤ F̂ (µ∗)).

13γ = −BQQ/BQE is also a solution to FOCγ . Kellogg (2018) shows, however, that only the γ = 0 solution
satisfies the SOC, so long as µ0 is chosen optimally (guaranteeing that φ2 > B2

EFσ
2
Fc).
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3.2 Optimal standards under uncertainty in η

I now consider optimal regulation under uncertainty in the marginal value of Q, denoted

by η. This subsection assumes that F is fixed and known by the regulator; section 3.3 will

consider uncertainty in both η and F .

As with subsection 3.1, it is helpful to begin here by building intuition for agents’ equi-

librium choices of Q and E in the absence of regulation (the formal comparative statics are

ensconced in appendix A). These choices are illustrated in figure 2, panel (a). Both Q and

E increase with η, so that the line denoting agents’ private choices is upward sloping in Q-E

space. However, this line has a flatter slope than was the case under uncertainty in F (figure

1); this result is a consequence of the fact that the uncertainty now directly affects Q rather

than E.14

Under uncertainty in F , internalization of the externality φ was isomorphic to an increase

in F . This relationship does not hold for η, so that the line denoting socially optimal Q and

E now sits below rather coincident with the line denoting agents’ unconstrained choices, as

shown in figure 2, panel (a).

Panel (b) of figure 2 illustrates an optimal flat standard, µ∗. The FOC that governs this

standard, given by equation (8) below, is similar to that of equation (2), which applied when

F was uncertain. η̂ denotes the value of η at which the standard just binds:

1

1− V (η̂(µ∗))

∫ ηH

η̂(µ∗)

BE(Q(µ∗, η), µ∗, η)v(η)dη = φ. (8)

In panel (b) of figure 1, agents’ choice of Q was fixed at Q∗ whenever the standard bound,

regardless of the realization of F . In figure 2, panel (b), however, Q varies with η when the

standard is binding. Intuitively, increases in η (the marginal value of Q) lead agents to

increase Q in equilibrium, holding E fixed at µ∗. This variation in Q is important because

14The slope dE/dQ induced by variation in η is −BQE/BEE , while the slope induced by variation in F
is −BQQ/BQE . The former slope is smaller assuming that the SOC for agents’ interior private optimum,
BQQBEE −B2

QE > 0, holds.
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Figure 2: Agents’ choices, social optima, and regulations under uncertainty in η

(a) Agents’ unrestricted choices and social optima
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(b) Optimal flat standard
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(c) Output-based regulation
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(d) Intensity standard
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Note: Q denotes the good’s output (or an attribute), and E denotes emissions. When unconstrained by

regulation, agents’ choices lie on the thin upward-sloping black line between the points XL and XH , where

a higher realization of η leads to higher choices of Q and E. The socially optimal set of outcomes is given

by the lower, parallel green line, so that socially optimal choices lie between X∗
L and X∗

H . ηL and ηH

denote the lowest and highest possible realized net demands for Q, respectively. The output-based standard

µ(Q) = µ0 + γQ binds only for values of η greater than η̂(µ0, γ). See text for details.

it implies that under output-based regulation, variation in E will be first-order rather than

second-order in γ. This fact gives rise to the main result of this section of the paper: under

uncertainty in η, the optimal value of γ strictly exceeds zero.

The regulator’s FOCs for µ0 and γ are given by equations (9) and (10) (suppressing the
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dependence of BQ, BE, dQ/dµ0, dQ/dγ, dE/dµ0, and dE/dγ on µ0, γ, and η):

FOCµ0 :

∫ ηH

η̂(µ0,γ)

(
BQ

dQ

dµ0

+BE
dE

dµ0

− φ dE
dµ0

)
v(η)dη = 0; (9)

FOCγ :

∫ ηH

η̂(µ0,γ)

(
BQ

dQ

dγ
+BE

dE

dγ
− φdE

dγ

)
v(η)dη = 0. (10)

I show in appendix D that FOCs (9) and (10) reduce to equations (11) and (12) below,

where σ2
ηc denotes the variance of η conditional on the standard binding:

FOCµ0 :
−(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

∫ ηH

η̂(µ0,γ)

(
BQE +BEEγ

BQEγ +BQQ

BQη(η − η̂(µ0, γ)) + φ

)
v(η)dη = 0;

(11)

FOCγ :
(1− V (η̂(µ0, γ)))(BQEγ +BQQ)φ2

(BEEγ2 + 2BQEγ +BQQ)2

[
BQE +BEEγ

BQEγ +BQQ

·
B2
Qησ

2
ηc

φ2
+ γ

]
= 0. (12)

FOCγ’s solution requires a unique γ ∈ (0,−BQE/BEE).15 The optimal standard is there-

fore output-based, though the optimal slope γ∗ is always strictly less than the slope of the

line denoting agents’ unconstrained choices in (Q,E) space. The intuition that the flexibility

benefits of output-based regulation are now first-order is expressed formally by the term that

is not proportional to γ inside the brackets in equation (12).

An optimal output-based standard is depicted in panel (c) of figure 2. Visually, this

output-based standard does a better job of of minimizing the average (over v(η)) distance

between agents’ induced choices and the social optima than does the flat standard in panel

(b). Also, this standard intersects agents’ unconstrained choice line at a lower point than does

the flat standard. This intersection is governed by FOCµ0 (equation (11)), which requires

that η̂ decrease as γ increases.

15For γ ∈ [0,−BQE/BEE ], the term in FOC (12) to the left of the brackets is strictly negative due to
the BQEγ + BQQ term and to agents’ private SOC, BQQBEE − B2

QE > 0. Inside the brackets, (BQE +
BEEγ)/(BQEγ + BQQ) is strictly negative on [0,−BQE/BEE) and approaches zero as γ → −BQE/BEE .
Thus, the left hand side of FOCγ is strictly positive at γ = 0 and strictly negative at γ = −BQE/BEE ,
implying an interior optimum. Furthermore, the optimal γ is unique, since the derivative of the term in
brackets with respect to γ is strictly positive for γ ∈ (0,−BQE/BEE).
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Figure 2 and equation (12) together also provide guidance on when a large degree of

output-basing (i.e., a large value of γ) will be welfare-maximizing. First, the optimal γ, which

I denote γ∗, increases with the ratio of the variance of output (driven by the B2
Qησ

2
ηc term) to

the externality φ. Intuitively, output-basing is valuable when the uncertainty faced by the

regulator is economically large. Second, γ∗ is large when the rate at which unconstrained

agents vary E relative to Q in response to shocks to η (i.e., the slope −BQE/BEE) is large,

since in this case output shocks can generate large changes in marginal abatement cost under

a flat standard. Third, γ∗ increases with the insensitivity of agents’ choice of Q to changes

in the cost of Q (conditional on the variance of output), since an inelastic net demand for Q

implies small welfare losses from the distortion to Q induced by output-based regulation.16

Finally, it is possible that γ∗ is so large that an intensity standard, which fixes µ0 = 0,

yields greater expected welfare than does a flat standard. For instance, figure 2, panel (d)

depicts an intensity standard that at least visually yields choices of Q and E that are closer

to the first-best than does a flat standard.

3.3 Uncertainty in both η and F

Finally, consider optimal output-basing when the regulator faces uncertainty in both η and

F . I show in appendix E that the sign of γ∗ is given by equation (13), assuming that the

uniqueness of the solution to the regulator’s FOCs continues to hold:

sign γ∗ = sign

(
Ec[(η − Ec[η])2]− BQQBEF

BQEBQη

Ec[(F − F̂ (Ec[η]))(η − Ec[η])]

)
, (13)

where F̂ (η) denotes the fuel price at which the standard just binds, given η, and Ec

denotes an expectation conditional on the standard binding.

16To see this last result, note that the variance of output Q under the standard is equal to
B2
Qησ

2
ηc/(BEEγ

2+2BQEγ+BQQ)2, using equation (26) from appendix A. The magnitude of the response ofQ

to shocks to the cost of (or net demand for) Q decreases with the magnitude of BEEγ
2+2BQEγ+BQQ. Multi-

ply and divide the left term in brackets in equation (12) by (BEEγ
2+2BQEγ+BQQ)2 to see that, holding the

variance of output fixed, the welfare-maximizing γ increases with the magnitude of BEEγ
2 + 2BQEγ+BQQ.
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If F is uncorrelated with η, then equation (13) indicates that sign γ∗ > 0, as was the case

in equation (12) with no uncertainty in F . If the covariance between η and F is positive

and sufficiently large relative to the variance of η, however, equation (13) shows that the

optimal value of γ may be zero or even negative. Moving in the other direction, a negative

correlation between η and F implies an increase in γ∗ relative to the case when they are

uncorrelated.

The intuition behind these results flows from the fact that when F is correlated with η, an

output-based standard provides a means for the regulator to index the standard to F . That

is, variation in output becomes a proxy for variation in F , so that an output-based standard

adds value by dampening variation in marginal abatement cost induced by shocks to F . For

instance, when η and F are negatively correlated, positive shocks to η are associated with

low fuel prices and therefore high marginal abatement costs. Expected welfare is therefore

increased by allowing agents to emit more pollution when there is high demand for output,

so that the optimal standard is heavily output-based. The reverse intuition holds when η and

F are positively correlated. These results are related to the fact that, in general, indexing

the emissions standard to any variable that is correlated with F (or to F itself, as discussed

in Kellogg (2018)) will improve expected welfare.

4 Output and attribute-based standards in three set-

tings

Section 3 presented a model showing that output or attribute-based emissions standards

can increase expected welfare, relative to a flat standard, in the presence of uncertainty

about agents’ future marginal valuation of output (or attributes). This section evaluates the

quantitative importance of this result by calibrating the model to reflect three U.S. policy

settings: (1) an attribute-based fuel economy standard (holding vehicle miles traveled fixed);

(2) a fuel economy standard in the presence of endogenously-chosen miles traveled (holding
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Table 1: Interpretation of key variables in each application of the model

Application Q E η F

Footprint-based fuel Vehicle Gallons Marginal value of Gasoline
economy standards footprint (ft2) per 100 miles footprint ($/ft2) price ($/gal)

Fuel economy standard Lifetime 1000s of Lifetime gallons Marginal value of Gasoline
with endogenous miles traveled consumed per miles traveled price ($/gal)
miles traveled per vehicle vehicle ($/1000 miles)

Output-based CO2 Electricity CO2 emissions Marginal value of Negative of
regulation of generation (Mmtons/yr) electricity natural gas
electricity generation (TWh/yr) ($/TWh/yr) price ($/mmBtu)

Units: ft2 = square feet; gal = gallons; TWh/yr = Terawatt hours per year; Mmtons/yr = millions

of metric tons per year; mmBtu = millions of British Thermal Units.

vehicle attributes fixed); and (3) an output-based CO2 standard for electric generation.17

Table 1 summarizes the interpretation of the variables Q, E, η, and F in each application.

In each case, I use the model to evaluate the expected welfare obtained from both a flat

standard and an intensity standard, and I then compute the welfare-maximizing output or

attribute-based standard.

In all three settings, I apply the modeling framework from sections 2 and 3 directly,

abstracting away from heterogeneity or other institutional features, and maintaining the

second-order Taylor approximation for B(Q,E, η, F ). Consequently, the quantitative exer-

cises below should not be viewed as providing definitive answers but rather as providing

diagnostics for when heavily output or attribute-based standards might improve expected

welfare. These results can therefore guide future research that would more precisely model

the relevant agents and institutions in specific settings. In addition, the fidelity of these

exercises to the model helps to tightly link the results to the core intuition underlying the

model and to the comparative statics discussed at the end of section 3.2.

In each setting, I allow for uncertainty in both η and F , even though volatility in F

17Attribute-based fuel economy standards are properly modeled as an intensity standard (on fuel use as
a function of miles driven) that is in turn attribute-based. Modeling the dependence of a fuel use standard
on both miles driven and vehicle attributes simultaneously is beyond the scope of this paper; I therefore
model the mileage-based and footprint-based aspects of U.S. fuel economy standards one at a time rather
than jointly.
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cannot on its own motivate output or attribute-based standards. Incorporating uncertainty

in F does, however, highlight the substantial difference between the first-best outcome and

outcomes under emissions standards (output-based or not) when fuel price uncertainty is

large, as it is in all three applications.18 I assume that the correlation between η and F is

zero, so that the welfare effects of output-basing are driven solely by the intuition presented

in section 3.2 rather than by the possibility that shocks to output act as a proxy for shocks

to fuel prices, as discussed in section 3.3. I do so for three reasons. First, my empirical

estimates of the correlation between η and F are imprecise because only limited time series

data are available to measure fluctuations in η. Yet at the same time, I find that even

modest correlation between η and F greatly affects the optimal amount of output-basing,

since expected welfare can be substantially increased by indexing the standard to η when it is

correlated with F .19 Second, estimates using longer time series suggest that the correlation

between broad economic shocks—the primary driver of η—and fuel price shocks is small.

Anderson, Kellogg, and Salant (2018), for instance, finds that the CAPM beta for the price

of crude oil is only 0.05, using monthly data from 1983 to 2015. Third, in practice I am

not aware of any emissions standard that is indexed directly to fuel prices. Thus, it seems

appropriate to eliminate this potential motivation for output-based standards here.

In each of the three applications, quantifying welfare effects requires estimates of the

parameters governing B(Q,E, η, F ), the externality φ, the uncertainty in η and F faced by

the regulator, and Q̄ and Ē—the values of Q and E that would be chosen in the absence

of regulation at the expected values of η and F . To calibrate these values, I use estimates

18When I run the models with a non-stochastic and constant fuel price, the welfare rankings of flat versus
intensity standards and the optimal output-based slopes γ are qualitatively unchanged from those presented
below. The optimal slopes are 0.0081 gal/100mi/ft2, 0.68 gal/100mi, and 0.36 Mmtons CO2/TWh in the
footprint, miles traveled, and electricity applications, respectively. The expected welfare associated with
these optimal slopes is substantially larger, however, than what is presented below: $68/vehicle, $68/vehicle,
and $2.8 billion/year.

19For instance, to estimate the correlation between η and F for the footprint-based standards application
in section 4.1, there exist only 14 observations of year-to-year first differences in footprints and the price
of gasoline. The estimated correlation coefficient is -0.34 but with a p-value of 0.23 (assuming spherical
disturbances). However, this correlation is large enough in magnitude to imply that a fuel economy standard
that is linear (not just affine) in footprint yields greater expected welfare than a flat standard, a result
markedly different than that given in figure 3 below.
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from previous studies and my own estimates of the historic volatility of attributes, output,

and fuel prices. Where there are a range of plausible parameters that could be used, I select

parameters that favor more output or attribute-basing, since I am interested in assessing

whether substantially output or attribute-based standards might plausibly yield greater ex-

pected welfare than a flat standard. In particular, I will choose approaches that result in

large estimates of the long-run uncertainty in η.

4.1 Footprint-based fuel economy standards

I first consider U.S. footprint-based fuel economy standards, holding vehicle miles traveled

fixed. As shown in table 1, this model defines Q as vehicle footprint in square feet (ft2) and

E as vehicle fuel economy in gallons per 100 miles (gal/100mi). I measure private welfare

B(Q,E, η, F ) as $ per vehicle, normalized to zero at agents’ unconstrained choices at each

possible realization of η and F .

Table 2 presents the calibrated parameter values for this application. My estimate of

BQQ comes from Ito and Sallee (2018), which estimates this parameter using changes in the

weight of Japanese vehicles following changes in Japan’s weight-based fuel economy subsidies

in 2009 (I am not aware of any papers that estimate this parameter in the U.S. market). I

convert that paper’s estimate of BQQ in $ per kg2 to $ per ft2 using engineering estimates

from Whitefoot and Skerlos (2012).20 I obtain BEE from National Research Council (2015),

which estimates “pathways” by which fuel economy can be improved via sequential addition

of fuel-saving technology to a baseline vehicle.21 And I derive BQE from the fact that the

actual slope parameter γ for U.S. fuel economy regulations was drawn to match −BQE/BEE,

20Table 3, column (2) in Ito and Sallee (2018) provides an estimate of BQQ of -$0.230/kg2. Whitefoot
and Skerlos (2012) finds that a 1 log point increase in footprint is associated with an increase of 0.53 to 1.31
log points in weight, depending on specification. I roughly split the difference and assume that weight and
footprint are 1:1 in logs. Finally, data provided by Leard, Linn, and McConnell (2017) indicate that in 2012,
the average U.S. vehicle had a footprint of 56.9ft2 and weighed 3,666lb. Multiplying Ito and Sallee (2018)’s
-$0.230/kg2 by the square of this weight-to-footprint ratio yields the BQQ of -$197/ft4 in table 2.

21I follow the procedure discussed in Kellogg (2018) to derive BEE = −$1, 756 per (gallon/100 miles)2

from National Research Council (2015).
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Table 2: Calibrated parameters for U.S. footprint-based fuel economy standards

Parameter Value Main sources
BQQ -$197 / ft4 Ito and Sallee (2018), table 3, column (2)
BEE -$1756 / (gal/100mi)2 National Research Council (2015), tables 8.4a and 8.4b
BQE $77.9 / (gal·ft2/100mi) BEE times slope of U.S. footprint-based standard
BEF -115644 miles Discounted vehicle lifetime from Busse et al. (2013)
BQη 1 normalization
σF $0.35 / gal historic volatility of gasoline prices
ση $76.83 / ft2 historic volatility of vehicle footprints
φ $486 / (gal/100mi) Kellogg (2018) externality of $0.42/gal, converted to

vehicle lifetime using Busse et al. (2013)

the rate at which private agents increase E with Q.22

BEF in this application represents the (negative) lifetime discounted miles traveled for

new vehicles. I derive BEF = -115,644 miles using data from Busse, Knittel, and Zettelmeyer

(2013) on fleet-average scrappage probabilities and miles traveled for new vehicles, along with

a discount rate of 6.2% from Allcott and Wozny (2014).23

I capture uncertainty in η and F from the perspective of a regulator setting an emissions

standard that will apply for 10 years into the future. This approach is aligned with actual

U.S. fuel economy policy, as the standards set in 2012 will apply through at least 2021 and

possibly 2025 (see Kellogg (2018) for a discussion). I assume that η and F are normally

distributed, with the mean of F equal to the average retail gasoline price prevailing in 2012

of $3.69/gallon.24,25 The expected value of η is normalized to zero.

22The original footprint-based regulation (71 FR 17565) states on p.17596 that “the agency adds fuel
saving technologies to each manufacturer’s fleet until the incremental cost of improving its fuel economy
further just equals the incremental value of fuel savings and other benefits from doing so” for each vehicle
model, and then statistically fits a line to the resulting relationship between fuel use and footprint. This
slope from this line is exactly what is described by −BQE/BEE . The average slopes for 2017–2025 vehicles
in the final rule (77 FR 62623, p.62782) are 3.87g CO2 per ft2 for cars and 4.04g CO2 per ft2 for trucks.
Averaging these two values, applying the gasoline emissions factor of 8.91 kg CO2 per gallon (EIA 2011),
and multiplying by BEE yields the $77.9 / (gal·ft2/100mi) in table 2.

23I use the new vehicle data from Busse, Knittel, and Zettelmeyer (2013) that were originally sourced from
the National Highway Transportation Survey.

24I use the tax-inclusive all grades and all formulations retail gasoline price series from the EIA (available
at https://www.eia.gov/dnav/pet/pet pri gnd dcus nus a.htm), deflated by the Bureau of Labor Statistic’s
CPI for all urban consumers, all items less energy, not seasonally adjusted (series CUUR0000SA0LE), using
2012 as the base year.

25A no-change forecast assumption is consistent with results on the relative accuracy of no-change forecasts
of the long-run real price of oil (Alquist, Kilian, and Vigfusson 2013) and relates to evidence that consumers
hold no-change beliefs about future gasoline prices (Anderson, Kellogg, and Sallee 2013).
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To obtain an estimate of σF , I estimate, over the ten-year regulatory horizon, the volatil-

ity of the three-year moving average of historic monthly U.S. gasoline prices.26 I use the

moving average rather than the raw monthly data because automakers can typically only

adjust their vehicles’ fuel economy during a model “refresh”, and a complete refresh cycle

usually takes three or four years.27 For each month t ∈ [1, 120], I compute the historic

volatility of this moving average by taking the standard deviation of t-month differences in

the moving average.28 Volatility increases with the time horizon: the one-month volatility

is $0.02/gallon, while the ten-year volatility is $0.47/gallon. I set σF equal to the average

volatility across all horizons t ∈ [1, 120], yielding σF = $0.35/gallon.29

I identify ση using the fact that under a flat fuel economy standard, the standard deviation

of Q is equal to BQηση/BQQ (see equation (26) in appendix A). I therefore adopt the

normalization BQη = 1 and obtain an estimate of ση by estimating the volatility of vehicle

footprints, Q, over a ten-year horizon, using historic data on average U.S. vehicle footprints

from Leard, Linn, and McConnell (2017). Because these data are annual and only go back to

1996, it is not practical to estimate ση by taking long differences, as I did for σF .30 Instead, I

estimate one-year volatility in Q and then extrapolate that volatility over the ten-year policy

horizon under an assumption that η follows a random walk.31 This assumption will yield

larger estimates of volatility over long time horizons than would a model of mean-reversion.

Finally, I obtain ση by averaging volatility over the 10 years.

26The three-year moving average in each month t uses data from t and from the prior 35 months.
27Were I to instead use the raw monthly data, I would instead estimate σF = $0.65, in which case even

the optimally-set attribute-based standard would achieve a welfare gain of only $7 per vehicle. This optimal
standard is essentially flat, similar to the results below.

28I use differences from January, 2004—the first month for which a ten-year difference can be calculated—
through 2012.

29In principle, the calculations below of the optimal standards and their welfare outcomes should integrate
over welfare effects for each month in which the standard is applied, rather than be calculated from the
average volatility over this time. As in Kellogg (2018), I use the latter approach here because it is easier to
implement and because it more tightly connects to the model presented in sections 2 and 3.

30In addition, I only use data through 2010, since after that time fuel economy standards for cars became
attribute based and started increasing in stringency.

31Specifically, I take one-year differences in Q and obtain the one-year volatility of Q by estimating the
standard deviation of these differences. I then extrapolate this volatility for each policy year t, t ∈ [1, 10],
by multiplying by

√
t.
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To obtain φ, I begin with the externality of $0.42/gal used in Kellogg (2018), which

combines the social cost of carbon from Interagency Working Group (2013) with an estimate

of the foreign oil dependency externality from Parry, Wells, and Harrington (2007). I convert

this value to units of $ per (gal/100mi) by multiplying by −BEF .

Finally, I obtain Q̄ and Ē using: (1) the U.S. average footprint and fuel economy in 2012

from Leard, Linn, and McConnell (2017); and (2) data from Leard and McConnell (2017) on

the shadow value of the 2012 fuel economy constraint.32 I can then use the model to back

out the values of Q̄ and Ē.33

Given these inputs, figure 3 presents footprint, fuel economy, and welfare outcomes under

various forms of fuel economy regulation. The “x” denotes (Q̄, Ē), and the η and F arrows

in the top-left of the figure indicate the magnitude and direction of changes in Q and E

induced by a one standard deviation increase in η and F , respectively. The representation

of agents’ choices of Q and E when unconstrained by regulation now takes the form of an

ellipse rather than a line (as in figures 1 and 2), owing to the presence of uncertainty in

both η and F . The area encircled by the dashed black ellipse denotes agents’ unconstrained

choices given realizations of η and F that account for 95% of their joint probability mass.

The lower dashed green ellipse indicates socially optimal choices. With the expected welfare

of unregulated agents normalized to zero, the welfare gain from a Pigouvian tax on emissions

is $68 per vehicle.

The flat, solid black line (which is mostly hidden behind the red line) in figure 3 indicates

the optimal flat emissions standard. This standard binds somewhat more than half the time

(it is located slightly below (Q̄, Ē)) and captures welfare gains of $33 per vehicle, just 48%

of the gain under the social option. This shortfall is a consequence of the large uncertainty

in F , which results in substantial expected variation in marginal abatement costs when the

32Leard and McConnell (2017) use information on the price of tradeable fuel economy credits from Tesla
Motors’ 2013 SEC 10-K filing.

33Let Q0 and E0 denote the average 2012 footprint and fuel economy, and let φ0 denote the shadow
value of the actual 2012 fuel economy standard. Define D = −(BEEγ0 + BQE)/(BQEγ0 + BQQ). Then
Ē = E0 − φ0/(BEE +BQED), and Q̄ = Q0 + (Ē − E0)D.
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Figure 3: Fuel economy, vehicle footprints, and welfare under footprint-based fuel
economy standards
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text for details.

standard binds.

The optimal amount of attribute-basing is small: the optimal value of γ is 0.008 gallons

per 100 miles per ft2, equal to only 18% of the slope of the actual U.S. regulation. This

optimal attribute-based standard is given by the solid red line in figure 3. In addition, the

optimal intensity standard—represented by the dashed blue line—reduces welfare relative to

the flat standard (and has a slope 65% greater than the actual U.S. regulation).

The limited value of attribute-based standards in this application is a consequence of
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the small variance in η, the marginal value of vehicle footprint, relative to the magnitude

of the externality. As can be seen in figure 3, the variance of footprint Q when agents are

unconstrained is quite small in percentage terms (the scale of the horizontal axis in figure 3

visually exaggerates this variance).

4.2 Fuel economy standards with endogenous miles traveled

In this subsection, I fix vehicle attributes and instead let Q represent lifetime miles traveled

per vehicle. E now represents total lifetime gallons of gasoline consumed per vehicle, and

I continue to measure private welfare B(Q,E, η, F ) as $ per vehicle, normalized to zero for

agents’ unconstrained choices at each F and η.34

To calibrate the values of BQQ, BQE, and BEE, I first rewrite B(Q,E, η, F ) as a sum-

mation of objects that have empirical counterparts in the literature: the utility U(Q, η)

from miles traveled, fuel costs −EF , and the vehicle cost −C(E/Q). Thus, B(Q,E, η, F ) =

U(Q, η)− EF − C(E/Q).35 Taking derivatives then yields:36

BQQ = UQQ − C ′′E2Q−4 − 2C ′EQ−3 (14)

BQE = C ′′EQ−3 + C ′Q−2 (15)

BEE = −C ′′Q−2 (16)

UQQ relates directly to the elasticity of miles traveled with respect to the price of gasoline

F , holding fuel economy constant, since in that case dQ/dF = E/(QUQQ). I use an elasticity

34More precisely, B(Q,E, η, F ) denotes expected lifetime private welfare per vehicle at the time it is
purchased new, given a no-change forecast for future gasoline prices (Anderson, Kellogg, and Sallee 2013)
and demand for miles (η). Realized utility for each vehicle will be a function of realized shocks.

35This formulation for B(Q,E, η, F ) assumes that vehicle depreciation is entirely a function of time rather
than mileage. To the extent that depreciation is a function of miles driven (and consumers account for
depreciation when making driving choices), then a fuel economy policy behaves more like an emissions cap,
and in fact becomes equivalent to an emissions cap in the limit in which depreciation is solely a function of
mileage. I thank Mark Jacobsen for alerting me to this insight.

36I assume that B(Q,E, η, F ) is a second-order Taylor approximation local to the actual values of Q0 and
E0 for new U.S. vehicles in 2012. I use Q0 = 115, 644 miles, consistent with the value of −BEF from the
footprint-based regulation application in section 4.1. I calculate E0 as the product of Q0 with the 2012 U.S.
average fuel economy of 4.01 gallons per 100 miles from Leard, Linn, and McConnell (2017).
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Table 3: Calibrated parameters for U.S. fuel economy standards with endogenous vehicle
miles traveled

Parameter Value Main sources
BQQ -$14.96 / (1000mi)2 Gillingham (forthcoming)
BEE -$0.0013 / gallon2 BEE from table 2, scaled by vehicle lifetime miles
BQE $0.016 / (gal·1000mi) BEE from table 2; Leard and McConnell (2017)
BEF -1 by construction
BQη 1 normalization
σF $0.35 / gal historic volatility of gasoline prices
ση $55.50 / 1000mi historic volatility of miles traveled
φ $0.42 / gallon Kellogg (2018)

Note: Calibration of BQQ, BQE , and BEE also uses vehicle lifetime mileage assumptions from

Busse, Knittel, and Zettelmeyer (2013) and average 2012 U.S. fuel economy from Leard, Linn,

and McConnell (2017). See text for details.

of -0.081 from Gillingham (forthcoming)’s recent survey of the literature on the rebound

effect.37

C ′′ is the same object as BEE from the footprint application in table 2. I calculate C ′

using the equilibrium relationship that −C ′ is equal to expected lifetime discounted fuel

costs plus the shadow value of the fuel economy standard. I obtain the 2012 shadow value

from Leard and McConnell (2017), and I calculate expected fuel costs as the product of Q

with the 2012 average retail gasoline price of $3.69/gallon. Together, the estimates of UQQ,

C ′, and C ′′ yield the values of BQQ, BQE, and BEE shown in table 3. I follow Kellogg (2018)

in adopting the externality φ = $0.42 per gallon.

The calibration of σF is the same as in the footprint-based standard application in section

4.1. To calibrate ση, I use the fact that volatility in miles traveled induced by volatility in η

is given by dQ/dη times ση.
38 I obtain historical data on average U.S. vehicle miles traveled

(VMT) from the Federal Reserve Bank of St. Louis.39 Because shocks to fuel prices F induce

37Of the papers on the rebound effect that Gillingham (forthcoming) surveys, -0.081 is the average elasticity
among papers that use odometer readings as the primary data source.

38dQ/dη is given by −BQη/(BEEγ20 + 2BQEγ0 +BQQ), as derived for constrained agents in appendix A,
equation (26), where γ0 denotes the 2012 average fleet-wide fuel economy of 4.01 gallons per 100 miles.

39Annual U.S. VMT data were accessed from https://fred.stlouisfed.org/series/TRFVOLUSM227NFWA
on 2 May, 2018. I use data from 1990–2010, during which time the U.S. fuel economy standard for passenger
cars was constant. To convert these data from total miles traveled to miles traveled per vehicle, I scale them
by multiplying by Q0 (defined in footnote 36) and dividing by total miles traveled in 2012.

27



Figure 4: Gasoline consumption, miles traveled, and welfare under fuel economy
standards with endogenous miles traveled
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unconstrained. See text for details.

changes to miles traveled, I must adjust the miles traveled time series for these shocks in

order to isolate volatility induced by η. I do so by subtracting, in each year t, miles traveled

equal to dQ/dF ·(Ft−F0), where F0 denotes the 2012 gasoline price of $3.69/gallon.40 I then

compute ση by following the same procedure used in the footprint-based standard application

in section 4.1: I compute annual volatility in miles traveled, extrapolate to a 10-year horizon

40dQ/dF is given by −BEF γ0/(BEEγ20 + 2BQEγ0 +BQQ), as derived for constrained agents in appendix
A, equation (27), where γ0 denotes the 2012 average fleet-wide fuel economy of 4.01 gallons per 100 miles.
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under a random walk assumption, and then covert to ση by dividing by dQ/dη.

I use the calibrated parameters in table 3 to generate the results in figure 4, which

illustrates miles traveled, fuel economy, and welfare outcomes using the same scheme as

figure 3. Relative to the footprint-based standards application, volatility in Q is somewhat

larger, so that the optimal standard is noticeably output-based. However, the optimal slope

γ of 0.74 gallons per 100 miles is considerably less than the slope of 4.07 gallons per 100

miles associated with the optimal intensity standard. Consequently, the optimal output-

based standard achieves modestly greater expected welfare than a flat standard ($32.3 versus

$32.0 per vehicle), while the welfare associated with the intensity standard is substantially

less ($25.1 per vehicle). The relatively poor performance of the intensity standard is driven

by: (1) the incentive it generates to increase miles traveled, even with this calibration’s fairly

small driving elasticity of -0.081; and (2) the fact that fuel consumption increases less than

one-for-one with miles traveled in response to η shocks, since consumers choose more efficient

vehicles when they plan to drive more.

Finally, as was the case in the footprint-based results in figure 3, even the optimal output-

based standard obtains less than half the expected welfare than the Pigouvian tax. This

result is again a consequence of the large uncertainty in F .

4.3 Electricity sector emissions standards

Finally, I apply the model to the U.S. electricity sector. In this model, Q represents electricity

generation and consumption (in TWh per year) and E represents CO2 emissions (in Mmtons

per year), as shown in table 1. The sources of uncertainty are η, representing the marginal

value of electric power, and F = −Pg, representing the negative price of natural gas. I use

the negative price because low natural gas prices increase substitution from coal to gas, which

reduces rather than increases CO2 emissions, holding Q fixed. B(Q,E, η, F ) here denotes

total annual private welfare from the U.S. electric sector. I use 2015, the year the Clean
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Power Plan was finalized in the Federal Register, as the base year for the calibration.41

η and F experience both high and low frequency variation. Power demand, for instance,

fluctuates considerably within each day but also varies across years, following economic

cycles. I follow Borenstein et al. (forthcoming) by focusing on this lower-frequency variation

when I calibrate the model, since electric sector carbon regulation typically involves long

time horizons and annual (rather than daily) compliance periods.

The calibrated parameters I use are presented in table 4. To calibrate BQQ, I use the

estimated demand elasticity of -0.088 from Ito (2014), which uses residential billing data

from California and incorporates responses to price lags of up to four months.42 To calculate

BQQ, I then use the fact that dQ/dP = 1/BQQ.43

To calibrate BEE, I use Cullen and Mansur (2017)’s estimates of the effect of carbon

pricing on U.S. electric sector emissions, holding electricity output fixed. That paper’s

estimate that a $40 per ton tax on CO2 will reduce emissions by 7.9% yields an estimate

of BEE via the relationship dE/dφ = 1/BEE.44 To obtain BQE, I leverage the assumption

that the electric sector is constant returns to scale, so that dE/dQ = Ē/Q̄ = 0.50 Mmton

CO2 per TWh.45 I then obtain BQE via the relationship dE/dQ = −BQE/BEE. Finally, I

estimate BEF using logic from Cullen and Mansur (2017) that the effects of changes in the

price of natural gas, Pg, can be mapped to the effects of carbon pricing, given the difference

in CO2 emissions between coal and natural gas.46

41See Federal Register (23 Oct., 2015), Vol. 80, No. 205, pp. 64661–65120.
42By focusing on the demand side only when calibrating BQQ, I am implicitly assuming that electricity

supply is constant returns to scale. For year-to-year variation in load, marginal generation costs may also
increase with load, so that I am underestimating the total magnitude of BQQ.

43I also use the value of U.S. total power consumption for 2015 of Q̄ = 4, 078 TWh and the 2015 average
retail price to residential end users of $0.1265/kWh. I sourced the former value from the EIA’s table of
state-level generation, available at https://www.eia.gov/electricity/data/state/annual generation state.xls.
I sourced the latter value from the EIA’s 2016 Electric Power Annual Table 2.4, available at
https://www.eia.gov/electricity/annual/archive/03482016.pdf.

44I also use Ē = 2, 031 Mmton CO2 for 2015, per the EIA’s 2015 Electric Power Annual, available at
https://www.eia.gov/electricity/annual/html/epa 01 02.html.

45In comparison, Graff Zivin et al. (2014) estimates, on average across the U.S., that dE/dQ = 0.55
Mmton CO2 per TWh for hourly changes in Q.

46Cullen and Mansur (2017) shows that the change in Pg locally equivalent to a $1/Mmton change in
the carbon price, equivalent to 1/BEF , is given by (CR · CO2g − CO2c)/CR, where CO2g and CO2c are
the carbon intensities of natural gas and coal, respectively, and CR denotes cost ratio of coal to gas in the
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Table 4: Calibrated parameters for U.S. electricity sector emissions

Parameter Value Main sources
BQQ -$352536 / TWh2 Ito (2014), table 3
BEE -$274745 / Mmton2 Cullen and Mansur (2017), table 2
BQE $136877 / (TWh·Mmton) constant returns to scale assumption
BEF -11.3 million mmBtu per Mmton Cullen and Mansur (2017) and EIA
BQη 1 normalization
σF $2.59 / mmBtu historic volatility of natural gas prices
ση $57.0 million / TWh historic volatility of electricity consumption
φ $38 million / Mmton Interagency Working Group (2013)

To calculate σF , I use monthly data on the front-month futures price for natural gas

delivery to Henry Hub, Louisiana, which are available from the EIA back to January, 1994.47

I focus on the price of natural gas both because it is volatile and because this price is an

important driver of switches between coal and natural-gas fired generation, where natural

gas involves substantially less CO2 per TWh generated than coal (Cullen and Mansur 2017).

I calculate σF from these data using the same long-difference procedure discussed in section

4.1 to calculate σF for gasoline prices, except that here I: (1) use the raw monthly data

rather than a moving average; and (2) use a 15-year regulatory horizon that corresponds to

the Clean Power Plan’s target year of 2030.48 I estimate σF = $2.59/mmBtu.

I estimate ση using annual data on net electricity generation from the electric power

industry, dating back to 1990, available from the EIA.49 The procedure I use is similar to

that from the VMT application in section 4.2. First, I adjust the generation time series for

absence of carbon pricing. The input values for CO2g and CO2c are 117.00 and 210.86 pounds CO2/mmBtu,
respectively, from Cullen and Mansur (2017). To calculate CR, I use the 2015 average delivered coal price of
$42.58 per short ton from table 34 of the 2016 EIA Annual Coal Report, the 2015 conversion of 19.146 mmBtu
per short ton from table A5 of the EIA Monthly Energy Review, and the EIA’s 2015 average purchased price
of natural gas of $3.29/mmBtu (data discussed in footnote 50).

47These data are available at https://www.eia.gov/dnav/ng/hist/rngc1m.htm. I deflate these data to
January, 2016 dollars using the CUUR0000SA0LE CPI series from the BLS. I use these data rather than
purchase prices for the electric power sector (discussed in footnote 50) because those prices are available at
a monthly frequency only back to 2002.

48I use the raw annual natural gas price data rather than a moving average because a substantial mechanism
for emissions reductions from the power sector is change in utilization of coal versus gas-fired generators from
the existing fleet, rather than new investment.

49I use national-level data that are aggregated from EIA form 923 reports. These data are available at
https://www.eia.gov/electricity/data/state/annual generation state.xls.
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changes induced by fluctuations in the price of natural gas.50 Then, I take first (i.e., annual)

differences in the adjusted generation time series, calculate annual volatility as the standard

deviation of these differences, and project volatility to a 15-year horizon using a random

walk assumption. I convert the average 15-year volatility of Q to ση using the fact that the

volatility of Q equals dQ/dη times ση.
51 The resulting ση equals $57.0 million per TWh.

Finally, to calibrate φ I use the Interagency Working Group (2013)’s social cost of carbon

of $38/mton.

The model’s output is presented in figure 5. For the U.S. electricity market, I find that

an optimally-set intensity standard slightly outperforms an optimal flat standard, yielding

expected welfare gains of $1.42 rather than $1.23 billion/year (relative to no regulation). The

optimal output-based regulation has a slope parameter γ = 0.33 Mmtons CO2 per TWh,

equal to 69% of the slope of the intensity standard.

This substantial difference in results, relative to the passenger vehicle applications in

sections 4.1 and 4.2, derives from two factors. First, the variance in η, the marginal value of

electricity (Q), is relatively large in this application: ση is equal to 4.9% of its expected value.

Second, electric sector CO2 emissions vary nearly linearly with output when generators are

not restricted by regulation and experience demand shocks. The comparable slopes dE/dQ

are much flatter in the two vehicle-related applications.

The welfare ranking of the intensity standard to the flat standard is sensitive to the

assumed elasticity of demand for electric power. If I use the long-run elasticity from Deryug-

50I use annual data from the EIA on the purchase price of natural gas for the electric power sector,
covering 1997–2018. These data are available at https://www.eia.gov/dnav/ng/hist/n3045us3A.htm. I de-
flate them to January 2016 dollars using the CUUR0000SA0LE CPI series from the BLS, and I convert
them from $ per thousand cubic feet to $/mmBtu using a conversion factor of 1.036 mmBtu/mcf from
https://www.eia.gov/tools/faqs/faq.php?id=45. I also use a value of dQ/dF calculated via equation (21),
for unconstrained agents, in appendix A. Note that, unlike the two passenger vehicle applications, changes
in the price of natural gas directly affect the marginal value of Q, holding E fixed, since the gas price directly
affects the marginal cost of power (i.e., BQF 6= 0). Because I adjust the generation data only for the indirect
effect of gas prices on Q, via equation (21), the direct effect is incorporated into my estimate of ση. Though
this direct effect should induce a positive correlation between F (=−Pg) and η, I estimate an overall small
negative correlation of -0.07, since shocks to power demand are on average negatively correlated with F . In
the calibration I enforce ρ = 0.

51dQ/dη is given by −BEEBQη/(BQQBEE − B2
QE), as derived for unconstrained agents in appendix A,

equation (20).

32



Figure 5: CO2 emissions, electricity consumption, and welfare under output-based
electricity emission standards
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ina, MacKay, and Reif (forthcoming) of -0.30 rather than the elasticity of -0.088 from Ito

(2014), the flat standard achieves an expected welfare gain of $2.00 billion per year, relative

to $1.69 billion per year under the intensity standard.52 Still, even in this case I find that

the welfare-maximizing standard is substantially output-based, with a slope of 0.28 Mmtons

CO2 per TWh.

52With a higher demand elasticity, all welfare outcomes increase. The Pigouvian tax achieves a gain of
$7.7 billion per year.

33



Finally, the substantial volatility of both η and F causes even the optimal output-based

standard to realize substantially less expected welfare than a Pigouvian tax on emissions,

which would achieve a welfare improvement of $3.26 billion/year. The fact that uncertainty is

large relative to the externality is also reflected by the fact that the flat, intensity, and optimal

output-based standards all would bind only slightly more than 50% of the time. These

findings are closely related to the results presented in Borenstein et al. (forthcoming), which

studies California’s cap-and-trade program and finds that uncertainty about future emissions

paths is sufficiently large that the market is exceedingly likely to have an equilibrium price

that lies at the administrative price floor or ceiling.

5 Conclusions

The consensus in the literature on pollution control is that, in the absence of clear pre-

existing market distortions such as taxes, market power, or “leakage” to other sectors, CO2

emissions standards that are output or attribute-based reduce welfare relative to simple,

“flat” emissions limits. This paper demonstrates that this prevailing welfare result holds

only when the policy-maker is certain of the demand and supply for the good(s) on which

the policy is being applied. I show that in the presence of uncertainty in the marginal value

of a good’s output or attribute, expected welfare can always be increased by transforming a

flat emissions standard into one that is output or attribute-based.

The degree to which the welfare-maximizing emissions standard depends on output or

attributes is context-dependent. For U.S. attribute-based fuel economy standards, I find

that the welfare-maximizing amount of attribute-basing is sufficiently small that the welfare

improvement relative to a flat standard is negligible. For U.S. electricity generation, however,

uncertainty about the demand for power is sufficiently large that the welfare-maximizing

emissions standard is substantially output-based. Furthermore, an intensity standard may

lead to greater expected welfare than a flat CO2 emissions limit. This result is suggestive, as
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it is sensitive to a range of plausible parameter inputs and is derived from a highly aggregated

model that omits important features of the electric sector. It therefore calls for future work

that would more precisely evaluate the tradeoffs between different emissions control policies

in the presence of the substantial uncertainties faced by policy-makers.

Finally, it is important to not lose sight of the fact that even optimally-set output or

attribute-based CO2 standards fail to achieve the first-best welfare outcome in uncertain

economic environments. A Pigouvian tax yields strictly greater expected welfare than any of

the policies considered in this paper, as would an emissions cap that is indexed to exogenous

sources of uncertainty (such as fuel prices or GDP) rather than to endogenously-determined

objects such as goods’ output or attributes. There is therefore a need for future research

that might explain why emissions policies in practice have tended to take the form of output

or attribute-based standards rather than Pigouvian taxes or exogenously-indexed emissions

regulation.

References

[1] Allcott, Hunt and Nathan Wozny (2014), “Gasoline Prices, Fuel Economy, and the

Energy Paradox”, Review of Economics and Statistics 96(5), 779-795.

[2] Alquist, Ron, Lutz Kilian, and Robert J. Vigfusson (2013), “Forecasting the Price of

Oil”, in Graham, Elliot and Allan Timmerman (Eds.), Handbook of Economic Forecast-

ing vol.2. Amsterdam: North Holland.

[3] Anderson, Soren T., Ryan Kellogg, and Stephen W. Salant (2018), “Hotelling Under

Pressure”, Journal of Political Economy 126, 984-1026.

[4] Anderson, Soren T., Ryan Kellogg, and James M. Sallee (2013), “What Do Consumers

Believe About Future Gasoline Prices?” Journal of Environmental Economics and Man-

agement 66, 383-403.

35



[5] Anderson, Soren T. and James M. Sallee (2016), “Designing Policies to Make Cars

Greener: A Review of the Literature”, Annual Review of Resource Economics 8, 157-

180.

[6] Borenstein, Severin, James Bushnell, Frank A. Wolak, and Matthew Zaragoza-Watkins

(forthcoming), “Expecting the Unexpected: Emissions Uncertainty and Environmental

Market Design”, American Economic Review.

[7] Busse, Meghan R., Christopher R. Knittel, and Florian Zettelmeyer (2013), “Are Con-

sumers Myopic? Evidence from New and Used Car Purchases”, American Economic

Review 103(1), 220-256.

[8] Cullen, Joseph A. and Erin T. Mansur (2017), “Inferring Carbon Abatement Costs

in Electricity Markets: A Revealed Preference Approach Using the Shale Revolution”

American Economic Journal: Economic Policy 9(3), 106-133.

[9] Deryugina, Tatyana, Alexander MacKay, and Julian Reif (forthcoming), “The Long-

Run Dynamics of Electricity Demand: Evidence from Municipal Aggregation”, Ameri-

can Economic Journal: Applied Economics.

[10] Ellerman, A. Denny and Ian Sue Wing (2003), “Absolute vs. Intensity-Based Emission

Caps”, MIT Joint Program on the Science and Policy of Global Change report #100.

[11] Energy Information Administration (2011), “Voluntary Reporting of

Greenhouse Gases Program: Fuel Emission Coefficients”. Accessed from

http://www.eia.gov/oiaf/1605/coefficients.html#tbl2 on 11 April, 2016.

[12] Fowlie, Meredith, Mar Reguant, and Stephen P. Ryan (2016), “Market-Based Emissions

Regulation and Industry Dynamics”, Journal of Political Economy 124(1), 249-302.

[13] Gillingham, Kenneth (forthcoming), “The Rebound Effect and the Rollback of Fuel

Economy Standards”, Review of Environmental Economics and Policy.

36



[14] Graff Zivin, Joshua S., Matthew J. Kotchen, and Erin T. Mansur (2014), “Spatial

and Temporal Heterogeneity of Marginal Emissions: Implications for Electric Cars and

Other Electricity-Shifting Policies”, Journal of Economic Behavior and Organization

107, 248-268.

[15] Heutel, Garth (2012), “How Should Environmental Policy Respond to Business Cycles?

Optimal Policy Under Persistent Productivity Shocks”, Review of Economic Dynamics

15, 244-264.

[16] Holland, Stephen P. (2012), “Emissions Taxes Versus Intensity Standards: Second-

Best Environmental Policies with Incomplete Regulation”, Journal of Environmental

Economics and Management 63, 375-387.

[17] Holland, Stephen P., Jonathan E. Hughes, and Christopher R. Knittel (2009), “Green-

house Gas Reductions under Low Carbon Fuel Standards?”, American Economic Jour-

nal: Economic Policy 1(1), 106-146.

[18] Interagency Working Group on Social Cost of Carbon (2013), “Technical Support

Document: Technical Update of the Social Cost of Carbon for Regulatory Impact

Analysis Under Executive Order 12866”. United States Government. Accessed from

https://www.whitehouse.gov/sites/default/files/omb/inforeg/social cost of carbon for

ria 2013 update.pdf on 19 May, 2016.

[19] Ito, Koichiro (2014), “Do Consumers Respond to Marginal or Average Price? Evidence

from Nonlinear Electricity Pricing” American Economic Review 104(2), 537-563.

[20] Ito, Koichiro and James M. Sallee (2018), “The Economics of Attribute-Based Regula-

tion: Theory and Evidence from Fuel Economy Standards”, Review of Economics and

Statistics 100(2), 319-336.

[21] Kellogg, Ryan (2018), “Gasoline Price Uncertainty and the Design of Fuel Economy

Standards”, Journal of Public Economics 160, 14-32.

37



[22] Kwoka, John E. (1983), “The Limits of Market-Oriented Regulatory Techniques: The

Case of Automotive Fuel Economy”, Quarterly Journal of Economics 98(4), 695-704.

[23] Leard, Benjamin, Joshua Linn, and Virginia McConnell (2017), “Fuel Prices, New Ve-

hicle Fuel Economy, and Implications for Attribute-Based Standards”, Journal of the

Association of Environmental and Resource Economists 4(3), 659-700.

[24] Leard, Benjamin and Virginia McConnell (2017), “New Markets for Credit Trading

under U.S. Automobile Greenhouse Gas and Fuel Economy Standards”, Review of En-

vironmental Economics and Policy 11(2), 207-226.

[25] Lutsey, Nic (23 Jan., 2015), “Do the automakers really need help with the U.S. effi-

ciency standards?” International Council on Clean Transportation. Blog post. Accessed

from http://www.theicct.org/blogs/staff/do-automakers-really-need-help-us-efficiency-

standards on 29 Dec., 2015.

[26] National Research Council (2015), Cost, Effectiveness, and Deployment of Fuel Econ-

omy Technologies for Light-Duty Vehicles. Washington, D.C.: National Academy Press.

[27] Newell, Richard G. and William A. Pizer (2003), “Regulating Stock Externalities Under

Uncertainty”, Journal of Environmental Economics and Management 45, 416-432.

[28] Newell, Richard G. and William A. Pizer (2008), “Indexed Regulation”, Journal of

Environmental Economics and Management 56, 221-233.

[29] Parry, Ian W.H., Margaret Wells, and Winston Harrington (2007), “Automobile Exter-

nalities and Policies”, Journal of Economic Literature 45(2), 373-399.

[30] Pizer, William A. and Brian Prest (2016), “Prices versus Quantities with Policy Updat-

ing”, NBER working paper #22379.

[31] Quirion, Philippe (2005), “Does Uncertainty Justify Intensity Emission Caps?”, Re-

source and Energy Economics 27, 343-353.

38



[32] Sallee, James M., Sarah E. West, and Wei Fan (2016), “Do Consumers Recognize the

Value of Fuel Economy? Evidence from Used Car Prices and Gasoline Price Fluctua-

tions”, Journal of Public Economics 135, 61-73.

[33] Weitzman, Martin L. (1974), “Prices vs. Quantities”, Review of Economic Studies 41(4),

477-491.

[34] Whitefoot, Kate S. and Steven J. Skerlos (2012), “Design Incentives to Increase Vehicle

Size Created from the U.S. Footprint-Based Fuel Economy Standards” Energy Policy

41, 402-411.

[35] Zhao, Jinhua (2018), “Aggregate Emission Intensity Targets: Applications to the Paris

Agreement”, working paper.

39



Appendix

A Comparative statics of the model

This appendix derives the comparative statics for dQ/dη, dQ/dF , dE/dη, and dE/dF , both
when agents choices’ are unconstrained and when they are constrained by output-based
emissions regulation.

When choices are unconstrained, agents solve the problem:

max
Q,E

B(Q,E, η, F ). (17)

The FOCs for this problem are given by:

FOCQ : BQ(Q,E, η, F ) = 0 (18)

FOCE : BE(Q,E, η, F ) = 0. (19)

And the SOC is BQQBEE − B2
QE > 0. The implicit function theorem then yields the

following comparative statics when agents’ choices are unconstrained:

dQ

dη
=

−BEEBQη

BQQBEE −B2
QE

(20)

dQ

dF
=

BQEBEF

BQQBEE −B2
QE

(21)

dE

dη
=

BQEBQη

BQQBEE −B2
QE

(22)

dE

dF
=

−BQQBEF

BQQBEE −B2
QE

. (23)

When agents are constrained to the regulation E = µ0 + γQ, they instead solve:

max
Q

B(Q, µ0 + γQ, η, F ). (24)

The FOC for this problem, using the notation E(Q) = µ0 + γQ, is given by:

FOCQ : BQ(Q,E(Q), η, F ) + γBE(Q,E(Q), η, F ) = 0. (25)

And the SOC is BEEγ
2+2BQEγ+BQQ < 0. The implicit function theorem then yields the

following comparative statics when agents’ choices are constrained by output-based emissions
regulation (where the notation suppresses the dependence of BQ, BE, dQ/dη, dQ/dF , dE/dη,
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dE/dF , dQ/dµ0, dE/dµ0, dQ/dγ, and dE/dγ on µ0, γ, η, and F ):

dQ

dη
=

−BQη

BEEγ2 + 2BQEγ +BQQ

(26)

dQ

dF
=

−BEFγ

BEEγ2 + 2BQEγ +BQQ

(27)

dE

dη
=

−BQηγ

BEEγ2 + 2BQEγ +BQQ

(28)

dE

dF
=

−BEFγ
2

BEEγ2 + 2BQEγ +BQQ

(29)

dQ

dµ0

=
−(BEEγ +BQE)

BEEγ2 + 2BQEγ +BQQ

(30)

dE

dµ0

= 1 + γ
dQ

dµ0

=
BQEγ +BQQ

BEEγ2 + 2BQEγ +BQQ

(31)

dQ

dγ
=
−(BE +BEEQγ +BQEQ)

BEEγ2 + 2BQEγ +BQQ

(32)

dE

dγ
= Q+ γ

dQ

dγ
=
−BEγ +BQEQγ +BQQQ

BEEγ2 + 2BQEγ +BQQ

. (33)

B Representative consumer model

Consider a unit mass of agents i, each of whom purchases a good with quantity (or attribute)
Qi and emissions Ei, yielding private benefit Bi(Qi, Ei, η, F ) that can be well-approximated
by a second-order Taylor expansion. This section, which closely follows Kellogg (2018),
proves that a sufficient statistic for the effects of emissions standards on utilitarian social
welfare is given by the private benefit function B(Q,E, η, F ) less damages φE, where Q and
E are the sum (or average) of the Qi and Ei, and the first derivatives of B equal the sum
(or average) of the Bi

Q and Bi
E, assuming: (1) all second derivatives of B are identical across

agents; (2) inclusion of compliance trading in any emissions standard; and (3) equal and
constant marginal utility of income (and welfare weights) across agents.

To begin, note that with compliance trading, and given values for η and F , any emissions
standard is equivalent to a policy that taxes (or subsidizes) Q and E, since all agents must
face the same permit price in competitive equilibrium. Given a regulatory slope γ, FOCQ

in equation (25) must hold for all agents, so that Bi
Q = −γBi

E ∀i. And if the price of an
emissions permit is given by τ , we have Bi

Q = −γτ and Bi
E = τ ∀i. Thus, given values for η

and F , I can model agents’ welfare under an emissions standard by instead modeling a tax
τ on E and a tax τQ ≡ −γτ on Q.

Next, I show that imposition of a tax τ on E and a tax τQ ≡ −γτ on Q yields identical
changes in Q and E for all agents. A given agent i’s FOCs under these taxes are given by:

FOCQ : BQ(Q,E, η, F ) = τQ (34)

FOCE : BE(Q,E, η, F ) = τ. (35)
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Following appendix A, application of the implicit function theorem yields the following
comparative statics:

dQi

dτQ
=

BEE

BQQBEE −B2
QE

;
dQi

dτ
=

−BQE

BQQBEE −B2
QE

; (36)

dEi
dτQ

=
−BQE

BQQBEE −B2
QE

;
dEi
dτ

=
BQQ

BQQBEE −B2
QE

. (37)

If all second derivatives of B are identical for all agents, then each of the above derivatives
will also be identical for all agents. Thus, emissions standards in this setting will have
identical effects on each agent’s choices of Q and E.

Finally, I show that the aggregate social welfare function
∫
i
(Bi(Qi, Ei, η, F )−φEi)di can

be written as the sum of the representative agent’s welfare function B(Q,E, η, F ) in the text
(where Q =

∫
i
Qidi and E =

∫
i
Eidi), −φE, and terms that are policy-invariant. Let Q0

and E0 denote total quantity and emissions with no emissions policy and with η = η̄ and
F = F̄ (where η̄ and F̄ denote the expected values of η and F ). Using a second-order Taylor
approximation around Q0, E0, η̄, and F̄ , social welfare is then given by:53

∫
i

(Bi(Qi, Ei, η, F )− φEi)di =

∫
i

Bi
Q0(Qi −Q0)di+

∫
i

Bi
E0(Ei − E0)di

+
1

2
BQQ

∫
i

(Qi −Q0)
2di+

1

2
BEE

∫
i

(Ei − E0)
2di

+BQE

∫
i

(Qi −Q0)(Ei − E0)di+BQη

∫
i

(Qi −Q0)(η − η̄)di

+BEF

∫
i

(Ei − E0)(F − F̄ )di− φE, (38)

where Bi
Q0 and Bi

E0 denote the values of agents’ first derivatives of Bi at (Q0, E0, η̄, F̄ ).
Replace the (Qi − Q0) terms in equation (38) with (Qi − Q + Q − Q0) and do likewise

with the (Ei−E0) terms. Define BQ0 ≡
∫
i
Bi
Q0di and BE0 ≡

∫
i
Bi
E0di. After removing terms

53The assumption of equal and constant marginal utility of income (and welfare weights) across agents is
necessary for equation (38) to represent utilitarian social welfare, since in this case all wealth effects across
agents cancel out in aggregate.
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for which the expectation is zero, and after grouping related terms together, we obtain:∫
i

(Bi(Qi, Ei, η, F )− φEi)di = [BQ0(Q−Q0) +BE0(E − E0) +
1

2
BQQ(Q−Q0)

2

+
1

2
BEE(E − E0)

2 +BQE(Q−Q0)(E − E0)

+BQη(Q−Q0)(η − η̄) +BEF (E − E0)(F − F̄ )− φE]

+ [

∫
i

Bi
Q0(Qi −Q)di+

∫
i

Bi
E0(Ei − E)di

+
1

2
BQQ

∫
i

(Qi −Q)2di+
1

2
BEE

∫
i

(Ei − E)2di

+BQE

∫
i

(Qi −Q)(Ei − E)di] (39)

The first bracketed term in equation (39) is the second order Taylor expansion ofB(Q,E, η, F )−
φE. The second bracketed term is policy-invariant, since Qi − Q and Ei − E are constant
for each i. Thus, B(Q,E, η, F )− φE is a sufficient statistic for the social welfare impacts of
the emissions standards considered in the paper.

C Welfare-maximizing standard under uncertainty in

F

This appendix derives equations (6) and (7) in the main text. The argument closely follows
appendix B.3 in Kellogg (2018).

Begin by developing simple expressions for BE and BQ while the agents are constrained.

Given µ0 and γ, let F̂ denote the fuel price at which the standard just binds, and let Q̂ and
Ê denote the agents’ choices of Q and E at F̂ . Because BQ(Q̂, Ê, F ) = 0 ∀F (recall that
BQF = 0), we may write the Taylor expansion for BQ as:

BQ(Q,E, F ) = BQE(E − Ê) +BQQ(Q− Q̂) (40)

On the E = µ0 + γQ standard, use equations (27) and (29) to replace E − Ê and Q− Q̂
in (40), yielding:

BQ(Q,E, F ) =
−γ(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

BEF (F − F̂ ). (41)

In addition, equation (25) implies that BE = −BQ/γ, implying:

BE(Q,E, F ) =
BQEγ +BQQ

BEEγ2 + 2BQEγ +BQQ

BEF (F − F̂ ). (42)

Now, we can use equations (25), (30), (31), and (42) to derive equation (6) from equation
(4) in the main text. Streamlining notation by defining S ≡ BEEγ

2 + 2BQEγ + BQQ, we

A-4



have:

FOCµ0 :

∫ F̂

FL

(
BE(

dE

dµ0

− γ dQ
dµ0

)− φ dE
dµ0

)
w(F )dF = 0 (43)

⇔ 1

S

∫ F̂

FL

(
(BQEγ +BQQ)BEF (F − F̂ )S

S
− φ(BQEγ +BQQ)

)
w(F )dF = 0 (44)

⇔ −(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

∫ F̂

FL

(
φ+BEF (F̂ − F )

)
w(F )dF = 0. (45)

Equation (45) matches equation (6) in the main text.
Now work with the FOC for γ, given by equation (5) in the main text. Applying equations

(25), (32), (33), and (42), we obtain:

FOCγ :

∫ F̂

FL

(
BE(

dE

dγ
− γ dQ

dγ
)− φdE

dγ

)
w(F )dF = 0 (46)

⇔ 1

S

∫ F̂

FL

(
(BQEγ +BQQ)BEF (F − F̂ )SQ

S
− φ(−BEγ +BQEQγ +BQQQ)

)
w(F )dF = 0

⇔ BQEγ +BQQ

S2

∫ F̂

FL

(
(BEF (F − F̂ )Q− φQ)S + φBEF (F − F̂ )γ

)
w(F )dF = 0. (47)

Now use FOCµ0 (equation (45)) to simplify further. In particular, use the fact that

Q̂
∫ F̂
FL

(
φ+BEF (F̂ − F )

)
w(F )dF = 0 to transform equation (47) to:

⇔ BQEγ +BQQ

S2

∫ F̂

FL

(
(Q− Q̂)(BEF (F − F̂ )− φ)S + φ2γ

)
w(F )dF = 0. (48)

Then apply the derivative dQ/dF (equation (27)) to eliminate the Q− Q̂ term:

⇔ BQEγ +BQQ

S2

∫ F̂

FL

(
−BEFγ(F − F̂ )(BEF (F − F̂ )− φ) + φ2γ

)
w(F )dF = 0. (49)

Applying FOCµ0 (equation (45)) again yields:

⇔ γ(BQEγ +BQQ)

S2

∫ F̂

FL

(
−B2

EF (F − F̂ )2 + 2φ2
)
w(F )dF = 0. (50)

Define Ḟ ≡ 1

W (F̂ )

∫ F̂
FL
Fw(F )dF (i.e., Ḟ is the expected value of F conditional on the

standard binding). We can then simplify the −B2
EF (F − F̂ )2 term inside the integral in
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equation (50) as follows:

B2
eF

∫ F̂

FL

(F − F̂ )2w(F )dF = B2
eF

∫ F̂

FL

(F − Ḟ + Ḟ − F̂ )2w(F )dF

= W (F̂ )B2
eF (σ2

Fc + (Ḟ − F̂ )2)

= W (F̂ )(B2
eFσ

2
Fc + φ2), (51)

where the last line makes use of equation (45) and the definition of Ḟ .
Finally, substitute equation (51) into equation (50) to obtain:

FOCγ :
γW (F̂ )(BQEγ +BQQ)

(BEEγ2 + 2BQEγ +BQQ)2
(φ2 −B2

EFσ
2
Fc) = 0, (52)

which matches equation (7) in the main text.

D Welfare-maximizing standard under uncertainty in

η

This appendix derives equations (11) and (12) in the main text.
Begin by developing simple expressions for BE and BQ while the agents are constrained.

Given µ0 and γ, let η̂ denote the value of η (the shock to the marginal value of Q) at which
the standard just binds, and let Q̂ and Ê denote the agents’ choices of Q and E at η̂. Because
BE(Q̂, Ê, η) = 0 ∀η (recall that BEη = 0), we may write the Taylor expansion for BE as:

BE(Q,E, η) = BQE(Q− Q̂) +BEE(E − Ê) (53)

On the E = µ0 + γQ standard, use equations (26) and (28) to replace Q− Q̂ and E − Ê
in (53), yielding:

BE(Q,E, η) =
−(BQE +BEEγ)

BEEγ2 + 2BQEγ +BQQ

BQη(η − η̂). (54)

Now, we can use equations (25), (30), (31), and (54) to derive equation (11) from equation
(9) in the main text. Streamlining notation by defining S ≡ BEEγ

2 + 2BQEγ + BQQ, we
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have:

FOCµ0 :

∫ ηH

η̂

(
BE(

dE

dµ0

− γ dQ
dµ0

)− φ dE
dµ0

)
v(η)dη = 0 (55)

⇔ 1

S

∫ ηH

η̂

(
−(BQE +BEEγ)BQη(η − η̂)S

S
− φ(BQEγ +BQQ)

)
v(η)dη = 0 (56)

⇔ −1

S

∫ ηH

η̂

((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ)) v(η)dη = 0 (57)

⇔ −(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

∫ ηH

η̂

(
BQE +BEEγ

BQEγ +BQQ

BQη(η − η̂) + φ

)
v(η)dη = 0.

(58)

Equation (58) matches equation (11) in the main text.
Now work with the FOC for γ, given by equation (10) in the main text. Applying

equations (25), (32), (33), and (54), we obtain:

FOCγ :

∫ ηH

η̂

(
BE(

dE

dγ
− γ dQ

dγ
)− φdE

dγ

)
v(η)dη = 0 (59)

⇔ 1

S

∫ ηH

η̂

(
−(BQE +BEEγ)BQη(η − η̂)SQ

S
− φ(−BEγ +BQEQγ +BQQQ)

)
v(η)dη = 0

⇔ −1

S2

∫ ηH

η̂

(((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ))QS

+ φγ(BQE +BEEγ)BQη(η − η̂))v(η)dη = 0 (60)

Now use FOCµ0 (equation (57)) to simplify further. In particular, use the fact that

Q̂
∫ ηH
η̂

((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ)) v(η)dη = 0 to transform equation (60)
to:

⇔ −1

S2

∫ ηH

η̂

(((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ))(Q− Q̂)S

− φ2γ(BQEγ +BQQ))v(η)dη = 0 (61)

Then apply the derivative dQ/dη (equation (26)) to eliminate the Q− Q̂ term:

⇔ 1

S2

∫ ηH

η̂

(((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ))BQη(η − η̂)

+ φ2γ(BQEγ +BQQ))v(η)dη = 0 (62)
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Applying FOCµ0 (equation (57)) again yields:

⇔ 1

S2

∫ ηH

η̂

((BQE +BEEγ)B2
Qη(η − η̂)2 − φ2(BQEγ +BQQ)2

BQE +BEEγ

+ φ2γ(BQEγ +BQQ))v(η)dη = 0 (63)

Define η̇ ≡ 1
(1−V (η̂))

∫ ηH
η̂

ηv(η)dη (i.e., η̇ is the expected value of η conditional on the

standard binding). We can then simplify the B2
Qη(η− η̂)2 term inside the integral in equation

(63) as follows:

B2
Qη

∫ ηH

η̂

(η − η̂)2v(η)dη = B2
Qη

∫ ηH

η̂

(η − η̇ + η̇ − η̂)2v(η)dη

= (1− V (η̂))B2
Qη(σ

2
ηc + (η̇ − η̂)2)

= (1− V (η̂))

(
B2
Qησ

2
ηc + φ2 (BQEγ +BQQ)2

(BQE +BEEγ)2

)
(64)

where the last line makes use of equation (57) and the definition of η̇.
Finally, substitute equation (64) into equation (63) and combine terms to obtain:

FOCγ :
1− V (η̂)

S2
[(BQE +BEEγ)

(
B2
Qησ

2
ηc + φ2 (BQEγ +BQQ)2

(BQE +BEEγ)2

)
− φ2(BQEγ +BQQ)2

BQE +BEEγ

+ φ2γ(BQEγ +BQQ)] = 0 (65)

⇔ 1− V (η̂)

S2
[(BQE +BEEγ)B2

Qησ
2
ηc + φ2γ(BQEγ +BQQ)] = 0 (66)

⇔ (1− V (η̂))(BQEγ +BQQ)φ2

(BEEγ2 + 2BQEγ +BQQ)2

[
BQE +BEEγ

BQEγ +BQQ

·
B2
Qησ

2
ηc

φ2
+ γ

]
= 0, (67)

which matches equation (12) in the main text.

E Welfare-maximizing standard under uncertainty in

η and F

This appendix derives equation (13) in the main text. Under uncertainty in both η and F ,
we can write the regulator’s FOCs for µ0 and γ as:

FOCµ0 :

∫ ηH

ηL

∫ F̂

FL

(
BQ

dQ

dµ0

+BE
dE

dµ0

− φ dE
dµ0

)
w(F |η)v(η)dFdη = 0 (68)

FOCγ :

∫ ηH

ηL

∫ F̂

FL

(
BQ

dQ

dγ
+BE

dE

dγ
− φdE

dγ

)
w(F |η)v(η)dFdη = 0, (69)

where F̂ is shorthand for F̂ (µ0, γ, η), the fuel price F at which the standard just binds,
given a regulation (µ0, γ) and a demand shock η.
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Because deriving an analytic expression for γ∗ is algebraically intractable, I instead eval-
uate the FOCs (68) and (69) at γ = 0, where the sign of FOCγ informs the sign of γ∗ (and
is equivalent to the sign of γ∗ assuming that the uniqueness property discussed in footnote
15 holds when F is stochastic).

Using expressions (30), (31), (32), and (33), FOCs (68) and (69) reduce to the following
at γ = 0:

FOCµ0|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(BE − φ)w(F |η)v(η)dFdη = 0 (70)

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(BEQ− φQ)w(F |η)v(η)dFdη = 0. (71)

Let η̄ ≡ Ec[η] and let (Q̄, Ē) denote agents’ choices given realizations η̄ and F̂ (µ0, γ, η̄).

Use the fact from equation (70) that
∫ ηH
ηL

∫ F̂
FL

(BE − φ)Q̄w(F |η)v(η)dFdη = 0 to rewrite

equation (71) as:

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(BE − φ)(Q− Q̄)w(F |η)v(η)dFdη = 0. (72)

Because: (1) E − Ē = 0 for γ = 0 (since emissions are fixed at Ē when the regulation
binds); (2) BEη = 0; and (3) Q− Q̄ = −BQη(η − η̄)/BQQ when γ = 0, we have:

BE(Q,E, η, F ) =
−BQEBQη(η − η̄)

BQQ

+BEF (F − F̂ ). (73)

Substituting into equation (72) yields:

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(
−BQEBQη(η − η̄)

BQQ

+BEF (F − F̂ )− φ
)(
−BQη

BQQ

(η − η̄)

)
w(F |η)v(η)dFdη = 0.

(74)
The term involving φ is zero because Ec[η − η̄] = 0. Thus, we have:

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

1

B2
QQ

(
BQEB

2
Qη(η − η̄)2 −BQQBEFBQη(η − η̄)(F − F̂ )

)
w(F |η)v(η)dFdη = 0,

(75)
which implies:

sign FOCγ|γ=0 = sign

(
Ec[(η − Ec[η])2]− BQQBEF

BQEBQη

Ec[(F − F̂ (Ec[η]))(η − Ec[η])]

)
(76)

The right-hand side of equation (76) matches the right-hand side of equation (13) in the
main text. Also note that if F is non-stochastic, equation (75) reduces to equation (67)
(same as equation (12)) for γ = 0.
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