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1 Introduction

Most asset pricing theories postulate a positive intertemporal relation between expected return

and risk of market portfolios (Merton, 1973). Empirically, this relation has been studied

primarily in the equity market. The literature, however, has not yet reached to an agreement

on the existence of a positive risk-return tradeoff for stock market indices; indeed, many

studies cannot even identify a robust and significant time-series relation.1

While earlier studies focus on equities, debt financing forms a significant portion in the

capital structure of U.S. corporations (Graham, Leary, and Roberts, 2015), underscoring the

need to study the risk-return tradeoff in the corporate bond market. Since the Great Recession

of 2007−2009, the corporate bond market has increased substantially with respect to trading

volume and the market size.2 Institutional investors in particular make an extensive use of

bonds in constructing their portfolios, which elevates the role of bonds in investors’ portfolios

more than any time in the past. Motivated by these observations, this paper studies the

risk-return tradeoff in the corporate bond market.

Does the risk-return relation for equities or its lack thereof extend to corporate bonds?

This is an open question given the significant difference in institutional and informational

frictions across equities and bonds. Using a big dataset of 1.3 million bond return observations

from January 1995 to June 2019, we provide the first comprehensive study on the risk-return

1French, Schwert, and Stambaugh (1987) find that the risk-return coefficient is not significantly different
from zero when they use past daily returns to estimate the monthly conditional variance. Follow-up studies
by Campbell and Hentchel (1992), Glosten, Jagannathan, and Runkle (1993), Harrison and Zhang (1999),
and Bollerslev and Zhou (2006) rely on the GARCH-in-mean and realized volatility models that provide no
evidence of a robust, significant link between risk and return on the equity market portfolio. Several studies
even find that the intertemporal relation between risk and return is negative (e.g., Campbell, 1987; Nelson,
1991; Glosten et al., 1993; Whitelaw, 1994; Harvey, 2001; and Brandt and Kang, 2004). Some studies do
provide evidence supporting a positive and significant link between expected return and risk in the equity
market (e.g., Bollerslev, Engle, and Wooldridge, 1988; Ghysels, Santa-Clara, and Valkanov, 2005; Guo and
Whitelaw, 2006; Bali, 2008; and Bali and Engle, 2010).

2Corporate bonds constitute one of the largest components of the U.S. bond market, which is considered
the largest security market in the world. According to the Federal Reserve database, the total market value
of outstanding corporate bonds in the United States was about $1.74 trillion in 1990 and it increased mono-
tonically to $14.02 trillion by the end of 2019. This implies an annual growth rate of 7.6% from 1990 to 2019.
The corporate bond market is active as well. Over the past 16 years, daily trading volume has been in the
range of $12.6 and $24.5 billion, with an average of $17.6 billion (source: www.sifma.org).
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tradeoff in the corporate bond market, both in time series and in the cross section. Overall,

we ascertain a robust, significant, and positive intertemporal relation between expected return

and risk in aggregate bond market portfolios, and also a consistent positive risk-return relation

in the cross section of individual bonds. Our findings in the bond market are in line with

asset pricing theories, but are foiled against the evidence in the equity market. We delineate

reconciling explanations later in this section and more details in Section 5. The basic idea is

that the investor clientele plays an important role in the contrasting risk-return relations in

the bond versus equity markets.

We start the analysis with the intertemporal relation between the conditional mean and

the conditional variance of aggregate bond market returns. We find that the bond market risk

proxied by its lagged (or conditional) variance predicts future bond market returns. Moreover,

we show that the time-series predictability is driven solely by aggregate systematic risk instead

of aggregate idiosyncratic risk. The results are robust under three different weighting schemes

in aggregating the bond-level risk measures, namely, the equal-weighted, value-weighted, and

rating-weighted average. The results are also robust to controlling for a number of variables

proxying for business cycle fluctuations.

To appraise the economic significance of the time-series predictability, we simulate the

returns of a trading strategy based on the out-of-sample one-month-ahead forecasts of the

bond market using its realized variance.3 In this market-timing strategy, we obtain both

a higher mean return and a lower standard deviation compared to the strategy using the

forecasts from existing corporate bond market factors. We find that a risk-averse investor is

willing to pay an annualized fee of 3.6∼5.0% to invest in the strategy that forecasts the bond

market return based on the market variance.

After thoroughly investigating the time-series risk-return relation at the market level,

we propose new measures of bond-level systematic and idiosyncratic risk and examine the

3For each month t, the strategy invests 100% in the bond market index if the predicted excess return of
bonds over the risk-free rate is greater than zero; otherwise it invests 100% in Treasury bills. At time t + 1,
the return of the portfolio is realized, a new regression is estimated, a return forecast computed, and new
portfolio weights determined. In this way, we obtain a monthly time series of returns to the trading strategy.
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cross-sectional predictability on individual corporate bonds. Consistent with the time-series

predictability results at the market level, we find a significantly positive link between sys-

tematic risk and the cross-section of future bond returns, whereas the cross-sectional relation

between idiosyncratic risk and future bond returns is economically and statistically insignif-

icant. Overall, the results indicate that institutional investors dominating the bond market

hold well-diversified portfolios with a negligible exposure to bond-specific risk.

One central prediction in classical asset pricing theory is that the cross-sectional differ-

ences in expected returns on securities are explained solely by their systematic risk under the

assumptions that markets are complete and frictionless and investors are well-diversified (Mer-

ton, 1987). If markets are incomplete or investors face frictions and hold poorly diversified

portfolios, then expected returns should be positively associated with idiosyncratic volatili-

ty (Hirshleifer, 1988). Empirically, the most widely-cited study on idiosyncratic risk, Ang,

Hodrick, Xing, and Zhang (2006), demonstrates a negative cross-sectional relation between

idiosyncratic volatility and future equity returns. This result is highly inconsistent with the-

oretical predictions and thus considered a puzzle. Several subsequent papers have proposed

explanations for the idiosyncratic volatility (IVOL) puzzle in the equity market (see Hou and

Loh (2016) for a summary).

In this paper, we revisit the IVOL puzzle in the corporate bond market by proposing new

measures of idiosyncratic and systematic risk of corporate bonds. According to a recent work

by Bai, Bali, and Wen (2019, hereafter BBW), it is crucial to rely on the prominent features

of corporate bonds when constructing bond-implied risk factors, in particular because the

bond market is dominated by institutional investors and such clientele requires compensation

for risks different from those in the equity market. BBW introduce novel risk factors based

on downside risk, credit risk, and liquidity risk of corporate bonds and show that these bond

factors have significant risk premia and outperform all other models in the literature.

After assembling a comprehensive dataset of corporate bond transactions from 1995 to

2019, we conduct nonparametric portfolio analyses. For each bond and each month in our
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sample, we regress the monthly excess returns of corporate bonds on BBW’s risk factors.

Idiosyncratic risk of an individual bond is measured by the residual variance of bond excess

returns from the monthly time-series regressions. Accordingly, systematic risk of an individual

bond is defined as the difference between the total and the residual variance, which is a

function of the variance of risk factors, the covariance of them, and the bond exposures to

risk factors.

Consistent with the theoretical predictions, we show that there does not exist an IVOL

puzzle in the corporate bond market; instead, future bond returns are explained by their sys-

tematic risk. When sorting corporate bonds into quintile portfolios based on their systematic

risk, we find that bonds in the highest systematic risk quintile generate 7.32%∼10.20% per

annum higher return than bonds in the lowest systematic risk quintile, with the premium

stemming from the superior performance of bonds with high systematic risk (long leg of the

arbitrage portfolio). Such results remain robust after controlling for various bond characteris-

tics. In contrast, idiosyncratic risk has no significant explanatory power. When comparing the

relative performance of systematic and idiosyncratic risk in terms of their ability to predict

the cross-sectional differences in future bond returns, we find that idiosyncratic risk becomes

even weaker, both economically and statistically, after controlling for systematic risk, where-

as systematic risk remains a significant determinant of the cross-sectional dispersion in bond

returns after controlling for idiosyncratic risk.

Since corporate bonds and equities issued by the same firm are contingent claims on the

on the same cash flows (Merton, 1974), it may be surprising to see the contradictory findings

on the relation between expected return and risk in the equity versus bond markets. There

are at least two major reasons why the findings in the equity market do not directly apply

to the bond market. First, Merton (1974) makes a number of assumptions in a perfect finan-

cial market to obtain the no-arbitrage relation: (i) all investors are symmetrically informed;

(ii) there are no transaction costs, no taxes, and no restrictions on short selling; and (iii)

lending rates equal borrowing rates. However, these assumptions do not generally hold in
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practice. For example, equities and bonds attract different clienteles (Auh and Bai, 2020).

Corporate bonds are primarily held by sophisticated institutional investors, whereas naive

retail investors form a material part of the clientele for equities.4 It is reasonable to argue

that the risk appetites and investment objectives of institutional and retail investors differ

as well, suggesting heterogeneity in information sets and preferences across the two markets.

Further, shorting costs as well as liquidity levels are markedly different across the two asset

classes (Edwards, Harris, and Piwowar, 2007), suggesting arbitrage frictions. Finally, equities

and bonds are held by investors who are subject to different regulatory, capital, and funding

liquidity constraints (Bali, Subrahmanyam, and Wen, 2020).

Second, equity and bond returns are not perfectly correlated (Cao, Goyal, Xiao, and

Zhan, 2020) as they are driven by different risk factors (Bai, Bali, and Wen, 2019). The

correlation between equities and non-investment-grade bonds tends to be higher than that

between equities and investment-grade bonds. Confirming this observation, our sample shows

that the correlation between the monthly returns of non-investment-grade bonds (investment-

grade bonds) and equities is 0.38 (0.22).5 It is also important to note that an equity is a long

position in call option on the firm’s asset, while a bond is a short position in put option on

the firm’s asset. Thus, equity and bond prices may react differently to changes in the firm’s

asset volatility. As such, the direction and significance of the time-series and cross-sectional

relations between expected return and risk in the equity and bond markets may differ.

To reconcile the conflicting findings on the risk-return tradeoff for equities and bonds,

we explore a potential explanation based on investor preferences and clienteles. According

to the Flow of Funds report released by the Federal Reserve Board, corporate bonds are

primarily held by institutional investors, in particular long-term investors such as insurance

companies, whereas equities are mainly held by retail investors. As of 2019, retail investors

4According to flow of fund data from 1986 to 2019, approximately 78% of corporate bonds were held by
institutional investors, including insurance companies, mutual funds, and pension funds. The participation
rate of retail investors in the corporate bond market is very low.

5The generally low correlation between equity and bond returns is also consistent with Kapadia and Pu
(2012), Chordia et al. (2017), and Bali et al. (2020).
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own about 6% in the corporate bond market versus 37% in the equity market. Clearly, two

groups of investors; retail vs. institutional, have distinct risk appetites, preferences, and

investment objectives. Thus, investor clientele can be a plausible cause of the different risk-

return relations in the bond and equity markets. Indeed, we find that in the equity market, the

IVOL puzzle is only pronounced for stocks predominantly held by retail investors but absent

for those largely held by institutional investors. In the corporate bond market, we find that

the idiosyncratic volatility effect is uniformly weak, no matter if the institutional ownership

is high or low. Hence, the investor clientele is likely an explanation for the significance of

systematic risk (idiosyncratic risk) in the bond (equity) market.

2 Data

2.1 Corporate bond returns

We compile corporate bond pricing data from the National Association of Insurance Commis-

sioners database (NAIC) and the enhanced version of the Trade Reporting and Compliance

Engine (TRACE) for the sample period from January 1994 to June 2019, with the TRACE

data starting from July 2002. We then merge corporate bond pricing data with the Mergent

fixed income securities database to obtain bond characteristics such as offering amount, of-

fering date, maturity date, coupon rate, coupon type, interest payment frequency, bond type,

bond rating, bond option features, and issuer information.

For bond pricing data, we adopt the filtering criteria proposed by Bai, Bali, and Wen

(2019). Specifically, we remove bonds that (i) are not listed or traded in the U.S. public

market, or not issued by U.S. companies; (ii) are structured notes, mortgage-backed, asset-

backed, agency-backed, or equity-linked; (iii) are convertible; (iv) trade under $5 or above

$1,000; (v) have floating coupon rates; and (vi) have less than one year to maturity. For

intraday data, we also eliminate bond transactions that (vii) are labeled as when-issued,

locked-in, or have special sales conditions; (viii) are canceled, and (ix) have a trading volume
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smaller than $10,000. From the original intraday transaction records, we first calculate the

daily clean price as the trading volume-weighted average of intraday prices to minimize the

effect of bid-ask spreads in prices, following Bessembinder et al. (2009).

The corporate bond return in month t is computed as

ri,t =
Pi,t + AIi,t + Couponi,t

Pi,t−1 + AIi,t−1
− 1, (1)

where Pi,t is the end-of-month transaction price, AIi,t is accrued interest on the same day of

bond prices, and Couponi,t is the coupon payment in month t, if any. The end-of-month price

refers to the last daily observation if there are multiple trading records in the last ten days

of a given month. We denote Ri,t as bond i’s excess return, Ri,t = ri,t − rf,t, where rf,t is the

risk-free rate proxied by the one-month Treasury bill rate.

After applying the aforementioned data filtering criteria, our sample includes 23,859 bonds

issued by 4,485 unique firms, for a total of 1,318,058 bond-month return observations covering

the sample period from January 1995 to June 2019. Bonds in our sample have an average

monthly return of 0.77%, an average rating of 8 (i.e., BBB+), an average issue size of 450

million dollars, and an average time-to-maturity of 10.13 years. The sample consists of 75%

investment-grade bonds and 25% high-yield bonds.6

2.2 The corporate bond market index

To capture the U.S. corporate bond market returns, we generate an index of the bond market

using the value-weighted average monthly returns of all bonds in our sample for the peri-

od January 1995 – June 2019. As a robustness check, we also use the Merrill Lynch U.S.

Corporate Index which is comprised of U.S. dollar denominated investment grade corporate

6We collect bond-level rating information from Mergent FISD historical ratings and assign a number to
facilitate the analysis. Specifically, 1 refers to a AAA rating, 2 refers to AA+, ..., and 21 refers to CCC.
Investment-grade bonds have ratings from 1 (AAA) to 10 (BBB-). Non-investment-grade bonds have ratings
above 10. A larger number indicates higher credit risk or lower credit quality. We determine a bond’s rating
as the average of ratings provided by S&P and Moody’s when both are available, or as the rating provided
by one of the two rating agencies when only one rating is available.
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bonds publicly issued in the U.S. domestic market with at least one year to maturity. The

average (median) excess return on the value-weighted bond market index is 0.33% (0.31%)

per month with a standard deviation of 1.43%. Similarly, the average (median) excess return

on the Merrill Lynch bond index is 0.32% (0.38%) per month with a standard deviation of

1.48%. As expected, the correlation between the two bond market indexes is economically

and statistically significant: 88% with a t-statistic of 14.41.

2.3 Corporate bond and equity holdings

To investigate the clientele effect in the equity and bond markets, we also collect the data on

asset holdings. For equity holdings, we use the Thomson Reuters’ institutional holdings (13F)

database that covers all investment companies including banks, insurance companies, mutual

funds, pension funds, university endowments, and other types of professional investment ad-

visors for the sample period of 1980–2019. For bond holdings, we use the Thomson Reuters

eMaxx data that covers investment companies including insurance companies, mutual funds,

and pension funds for the sample period of 2001–2017 (the earliest bond holding data starts

from 2001). For each asset, equity or corporate bond, we aggregate the shares held by all

institutional investors provided in the data and label it as institutional ownership, INST.

3 The Intertemporal Relation Between Expected Return and Risk

The Merton (1973) intertemporal capital asset pricing model (ICAPM) shows that the con-

ditional expected excess return on aggregate market is a linear function of its conditional

variance plus a hedging demand component that captures investors’ motive to hedge unfavor-

able shifts in future investment opportunities. Merton (1980) indicates that the intertemporal

hedging demand component becomes negligible under certain conditions, and the conditional

expected excess return on the market, Et(Rm,t+1), should vary positively with the market’s
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conditional variance, Et(σ
2
m,t+1):

Et(Rm,t+1) = γEt(σ
2
m,t+1), (2)

where γ is the coefficient of relative risk aversion of the representative agent and according to

the model, γ should be positive. Equation (2) establishes the dynamic relation that investors

require a larger risk premium at times when the market is riskier.

Despite the theoretical appeal of the ICAPM, the trade-off has been hard to find in the

data. Previous estimates of the relation between risk and return in the equity market often

have been insignificant and sometimes even negative. In this section, we first investigate the

intertemporal risk-return relation in the corporate bond market, then compare the findings

to those in the equity market.

3.1 The intertemporal risk-return tradeoff in the bond market

Following French, Schwert, and Stambaugh (1987), we examine the intertemporal relation

between expected return and risk of bond market returns based on the following time-series

predictive regressions:

Rm,t+1 = α + β · σ2
m,t + εm,t+1, (3)

σ2
m,t =

1

n− 1

n∑
t=1

(Rm,t −Rm)2, (4)

where Rm,t+1 is the monthly excess return of the bond market in month t + 1; σ2
m,t is the

realized variance of the bond market in month t, as a proxy for the expected conditional

variance of bond market excess returns, σ2
m,t ≈ Et(σ

2
m,t+1). According to the ICAPM, α

should be zero and β should be positive. In Eq. (4), R̄m =
∑n

t=1Rm,t

n
is the sample average of

market excess returns over the past 36 months (n = 36), and σ2
m,t is the sample variance of

monthly excess returns over the past 36 months.
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Table 1 presents the results from the monthly predictive regressions with the value-

weighted corporate bond market index (VWbond) and the Merrill Lynch bond index (MRLbond).

Consistent with the theoretical predictions, the estimated slope coefficient on the lagged real-

ized variance (β) is positive and statistically significant: 21.75 (t-stat.=2.55) for VWbond and

17.53 (t-stat.=2.22) for MRLbond.7 The estimate of the intercept term (α) is insignificant:

−0.10 (t-stat.=−0.53) for VWbond and −0.08 (t-stat.=−0.38) for MRLbond. The adjusted R2

values, 6.49% for VWbond and 3.50% for MRLbond, are very high, compared to the earlier

studies on the equity market. Overall, these results provide strong evidence of a significant

and positive intertemporal relation between expected return and risk in the corporate bond

market.

The estimated slope coefficients, 21.75 for VWbond and 17.53 for MRLbond, may appear

notably large to the asset pricing audience as they are familiar with much smaller estimates

of the risk aversion coefficient in the equity market. To provide an insight on the magnitude,

we calculate the unconditional mean (µm) and the unconditional variance (σ2
m) of excess

returns on VWbond and MRLbond as well as the ratio of the sample mean to variance (µm/σ
2
m).

For the sample period of January 1997 – June 2019, the unconditional mean, variance, and the

ratio are µm=0.33%, σ2
m=0.021%, and µm/σ

2
m=16.09 for VWbond and µm=0.32%, σ2

m=0.022%,

and µm/σ
2
m=14.76 for MRLbond. As shown in Eq. (2), these large ratios, 16.09 and 14.76,

are proxies of the relative risk aversion coefficient (γ), assuming that the hedging demand

component is negligible. The fact that the estimated slope coefficients, 21.75 for VWbond and

17.53 for MRLbond as reported in Table 1, are close to their unconditional counterparts (16.09

and 14.76, respectively) suggests that the lagged realized variance, σ2
m,t, is a good proxy for

Et(σ
2
m,t+1) in the bond market.

To provide a comparison, we also calculate the same statistics for aggregate stock market

portfolio, proxied by the value-weighted average returns of all stocks trading in NYSE, AMEX,

and NASDAQ (i.e., the CRSP index). For the same sample period, the unconditional mean,

7The t-statistics are estimated using the Newey and West (1987) adjustment with six lags to account for
autocorrelation and heteroscedasticity in monthly bond returns.
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variance, and the ratio for the equity market are µm=0.59%, σ2
m=0.20%, and µm/σ

2
m=2.91.

Thus, consistent with earlier studies, the unconditional estimate of relatively risk aversion

coefficient is much lower at 2.91 for the equity market.

3.1.1 Robustness check: Controlling for the hedging demand

As shown by Merton (1973), and subsequently pointed out by Campbell (1987), Guo and

Whitelaw (2006), and Bali and Engle (2010), Eq. (2) omits the hedging demand component

that captures investors’ motive to hedge for future investment opportunities. Thus, we in-

clude financial and macroeconomic variables to capture the state variables that determine the

investment opportunity set:8

Rm,t+1 = α + β · σ2
m,t + λ ·Xt + εm,t+1, (5)

where Xt denotes a vector of the one-month lagged financial and macroeconomic variables

proxying for business cycle fluctuations. Following Goyal and Welch (2008), we control for

variables related to macro fundamentals including the log earnings-to-price ratio (EP), the log

dividend-to-price ratio (DP), the book-to-market ratio (BM), the difference between long-term

return on government bonds and the one-month Treasury-bill (TERM), and the difference

between the return on a market portfolio of long-term corporate bonds and the long-term

government bond return (DEF).

Panel B in Table 1 shows that the intertemporal risk-return relation remains strong after

accounting for the hedging demand. It is important to note that the slope coefficients on σ2
m,t

reduce from 21.75 to 10.62 for VWbond and from 17.53 to 11.18 for MRLbond, although both

estimates remain highly significant. These results indicate that the corporate bond investors

demand extra compensation in the form of higher expected return for bearing the unfavorable

shifts in the investment opportunity set due to heightened distress risk, default risk, and/or

8See, e.g., Chen, Roll, and Ross (1986), Keim and Stambaugh (1986), Campbell and Shiller (1988), Fama
and French (1988, 1989), Fama (1990), Campbell (1991), and Ferson and Harvey (1991).
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interest rate risk proxied by the control variables such as value-to-price ratios, default spread,

and term spread. Thus, accounting for the changes in these state variables leads to a decline

in the slope coefficients on the lagged realized variance.

3.1.2 Robustness check: GARCH-in-Mean model

We also estimate the risk-return tradeoff using an alternative approach proposed by En-

gle, Lilien, and Robins (1987), the generalized autoregressive conditional heteroskedasticity

(GARCH)-in-Mean model:

Rm,t+1 = α + β · σ2
m,t+1|t + εm,t+1, (6)

Et
(
ε2m,t+1|Ωt

)
= σ2

m,t+1|t = θ0 + θ1ε
2
m,t + θ2σ

2
m,t, (7)

where Rm,t+1 is the monthly excess return of the bond market in month t + 1 and σ2
m,t+1|t

is the time-t expected conditional variance of bond market excess returns. In Eq. (7), Ωt

denotes the information set available at time t and the one-month-ahead conditional variance

of bond market returns is a function of current unexpected news (ε2m,t) and current variance

(σ2
m,t).

Panel A of Table A.1 in the online appendix shows that for the period January 1997 – June

2019, the estimated slope coefficient on the conditional variance of the bond market is positive

and significant: β=20.13 (t-stat.=2.62), whereas the estimate for the equity market is positive

but insignificant: β=1.24 (t-stat.=0.47).9 We also replicate the GARCH-in-Mean analysis for

the equity market using the longest sample period available at CRSP (July 1926−June 2019)

and the estimate is similar: β=1.13 (t-stat.=1.50).

Note that the GARCH model of Bollerslev (1986) in Eq. (7) is defined as a function

of the squared information shocks to the bond market (or squared unexpected news in the

bond market). Since positive and negative shocks of the same magnitude produce the same

9It is important to note that for the bond market, the magnitude of the risk aversion coefficient obtained
from the GARCH-in-Mean model, 20.13, is very close to the coefficient obtained from the realized variance
model, 21.75, reported in Table 1.

12



amount of volatility, the symmetric GARCH model in Eq. (7) cannot cope with the skewness

of bond market returns. Hence, one may think that the risk-return coefficients from the

symmetric GARCH-in-Mean model are biased for skewed bond return series. To alleviate

this potential concern, we use the asymmetric GARCH model of Glosten et al. (1993), known

as the Threshold GARCH (or GJRGARCH) model:

Rm,t+1 = α + β · σ2
m,t+1|t + εm,t+1, (8)

Et
(
ε2m,t+1|Ωt

)
= σ2

m,t+1|t = θ0 + θ1ε
2
m,t + θ2σ

2
m,t, + θ3Dtε

2
m,t, (9)

Dt = 1 if εm,t < 0, and Dt = 0 otherwise

where Eq. (9) allows positive and negative shocks to have different impacts on the conditional

variance of the bond market. If θ3 is positive, the GJRGARCH model implies that negative

(positive) shocks increase (decrease) the conditional variance of bond market returns.

Results for the GJRGARCH-in-Mean model are similar to those for the GARCH-in-Mean

model, as shown in Panel B of Table A.1. The estimated slope coefficient on the conditional

variance of the bond market is positive and significant: β=18.12 (t-stat.=2.47), whereas the

estimate for the equity market becomes negative for the sample period 1997–2019, β=−0.98

(t-stat.=−0.38) and remains insignificant in the longer sample period, 0.72 (t-stat.=1.03).

Overall, the intertemporal relation between expected return and risk in the bond market

is significantly positive and robust, whereas there is no significant risk-return tradeoff in the

equity market (consistent with earlier studies).

3.2 Economic significance of the intertemporal risk-return tradeoff
in the bond market

In this section, we investigate the economic value of bond market forecasts based on the

variance of bond market returns. Following Kandel and Stambaugh (1996), Campbell and

Thompson (2008), and Ferreira and Santa-Clara (2011), among others, we compute the cer-
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tainty equivalent return (CER) gain for a mean-variance investor who optimally allocates

between the corporate bond market portfolio and the risk-free asset using the out-of-sample

predictive regression forecasts.

At the end of month t, the investor optimally allocates wt of the portfolio to bonds and

1− wt to the risk-free asset and earn the realized return at the end of month t+ 1 as

Rp
t+1 = wtR

m
t+1 + (1− wt)Rf

t+1, (10)

where wt =
1

γ

R̂m
t+1

σ̂2
t+1

. (11)

In Eq.(11), γ is the risk aversion coefficient, R̂m
t+1 is the out-of-sample forecast of the corporate

bond market excess return, and σ̂2
t+1 is the variance forecast. The CER of the portfolio is

CERp = µ̂p − 0.5γσ̂2
p, (12)

where µ̂p and σ̂2
p are the sample mean and variance of the investor’s portfolio over the fore-

casting evaluation period. The CER gain is the difference between the CER based on the

forecast of market return generated by the realized market variance and the CER based on

the historical average forecast.10 To examine the effect of risk aversion, we consider three

levels; 10, 15, and 20, to be consistent with the risk aversion estimates in Table 1.

Table 2 shows that the bond market variance delivers large economic gains for a mean-

variance investor. For the value-weighted bond index in Panel A, the CER gains for σ2
m,t across

the risk aversion coefficients are consistently positive and economically large, ranging from

3.64% to 5.04%. Specifically, an investor with a risk aversion of 10, 15, and 20 would be willing

to pay an annual portfolio management fee up to 3.64%, 4.34%, and 5.04%, respectively, to

have access to the intertemporal risk-return regressions in Eqs. (3)–(4). As expected, the

fee increases with risk aversion. Contrary to the large CER gains from the market variance,

macroeconomic variables proxying for business cycle fluctuations generate small economic

10We multiply this difference by 12 so that it can be interpreted as the annual portfolio management fee that
an investor would be willing to pay to have access to the predictive regression forecast instead of the historical
average forecast. We follow DeMiguel, Garlappi, and Uppal (2009) to assess the statistical significance of the
CER gain.
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gains. For example, when the risk aversion is 10, EP, DP, BM, and DEF have negative CER

gains of −2.23%, −0.22%, −4.38%, and −2.70%, respectively. The only exception is TERM

which delivers positive economic gains in the range of 1.68% and 2.47%, though the gains are

still much smaller than those based on the bond market variance. As shown in Panel B of

Table 2, the results are similar when we use the Merrill Lynch bond index as an alternative

proxy of the bond market return.

In addition to the CER gains, we simulate the returns of a trading strategy based on

the out-of-sample one-month-ahead forecasts of the bond market returns using its realized

variance. For each month t, the strategy invests 100% in the bond market index if the

forecasted excess return of bonds over the risk-free rate is greater than zero; otherwise it

invests 100% in Treasury bills. At time t + 1, the return of the portfolio is realized; a new

regression using the expanding window is estimated and a new return forecast is computed.11

We find that for the out-of-sample period from January 2007 to June 2019, the market-timing

strategy using VWbond and its realized variance generates an average return of 0.55% per

month with a standard deviation of 1.52% and a monthly Sharpe ratio of 0.32, higher than

many of the existing corporate bond market factors.12 Overall, Table 2 demonstrates that the

bond market variance, σ2
m,t, can generate sizable economic value for a mean-variance investor,

and the results are robust to different risk aversion coefficients and different proxies for the

corporate bond market returns.

3.3 The intertemporal risk-return tradeoff in the equity market

To make comparisons with the bond market, we now replicate the test in the equity market.

Following French et al. (1987) and a number of follow-up studies, we estimate the time-series

predictive regressions in Eq. (3) using the value-weighted CRSP index as a proxy for the U.S.

11The in-sample estimation period starts from January 1997 to December 2006 and the out-of-sample bond
return forecasts spans January 2007 to June 2019. We choose the in-sample estimation period to be before
the crisis in 2007 to investigate the performance of the market-timing strategy during the crisis period.

12During the same period from January 2007 to June 2019, the monthly Sharpe ratios for the default factor,
term factor, downside risk factor, credit risk factor, and liquidity risk factor are −0.09, 0.22, 0.24, 0.15, and
0.28, respectively.
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equity market. Consistent with the findings in French et al. (1987), Goyal and Santa-Clara

(2003), Ghysels et al. (2005), and Bali (2008), Table 3 shows that there exists no significant

intertemporal relation between the realized variance and the one-month-ahead excess return

of aggregate stock market portfolio.

For the same sample period as used in the bond market, January 1997 – June 2019,

the estimated slope coefficient on the lagged realized variance is positive but statistically

insignificant; 1.91 (t-stat.=0.76). When we use the longest sample period available at CRSP

(July 1926−June 2019), the estimate remains insignificant, 0.53 (t-stat.= 0.79). Table 3 also

shows that the adjusted R2 values are close to zero: 0.05% for the 1926–2019 period and

−0.14% for the 1997–2019 period, confirming the insignificant predictive power of the equity

market risk. Controlling for the same set of variables (EP, DP, BM, DEF, TERM), we find

no evidence of a significant time-series link between expected return and risk in the equity

market.

To understand the contradictory findings on the risk-return tradeoff in the equity versus

bond markets, we provide further investigation in Section 5.

4 The Cross-Sectional Relation Between Expected Return and
Risk

After thoroughly investigating the time-series relation between risk and return in the bond

market, in this section, we examine the cross-sectional relation between total, systematic,

and idiosyncratic risk and future returns on individual corporate bonds. We first propose a

new measure of systematic and idiosyncratic risk for corporate bonds. Second, we explore

alternative factor models to calculate the risk-adjusted returns of bond portfolios sorted by

systematic and idiosyncratic risk. Third, we present comprehensive evidence on the cross-

sectional relation between risk and future returns of corporate bonds using the portfolio-

level and bond-level Fama-MacBeth regressions. Finally, we test the relative performance of

aggregate systematic vs. idiosyncratic risk in predicting future bond market returns and bond
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market volatility.

4.1 Systematic and idiosyncratic risks of corporate bonds

For each month, we use a 36-month rolling window to estimate the monthly variance (total

risk) of corporate bonds:

σ2
i,t =

1

n− 1

n∑
t=1

(Ri,t −Ri)
2, (13)

where Ri,t = ri,t − rf,t is the excess return on bond i in month t, R̄i =
∑n

t=1Ri,t

n
is the sample

average of excess returns over the past 36 months (n = 36), and σ2
i,t is the sample variance of

monthly excess returns over the past 36 months. A bond is included in the risk calculations

if it has at least 24 monthly return observations in the 36-month rolling window before the

test month.

After computing the total risk of each bond, we divide the total variance (σ2
i ) into its sys-

tematic and idiosyncratic components. Our objective is to investigate whether the systematic

and/or idiosyncratic component has significant predictive power on future corporate bond

returns. We use the factor model of Bai, Bali, and Wen (2019) that introduces the downside

risk, credit risk, and liquidity risk factors based on independently sorted bivariate portfolios

of bond-level credit rating, value-at-risk, and illiquidity:13

Ri,t = αi + β1,i ·MKTt + β2,i ·DRFt + β3,i · CRFt + β4,i · LRFt + εi,t, (14)

where Ri,t is the excess return on bond i in month t. Total risk of bond i is measured by

the variance of Ri,t in Eq. (13), denoted by σ2
i . Idiosyncratic (or residual) risk of bond i is

proxied by the variance of εi,t in Eq. (14), denoted by σ2
ε,i. Systematic risk of bond i is defined

as the difference between total and residual variance, SR = σ2
i − σ2

ε,i, and it is a function of

the variance of the MKT , DRF , CRF , and LRF factors, the cross-covariances of the MKT ,

13DRF is the downside risk factor, defined as the value-weighted average return difference between the
highest-VaR portfolio minus the lowest-VaR portfolio within each rating portfolio. CRF is the credit risk
factor, defined as the value-weighted average return difference between the highest credit risk portfolio minus
the lowest credit risk portfolio within each illiquidity portfolio. LRF is the liquidity risk factor, defined as the
value-weighted average return difference between the highest illiquidity portfolio minus the lowest illiquidity
portfolio within each rating portfolio.
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DRF , CRF , and LRF factors, and the exposures of the bond’s excess returns to the MKT ,

DRF , CRF , and LRF factors (i.e., factor loadings). That is, systematic risk of bond i is

attributable to the overall volatility of the four factors as well as the factors’ cross-covariances.

Motivated by the fact that downside risk, credit risk, and liquidity risk jointly play an

important role in determining the expected bond returns, we introduce a new, composite

measure of systematic risk of individual corporate bonds that integrates the covariances of

these risk factors (DRF, CRF, LRF) as well as their own variances. We will show that the

conventional measure of market risk, such as the market beta alone, is not sufficient to capture

the broad systematic risk in the corporate bond market.

4.2 Alternative factor models

We consider three different factor models to estimate the risk-adjusted returns (alphas) of

corporate bond portfolios sorted by total, systematic, and idiosyncratic risk.

The first one is the 5-factor model with equity market factors, including the excess return

on the market portfolio proxied by the value-weighted stock market index (MKTStock) in the

Center for Research in Security Prices (CRSP), the size factor (SMB), the book-to-market

factor (HML), the momentum factor (MOMStock), and the liquidity risk factor (LIQStock),

following Fama and French (1993), Carhart (1997), and Pastor and Stambaugh (2003).14

The second one is the 5-factor model with bond market factors, including aggregate corpo-

rate bond market (MKT), the default spread factor (DEF), the term spread factor (TERM),

the bond liquidity factor (LIQBond), and the bond momentum factor (MOMBond), following

Fama and French (1993), Elton, Gruber, and Blake (1995), Lin, Wang, and Wu (2011), and

Jostova et al. (2013). Following Fama and French (1993), we define the default factor (DE-

F) as the difference between the return on a market portfolio of long-term corporate bonds

(the composite portfolio on the corporate bond module from Ibbotson Associates) and the

14The factors MKTStock (excess market return), SMB (small minus big), HML (high minus low), MOM
(winner minus loser), and LIQ (liquidity risk) are described in and obtained from Kenneth French’s
and Lubos Pastor’s online data libraries: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ and
http://faculty.chicagobooth.edu/lubos.pastor/research/.
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long-term government bond return, and we define the term factor (TERM) as the difference

between the monthly long-term government bond return (from Ibbotson Associates) and the

one-month Treasury bill rate. Following Jostova et al. (2013) and Bali et al. (2020), the bond

momentum factor (MOMBond) is constructed from 5×5 bivariate portfolios of credit rating

and bond momentum, defined as the cumulative returns over months from t − 7 to t − 2

(formation period). We construct the liquidity risk factor (LIQBond) in line with Lin, Wang,

and Wu (2011).

The third one is the 10-factor model combining the five equity market factors and the five

bond market factors described above.

Panel A of Table 4 shows that bonds in our sample have an average systematic risk of 0.13%

with a standard deviation of 0.27%. Panel B presents the correlation matrix between SR and

the other bond characteristics. Following Bai, Bali, and Wen (2019), our proxy for downside

risk is the 5% Value-at-Risk (VaR), the second lowest monthly return observation over the past

36 months.15 Following Roll (1984), bond-level illiquidity is proxied by the autocovariance of

daily bond price changes within each month. As shown in Panel B, systematic risk is positively

associated with rating, maturity, downside risk, and bond-level illiquidity, with respective

correlations of 0.342, 0.124, 0.623, and 0.184. These numbers indicate that bonds with higher

credit risk, longer maturity (proxying for higher interest rate risk), higher downside risk, and

lower liquidity have higher systematic risk. Bond size is negatively correlated with systematic

risk, implying that smaller and illiquid bonds have higher systematic risk.

4.3 The cross-sectional relation between systematic risk and ex-

pected bond returns

We first test the significance of a cross-sectional relation between systematic risk and future

bond returns using portfolio-level analysis. For each month from January 1997 to June 2019,

we form value-weighted univariate portfolios by sorting corporate bonds into quintiles based

15Following BBW, we multiply the original VaR measure by −1 so that a higher value is associated with
higher downside risk for convenience of interpretation.
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on their systematic risk (SR), where quintile 1 contains bonds with the lowest SR and quintile

5 contains bonds with the highest SR. Table 5 shows, for each quintile, the average systematic

risk of bonds, the next month average excess return, the 5-factor alpha from stock market

factors, the 5-factor alpha from bond market factors, and the 10-factor alpha from both stock

and bond market factors. The last six columns report the average bond characteristics for

each quintile, including the bond market beta, illiquidity, downside risk, credit rating, time-to-

maturity, and bond size. The last row displays the differences in the average returns and the

alphas between quintile 5 and quintile 1. The average excess returns and alphas are defined

in terms of monthly percentages. Newey-West (1987) adjusted t-statistics with six lags are

reported in parentheses.

Moving from quintile 1 to quintile 5, the average excess return on the SR-sorted portfolios

increases monotonically from 0.19% to 1.03% per month. This indicates a monthly average

return difference of 0.85% between quintiles 5 and 1 with a Newey-West t-statistic of 3.64,

implying that this positive return difference is economically and statistically significant. This

result shows that corporate bonds in the highest SR quintile generate 10.20% per annum

higher average return than bonds in the lowest SR quintile do.

In addition to the average excess returns, Table 5 presents the intercepts (alphas) from

the regression of the quintile excess portfolio returns on a constant, the excess stock market

return (MKTStock), the size factor (SMB), the book-to-market factor (HML), the momentum

factor (MOM), and the liquidity factor (LIQ) described in Section 4.2. The third column

of Table 5 shows that, similar to the average excess returns, the 5-factor alpha from stock

market factors also increases monotonically from 0.15% to 0.76% per month, moving from the

low-SR to the high-SR quintile, indicating a positive and significant alpha spread of 0.61%

per month (t-stat.= 2.51).

Beyond the well-known stock market factors, we also test whether the significant return

difference between High-SR bonds and Low-SR bonds is explained by prominent bond market

factors. Similar to our earlier findings from the average excess returns and the 5-factor alphas
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from stock market factors, the fourth column of Table 5 shows that, moving from the low-

SR to the high-SR quintile, the 5-factor alpha from bond market factors increases almost

monotonically from 0.06% to 0.80% per month. The corresponding 5-factor alpha spread

between quintiles 5 and 1 is positive and highly significant: 0.73% per month with a t-statistic

of 3.25. The fifth column of Table 5 presents the 10-factor alpha for each quintile from the

combined five stock and five bond market factors. Consistent with our earlier results, the 10-

factor alpha is 0.62% per month with a t-statistic of 2.46. Overall, these results indicate that

the commonly used stock and bond market factors do not explain the significantly positive

systematic risk premium in the corporate bond market.16

Next, we investigate the source of the significant risk-adjusted return (alpha) spread be-

tween the high- and low-SR bonds. As reported in Table 5, the 10-factor alpha in quintile

1 (low-SR bonds) is economically and statistically insignificant, whereas the 10-factor alpha

in quintile 5 (high-SR bonds) is positive and highly significant. Hence, we conclude that

the significantly positive alpha spread between the high- and low-SR bonds is due to the

outperformance by high-SR bonds (long leg of the arbitrage portfolio), but not due to the

underperformance by low-SR bonds (short leg of the arbitrage portfolio).17

Finally, we examine the average characteristics of SR-sorted bond portfolios. As shown in

the last six columns of Table 5, high-SR bonds have higher bond market beta, lower liquidity,

higher downside risk, lower credit quality, and longer maturity. These results indicate that

bonds with higher systematic risk have higher market, credit, and downside risk and have

lower liquidity. Thus, we will test whether the systematic risk premium is explained by the

aforementioned risk and liquidity characteristics of corporate bonds in bivariate portfolio sorts

16 Our finding of a significantly positive systematic risk premium in the bond market is also consistent
with Koijen, Lustig, and Van Nieuwerburgh (2017) showing that bond factors which predict future economic
activity at business cycle horizons are priced in the cross-section of bond returns, highlighting the role of
systematic risk in the bond market.

17In Table A.2 of the online appendix, we test the significance of a cross-sectional relation between total
risk (volatility) and future bond returns. Similar to our findings in Table 5 for SR-sorted portfolios, Table A.2
shows that the average return and alpha spreads between high-VOL and low-VOL quintiles are positive and
highly significant and the significantly positive alpha spread is driven by the outperformance of high-volatility
bonds, but not due to the underperformance of low-volatility bonds.
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and multivariate regressions.

4.4 Is there an IVOL puzzle in the corporate bond market?

In sharp contrast to the findings in Table 5, Table 6 presents evidence for the poor performance

of idiosyncratic risk (IR) in predicting the cross-sectional variation in future bond returns.

Compared to Table 5, the average return spread between quintiles 5 and 1 in Table 6 is weaker

economically: 0.45% per month (t-stat. = 2.14). More importantly, the 10-factor alpha spread

between the high-IR and low-IR quintiles is economically and statistically insignificant at

0.17% per month (t-stat. = 1.16). These results show that the standard bond market factors

explain the average return spread in idiosyncratic volatility-sorted portfolios.

As discussed earlier, corporate bonds are primarily held by institutional investors. The

insignificant 10-factor alpha spread in Table 6 suggests that institutional investors in the

corporate bond market are able to create well-diversified portfolios with a small exposure to

bond-specific risk so that idiosyncratic volatility does not command a significant risk premium

in the bond market. Since institutional investors do not demand compensation for not being

able to diversify firm-specific risk, there exists no significant relation between idiosyncratic risk

and future bond returns, consistent with the theoretical models of Levy (1978) and Merton

(1987). Thus, we conclude that there is no IVOL puzzle in the corporate bond market.

4.5 Bivariate portfolios of systematic risk and idiosyncratic risk

In this section, we investigate the predictive power of systematic and idiosyncratic risk while

accounting for the interaction between them. Specifically, we perform a bivariate portfolio

analysis for systematic risk by controlling for idiosyncratic risk, and then we conduct the same

test for idiosyncratic risk while controlling for systematic risk.

4.5.1 Bivariate portfolios of systematic risk controlling for idiosyncratic risk

We first test whether the positive relation between systematic risk and future bond return-

s remains significant after controlling for idiosyncratic risk. To perform this test, we form
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quintile portfolios every month from January 1997 to June 2019 by first sorting corporate

bonds into five quintiles based on their idiosyncratic risk. Then, within each IR-sorted port-

folio, bonds are further sorted into five sub-quintiles based on their systematic risk. This

methodology produces sub-quintile bond portfolios with dispersion in SR but nearly identical

IR values under each IR-sorted quintile. SR,1 represents the lowest SR-ranked bond quintiles

within each of the five IR-ranked quintiles. Similarly, SR,5 represents the highest SR-ranked

quintiles within each of the five IR-ranked quintiles. Panel A of Table 7 shows the average

systematic risk and the next month average return for each quintile. Moving from portfolio

SR,1 to SR,5, the average return increases almost monotonically from 0.44% to 1.21% per

month. The average return difference between portfolio SR,5 and SR,1 (i.e., high-SR bonds

versus low-SR bonds) is 0.77% per month with a t-statistic of 2.73, indicating that the positive

relation between systematic risk and future bond returns remains significant after controlling

for idiosyncratic risk.

We also check whether this significant return spread between portfolio SR,5 and portfolio

SR,1 is explained by established equity and bond market factors. The 5-factor stock, 5-factor

bond, and 10-factor alpha spreads are all positive at 0.71%, 0.65%, and 0.59% per month,

and statistically significant. Thus, first controlling for idiosyncratic risk and then controlling

for stock and bond market factors, the risk-adjusted return spread between the high-SR and

low-SR bonds remains positive and significant.

4.5.2 Bivariate portfolios of idiosyncratic risk controlling for systematic risk

We now investigate the relation between idiosyncratic risk and future bond returns after

controlling for systematic risk. To perform this test, we reverse the portfolio sorting in the

above subsection and rank corporate bonds first by SR, and then by IR within each SR-sorted

portfolio. In Table 7, Panel B shows that the average return spread between portfolio IR,5 and

IR,1 is positive but economically small, 0.11% per month, and statistically insignificant with a

t-statistic of 0.78, indicating that the significant relation between idiosyncratic risk and future
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raw returns disappears after controlling for systematic risk. In addition, the differences in the

5-factor stock, 5-factor bond, and 10-factor alphas are all economically small and statistically

insignificant. Overall, the bivariate portfolio analyses indicate that compared to idiosyncratic

risk, the composite measure of systematic risk is a more powerful determinant of the cross-

sectional variation in corporate bond returns.

4.6 Fama-MacBeth cross-sectional regressions

We have so far tested the significance of systematic and idiosyncratic risk measures as deter-

minants of the cross-section of future bond returns at the portfolio level. To examine their

impact simultaneously, we use Fama and MacBeth (1973) regressions and control for other

risk characteristics, including the bond market beta, default beta, term beta, bond-level illiq-

uidity, credit rating, year-to-maturity, bond amount outstanding, and lagged bond return.18

Monthly cross-sectional regressions are run for the following specification and nested versions

thereof:

Ri,t+1 = λ0,t + λ1,t · SRi,t + λ2,t · IRi,t +
K∑
k=1

λk,t · Controlk,t + εi,t+1, (15)

where Ri,t+1 is the excess return on bond i in month t+ 1.

Table 8 reports the time series average of the intercept, slope coefficients (λ’s), and the

adjusted R2 values over the 252 months from January 1997 to June 2019. The univariate

regression results confirm those obtained from the portfolio analysis. In Regression (1), the

average slope, λ1,t, from the monthly regressions of excess returns on SR alone is 1.828 with

a t-statistic of 4.33. The economic magnitude of the associated effect is similar to that doc-

umented in Table 5. The spread in average SR between low-SR and high-SR portfolios is

approximately 0.50%, and multiplying this spread by the average slope of 1.828 produces an

estimated monthly return difference of 91 basis points.19 Similarly, the estimate of idiosyn-

18The bond market beta (βMKT ), default beta (βDEF ), and term beta (βTERM ) are the risk exposures
to aggregate bond market factor, the default factor, and the term factor obtained from a 36-month rolling
window estimation.

19Note that the ordinary least squares (OLS) methodology used in the Fama-MacBeth regressions gives an
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cratic risk premium, λ2,t, is positive and significant in univariate regression (2), consistent

with the significantly positive raw return spread reported in Table 6. When including both

SR and IR in regression (3), systematic risk premium remains significant, while idiosyncrat-

ic risk premium disappears. This finding is consistent with the bivariate portfolio results

reported in Table 7.

After controlling for various bond characteristics in regressions (4)-(6), the results remain

robust that there is no premium for idiosyncratic risk, but a significantly positive premium for

systematic risk. These results show that the newly proposed composite measure of systematic

risk has distinct information beyond bond size, maturity, rating, liquidity, market risk, and

default risk, and that it is a strong and robust predictor of future bond returns.

Our findings are consistent with theoretical predictions. We attribute the theoretical align-

ment to the fact that we construct an economically sensible measure of systematic risk not

only because we choose robust risk factors that capture common variation in corporate bond

returns, but also because of the way we synthesize information over these factors. Our sys-

tematic risk measure is a function that synthesizes the variance of the underlying factors, the

cross-covariances of the factors, and the exposures of bond returns to the factors. Motivated

by the fact that downside risk, credit risk, and liquidity risk jointly play an important role in

determining expected bond returns, one needs a comprehensive measure that can integrate

the covariances of these risk factors as well as their own variances. Thus, the conventional

measure of market risk, such as the market beta alone, is not sufficient to capture the broad

systematic risk in the corporate bond market, as shown by the insignificant average slope

coefficients on βMKT .

4.7 Robustness check

We conduct several robustness checks on the predictive power of systematic risk and present

the results in the online appendix (Tables A.3 to A.6). Our results show that the predictive

equal weight to each cross-sectional observation so that the regression results are more aligned with the equal-
weighted portfolios. That is why the economic significance of SR obtained from Fama-MacBeth regressions,
0.91% per month, is somewhat higher than the 0.85% per month obtained from the value-weighted portfolios
(see Table 5).
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power of SR for future bond returns (i) is significantly positive for both investment-grade

and non-investment-grade bonds, (ii) remains economically and statistically significant for

different subperiods from January 1997 to June 2019 (including the crisis and the postcri-

sis/recovery periods), and (iii) is robust to using firm-level regressions by picking one bond

with median size or the most liquid bond as a representative bond of the firm.

4.8 The nexus of the cross-section and time-series predictability

Cochrane (2005) and Maio and Santa-Clara (2012) investigate the ICAPM restrictions in the

cross-section and time-series predictability, and show that the cross-sectional variable (when

aggregated) should predict future market return and market volatility if the variable can be

interpreted as the state variable that affects investment opportunity set in the ICAPM. In

this subsection, we provide novel evidence in the bond market supporting this interpretation.

We construct three aggregate measures of systematic risk using different weighting schemes,

namely, the equal-weighted, value-weighted, and rating-weighted cross-sectional average of

bond-level systematic risk, and investigate their predictive power for future returns and volatil-

ity of aggregate bond market portfolio. Fig.1 plots the time-series of aggregate systematic

risk over the sample period from January 1997 to June 2019. The three measures are highly

correlated with an average correlation coefficient of 0.95, and all spike during the Great Re-

cession.20 To test the time-series predictive power of aggregate systematic risk, we control for

a large set of macroeconomic variables proxying for business cycle fluctuations:

Yt+τ = α + λ1 · SRt + λ2 ·Xk
t + εt+1, k = 1, ..., 6; τ = 1, 2, ..., 12 (16)

where Yt+τ is one of the two dependent variables: bond market excess return (VWbond) and

bond market variance (MKTV OL), calculated as the sum of squared daily bond market returns

in a month. Xk
t is a vector of control variables similar to those used in Eq. (5).

20As a result, we use the value-weighted average systematic risk (SRVW ) in our time-series predictive
regressions. Table A.7 of the online appendix shows that the results are similar when we use the equal- and
rating-weighted aggregate measures.
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Table 9 presents the performance of aggregate systematic risk in predicting τ -month a-

head aggregate bond market returns and bond market volatility for different horizons (τ =

1, 2, ..., 12). Panel A shows that the estimated slope coefficients, λ1, in Eq. (16) are signifi-

cantly positive, indicating the strong predictive power of aggregate systematic risk on future

bond market returns up to 9 months, even after controlling for a number of time-series return

predictors. Further, the adjusted R2 values are very high compared to those presented in ear-

lier studies for the equity market.21 Panel B shows that aggregate systematic risk positively

predicts future bond market volatility up to six months into the future. Both sets of results

suggest that the composite measure of systematic risk satisfies the ICAPM restrictions on the

time-series and cross-sectional predictability.

In sharp contrast to the strong predictability of aggregate systematic risk, Table 10 shows

that aggregate idiosyncratic risk does not have any predictive power for future bond market

returns or volatility. None of the estimated slope coefficients on aggregate idiosyncratic risk

is significant for any forecasting horizon in either Panel A or Panel B.

The time-series predictability of aggregate systematic risk in this subsection resonates the

findings in Section 3, both corroborating the significance of a positive intertemporal risk-return

tradeoff in the corporate bond market.

5 Investigating the Role of Systematic and Idiosyncratic Risk in
the Bond and Equity Markets

In this section, we examine the different roles played by systematic and idiosyncratic risk in

the cross-sectional pricing of equities versus bonds. First, we propose a similar measure of

systematic risk for individual stocks and revisit the IVOL puzzle in the equity market. Then,

we explore the impact of the investor clientele on the predictive power of idiosyncratic risk

21The strong predictive power of SR in Table 9 is consistent with Table A.8 in the online appendix, which
reports the significant time-series predictive power of the value-, equal-, and rating-weighted average of total
variance of individual bonds for the one-month-ahead bond market returns.
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for future stock and bond returns.

5.1 Revisiting the IVOL puzzle in the equity market

Our composite measure of systematic risk for corporate bonds is a function of the variance of

the underlying bond factors, the cross-covariances of the factors, and the bond exposures to

these factors. Thus, the key input to construct a sound measure of systematic risk is to use

economically sensible risk factors that capture common return variation in corporate bonds

and that provide an accurate characterization of firm fundamentals.

In this section, we propose a similar comprehensive measure of systematic risk for individ-

ual stocks using the powerful equity factor models proposed by Fama and French (2015) and

Hou, Xue, and Zhang (2015). Specifically, we construct a composite measure of systematic

risk for individual stocks based on the five-factor model of Fama and French (2015) in Eq. (17)

and the four-factor model of Hou, Xue, and Zhang (2015) in Eq. (18):

Ri,d = αi+β1,i ·MKT Stockd +β2,i ·SMBd+β3,i ·HMLd+β4,i ·RMWd+β5,i ·CMAd+εi,d, (17)

Ri,d = αi + β1,i ·MKT Stockd + β2,i ·MEQ,d + β3,i ·ROEQ,d + β4,i · IAQ,d + εi,d. (18)

where Ri,d is the excess return of stock i on day d. In Eq. (17), MKT Stockd , SMBd, HMLd,

RMWd, and CMAd in) are the daily equity market, size, book-to-market, profitability, and

investment factors of Fama and French (2015). In Eq. (18), MEQ,d, ROEQ,d, and IAQ,d are

the daily size, profitability, and investment Q factors of Hou, Xue, and Zhang (2015).22

The total risk of stock i is measured by the variance of Ri,d (σ2
i ), calculated as the sum of

squared daily returns in a month. Idiosyncratic risk is measured by the variance of εi,d (σ2
ε,i).

Systematic risk is thus the difference between the total and residual variance, SR = σ2
i −σ2

ε,i.

Following Ang et al. (2006) and subsequent work on idiosyncratic volatility in the equity

22The MKT , SMB, HML, RMW , and CMA factors of Fama-French (2015) are obtained from the data
library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/) for the longest sample period from July
1963 to June 2019. The Q factors (MEQ, ROEQ, and IAQ) of Hou, Xue, and Zhang (2015) are obtained
from the data library (http://global-q.org/index.html) for the long sample period from January 1967 to June
2019.
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market, Eqs. (17) and (18) are estimated using daily returns over the past month, requiring

at least 15 daily return observations in a month.23

Table 11 presents results from the value-weighted univariate portfolios of stocks sorted

separately by systematic risk and idiosyncratic risk. Consistent with the IVOL puzzle in the

equity market, systematic risk estimated either with Eq. (17) or (18) does not predict the

cross-sectional variation in equity returns, whereas the IVOL puzzle remains significant in the

equity market. One potential explanation is that investors hold concave preferences thus like

positive skewness. If positive skewness is a desirable characteristic of a return distribution,

then the fact that diversification destroys portfolio skewness makes investors to be willing to

hold a limited number of stocks in their portfolios.24

Since individual investors do not hold a large number of stocks in their portfolios, they

are unable to diversify firm-specific risk. Thus, according to the theoretical models of Levy

(1978) and Merton (1987), stocks with higher idiosyncratic risk require higher returns to

compensate for imperfect diversification, justifying a positive (not negative) cross-sectional

relation between idiosyncratic risk and future equity returns. Since the IVOL puzzle is known

to be significant only in the sample of stocks largely held by individual investors (to be

confirmed in the next section), we conclude that retail investors’ demand for positive skewness

dominates their aversion to volatility so that retail investors prefer to hold a small number

of lottery-like stocks with large positive skewness. Given that lottery stocks tend to have

high idiosyncratic volatility and low future returns, retail investors’ preference for lottery-like

securities show some promise in solving the idiosyncratic volatility puzzle in the equity market

(e.g., Kumar, 2009; Bali et al., 2011; Hou and Loh, 2016).

23We also use monthly data in estimating idiosyncratic volatility of individual stocks, to be consistent with
the method in Section 4. The findings remain similar to those obtained from the daily data.

24The literature shows that the portfolios of individual investors are, in general, not well-diversified. For
example, Goetzmann and Kumar (2008) find that the median number of stocks in a portfolio of individual
investors is three in the 1991-1996 period. Odean (1999) and Barber and Odean (2001) also report the median
number of stocks in individual investors’ portfolios as two to three.
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5.2 The investor clientele effect in the equity and bond markets

The Flow of Funds report released by the Federal Reserve Board shows the composition of

investors in the U.S. equity and corporate bond markets. Over the period of 1986 to 2019, the

primary holders of corporate bonds are institutional investors (78% on average), in particular,

insurance companies, mutual funds, and pension funds, whereas the main holders of equities

are retail investors (household sector, 43%), then mutual funds (33%) and pension funds

(15%). Since equities and bonds are mainly held by different groups of investors, retail vs.

institutional investors, the difference in investor preferences and clienteles can be a plausible

cause for the significance of systematic risk (idiosyncratic risk) in the bond (equity) market.

We first investigate the effect of the investor clientele on the predictive power of idiosyn-

cratic risk for future stock returns. To perform this task, we form quintile portfolios every

month from January 1980 to June 2019 by sorting individual stocks into portfolios based on

institutional ownership, then within each ownership portfolio, we further sort stocks into sub-

quintiles based on their idiosyncratic risk. Table 12 shows that the negative cross-sectional

relation between idiosyncratic risk and future returns is more pronounced among stocks with

low institutional ownership (i.e., stocks largely held by retail investors). More importantly,

the IVOL puzzle disappears among stocks with high institutional ownership. This result is

consistent with the evidence provided by Kumar (2009) and Han and Kumar (2013) that

retail investors tend to be more attracted to high volatility stocks because of their lottery-like

features, and such behavior leads to the negative cross-sectional relation between idiosyncratic

volatility and future stock returns.

We conduct a similar analysis for corporate bonds using Thompson Reuter’s eMAXX bond

holdings data. This dataset has a comprehensive coverage of quarterly fixed income holdings

for U.S. institutional investors such as insurance companies and mutual funds. For a given

bond i in quarter t, the measure of institutional ownership is defined as:

INSTit =
∑
j

(
Holdingijt

OutstandingAmtit

)
=
∑
j

hjt, (19)
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where Holdingijt is the par amount holdings of investor j on bond i during quarter t,

OutstandingAmtit is bond i’s outstanding amount, and hjt is the fraction of the outstanding

amount held by investor j, in percentage.

We examine whether the idiosyncratic volatility effect in corporate bonds is uniform across

bonds with high and low institutional ownership.25 Specifically, we form value-weighted bi-

variate portfolios by sorting corporate bonds into 5×5 quintile portfolios based on institutional

ownership and idiosyncratic volatility estimated in Eq. (14). Table 13 reports the 10-factor

alpha for each of the 25 portfolios at month t + 1 and shows that the alpha spread between

high-IR and low-IR quintiles is economically small and statistically insignificant in all quin-

tiles of institutional ownership. Moreover, the magnitude of the alpha spreads is uniformly

insignificant across all INST quintiles.

6 Conclusion

This paper provides time-series and cross-sectional evidence on the significance of a risk-

return tradeoff in the corporate bond market. For the first time in the literature, we present

evidence of a significantly positive intertemporal relation between expected return and risk of

the aggregate bond market portfolio, while the literature has not yet reached an agreement

on the existence of such a positive risk-return tradeoff for the equity market. Moreover, we

show that the time-series predictability is driven solely by aggregate systematic risk instead

of aggregate idiosyncratic risk.

The paper also proposes novel measures of systematic and idiosyncratic risk for individual

corporate bonds and tests their significance in the cross-sectional pricing of corporate bond-

s. The portfolio-level analyses and the bond-level cross-sectional regressions both indicate

that the newly proposed measure of systematic risk has a strong predictive power on future

bond returns, and the positive systematic risk premium is driven by the outperformance of

25Our access to the eMAXX bond holdings data covers the period 2001−2017 so that our analysis on bond
holdings is based on the sample period January 2001−December 2017.
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bonds with high systematic risk. Given the powerful presence of systematic risk in the cross-

sectional pricing of corporate bonds, the idiosyncratic volatility puzzle well-documented in

the stock market no longer exists in the bond market. This finding suggests that the institu-

tional investors dominating the bond market hold well-diversified portfolios with a negligible

exposure to bond-specific risk so that idiosyncratic volatility does not command a significant

risk premium in the bond market.

The contradictory findings of the significance of systematic risk (idiosyncratic risk) in the

bond (equity) market is likely due to investor preferences and informational frictions in the

bond versus equity market given that the bond (equity) market is dominated by institutional

(retail) investors.
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Fig.1. Systematic risk (SR) over time. This figure plots the monthly time-series of aggregate SR for
the period from January 1997 to June 2019 for the equal-, value-, and rating-weighted average of bond
systematic risk.
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Table 1: The Intertemporal Risk-Return Tradeoff in the Corporate Bond Market

This table reports the significance of an intertemporal relation between expected return and risk of
corporate bond market returns,

Rm,t+1 = α+ β · σ2m,t + εm,t+1,

and

Rm,t+1 = α+ β · σ2m,t + λ ·Xt + εm,t+1.

where Rm,t+1 is the monthly excess return of the bond market in month t + 1 and σ2m,t is the one-
month lagged realized variance of the bond market, proxying for the time-t expected conditional
variance of excess bond market returns at time t + 1. The table presents results from the monthly
predictive regressions with the value-weighted corporate bond market index (VWbond) and the Merrill
Lynch bond index (MRLbond). Panel A reports the univariate regression results. Panel B reports the
multivariate regression results after controlling for macroeconomic variables including the log earnings-
to-price ratio (EP), the log dividend-to-price ratio (DP), the book-to-market ratio (BM), the difference
between long-term return on government bonds and the one-month Treasury-bill (TERM), and the
difference between the return on a market portfolio of long-term corporate bonds and the long-term
government bond return (DEF). The sample period is from January 1997 to June 2019. t-statistics
are reported in parentheses and ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level,
respectively.

Panel A: Univariate regressions

Dependent variable Intercept σ2m Adj. R2 (%)

VWbond
t+1 -0.10 21.75∗∗ 6.49

(-0.53) (2.55)

MRLbondt+1 -0.08 17.53∗∗ 3.50
(-0.38) (2.22)

Panel B: Multivariate regressions

Dependent variable Intercept σ2m EP DP BM DEF TERM Adj. R2 (%)

VWbond
t+1 3.22 10.62∗∗∗ -0.63∗ 1.39 1.67 0.12∗∗ 0.14∗ 19.48

(0.64) (2.86) (-1.93) (1.50) (0.63) (2.15) (1.71)

MRLbondt+1 -0.55 11.18∗∗∗ -0.51∗∗ 0.34 1.11 0.08∗∗ 0.16∗ 7.64

(-0.13) (2.71) (-2.08) (0.42) (0.52) (2.14) (1.69)
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Table 2: Economic Significance of the Intertemporal Risk-Return Tradeoff in the
Bond Market

This table reports the portfolio performance measures for a mean-variance investor with a risk aversion
coefficient (γ) of 10, 15 and 20, who allocates monthly between corporate bonds and risk-free bills
using the out-of-sample forecasts of the excess bond market returns based on the bond market variance
(σ2m). CER gain (%) is the annualized certainty equivalent return gain for the investor, defined as
the annual portfolio management fee that an investor would be willing to pay to have access to the
predictive regression forecast instead of the historical average forecast. The portfolio weights are
estimated recursively using the data available at the forecast formation time t. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% level, respectively.

Panel A: CER gain (%) from investing on VWbond

σ2m EP DP BM DEF TERM

γ = 10 3.64∗∗∗ -2.23 -0.22 -4.38 -2.70 1.68∗∗

γ = 15 4.34∗∗∗ -1.19 -0.15 -2.61 -1.50 1.94∗∗

γ = 20 5.04∗∗∗ -0.67 -0.11 -1.72 -0.90 2.47∗∗∗

Panel B: CER gain (%) from investing on MRLbond

σ2m EP DP BM DEF TERM

γ = 10 2.69∗∗∗ -0.17 -1.00 0.21 -3.84 0.67∗

γ = 15 3.24∗∗∗ 0.17 -0.38 0.43∗ -2.26 0.74∗

γ = 20 3.85∗∗∗ 0.34 -0.07 0.54∗ -1.48 0.77∗
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Table 3: The Intertemporal Risk-Return Tradeoff in the Equity Market

This table reports the significance of an intertemporal relation between expected return and risk of
equity market returns,

Rm,t+1 = α+ β · σ2m,t + εm,t+1,

and

Rm,t+1 = α+ β · σ2m,t + λ ·Xt + εm,t+1.

where Rm,t+1 is the monthly excess return of the equity market (i.e., the value-weighted CRSP index)
in month t + 1 and σ2m,t is the one-month lagged realized variance of the equity market. The table
presents results from the monthly predictive regressions for the common sample period January 1997
to June 2019 and an extended sample period from July 1926 to June 2019. Panel A reports the
univariate regression results. Panel B reports the multivariate regression results after controlling
for macroeconomic variables including the log earnings-to-price ratio (EP), the log dividend-to-price
ratio (DP), the book-to-market ratio (BM), the difference between long-term return on government
bonds and the one-month Treasury-bill (TERM), and the difference between the return on a market
portfolio of long-term corporate bonds and the long-term government bond return (DEF). t-statistics
are reported in parentheses and ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level,
respectively.

Panel A: Univariate regressions

Sample period Intercept σ2m Adj. R2 (%)

January 1997 – June 2019 0.21 1.91 -0.14
(0.38) (0.76)

July 1926 – June 2019 0.47∗∗ 0.53 0.05
(2.26) (0.79)

Panel B: Multivariate regressions

Sample period Intercept σ2m EP DP BM DEF TERM Adj. R2 (%)

January 1997 – June 2019 36.57∗∗ 4.27 2.14 6.55∗∗ -14.05 0.15 0.40 3.01
(2.33) (1.34) (1.55) (2.24) (-1.65) (0.94) (1.28)

July 1926 – June 2019 10.11∗ -0.22 0.76 1.63 -3.06 0.23∗∗∗ 0.54∗∗ 2.89
(1.87) (-0.12) (0.67) (1.35) (-1.48) (3.13) (2.40)
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Table 4: Summary Statistics of the Cross-Sectional Variables

Panel A reports the number of bond-month observations, the cross-sectional mean, median, standard deviation and percentiles for corporate bond
monthly returns and bond characteristics including credit rating, time-to-maturity (Maturity, year), amount outstanding (Size, $ billion), downside risk
(5% Value-at-Risk, VaR), illiquidity (ILLIQ), and systematic risk (SR). Ratings are in conventional numerical scores, where 1 refers to an AAA rating
and 21 refers to a C rating. Higher numerical score means higher credit risk. Numerical ratings of 10 or below (BBB- or better) are considered investment
grade. Downside risk is the 5% Value-at-Risk (VaR) of corporate bond return, defined as the second lowest monthly return observation over the past
36 months. The original VaR measure is multiplied by −1 so that a higher VaR indicates higher downside risk. Bond illiquidity is computed as the
autocovariance of the daily price changes within each month, multiplied by −1. Systematic risk is defined as the difference between total and idiosyncratic
variance using a 36-month rolling window. The factor model used to generate systematic risk is the 4-factor model of Bai, Bali, and Wen (2019) including
the excess bond market return (MKTBond), the downside risk factor (DRF), the credit risk factor (CRF), and the liquidity risk factors (LRF) . Panel B
reports the time-series average of the cross-sectional correlations. The sample period is from January 1997 to June 2019.

Panel A: Cross-sectional statistics over the sample period of January 1997 – June 2019

Percentiles

N Mean Median SD 1st 5th 25th 75th 95th 99th

Bond return (%) 1,318,058 0.77 0.57 3.62 -8.16 -3.61 -0.56 1.86 5.61 12.18
Rating 1,315,405 8.09 7.54 3.64 1.53 2.64 5.57 9.99 15.12 17.94
Time-to-maturity (maturity, year) 1,328,785 10.13 7.07 9.13 1.32 1.93 4.20 13.39 27.24 34.15
Amount Out (size, $billion) 1,328,785 0.45 0.31 0.48 0.02 0.04 0.14 0.58 1.35 2.39
Downside risk (5% VaR) 797,761 4.80 3.40 4.77 0.58 0.96 2.03 5.77 13.63 23.69
ILLIQ 913,665 1.57 0.60 3.79 -0.83 -0.24 0.08 1.59 6.99 16.23
Systematic Risk (SR, %) 764,548 0.13 0.04 0.27 0.00 0.00 0.01 0.10 0.70 1.10

Panel B: Average cross-sectional correlations

Rating Maturity Size VaR ILLIQ SR

Rating 1 -0.113 -0.044 0.400 0.091 0.342
Maturity 1 -0.046 0.176 0.096 0.124
Size 1 -0.074 -0.145 -0.083
VaR 1 0.228 0.623
ILLIQ 1 0.184
SR 1
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Table 5: Univariate Portfolios of Corporate Bonds Sorted by Systematic Risk

Quintile portfolios are formed every month from January 1997 to June 2019 by sorting corporate bonds based on systematic risk (SR), defined as the
difference between total and idiosyncratic variance from regression (14). The benchmark model used to generate systematic risk is BBW 4-factor model
with the excess bond market return, the downside risk factor, the credit risk factor, and the liquidity risk factor. Quintile 1 is the portfolio with the
lowest SR and Quintile 5 is the portfolio with the highest SR. The portfolios are value-weighted using amount outstanding as weights. Table reports
the average SR, the next-month average excess return, the 5-factor alpha from stock market factors, the 5-factor alpha from bond market factors, the
10-factor alpha for each quintile. The last six columns report average portfolio characteristics including bond beta (βMKT ), illiquidity (ILLIQ), downside
risk (VaR), credit rating, time-to-maturity (years), and amount outstanding (size, in $billion) for each quintile. The last row shows the differences in
monthly average returns, the differences in alphas with respect to the factor models. The 5-factor model with stock market factors includes the excess
stock market return (MKTStock), the size factor (SMB), the book-to-market factor (HML), the momentum factor (MOMStock), and the stock liquidity
factor (LIQStock). The 5-factor model with bond market factors includes the excess bond market return (MKT), the default factor (DEF), the term
factor (TERM), the bond momentum factor (MOMBond), and the bond liquidity factor (LIQBond). The 10-factor model combines the five stock and
five bond market factors. Average excess returns and alphas are defined in monthly percentage terms. Newey-West adjusted t-statistics are given in
parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level, respectively.

Quintiles Average Average 5-factor stock 5-factor bond 10-factor Average portfolio characteristics

SR return alpha alpha alpha βMKT ILLIQ VaR Rating Maturity Size

Low 0.01 0.19 0.15 0.06 0.06 0.34 0.53 1.84 7.33 4.48 0.51
(3.57) (2.50) (2.08) (1.20)

2 0.02 0.35 0.28 0.14 0.13 0.60 0.88 2.86 7.86 6.38 0.50
(4.10) (3.12) (3.37) (2.65)

3 0.04 0.43 0.33 0.16 0.15 0.86 1.16 3.84 8.05 8.75 0.53
(3.73) (2.78) (3.39) (2.70)

4 0.08 0.56 0.40 0.29 0.23 1.18 1.77 5.73 8.46 13.16 0.51
(3.80) (3.03) (4.74) (3.10)

High 0.51 1.03 0.76 0.80 0.68 1.93 3.11 11.93 10.90 14.51 0.47
(4.00) (3.05) (3.77) (2.38)

High − Low 0.85∗∗∗ 0.61∗∗ 0.73∗∗∗ 0.62∗∗

(3.64) (2.51) (3.25) (2.46)
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Table 6: Univariate Portfolios of Corporate Bonds Sorted by Idiosyncratic Risk

Quintile portfolios are formed every month from January 1997 to June 2019 by sorting corporate bonds based on idiosyncratic risk (IR), defined as the
residual variance from regression (14). The benchmark model used to generate idiosyncratic risk is BBW 4-factor model with the excess bond market
return, the downside risk factor, the credit risk factor, and the liquidity risk factor. Quintile 1 is the portfolio with the lowest IR and Quintile 5 is the
portfolio with the highest IR. The portfolios are value-weighted using amount outstanding as weights. Table reports the average IR, the next-month
average excess return, the 5-factor alpha from stock market factors, the 5-factor alpha from bond market factors, the 10-factor alpha for each quintile.
The last six columns report average portfolio characteristics including bond beta (βMKT ), illiquidity (ILLIQ), downside risk (VaR), credit rating, time-
to-maturity (years), and amount outstanding (size, in $billion) for each quintile. The last row shows the differences in monthly average returns, the
differences in alphas with respect to the factor models. The 5-factor model with stock market factors includes the excess stock market return (MKTStock),
the size factor (SMB), the book-to-market factor (HML), the momentum factor (MOMStock), and the stock liquidity factor (LIQStock). The 5-factor
model with bond market factors includes the excess bond market return (MKT), the default factor (DEF), the term factor (TERM), the bond momentum
factor (MOMBond), and the bond liquidity factor (LIQBond). The 10-factor model combines the five stock and five bond market factors. Average excess
returns and alphas are defined in monthly percentage terms. Newey-West adjusted t-statistics are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate the
significance at the 10%, 5%, and 1% level, respectively.

Quintiles Average Average 5-factor stock 5-factor bond 10-factor Average portfolio characteristics

IR return alpha alpha alpha βMKT ILLIQ VaR5 Rating Maturity Size

Low 0.01 0.23 0.05 0.20 -0.06 0.60 0.31 1.71 6.57 4.17 0.76
(3.47) (1.47) (1.89) (-1.56)

2 0.02 0.37 0.13 0.31 0.13 0.76 0.77 2.71 7.68 7.26 0.50
(3.93) (3.46) (3.12) (3.35)

3 0.05 0.41 0.09 0.29 0.06 0.96 1.36 3.91 8.00 11.19 0.47
(3.14) (1.40) (2.13) (0.99)

4 0.12 0.48 0.23 0.31 0.09 1.11 1.87 5.64 8.56 12.98 0.43
(3.08) (3.13) (2.07) (1.20)

High 0.72 0.69 0.50 0.29 0.10 1.49 3.25 12.27 11.89 11.68 0.36
(2.93) (3.21) (1.54) (1.45)

High − Low 0.45∗∗ 0.44∗∗ 0.10 0.17
(2.14) (2.73) (0.58) (1.16)
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Table 7: Bivariate Portfolios of Corporate Bonds Sorted by Systematic Risk and Idiosyncratic Risk

In Panel A, quintile portfolios are formed every month from January 1997 to June 2019 by first sorting corporate bonds based on their idiosyncratic risk.
Then, within each IR portfolios, corporate bonds are sorted into subquintiles based on their systematic risk. Quintile SR,1 is the portfolio of corporate
bonds with the lowest SR within each IR quintile portfolio, and Quintile SR,5 is the portfolio of corporate bonds with the highest SR with each IR
quintile portfolio. Panel A reports the average SRs within each IR quintile as well as the next month average return of corporate bonds for each quintile.
The last four rows present the differences in the monthly returns, the 5-factor stock alpha, the 5-factor bond alpha, and the 10-factor alpha between
Quintile SR,5 and Quintile SR,1. Average returns and alphas are defined in monthly percentage terms. Newey-West adjusted t-statistics are given in
parentheses. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively. Panel B replicates the same procedure for quintile portfolios
of corporate bonds sorted by IR after controlling for SR.

Panel A: Corporate bonds sorted by SR after controlling for IR Panel B: Corporate bonds sorted by IR after controlling for SR

Avg SR in Next month Avg IR in Next month
SR quintiles after controlling for IR each IR quintile avg returns IR quintiles after controlling for SR each SR quintile avg returns

SR,1 0.02 0.44 USR,1 0.04 0.32
SR,2 0.06 0.50 USR,2 0.08 0.33
SR,3 0.10 0.53 USR,3 0.14 0.36
SR,4 0.17 0.70 USR,4 0.22 0.38
SR,5 0.31 1.21 USR,5 0.44 0.43

SR,5 − SR,1 return diff. 0.77∗∗∗ USR,5 - USR,1 return diff. 0.11
(2.73) (0.78)

SR,5 − SR,1 5-factor stock alpha diff. 0.71∗∗ USR,5 - USR,1 5-factor stock alpha diff. -0.07
(2.52) (-0.61)

SR,5 − SR,1 5-factor bond alpha diff. 0.65∗∗ USR,5 - USR,1 5-factor bond alpha diff. 0.17
(2.43) (1.25)

SR,5 − SR,1 10-factor alpha diff. 0.59∗∗ USR,5 - USR,1 10-factor alpha diff. 0.02
(2.37) (0.03)
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Table 8: Bond-level Fama-MacBeth Cross-Sectional Regressions

This table reports the average intercept and slope coefficients from the Fama and MacBeth (1973) cross-sectional regressions of one-month-ahead corporate
bond excess returns on systematic risk and idiosyncratic risk with and without control variables. Bond characteristics include credit rating, illiquidity,
time-to-maturity and the natural logarithm of amount outstanding. Other control variables consist of the bond market beta (βMKT ), the default beta
(βDEF ), the term beta (βTERM ), and bond return in previous month (REV). Fama-MacBeth regressions are run each month for the period from January
1997 to June 2019. Newey-West (1987) t-statistics are reported in parentheses. The last column reports the average adjusted R2 values. Numbers in
bold denote statistical significance at the 5% level or better.

Intercept SR IR βMKT βDEF βTERM Rating ILLIQ Maturity Size REV Adj. R2 (%)

(1) 0.395 1.828 6.61
(2.97) (4.33)

(2) 0.361 0.405 4.99
(3.03) (2.26)

(3) 0.328 1.319 -0.445 8.80
(2.63) (4.31) (-0.45)

(4) 0.079 1.686 0.054 -0.100 0.073 0.022 0.024 0.006 0.047 -0.083 20.83
(0.43) (2.69) (0.85) (-1.04) (-0.61) (0.93) (4.93) (1.46) (0.61) (-6.34)

(5) 0.498 0.185 0.027 -0.118 0.129 0.013 0.019 -0.017 0.023 -0.111 21.15
(1.27) (0.72) (0.41) (-1.34) (1.11) (0.58) (4.06) (-0.72) (0.41) (-6.54)

(6) -0.030 1.333 -0.374 0.012 -0.117 0.120 0.027 0.018 0.006 0.038 -0.103 21.89
(0.30) (2.46) (-0.34) (0.30) (-1.17) (0.94) (1.65) (4.19) (1.32) (0.30) (-7.76)
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Table 9: Predicting Aggregate Bond Market Returns and Bond Market Volatility
Using Aggregate Systematic Risk

This table reports the time-series predictive power of aggregate systematic risk (SR) in predicting
N-month ahead aggregate bond market returns and bond market volatility for alternative horizons
from month 1 to 12. VWbond is the excess return on the value-weighted bond market index. MKTV ol

is the aggregate monthly bond market variance defined in Eq. (4). The benchmark model used
to generate systematic risk is the 4-factor model with the excess bond market return (MKT), the
downside risk factor (DRF), the credit risk factor (CRF), and the liquidity risk factor (LRF). Aggregate
systematic risk is the value-weighted average of the corporate bond systematic risk for each month.
Control variables include the log earnings-to-price ratio (EP), the log dividend-to-price ratio (DP),
the aggregate book-to-market ratio (BM), the term spread (TERM), the default spread (DEF), and
the equity market variance (SVAR). The Newey-West adjusted t-statistics are given in parentheses.

Panel A: Dep. var = VWbond

Forecasting Intercept SR EP DP BM TERM DEF SVAR Adj.R2 (%)
Horizon

N=1 -4.55 2.78*** -0.41 -0.69 1.59 0.09** 0.20** 0.49** 13.10
(-0.51) (2.84) (-0.99) (-0.37) (0.64) (2.32) (2.25) (2.53)

N=2 -9.78 3.18** -0.78 -1.58 3.40 -0.03 -0.07 0.72*** 11.35
(-0.68) (2.50) (-1.12) (-0.55) (0.91) (-0.67) (-1.13) (2.95)

N=3 1.30 3.37*** -0.45 0.79 1.56 -0.05 -0.06 -0.00 5.63
(0.11) (2.91) (-0.70) (0.36) (0.39) (-0.96) (-0.76) (-0.03)

N=4 9.17 2.80*** -0.08 2.38 0.23 -0.03 0.03 -0.19 6.08
(1.22) (2.98) (-0.21) (1.53) (0.08) (-1.07) (0.49) (-0.81)

N=5 12.14* 2.94*** 0.11 2.97** -0.19 0.05 -0.03 -0.13 7.34
(1.77) (3.22) (0.33) (2.07) (-0.06) (1.07) (-0.65) (-0.78)

N=6 11.90 3.03*** 0.40 2.57* -2.04 -0.01 0.00 0.30** 6.47
(1.39) (3.47) (0.75) (1.69) (-0.51) (-0.20) (0.02) (2.07)

N=7 6.60 2.34*** 0.22 1.45 -0.86 -0.03 0.02 0.54** 6.59
(0.69) (2.76) (0.44) (0.80) (-0.26) (-1.52) (0.37) (2.45)

N=8 14.15** 2.72*** 0.73** 2.71** -4.34* -0.01 -0.01 0.51*** 7.68
(2.28) (3.03) (2.30) (2.29) (-1.96) (-0.46) (-0.21) (4.34)

N=9 13.59** 2.05** 0.63 2.77** -2.50 -0.01 0.01 0.37*** 4.79
(2.04) (2.09) (1.57) (2.04) (-1.13) (-0.67) (0.20) (2.62)

N=10 11.76 1.75 0.30 2.69 -0.52 -0.05 -0.10* 0.16 4.62
(1.07) (1.64) (0.51) (1.18) (-0.16) (-1.54) (-1.94) (0.75)

N=11 7.27 1.42 -0.14 1.99 1.03 -0.02 -0.14* -0.05 3.97
(0.66) (1.23) (-0.23) (0.90) (0.29) (-0.40) (-1.93) (-0.27)

N=12 7.31 1.47 -0.13 1.89 -0.27 -0.03 -0.10** -0.12 0.86
(0.75) (1.18) (-0.25) (0.98) (-0.06) (-1.32) (-2.31) (-0.80)
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Table 9. (Continued)

Panel B: Dep. var = MKTV ol

Forecasting Intercept SR EP DP BM TERM DEF SVAR Adj.R2 (%)
Horizon

N=1 9.76 1.80*** -0.37 5.52*** -2.05 -0.05 -0.18 0.86*** 30.24
(0.75) (2.77) (-0.79) (3.55) (-0.81) (-0.97) (-1.27) (2.68)

N=2 13.92 1.59** 0.09 5.85*** -4.82 -0.03 -0.02 0.79* 20.64
(0.78) (2.21) (0.17) (3.27) (-1.54) (-0.72) (-0.41) (1.93)

N=3 20.02 1.45** 0.44 6.51*** -5.94** 0.04 -0.05 0.65 19.94
(1.04) (2.11) (0.92) (3.56) (-2.00) (0.92) (-0.81) (1.62)

N=4 18.55 1.55** 0.55 6.26*** -6.10** -0.02 -0.17*** 0.70** 19.09
(1.08) (2.38) (1.36) (3.77) (-2.17) (-0.42) (-3.01) (2.02)

N=5 20.36 1.43** 1.03** 6.57*** -8.32** -0.07 -0.05 0.79*** 11.93
(1.21) (2.03) (2.00) (3.81) (-2.22) (-1.52) (-0.53) (3.32)

N=6 29.67 1.38* 1.56*** 7.36*** -11.82*** -0.03 -0.00 0.57 11.24
(1.36) (1.94) (2.65) (3.69) (-2.73) (-0.69) (-0.01) (1.47)

N=7 29.50 1.27* 1.71*** 7.34*** -13.00*** 0.02 -0.02 0.62* 10.99
(1.21) (1.76) (2.98) (3.58) (-3.14) (0.57) (-0.25) (1.71)

N=8 23.77 1.21 1.65*** 6.57*** -12.35*** -0.03 -0.02 0.76*** 7.62
(1.03) (1.64) (2.89) (3.31) (-3.13) (-0.83) (-0.45) (2.63)

N=9 18.54 1.28* 1.35*** 5.26*** -12.61*** -0.09*** -0.10* 0.71*** 7.99
(1.05) (1.84) (2.90) (3.47) (-3.25) (-2.69) (-1.68) (3.32)

N=10 20.65 1.19* 1.23*** 4.28*** -14.45*** -0.02 -0.04 0.36 6.46
(1.51) (1.76) (2.84) (3.46) (-3.65) (-0.47) (-0.53) (1.20)

N=11 21.82 1.22* 1.24*** 3.90*** -15.78*** 0.02 -0.03 0.23 7.33
(1.55) (1.81) (2.69) (2.90) (-3.84) (0.52) (-0.41) (0.67)

N=12 20.18 1.14 1.24** 3.56** -16.17*** 0.00 0.02 0.26 6.50
(1.48) (1.65) (2.40) (2.51) (-3.40) (0.02) (0.31) (0.86)

47



Table 10: Does Aggregate Idiosyncratic Risk Predict Bond Market Returns and
Volatility?

This table reports the time-series predictive power of aggregate idiosyncratic risk (IR) in predicting
N-month ahead aggregate bond market returns and bond market volatility for alternative horizons
from month 1 to 12. VWbond is the excess return on the value-weighted bond market index. MKTV ol

is the aggregate monthly bond market variance defined in Eq. (4). The benchmark model used
to generate idiosyncratic risk is the 4-factor model with the excess bond market return (MKT), the
downside risk factor (DRF), the credit risk factor (CRF), and the liquidity risk factor (LRF). Aggregate
idiosyncratic risk is the value-weighted average of the corporate bond idiosyncratic risk for each month.
Control variables include the log earnings-to-price ratio (EP), the log dividend-to-price ratio (DP),
the aggregate book-to-market ratio (BM), the term spread (TERM), the default spread (DEF), and
the equity market variance (SVAR). The Newey-West adjusted t-statistics are given in parentheses.

Panel A: Dep. var = VWbond

Forecasting Intercept IR EP DP BM TERM DEF SVAR Adj.R2 (%)
Horizon

N=1 -0.29 1.30 -0.33 -0.38** 2.14 0.16*** 0.19** 0.21 21.87
(-0.55) (1.20) (-0.18) (-2.03) (1.07) (2.81) (2.14) (0.71)

N=2 -0.95 1.10 1.61 -0.30 3.83 -0.03 -0.05 0.89*** 20.56
(-1.53) (1.13) -0.67 (-1.46) (1.53) (-0.59) (-0.59) (2.96)

N=3 -0.78 1.16 -0.52 -0.45** 4.38* -0.09* -0.09 0.21 12.41
(-1.34) (1.11) (-0.40) (-2.41) (1.89) (-1.73) (-1.00) (0.66)

N=4 -0.33 1.33 -3.51* -0.51*** 3.27 0.00 0.03 -0.25 10.80
(-0.54) (1.36) (-1.81) (-3.03) (1.57) (-0.10) (0.46) (-0.54)

N=5 -0.53 0.84 -2.38 -0.44*** 3.39 0.08** 0.04 0.17 14.06
(-0.73) (0.89) (-1.58) (-2.75) (1.32) (1.98) (0.49) (0.75)

N=6 -0.45 0.58 -1.15 -0.32** 2.64 -0.01 0.00 0.74*** 16.69
(-0.64) (0.61) (-0.98) (-1.97) (1.04) (-0.38) (0.01) (4.83)

N=7 -0.47 0.54 -2.00 -0.41*** 3.11 -0.05 -0.07 0.49*** 14.69
(-0.73) (0.58) (-1.35) (-3.15) (1.49) (-1.48) (-0.99) (2.72)

N=8 0.18 0.64 0.17 -0.14 0.23 -0.02 0.00 0.72** 7.70
-0.25 (0.65) -0.17 (-0.89) (0.09) (-0.76) (-0.06) (2.54)

N=9 -0.42 -0.26 1.08 -0.23 2.75 0.01 0.01 0.65*** 6.75
(-0.56) (-0.26) -0.93 (-1.57) (1.07) (0.32) (0.12) (4.85)

N=10 -0.66 -0.19 0.38 -0.33** 3.98 -0.05* -0.12** 0.41** 7.09
(-0.82) (-0.19) -0.35 (-2.22) (1.42) (-1.85) (-2.26) (2.21)

N=11 -0.18 0.19 0.10 -0.26* 2.12 -0.04 -0.12** 0.32*** 3.96
(-0.19) (0.20) -0.08 (-1.81) (0.70) (-1.16) (-2.29) (2.67)

N=12 0.81 1.26 -1.92 -0.14 -1.56 -0.04 -0.07 0.14 0.62
(0.71) (1.32) (-1.37) (-0.89) (-0.40) (-1.58) (-1.12) (0.83)
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Table 10. (Continued)

Panel B: Dep. var = MKTV ol

Forecasting Intercept IR EP DP BM TERM DEF SVAR Adj.R2 (%)
Horizon

N=1 11.60 2.20 -0.65 3.06 -0.66 -0.07** -0.14 0.86*** 34.46
(0.85) (1.41) (-1.23) (1.10) (-0.14) (-2.06) (-1.17) (2.61)

N=2 15.44 1.84 -0.21 3.47 -3.41 -0.04** 0.01 0.80* 23.96
(0.87) (1.33) (-0.34) (0.96) (-0.61) (-2.11) (0.28) (1.89)

N=3 21.7 1.81 0.22 4.61 -4.99 0.03 -0.02 0.65 22.10
(1.12) (1.35) (0.30) (1.18) (-0.84) (0.99) (-0.39) (1.59)

N=4 20.42 1.96* 0.30 4.22 -5.14 -0.03 -0.14* 0.70** 21.64
(1.20) (1.73) (0.48) (1.21) (-0.94) (-1.08) (-1.68) (1.98)

N=5 21.94 1.69 0.73 4.10 -7.08 -0.08 -0.01 0.79*** 15.25
(1.33) (1.40) (1.06) (1.27) (-1.08) (-1.58) (-0.16) (3.24)

N=6 32.00 2.02 1.41 5.79 -11.53 -0.04 0.02 0.56 13.03
(1.47) (1.57) (1.46) (1.37) (-1.39) (-1.64) (0.46) (1.44)

N=7 32.04 2.01 1.55 5.6 -12.8 0.02 0.01 0.61* 13.36
(1.31) (1.59) (1.36) (1.20) (-1.45) (0.33) (0.16) (1.67)

N=8 26.01 1.80 1.41 4.24 -11.82 -0.04 0.01 0.75** 11.00
(1.12) (1.56) (1.26) (0.97) (-1.38) (-1.53) (0.18) (2.57)

N=9 21.07 1.98 1.14 3.15 -12.28 -0.10*** -0.07 0.70*** 10.99
(1.17) (1.59) (1.28) (0.95) (-1.46) (-2.83) (-1.32) (3.20)

N=10 23.26* 2.00 1.19* 3.47 -14.71* -0.02 -0.03 0.35 7.26
(1.69) (1.45) (1.85) (1.34) (-1.87) (-0.79) (-0.43) (1.16)

N=11 24.04* 1.89 1.23* 3.52 -15.99* 0.01 -0.02 0.22 7.39
(1.67) (1.35) (1.79) (1.26) (-1.94) (0.39) (-0.31) (0.64)

N=12 21.82 1.59 1.18 2.98 -16.05* 0.00 0.03 0.25 6.39
(1.56) (1.14) (1.54) (1.11) (-1.76) (-0.10) (0.58) (0.83)
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Table 11: Confirming the IVOL Puzzle in the Equity Market

This table investigates the IVOL puzzle in the equity market. Systematic risk and idiosyncratic risk of individual stocks are estimated based on the
Fama-French (2015) 5-factor model (MKTStock, SMB, HML, RMW, and CMA) in Panel A and the Hou, Xue, and Zhang (2015) Q-factor model
(MKTStock, ME, IA, and ROE) in Panel B. Quintile portfolios are formed every month by sorting stocks based on systematic risk and idiosyncratic risk.
The estimation is based on daily returns in a month, requiring at least 15 daily observations in a month. The sample period is from July 1963 to June
2019 for the Fama-French (2015) 5-factor model and from January 1967 to June 2019 for the Q-factor model. Newey-West adjusted t-statistics are given
in parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level, respectively.

Panel A: SR and IR estimated using Fama-French (2015) 5-factor model

Avg FF 5-factor Q-factor Average FF 5-factor Q-factor
SR return alpha alpha Low IR return alpha alpha

Low 0.00 0.54 0.54 0.58 Low 0.01 0.55 0.58 0.63
(3.55) (3.49) (3.59) (3.51) (3.59) (3.78)

2 0.01 0.62 0.66 0.70 2 0.02 0.59 0.65 0.66
(3.83) (3.99) (4.08) (3.05) (3.39) (3.02)

3 0.02 0.63 0.68 0.70 3 0.04 0.66 0.74 0.74
(3.26) (3.52) (3.29) (2.71) (3.13) (2.64)

4 0.04 0.60 0.70 0.69 4 0.08 0.42 0.47 0.47
(2.45) (2.94) (2.46) (1.39) (1.63) (1.31)

High 0.13 0.13 0.24 0.17 High 0.29 -0.11 -0.09 -0.08
(0.39) (0.72) (0.42) (-0.30) (-0.26) (-0.19)

High − Low -0.41 -0.30 -0.41 High − Low -0.65∗∗ -0.67∗∗ -0.70∗∗

(-1.47) (-1.08) (-1.17) (-2.41) (-2.44) (-2.32)

Panel B: SR and IR estimated using Hou, Xue, and Zhang (2015) Q-factor model

Average FF 5-factor Q-factor Average FF 5-factor Q-factor
SR return alpha alpha IR return alpha alpha

Low 0.00 0.55 0.55 0.52 Low 0.01 0.56 0.59 0.55
(3.46) (3.42) (3.30) (3.43) (3.53) (3.28)

2 0.01 0.62 0.67 0.59 2 0.02 0.58 0.65 0.55
(3.67) (3.86) (3.49) (2.83) (3.18) (2.68)

3 0.02 0.63 0.68 0.58 3 0.04 0.64 0.72 0.59
(3.08) (3.35) (2.90) (2.48) (2.89) (2.35)

4 0.05 0.56 0.67 0.50 4 0.09 0.39 0.44 0.30
(2.19) (2.67) (2.01) (1.22) (1.44) (1.02)

High 0.15 0.15 0.16 0.20 High 0.32 -0.17 -0.15 -0.10
(0.13) (0.45) (-0.15) (-0.45) (-0.43) (-0.19)

High − Low -0.45 -0.40 -0.30 High − Low -0.73∗∗ -0.74∗∗ -0.65∗∗

(-1.47) (-1.38) (-1.10) (-2.59) (-2.63) (-2.02)
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Table 12: Institutional Ownership and Equity Idiosyncratic Risk

Quintile portfolios are formed every month from January 1980 to June 2019 by first sorting individual
stocks based on institutional ownership. Then within each institutional ownership quintile, individual
stocks are further sorted into sub-quintiles based on their idiosyncratic risk. The benchmark model
used to generate idiosyncratic risk is the Fama-French 5-factor model (MKTStock), SMB, HML, RMW,
and CMA). The estimation is based on daily returns in a month, requiring at least 15 daily observations
in a month. “INST,1” is the portfolio of stocks with the lowest institutional ownership and “INST,5”
is the portfolio of stocks with the highest institutional ownership. The portfolios are value-weighted
using market cap as weights. Table reports the next-month average excess return, the Fama-French
5-factor alpha, and the Q-factor alpha between the highest and lowest quintile within each institutional
ownership quintile. Newey-West adjusted t-statistics are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate
the significance at the 10%, 5%, and 1% level, respectively.

FF 5-factor Q-factor
IR,1 IR,2 IR,3 IR,4 IR,5 IR,5 − IR,1 alpha alpha

INST,1 0.72 0.64 0.66 -0.08 -1.28 -2.01∗∗∗ -1.82∗∗∗ -1.87∗∗∗

(-5.23) (-4.71) (-4.15)

INST,2 0.63 0.65 0.52 -0.05 -0.58 -1.21∗∗∗ -1.03∗∗ -1.07∗∗

(-2.74) (-2.38) (-2.22)

INST,3 0.87 0.69 0.58 0.33 -0.19 -1.07∗∗∗ -1.04∗∗∗ -1.08∗∗

(-2.88) (-2.81) (-2.49)

INST,4 0.82 0.73 0.76 0.81 0.40 -0.41 -0.47 -0.40
(-1.51) (-1.56) (-1.12)

INST,5 0.85 0.81 0.85 0.78 0.75 -0.10 -0.09 -0.09
(-0.41) (-0.32) (-0.30)
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Table 13: Institutional Ownership and Bond Idiosyncratic Risk

Quintile portfolios are formed every month from January 2001 to December 2017 by first sorting
corporate bonds based on institutional ownership. Then within each institutional ownership quintile,
individual bonds are further sorted into sub-quintiles based on their idiosyncratic risk. The benchmark
model used to generate idiosyncratic risk is the BBW 4-factor model (MKT, DRF, CRF, and LRF).
“INST,1” is the portfolio of bonds with the lowest institutional ownership and “INST,5” is the portfolio
of bonds with the highest institutional ownership. The portfolios are value-weighted using bond
amount outstanding as weights. Table reports the 10-factor alpha between the highest- and lowest-IR
quintile within each institutional ownership quintile. Newey-West adjusted t-statistics are given in
parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level, respectively.

IR,1 IR,2 IR,3 IR,4 IR,5 IR,5 − IR,1 10-factor alpha

INST, 1 0.18 0.41 0.33 0.65 0.63 0.45 0.12
(1.27) (0.29)

INST, 2 0.18 0.33 0.47 0.48 0.49 0.32 -0.01
(1.63) (-0.05)

INST, 3 0.19 0.31 0.44 0.52 0.48 0.29 0.05
(1.57) (0.36)

INST, 4 0.20 0.33 0.41 0.47 0.52 0.31 0.17
(1.37) (1.47)

INST, 5 0.21 0.38 0.45 0.52 0.53 0.32 0.01
(1.38) (0.08)
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Is There a Risk-Return Tradeoff in the Corporate Bond Market?

Time-Series and Cross-Sectional Evidence

Online Appendix

To save space in the paper, we present the robustness check results in the Online Appendix.

Table A.1 tests if our findings in Table 1 are sensitive to an alternative approach to estimating

the risk-return tradeoff using the GARCH-in-Mean model. Table A.2 presents results from u-

nivariate portfolios of corporate bonds sorted by total variance (VOL). Table A.3 examines the

univariate portfolio results separately for bonds with investment-grade and non-investment-

grade ratings. Table A.4 reports the quintile portfolios of corporate bonds sorted by system-

atic risk (SR) for different subperiods from January 1997 to June 2019 (including the crisis

and the postcrisis/recovery periods). Table A.5 presents results from the firm-level univariate

portfolios of corporate bonds sorted by SR using the median size bond or the most liquid

bond as the representative for the firm. Table A.6 presents results from the firm-level Fama

and MacBeth (1973) cross-sectional regressions of one-month-ahead corporate bond excess

returns on the SR, with and without controls. Table A.7 replicates Table 9 by replacing the

value-weighted aggregate systematic risk (SR) with the equal-, and rating-weighted system-

atic risk of individual bonds. Table A.8 reports the time-series predictive power of the value-,

equal-, and rating-weighted average of total variance (σ2
m) of individual bonds in predicting

one-month-ahead returns on the value-weighted corporate bond market index (VWbond) and

the Merrill Lynch bond index (MRLbond).
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Table A.1: Estimating the Intertemporal Risk-Return Tradeoff in the Corporate
Bond and Equity Markets Using the GARCH-in-Mean and GJRGARCH-in-Mean
Models

This table investigates the intertemporal relation between expected return and risk of bond and stock
market returns based on the following GARCH-in-Mean and Threshold GARCH (GJR-GARCH)
models:

Rm,t+1 = α+ β · σ2m,t+1|t + εm,t+1

GARCH: Et
(
ε2m,t+1|Ωt

)
= σ2m,t+1|t = θ0 + θ1ε

2
m,t + θ2σ

2
m,t

GJR-GARCH: Et
(
ε2m,t+1|Ωt

)
= σ2m,t+1|t = θ0 + θ1ε

2
m,t + θ2σ

2
m,t, + θ3Dtε

2
m,t

Dt = 1 if εm,t < 0, and Dt = 0 otherwise

where Rm,t+1 is the monthly excess return of the bond or stock market in month t+ 1 and σ2m,t+1|t
is the time-t expected conditional variance of excess bond or stock market returns at time t + 1;
σ2m,t+1|t = Et

(
σ2m,t+1

)
. Ωt denotes the information set available at time t and the one-month-ahead

conditional variance of bond or stock market returns, σm,t+1|t, is defined as a function of the current
unexpected news in the bond or stock market (ε2m,t) and the current variance (σ2m,t).

Panel A: GARCH-in-Mean model

α β θ0 θ1 θ2 θ3 Adj-R2 Sample Period

Value-Weighted -0.0005 20.132 0.00002 0.2012 0.7045
– 5.96% Jan 1997 – June 2019

Bond Index (-0.34) (2.62) (1.55) (2.71) (6.06)

Value-Weighted CRSP 0.0067 1.2409 0.00011 0.2226 0.7418
– -0.83% Jan 1997 – June 2019

Stock Index (1.47) (0.47) (1.50) (3.21) (9.05)

Value-Weighted CRSP 0.0061 1.1319 0.00008 0.1414 0.8369
– -0.10% July 1926 – June 2019

Stock Index (3.31) (1.50) (3.93) (7.37) (49.45)

Panel B: GJRGARCH-in-Mean model

α β θ0 θ1 θ2 θ3 Adj-R2 Sample Period

Value-Weighted -0.0002 18.120 0.0002 0.1953 0.7025 0.0238
5.52% Jan 1997 – June 2019

Bond Index (-0.12) (2.47) (1.52) (1.88) (6.01) (0.26)

Value-Weighted CRSP 0.0079 -0.9768 0.0002 0.0116 0.7040 0.4088
-0.53% Jan 1997 – June 2019

Stock Index (1.84) (-0.38) (2.36) (0.14) (7.20) (3.25)

Value-Weighted CRSP 0.0059 0.7242 0.0001 0.0645 0.8328 0.1235
0.05% July 1926 – June 2019

Stock Index (3.38) (1.03) (4.84) (2.61) (47.11) (3.86)
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Table A.2: Univariate portfolios of corporate bonds sorted by total variance (VOL)

Quintile portfolios are formed every month from January 1997 to June 2019 by sorting corporate bonds based on the total variance.
Quintile 1 is the portfolio with the lowest VOL and Quintile 5 is the portfolio with the highest VOL. The portfolios are value-weighted
using amount outstanding as weights. Table reports the average VOL (%), the next-month average excess return, the 5-factor alpha
from stock market factors, the 5-factor alpha from bond market factors, and the 10-factor alpha for each quintile. The last six columns
report average portfolio characteristics including bond beta (βMKT ), illiquidity (ILLIQ), downside risk (5% Value-at-Risk), credit rating,
time-to-maturity (years), and amount outstanding (size, in $billion) for each quintile. The last row shows the differences in monthly
average returns, the differences in alphas with respect to the factor models. The 5-factor model with stock market factors includes the
excess stock market return (MKTStock), the size factor (SMB), the book-to-market factor (HML), the momentum factor (MOMStock), and
the stock liquidity factor (LIQStock). The 5-factor model with bond market factors includes the excess bond market return (MKT), the
default factor (DEF), the term factor (TERM), the bond momentum factor (MOMBond), and the bond liquidity factor (LIQBond). The
10-factor model combines the five stock and five bond market factors. Average excess returns and alphas are defined in monthly percentage
terms. Newey-West adjusted t-statistics are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level,
respectively.

Quintiles Average Average 5-factor stock 5-factor bond 10-factor Average portfolio characteristics

VOL return alpha alpha alpha βMKT ILLIQ VaR Rating Maturity Size

Low 0.02 0.18 0.16 0.04 -0.02 0.46 0.33 1.52 6.77 3.70 0.64
(3.24) (2.56) (1.43) (-0.73)

2 0.05 0.33 0.26 0.09 0.08 0.70 0.78 2.68 7.68 6.49 0.55
(3.52) (2.64) (1.92) (0.90)

3 0.09 0.42 0.33 0.13 0.13 0.87 1.23 3.84 8.10 9.80 0.48
(3.44) (2.55) (2.46) (2.33)

4 0.21 0.56 0.39 0.27 0.22 1.20 1.90 5.75 8.38 14.46 0.47
(3.40) (2.60) (3.67) (2.77)

High 1.22 1.14 0.81 0.96 0.78 1.68 3.32 12.46 11.71 12.81 0.40
(4.30) (3.52) (5.08) (3.28)

High − Low 0.96∗∗∗ 0.65∗∗∗ 0.92∗∗∗ 0.73∗∗∗

(3.99) (3.01) (4.76) (3.05)
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Table A.3: Investment-Grade Versus Non-Investment-Grade Corporate Bonds

This table repeats the univariate portfolio analyses in Tables 5–6 by sorting corporate bonds based
on the systematic risk (SR) and idiosyncratic risk (IR) for investment-grade corporate bonds in Panel
A and non-investment-grade bonds in Panel B.

Panel A: Investment-grade bonds

SR IR

Average 10-factor Average 10-factor
return alpha return alpha

Low 0.15 0.05 0.15 0.03
(3.48) (0.23) (3.21) (1.26)

2 0.30 0.12 0.28 0.09
(4.35) (2.16) (3.98) (3.06)

3 0.38 0.15 0.35 0.10
(4.05) (2.32) (3.71) (2.53)

4 0.52 0.22 0.47 0.15
(4.23) (2.60) (3.85) (3.19)

High 0.63 0.35 0.50 0.12
(3.97) (2.96) (3.16) (1.01)

High − Low 0.48∗∗∗ 0.30∗∗ 0.35∗∗ 0.09
(3.50) (2.18) (2.66) (0.69)

Panel B: Non-investment-grade bonds

SR IR

Average 10-factor Average 10-factor
return alpha return alpha

Low 0.43 0.25 0.36 0.16
(4.00) (2.78) (3.43) (1.76)

2 0.48 0.19 0.50 0.21
(2.95) (1.68) (3.04) (2.02)

3 0.55 0.15 0.46 0.08
(2.43) (1.32) (2.04) (0.74)

4 0.64 0.22 0.51 0.05
(1.99) (0.96) (1.71) (0.26)

High 1.36 0.94 0.69 0.21
(3.00) (2.32) (1.85) (0.73)

High − Low 0.94∗∗∗ 0.71∗∗ 0.33 0.06
(2.78) (2.54) (1.12) (0.19)
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Table A.4: Subperiod Analyses

This table repeats the univariate portfolio analyses in Tables 5–6 by sorting corporate bonds based
on the systematic risk (SR) and idiosyncratic risk (IR) for three subperiods (i) the first pre-crisis
subperiod from January 1997 to July 2007, (ii) the second subperiod including the crisis from August
2007 to December 2012, and (iii) the third most recent subperiod from January 2013 to June 2019.

Panel A: Corporate bonds sorted by SR

Average 10-factor Average 10-factor Average 10-factor
return alpha return alpha return alpha

Subperiod I Subperiod II Subperiod III

Low 0.08 0.06 0.33 -0.02 0.13 0.01
(0.93) (0.78) (2.46) (-0.32) (4.63) (0.90)

2 0.18 0.14 0.63 0.11 0.21 0.16
(1.44) (1.41) (2.94) (1.75) (3.23) (2.64)

3 0.21 0.16 0.77 0.08 0.27 0.19
(1.61) (1.79) (2.58) (0.95) (2.73) (2.03)

4 0.36 0.29 0.90 0.37 0.35 0.22
(2.09) (2.74) (2.53) (2.81) (2.21) (1.35)

High 0.59 0.46 1.54 1.12 0.67 0.47
(2.12) (3.19) (2.48) (2.99) (2.60) (1.69)

High − Low 0.51∗∗ 0.41∗∗∗ 1.21∗∗ 1.14∗∗∗ 0.54∗∗ 0.46∗∗

(2.20) (3.01) (2.16) (2.82) (2.27) (2.14)

Panel B: Corporate bonds sorted by IR

Average 10-factor Average 10-factor Average 10-factor
return alpha return alpha return alpha

Subperiod I Subperiod II Subperiod III

Low 0.10 0.05 0.43 0.10 0.16 0.05
(0.69) (0.38) (2.94) (0.32) (2.63) (0.29)

2 0.19 0.11 0.65 0.09 0.24 0.06
(1.34) (0.73) (2.81) (1.06) (2.58) (0.35)

3 0.16 -0.19 0.70 0.01 0.32 0.00
(0.85) (-0.89) (2.25) (0.08) (2.15) (0.00)

4 0.26 0.10 0.69 0.10 0.38 -0.02
(1.68) (0.81) (1.77) (0.58) (2.16) (-0.40)

High 0.63 0.29 0.64 0.34 0.69 0.28
(2.72) (1.00) (1.09) (1.08) (2.51) (1.54)

High − Low 0.54∗∗ 0.25 0.21 0.23 0.53∗∗ 0.24
(2.30) (0.79) (0.40) (0.77) (2.13) (1.21)
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Table A.5: Firm-level Univariate Portfolios of Corporate Bonds Sorted by SR

This table repeats the univariate portfolio analyses in Table 5 by sorting corporate bonds based on
the systematic risk (SR) at the firm-level. To control for bonds issued by the same firm, for each
month in our sample, we pick one bond with the median size (Panel A) or the most liquid bond
(Panel B) as the representative for the firm.

Panel A: Using the median size bond Panel B: Using the most liquid bond

Average 10-factor Average 10-factor
return alpha return alpha

Low 0.19 -0.06 0.19 0.03
(3.56) (-0.92) (3.57) (0.65)

2 0.34 0.13 0.35 0.13
(4.09) (1.06) (4.10) (1.13)

3 0.42 0.15 0.42 0.15
(3.70) (2.02) (3.71) (2.05)

4 0.54 0.20 0.54 0.21
(3.76) (3.76) (3.77) (3.86)

High 0.83 0.42 0.78 0.45
(3.51) (1.81) (3.66) (2.99)

High − Low 0.64∗∗∗ 0.49∗∗ 0.60∗∗∗ 0.45∗∗

(3.06) (2.48) (3.23) (2.26)
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Table A.6: Firm-level Fama-MacBeth Cross-Sectional Regressions

This table repeats the Fama and MacBeth (1973) cross-sectional regressions of one-month-ahead corporate bond excess returns on systematic risk and
idiosyncratic risk with and without control variables in Table 8 at the firm-level. To control for bonds issued by the same firm, for each month in our
sample, we pick one bond with the median size (Panel A) or the most liquid bond (Panel B) as the representative for the firm.

Panel A: Using the median size bond

Intercept SR IR βMKT βDEF βTERM Rating ILLIQ Maturity Size REV Adj. R2 (%)

(1) 0.387 1.224 6.52
(2.93) (3.74)

(2) 0.361 0.405 5.03
(3.03) (1.26)

(3) 0.331 1.243 0.370 8.81
(2.65) (2.46) (0.44)

(4) 0.035 1.511 0.020 -0.039 -0.044 0.031 0.027 0.007 0.040 -0.102 21.60
(0.20) (2.49) (0.32) (-0.58) (-0.44) (1.40) (3.26) (0.63) (0.45) (-8.45)

(5) 0.485 0.819 0.012 -0.112 0.110 0.014 0.049 -0.017 0.027 -0.122 20.41
(1.24) (0.75) (0.21) (-1.33) (0.98) (0.66) (3.05) (-0.71) (0.59) (-9.88)

(6) -0.047 1.492 0.066 0.015 -0.102 0.084 0.028 0.031 0.004 0.051 -0.097 22.06
(-0.46) (2.27) (0.06) (0.18) (-1.14) (0.73) (1.50) (2.93) (0.97) (0.83) (-7.20)

Panel B: Using the most liquid bond

Intercept SR IR βMKT βDEF βTERM Rating ILLIQ Maturity Size REV Adj. R2 (%)

(1) 0.391 1.434 6.65
(2.95) (4.06)

(2) 0.376 0.620 4.91
(3.17) (2.25)

(3) 0.335 0.617 0.431 8.76
(2.67) (2.44) (0.65)

(4) 0.057 1.434 0.033 -0.053 -0.027 0.029 0.030 0.008 0.032 -0.114 20.43
(0.33) (2.71) (0.55) (-0.79) (-0.28) (1.36) (3.09) (0.85) (0.26) (-9.65)

(5) 0.422 0.428 0.082 -0.090 0.065 0.017 0.076 -0.019 0.055 -0.097 21.14
(1.06) (0.64) (1.24) (-1.06) (0.55) (0.74) (3.02) (-0.80) (0.65) (-7.69)

(6) 0.021 1.034 0.073 0.012 -0.098 0.031 0.019 0.054 0.014 0.027 -0.076 22.39
(0.23) (2.14) (0.12) (0.05) (-0.84) (0.21) (0.96) (3.38) (1.27) (0.36) (-6.27)
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Table A.7: Robustness Check: Predicting Aggregate Bond Market Returns and Volatility Using Aggregate
Systematic Risk

This table replicates Table 9 by replacing the value-weighted aggregate systematic risk (SR) with the equal-, and rating-weighted average of systematic
risk of individual bonds. The table presents results from the monthly predictive regressions with the value-weighted corporate bond market index
(VWbond) in Panel A and aggregate monthly bond market variance (MKTV ol) in Panel B. The sample period is from January 1997 to June 2019.
t-statistics are reported in parentheses and ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level, respectively.

Panel A: Dep. var = VWbond

Forecasting horizon t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

Equal-weighted SR

Intercept 3.24 -6.24 0.31 8.82 10.15 6.96 4.43 14.79* 17.24** 15.26* 11.66 11.70*
(0.46) (-0.76) (0.04) (1.00) (1.20) (0.72) (0.53) (1.77) (2.20) (1.83) (1.61) (1.70)

SR 1.47*** 1.65*** 1.56*** 1.25** 1.09** 1.07** 0.95* 1.05** 0.78 0.78 0.76 0.78
(2.96) (3.10) (3.03) (2.32) (2.25) (2.10) (1.86) (2.25) (1.58) (1.52) (1.61) (1.56)

Controls Y Y Y Y Y Y Y Y Y Y Y Y

Adj. R2 (%) 22.82 21.49 15.84 12.65 15.63 16.94 12.98 10.09 8.87 9.06 6.22 2.52

Rating-weighted SR

Intercept 3.32 -6.37 0.40 9.07 10.30 7.09 4.46 14.86* 17.27** 15.37* 11.84 12.00*
(0.47) (-0.76) (0.05) (1.03) (1.22) (0.73) (0.53) (1.78) (2.20) (1.84) (1.63) (1.74)

SR 2.37*** 2.51*** 2.57*** 2.22** 1.88** 1.82** 1.55* 1.75** 1.30 1.37* 1.20 1.18
(2.87) (2.81) (2.96) (2.58) (2.40) (2.20) (1.89) (2.28) (1.61) (1.67) (1.34) (1.38)

Controls Y Y Y Y Y Y Y Y Y Y Y Y

Adj. R2 (%) 22.76 21.08 15.93 13.03 15.81 17.07 13.00 10.15 8.90 9.19 6.40 2.78

Panel B: Dep. var = MKTV OL

Forecasting horizon t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

Equal-weighted SR

Intercept 9.76 13.92 20.02* 18.55* 20.36** 29.67*** 29.50** 23.77** 18.54** 20.65*** 21.82** 20.18**
(1.25) (1.26) (1.77) (1.83) (2.25) (2.69) (2.44) (2.07) (2.15) (2.63) (2.50) (2.19)

SR 1.61*** 1.42** 1.31** 1.40** 1.25* 1.26* 1.14* 1.05 1.14* 1.12 1.18* 1.09
(2.63) (2.16) (2.00) (2.26) (1.88) (1.84) (1.66) (1.53) (1.70) (1.65) (1.73) (1.55)

Controls Y Y Y Y Y Y Y Y Y Y Y Y

Adj. R2 (%) 34.63 24.24 22.18 21.72 15.39 12.70 12.82 10.61 10.49 6.70 7.09 6.33

Rating-weighted SR

Intercept 10.16 14.39 20.45* 18.84* 20.56** 29.86*** 29.52** 23.70** 18.55** 20.50** 21.68** 20.20**
(1.30) (1.29) (1.80) (1.86) (2.27) (2.71) (2.44) (2.06) (2.16) (2.60) (2.47) (2.18)

SR 2.85*** 2.67** 2.48** 2.50** 2.18** 2.19** 1.86* 1.63 1.86* 1.69 1.78 1.73
(2.89) (2.55) (2.38) (2.53) (2.00) (1.98) (1.66) (1.46) (1.72) (1.51) (1.58) (1.52)

Controls Y Y Y Y Y Y Y Y Y Y Y Y

Adj. R2 (%) 35.03 24.79 22.68 22.04 15.57 12.88 12.82 10.53 10.50 6.55 6.92 6.27
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Table A.8: Robustness Check: The Intertemporal Risk-Return Tradeoff in the
Corporate Bond Market

This table reports the time-series predictive power of the value-, equal-, and rating-weighted average of total
variance (σ2

m) of individual bonds in predicting one-month-ahead returns on the value-weighted corporate
bond market index (VWbond) and the Merrill Lynch bond index (MRLbond). Panel A reports the univariate
regression results. Panel B reports the multivariate regression results after controlling for macroeconomic
variables used in Table 1. The sample period is from January 1997 to June 2019. t-statistics are reported in
the parentheses and ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% level, respectively.

Panel A: Univariate regressions

Value-weighted Equal-weighted Rating-weighted

Intercept σ2
m Adj. R2 (%) Intercept σ2

m Adj. R2 (%) Intercept σ2
m Adj. R2 (%)

Dep. Var = VWbond Dep. Var = VWbond Dep. Var = VWbond

0.03 2.00*** 7.77 0.12 1.00** 7.37 0.12 1.53** 7.37
(0.18) (2.61) (0.86) (2.51) (0.88) (2.28)

Dep. Var = MRLbond Dep. Var = MRLbond Dep. Var = MRLbond

0.02 1.63** 4.38 0.09 0.83** 4.29 0.08 1.30** 4.29
(0.11) (2.48) (0.59) (2.48) (0.56) (2.28)

Panel B: Multivariate regressions

Intercept σ2
m EP DP BM DEF TERM Adj. R2 (%)

Value-weighted

Dep. var = VWbond
t+1

6.47 1.34*** -0.32 1.85* -0.43 0.18*** 0.16*** 23.40
(1.24) (4.68) (-0.98) (1.81) (-0.22) (2.97) (2.72)

Dep. var = MRLbond
t+1

4.06 1.13*** -0.22 1.21 0.17 0.18** 0.10** 11.42
(0.75) (3.30) (-0.61) (1.18) (0.07) (2.18) (2.38)

Equal-weighted

Dep. var = VWbond
t+1

5.52 0.63*** -0.38 1.66 -0.15 0.18*** 0.16*** 22.99
(1.01) (4.63) (-1.17) (1.55) (-0.07) (2.99) (2.71)

Dep. var = MRLbond
t+1

3.33 0.55*** -0.27 1.06 0.35 0.18** 0.10** 11.27
(0.61) (3.50) (-0.77) (1.02) (0.14) (2.19) (2.37)

Rating-weighted

Dep. var = VWbond
t+1

5.20 1.00*** -0.46 1.64 -0.04 0.18*** 0.16*** 22.82
(0.90) (4.48) (-1.36) (1.46) (-0.02) (2.97) (2.70)

Dep. var = MRLbond
t+1

3.14 0.91*** -0.32 1.06 0.37 0.18** 0.10** 11.31
(0.57) (3.55) (-0.96) (1.01) (0.15) (2.18) (2.34)

9


	Introduction
	Data
	Corporate bond returns
	The corporate bond market index
	Corporate bond and equity holdings

	The Intertemporal Relation Between Expected Return and Risk
	The intertemporal risk-return tradeoff in the bond market
	Robustness check: Controlling for the hedging demand
	Robustness check: GARCH-in-Mean model

	Economic significance of the intertemporal risk-return tradeoff in the bond market
	The intertemporal risk-return tradeoff in the equity market

	The Cross-Sectional Relation Between Expected Return and Risk
	Systematic and idiosyncratic risks of corporate bonds
	Alternative factor models
	The cross-sectional relation between systematic risk and expected bond returns
	Is there an IVOL puzzle in the corporate bond market?
	Bivariate portfolios of systematic risk and idiosyncratic risk
	Bivariate portfolios of systematic risk controlling for idiosyncratic risk
	Bivariate portfolios of idiosyncratic risk controlling for systematic risk

	Fama-MacBeth cross-sectional regressions
	Robustness check
	The nexus of the cross-section and time-series predictability

	Investigating the Role of Systematic and Idiosyncratic Risk in the Bond and Equity Markets
	Revisiting the IVOL puzzle in the equity market
	The investor clientele effect in the equity and bond markets

	Conclusion

