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1 Introduction

This paper studies the effectiveness of different survey designs in eliciting sensitive informa-

tion in an organizational context. Getting early information about potential misbehavior or

fraud is a key challenge for organizations. As a result, they often expend considerable efforts

to improve information transmission: from 360◦ evaluations, to compliance monitoring, to

external anonymous hotlines. However, transmitting sensitive information (e.g. fraudulent

or inappropriate behavior by one’s boss) remains challenging.1 Our goal in this paper is

to better understand how survey designs meant to guarantee plausible deniability can im-

prove the transmission of information. Among others, we are interested in the effectiveness

of randomized-response surveys and related designs (Warner, 1965, Greenberg et al., 1969)

used in social sciences to ask sensitive questions. We place special emphasis on the problem

of identifying treatment effects from noisy and unverifiable reports.

Our model broadly follows Chassang and Padró i Miquel (2018). We consider a Principal-

Agent-Monitor framework in which the monitor can report whether the Agent’s type is Good

(G) or Bad (B). Reporting a Bad agent improves the welfare of both the monitor and the

principal, but is costly to the agent. The difficulty is that the agent can commit to retaliate

against the monitor in the event an incriminating report is recorded. This model captures

environments in which: (i) the number of potential informants is small, so that they can

be subject to retaliation in spite of nominal anonymity; (ii) corrective actions can be taken

against Bad agents even on the basis of noisy information2; and (iii) potential informants do

not have strong incentives to make false accusations.

We model survey design as a (possibly random) mapping from monitor reports r to survey

records r̃ that may be equal or different from the monitor’s report. We explore the impact

1Kaplan and Schultz (2007) and Kaplan et al. (2009) argue that anonymous external reporting channels
mandated by the Sarbanes-Oxley act failed to increase intention-to-report rates. As Chassang and Padró i
Miquel (2018) observe: “this can be explained by the fact that in many cases the set of people informed
about misbehavior is small, so that formal anonymity offers little actual protection.”

2The noisiness of information (specifically the fact that signals of misbehavior may include false positives)
clearly constrains the severity of organizational responses, but effective action is still plausible. A manager
may be required to undergo sensitivity training. An internal investigation may be triggered, and so on.
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of three different survey designs on information transmission:

1. A direct-elicitation design DE in which the survey record is equal to the response of

the agent to the question

Q0: “True or False: The agent’s type is Bad.”

2. A randomized-response design RR following Warner (1965) and Greenberg et al. (1969):

With probability 1− π, the survey record is the response of the agent to the question

Q0. With probability π, the agent is asked the unrelated question

Q1: “What is the color of the sky: Blue or Red?”

The survey record is True if the response is Blue, and False if the response is Red.

3. A hard-garbling design HG in which the survey record is equal to the monitor’s response

to question Q0 with probability 1− π, and to True with probability π.

The rationale behind designs RR and HG is the following: because a recorded report

r̃ = True (incriminating the agent) can occur even though the monitor sends the prelimi-

nary report r = False, it becomes costly to threaten the monitor with punishment in the

event of record r̃ = True. Costly punishment (at least seemingly) occurs on the equilibrium

path. The crucial difference between the two mechanisms is that RR relies on the monitors’

compliance with the injunction to answer the unrelated question correctly, whereas HG im-

poses an exogenous information garbling. Our main questions of interest are: Does garbling

the information content of messages improve reporting in practice? Can one build data-

driven estimates of treatment effects permitting cost-benefit analysis? Which mechanism is

likely to be most effective depending on the circumstances?

The paper proceeds in three steps. First, we clarify theoretical predictions from a strategic

analysis of the games induced by different survey designs. We establish that in equilibrium,

direct elicitation DE fails to sustain information flows when retaliation costs are high. In

contrast, hard garbling HG can sustain informative reports, even when the magnitude of

retaliation is large. The case of randomized response RR is ambiguous. If it is common

knowledge that monitors are obedient and give the objectively correct answer to unrelated
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question Q1, then RR is strategically equivalent to HG. If it is common knowledge that

monitors answer the unrelated question Q1 to maximize their payoffs, then RR is strategically

equivalent to DE. A plausible guess is that play under RR will be a mixture of play under DE

and HG, perhaps starting close to HG during initial play, and approaching DE as the players

gain experience. Finally, we show that it is possible to construct an estimator of the impact of

survey design on the reporting of Bad agents. This estimator is unbiased whenever monitors

are rational, but may be biased if monitors are irrational and falsely accuse Good agents

with different propensities across survey designs. As a result, understanding deviations from

equilibrium is an important input for inference.

Second, we evaluate our theoretical predictions in the lab. Experimental findings confirm

that indeed, hard garbling HG can improve reporting against Bad agents compared to direct

elicitation DE, but—as expected—this comes at the cost of inefficient intervention against

Good agents. Contrary to expectations, the frequency of reports against Good agents is not

zero and does not vanish over time. As a result our estimate of treatment effects exhibits a

small amount of bias. Also contrary to expectations, behavior under randomized response

RR is not a simple mixture of behavior under DE and HG. As in the case of HG threats by

agents against monitors less frequent than under DE. Unlike the case of HG, monitors rarely

report Good agents when they are asked the unrelated question Q1. As a result, RR gets

the best of both HG and DE: frequent reporting of Bad agents, and infrequent reporting of

Good agents. This pattern does not vanish over time.

Third, we investigate our experimental data through the lens of an off-the-shelf model of

boundedly strategic play, adapting the Quantal Response Level-k model of Camerer et al.

(2016) to our dynamic setting.3 Since DE and RR are strategically equivalent up to framing

effects, differences in behavior between these two games are interpreted as differences in

the effective rationality of players. Specifically, agents have a harder time predicting the

3See Stahl (1993) and McKelvey and Palfrey (1995) for seminal work on Level-k and quantal response
models, as well as Camerer et al. (2004) and Crawford and Iriberri (2007) for an investigation of their
performance as predictors of empirical play in games and mechanisms. See Ho and Su (2013) for an extension
of cognitive hierarchy models to dynamic settings.
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response of monitors to the threat of retaliation under RR than DE. We show that this non-

equilibrium behavior has unambiguous implications about bias in treatment effect estimates.

In addition, it suggests that the good performance of RR in our data may not be robust to

learning. While players do not seem to learn from their own experience in our first set of

experiments, a second set of experiments reveals that providing players with cross-sectional

outcome data (as would arise from social learning) induces convergence to equilibrium. This

convergence has two important consequences. First, false accusations against Good agents

are diminished, so that the bias in the estimated treatment effect of HG on the reporting rate

against Bad agents disappears almost completely. Second, equilibrium threats and reporting

behavior under RR and DE converge, so that RR no longer outperforms DE. This cautions

against the use of randomized-response designs RR in stable organizational settings. Hard-

garbling designs, in contrast, improves information transmission even when players obtain

feedback from cross-sectional data.

This paper contribute to multiple strands of literature. First, it contributes to a large

body of work on garbled survey design, and inference from garbled surveys. Randomized

response techniques (and its many variants) were pioneered by Warner (1965) and Greenberg

et al. (1969) as a means to elicit higher quality information on sensitive topics.4 Recently,

Blair et al. (2015) has provided an analysis of identification under such designs, but assumes

that key behavioral aspects of the response are known. Rosenfeld et al. (2016) offers a field

validation of randomized response techniques in the context of a vote on abortion law taking

place in Mississippi. On the negative side, John et al. (2018) report evidence from a series

of experiments showing that randomized-response techniques can backfire if respondents are

concerned over response misinterpretation. Chuang et al. (2019) also provide evidence that

respondents often disregard the injunction to privately garble their response, and simply

provide the least sensitive answer. The current paper tackles theoretically and empirically

the problem of identification when, response choices are endogenous, and take place in an

4The related computer science literature on differential privacy (Dinur and Nissim, 2003, Dwork et al.,
2006) studies ways to reveal population statistics without compromising individual anonymity.
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organizational setting that microfounds why some answers are considered sensitive.

The paper also fits in a literature that seeks to better understand how information trans-

mission protocols affect strategic information transmission in an equilibrium setting. Chas-

sang and Padró i Miquel (2018) is closest to our approach, and considers the problem of

whistleblowing when misbehaving agents can commit to effective threats.5 Blume et al.

(2013) proposes a signaling model with lying aversion in which randomized response tech-

niques can improve information transmission in equilibrium. Lab implementation, including

direct costs for lying, supports their theoretical predictions. Ayres and Unkovic (2012) con-

sider the problem of whistleblowing when many parties are informed but face an incomplete

information coordinated action problem in view of possible retaliation. They advocate the

use of information escrow accounts as a way to solve the coordination problem. Mechtenberg

et al. (2017) is concerned with the problem of false reporting in the context of whistleblow-

ing. In a lab experiment, they show that whistleblower protection based on facts rather than

subjective evidence may increase informativeness. This work echoes our concerns regarding

the false reporting of Good agents.6

Finally, the paper contributes to the growing literature on mechanism design with bound-

edly rational or behavioral players. Crawford and Iriberri (2007) explore the extent to which

Level-k models can explain overbidding in auctions. Fehr et al. (2017) show that social pref-

erences have a significant impact on the design of extensive form mechanisms. The work of

Glazer and Rubinstein (2014) is also closely connected. It suggests that complex question-

naires can induce boundedly rational players to reveal their type. The surprising effectiveness

of randomized response RR suggests the idea may be even more effective in extensive form

strategic environments: a player’s näıve beliefs over the behavior of others may be used to

attain outcomes that are not implementable under common knowledge of rationality. This

observation echoes the work of Fudenberg and Levine (2006) on effective superstitions.

5See also Ortner and Chassang (2018) for an analysis of how endogenous asymmetric information can
improve information transmission when the agent can bribe potential informants.

6Note that Mechtenberg et al. (2017) focus on environments where informants strictly benefit from false
accusations, while we concentrate on settings without material incentives to misreport. The fact that false
reporting occurs even in our setting suggests that the issue cannot be ignored.
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The paper is organized as follows. Section 2 describes our framework. Section 3 es-

tablishes benchmark results on equilibrium play and the identification of treatment effects.

Sections 4, 5, and 6 take these theoretical predictions to experimental data and explore

failures of equilibrium predictions. Section 7 interprets experimental findings and probes

the data using an off-the-shelf model of bounded rationality. Section 8 concludes with a

discussion of alternative interpretations, and implications for survey design in organizations.

2 The Reporting Game

Players, actions and payoffs. We consider a Principal-Agent-Monitor setting closely

related to the framework of Chassang and Padró i Miquel (2018). An agent A affects the

welfare of stakeholders S as a function of her type τ ∈ {G,B}, where types G and B are

respectively referred to as Good and Bad. Let q ∈ (0, 1) denote the share of Bad agents in

the population.

An informed monitor M observes the type τ of agent A and chooses a report r from some

set R. Intended reports r ∈ R lead to realized reports r̃ ∈ {0, 1} according to transmission

channels φ : R → ∆({0, 1}) that will be described shortly. Note that the set of possible

reports R may be different from the set of received reports {0, 1}. A received report r̃ = 1

automatically leads to a publicly observed intervention.

The agent can affect the behavior of the monitor by committing to punish her in the

event a positive realized report r̃ = 1 (and the corresponding intervention) occurs. The

agent’s commitment decision is denoted by c ∈ {0, 1}.7 Successfully reporting a Bad agent

allows the organization to reduce her negative impact on both the monitor and stakeholders.

Payoffs UA, UM and US to the agent, monitor and stakeholders take the form

UA = −r̃ D − c r̃ KA; UM = Y − c r̃ KM ; US = Y,

7Commitment may arise from external reputational concerns vis à vis other monitors and other agents,
or through an internal reputation, for instance, the self image of delivering on one’s word.
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with output Y = Y0 − (1 − γr̃)1τ=BLB − r̃1τ=GLG, where Y0 is the maximum output, LB

represents the efficiency loss from facing a Bad agent, γLB is the amount by which that loss

can be reduced if the Bad agent is reported, and LG is the efficiency loss from reporting a

Good agent. Parameters D, KA, and KM respectively denote the agent’s losses given report

r̃ = 1, her cost for punishing the monitor, and the damage incurred by the monitor in case

of punishment.

Finally, with experimental investigation in mind, we allow for social preferences on the

side of the monitor, so that her actual preferences are described by Uα
M ≡ UM + αUS, where

α is an altruism parameter.

Reporting mechanisms. The focus of our analysis is the mapping φ from intended re-

ports r to realized reports r̃. We are interested in the following three possibilities.

(i) Direct Elicitation DE. Possible reports take values in R = {0, 1}. The realized

report r̃ is equal to the intended report r. The monitor is asked to report the

type of the agent, and her report is recorded without alteration.

(ii) Hard Garbling HG. Under hard garbling, possible reports take values in R =

{0, 1}. If r = 1, then r̃ = 1. If instead r = 0, then r̃ = 0 with probability 1− π,

and r̃ = 1 with probability π. The monitor is asked to report the type of the

agent. Whenever she sends report r = 0, her answer is exogenously switched to

r̃ = 1 with probability π.

(iii) Randomized Response RR. Randomized response techniques, pioneered by Warner

(1965), take multiple forms. We focus on the frequently used unrelated-question

implementation. More precisely, with probability 1 − π, the report space is

R = {0, 1} and realized report is r̃ = r. The monitor is asked to report the type

of the agent, and that response is recorded without alteration. With probability

π, R = {Blue,Red}, r̃ = 1r=Blue. Additionally, this reporting problem is framed

with the unrelated question: “What is the color of the sky?”

For expositional reasons, it is useful to define an obedient version of the randomized-

response design game, denoted by oRR, in which the monitor is compelled to answer the

unrelated question truthfully.
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Solution Concept. The reference solution concept for our analysis is Subgame Perfect

Equilibrium (SPE). We consider alternative solution concepts, including level-k models

(Stahl, 1993, Nagel, 1995, Camerer et al., 2004, Crawford and Iriberri, 2007, Ho and Su,

2013), and Quantal Response models (McKelvey and Palfrey, 1995) when we analyze exper-

imental data. We bring up self-confirming equilibrium (Fudenberg and Levine, 1993) when

we investigate learning.

3 Theoretical predictions

We first characterize equilibrium behavior, and provide benchmark identification results,

under the assumption that players are rational.

3.1 Equilibrium behavior

Proposition 1 (garbling and retaliation). Take parameters of the direct elicitation, and

hard garbling games as given, except for punishment costs to the agent and the monitor KA

and KM . There exists K > 0 sufficiently large such that whenever KA, KM > K,

(i) under direct elicitation: all SPEs are such that Bad agents commit to punish;

the monitor sends report r = 0;

(ii) under hard garbling: there exists a unique SPE; the agent does not commit

to punish; the monitor reports a Bad agent but not a Good one.

In both games, regardless of costs of punishment KA and KM , it is never rational for the

monitor to report Good agents.

The key force behind this result is that following a threat, sufficiently large punishments

are off of the equilibrium path under direct elicitation DE, but remain on the equilibrium

path under hard garbling HG.
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Definition 1 (outcome equivalence). We say that two survey games G0 and G1 (correspond-

ing to survey technologies φ0, φ1) are outcome equivalent in SPE if for every SPE σ0 of G0

(respectively G1), there exists a SPE σ1 of G1 (respectively G0) such that σ0 and σ1 induce

the same joint distribution over triplets (τ, c, r̃) corresponding to agent type, commitment to

punish, and realized report.

Proposition 2. The randomized-response game RR is outcome equivalent in SPE to the

direct elicitation game DE.

The obedient randomized-response game oRR is outcome equivalent in SPE to the hard

garbling game HG.

This implies that if players are obedient and answer the unrelated question correctly,

randomized response and hard garbling should lead to the same distribution over type τ ,

commitment to punish c, and realized report r̃. If instead players are not obedient, random-

ized response should have led to the same distribution over outcomes as direct elicitation. If

players are in-between, it is reasonable to expect that outcomes under randomized response

should be a mixture of outcomes under hard garbling, and direct elicitation. Together Propo-

sitions 1 and 2 suggest that the reporting of Good and Bad agents across games will follow

the patterns summarized in Table 1. We confront these predictions to experimental data in

Section 4.

Table 1: anticipated realized reporting across different games.

realized reporting of Bad types realized reporting of Good types
DE low low
HG high high
RR low low
oRR high high
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3.2 Measurement and identification

Lab experiments allow to measure the impact of survey design on reporting because the

experimenter gets to observe the true type of each agent. This is not possible in the field

since types τ are not observed, and neither is the proportion q of Bad types. Still, as

Chassang and Padró i Miquel (2018) emphasize, under assumptions about play, it possible

to recover underlying parameters of interest from reporting data alone. Lab experiments can

then serve to test the validity of our estimators under realistic play.

Let µ denote a distribution over (τ, c, r): the agent’s type τ ∈ {Good,Bad}, her com-

mitment to retaliate c ∈ {0, 1}, and intended reports by the monitor r ∈ R. Distribution

µ may or may not be an equilibrium. Consider an i.i.d. sample of play of size N drawn

from µ . Let Rτ = Eµ
[

1
N

∑N
i=1 1τi=τri

]
denote the mean of intended reports against agents

of type τ . Let R̂ = 1
N

∑N
i=1 r̃i denote the aggregate sample-mean of realized reports. Let

R̃τ = 1
N

∑N
i=1 1τi=τ r̃i denote the sample mean of realized reports against agents of type τ .

Note that only the sample mean R̂ is observable to an external observer. For any τ ∈ {G,B},

Rτ and R̃τ are not directly accessible to the observer. By convention, we use ·̂ to indicate

that a variable is computed using data available to the econometrician.

We are interested in the following underlying outcomes:

� The amount of intended reports against Bad agents RB.

� The share of realized reports against Good agents, EµR̃G.

� The share of unintended incriminating reports r̃ = 1, R† ≡ EµR̂−RB −RG.

Proposition 3 (identification). Under the hard garbling game HG, for any distribution µ

over play, µ-almost-surely, the following hold:

RB = lim
N→∞

R̂− π
1− π

−RG (1)

R† = lim
N→∞

(1− R̂)
π

1− π
. (2)
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If play by the monitor is rational, then RG = 0, and EµR̃G ≤ R†. If all Bad agents are

reported, i.e. RB = q, then the last inequality is tight: EµR̃G = R†.

The case of direct elicitation DE corresponds to setting π = 0 under hard garbling HG.

Proposition 3 implies that RB and R† are identified provided the monitor is rational. The

rate of realized complaints against Good agents EµR̃G need not be identified even if the

monitor is rational. The reason for this is that the share q of Good agents is not known.

However, R†, which can be estimated from data, is a tight upper bound to EµR̃G.

This lets us use R̂B ≡ R̂−π
1−π as an estimator of the mass of intended reports RB against

Bad agents. Under equilibrium, this is a consistent estimator of RB. If we deviate from

equilibrium, the estimator may be upward biased since by construction RG ≥ 0. Whether

R̂B is consistent depends on whether the monitor is rational and chooses not to report Good

agents. This is ultimately an empirical question that experiments are well suited to inform.

The statistic R̂† ≡ π
1−π (1 − R̃) is a mechanically consistent estimator of R†, regardless

of whether play is in equilibrium or not. For this reason our investigation of experimental

results focuses on the consistency of R̂B.

Treatment effects. In practice, to perform cost-benefit analyses, we are primarily inter-

ested in computing the treatment effect of different reporting mechanisms on the reporting

of Bad agents:

∆̂RB = R̂treatment
B − R̂control

B .8 (3)

The potential bias of ∆̂RB is equal to Rtreatment
G − Rcontrol

G . Even if the monitor is not

rational, so that RG > 0, the treatment effect estimators ∆̂RB need not be biased if the non-

rational false reporting of Good agents is independent of the reporting mechanism. Inversely,

the estimator may be inconsistent if deviations from equilibrium play differ systematically

across games. In Section 7 we evaluate potential bias out-of-equilibrium using an off-the-shelf

8The impact of treatment on undesired reports ∆̂R† = R̂treatment
† − R̂control

† can be recovered mechanically.

12



model of boundedly rational play.

4 Experimental Design

The analysis of Section 3 clarifies the impact of different survey designs under equilibrium,

and shows it is possible to estimate the impact of survey design on reporting using real-

ized reporting data alone. This begs the question: what happens if players do not behave

according to equilibrium? More specifically:

� Does garbling increase the reporting of Bad types?

� If there are deviations from equilibrium play, how do they affect the bias and consis-
tency of treatment effect estimator ∆̂RB?

� Are deviations from equilibrium play amenable to modeling?

� How long-lived are deviations from equilibrium play?

We use experimental data on play in survey games to address these questions.

The baseline game. We recruited 20 participants for each session of our experiment. Half

of the participants were randomly allocated to the role of agents, the other half were assigned

the role of monitors. Participants remained in their roles for all 25 periods of the experiment.9

At the beginning of each of the 25 identical periods of the game, participants are randomly

re-matched into n = 10 agent-monitor pairs and agents are randomly allocated one of two

equally likely types τ ∈ {G,B}. To avoid fully passive participants in the laboratory, we did

not have separate subjects representing stakeholders. Instead other monitors play the role

of stakeholders, so that the agent’s type directly affects the welfare of all monitors. After

having observed their types, agents decide whether or not to commit c ∈ {0, 1} to punish

the monitor if the monitor’s realized report turns out to be positive (r̃ = 1). Monitors

9This choice reflects our belief that role reversals in power relationships are infrequent. We expect that
role reversals would improve convergence to equilibrium, but the question is ultimately an empirical one.
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observe the commitment decision of the agent they have been paired with and then pick

their intended report r ∈ R.

Agent i’s contribution to total output Y ≡
∑n

i=1 yi is

yi = yG − (1− γr̃)1τ=BLB − r̃1τ=GLG,

where yG is the output of an unreported Good agent (the maximum output), LB > LG

represents the efficiency loss created by an unreported Bad agent, γ ∈ [0, 1] measures the

extent to which reporting reduces the efficiency loss caused by a Bad agent and LG represents

the efficiency loss from reporting a Good agent.

Payoffs. Payoffs to participants are an affine transformation of the payoffs described in

Section 2, and take the following form (payoffs in the experiment were calculated in points;

at the end of the experiment points earned by participants are converted into cash using the

exchange rate: 60 points = 1 Swiss Franc):

UA = EA − r̃D − cr̃KA; UM = EM +
Y

n
− c r̃KM ,

To avoid negative payoffs agents and monitors respectively received endowments EA = 80

points and EM = 30 points at the beginning of every period. An unreported Good agent’s

contribution to total output was yG = 400 points. An unreported Bad agent generated a

damage of LB = 800 points (i.e., the net contribution to total output amounts to yG−LB =

−400 points). Reporting a Bad agent reduced the implied damage by 37.5% (γ = .375).

Reporting a Good agent reduced her contribution to total output by LG = 100 points. The

agent’s payoff loss in case of a positive realized report was D = 100 points regardless of

her type. The agent’s cost for punishing the monitor was set to KA = 100 points, and the

damage imposed on the monitor by the agent’s punishment was KM = 200.
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Treatments. We implemented three treatment conditions, corresponding to each of the

reporting mechanisms HG, DE and RR. The probability with which negative intended reports

were transformed into positive realized reports in the hard garbling treatment HG and with

which monitors in the randomized response treatment RR were confronted with the unrelated

question was set to π = .25.

Protocol. All subjects were students of the University of Lausanne (UNIL), the Swiss

Federal Institute of Technology Lausanne (EPFL) or the Swiss Hotel Management School

(EHL). We used the recruitment system ORSEE (Greiner, 2015). Each subject partici-

pated in one session only. All interactions of participants were completely anonymous. The

experiment was programmed and conducted with z-Tree (Fischbacher, 2007).

To make sure that subjects fully understood the payoff consequences of available actions,

each subject had to read a detailed set of instructions before the session started. Participants

then had to answer several questions about feasible actions and their payoff consequences.

A session started only after all subjects had correctly answered all questions.10

The data was collected in two waves. From March to May 2015, we conducted 6 sessions

for each treatment without providing players further information about play. To investigate

learning dynamics, from October to November 2015, we conducted another 6 sessions per

treatment in an environment where players received cross sectional data about the payoff

consequences of different actions. Overall we conducted 36 sessions with a total of 720

participants. Each session lasted approximately 90 minutes and subjects earned on average

about 37 Swiss Francs (including a show-up fee of 10 Swiss Francs).

5 Findings for Direct Response and Hard Garbling

This section focuses on play in the direct elicitation and hard garbling games DE and HG,

while Section 6 studies play under randomized response RR. We first describe the aggregate

10See Appendix D for an English translation of a sample of our French instructions (including control
questions).
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impact of survey design on outcomes before investigating the specific mechanics of threats

and reporting.

5.1 Output and punishment

Proposition 1 establishes the main mechanism through which hard garbling can improve

information flows relative to the direct elicitation method. If the punishment technology is

effective (KM sufficiently large), the equilibrium under DE is such that Bad agents always

commit to punish and monitors therefore find it optimal to submit a negative report r = 0

irrespective of the agent’s type. As a consequence, punishment never occurs and no infor-

mation is elicited in equilibrium. Under HG, in contrast, agents who commit to punish need

to pay the cost of punishment KA with positive probability. As a consequence, the expected

cost of punishment increases and agents have weaker incentives to commit to punish. Re-

duced punishment threats, in turn, increase monitors’ propensity to submit positive reports

r = 1 if they encounter Bad agents.

Hard garbling is expected to impose two types of costs on the elicitation system. First,

garbling implies that some negative reports submitted for Good agents r = 0 will get turned

into positive realized reports r̃ = 1. Second, if punishment is not reduced to zero, garbling

will trigger actual punishment on the equilibrium path. In practice, a principal would have

to balance the value of greater information flows regarding Bad agents against these costs.

Figure 1 displays average output and the overall frequency of punishment in the direct re-

sponse and the hard garbling treatments. On average, HG leads to higher output (798 points)

than DE (480 points). This increase of about 66% is statistically significant (OLS: p = 0.001,

RS: p = 0.013).11 Punishment frequencies are positive in both treatments, which contra-

dicts the prediction that there would be zero punishment under direct response. However,

11For all treatment comparisons we report two tests. We perform OLS regressions in which we regress the
dependent variable on treatment dummies. We perform these regressions using the data of all six treatments
(i.e. including the three treatments reported later in the paper). Standard errors are adjusted for clustering
at the session level (36 clusters). In addition, we also perform ranksum tests (RS) in which we use session
averages as independent variables.
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punishment occurs more often under hard garbling (18%) than under direct elicitation (8%).

The effect of garbling on observed punishment is statistically significant (OLS: p < 0.001,

RS: p = 0.004). We explore the mechanics underlying these findings below.

Figure 1: impact of reporting mechanism on output and punishment
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Note: The figure displays average output and the overall frequency of pun-
ishment under DE and HG. The variable Output corresponds to average
per-period output at the session level. The maximally possible per-period
output amounts to 1500 points. The variable % Punishment represents the
percentage of agent-monitor pairs in which punishment occurred. Error bars
mark ±1 standard error from the mean (clustering at the individual level).

5.2 Commitment to punish

Figure 2 displays the frequency with which Good and Bad agents commit to punish under

direct response and hard garbling. As expected, agents commit to punish less often under

HG. Bad agents commit to punish with probability 75% under DE and probability 60%

under HG. This reduction in the frequency of punishment threats is statistically significant

(OLS: p = 0.004, RS: p = 0.016). Figure 3 shows that the frequency of threats by Bad agents
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increases moderately over time under both HG and DE. However, the time trend (OLS) is

only significant in DE (DE: β = 0.007, p = 0.001; HG: β = 0.004, p = 0.234).

Figure 2: agent’s commitment to punish, by reporting mechanism, and agent type
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Note: The figure displays the frequency with which Good and Bad agents
commit to punish under DE and HG. The variable % Commitment to Punish
measures the within-type percentage of agents who commit to punish across
all periods of a treatment. Error bars mark ±1 standard error from the
mean (clustering at the individual level).

Good agents also commit to punish rather frequently in both treatments. Under DE,

Good agents make threats in 44% of cases. Under HG Good agents make threats in 28% of

cases. The fact that Good agents commit to punish under DE is not surprising (it can occur

in SPE), but committing to punish under HG is not consistent with equilibrium. Recall that

it is strictly optimal for the monitor to submit a negative report r = 0 when paired with a

Good agent. Given this, in equilibrium, a Good agent should strictly prefer not to commit

to punish since she would have to pay cost KA with positive probability even if though the

monitor submits report r = 0. Thus, although hard garbling reduces Good agents propensity

to make threats (OLS: p = 0.040, RS: p = 0.128), the remaining presence of punishment
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commitments under HG is a notable failure of equilibrium. This behavior does not appear to

diminish over time (see Figure 3). The point estimate of time trends under direct elicitation

is positive (β = 0.007, p = 0.036), and there is essentially no trend under hard garbling

(β = 0.002, p = 0.697). A possible reason for why Good agents commit to punish may be

the fear of false accusations by (irrational) monitors. We return to this point when discussing

the reporting behavior of monitors in the next subsection.

Figure 3: agent’s commitment to punish over time
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Note: The figure displays time trends in the frequency with which Good and
Bad agents commit to punish under DE and HG. The variable % Commit-
ment to Punish measures the within-type percentage of agents who commit
to punish. Error bars mark ±1 standard error from the mean (clustering at
the individual level).

5.3 Reporting

Intended reporting. Figure 4 summarizes monitors’ intended reporting irrespective of

the agent’s punishment commitment. Hard garbling improves intended reporting relative to

direct elicitation. In particular, the frequency with which monitors intend to submit positive
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reports r = 1 on Bad agents is significantly higher under hard garbling (53%) than under

direct response (35%, OLS: p = 0.001, RS: p = 0.013). The difference in the reporting

rates for Bad agents further increases over time. Whereas the reporting rate decreases only

insignificantly under hard garbling (β = −0.003, p = 0.390), there is a significant negative

time trend under direct elicitation (β = −0.009, p < 0.001).12

Figure 4: monitors’ average intended reports conditional on the agent’s type
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Note: The figure summarizes monitors’ intended reporting irrespective of
the agent’s punishment commitment. The variable %Reporting Intent mea-
sures the frequency with which monitors intend to submit a positive report
r = 1 against an agent as a function of the agent’s quality and the treatment
(DE vs. HG). Error bars mark ±1 standard error from the mean (clustering
at the individual level).

Despite the fact that monitors have a strict incentive to submit a negative report r = 0 if

matched with a Good agent, positive reports r = 1 against Good agents are observed under

both HG (5%) and DE (9%). The presence of these false accusations in both treatments

may at least partially explain why Good agents commit to punish (see Figure 2). Positive

12In the final five periods monitors intend to submit positive reports on Bad agents in 53% of the cases
under HG and in 27% of the cases under DE (OLS: p < 0.001, RS: p = 0.006).
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reporting rates against Good agents also imply that our estimator of the mass of intended

reports against Bad agents R̂B (defined Section 3.2) is upward biased. At the same time,

however, the difference between these reporting rates is not statistically significant (OLS:

p = 0.237, RS: p = 0.423). We analyze the implications of these reporting rates for our

treatment effect estimator ∆̂RB in detail in the next section.

A more detailed analysis of the reporting data reveals that monitors paired with Bad

agents often submit positive reports r = 1 even if the agent committed to punish. When

viewed through the lens of our theory, such behavior suggests that monitors exhibit significant

altruism α towards other monitors. We observe the phenomenon in both treatments, but

the inclination to report threatening agents turns out to be significantly larger under hard

garbling (29%) than under direct elicitation (19%, OLS: p = 0.001, RS: p = 0.004).13 Positive

reports against Good agents who committed to punish exist, but are rare (HG: 3%, DE: 4%).

The greater reporting of Bad agents who have committed to punish in HG relative to DE also

adds to the effect of information garbling on observed punishment. In fact, although fewer

agents commit to punish under HG than under DE (see Figure 2), the fraction of monitors

punished after intentionally reporting a threatening agent increases from 8% under DE to

9% under HG (the remainder of the aggregate punishment rate of 18% displayed Figure 1

is caused by the conversion of intended negative reports into positive realized reports under

HG).

Realized reporting. The realized fraction of positively reported agents r̃ = 1 is signifi-

cantly higher under hard garbling (47%) than under direct elicitation (22%, OLS: p < 0.001,

RS: p = 0.004). Garbling increases realized positive reports for two reasons. First, it

increases the intended reporting of Bad agents (Figure 4), which increases the overall re-

porting rate by approximately 9 percentage points.14 Second, garbling increases the share

13Positive reporting of threatening Bad agents becomes less frequent over time in both treatments, but
the trend is significant only under DE (DE: β = −0.009, p < 0.001, HG: β = −0.004, p = 0.253).

14The effect size reported here is half the size of the one reported in Figure 4 because we consider the
overall reporting rate rather than the reporting rate within the subsample of Bad agents (which is 50% of
the sample). Statistical significance is not affected by this scaling.
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of realized reports r̃ = 1 by turning 25% of intended negative reports into positive realized

reports, which further increases the share of positive realized reports by 18 percentage points.

Among those unintended positive reports roughly 13 percentage points are associated with

Good agents, whereas the remaining 5 percentage points are associated with Bad agents.

Figure 5 provides a graphical summary of the impact of garbling on reporting.

Figure 5: average realized reports
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Note: The figure summarizes how garbling affects the composition of posi-
tive realized reports. The variable %Positive Realized Reports measures the
frequency with which positive realized reports r̃ = 1 against an agent are
observed as a function of the treatment (DE vs. HG). The four categories
distinguish whether a recorded report was intended or unintended (intended
negative report that was turned into a positive realized report) and whether
it was against a Good or a Bad agent.

5.4 Identification

The data lets us evaluate our identification assumptions, i.e. that there are no reports

against Good agents in the case of estimator R̂B, or that reports against Good agents are

independent of the survey design in the case of treatment-effect estimator ∆̂RB.
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The fact that monitors report Good types with positive probability (see section 5.3)

means that our estimator R̂B of intended reports against Bad agents RB is biased upwards.

The difference in observed population fractions of reported Good agents across treatments

(4.4% under DE and 2.5% under HG) imply that the treatment effect estimator ∆̂RB will be

slightly biased as well.15

Table 2: estimated and true reporting rates

estimator R̂B true RB bias RG

Direct Elicitation DE 21.9% 17.5% 4.4%
Hard Garbling HG 29.5% 26.5% 2.5%

Table 2 summarizes estimated and true reporting rates. The treatment effect estimator

yields ∆̂RB = R̂HG
B − R̂DE

B = 7.6 percentage points which somewhat underestimates the true

treatment effect ∆RB = RHG
B − RDE

B = 9.1 percentage points. The error in the treatment

effect estimate (∆̂RB−∆RB = −1.5 percentage points) is not equal to the difference between

intended reporting rates of Good agents across treatments (RHG
G −RDR

G = 2.5%−4.4% = −1.9

percentage points). The reason for this is that in small samples the empirical frequency with

which intended negative reports r = 0 are turned into positive realized reports r̃ = 1 can

deviate slightly from π. In our particular case, the empirical frequency is 0.255 (instead of

π = 0.25). This difference would obviously disappear in larger samples.

The difference between the rates at which Good agents are reported across treatments

is not statistically significant (OLS: p = 0.237, RS: p = 0.423). Unfortunately, however,

because of limited sample size the corresponding coefficient (β = −0.019) is not a pre-

cisely estimated zero. The 95% confidence interval is [−0.052, 0.013]. We can therefore

not exclude the possibility that the estimated treatment effect is sizeably biased. In fact,

as Figure 6 shows, differences in the false reporting of Good agents do not disappear over

time. Under direct elicitation the reporting of Good agents remains roughly constant over

15Notice the frequencies with which Good agents are reported here are half of those described in Section
5.3. This is because reporting rates provided in Section 5.3 are conditioned on the subsample of Good agents.
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time (β = −0.0005, p = 0.423), whereas the reporting rates decreases under hard garbling

(β = −0.0012, p = 0.010). An estimation of the difference based on data of the final five

periods alone therefore yields a larger (and marginally significant) difference: ∆RG = 3

percentage points (OLS: p = 0.056, RS: p = 0.156).

Figure 6: reporting of good agents over time
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Note: The figure shows the development of intended reporting against Good
agents under DE and HG over time. The variable %Reporting Intent against
Good Agents measures the frequency with which monitors intend to submit
a positive report r = 1 against a Good agent. Error bars mark ±1 standard
error from the mean (clustering at the individual level).

6 Findings for Randomized Response

We now turn to the case of randomized response RR. Note that since in this case the monitor

perfectly controls the realized report r̃ ∈ {0, 1}, we do not distinguish intended and realized

report as in the case of hard garbling HG. We treat all realized reports as intended reports.
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6.1 The best of both worlds

As Proposition 2 notes, the randomized response game RR is outcome equivalent to the direct

elicitation game DE, while the obedient randomized response game oRR is outcome equivalent

to the hard garbling game HG. A natural expectation is that experimental outcomes from

the randomized response game would be a mixture of experimental outcomes from direct

elicitation and hard garbling treatments. It turns out not to be the case. Randomized

response seems to get the best of both survey procedures.

Figure 7: realized outcomes, randomized response
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Note: The figure displays average output and the overall frequency of pun-
ishment under DE, RR and HG. The variable Output corresponds to average
per-period output at the session level. The variable % Punishment repre-
sents the percentage of agent-monitor pairs in which punishment occurred.
Error bars mark ±1 standard error from the mean (clustering at the indi-
vidual level).

Figure 7 compares outcomes and punishment rates across treatments. Randomized re-

sponse manages to get the best of both games. Average output under RR (870 points) is

higher than under both DE (480 points, OLS: p = 0.003, RS: p = 0.025), and HG (798,
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although this difference is not significant: OLS: p = 0.531, RS: p = 0.631). Punishment

in RR occurs with the same rate (8.0%) as in DE (8.0%, OLS: p = 0.954, RS: p = 0.573)

and significantly less frequently than in HG (17.8%, OLS: p < 0.001, RS: p = 0.004). Fig-

ure 8 shows that these treatment differences remain very stable over the duration of the

experiment: players are not learning to play according to SPE.16

Figure 8: realized outcomes over time, randomized response
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Note: The figure displays the development of average output and the overall
frequency of punishment over time under DE, RR and HG. The variable
Output corresponds to average per-period output at the session level. The
variable % Punishment represents the percentage of agent-monitor pairs in
which punishment occurred. Error bars mark ±1 standard error from the
mean (clustering at the individual level).

16There are negative time trends in output in all three treatments. The time trends are significant under
direct response (β = −13.500, p < 0.001) and randomized response (β = −10.474, p = 0.021), but not under
hard garbling (β = −6.192, p = 0.189). The patterns are similar for punishment frequencies. Again there are
significantly negative time trends under direct response (β = −0.003, p < 0.001) and randomized response
(β = −0.003, p = 0.021), but not under hard garbling (β = −0.001, p = 0.715).
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6.2 An intuitive explanation

The findings displayed in Figures 7 and 8 are consistent with bounded extensive-form ra-

tionality (see Ke (2018) for an axiomatization). Because monitors move last, they do not

have to anticipate the responses of other players. As a result, their play is nearly subgame

perfect. In contrast, agents need to predict the behavior of monitors to make decisions. This

additional difficulty could make them more prone to take the unrelated question framing

seriously. Our data confirm that this is the case.

Monitors tend to treat the game as direct elicitation. Monitors do not answer the

unrelated question correctly when the agent’s type is Good: positive reports occur in only

12% of the cases (13% if there is no punishment threat, 8% if there is a threat). The

consequences of this behavior for overall reporting behavior are shown in Figure 9. The

figure compares positive realized reports as a function of the agent’s type across treatments.

Monitors’ reluctance to report Good agents under RR implies that realized reporting rates

against Good agents are similar under RR and DE (5% vs. 9%, OLS: p = 0.193, RS:

p = 0.336), but very different under RR and HG (5% vs. 31%, OLS: p < 0.001, RS: p = 0.004).

This pattern remains very stable over time. Realized reports against Good agents do not

exhibit a significant time trend under any treatment (DE: β = −0.001, p = 0.424, RR:

β = −0.002, p = 0.205, HG: β = 0.001, p < 0.264), so that the reporting rates remain

almost identical even if only the final five periods of the experiment are considered (DE: 9%

RR: 5%, HG: 33%).

At the same time, when the agent’s type is Bad, the RR procedure does shift the monitors’

reporting behavior relative to what they do under DE. In fact, the overall rate of positive

realized reports against Bad agents in RR (60%) is very similar to what we observe under

HG (63%, OLS: p = 0.614, RS: p = 0.748) and substantially different from what we observe

under DE (35%, OLS: p < 0.004, RS: p = 0.019).17 The reason for this effect is that monitors

17The reporting pattern against Bad agents across treatments does not change fundamentally over time.
There are negative time trends under DE (β = −0.009, p < 0.001) and RR (β = −0.008, p = 0.007), whereas
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tend to answer the unrelated question correctly when the agent is of the Bad type. It is not

astonishing that answers to the unrelated question are mostly correct (94%) when there is

no punishment threat, but many monitors also answer the unrelated question correctly when

a Bad agent threatens to punish them (40%). As a consequence, Bad agents that commit

to punish face incriminating realized reports more frequently under RR (29%) than under

DE (19%, OLS: p = 0.045, RS: p = 0.150), but still less often than under HG (44%, OLS:

p = 0.002, RS: p = 0.055).

Figure 9: monitors say the sky is red when the agent is good.
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Note: The figure shows positive realized reports as a function of the agent’s
type under DE, RR and HG. The variable Positive Realized Reports measures
the frequency with which a realized report against an agent occurs. Error
bars mark ±1 standard error from the mean (clustering at the individual
level).

Overall, the observed reporting pattern favors performance under RR: monitors do not

follow instructions when doing so would harm efficiency (they do not report Good agents),

but they are more likely to obey the rules when doing so benefits efficiency (they report Bad

the reporting rate under HG is more stable (β = −0.004, p = 0.206). In the final five periods the reporting
rates against Bad agents amount to: DE: 27% RR: 50%, HG: 61%.
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agents even when under threat).

Agents treat the game as hard garbling. Threats by agents under randomized response

RR are not significantly different from threats made under hard garbling HG (but they differ

from those made under DE). Figure 10 shows the frequency of agents’ commitment to punish

contingent on the agent’s type across treatments DE, RR, and HG.

Figure 10: agents commit to punish in the same way under RR and HG

0

10

20

30

40

50

60

70

80

%
 C

om
m

itm
en

t t
o 

Pu
ni

sh

DE RR HG

Bad Agents Good Agents

Note: The figure displays the frequency with which Good and Bad agents
commit to punish under DE, RR and HG. The variable % Commitment to
Punish measures the within-type percentage of agents who commit to punish
across all periods of a treatment. Error bars mark ±1 standard error from
the mean (clustering at the individual level).

The frequency with which Bad agents commit to punish is 52% under RR, versus 60%

under HG (OLS: p = 0.351, RS: p = 0.297), and 75% under DE (OLS: p = 0.010, RS:

p = 0.030). A similar result holds for Good agents. The frequency of commitments under

RR is 25%, versus 28% under HG (OLS: p = 0.625, RS: p = 0.748), and 44% under DE (OLS:

p = 0.044, RS: p = 0.128). Commitment to punish tends to increase slightly over time in
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all three treatments (Bad agents: DE: β = 0.007, p = 0.001, RR: β = 0.004, p = 0.086, HG:

β = 0.004, p = 0.234 / Good agents: DE: β = 0.007, p = 0.036, RR: β = −0.002, p = 0.292,

HG: β = 0.002, p = 0.697), but the commitment frequencies in the final five periods confirm

that the general pattern remains very stable (Bad agents: DE: 81% RR: 56%, HG: 63% /

Good agents: DE: 47% RR: 23%, HG: 33%). These findings are consistent with the idea

that agents believe they are playing oRR: the obedient version of RR.18

6.3 Learning

As Figure 8 highlights, output under RR remains close to output under HG over time. In

other words, agents do not seem to learn how to play subgame perfect equilibrium. This

finding is consistent with the fact that it is self-confirming (Fudenberg and Levine, 1993)

for Bad agents to refrain from making threats if they believe that agents will answer the

unrelated question truthfully.

Table 3: agents’ future behavior is related to context-relevant experience only.

# late threats | good Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept -0.137 0.422 -0.330 0.758 -1.221 0.947
# early threats | good 1.199 0.079 15.270 0.000 0.997 1.401
# early threats | bad 0.082 0.133 0.610 0.567 -0.261 0.425

# late threats | bad Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept 1.699 0.685 2.480 0.056 -0.062 3.461
# early threats | good 0.123 0.086 1.440 0.209 -0.097 0.343
# early threats | bad 0.858 0.137 6.280 0.002 0.507 1.210

Note: OLS estimation, standard errors clustered at the session level.

One objection to this interpretation is that agents can get evidence that monitors do not

always take the unrelated question seriously (as Figure 9 shows): for instance, Good agents

18This data is also consistent with the finding that uncertainty makes contingent reasoning more difficult
(Mart́ınez-Marquina et al., 2018).
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who do not commit to punish face a reporting rate of 6% rather than 25% under RR.19

This means that for the self-confirming interpretation to be correct, agents must not make

successful inferences about continuation play when their type is Bad using data collected

when their type is Good. The data show that this is indeed the case.

Table 3 reports (purely correlational) findings from regressing the number of threats given

type in periods 11 to 20 on the number of threats given type in periods 1 to 10. Experience

emitting threats when Good is not correlated to future threats conditional on being a Bad

type, but is highly correlated to future threats conditional on being Good.

The impact of conditional payoff information. In order to confirm that insufficient

information over conditional payoffs is the key limit to learning, we implement a second

version of our treatments (HG, DE, RR), referred to as the social learning variant, in which

we provide participants with such information. Specifically, agents are informed about the

sample average of other agents’ payoffs in previous sessions conditional on their type and

commitment choice. Monitors learn sample averages of monitor profits in previous sessions

conditional on agent quality, agent’s commitment to punish, and the reporting decision.20

While this is a rich informational setting, we believe it is not implausible within a stable

organization: such information could plausibly arise from social learning.

As Figure 11 illustrates, the agents’ behavior under RR becomes indistinguishable from

behavior under DE. This shows that failure to converge to SPE under RR was indeed due to

limited information, rather than, say, design-specific social preferences. These results suggest

that randomized response RR, while tempting on the face of evidence displayed Figure 7,

should be used with great caution in stable organizations. If social learning allows decision

makers to understand the procedure properly, the randomized response method no longer

outperforms direct data elicitation (see Appendix A for a more detailed analysis of the impact

19It is important to keep in mind that agents do not see this aggregated information, but need to learn
it over time. Such learning is difficult and slow, because agents only have very few observations at their
disposal.

20Under RR the information is provided separately for the direct and the unrelated question.
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of the availability of conditional payoff information on performance under different elicitation

mechanims). In contrast, hard garbling continues to improve on information flows.

Figure 11: comparison of original and social learning treatments
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Note: The figure compares time trends in commitment to punish by Bad
agents and in reporting intent against Bad agents between the original treat-
ments and the social learning treatments.
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7 Modeling Boundedly Rational Behavior

In this Section we seek to formalize the intuitive discussion of non-equilibrium play under

randomized response (Section 6.2) using off-the-shelf modeling tools. Specifically we use

a natural variant of the Dynamic Level-k model of Ho and Su (2013) that allows for ran-

dom utility shocks along the lines of Quantal Response Equilibrium (McKelvey and Palfrey,

1995).21 We emphasize that the model is wrong in significant ways, and bring up relevant

issues explicitly. However, we believe that the opportunity for learning is maximized by

sticking to an existing and well understood class of models rather than fixing the model in

an ad hoc way. Our objectives for this section are threefold:

(i) to formulate a theory of how bounded rationality can bias treatment-effect esti-

mators by inducing patterns of false-reporting that differ across treatments;

(ii) to allow for not-implausible counterfactual, or prospective analysis of how differ-

ent survey mechanisms may work out in practice;

(iii) to query the data through the lens of implied model parameters.

7.1 The Quantal Response Level-k model

We first provide a definition of the Quantum Response Level-k model (QRL-k) tailored for

our survey games. Appendix B provides a more general definition encompassing all single-

move extensive-form games (of which survey games are a special case), and shows that it’s

without loss of generality to set the highest level of rationality equal to the number of players.

Players are described by their level k ∈ {0, 1, 2}. Play in survey game G ∈ {DE,RR,HG}

is described by the mass ρG ∈ [0, 1] of level 2 players, and the mass 1− ρG of level 1 players.

Level 0 players exist only in the mind of level 1 players. For any decision node hi, denote by

Ahi actions available to player i at hi. Let Si ≡
∏

hi
Ahi denote the set of strategies available

21A possible alternative would be to use a variant of cursed equilibrium (Eyster and Rabin, 2005) in which
players don’t neglect the correlation between the play of others and an underlying state of the world, but
instead neglect the correlation between the play of others and their own actions.
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to player i, and by ui(si, s−i) the payoff to player i.22 The play of each level is described as

follows:

� a level 0 player i follows instructions on how to play if any are given, and picks a

strategy si with uniform probability over Si if no instructions are provided;

� a level k player i best-responds to the distribution of strategies µk−1
−i ∈ ∆(S−i) of an

opponent of level k−1: for any decision node hi, action aki is a random variable solving

max
ai∈Ahi

Eµk−1
−i

[ui(ai, s−i)|hi] + εi(ai) (4)

where error terms (εi(ai))i∈I, ai∈Ahi are independent across players i ∈ I, and distributed

as follows conditional on i:

– with probability 1 − ν, for all ai ∈ Ahi , εi(ai) = σε′i(ai), where (ε′i(ai))ai∈Ahi are

i.i.d. and follow an extreme value type I distribution with mean 0, location 0, and

scale parameter 1;

– with probability 1− ν, εi(ai) = +∞1ai=a∗i , where a∗i is uniformly distributed over

Ahi , and using the convention that ∞× 0 = 0.23

With probability ν, the shock is not-responsive to payoffs, i.e. error rates do not shrink as

the payoffs and incentives get scaled up. With probability 1 − ν the error is responsive to

payoffs, and the degree of responsiveness is captured by parameter σ. This flexibility allows

us to capture patterns of play in which a non-zero share of players fail to optimize ui(ai, s−i)

when stakes are large, and yet play is not uniformly random when stakes are small.24

A QRL-k model of play described by (α, σ, ν, ρ) induces a distribution µQRL ∈ ∆(S) over

strategy profiles s ∈ S ≡
∏

i Si.

22This includes monitors’ altruistic preferences, parameterized by α.
23As Haile et al. (2008) highlight, the class of error terms used is a key determinant of the empirical

content of Quantum Response Equilibrium.
24If we impose ν = 0, the scale parameter σ needed to explain failures to optimize when stakes are large

predicts nearly uniformly random play when stake are small.
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7.2 Theoretical Analysis

The QRL-k model is a useful benchmark for several reasons. The first is that it is identi-

fied from play. Let µQRL
|A ∈ ∆(A) denote the projection of µQRL from strategies s ∈ S to

realized action profiles a = (ai, a−i). Importantly, µQRL
|A can be estimated using the sample

distribution of play.

Proposition 4 (model identification). For all survey games, HG, DE, and RR, parameters

α, σ, ν and ρ are identified from the following moments:

� play by the monitor at all histories, (µQRL
|M (r = 1|c, τ)) c∈{0,1},

τ∈{G,B}
and,

� play by the agent conditional on her type, (µQRL
|A (c = 1|τ))τ∈{G,B}.

The next result shows that keeping social preferences α, and parameters (σ, ν) governing

the distribution of error terms, the same across games, QRL-k can only capture the framing

effects due to the unrelated question (i.e. the difference between RR and DE) through a

change in the share ρ of level 2 players across games RR and DE.

Proposition 5 (rationality and framing). Assume that parameters α, σ, ν are equal across

RR and DE. QRL-k behavior µQRL
RR and µQRL

DE is such that:

(i) Regardless of ρRR and ρDE, at every (type, commitment) node (τ, c), the dis-

tribution of realized reports from the monitor is the same across RR and DE:

µQRL
RR (r̃|τ, c) = µQRL

DE (r̃|τ, c).

(ii) Whenever ρRR = ρDE, the distribution of punishment-commitment choices by

Bad agents is the same across RR and DE: µQRL
RR (c|B) = µQRL

DE (c|B).

Since in our data, Bad agents are less likely to commit to punishment under RR than

DE, our experiment indicates that framing effects have an impact on the level of rationality

of players. Specifically, it suggests that framing lowers the share of level 2 players under RR.

This has implications about false reporting and the bias of treatment effect estimator ∆̂RB

under boundedly rational play.
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Proposition 6 (rationality and bias). Assume that ρRR ≤ ρDE, and keep parameters α, σ,

ν equal across RR and DE. The following hold:

(i) Good agents commit to retaliate more often under DE than RR:

µQRL
RR (c = 1|G) ≤ µQRL

DE (c = 1|G).

(ii) Monitors report Good agents more often under DE than under RR:

µQRL
RR (r̃ = 1|G) ≥ µQRL

DE (r̃ = 1|G).

This last result is intuitive. Because Good agents poorly anticipate the behavior of

monitors under randomized response RR, they commit to punish less frequently under RR

than DE. This means that monitors tend to have stronger incentives not to report Good

agents under DE than RR. As a result, monitors report good agents more frequently under

RR than DE. This leads us to overestimate the impact of treatment RR versus control DE

on the reporting of Bad agents.

7.3 Structural investigation

We take the QRL-k model to the data (focusing on treatments without social learning)

with three objectives: first, we assess in-sample fit; second, we explore the model’s value

in evaluating counterfactual scenarios; third, we examine the extent of bias due to false

reporting.

In-sample fit. For each treatment HG, DE, and RR (original treatments without condi-

tional payoff information), we estimate model parameters ρ (share of level 2 players), α

(monitor altruism), σ (the scale of payoff-responsive shocks), and ν (the mass of payoff non-

responsive shocks). Given identification (Proposition 4), we estimate parameters using the

simulated method of moments (McFadden, 1989). Table 4 shows estimated parameters.

A first observation is that parameter estimates match the intuitive explanation for why

RR performs so well: the share of level 2 players ρ is lower under RR than DE. This does not
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Table 4: estimated parameters (original treatments).

HG DE RR

ρ 1. 0.78 0.52
α 0.48 0.34 0.54
σ 16.7 21.6 8.8
ν 0.096 0.20 0.10

impact the behavior of monitors significantly but makes agents more careful about issuing

threats since they believe that monitors may take the unrelated question seriously.

A second observation is that the rate of incompressible errors ν is large, especially under

DE. As Table 4 clarifies, this is driven by the behavior of monitors under DE: they report

Bad agents with probability 19.1% conditional on threats, which suggests that they may

have fairly high altruism; however, they also report Good agents with probability 12.8% in

the absence of threats, which suggests that they have low altruism. Ultimately these facts

end up being rationalized through a high rate of payoff non-responsive errors.

A third observation is that the fit between simulated and empirical moments summarized

by Table 5 is quite good. This implies that it would be difficult to differentiate this particular

model of bounded rationality from a different one: the existing free parameters already

explain the data fairly well. Therefore even though the high reporting rate r̃ = 1 against

Good agents under DE could potentially be rationalized in an expanded model, we believe

that it is more productive for us to focus on the implications of the off-the-shelf QRL-k

model, rather than come up with yet another framework.

Counterfactual scenarios. One use for models of bounded rationality is to help formulate

quantitative counterfactual scenarios. We simulate behavior under RR, using parameters

estimated under DE, but taking ρ = .6 reflecting the plausibly anticipated belief that people

would be confused by the unrelated question.
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Table 5: in-sample fit of empirical (E) and simulated (S) moments; “report” refers to a
realized report r̃ = 1

HG DE RR
moment Emp./Sim.

threat given bad E 0.603 0.753 0.524
S 0.594 0.694 0.507

threat given good E 0.281 0.436 0.255
S 0.222 0.494 0.244

report bad given no threat E 0.893 0.832 0.933
S 0.952 0.898 0.950

report bad given threat E 0.292 0.191 0.293
S 0.262 0.133 0.309

report good given no threat E 0.056 0.128 0.059
S 0.110 0.192 0.051

report good given threat E 0.033 0.037 0.031
S 0.048 0.100 0.050

Table 6: extrapolated moments from DE to RR; “report” refers to a realized report r̃ = 1

empirical simulated

threat given bad 0.524 0.541
threat given good 0.255 0.411
report bad given no threat 0.933 0.898
report bad given threat 0.293 0.133
report good given no threat 0.059 0.192
report good given threat 0.031 0.100

As Table 6 shows, the counterfactual simulation does a fairly good job of predicting

actual behavior. In particular, it predicts that Bad agents will indeed refrain from making

threats, but that monitors will rarely report either Good agents, or Bad agents conditional

on threats. The main departures are driven by the fact that under DE, monitors report

Good agents at a relatively high rate (13%) conditional on no threat. This results in a fairly

high value of payoff-responsive shock-parameter σ, which makes emitting threats attractive

under our simulated RR model. The corresponding low estimate of α under DE leads us to

underpredict the reporting of Bad types, and overpredict the reporting of Good types.
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False reporting and bias. As Section 3.2 highlights, the bias of treatment effect estimator

∆̂RB is equal to Rtreatment
G −Rcontrol

G : different false reporting of Good agents across different

treatments biases the treatment effect estimator.25 Proposition 6 shows that QRL-k makes

specific predictions about bias: (i) Good agents should be less likely to make threats than

under under RR than DE; (ii) as a result, there should be more reporting of Good agents

under RR than DE.

As Figure 12 shows, point (i) above is borne out in the data,, but point (ii) is not (see

also Table 5). The prediction that Good agents make threats more frequently under DE

(44%) than RR (25%, OLS: p = 0.044, RS: p = 0.128) or HG (28%, OLS: p = 0.040, RS:

p = 0.128) does hold (see Panel A). However, the share of intended reports against Good

agents is higher under DE (9%) than either RR (5%, OLS: p = 0.193, RS: p = 0.336) or

HG (5%, OLS: p = 0.237, RS: p = 0.423, see Panel B). The reason for this (as we have

noted before) is that conditional on no-threat, monitors under DE report Good agents at

a surprisingly high rate (13%) relative to monitors under HG (6%, OLS: p = 0.160, RS:

p = 0.337) and RR (6%, OLS: p = 0.183, RS: p = 0.197, see Panel C).26

Impact of social learning on bias. Figure 13 shows that the bias of estimator ∆̂RB

for the treatment effect of HG relative to DE disappears almost completely when players get

feedback about conditional payoffs. The difference between reporting rates of Good agents

across treatments amounts to RHG
G − RDE

G = 1.4% − 1.3% = 0.1 (or more precisely 0.07)

percentage points (OLS: p = 0.910, RS: p = 0.871). The 95% confidence interval for the

difference is [−0.01, 0.01].27 As a consequence, the estimated treatment effect is essentially

25We abstract here from the fact that the empirical frequency with which information is garbled in RR and
HG may slightly deviate from the theoretical probability in small samples. See section 5.4 for a discussion.

26A potential explanation for this result is that play under direct-elicitation elicitation tends to be par-
ticularly favorable to agents, since threats are very effective. The false reporting of good agents who do not
make threats may thus be an expression of spite from monitors. To account for this, the model would need
to consider social preferences over the entire sequence of interactions.

27The difference becomes even smaller over time. An estimation of the difference based on data of the
final 5 periods alone therefore yields: ∆RG = 0.03 percentage points (OLS: p = 0.562, RS: p = 0.575).
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Figure 12: mechanics of false reporting of good agents
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Figure 13: intended reporting of good agents over time in the social learning treatments
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agents under DE and HG in the social learning experiment. The variable
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ror bars mark ±1 standard error from the mean (clustering at the individual
level).

unbiased when using the data obtained from the experiments in which social learning is

possible. We note that the improved consistency of our treatment effect estimator under

social learning is not caused by a higher frequency of threats from Good agents under DE

(48% with information versus 44% without information, OLS: p = 0.675, RS: p = 0.631), but

rather by a lower reporting rate of monitors against agents who do not threaten to punish

(4% with information, versus 13% without information, OLS: p = 0.083, RS: p = 0.200).
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8 Discussion

8.1 Summary

We study the value of survey methods achieving different forms of plausible deniability in

equilibrium. We compare three survey designs of interest: direct elicitation DE, hard garbling

HG and randomized response RR. Our theoretical analysis emphasizes that:

� randomized response RR and direct elicitation DE are outcome equivalent under SPE;

obedient randomized response oRR (in which it is common knowledge that monitors

take the unrelated question seriously) is outcome equivalent to HG in SPE.

� an estimator of treatment effects can be computed using unverifiable reports; it is

consistent only when the false reporting of Good agents is independent of the survey

design, which holds when monitors are rational.

Experimental investigation shows that subgame perfect equilibrium is not a successful

model of empirical play in this setting. First, Good agents are being reported at positive and

different rates across designs. Second, randomized response RR turns out to be surprisingly

effective due to the fact that monitors do not take the unrelated question seriously, but agents

seem to. This differential confusion is easily explained in a dynamic model of boundedly

rational behavior, monitors act last and do not have to form beliefs about the play of others,

while agents act first and have to form beliefs about the behavior of monitors. This simple

insight has broader implications for extensive form mechanism design: for instance, the belief

that complex questionnaires (Glazer and Rubinstein, 2014) work on others is sufficient to

get relevant players to comply. The mechanics here are reminiscent of Fudenberg and Levine

(2006) which clarifies the use of sufficiently off-the-equilibrium-path superstitious beliefs in

the code of Hammurabi.

An off-the-shelf model, QRL-k, provides adequate quantitative fit and leads to new pre-

dictions about bias. Under bounded rationality, RR should lead to greater reporting of Good

agents in equilibrium: because Good agents take the unrelated question seriously they re-

frain from making threats which, under QRL-k, leads to higher reporting of Good agents
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under RR than DE. This prediction is not fully borne out in the data. The main source

of prediction error is the fact that monitors report non-threatening Good agents at much

higher rates under DE than under RR or HG.

From a modeling perspective, we note in passing that in two player extensive form games,

the difference between QRL-k and cursed equilibrium is rather small. In a sense, under QRL-

k level 1 agents underestimate the correlation between their play and the behavior of the

monitor. Framing effects due to the unrelated question would be interpreted as an increase

in correlation neglect.

We emphasize that the failure of SPE under RR is long lived, which is consistent the fact

that the pattern of play we observe is broadly consistent with self-confirming equilibrium.

This learning interpretation is confirmed by the fact that play does converge to SPE when

players get information about the conditional payoffs obtained by other players like them.

This causes the bias of treatment effect estimator ∆̂RB to vanish. We note that while self-

confirming equilibrium explains why players do not learn SPE in treatments without social

learning, self-confirming equilibrium does not help explain why play under DE and RR is

different: the two games have the same set of self-confirming equilibria. Our view is that a

model along the lines of QRL-k is needed to account for initial play across different games,

while self-confirming equilibrium helps explain why initial play sticks.

Altogether, while the good performance of RR is striking in settings without social learn-

ing, we find that our evidence broadly confirms that one should be cautious when using

randomized response RR in stable organizational settings where learning may occur. In

addition, false positives cannot be entirely ignored, but may be partially anticipated using

QRL-k.

We conclude with a prospective discussion of potential applications for secure survey

design.
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8.2 Applications

What environments? We evaluate the impact of survey design on the transmission of

sensitive information in organizations. We study an environment in which an interested

agent can commit to retaliate in order to suppress information. By forcing punishment on

the equilibrium path, adding noise to surveys makes it more costly to suppress information.

We note that a similar argument may hold when threats are not the issue, but instead,

monitors are worried about the reputational effects. Indeed, inference about intended report

r from realized report r̃ = 1 satisfies

log

(
prob(r = 1|r̃ = 1)

prob(r = 0|r̃ = 1)

)
= log

(
prob(r̃ = 1|r = 1)

prob(r̃ = 1|r = 0)

)
+ log

(
prob(r = 1)

prob(r = 0)

)
.

Garbling reduces term log
(

prob(r̃=1|r=1)
prob(r̃=1|r=0)

)
thereby diminishing the reputational impact of

information transmission.

This logic applies in environments where there are no threats, but the agent exhibits spite

and may retaliate in a manner commensurate to her belief that the monitor caused her harm

(see Chassang and Zehnder, 2016, for a model along these lines). Garbled surveys reduce the

impact of intervention on the agent’s posterior that the monitor transmitted information.

As a result, it reduces the agent’s propensity to retaliate.

In many settings, instead of being concerned with potential retaliation, the monitor may

be concerned with the impact information may have on the agent’s reputation. Consider

the problem of detecting mental health or substance abuse issues for teams operating in

high stakes environments, such as military and law enforcement units. High degrees of

loyalty are essential for such teams. As a result, team members may be unwilling to signal

that a teammate is experiencing issues: this may have a negative long-term impact on

their teammate’s career. In such situations, suitably garbled information channels may help

concerned team members get help for their teammates without endangering their teammates

future careers. Because there is no embedded antagonism, this class of applications may also
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exhibit reduced rates of false reporting.

Finally, note that the same argument may apply to information one submits about oneself:

an agent may be unwilling to report that she is experiencing burn-out, or mental health

issues, if she believes this will affect her career. The ability to send soft information improves

opportunities for communication.

What interventions? By construction, the information provided through garbled surveys

is soft information that cannot serve as the basis for heavy-handed corrective or punitive

intervention. Plausible interventions could take the form of a thorough investigation po-

tentially leading to actionable evidence. Alternatively, intervention could take the form of

appropriate training that is especially helpful for Bad agents, and is only a minor inconve-

nience for Good agents. A manager may receive leadership or sensitivity training. A military

or police officer potentially experiencing burnout may be placed on furlough for a few weeks,

and so on.
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Appendix (for online publication)

A Further Empirical Analysis

In this section we describe in more detail the results of our social learning treatments.

In those treatments we provide participants with conditional payoff information elicited in

previous sessions of the same experiment.28 We describe how conditional payoff information

affects outcomes under our three elicitation mechanisms (DE, RR, HG).

Figure A.1: impact of social learning on output and punishment
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standard error from the mean (clustering at the individual level).

Output and punishment Figure A.1 displays average output and the overall frequency

of punishment for all elicitation mechanisms in the absence (original treatments) and the

presence of conditional payoff information (social learning treatments). The figure reveals

28Agents are informed about sample averages of agent profits conditional on agent type and commitment to
punish. Monitors learn sample averages of monitor profits conditional on agent quality, agent’s commitment
to punish, and the reporting decision.
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that our finding that randomized response gets the best of both survey procedures (see section

6.1) no longer holds once social learning is possible. While there is no significant impact on

average output under DE and HG29, the availability of conditional payoff information reduces

average output under RR from 870 points to 527 points (OLS: p = 0.018, RS: p = 0.045). As

a consequence, there is no longer a significant difference in average output between DE (497)

and RR (527) in the social learning treatments (OLS: p = 0.769, RS: p = 0.873).30 Finally,

while the availability of conditional payoff information leads to slightly lower punishment

frequencies under DE (8.0% vs. 6.2%, OLS: p = 0.067, RS: p = 0.127) and HG (17.8%

vs. 15.5%, OLS: p = 0.048, RS: p = 0.037), the punishment frequency under RR increases

insignificantly (8.1% vs. 9.1%, OLS: p = 0.546, RS: p = 0.521).

Figure A.2: output and punishment under social learning
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Note: The figure displays the development of average output and the over-
all frequency of punishment in all social learning treatments (DE, RR and
HG). The variable Output corresponds to average per-period output at the
session level. The variable % Punishment represents the percentage of agent-
monitor pairs in which punishment occurred. Error bars mark ±1 standard
error from the mean (clustering at the individual level).

29Under DE average output slightly increases from 480 points to about 497 points (OLS: p = 0.846, RS:
p = 1.000) and under HG average output slightly decreases from 798 points to 735 points (OLS: p = 0.410,
RS: p = 0.631).

30In the presence of social learning average output under HG is significantly higher than under DE (OLS:
p = 0.003, RS: p = 0.025) and under RR (OLS: p = 0.064, RS: p = 0.092).
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The fact that randomized response no longer outperforms direct elicitation in the presence

of conditional payoff information is further confirmed by a dynamic analysis. Figure A.2

displays the development of average output and realized punishment in the social learning

treatments over time. Average output under RR and DE converges across treatments after

the first five periods, and then exhibit the same negative time-trend until the end of the

experiment (DE: β = −18.205, p < 0.001, RR: β = −22.705, p < 0.001). Average output

under HG, in contrast, experiences only a weak and non-significant negative time trend and

stabilizes at a much higher level than in the other two treatments (β = −3.744, p = 0.155).

In the final five periods average output under HG is roughly 700 points, compared to 330

points under DE (OLS: p = 0.002, RS: p = 0.025), and 350 points under RR (OLS: p = 0.017,

RS: p = 0.065). The punishment frequencies show mildly negative time trends under DE

(β = −0.002, p < 0.001) and RR (β = −0.004, p = 0.002), while the punishment frequency

under HG remains by and large constant over time (β = −0.001, p = 0.335).

Commitment to punish, and reporting. Figure A.3 summarizes the impact of social

learning on agents’ commitment to punish and monitors’ reporting intents. Regarding pun-

ishment commitments Panel A reveals that social learning almost exclusively affects agents’

behavior under RR. In particular, the frequency with which Bad agents commit to punish

under RR increases from 52% in the original treatment to 77% in the social learning treat-

ment (OLS: p = 0.009, RS: p = 0.030). The rates at which Bad agents commit to punish

under DE and HG and those of Good agents under all treatments do not significantly change

in response to the presence of conditional payoff information.31 The increase in the frequency

with which Bad agents commit to punish under RR in the social learning environment im-

plies that there is no longer a difference in the commitment rate of Bad agents between

RR (76.5%) and DE (77.3%, OLS: p = 0.880, RS: p = 0.748). Moreover, the commitment

rate of Bad agents under HG (64%) is significantly lower than under both other elicitation

mechanims (HG vs. DE: OLS: p = 0.006, RS: p = 0.020, HG vs. RR: OLS: p = 0.029, RS:

p = 0.054).32

31In the following the first (resp. second) percentage corresponds to the rate at which agents commit to
punish under the original (resp. social learning) treatment. DE: Bad agents (75% vs. 77%, OLS: p = 0.778,
RS: p = 0.574), Good agents (44% vs. 48%, OLS: p = 0.675, RS: p = 0.631). RR: Good agents (25% vs.
31%, OLS: p = 0.412, RS: p = 0.630). HG: Bad agents (60% vs. 64%, OLS: p = 0.512, RS: p = 0.575), Good
agents (28% vs. 23%, OLS: p = 0.305, RS: p = 0.575).

32Note that even with conditional information, the commitment rate of Good agents is significantly higher
under DE (48%) than under RR (31%, OLS: p = 0.035, RS: p = 0.055) and HG (23%, OLS: p = 0.004, RS:
p = 0.016). The commitment rates of Good agents between RR and HG are not significantly different (OLS:
p = 0.209, RS: p = 0.575).
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Figure A.3: impact of social learning on commitment to punish and reporting intent
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Note: The figure shows the observed frequencies of reporting intent and
commitment to punish in all treatments. The variable % Commitment to
Punish measures the within-type percentage of agents who commit to pun-
ish. The variable %Reporting Intent measures the frequency with which
monitors intend to submit a positive report r = 1 against an agent as a
function of the agent’s quality and the treatment. Error bars mark ±1
standard error from the mean (clustering at the individual level).

Panel B shows that the impact of social learning on monitors’ reporting intents is also

most pronounced under RR. While the introduction of conditional payoff information only

leads to a moderate reduction in the frequency with which monitors intend to report Bad

agents under DE (35% vs. 34%, OLS: p = 0.861, RS: p = 0.520) and HG (53% vs. 44%,

OLS: p = 0.086, RS: p = 0.261), the frequency of intended reports under RR drops from

60% in the original treatment to 37% in the social learning treatment (OLS: p = 0.018, RS:

p = 0.037). As a consequence, the rate of reporting intents against Bad agents is no longer

different between RR and DE (OLS: p = 0.610, RS: p = 0.810). With respect to reporting

intents against Good agents the presence of social learning opportunities implies that the

rate of reporting intents drops to low levels under DE (9% vs. 3%, OLS: p = 0.028, RS:

p = 0.258) and HG (5% vs. 3%, OLS: p = 0.324, RS: p = 0.418), but slightly increases under

RR (5% vs. 7%, OLS: p = 0.256, RS: p = 0.169). These opposite developmens imply that in

the social learning treatments the rate of false reporting against Good agents is significantly
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higher unde RR than under DE (OLS: p = 0.005, RS: p = 0.053).33

Figure A.4: commitment to punish and reporting intent under social learning
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Note: The figure shows the development of reporting intent and commit-
ment to punish in all social learning treatments (DE, RR and HG). The
variable % Commitment to Punish measures the within-type percentage of
agents who commit to punish. The variable %Reporting Intent measures
the frequency with which monitors intend to submit a positive report r = 1
against an agent as a function of the agent’s quality and the treatment. Er-
ror bars mark ±1 standard error from the mean (clustering at the individual
level).

Figure A.4 illustrates the dynamics of commitment to punish and reporting intents in the

social learning treatment. The figure illustrates that both DE and RR suffer from increasingly

undesirable behavior over time. In particular, Bad agents commit to punish more frequently

over time (DE: β = 0.007, p < 0.001, RR: β = 0.009, p < 0.001, see Panel A) and are

reported less frequently (DE: β = −0.009, p < 0.001, RR: β = −0.015, p < 0.001, see

Panel C). Under HG these time trends are either absent (commitment rate of Bad agents:

33Under RR the rate of reporting intents differs depending on whether monitors answer the relevant or
the unrelated question. If monitors answer the relevant question, the introduction of conditional payoff
information reduces reporting intents against Bad agents from 58% to 35% (OLS: p = 0.020, RS: p = 0.055)
and reporting intents against Bad agents from 3% to 2% (OLS: p = 0.594, RS: p = 0.337). In case of the
unrelated question, conditional payoff information reduces reporting intents against Bad agents from 64% to
45% (OLS: p = 0.042, RS: p = 0.078), but increases reporting intents against Bad agents from 12% to 21%
(OLS: p = 0.035, RS: p = 0.045).
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β = 0.000, p = 0.960) or weak (reporting of Bad agents: β = −0.004, p = 0.086). These

findings reinforce our conclusion that the high performance of randomized response that we

observed in our original treatments cannot be sustained in organizational settings in which

social learning is feasible. The improved survey quality obtained under hard garbling, in

contrast, remains stable.

B A More General QRL-k Model

Model. Consider the class of finite extensive-form games, with players i ∈ I, in which

players move at most once, and past actions are public. The set of strategies of player i takes

the form Si =
∏

hi∈Hi Ahi where Ahi is the set of actions available to player i at history hi.

Let S =
∏

i∈I Si denote the set of strategies. For any sequence of marginal distributions over

strategies (µi)i∈I ∈
∏

i∈I ∆(Si), we denote by µ−i the product of independent distributions∏
j 6=i µj. Expected payoffs to player i are denoted by ui(si, s−i). Payoffs conditional on a

decision node hi and action ai ∈ Ahi are simply denoted by ui(ai, s−i).

Definition 2 (QRL-k model). A quantal response level-k model of play consists of

(i) A sequence (µi,k)i∈I,k∈N of distributions of play µi,k ∈ ∆(Si), and independent

noise terms εi ∈ RSi from a known parametric family, such that for all si ∈
suppµi,k, hi ∈ Hi, ai ∈ Ahi, and k ≥ 1,

probµi,k(ai = si(hi)) = probεi

(
ai = arg max

ai∈Ahi
Uhi(ai, µ−i,k−1, εi)

)
(5)

where Uhi(ai, εi, µ−i,k−1) ≡ Es−i∼µ−i,k−1
[ui(ai, s−i)] + εi(ai).

(ii) A profile (λi)i∈I of distribution of levels λi ∈ ∆(N) describing the distribution

of cognitive levels for each player.

A QRL-k model of play induces a distribution µQRL ∈ ∆(S) over strategy profiles s =

(si)i∈I described by

µ(s) =
∑

(ki)i∈I∈NI

∏
i∈I

λi(ki)µi,k(−si). (6)

Definition 3 (Common downward belief in rationality.). We say that a player i of level-k

exhibits common downward belief in rationality at history hi if and only if

� hi is a final decision node, and k ≥ 1, or
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� i believes that any player j with a decision node hj after hi exhibits common downward

belief in rationality at hj.

Lemma 1 (limited impact of higher levels). Consider an extensive-form single move game

with N players and a QRL-k model of play. If k ≥ N , then at any history hi, player i

exhibits common belief in downward rationality and µi,k = µi,k+1.

Proof. Denote by #succ(hi) the number of players that can playing after history hi. Since

the game is a single move game, whenever h′ follows h, #succ(h′) ≤ #succ(h) − 1. Hence

at any final decision node f (i.e. decision node that leads to final payoff realizations), there

may have been at most N − 1 decisions taken. This implies common belief in downward

rationality from the initial node.

The statement that µi,k = µi,k+1 follows from backward induction. �

C Proofs

Proof of Proposition 1. Consider the case of direct elicitation. If the agent commits

to punish, for KM large enough, the monitor’s best response is to report r = 0, so that the

agent gets a payoff of 0 in equilibrium. Costs of punishment are not paid in equilibrium. If

the agent does not commit to punish, the monitor finds it optimal send report r = 1 about

the agent if and only if the agent is Bad, inducing a payoff of −D for a Bad agent, and a

payoff of 0 for a Good agent. As a result Bad agents find it optimal to commit to punish in

SPE. Good agents are indifferent between commiting to punish or not.

Under hard garbling, if the agent commits to punish, her payoff is bounded above by

−πKA: costs of punishment have to be paid on the equilibrium path. If the agent does not

commit to punish, the monitor finds it optimal to send report r = 1 if and only if the agent is

Bad. As a result, the agent gets a payoff greater than −D. It follows that no agent commits

to punish.

Monitors always submit report r = 0 conditional on the agent type being Good, since

this maximizes social surplus Y while minimizing expected potential costs E[dr̃KM |r]. �

Proof of Proposition 2. The fact that DE and RR are outcome equivalent is immediate.

The unrelated question is simply a relabeling of actions under direct elicitation.
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Games HG and oRR differ only in the subgames after the agent commits to punish or not

(c ∈ {0, 1}). Under HG the monitor sends message r = 1 if and only if

UM(τ, c, r̃ = 1) ≥ πUM(τ, c, r̃ = 1) + (1− π)UM(τ, c, r̃ = 0)

⇐⇒ UM(τ, c, r̃ = 1) ≥ UM(τ, c, r̃ = 0).

Under oRR, when being asked to report the agent’s type, the monitor sends message r = 1 if

and only if UM(τ, c, r̃ = 1) ≥ UM(τ, c, r̃ = 0). By assumption, the monitor induces realized

report r̃ = 1 when asked the unrelated question. As a result, the equilibrium distribution of

realized reports r̃ conditional on any configuration (τ, c) coincide under oRR, and HG. As a

result, any joint distribution of outcomes (τ, c, r̃) supported by equilibrium play in one game

is supported by equilibrium play in the other game. �

Proof of Proposition 3. We have that Eµ[R̃] = RB + RG + (1 − RB − RG)π, hence

RB = Eµ[R̃]−π
1−π −RG. By the law of large numbers, µ-a.s., limN→∞ R̃ = Eµ[R̃].

Since R† = EµR̃ − RB − RG substituting the expression for RB above yields R† =

(1− EµR̃) π
1−π . Equation (2) follows from the Law of Large Numbers.

It is immediate that RG = 0 if the monitor is rational: regardless of whether the agent

commits to punish or not, the monitor’s payoff is maximized by sending report r = 0.

When RG = 0, the expected mass of realized reports against Good agents EµR̃G satisfies

EµR̃G = RG + (1− q −RG)π

≤ RG + (1−RB −RG)π

≤

(
1− EµR̂− π

1− π

)
π = R†.

This bound is tight whenever q = RB, which occurs when all Bad types are reported. �

Proof of Proposition 4. We first consider the hard-garbling game HG. Consider the

behavior of a monitor after history (τ, c). Since this is a final decision node, monitors behave

rationally. The monitor chooses to send report r = 1 if and only if

Uα
M(r = 1|τ, c) + εr=1 ≥ Uα

M(r = 0|τ, c) + εr=0.

Let ∆UM(τ, c) ≡ Uα
M(r = 1|τ, c) − Uα

M(r = 0|τ, c) and r̄(τ, c) ≡ prob(r = 1|τ, c). We have
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that

r̄(τ, c) = .5ν + (1− ν)
exp ∆UM (τ,c)

σ

1 + exp ∆UM (τ,c)
σ

.

Defining ¯̄r(τ, c) ≡ r̄(τ,c)−.5ν
1−ν , we have that

∆UM(τ, c)

σ
= log

¯̄r(τ, c)

1− ¯̄r(τ, c)
= log

r(τ, c)− ν/2
1− r(τ, c)− ν/2

.

This implies that

log r̄(G,0)−ν/2
1−r̄(G,0)−ν/2

log r̄(B,0)−ν/2
1−r̄(B,0)−ν/2

= − LG
γLB

. (7)

It follows from the assumption that r̄(G, 0) < .5 < r̄(B, 0) that the left-hand side of (7)

is strictly decreasing in ν. Hence (7) has at most one solution. Given ν, values r̃(G, c = 0)

and r̃(G, c = 1) pin-down σ:

σ =
KM(1− π)

log
¯̄r(G,0)

1−¯̄r(G,0)
− log

¯̄r(G,1)
1−¯̄r(G,1)

.

Given σ, parameter α is given by

−
σ log

¯̄r(G,0)
1−¯̄r(G,0)

LG(1− π)
− 1.

To pin down parameter ρHG, we need to consider play at non-terminal decision nodes.

Consider a Bad agent’s decision to commit to punish c = 1. The agent is level 1 with

probability ρHG and level 2 with probability 1− ρHG. When the agent is level 1, she believes

the monitor will send a report r = 1 whether or not she commits to punish. Hence an agent

of level 1 commits to punish if and only if

−D −KA + εc=1 ≥ −D + εc=0.

The probability of this event is

Pc=1|lev1,B = .5ν + (1− ν)
1

1 + exp(KA/σ)
.

An agent of level 2 realizes that the monitor will be influenced by her threat, and anticipates
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that depending on her commitment c, the monitor will send report r = 1 if and only if

αY0 − cKM + εr=1 > α(Y0 − (1− π)LB)− πcKM + εr=0

which occurs with probability

µr=1|c,B = .5ν + (1− ν)
1

1 + exp
(

1−π
σ

(cKM − αLB)
) .

Hence a Bad agent of level 2 chooses to commit to punish whenever

−Dµr=1|c=1,B −KAµr=1|c=1,B + εc=1 ≥ −Dµr=1|c=0,B + εc=0.

This event occurs with probability

Pc=1|lev2,B = .5ν + (1− ν)
1

1 + exp
(

1
σ
(D(µr=1|c=1,B − µr=1|c=0,B) +KAµr=1|c=1,B)

)
Altogether, on average, a Bad agent chooses to commit to punish with probability

µc=1|B = ρHGPc=1|lev1,B + (1− ρHG)Pc=1|lev2,B

which pins down ρHG.

Game DE can be treated as a special case with π = 1. A similar proof holds for RR. �

Proof of Proposition 5. Monitors of level 1 and 2 are both rational and act at final

decision nodes. Up to a relabeling, the reports of the monitor have the same implied realized

reports, and the same payoff consequences. As a result behavior by the monitor under the

two games conditional on any final decision node must be identical. This yields point (i)

Consider now a Bad agent deciding whether or not to commit to punish:

� A Bad agent of level 1 believes the monitor is level 0 and complies with the framing of

each game. As a result, under both RR and DE, the agent believes that with probability

1, the realized message will be r̃ = 1. Hence under both RR and DE Bad agents of

level 1 will behave identically.

� A Bad agent of level 2 realizes that the monitor is rational. We estabished under point

(i) that a rational monitor would behave in a way that yields identical realized reports
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under RR and DE. As a result, Bad agents of level 2 behave in identical ways across

RR and DE.

If the share of level 1 and level 2 agents are the same across the two games, then the behavior

of Bad agents should coincide across RR and DE. �

Proof of Proposition 6. Consider the problem of a Good agent:

� A Good agent of level 1 believes that the monitor has level 0 and the the monitor’s

behavior is not influenced by threats. In addition, under DE, the agent believes that

the realized report will be r̃ = 0 with probability 1. Under RR, the agent believes that

the realized report will be r̃ = 1 with probability π. As a results, Good agents of level

1 will choose to commit to punish less frequently under RR than under DE.

� A Good agent of level 2 realizes that the monitor is rational. We estabished under

point (i) that a rational monitor would behave in a way that yields identical realized

reports under RR and DE. As a result, Good agents of level 2 behave in identical ways

across RR and DE.

Whenever ρRR ≤ ρDE there are more level 1 agents under RR than DE. As a result, a smaller

share of Good agents commits to retaliate under RR than DE. �

D Instructions for Participants

We present an English translation of the original French instructions for participants in the

randomized response treatment of our experiment. Instructions for particpants in other

treatments were very similar and are available from the authors on request.

These instructions were distributed on paper at the beginning of the experiments. The in-

structions were available to participants throughout the experiment.

At the end of this appendix we also show the section that we added to all instructions in the

versions of the treatments with conditional payoff information. In addition, we also show

how the information was displayed on participants’ screens.
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Instructions

Introduction

You are about to participate in an experiment of the University of Lausanne. During this

experiment you have the opportunity to earn a sum of money that will be paid to you at

the end of the experiment. The amount of money you earn may be more significant if

� you read the instructions carefully.

� you think carefully about the decisions you make.

If you have any questions while reading the instructions or while the experiment is in

progress, feel free to call us by raising your hand. By contrast, any communication between

participants—except through the channels offered as part of the experiment—is prohibited.

In the event of non-compliance with these instructions, we will be obliged to exclude you

from the experience without any payment.

In today’s experiment, you will interact with other participants via your computer. The

decisions you make will have an impact on your profit. Your decisions will also influence the

profit of other participants, just as the decisions of other participants may influence your

profit.

Your profit is calculated in points. At the end of the experiment your points will be converted

into Swiss Francs according to the following exchange rate:

60 points = 1 Swiss Franc

Regardless of your decisions in the experiment, you will also receive a fixed amount of CHF

10 for your participation.

The experiment consists of several identical rounds. At the end of the session, your remu-

neration will be calculated as the sum of your income obtained in all these rounds.
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I. Summary of the Experiment

There are 20 participants in this experiment. Each participant is randomly assigned to one

of two roles: sender or reporter. There are 10 participants of each type.

You see your role displayed on your screen. Please write down your role here: .......................

The experiment will last for 25 rounds. At the beginning of every round, each sender is

randomly assigned to a new reporter with whom the sender will interact in this round. This

interaction follows the same rules in each round. However, since the sender will be assigned

to a new reporter in each round, he/she will interact with different reporters throughout the

experiment.

The purpose of this first part of the instructions is to give you an overview of what will

happen in the experiment. In the second part of these instructions, we will provide you with

a much more detailed description of each step, including illustrations of how you will enter

your decisions on the computer.

Interaction between the sender and the reporter

At the beginning of each round each sender receives a project. The sender’s project can be

of good quality, or of bad quality. The quality of the project is randomly determined and

the sender cannot influence the quality.

After having been informed of the quality of his/her project, the sender must submit his/her

project for inspection to the reporter. When the sender submits the project, he/she must

send a message to the reporter. In this message the sender indicates whether or not he/she

will reduce the reporter’s profit if the project is blocked. This message is final and the sender

cannot change his/her opinion later.

Subsequently, there are two possibilities: 1) Sometimes the reporter is asked to answer the

question whether or not he/she wants to block the sender’s project. 2) In other cases, the

reporter is asked to answer “yes” to a question unrelated to the project. The sender never

knows to which type of question the reporter has answered. The sender’s project is always

blocked if the reporter’s answer is “yes” regardless of the question to which the reporter has

answered. That is, if a sender’s project has been blocked, the sender never knows for sure

61



whether the project has been blocked because the reporter wanted to block the project or

because the reporter answered a question unrelated to the project.

If a project is implemented, the sender receives a bonus. This bonus does not depend on

the quality of the project. The implementation of a project also has an impact on the total

return, which is distributed among all reporters. If the quality of the project being imple-

mented is good, the total return increases, if the quality is poor, the total return decreases.

If a project is blocked, the sender must pay a penalty. In addition, blocking a project reduces

the impact of a project on the total return (which is shared among the reporters). More

specifically, blocking a good project reduces its positive impact, and blocking a bad project

reduces its negative impact.

After the sender has been informed whether his/her project has been blocked or imple-

mented, the sender’s decision regarding the reduction of the reporter’s profit is executed.

The reporter’s profit is reduced only if the project has been blocked and the sender has

decided to reduce the reporter’s profit in the event of a blocked project. If the reporter’s

profit is reduced, this also imposes a cost on the sender.

Finally, the profits are calculated. The sender’s profit depends on the status of his/her

project. If the project has been implemented the sender receives a bonus, but if the project

has been blocked the sender must pay a penalty. In addition, the sender’s profit also depends

on whether or not he/she decides to reduce the reporter’s profit (because a reduction of the

reporter’s profit is also costly for the sender). The reporter’s profit depends on the total

return that was created in the round. The greater the number of good projects that have

been implemented and the greater the number of bad projects that have been blocked, the

greater the profit of the reporter. In addition, the reporter’s profit is reduced if the project

has been blocked and the sender has decided to reduce the reporter’s profit in the event of

a blocked project. After the calculation of the profits the next round begins.

Remember: at the beginning of each new round, each sender is randomly as-

signed to a new reporter.

62



II. Detailed description of the experiment

The experiment is computerized. All decisions you make during the experiment must be

entered via the computer in front of you.

In the second part of the instructions, we explain in detail what decisions you and other

participants can make, how you can enter these decisions on the computer, and how these

decisions affect your own profit and the profit of other participants. If you have any questions

while reading the instructions, please raise your hand. An experimenter will come to you

and answer your question.

1) Assignment of the sender to a new reporter and initial endowment

At the beginning of each round, each sender is randomly matched with a new reporter.

The sender and the reporter each receive an initial endowment of 30 points. This initial

endowment forms the basis for each participant’s profit in each round. Depending on

your own decisions and the decisions of other participants, your final profit in a round

may be higher or lower than the initial allocation. It is possible that your profit is

negative in some rounds. You have to cover such negative profits with the positive

profits you earn in other rounds or, if necessary, with the fixed amount of CHF 10 that

you receive for participation.

2) Submission of the project by the sender and message to the reporter

Each sender is assigned a new project in every round. This project can be of good or

bad quality. Each quality is realized with a probability of 50%. The sender cannot

influence the quality of the project. The quality of the project determines the impact

of the project on the total return that is distributed among the reporters at the end of

the round:

– A project of good quality increases the total return.

– A project of bad quality reduces the total return.

When the sender submits the project for inspection, he/she must attach a message in which

he/she announces whether he/she will reduce the profit of the reporter in case of a blocked

project, or not. This message is final and the sender cannot change this decision later. After

choosing the message, the sender has to submit the project for inspection by clicking on the

“submit” button.
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The computer screen that provides project information to the sender and allows him/her to

submit the project looks as follows:

3) Evaluation of the project by the reporter

After the sender has submitted the project, the reporter is informed of the quality of

the project and the sender’s decision regarding the profit reduction.

Subsequently, there are two possibilities:

i) Evaluation: The reporter is asked to answer the question whether he/she wants

to block the sender’s project or not. This possibility is realized with a probability

of 75 percent.

The computer screen that asks the reporter whether or not he/she wants to block

the project looks as follows:
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ii) Unrelated Question: The reporter is asked to answer a question that has noth-

ing to do with the senders project (do you see the word “red” on your screen? Yes

or no.) This possibility is realized with a probability of 25 percent. The correct

answer to this question is always “yes”, but the reporter can freely choose his/her

answer.

The computer screen that shows the unrelated question looks as follows:

Important:

The sender never knows whether the reporter has answered the evaluation question or

the unrelated question. The sender’s project is always blocked if the reporter’s answer

is “yes” regardless of the question to which the reporter has answered. If a sender’s

project is blocked, the sender cannot determine with certainty whether the project has

been blocked because the reporter wanted to block the project or because the reporter

answered a question unrelated to the project.

If the sender’s project is not blocked, the project is implemented. In this case all its

impact on the total return is realized:

– If a good project is implemented, it increases the total return by 400 points.

– If a bad project is implemented, it reduces the total return by 400 points.

If the sender’s project is blocked, its impact on the total return is reduced:

– If a good project is blocked, the project increases the total return by only 300

points.

– If a bad project is blocked, the project reduces the total return by only 100 points.
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4) Reduction of the reporter’s profit by the sender

At the beginning of this phase the sender is informed if the project has been imple-

mented or blocked.

If the project has been implemented the sender receives a 50 point bonus which is

added to the initial 30 point endowment. The sender receives this bonus if and only if

the project has been implemented, regardless of the quality of the project.

If the project is blocked, the sender not only loses 50 points bonus, but also has to

pay a 50 points penalty which is deducted from the initial 30 points endowment. The

payment of the penalty is also independent of the quality of the project and the sender

must pay it in any case if the project has been blocked.

After observing whether the project has been implemented or blocked, the sender’s

decision regarding the reduction of the reporter’s profit is executed. If the project

has been blocked and the sender has decided to reduce the profit in case of a blocked

project, the reporter’s profit is reduced by 200 points. However, reducing the reporter’s

profit is also costly for the sender: he/she must pay 100 points from his/her own profit.

Important:

The sender’s decision to reduce the reporter’s profit in the event of a blocked project

only has consequences if the project is blocked. If the project is implemented, nothing

happens: the reporter’s profit is not reduced by 200 points and the sender does not

have to pay the 100 points for the reduction.

The computer screen that informs the sender whether or not the project has been

blocked is as follows:

66



Subsequently, information about the projects that have been implemented and blocked

in this round as well as the sender’s profit and the reporter’s profit are displayed on

the screens.

III. Calculation of profits at the end of the round

In this third part of the instructions, we explain in detail how your decisions and the deci-

sions of other participants in the experiment influence your profit and the profits of other

participants.

The sender’s profit

The sender’s profit is calculated as follows:

Case 1: The sender’s project has been implemented (in this case the sender’s decision to

reduce the reporter’s profit in the event of a blocked project is not relevant):

Sender Profit = Initial Endowment + Bonus

Case 2: The sender decided not to reduce the reporter’s profit and the sender’s project was

blocked:

Sender Profit = Initial Endowment - Malus

Case 3: The sender decided to reduce the reporter’s profit in case of a blockage and the

sender’s project was blocked:

Sender Profit = Init. Endowment - Malus - Cost of reducing reporter’s profit
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Some examples:

1) Suppose that the sender has submitted a good quality project and has decided not to

reduce the reporter’s profit in the event of a blocked project. The project has been

implemented.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial endowment) + 50 (Bonus)

Sender Profit = 80 points

2) Suppose that the sender has submitted a poor quality project and has decided to re-

duce the reporter’s profit in the event of a blocked project. The project has been

implemented.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial endowment) + 50 (Bonus)

Sender Profit = 80 points

3) Suppose that the sender has submitted a poor quality project and has decided not to

reduce the reporter’s profit in the event of a blocked project. The project has been

blocked.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial endowment) - 50 (Malus)

Sender Profit = - 20 points

4) Suppose that the sender has submitted a good quality project and has decided to

reduce the reporter’s profit in the event of a blocked project. The project has been

blocked.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial allocation) - 50 (Malus) - 100 (Cost of reduction)

Sender Profit = - 120 points
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The reporter’s profit

The reporter’s profit depends on the total return that has been generated by projects that

have been implemented or blocked. The return increases with each good quality project

and decreases with each bad quality project. Blocking a project reduces the impact of the

project (positive or negative). The total return is calculated as follows:

Total return = Number of good projects implemented × 400 points

+ Number of good projects blocked × 300 points

− Number of bad projects implemented × 400 points

− Number of bad projects blocked × 100 points

For example:

1) Suppose that a total of three good projects have been implemented, two good projects

have been blocked, two bad projects have been implemented and three bad projects

have been blocked.

The total return is calculated as follows:

Total yield = 3 × 400 + 2 × 300 - 2 × 400 - 3 × 100 = 700 points

2) Suppose that a total of five good projects have been implemented and five bad projects

have been blocked.

The total return is calculated as follows:

Total yield = 5 × 400 - 5 × 100 = 1500 points

The total return is distributed among all reporters, i.e. each reporter receives

one tenth of the total return.

In addition, the reporter’s profit also depends on whether or not the sender decides to reduce

the reporter’s profit.
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The reporter’s profit is calculated as follows:

Case 1: The sender’s project has been implemented or the project has been blocked, but

the sender has decided not to reduce the reporter’s profit:

Reporter Profit = Initial Endowment + Total Return / 10

Case 2: The project was blocked and the sender decided to reduce the reporter’s profit in

the event of a blocked project:

Reporter Profit = Initial Endowment + Total Return / 10 - Profit Reduction

Some examples:

1) Suppose that the total return is 1000 points. The sender decided not to reduce the

reporter’s profit. The sender’s project has been implemented. The reporter’s profit is

calculated as follows:

Profit Reporter = 30 (Initial allocation) + 100 (Return / 10)

Profit Reporter = 130 points

2) Suppose the total return is 300 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been implemented.

The reporter’s profit is calculated as follows:

Profit Reporter = 30 (Initial allocation) + 30 (Return / 10)

Profit Reporter = 60 points

3) Suppose that the total return is 700 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been blocked. The

reporter’s profit is calculated as follows:

Profit Reporter = 30 (Initial allocation) + 70 (Return / 10) - 200 (Reduction)

Profit Reporter = - 100 points
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At the end of each round, information about the types of projects that have been imple-

mented and blocked, the sender’s profit and the reporter’s profit is displayed on the screen:

Once the profit screen has disappeared, a new round begins in which the sender is randomly

assigned to a new reporter.

Scenario:

To clarify the implications of the participants’ decisions, we present a scenario. We will

focus on a pair of players (a sender and a reporter) in a round of the experiment. We assume

that the sender has a bad project in this round. In addition, we assume that the decisions

of other participant pairs imply that five good projects and three bad projects have been

implemented and one bad project has been blocked.

We now discuss all constellations of profits that can be realized:

Case 1: The sender decides not to reduce the reporter’s profit.

a) The project is implemented.

Total Return = 5 × 400 - 4 × 400 - 1 × 100 = 300 points

Sender Profit = 30 (Endowment) + 50 (Bonus) = 80 points

Reporter Profit = 30 (Endowment) + 30 (Return / 10) = 60 points
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b) The project is blocked.

Total Return = 5 × 400 - 3 × 400 - 2 × 100 = 600 points

Sender Profit = 30 (Endowment) - 50 (Malus) = - 20 points

Profit Reporter = 30 (Endowment) + 60 (Return / 10) = 90 points

Case 2: The sender decides to reduce the reporter’s profit in the event of a blocked project.

a) The project is implemented.

Total Return = 5 × 400 - 4 × 400 - 1 × 100 = 300 points

Sender Profit = 30 (Endowment) + 50 (Bonus) = 80 points

Reporter Profit = 30 (Endowment) + 30 (Return / 10) = 60 points

b) The project is blocked.

Total Return = 5 × 400 - 3 × 400 - 2 × 100 = 600 points

Sender Profit = 30 (Endowment) - 50 (Malus) - 100 (Cost of reduction) = - 120 points

Reporter Profit = 30 (Endowm.) + 60 (Return / 10) - 200 (Reduction) = - 110 points

Important :

Remember that the sender’s project is always blocked if the reporter’s answer is “yes” re-

gardless of the question to which the reporter has answered. If a sender’s project is blocked,

the sender cannot determine with certainty whether the project has been blocked because the

reporter wanted to block the project or because the reporter answered a question unrelated

to the project.

IV. Control Questions

To ensure that you have understood the consequences of your decisions in this experience,

we ask you to complete the following exercises. First, please write down all answers to the

exercises on paper. Once you have completed the exercises, please enter your answers on the

computer to verify that they are correct.

The experiment can only begin when everyone has answered these questions

correctly.

If your screen is not yet on, simply move the mouse on your computer.
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Exercise 1: Implementing or blocking projects

a) With what probability will the reporter answer the question whether he/she wants to

block the sender’s project, or not?

Probability: ....................................................

b) With what probability will the reporter answer a question that is unrelated to the

sender’s project?

Probability: ....................................................

Exercise 2: Calculation of total return

Suppose the sender has a good quality project.

a) Suppose that in a round of the experiment five good projects were blocked and five

bad projects were implemented. Please calculate the total return in this situation.

Total Return = ....................................................

b) Suppose that in a round of the experiment five good projects were implemented and

five bad projects were blocked. Please calculate the total return in this situation.

Total Return = ....................................................

c) Suppose that in a round of the experiment four good projects and two bad projects

were implemented and one good project and three bad projects were blocked. Please

calculate the total return in this situation.

Total Return = ....................................................

Exercise 3: Calculation of the reporter’s profit

a) Suppose the total return is 1000 points. The sender decided not to reduce the reporter’s

profit. The sender’s project has been implemented. Please calculate the profit of the

reporter.

Profit Reporter = ....................................................

b) Suppose the total return is 300 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been blocked. Please

calculate the profit of the reporter.

Profit Reporter = ....................................................
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c) Suppose the total return is 1500 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been implemented.

Please calculate the profit of the reporter.

Profit Reporter = ....................................................

Exercise 4: Calculating the sender’s profit

a) Suppose that the sender has received a good quality project. The sender decided to

reduce the reporter’s profit in the event of a blocked project. The project has been

blocked. Please calculate the sender’s profit.

Sender Profit = ....................................................

b) Suppose that the sender has received a good quality project. The sender decided not

to reduce the reporter’s profit. The project has been implemented. Please calculate

the sender’s profit.

Sender Profit = ....................................................

c) Suppose that the sender has been assigned a project of bad quality. The sender decided

not to reduce the reporter’s profit. The project has been blocked. Please calculate the

sender’s profit.

Sender Profit = ....................................................

d) Suppose that the sender has been assigned a project of bad quality. The sender decided

to reduce the reporter’s profit in the event of a blocked project. The project has been

implemented. Please calculate the sender’s profit.

Sender Profit = ....................................................
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Social Learning: Additional Section on Conditional Payoff Information

In all versions of our treatments with conditional payoff information the following section

was added to the instructions right before the control questions (i.e., before section IV of

the instructions):

Additional information on profits in the experiment:

This experiment has already been conducted with a substantial number of participants. In

this session you have the possibility to benefit from the experience of previous participants.

Before your first decision a table will appear on your screen.

The table will show you the average profits that other participants in the same role as you

have realized with different decisions in this experiment. The displayed profits are based on

decisions of 80 participants who have already taken part in the same experiment.

During the experiment you will always have the possibility to look at this table if you click

on the “Information” button on your screen.

Screenshots: Conditional Payoff Information Displayed on Participant’s Screens

Sender’s screen:
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Reporter’s screen:

Remark: In the randomized response treatment the conditional payoff information of the

reporter is displayed separately for the case in which the unrelated question is answered.
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