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1. Introduction

The notion of cointegration among variables has introduced a new

flexibility into the modelling of economic time series. Aa defined by

Engle and Granger [1987], two variables are cointegrated (of order (1,1))

if each variable individually is stationery in first differences

(integrated of order 1), but some linear combination of the variables is

stationary in levels (integrated of order 0). The notion of cointegration

is e special case of the notion of dynamic aggregation introduced by Aoki

[1968,1971). Many economic variables might plausibly be cointegrated

when correctly measured, sometimes in natural or sometimes in log units;

examples are consumption and income, short and long term interest rates,

and stock prices and dividends1.

The concepts of cointegratiort and error-correction are closely

related. An error-correction model for two variables relates the changes

in the variables to lagged changes and a lagged linear combination of

levels2. This type of model was introduced by Phillips [1954) and Sargan

[19641 and has been promoted by David Hendry end others in a series of

papers (Davidson, Hendry, Srbs and Yeo [1978], Hendry and von IJngern-

Sternberg [1981], Davidson and Hendry [1961], Hendry and Richard [1983),

Hendry [1983,1986]). Engle and Granger [1987], following the work of

1 More
generally, a set of variables is cointegrated of order (d,b)

if each variable individually is integrated of order d, but at least one
linear combination exists which is of order (d-b). Most of the
literature focuses on the case d—l, b—l and we will do the same here.

2
This definition follows Engle and Grsnger [1987]. Much of the

literature uses a single equation relating the change in one variable to
the contemporaneous change in the other, lagged changes in both variables
and a lagged linear combination of levels. We discuds the single-
equation approach further below.
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changer [19811983], show that two variables which are cointegrated of

order (1,1) have an error-correction represeiltation. The linear

combination of levels which enters the error-correction model is just

that combination which is stationary in levels.

There is also a less formal link between cointegration and error-

correction. The sac kind of story is often used to motivate both these

concepts. In the words of Granger [1986], for example,

"At the least sophisticated level of economic theory lies the belief
that certain psirs of economic variables should not diverge from each
other by too great an extent, at least in the long-run. Thus, such
variables may drift apart in the short-run or according to seasonal
factors, but if they continue to be too far apart in the long-run,
then economic forces, such as a market mechanism or government
intervention, will begin to bring them together again".

There is a suggestion here that "economic forces", at least those that we

understand, are better at explaining long-run tendencies than short-run

wiggles in the series. Economic theory, Granger seems to say, is valid

for describing the long-run equilibrium, but random shocks knock the

economy away from equilibrium and it moves back only slowly. Why is the

adjustment back to equilibrium not instantaneous? He does not say. We

suppose that be may intend such things as sticky prices, long-term

contracts, costs of adjustment, and other factors that may be difficult

to model.

Engle and Granger [1981] introduce some terminology which fits

naturally with this account. They describe cointegrated variables as

being in equilibrium when the stationary linear combination of their

levels is at its unconditional mean (assumed equal to zero for

simplicity). Most of the time, this combination of levels is not zero
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and the system is out of equilibrium; but because the combination of

levels is stationary, there is a tendency for the system to return to

equilibrium. Engle and Granger call the stationary combination of levels

the "equilibrium error". An error-correction model can then be thought

of as a description of the stochastic process by which the economy

eliminates or corrects the equilibrium error.

This motivation for error-correction models suggests a world in which

economic theory describes the long run rather than the short run, and in

which unspecified factors cause the economy to respond slowly to randois

shocks3. The terminology makes it natural to think that the equilibrium

error appears in the equations describing changes of economic variables

because these variables respond to the error in order to eliminate it.

As Davidson and Hendry [1981] put it, there is a "servo-mechanism" which

returns the economy to equilibrium.

The purpose of this paper is to make it clear that there is an

alternative way in which cointegration may arise, and to illustrate such

an alternative interpretation of an error-correction model proposed by

Marsh and Merton [1987) to describe the dividend-setting behavior of

firms.

Engle and Cranger's result, that cointegrated variables have an error-

correction representation, can be thought of as a statement about Granger

causality: the stationary linear combination of levels must Grsnger cause

the change in at least one of the cointegrated variables. Now it is well

Engle and Granger do say that their notion of equilibrium is just
"a stationary point characterized by forces which tend to push the
economy back toward equilibrium whenever it moves away". Their notion of
equilibrium is specific to the error-correction model they define, and
has no clear relation to other concepts of equilibrium in economics.
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known that Granger causality from a variable z1 to a variable 12 can

arise for two reasons. The variable i may in the common-

language sense, or instead the variable l may anticipate or forecast 12.

In the former case an intervention which changes the stochastic process

for z1 will change the behavior of z2, while in the latter case an

intervention which changes the stochastic process for 12 will change the

behavior of 11, In Sims' [1977] terminology, while both show causal

orderings from 11 to z2, in the former case there is a "structural"

ordering from 1 to z2 in the latter case a "structural" ordering from

12 to z1.

The motivation for cointegration given above stresses the idea that

the equilibrium error causes changes in the variables of the model. We

wish to emphasize instead the possibility that the equilibrium error

results from agents' forecasts of these changes.

As a concrete example, consider the term structure of interest rates

If the "expectations theory of the term structure" holds -- that is, if

expected returns on bonds of all maturities ate equal, up to a constant

term premium -- then the yield on a long bond can be written

approximately as a present value of expected future short-term interest

rates4. The yield spread, the difference between the long bond yield and

the current short-term rate, can be written as a present value of

expected future changes in short-term interest rates. It is also

proportional to the expected change in the long-term rate over the next

period. Campbell and Shiller [l987a] point out that interest rates must

See Shiller [19791, Shiller, Campbell and Schoenholtz [1983] or

Shiller [1987].
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then be cointegrated if short rates are integrated of order one. The

vector of short- and long-term interest rates follows an error-correction

model in which the yield spread is the equilibrium error.

In this example it is oossible that the yield spread actually does

have some causal influence on changes in short rates (presumably by

influencing the behavior of the Federal Reserve Board), but this is not

necessary for the cointegration result. The example does rely crucially

on the idea that market participants have information which is relevant

for forecasting short-term interest rates, beyond the history of short

rates themselves. If this were not true - - for example, if bond market

participants relied on a univariate AR(l) model to forecast short rates -

- then the long rate would be a deterministic function of current and

lagged short rates, and the error-correction model for the term structure

would be trivial. The expectations theory of the term structure explains

randomness in the relation between short and long term interest rates,

not by allowing random error in the equation relating long rates to

expected future short rates, but by superior market information which

breaks the deterministic link between current and lagged short rates and

expected future short rates5.

It is clear from this example that cointegration can arise even in a

well-organized market with no adjustment costs, where there is no true

causal role for the equilibrium error. The essential features of the

example are that one variable (the long-term interest rate) reflects

Nickell (1985] discusses some univariate forecasting models. He
derives deterministic equations relating agents' forecasts to the history
of the variable they are forecasting. Salmon [1982] appeals to random
optimization error to break the deterministic relationship.
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agents' rational expectations of the future of another variable (the

short-tern' interest rate) which follows an integrated protess. Agents

have more information about the variable they are trying to foretast than

is contained in the history of that variable alone. We believe that

these features characterize a wide variety of economic aituations.

in the next section of the paper we make these points more formally.

We first show how an error-correction model can be rewritten as a vector

autoregression (VAR). The VAR form of the model is particularly

convenient for analyzing forward-looking behavior. We then show formally

how cointegration can arise when agents are forecasting and have rational

expectations. In particular we study the implications of a "present

value model' which restricts one variable to be linear in the

rationally expected present value of future realizations of another

variable y. This model implies that y and are cointegrated if y is

stationary in first differences. It also imposes more specific

restrictions on the joint time-series behavior of and l.

These restrictions can be tested on the VAR which corresponds to the

error-correction model for and Y. It is also possible to test

restrictions on single equations. We note, however, that the present

value model has no implications for the error-correction equation in

which Ay (or is regressed on Alt (or ty) S1, and perhaps lagged

changes in and

In the third section of this paper we show how these points apply to

Marsh and Merton's [1987] model of dividends and prices on common stock.

6 Nickell [1985] makes a similar point. Davidson, Hendry, Srba and

leo [l978 and later papers by David Hendry and his co-authors use
the

single "error-correction equation" described here.
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Marsh and Merton estimate a nonlinear error-correction equation which

(approximately) relates log dividend changes to log price changes and the

lagged log dividend-price ratio. They interpret their results as

evidence for a structural model of managers' dividend-setting behavior;

the structural model involves both partial adjustment by managers and

rational valuation of firms by the stock market.

Applying the analysis of cointegrated models sketched above, we argue

that the Marsh-Merton equation is evidence neither for partial adjustment

nor for rational valuation. An error-correction model for dividends and

prices should exist whenever there is nx forward-looking behavior of

stock prices, whether or not managers set dividends by partial

adjustment, and whether or not prices are fully rational. The hypothesis

of full rationality can be tested jointly with a hypothesis about the

behavior of discount rates in a variety of ways (Campbell and Shiller

1l987a 1987b] , but not using the error-correction equation which Marsh

and Merton estimate.

To illustrate the point more specifically, we show that very similar

results to Marsh and Merton'e can be obtained from artificial date for

which the log dividend follows a Wiener process and the stock price is a

rational forecast "contaminated" by random noise.
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2. Forward-Looking Cointegrated ModelE A VAR Anproach

Let us consider a vector x containing two variables and Y: x —

[t Ye]'. We assume that x is cointegrated of order (1,1), with an

equilibrium error St equal to Y-6y. The use of the notation St follows

Campbell and Shiller [l981a] who call St the "spread" between and y.

Without loss of generality, we have normalized the spread so that it has

e unit coefficient on Y.

The Granger Representation Theorem (Engle and Granger l9S7]) implies

that x obeys an error-correction model of the form

(1) B(L)ax — - ASt1 --

where 3(L) is a two-by-two matrix polynomial in the lag operator of order

q, A is a column vector with two elements, not both of which are zero,

and e is a white noise error term7. Here, since at least one element of

A is nonzero, there must be Granger causality from St to Ax as

discussed above.

Equation (I) is not a vector autoregression, but it is straightforward

to rewrite the system as a VAR for ày and or alternatively as a VAR

for AYt and S. It is easiest to see how this is done in a first-order

error-correction model (where the order q of 3(L) is one). In this case

we can rewrite (1) as

(2) — M](t1 - AS1 + e.
1

Engle and Granger allow e to have an invertible moving average
structure. However by increasing the order of 3(L), one can obtain a
representation in which e is arbitrarily close to white noise.
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Now define a matrix H such that Max — The first row of M

is just [1 0] and the second row is (-9 1]. Then from (2) we have

(3)
Ay,

— MBM1 Ayti
- MA + Met.

aS

This system can be rearranged so that it describes levels rather than

differences of 5 The result is a second-order VAR for the vector

(ay SI'

(4) 6(L) — u,
St

where the matrix polynomial 6(L) has order p—2. There are eight

coefficients in 6(L), but by inspection of equation (3) two of these, the

coefficients on Ay2, are equal to zero. The six remaining coefficients

are linear transformations of the six coefficients in (3). We write the

coefficient of the i'th variable in (aye S]', on the j'th variable

lagged k times, as 7ijk'

This analysis generalizes in an obvious way to the case where the

order q of the original error-correction model is greater than one. A

q'th-order error-correction model gives a p'th-order VAR, with p—q+l and

two zero coefficients on 4y. To obtain a VAR for and one

proceeds as above, premultiplying (2) by a matrix N with first row {0 1]

and second row (-9 1]. Again the resulting VAR has two zero

restrictions.



The VAR representation in equation (4) Is particularly useful when one

wishes to analyze a forward-looking model. This is because there is a

mechanical formula which gives the optimal k-period-ahead foretaat of the

variables In the VAR, conditional on an information set Ht which Includes

only current and lagged values of these variables (that is, current and

lagged values of y and We define a new vector —
[Aye

AY+i St Then follows a vector AR(1) process, z —

Artl + where A, the "companion matrix" of the VAR, has the form

(5) A — lll 711p l2l

1

1

1211 '' 121p 22l 722p

1

1

The multi-period forecasting formula is just

It

(6) E[zt+k M] — A z.

We now show how agents forecasting can generate a forward-looking

cointegrated model. We use the VAR representation above to analyze this

model. Consider the following relationship between the variables and

Y:

(7) T — 9(1-8) & Ey', + c.

Campbell amd Shiller [1987a] call this a "present value model", it
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states that is a linear function of the present value of expected

future y, where expectations E are taken conditional on the information

set I of economic agents8. We assume that Ht. the information set

defined above conaiating of " 'f and their lags, is a subset of I.

Equation (7) has three parameters: 6, the discount factor in the

present value formula; 9, the slope coefficient; and c, a constant term.

There is no error in (7), so it is what Hansen and Sargent [19811 call an

"exact linear rational expectations model". Below we discuss the

implications of allowing white noise, or more generally a stationary

error term to enter the equation.

A relation of the form (7) can arise in several different ways. If we

take to be a consol yield and y to be a short-term interest rate,

then (7) holds to a linear approximation if expected returns on bonds of

all maturities differ only by a constant. In this case 6 is a parameter

of linearization, S — 1 and c is interpreted as a term premium. If we.

interpret Y as a stock price and y as the corresponding dividend, then

(7) holds if the discount rate on the stock is constant through time. In

this case S — 61(1-5) and c — 0. Both these examples are discussed in

Campbell and Shiller [1987aJ. Campbell and Shiller [l987b] show that (7)

can also be derived as a linear approximation if we interpret \ as a

stock price and y, as a Jg dividend, adjusted if necessary for a time-

varying discount rate on stock, and this interpretation will be used in

our disèussion of the Marsh-Nerton model below.

The present value model also describes the relation between

Here and elsewhere we take conditional expectations to be
equivalent to linear projections on information.
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consumption and income under the permanent income hypothesis. If

the excess of consumption over capital income and y is labor income,

then (7) follows from the model of MalL [1978] and Flsvin [1981].

Campbell [1981] discusses this case.

More generally equation (7) is the solution to a linear-quadratic

intertemporal optimization problem where is a control variable and

is a target varisble. Nickell [1985] shows that agents minimizing a loss

function which is linear in the expected present value of squared changes

in the control and squared deviations of the control from the target will

set Y according to (7), with a zero constant term.
-

An important aspect of Campbell and Shiller [l987a) is that the

present value model implies cointegration between and y if is

first-order integrated. Specifically, the spread St — is

stationary. To see this, note that the sum of the weights in the first

term on the right hand side of (7) is 8. Therefore (7) implies

(8) St — 6(1-6) 1 & + c
1—0

— •
i—l

5 EtAy+i + c,

where the second equality follows by writing (y-y) — Ay1 ÷ ... +

Ayt÷i and collecting tens. Equation (8) shows that is stationary

when Ay is stationary.

The present value model also implies a linear relation between St and

the expectation of the one-period change in Y. We have
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(9) EtAYt+i — ((l_S)/S)S + ((l-6)/5)c.

This shows that is stationary when S is stationary.

Since y and are cointegrated, we know that VAR representations

exist for Ay and S, or AY and St. The present value model puts cross-

equation restrictions on the parameters of these VARs. Before stating

the restrictions formally, we note the following proposition about the

pattern of Granger causality between S, Ay and aYe:

Proposition. If the cointegrsted present value model holds, then

either St is an exact linear function of current and lagged

Granger causes Ay and AY.

The intuition behind this statement is straightforward, and was given

in the introduction. Either market participants have extra information

relevant for forecasting beyond the history of this variable, or

they do not. If they do not have superior information, then they form St

as a linear function of their relevant information Aye. If

they do have superior information, then S incorporates it and will

Granger cause Aye. A similar argument can be made for the relation

between and

The formal proof of this proposition involves a projection argument.

Consider projecting equation (8) onto the information set H which

includes current and lagged values of y and The left hand side is

unchanged because S is in H. The right hand side becomes an expected

present value, where expectations are now taken conditional on rather

than agents' information set I.

Suppose that S does not Granger cause aye. Then the expected value
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of t+i' conditional on lit, is an exact linear function of current and

lagged values of Ayt. It follows that the right hand side of the

projected equation (8) is an exact linear function, so St itself must be

an exact linear function of current and lagged values of Ay which is

what we needed to prove. A similar argument can be made for S and Alt

by projecting equation (9) onto the information set lit.

In practical applications we do not observe exact linear relationships

between cointegrated variables. The proposition then implies that there

must be Granger causality from the spread or equilibrium error St to both

cointegrated variables, if the system is to obey the present value model.

In some circumstances one might want to add a stationary error term to

equation (7). This could represent a time-varying term premium, the

influence of noise traders on stock prices, or transitory consumption,

depending on the application. Once an error tern appears in (7), the

proposition above no longer holde. The error term will make the

relationship between It and stochastic, even if agents have no

information relevant for forecasting beyond the history of y itself.

However will Granger cause It and y whenever agents have superior

information. and we regard this as the normal situation.

The present value model (7) has much tighter tisplications than those

stated in the propoeition above. These can be stated conveniently using

the companion form of the VAR for Ay and 5 Recall that is defined

as the vector [ty ... Ay÷ 5 and that it follows a

vector AR(l) process, z — t-l + Vt, where the companion matrix A is

given in equation (5). Let us define g' to be a row vector which picks

out from the vector at: St — g'z. (The vector g' has all elements
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zero except the p+ltst, which is unity). Let us define h' similarly, as

a row vector which picks out Ay: ty — h'z. Then projecting (8) onto

the VAR information set H. and using equation (6). we have

(10) St — g'z — S

9 S & hAi z — 9h'SA(I_6Ai'z.
i—I

This equation says that the spread must equal the unrestricted forecast

of the present value of future Ay from the VAR, evaluated using the

multi-period forecasting formula (5). We call this unrestricted forecast

Equation (10) can be used to evaluste the present value model in

several different ways. A standard formal approach would be to test the

restrictions on the coefficients of the VAR, gt_9htSA(ISA)4. which can

be rewritten in linear form if one postmultiplies by (I-SA):

(1.1) g'(t-EA) — fih4SA.

Using the structure of the matrix A, one can write out the implications

of (11) for individual coefficients: 12lk — 9llk' k—l '22l — 1/8

l2l' aM 722k — l2k' k—2. . .p. These linear restrictions operate

across the two equations of the VAR; thus the equations describing St and

Ay are each unrestricted when taken in isolation. The restrictions have

The infinite weighted sum of powers of A must converge because the

variables S and Ay are stationary. Equation (9) gives the closed-form
solution for this sum.
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a simple intuition in most applications. In the ten structure, for

example, the restrictions are that excess returns on long bonds over

short bonds are unpredictable given current and lagged values of y and

Yt.

It can be hard to interpret a statistical rejection of cross-equation

restrictions, so Campbell and Shillar 11987a] propose an alternativa

approach. They construct S, and compare its historical behavior with

that of S. If the two variables move closely together, there is some

truth to the present value model even if the cross-equation restrictions

(11) can be rejected at conventional significance levels.

One might want to test the present value model (7) without using the

VAR approach developed above. There are at least two ways to do this.

First, one could form a variable Ct: —

Substitution from (7) shows that

(12) — - + c(l-l/8).

The variable csn be interpreted as an excess return in applications to

the stock and bond markets. Equation (12) says that is unpredictable

given information known in advance; a regression of on lagged

variables should give zero coefficients apart from a constant term10.

Alternatively, one could use equation (9) to restrict the equation of

the error-correction model (1) which describes hYt. In the regression of

n S- and lagged values of Ày and Al, the coefficient on

10 This single-equation approach is closely related to a test of
(11) on the VAR. In fect, one can obtain numerically identical test
statistics using (II) and (12).
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should be (l-&)/&, and all other coefficients should be zero. In the

term structure, for example, the yield spread should be the optimal

forecast of the change in the long-term interest rate over the following

period.

We have seen that there are valid single-equation regression tests of

the present value model. But it is important to note that one cannot

test the model by regressing (or AY) (or aye), S1 and lags.

This type of regression is used by David Hendry and his co-authors, and

Marsh and Merton's equation can be interpreted in this way. But the

present value model has no implications for this regression.

It is easy to see why this is so. We have seen from equation (9) that

the regression of AY on and other lagged variables is restricted by

the model. But our analysis of equation (11) showed that the regression

of ày on and lags is not restricted, and the correlation between

AY and ày is not restricted. Therefore when both and A appear in

the regression equation (one as the dependent variable and one as a

regressor), the coefficients of the equation are unrestricted by the

present value model.
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3. The Marsh-Merton Model, of Dividend Behavior in the Stock Market

Terry Marsh and Robert ?terton [1987] have set forth what they describe

as an error-correction model of the dividend-setting behavior of firms'

managera. Their argument is provocative, in raising the issue of how

dividends are set by managers in the context of rational expectations

models, and suggesting that price may well drive dividends rather than

the other way around as commonly assumed. They hypothesired that fins'

managers have a "target ratio" of dividends per share to price per share,

and adjust dividends to price changes in such a way as to bring dividenda

gradually back to this target ratio. This same hypothesis can be

described in another way. Markets are efficient, they assumed, so that

price per share is proportional to a long run or "permanent" earnings per

share as optimally forecasted by the market. They described their

hypothesis as that managers have a target payout ratio of dividends to

permanent earnings and adjust dividends when permanent earnings change,

so as to bring dividends back into alignment with the target ratio to

earnings. Their model is thus an updated version of John Lintner's l956

partisi adjustment model of dividends to earnings, the change being

essentially the substitution of permanent earnings for earnings.

They estimated a nonlinear error-correction model using annual data on

New York Stock Exchange stocks from the Center for Research in Security

Prices, 1926-8-1. They took P to be the end of year price of a value-

weighted portfolio, and D to be the total of dividends paid over the

year (summing the monthly dividend series for the year). The (ordinary

least squares) estimated model (with standard errors in parentheses) that
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they gave was:11

log(D÷1) - iog(D) + D/Pi — -0.101 t O437log((P ÷
(0.157) (0.064)

-
O.O4Zlog(D/P1) ÷
(0.050)

— 047 D. W. — 1.53

-

They reported roughly similar results when generalized least squares was

performed, or when a dats series using the Standard and Poor Composite

Index 1928-80 was used.

Their interpretation of this estimated regression was similar to that

made of other estimated error correction models in the literature: solely

as representing the sluggish response to errors of economic agents. They

noted that the point estimate of the coefficient of log((P+D)/P1) is

"substantisl in magnitude and highly significant." They concluded thet

"this finding is consistent with the hypothesis that the market price is

a good indicator of permanent earnings and that managers systematically

change dividends in response to an Unanticipated change in permanent

earnings. The inference is that managers are highly rstional forecasters

who behave as if they truat the efficient market to forecast their ow-n

earnings. They noted also that this estimated coefficient was

"signficsntly less than one," and concluded that "this finding is also

consistent with Lintner's stylized fact that managers smooth dividends

responding to a partial adjustment fashion to an unanticipated change in

11terry Marsh and Robert Merton. "Dividend Behavior for the
Aggregate Stock Market," Journal of Business, 1987. p. 17.
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permanent earnings."2 They noted that the coefficient of log(D/P1) is

negative, which is "consistent with the hypothesis that this ratio

converges to a long-run stationary distribution," and that "the point

estimates for the speed of adjustment are, however, rather small, which

at best suggests that a substantial period of time is required for the

dividend-price ratio to converge to its steady-state distribution.

They described these results as reassuring us that "the data tend to

support such 'superrational' forecasting behavior by managers even in the

relatively unimportant area of dividend policy.
14

But ought we to take their results as suggesting that managers behave

this way? In effect, they have discovered a correlation of dividend

changes with lagged price changes. But as we have discussed above, a

correlation of dividend with lagged price can come shout not only because

dividend responds to price, but because price responds to information

about future dividends. This, in fact, has been the customary

interpretation, before Marsh and Merton, of the correlation of prices

with dividends, and we should not dismiss this old interpretation

p. 18.

13 tki&p 19. The steady-state behavior of this equation can be

considered only by adding another equation to the model; Pt 1 —
-

D +1 + v , whichfollows from the present value relation tequatlon (7)
above apptted to prices and dividends as discussed above) where v 1 is
the new information about dividends that appeared between t and tif. For
estimated values of psrsmeters, the estimated system does tend to
converge gradually to a steady state for most reasonable initial
conditions. if equation shocks cause dividends to become too large, the

system will crash (arguments of log functions become negative) but this
does not normally seem to occur. Simulation of this system confirms that
it tends to converge on a steady state even if the coefficient of
log(D/P1) is small and positive.

_____ p. 21.
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lightly.

In order to understand Marsh and Merton's results in more detail, we

would like to be able to relate their equation to a present value model

for stock prices and dividends. It is critical to note at this point

just what the data alignment is. is end of vent price, and is

total for year dividends. There is thus a time overlap between the log-

dividend change on the left-hand side of (13) with the variables on the

right-hand side, and we shall argue that the nature of this time overlap

is critical to interpreting their results.

Note that our present value model (7) included the current-year

dividend in the price, which should therefore be a beginning-of-year

price. Accordingly we set log(D) — ' and log(P1) — In order to

obtain a log-linear equation, we drop the nt/Pt1 term on the left-hand

side and the in the numerator in the second term on the right-hand

side. Given the stochastic properties of the data, neither of these

omissions will have much impact on the estimated coefficients of the

modelJ5 The resulting equation is

(14) ay÷1 — a + bàYt+l
-

cst + ut.

where St — log(P_1) - log(D) — - b — .437 and c — - .042.

This equation is eimilar to Marsh and Merton'a, but is easier to

15More formally, a linearization of (13) is ày
+1

constant +
0.437(exp(w)/(exp(w)+exp(x))àY +1 - (0.4Slexp(x)/ (exp(w)+ exp(x)) -
.042 - exp(x))S + u. Choosing points of linearization exp(w) — 1.05
and exp(x) — . 0, the equation becomes ày +1 constant + 0.417K? +1 +

0.072S + u. The coefficients are not sutstantially different between
(13) and the linearized model, hence we expect roughly the same
coefficients if (14) is estimated instead of (13).
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relate to our previous analysis. Two conclusions follow immediately from

that discussion: First, if St — log(P1) - log(D) has explanatory

power for — Mog(D1). this could just as easily be due to

forecasting aS to a structural causal relationship. Secondly, the log-

linear present value model cannot be tested using (13) or (14) for the

reasons given at the end of the previous section. One cannot use the

Marsh-Merton equation to judge whether the stock market forecasts

dividendS rationally.

While these points hold very generally, it is worthwhile also to

consider in the Marah-Merton model the issue of data alignment and time

overlap in a more precise way. Consider a world in which dividends flow

continuously. Then, operating in continuous tiae, and disregarding for

purposes of approximation the distinction between logs of averages and

averages of logE, we may take:

rt

(15) log(D) — — ads
jt-1

where a is the instantaneous flow of log dividends at time s. Consider a

very simple assumption about the instantaneous flow of log dividends:

that these are a Wiener process, where the variance of the one-period

change is ç2.6 Then, if the information set available to the market for

forecasting is lagged dividends, i.e. , there is no superior information,

and taking a continuous time version of (7) above where 5 — exp(-r), the

log price at time t is proportional to the instantaneous flow of log

dividend a; it is given by log(P) — t+l — a -log(r-ç2/2). Thus, (14)

16
A discrete time version of this model has been proposed by

Kleidon [1986]
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can be rewritten:

t+l t+i
(16) J(a - a1)ds — a + b(aa1) + c(Ja - ai) +

The theoretical regression coefficients for this regression are a — 0, b

— 1.00 and c — -1.00, and the theoretical K2 is 0.5. With these

coefficients, the terms on the right-hand side of (16) drop out and

the right hand aide becomes - f(t,t+l)a 1ds. It is easy to see why

these coefficients arise: The dependent variable in (16) equals + h

where — f(t,t+l)ads - a and h equals a - f(tt÷l)a 1ds. Now g is

determined only by innovations after t, h by innovations before t. so

the best possible forecast of + h at time t is h. By symmetry,

and h have the same variance1 hence the is 0.5.

That these theoretical regression coefficients will apply

approximately to the Marsh-Merton regression (13) (for plausible

parameter values if log dividends were a Wiener process and prices were

set in accordance with rational expectations) can be confined with a

Monte-Carlo experiment. In each iteration, a monthly Gaussian random walk

was generated where the standard deviation ç of the monthly change was

.03. This was exponentiated to create a monthly lognormal dividend

series, and the monthly series was averaged over 12 periods to create an

annual series of dividends. Price P was D*/(r - ç2/2) where r, the

monthly interest rate, was .007 and was the dividend in the last

month of the year. The variables in equation (13) were generated, and the

regression run for 54 observations (as with Marsh and Merton). With 1000

iterations, the average coefficient of log((D+P)/P1) was 1.076 (with

a standard deviation across iterations of 0.2l3) the average coefficient

25



of iog(D/P1) was -1.014 (with a standard deviation of 0.327), the

average 12 was 0.432 (with standard deviation 0.098) and the average

Durbin-Watson statistic was 1.762 (with a standard deviation of ØQ73)•17

Now these regression coefficients have the same signs aa the

coefficients in the Marsh-Merton regression. This suggests that the

Marsh-Merton results are related to the data overlap. But the estimated

coefficients are much larger in absolute value than are the coefficients

that Harsh and Merton estimated. We can easily fix this by adding a

little noise to price, so that by standard errors in variables results,

there is a downward bias to the coefficients.

We have indeed argued in earlier papers that there is likely to be a

noise' or 'fads' component in stock prices (Shiller [1981,1984]

Campbell and Kyle [1986]). if such a noise component resembles, say, an

AR-I process independent of dividends and with a high autoregressive

parameter, then this component may substantially increase the variance of

prices without making returns on atocks very forecastable. The noise

story thus generates a 'near rational expectations' model in which there

are no dramatic profit opportunities to people who understand the noise,

but in which stock prices behavior may be dominated by the noise, That

stock prices appear to have such a noise component has been claimed by

'70f course, the standard errors for the averages can be derived by
dividing the standard deviations by the square root of 1000. We also
experimented with an AR-i process for the log dividend, instead of a
Wiener process. Monte-Carlo experiments analogous to the one just
described tended to produce a coefficient of log((P+D)/P1) greater
than one and of 1og(D/P i as negative and substantially less than one
in absolute value. This eiample does not accurately mimic actual stock
prices, since if the autoregressive coefficient is even slightly less
than one it implies that prices are substantially less volatile than
dividends.
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DeBondt and Thaler [1985], Fama and French [1986], and Poterba and

Summers [1987]. For our present purposes, this particular noise story is

very helpful, in that it contributes a much bigger error term (relative

to the true value) to the third tern in equation (13) (which has the

level of stock prices in it) than in the second term of equation (13)

(which has the change in stock prices in it). Thus, this noise term could

greatly reduce absolute value of the coefficient c and reduce the

coefficient b to a lesser extent In considering this possibility, bear

in mind that if the third tern in (16) is omitted from the regression.

then the theoretical coefficient b of the second term is .5, roughly the

value obtained by Marsh and Merton, and the theoretical is 0.375. If a

large enough error term is added to the third tens in (16), then standard

errors in variables results imply that its coefficient should be become

only slightly less than zero, the coefficient b to be reduced to near

0.5, and the around 0.315. This would bring us to the vicinity of the

Marsh-Merton results -

We confirmed that this may explain the general nature of the Marsh-

Merton results (13) using a Monte-Carlo procedure. For each iteration of

the Monte Carlo we generated, as before, a Gaussian random walk w for

monthly log dividends, where the standard deviation of the error term was

ç — .03. We generated another independent first-order autoregressive

process x (with initial value not zero but a drawing from the

unconditional distribution of the process) with autoregressive parameter

g — .91 for annual data and standard deviation of the error ten as .05.

The monthly dividend was exp(w). and the annual dividend series was

taken as the sum for each year of the 12 monthly dividends. Price was
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— exp(xt)D*t/(r - ç2/2). where is the dividend for the last month of

the year. and the monthly interest rate was 0.7%. These parameters were

chosen as roughly plausible values for actual data. The AR-I process has

an unconditional standard deviation of .05/(l-g2y5 — .206, which means

that price typically runs 20% of the rational expectations value DJ(r

- ç2/2), end occasionally deviates by 50% or more from the rational

expectations value. Such a standard deviation is well within the bounds

claimed by Black [1986] and others. With these values of parameters and a

sample size of 54, for 1000 iterations the average estimated constant

term was -0.015 (with a standard deviation across iterations of 0,268),

the average estimated coefficient of log((D+P)/P1) was 0.424

(standard deviation 0.116), the average coefficient of log(DtJPtl) was -

.024 (standard deviation 0.110), the average K2 was 0.270 (standard

deviation 0.100) and the average Durbin-Watson statistic was 2.068

(standard deviation 0.186). The regression coefficients are remarkably

close to the Marsh-Merton figures. The and Durbin Watson statistic are

less closely matched (the Monte Carlo values are a couple of standard

deviations away from the Marsh-Merton values). The.model that generated

these coefficients was extremely simple, and we would not expect a

perfect correspondence of parameters. We think these results suggest a

very different interpretation of the Marsh-Merton resultsJ8

If we drop the standard deviation of the innovation in the AR-l
from .05 to .03, then in 1000 iterations the average coefficient of
log((P +D)/P l rises to 0.56, the average coefficient of log(D t-l
moves to 01g6, the average R becomes 0.308, and the average Durkin-
Watson statistic becomes 2.123.
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4. Conciusthn

In describing human behavior, we must always seek some

simplifications, since a complete and accurate description of behavior

would be vastly complicated. The interpretation commonly given to

reduced-form error correction models, as reflecting costly or sluggish

adjustment back to equilibrium, may be viewed sympathetically in this

light. In the Marsh and Merton example managers do not literally set

dividends in response to price changes just as Marsh and Merton assert,

but perhaps there is en element of truth to this characterization.

Managers do know the price of their stock, and this enters in

incalculable ways into the decision procesa that leads to their decision

on dividend payouts. If their behavior warrants, we may say that they are

behaving roughly n_if they were obeying a structural error-correction

model.

We should be careful however not to read too much into such as if'

interpretations of results, because people may behave simultaneously as

if they were doing many very different things. We have seen in our

dividend example that an alternative structural model, a near-rational

expectations model, also implies the same sort of reduced-form error-

correction behavior. The nesr-rational expectations model, we think, is

quite as plausible as the sluggish adjustment model offered by Marsh and

t1erton.

Of course, there is other evidence that can be brought to bear to

distinguish these two models and to refine them further Relevant

evidence includes surveys of managers (Lintner (1956J), direct tests of

stock market pricing models (Campbell and Shiller l987a,l981b] and many
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others), and evidence on the univariate time series behavior of dividends

and prices. In other specific examples, yet other kinds of evidence may

be adduced. But in the absence of additional evidence, one should regard

the structural interpretation of an estimated error-correction model as

highly tentative at best.
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