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1 Introduction

Why is aggregate stock price volatility so high? Starting with Shiller (1981) and

Campbell and Shiller (1988), an influential literature shows that stock market volatility

is too large to arise from rational expectations of future dividends. In response, the

literature has proposed several explanations that maintain the notion of the rational

investor. The “excess” volatility could arise from time-varying discount rates, which

could in turn be driven by time-varying volatility of dividends (Bansal and Yaron, 2004;

Calvet and Fisher, 2007; Lettau et al., 2008), or time-varying risk aversion Campbell

and Cochrane (1999). Stock price volatility could also arise from time-varying forecasts

of the occurrence or impact of rare events (Gabaix, 2012; Wachter, 2013).

These rational expectation models have considerable appeal. They hold out the

promise that asset pricing puzzles can be solved in a world that is complicated and un-

predictable, yet well-understood by investors. The careful development of these models

have led to specific tests, which have not always worked in the models’ favor. Problems

include counterfactual predictions for the term structure of dividend claims (Binsber-

gen et al., 2012; Lettau and Wachter, 2007), interest rates (Backus et al., 2014) and

variance risk (Dew-Becker et al., 2017). Some models do not extend well to economies

where agents in aggregate can transfer resources across states and time (Lettau and

Uhlig, 2000; Kaltenbrunner and Lochstoer, 2010). Finally, because these models are

rational, risk premia must ultimately represent a return for bearing risk. Empirical

studies have looked for this relation and failed to find it.(Duffee, 2005; Moreira and

Muir, 2017).1

This paper proposes a model for stock return volatility that does not assume rational

expectations. This is not the same as assuming investors are irrational, it simply

1Models with time-varying rare events would seem to hold out the best hope, among rational
models, for disentangling the relation between risk and return. However, requiring infinitely precise
knowledge of a difficult-to-measure time-varying quantity does not seem like a victory for rational
expectations.
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means that investors have a biased prior on the data generating process. Inspired by

the literature on behavioral finance (Barberis et al., 2003; Shiller, 2003; Hirshleifer,

2015), we motivate beliefs based on psychological studies. We take as motivation the

classic animal learning study of Skinner (1948). In Skinner’s study, hungry pigeons

were presented food at regular intervals. Most of the pigeons developed bizarre habits

of behavior, the reason for which is that they happened to have displayed that specific

behavior when the food was offered.

What do these pigeons have to do with investors? While the pigeons’ associations

between behavior and food may seem ridiculous, their behavior illustrates a tendency

to create structure out of randomness. The strong tendency to find structure where

none exists characterizes human subjects as well, both in the laboratory and real-world

situations (Bar-Hillel and Wagenaar, 1991). It persists even when subjects are trained

to know what is random and what is not (Neuringer, 1986).

In our base case, we assume (for simplicity) that investors are risk-neutral. They

believe they can forecast dividend growth using a persistent signal, though dividend

growth is in fact iid. Like the pigeons they believe events can be forecasted (dividend

growth, as opposed to food) even when they are completely random. We show that

this condition itself is sufficient to generate excess volatility and return predictability

seen in the data. Prices embed the incorrect beliefs about dividend growth, and thus

are excessively volatile. Moreover, prices revert to more correct values as the expected

growth fails to materialize, generating excess returns that appear to vary over time.

However, in this risk-neutral environment, true risk premia are always equal to zero.

A slightly generalized model can produce an unconditional equity premium as-

suming investors have time-additive CRRA utility and rare disasters that occur with

constant probability(Barro, 2006; Rietz, 1988). In such a model, there is no time se-

ries relation between risk and return. Moreover, time-additive CRRA utility implies

flat term unconditional term structures of equity and interest rates, rather than a

2



counterfactual upward-sloping term structure of equities and a downward-sloping term

structure of interest rates.

Finally, we extend the model to address other asset pricing puzzles. A longstanding

puzzle is the high abnormal returns on value stocks (Fama and French, 1992). We show

that the same mechanism that explains excess volatility in the time series can explain

this abnormal performance. We show that a belief in an excessive amount of interest

rate predictability can explain the ability of the yield spread to forecast excess returns

(Campbell and Shiller, 1991). We apply the model to forecastability of exchange rates,

and shows it accounts for the failure of uncovered interest rate parity and the forward

premium puzzle.

A well-developed literature explores the potential for deviations from a full-information

rational-expectations benchmark to explain asset pricing anomalies. Some early work

on this subject focused on Bayesian learning with incorrect priors (Timmermann, 1993;

Veronesi, 1999; Lewellen and Shanken, 2002). Such a setting does induce excess volatil-

ity and predictability, but effects eventually dissipate.2 Other early work introduced ad

hoc specifications of investor irrationality (Barsky and De Long, 1993; Cecchetti et al.,

2000) to address excess stock market volatility. More recent work motivates subjective

beliefs in various ways. One motivation is that they arise as a worst-case scenario

under ambiguity aversion (Bidder and Dew-Becker, 2016; Hansen and Sargent, 2010).

Investors may be over-confident in their own signals relative to others (Scheinkman and

Xiong, 2003; Dumas et al., 2009).3 They may form expectations based on an intuitive

but incorrect model of autocorrelated growth rates (Fuster et al., 2010). They may

incorrectly extrapolate from past data (Barberis et al., 2015; Hirshleifer et al., 2015;

2More recently, Collin-Dufresne et al. (2016) combine learning with recursive utility to explain the
equity premium.

3Scheinkman and Xiong (2003) focus on the interaction of overconfidence and short-sale con-
straints, which can create asset bubbles. In this paper, we assume a representative agent; however
our model could serve as a motivation for heterogeneous beliefs, which, in the presence of short-sale
constraints, would lead to yet greater volatility.
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Adam et al., 2017; Jin and Sui, 2018; Nagel and Xu, 2018).

Our contribution relative to this literature is to quantitatively explain a number

of seemingly unrelated asset pricing anomalies (e.g. stock return predictability, stock

return volatility, the value premium, the success of the value-minus-growth factor,

the failure of the expectations hypothesis and of uncovered interest rate parity) with

a single behavioral mechanism that has a long-established psychological foundation.

Note that our mechanism is consistent with many behavioral models that have already

been proposed. As we will argue, the precise form of the investor’s expectation does

not matter so much as the fact that the expectation varies over time and over assets,

indicating that investors think they know more than they in fact do. Regardless of

the form of the expectation, it is embedded into the asset price, creating the myriad

of anomalies described above, which together are very difficult to explain in a fully

rational model.

2 Model

Consider an infinite-horizon discrete time economy with risk-neutral investors. Let

Dt denote the aggregate dividend at time t, and dt = logDt. Assume that investors

believe

∆dt+1 = xt + ut+1, (1)

where

xt+1 = φxt + vt+1, (2)

and  ut

vt

 iid∼ N

0,

 σ2
u 0

0 σ2
v

 (3)
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Assume 0 < φ < 1, so that dividend growth is stationary and positively autocorre-

lated. The assumption that realized and expected dividends are uncorrelated is for

convenience.4

Under risk neutrality and assuming a discount factor δ, the absence of arbitrage

implies that the value today of a dividend paid an integer n ≥ 0 periods in the future

is

Pnt = E∗t [δ
nDt+n], (4)

where we use the notation E∗ to denote the expectations of investors. The law of

iterated expectations then implies the following recursion for (4):

Pnt = E∗t [δPn−1,t+1], n ≥ 1, (5)

with boundary condition P0t = Dt. The asset priced in (4) is an “equity strip” (see

Lettau and Wachter (2007)), analogous to a zero-coupon bond.

Equations (1–3) define a Markov structure for dividend growth, so if we divide both

sides of (4) by Dt, we obtain a function of xt. Let

Fn(xt) =
Pnt
Dt

. (6)

The recursion (5) pins down the functions Fn(·):

Fn(xt) = E∗t

[
δFn−1(xt+1)

Dt+1

Dt

]
(7)

with boundary condition F0(xt) = 1. The solution is

Fn(xt) = ean+bnxt , (8)

4Dividend data alone is not sufficient to identify the correlation in (3).
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where the coefficients are defined recursively as

an = an−1 +
1

2
b2
n−1σ

2
v +

1

2
σ2
u + log δ

bn = bn−1φ+ 1.

(9)

with boundary conditions a0 = b0 = 0. The recursion for bn has the well-known solution

bn =
1− φn

1− φ
. (10)

The price-dividend ratio on the aggregate stock market is a sum of these claims:

Pt
Dt

=
∞∑
n=1

Pnt
Dt

=
∞∑
n=1

Fn(xt). (11)

Defining Rm
t as the net return on the aggregate market and Rn,t+1 as that on the

n-period equity strip, it follows from (11) that

Rm
t+1 ≡

Pt+1 − Pt +Dt+1

Pt
=
∞∑
n=1

(
Pnt∑∞
k=1 Pkt

)
Rn,t+1. (12)

Namely, the market return is a weighted average of the returns on the equity strips.5

The weights depend on the value of xt (an increase in xt shifts the weight toward high-

maturity claims), but this effect is second-order under our distributional assumptions.

It will also be useful, in what follows, to note that an alternative characterization of

prices and of Fn(xt), following directly from the recursion (7), is

Pnt
Dt

= Fn(xt) = E∗t

[
δne

∑n
s=1 ∆dt+s

]
(13)

5The intermediate steps in this calculation are as follows:

Rmt+1 =

∑∞
n=1 Pn,t+1 +Dt+1∑∞

n=1 Pnt
− 1 =

∑∞
n=1 Pn−1,t+1∑∞

n=1 Pnt
− 1 =

∞∑
n=1

(
Pnt∑∞
k=1 Pkt

)(
Pn−1,t+1

Pnt
− 1

)
.
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Up until now, the assumption of risk-neutral investors is without loss of generality,

as we simply could have considered E∗ as the risk-neutral expectation, which generates

prices even when investors are risk averse. The assumption of risk neutrality enters

when we consider the physical distribution, necessary for calculating realized returns.

We focus on returns on an equity strip because it makes the calculations easier and,

because of (12), the intuition caries over to the market. The return on the equity strip

with maturity n is given by

1 +Rn,t+1 =
Pn−1,t+1

Pnt

=
Fn−1(xt+1)

Fn(xt)

Dt+1

Dt

. (14)

Suppose first that the investor’s beliefs match reality, so that (1–3) represent the phys-

ical process for dividends. Substituting (1) and (8) into (14), we find

log(1 +R∗n,t+1) = an−1 − an + bn−1xt+1 − bnxt + xt + ut+1

= an−1 − an + (bn−1φ− bn + 1)xt + bn−1vt+1 + ut+1,

where we use R∗ to denote returns when the physical distribution matches the subjec-

tive one. Substituting from (9) implies that

log(1 +R∗n,t+1) = an−1 − an + bn−1vt+1 + ut+1. (15)

When dividend growth is in fact predictable, returns are iid. Prices incorporate all

available information, and so any innovation to returns must come from an innovation

to expected dividend growth represented by vt+1, or an innovation to dividend growth

itself, represented by ut+1. Furthermore, (9) implies E∗[R∗t ] = δ−1, namely there is

zero risk premium, as must be the case because investors are risk neutral.
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Assume however, that investors’ beliefs do not match reality. The physical process

for dividends is not (1–3), but rather

∆dt+1 = ut+1. (16)

For simplicity, we assume investors are correct about the evolution of the state variable

xt, namely (2) represents the physical process. Additional effects could arise from

incorrect beliefs concerning the persistence of xt. For simplicity, we do not consider

these here.6

Prices reflect agents’ (incorrect) beliefs and are given by (8) and (9). These prices

are identical under both correct and incorrect beliefs and, because they accurately

represent some form of beliefs, are arbitrage-free. However, consider returns:

log(1 +Rn,t+1) = log

(
Fn−1(xt+1)

Fn(xt)

Dt+1

Dt

)
(17)

= an−1 − an + bn−1xt+1 − bnxt + ut+1 (18)

= an−1 − an + bn−1(φxt + vt+1)− bnxt + ut+1. (19)

Thus,

log(1 +Rn,t+1) = an−1 − an − xt + bn−1vt+1 + ut+1, (20)

6Cochrane (2008) argues that dividend growth is in fact unpredictable. The strength of the
predictability in the data depends on how dividends are measured, a point made by van Binsbergen
and Koijen (2010), Larrain and Yogo (2008). Dividend predictability, to the extent it exists, appears
to be transient (Lettau and Ludvigson, 2005; Li and Wang, 2018). While we focus, for clarity, on
the case in which investors believe there is no persistence in dividend growth, what matters for our
mechanism is that investors overestimate the persistence of expected dividend growth. In recent work,
de la O and Myers (2018) offer direct evidence that stock prices are driven primarily by investors’
expectations of cash flows.
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and, under the physical expectation,

logEt [1 +Rn,t+1] = − log δ − xt.

Unlike the case where investors’ beliefs are correct (see Eq.15) excess returns are pre-

dictable. When xt is high, prices are high and future returns are low.

Equation (20) shows that superstition on the part of investors leads to return pre-

dictability. It also leads to return volatility. It is again useful to contrast superstition

with rational (i.e. correct) beliefs. When the physical and subjective distributions

coincide,

Var(log(1 +R∗nt)) = b2
n−1σ

2
v + σ2

u, (21)

whereas

Var(log(1 +Rnt)) = σ2
x + b2

n−1σ
2
v + σ2

u, (22)

where

σ2
x ≡

σ2
v

1− φ2
.

At first glance, it appears that return volatility arises from the term σ2
x, because this

is the source of predictability. Also, this is missing in the case of rationality. However,

the link between superstition and volatility is more subtle. In fact, almost all of the

volatility arises, in both cases, from the σ2
v term: as discussed in the next paragraph,

this term is an order of magnitude bigger than the others. It appears in both the

rational and superstition cases, and in both cases it represents changes in investors

subjective expectations about dividend growth. In the rational case, however, these

expectations coincide with the true distribution. In the case with superstition, it will

appear, ex post, as a time-varying discount rate. Volatility is similar in both cases; in

one case it is accompanied by predictable dividends (counterfactually) whereas in the

other it is accompanied by predictable returns.
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We now return to the question of the volatility decomposition in (22). In the

paragraph above, we claimed that nearly all the volatility in returns arises from the

volatility in expected dividends, as represented by b2
n−1σ

2
v . We now explain why this

is so. First note that σ2
u is the volatility of realized dividends. This 0.072 per an-

num in postwar data. On the other hand, the volatility of shocks to xt, σv, and the

unconditional volatility of xt, σx, are unobserved. To understand the magnitude of

the remaining terms, we turn to the prices of dividend claims, normalized by current

dividends. These are denoted by Fn(xt) and given in (8) and (9).

Recall that the price-dividend ratio on the market is a sum of these component price-

dividend ratios. Furthermore, even if the persistence φ is high, decay is geometric, and

so for n sufficiently large, bn ≈ (1 − φ)−1. If we let σ2
pd be the variance of the log

price-dividend ratio on the market, roughly speaking,7

σ2
pd ≡ lim

n→∞
Var(logFn(xt)) =

σ2
x

(1− φ)2

Then, for long-maturity equity strips (which, due to the properties of geometric decay,

best represents the return on the market) the decomposition (22) takes the form

lim
n→∞

Var(log(1 +Rnt)) = σ2
x +

σ2
v

(1− φ)2
+ σ2

u

≈ (1− φ)2σ2
pd + (1− φ2)σ2

pd + σ2
u. (23)

While σu ≈ 0.07, σpd ≈ 0.42. The persistence φ will equal the persistence of the

price-dividend ratio. At φ = 0.92, the first term in (23) equals (0.08× 0.42)2, whereas

the second term equals (0.39 × 0.42)2. The second term, representing the effect of

7Note that the log price-dividend ratio equals

pd = log
∞∑
n=1

Fn(xt) ≈
∞∑
n=1

an + bnxt = a∗ + b∗xt.

Because of geometric decay, b∗ ≈ (1− φ)−1.
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innovations to xt is thus roughly 25 times larger than the term representing xt itself,

and roughly 5 times larger than the term representing dividend volatility.8 Finally note

that these terms add up to (0.18)2, thus (roughly) accounting for the annual volatility

in stock returns.

This accounting exercise suggests that this simple model can explain return volatil-

ity, predictability in excess returns, together with the lack of predictability in dividends.

As yet, it has nothing to say about the equity premium. Below, we address this lack,

and perform a more formal calibration exercise.

3 Model with IID Disasters

We now show that a realistic equity premium can be incorporated into the model

above. Assume a representative agent who maximizes a time-additive utility function

with constant relative risk aversion:

E
∞∑
t=0

δt
C1−γ
t − 1

1− γ
,

where γ is relative risk aversion and δ remains the time discount factor. The agent

holds the following beliefs about the consumption and dividend growth processes:

∆ct+1 = µ+ ut+1 + wt+1, (24)

∆dt+1 = µ+ xt + ut+1 + wt+1, (25)

8This will also be true in a rational model with prices driven by discount rate variation. Most of
the variation in realized returns comes from innovations in the discount rate, which are unpredictable.
Very little comes from the variation in the discount rate itself.
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where xt is as in (2) above, with shocks ut+1 and vt+1 distributed as in (3). We further

assume, following Barro (2006), that

wt
iid∼


ξ probability = p

0 probability = 1− p
(26)

where ξ is a constant and wt is independent of ut and vt.

In equilibrium, the aggregate market and the riskfree rate are priced using the

representative investor’s Euler equation. That is, if we let Pnt be the price of an n

period ahead equity strip, then Pnt satisfies the recursion

Pnt = E∗t

[
δ

(
Ct+1

Ct

)−γ
Pn−1,t+1

]
,

where E∗ denote expectations taken with respect to the subjective distribution, and

where P0t = Dt. Defining Fn(xt) = Pnt/Dt, as in the previous section, we have

Fn(xt) = E∗t

[
δ

(
Ct+1

Ct

)−γ
Fn−1(xt+1)

Dt+1

Dt

]
(27)

with boundary condition F0(xt) = 1. The solution is again

Fn(xt) = ean+bnxt , (28)

where an follows the modified recursion

an = an−1 + log δ + (1− γ)µ+
1

2
b2
n−1σ

2
v +

1

2
(1− γ)2σ2

u + log(pe(1−γ)ξ + (1− p)) (29)

with a0 = 0. The recursion for bn is the same, and so bn = (1− φn)/(1− φ) still holds.

The riskfree asset is also priced using the investor’s Euler equation. Let Rf be the
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one-period riskfree rate. Then:

E∗

[
δ

(
Ct+1

Ct

)−γ
(1 +Rf )

]
= 1,

implying

log(1 +Rf ) = − log δ + γµ− 1

2
γ2σ2

u − log(pe−γξ + (1− p)). (30)

We assume that the investor has correct beliefs about the consumption distribution

(24). Moreover, the investor correctly assumes that dividends are equally subject

to disasters as are consumption. However, the investor believes that dividends are

predictable, when in reality they are not. We parsimoniously capture these assumptions

by setting the physical distribution of ∆dt+1 equal to ∆ct+1.

Defining Rn,t+1, as in the previous section, as the return on the n-period dividend

claim:

log(1 +Rn,t+1) = log

(
Fn−1(xt+1)

Fn(xt)

Dt+1

Dt

)
= an−1 − an + bn−1xt+1 − bnxt + µ+ ut+1 + wt+1

= an−1 − an + µ− xt + bn−1vt+1 + ut+1 + wt+1.

We therefore have, under the physical measure,

logEt [1 +Rn,t+1] = an−1 − an + µ− xt +
1

2
b2
n−1σ

2
v +

1

2
σ2
u + log(peξ + (1− p)),
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and, for the expected excess return under the physical measure:

logEt
[
(1 +Rn,t+1)/(1 +Rf )

]
= −xt + γσ2

u+

log(peξ + (1− p)) + log(pe−γξ + (1− p))− log(pe(1−γ)ξ + (1− p)).

For small p (or, as the time interval shrinks):

logEt
[
(1 +Rn,t+1)/(1 +Rf )

]
≈ −xt + γσ2

u − p(1− e−γξ)(1− eξ), (31)

where we have used, e.g., log(peξ+(1−p)) = log(1+p(eξ−1)) ≈ p(eξ−1). The expected

excess return has its usual unconditional component, γσ2
u − p(1 − e−γξ)(1 − eξ), the

first term of which represents the normal risk, and the second term of which represents

the risk of disasters. This term captures the negative covariance between returns and

marginal utility during disaster periods. These components represent a risk premium,

namely a return to bearing the risk of equity, which might go down during a disaster.

The first term, xt, does not represent a return to bearing risk, but rather is mispricing.9

Note that our assumption that the agent correctly assesses disaster risk is to dis-

cipline the model. We would find nearly the same equity premium if the agent overly

assessed disaster risk; i.e. was pessimistic. If the values here represent an optimistic

assessment of disaster risk (namely, disasters should have occurred with probability

greater than 2%), then that simply implies that we were lucky and that the equity

premium is not as much of a puzzle as believed. Also, allowing the agent to believe

consumption growth is forecastable would also not affect our results; however we be-

lieve this is less of a plausible assumption. As discussed above, the literature shows

less predictability in consumption growth than in dividend growth. As we show below,

9As described in the previous section, the variance of xt is relatively small. Thus the wedge
between the unconditional expectation of (31) and the true unconditional equity premium is small as
well.
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beliefs in favor of dividend growth predictability are reasonable (though not required)

given the data.

4 Data and Calibration Results

4.1 Data

We use the value-weighted CRSP index to represent the market. We compute an

annual dividend by taking monthly dividends and summing. The dividend-price-ratio

of the market is the trailing one year aggregate dividend divided by the ex-dividend

price of the market. We use 3-month Treasury bill returns to proxy for the riskfree

rate. We use the CPI index to go from nominal returns and dividend growth to real

returns and dividend growth. The full sample for this study ranges from 1927 to 2017,

and the post-war subsample ranges from 1948 to 2017. All data are annual.

4.2 Parameters Values

Table 1 shows the parameter choices for our simulations, done at an annual frequency.

We choose σu to be the volatility of log real dividend growth in the data. We choose φ =

0.95 to match the observed first-order autocorrelation in the log dividend price ratio

in postwar data. The discount factor δ, provided it is within a reasonable range and

high enough to ensure convergence, has a second-order effect on the results. We choose

δ = 0.97, which is consistent with a low riskfree rate, and still allows for convergence

of the infinite sum (11). For the risk-neutral model, the remaining parameter is σv,

which we choose to be 0.01. This generates the correct volatility of the price-dividend

ratio under risk neutrality.

For the model with disaster risk, we follow Barro (2006) and choose risk aversion

γ to be 3, the average growth rate of consumption µ to be 2%, the annual disaster

15



probability p to be 2%, and the size of the disaster to be 33%. We set the time-

discount factor δ to match the average return on the riskfree asset, which we set at the

average annual (real) return on three-month Treasury bills.

4.3 Results

We simulate 4000 samples of either 91 years of data (to represent the 1927–2017 sample)

or 70 years of data (to represent the 1948 to 2017 sample). We report three types of

results: the results for the risk neutral model with the longer simulation, the results

for the disaster model, with the longer simulation, and the results from the disaster

model for the shorter simulation, in which we consider only samples with no disasters.

Reporting the risk-neutral results for the shorter simulations would be repetitive, as

the only difference is in the degree of small-sample bias of some of the statistics.

Table 2 show the results for the 1927–2017 sample, and compare these to the model.

This comparison confirms the informal analysis in Section 2: the model can simultane-

ously match the standard-deviation of returns, of the price-dividend ratio, of dividend

growth. The model fits the slight negative autocorrelation of annual returns. However,

the model, by construction does not fit the slight autocorrelation in dividend growth,

which is 20% at an annual horizon.

Including rare disasters in the model, which account for a high equity premium and

low riskfree rate, have little impact on the second moments. While there is a slight

reduction in the standard deviation of the divided-price ratio (due to the duration

effect; the equity premium causes a down-weighting of long-horizon claims which are

the most sensitive to changes in expectations), the data value remains well-within the

10% confidence bounds. Table 3 show similar results for the postwar sample.

Table 4 reports reports from regressions of excess returns on the price-dividend

ratio. The first panel replicates the well-known result that excess returns are indeed

predictable by the dividend-price ratio. This result also holds in post-war data (Ta-
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ble 5). Coefficients are statistically significant at nearly all horizons, with R2 statistics

increasing from 2% to 28%. Table 6 shows that, in contrast, dividend growth is sig-

nificantly forecastable only at the 1-year horizon.10 This forecastability is transient,

in that the R2 statistics do not increase with horizon. Even this short-horizon effect

becomes insignificant in post-war data (Table 7).

These tables also show simulations from the model. Note that by simulating the

series of the correct length under a model that captures the correlational structure of the

data, we capture the source of bias in the model that is also in the data (Stambaugh,

1999). The superstitious investor model captures the correct magnitude of return

predictability, and the lack of dividend growth predictability. The amount of dividend

growth predictability in the data (with the exception of the shortest horizon in the

1927–2017 series) can easily be accounted for by finite-sample noise. The superstitious

investor model captures the economically and statistically significant predictability.

However, returns are not too predictable in the model; the data coefficients lie within

the confidence intervals. It is not easy to take advantage of the superstitious agent

because there is a sense in which he is correct.

Finally, Figure 1 shows a time series plot of the level of prices and the level of

dividends, post-1926. On the figure, the level of dividends is multiplied by a constant

so the average level of the series are the same. Consistent with the superstition model,

but inconsistent with a model in which investors have correct beliefs, deviations from

the mean of the price-dividend ratio are usually followed by adjustments in prices,

rather than adjustments in dividends. This is a graphical illustration of the results in

Table 4. Figure 2 shows that this effect holds more dramatically in postwar data.

10This and earlier statements of significance are under the assumption of a single test. Accounting
for multiple comparisons would likely further decrease the significance of dividend growth predictabil-
ity.
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5 A Bayesian view of dividend predictability

A possible objection to the model in Section 2 is that, over time, investors would learn

that dividends are in fact unpredictable. If investors did learn the correct distribution,

prices would remain volatile, but return predictability would dissipate. In this section,

we confront the hypothesized beliefs with data. We consider an investor whose prior

beliefs include the possibility of dividend growth predictability. The agent updates

these beliefs given the historical time series, seen through the lens of the likelihood

implied by (1–3). Our evidence speaks to the difficulty of learning the true process for

dividend growth.

We assume, as in Section 2, the agent believes that dividend growth contains a

predictable component. Should this predictable component exist, it follows from the

reasoning in Section 2 that it should be captured by the price-dividend ratio.11 The

agent therefore considers the predictive system:

∆dt+1 = βx̂t + ut+1 (32)

x̂t+1 = φ̂x̂t + v̂t+1, (33)

where x̂t = pt − dt, the log price-dividend ratio, and where

 ut

v̂t

 iid∼ N

0,

 σ2
u 0

0 σ̂2
v

 . (34)

We refer to the predictor variable as x̂t in contrast to xt. Up to linearization error, the

assumptions in Section 2 imply that x̂ and x differ only by a scale factor, approximately

equal to 1/(1− φ). For convenience, we de-mean both variables.12

11To the extent that the price-dividend ratio fails to capture this component, we are biased against
finding dividend growth predictability, and therefore proving the beliefs to be less justifiable than
otherwise.

12De-meaning the variables simplifies the analysis, and only affects the conclusions through a
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Under conditions described in Appendix A, it suffices to consider a prior on the

parameters of the dividend process and the marginal likelihood for the dividend process,

taking observations on x̂t as given. That is, the time-series regression (32) for dividend

growth is, in this case, equivalent to standard OLS in which the regressor is strictly

exogenous.

We assume a prior inverse-gamma distribution for σ2
u and, conditional on σ2

u, a

normal distribution for the predictive coefficient β:

β |σu ∼ N(β0, g
−1σ2

uΛ
−1
0 ) (35)

σ2
u ∼ IG(a0, b0). (36)

We set parameters a0 and b0 so that the prior on σ2
u is diffuse.13 Equation 36 implies a

conjugate prior on β (Zellner, 1996). As explained below, Λ0 is a scale factor that will

allow us to interpet g as indexing the strength of the prior.

Given the priors (35) and (36), and the likelihood defined by (32–34), the agent

forms a posterior. Let x̂t = {x̂0, . . . , x̂t}, namely the set of observations on x̂s, up to

and including time t. Let yt = {∆d1, . . .∆dt} be the dividend growth observations up

to and including time t. The agent calculates

p(β, σu | x̂t,yt) ∝ L(yt | x̂t, β, σu)p(β, σu), (37)

where p(β, σu) is the prior specified in (35) and (36) and L(yt | x̂t, β, σu) is the likelihood

of observing the dividend growth data given the predictor variable and the parameters.

We fix time T as the last data point observed. We stack the observations on x̂t and

degree-of-freedom adjustment that becomes negligible as the same size grows.
13Because our focus will be on the posterior mean of β, these play no further role in our analysis.
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∆dt into vectors:

Y =


∆d1

...

∆dT

 , X =


x̂0

...

x̂T−1

 .
Note that the OLS estimate of β equals

β̂ = (X>X)−1X>Y,

and that (32) implies

Y = βX + U,

where U ∼ N(0, σ2
uI), and I is the T × T identity matrix. It follows that the posterior

(37) is given by

p(β, σu |, x̂T ,yT ) ∝ σ−nu exp

{
− 1

2σu
(Y −Xβ)>(Y −Xβ)

}
σ−1
u exp

{
−gΛ0(β − β0)2

2σ2
u

}

where ∝ means up to a proportionality factor that does not depend on β and σu.

Completing the square implies

p(β, σu |, x̂T ,yT ) ∝ σ−1
u exp

{
−(X>X + gΛ0)(β − β̄)2

2σ2
u

}
× p(σu | x̂T ,yT ), (38)

where

β̄ = (gΛ0 +X>X)−1(gΛ0β0 +X>Y )

= (gΛ0 +X>X)−1(gΛ0β0 + (X>X)β̂),

and where p(σu | x̂T ,yT ) is a term that does not depend on β and is therefore the

marginal posterior of σu (see (Zellner, 1996, Chapter 8) for more detail). It is clear

from (38) that the posterior of β conditional on σu is multivariate normal with posterior
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mean β̄. Note also that β̄ is a weighted average between the prior mean β0 and the

sample mean β̂, with the weights determined by the precisions of the prior and of the

sample respectively.

If we, ex post, set Λ0 = X>X, then g corresponds to the weight on β0 as a percent

of the weight on β̂, so that g = 0.1 implies that the prior receives 1/10 of the weight

of the sample, and g = 0.01 means it receives 1/100 of the weight. Because we are

asking whether, if the agent had the beliefs we attribute to her in Section 2, her beliefs

would change, we set the prior mean to equal 1/(1−φ) = 0.05. For comparability with

Tables 4–7, which show regressions on the dividend-price ratio, Figure 3 shows the

negative of the posterior mean of β. We consider an informative prior, with g = 0.10,

and a diffuse prior, with g = 0.01.

Figure 3 shows that the agent does indeed revise her prior beliefs, at least at first.

She revises it to imply more, not less predictability of dividend growth. Indeed, from

the 1930s to the 1970s, it appears that dividend growth was more predictable than

later in the sample. Only when nearly the full sample is used, namely around 2000,

does the posterior mean converge to the sample estimate, which happens to be close to,

though implying slightly more predictability than, the prior. Note that the convergence

implies that the prior does not matter when the full sample is used.

Thus an agent, viewing the evidence on annual dividend growth rates in isolation,

would be justified in maintaining a belief that dividend growth rates are predictable.

This agent, however, is not fully rational. He incorrectly extrapolates the predictability

from the one-year horizon to long horizons. Moreover, he fails to notice that excess

returns are also predictable.

6 Extensions

Cochrane (2011) notes that predictability, both in the time series and in the cross-
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section, appears to be ubiquitous. He attributes this predictability to variation in

discount rates across time and across assets. He notes that, within a no-arbitrage

setting (like the current paper), discount-rate based explanations of phenomena and

belief-based explanations are isomorphic (see Harrison and Kreps (1979)). However,

the fact that one can be mapped into the other does not necessarily make them equally

good explanations, as the discount-rate equivalent of a belief-based model might be

complicated (and likewise, for a belief-based equivalent of an discount-rate explana-

tion). Furthermore, time-varying discount rates are ideally viewed as an endogenous

outcome of an economic model. In most models, time-varying discount rates are tied to

time-varying risk, providing testable implications discussed in the introduction. Dis-

count rates might also vary because risk aversion varies, or a rare event probability

varies; yet this would suggest a co-movement in measures of discount rates, which is

absent in the data Lettau and Wachter (2011).14

On the other hand, if investors display superstitious behavior about aggregate mar-

ket dividends, it is natural to assume that this behavior could be seen in other asset

classes, and would produce the kind of (ex post) predictability seen in the data. We

give specific parametric examples below.

6.1 The value premium

Fama and French (1992) show that stocks with high ratios of book equity to market

equity (value stocks) exhibit significantly higher excess returns than those with low

ratios (growth stocks). Moreover, market betas line up in roughly the opposite direction

of the expected returns, as do standard deviations. Thus standard risk-based stories

fail to account for the observed value premium. Here, we show that a simple extension

14Differential time-varying exposure to rare events offers another potential route for unifying this
evidence (Gabaix, 2012). Moreover, existing models of time-varying risk aversion or rare events do
not in practice entirely break the link between first and second moments.
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to the model presented in Section 2 naturally accounts for this finding.15

As is well known, the value premium result extends to ratios of other fundamentals

to price, such as earnings to price (see, e.g. Lettau and Wachter (2007)). What appears

to be important is having price in the denominator and a plausible non-price scaling

variable in the numerator. For our model, the most natural scaling variable is payouts,

namely dividends, though these could be connected, through a standard production

framework, to book value. We focus on the earnings-to-price ratio in the data because

dividends are to some extent arbitrary.

Assume n risky assets. Let Djt denote the time-t dividend, and ∆djt log dividend

growth, for stock j, where j = 1, ..., n. Investors believe that dividend growth is

predictable, as before. However, besides a component that effects all firms in the same

way, there is a second component that effects firms differentially. That is,

∆dj,t+1 = xt + βz,jzt + uj,t+1, (39)

where

xt+1 = φxxt + vx,t+1 (40)

zt+1 = φzzt + vz,t+1. (41)

We assume the shocks uj,t+1 (for j = 1, . . . , n), vx,t+1, and vz,t+1, are normally dis-

tributed, independent of one another, and independent over time, with variances σ2
u

(∀j), σ2
vx, and σ2

vz respectively.

Equation 39 indicates that subjective expectations are driven by xt and zt. Firms

are affected by xt in the same way, while they are differentially affected by zt. So that

15Other approaches to explaining the value premium that rely on subjective expectations include
Barberis et al. (1998); Daniel et al. (2001); Alti and Tetlock (2014); Tsai and Wachter (2016); Bordalo
et al. (2017). La Porta (1996) finds direct evidence for the role of incorrect expectations in the observed
value premium.
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xt has the interpretation of expected dividend growth in the aggregate, we assume that∑
j βz,j = 0.

We assume risk-neutral investors with discount rate δ. Let P j
t denote the price of

stock j. As in Section 2,

P j
t =

∞∑
n=1

P j
n,t,

where P j
n,t is the price of the n-period dividend strip for stock j. Prices P j

n,t satisfy a

recursion analogous to (7). Conjecture that the solution takes the form

P j
n,t

Dj,t

= F j
n(xt, zt) = eaj,n+bx,nxt+βz,jbz,nzt . (42)

Using a recursion analogous to (7), we find the difference equations

aj,n = aj,n−1 +
1

2
b2
x,n−1σ

2
vx +

1

2
β2
z,jb

2
z,n−1σ

2
vz +

1

2
σ2
u + log δ

bx,n = bx,n−1φx + 1

bz,n = bz,n−1φz + 1,

(43)

with P j
0,t/Djt = 1 implying boundary conditions aj,0 = bx,0 = bz,0 = 0. Thus

bx,n =
1− φnx
1− φx

bz,n =
1− φnz
1− φz

.

It is also useful to note that:

P j
n,t

Dj,t

= E∗t

[
δne

∑n
s=1 ∆dj,t+s

]
= exp{aj,n + bx,nxt + βz,jbz,nzt}, (44)

with aj,n, bx,n, bz,n as above.

Equation 42 implies a cross-section of scaled-price ratios as long as there is a cross-
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section of exposures βz,j. Following the empirical literature, we refer to stocks with

high price ratios as growth and those with low price ratios as value. For example, if

zt > 0, then growth stocks will have high βzj and value stocks will have low βzj. On

the other hand, if zt < 0, the reverse pattern will be the case.16 Note that all that is

required to produce a spread in price-dividend ratios is variation in the loadings βz,j.

Value stocks need not be pre-assigned some βz,j.
17

We assume, as in Section 2, that dividend growth is in fact unpredictable. We define

the market portfolio to be the weighted average of the individual assets. We take this

simple model to the data.18 Table 8 reports means of portfolios formed on earnings-

to-price ratios in postwar data, and in simulations from the model. In historical data,

firms are sorted into quintiles based on earnings-to-price ratios (details can be found on

Kenneth French’s website). In the data, value firms (those with high earnings-to-price

ratios) have high expected returns relative to growth firms. Except for the extreme

value quintile, they have lower standard deviations and lower betas with respect to the

market. Thus the Capital Asset Pricing Model does not explain the spread in expected

returns, and abnormal returns are large.

Table 8 also reports means from simulations in the model. True risk premia in the

model equal zero. However measured risk premia do not. Just as in the data, the

higher is the earnings-to-price ratio, the higher the return, with the difference in the

model being 3%. All of this is abnormal return because risk premia equal zero.

Why does the model produce a spread in returns? In the spirit of Cohen et al.

(2003), consider the value spread, defined by as the difference in dividend-to-price

16We disregard for the moment the Jensen’s inequality adjustments in the aj,n terms. In our
calibration, these are small.

17While we focus on a common component in subjective beliefs on which stocks load differentially,
a reasonable extension would be to allow for firm-specific components. Firm-specific differences in
beliefs would produce a long-run reversal effect distinct from an over-reaction mechanism (Daniel
et al., 1998; Hong and Stein, 1999).

18The persistences φx = φz = 0.85. The volatilities σvx = σvz = 2.5%, while σu = 20%. log δ =
−5.7% so that prices converge. The loading on zt, βjz ranges from -1 to 1.
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ratios between value and growth stocks. The value spread in the model is given by

log
Dj,t

P j
n,t

− log
Dk,t

P k
n,t

= −1

2
(β2

z,j − β2
z,k)σ

2
vz

n−1∑
s=1

b2
z,s − (βz,j − βz,k)bz,nzt, (45)

with βz,j < 0 and βz,k > 0 when zt > 0, and the signs reversed when zt < 0.19 When

zt > 0, firms that have the highest valuations relative to their dividends (and thus

the lowest dividend-price ratios) have the greatest loadings on zt. Note that the value

spread in the model is perfectly correlated with the perceived differential forecast zt.

Then realized returns on the n-period dividend strip for stock j equal:

log(1 +Rj
n,t+1) = logP j

n−1,t+1 − logP j
n,t

= aj,n−1 − aj,n + bx,n−1xt+1 − bx,nxt + βz,j(bz,n−1zt+1 − bz,nzt) + uj,t+1

= aj,n−1 − aj,n − xt − βz,jzt + bx,n−1vx,t+1 + βz,jbz,n−1vz,t+1 + uj,t+1

Consider the differential return between a value stock j and growth stock k.

log(1 +Rj
n,t+1)− log(1 +Rk

n,t+1) = (aj,n−1− aj,n− (ak,n−1− ak,n))− (βz,j − βz,k)zt +

(βz,j − βz,k)bz,n−1vz,t+1 + uj,t+1 − uk,t+1.

The preceding argument implies that, for zt > 0, we have βz,k > βz,j.
20 Note that

logEt
[
1 +Rj

n,t+1

]
− logEt

[
1 +Rk

n,t+1

]
= (βz,k − βz,j)zt (46)

Because zt > 0, value stocks appear to offer a premium over growth stocks. It follows

that the value factor always has a positive average return. The model not only predicts

that value stocks have higher average returns, but that the degree of the mispricing is

19Again, we ignore for the purpose of discussion, the second-order Jensen’s inequality term, which
is the first term in (45).

20Note that for zt < 0, we would have the opposite inequality.
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perfectly correlated with the value spread, as Cohen et al. (2003) show.

Interestingly, however, the model reproduces the u-shape in volatilities. The ex-

treme growth and value stocks are those with extreme β loadings in either direction,

and hence are the most volatile. The model also reproduces the high market betas

of growth stocks. Growth stocks are especially sensitive to changes in xt because of

the effect of duration, and xt is what drives the market portfolio. The model cannot,

however, reproduce all the results in the data. Besides the fact that average returns

are too low (this, however, is by construction and could be altered in the same way as

in Section 2), the model also produces a high-minus-low portfolio that is too volatile.

An important aspect of the value premium in that, while it cannot be explained by

conventional risk measures, it can be explained by factor loadings on the HML (high-

minus-low) factor. However, this too can be replicated in the model. When we run

time-series regressions using the market return and the HML return (the return on the

value portfolio minus the return on the growth portfolio), we find zero abnormal return,

just as in the data. The reason is that the value-minus-growth return is almost perfectly

correlated with innovations in zt. Note that the factor loading on zt innovations is

proportional to βz,j. Expected returns are also proportional to this factor loading.

To summarize, a time-series factor in expected dividend growth can lead to a cross-

sectional factor if firms have different loadings. This will always produce a spread

in ratios of prices to dividends (or, in a richer model, prices-to-earnings or prices-to-

book value). Moreover, subsequent returns will go in the opposite direction, as the

(incorrectly) predicted aggregate dividend growth fails to materialize. Note that the

link to time-series variation in zt is important; it would not be sufficient to have, for

example, a model in which some investors are excessively optimistic about some stocks

and pessimistic about others. Such a static model would neither explain the association

with the value spread and the value return noted by Cohen et al. (2003), nor the ability

of the HML factor to account for the value premium, as shown by Fama and French
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(1993). Both of these facts are naturally accounted for in the dynamic model shown

above.

6.2 Violations of the expectations hypothesis of interest rates

We now apply these ideas to the pricing of Treasury bonds. Assume that investors

believe that the continuously-compounded short-term interest rate rt follows a first-

order autoregressive process, so that

∆rt+1 = (φ− 1)(rt − r̄) + vt+1 (47)

where ∆rt+1 = rt+1−rt, |φ| < 1, r̄ is the unconditional mean of rt, and vt+1
iid∼ N(0, σ2

v).

Note that φ is the first-order autocorrelation of rt.
21

As with dividend growth, investors believe that changes in interest rates are more

forecastable than they are in reality. That is, while (47) represent beliefs, the true

process is governed by

∆rt+1 = (ζ − 1)(rt − r̄) + vt+1, (48)

with

|ζ − 1| < |φ− 1|. (49)

We focus on the case where ζ, φ ∈ [0, 1] so that (49) implies ζ > φ. In forecasting next

21The analysis in this section takes the short-term interest rate rt as a given. Perhaps the simplest
way to micro-found variation in this rate is to consider a risk-neutral investor with discount rate δ
and an exogenous inflation process ∆πt+1 such that

∆πt+1 = π̄ + zt + ut+1

and
zt+1 = φzt + vt+1,

with ut+1 and vt+1 distributed as in (3). The interest rate rt then solves

Et
[
δe−∆πt+1+rt

]
= 1.

Under these assumptions, the analysis proceeds exactly as described.
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period’s interest rate, (49) implies that investors put more weight on previous values

of the interest rate than they should. Alternatively stated, interest rates are closer

to a random walk (they mean revert more slowly) in the data than investors believe

(ζ > η).

We consider risk-neutral pricing for bonds. The dynamics thus far define a discrete-

time Vasicek (1977) model.22 Let Bn(rt) denote the price of the n-period bond as a

function of the riskfree rate between periods t and t+ 1. Then bond prices satisfy the

recursion

Bn(rt) = E∗t
[
e−rtBn−1(rt+1)

]
, (50)

with B0(rt) = 1 and B1(rt) = e−rt . It follows that

logBn(rt) = −an − bnrt (51)

with

an = an−1 + bn−1(1− φ)r̄ − 1

2
b2
n−1σ

2
v

bn = 1 + bn−1φ

(52)

and a0 = b0 = 0. Note that a1 = 0 and b1 = 1, so that B1(rt) = e−rt . The solution for

bn is again

bn =
1− φn

1− φ
. (53)

Defining the continuously compounded yield on the n-period bond as

ynt = − 1

n
logBn(rt)

22A substantial literature on latent factor models strongly rejects a single-factor model in favor
of multi-factor alternatives (Dai and Singleton, 2002; Duffee, 2002). Piazzesi et al. (2015) show how
subjective expectations can be incorporated into a model with richer dynamics. For the purpose of
illustrating our mechanism, however, this simple model suffices.
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It follows from (53) that the yield spread equals

ynt − y1t = constant +

(
1

n

1− φn

1− φ
− 1

)
rt

(recall that y1t = rt). The (continuously compounded) holding period return on the

n-period bond is given by

rn,t+1 = logBn−1(rt+1)− logBn(rt)

(note that r1,t+1 = rt). Substituting in for (51), (53), and for the physical evolution of

rt, (48), we find the following equation for continuously-compounded excess returns:

rxn,t+1 = rn,t+1 − r1,t+1 = constant + (ζ − φ)
bn−1

1− (1/n)bn
(ynt − y1t) + bn−1vt+1.

When ζ = φ, we recover the equilibrium with correct beliefs in which excess returns

are unpredictable. However, when ζ > φ, the yield spread will predict excess returns

with a positive sign, as in the data.

The economic intuition is similar to that of predictability in equity ratios. Yields

fluctuate based on forecasts of future interest rates. Relatively high values of long-term

yields indicate investor forecasts of rising short-term interest rates. Short-term rates

are not as predictable as investors think, and on average, when the yield spread is high,

interest rates fall relative to investor’s expectations. As a result, an above-average yield

spread forecasts positive excess returns on bonds.

The ability of the yield spread to forecast excess bond returns was first noted in

the data by Campbell and Shiller (1991). According to the expectations hypothesis of

interest rates, yields on long-term bonds should reflect forecasts of future short-term
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interest rates.23 Indeed, the recursion (50) implies

ynt = − 1

n
logE∗t

[
e
∑n−1
τ=0 rt+τ

]
.

If investors correctly anticipate yields, then bond returns will be unpredictable. How-

ever, Campbell and Shiller (1991), Fama and Bliss (1987) and a large subsequent

literature show that excess bond returns are strongly forecastable. We replicate this

finding in Table 10, which reports coefficients from regressing bond returns on yield

spreads using the Fama-Bliss data set for zero-coupon bonds.

As an illustrative calculation, we calibrate σv and φ to jointly match the volatility

and first-order autocorrelations of yields. This implies σv = 1.5% per annum and an

annual autocorrelation ζ of (roughly) 0.90. Given these parameters, φ = 0.45 gives us

roughly the amount of predictability in the data.

Table 10 shows results from historical data and from simulating 1000 samples of

length 70 years. We run the regression

rxn,t+1 = αn + βn(ynt − y1t) + εt+1

for zero-coupon bonds for maturities ranging from 2 to 5 years. Bond excess returns

are strongly predictable in both data and model.

Though there are aspects of the data that this one factor model cannot match (for

example, yield spreads are less persistent then yields themselves), it offers a very simple

explanation for a difficult feature of the data: namely, why investors appear to require,

at some points in time, very different term premia for long-term bonds. In this model,

the answer is that they do not require such premia, but rather, they do not know the

correct process for interest rates.24 Given that this process has itself been a matter of

23There are slight differences depending on whether this hypothesis is articulated in logs or levels
(Campbell, 1986).

24Recent work has assembled direct evidence in favor for this hypothesis. Cieslak (2018) shows that
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long debate in the finance profession, this seems like a relatively weak assumption.

6.3 Uncovered interest rate parity

While a full account of the behavior of currencies and international interest rates is far

outside the scope of this paper, we offer a simple extension of the previous ideas to the

forward premium anomaly, otherwise known as the failure of uncovered interest rate

parity.25

Let St be the exchange rate in units of foreign currency per U.S. dollar. Let Rt+1 be

the nominal interest rate in the U.S. available between times t and t+1, and R̃t+1 be the

nominal interest rate in the foreign country, denominated in that country’s currency.

Let Ft be the forward price of the foreign currency. That is, at time t, one dollar can

be converted into Ft units of the foreign currency at time t + 1. We consider nominal

rates, and assume no risk of sovereign default, so that Rt+1 and R̃t+1 are known at

time t.

Risk-neutral pricing for the U.S. investor requires that expected rates of return be

equal when computed with respect to the investor’s probability distribution:

E∗t

[
1 +Rt+1 −

St
St+1

(1 + R̃t+1)

]
= 0. (54)

That is, returns from investing risk-free in the U.S. should be equal, in expectation,

to investing in the foreign country’s riskfree rate. Of course, one first needs to convert

survey errors are forecastable, and that the forecastable component predicts excess return on bonds, in
the decreasing pattern shown in Table 10. Cieslak (2018) and Piazzesi et al. (2015) show that, over the
1980–2010 period, featuring a long decline in interest rates, survey expectations were systematically
above the expectations formed using a model estimated on the entire period. Consistent with (49), it
appears that investors kept expecting a reversion to higher interest rates (relatively speaking), despite
years of evidence that such a reversion failed to occur.

25The potential for distorted beliefs to resolve exchange rate puzzles has also been noted by Gour-
inchas and Tornell (2004) and Burnside et al. (2011). The field of international finance offers a rich
array of puzzles in which mis-specified beliefs could play a role, as shown in Dumas et al. (2017).
Frankel and Froot (1987) offer survey evidence that is consistent with the explanation we propose
here.
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U.S. dollars into the foreign currency, and then back again in the following period.26

Equation 54 can be rewritten as:

1 + R̃t+1

1 +Rt+1

=

(
E∗t

[
St
St+1

])−1

. (55)

Furthermore, no-arbitrage implies covered interest rate parity. That is, investing at

the U.S. interest rate must equal buying the foreign currency today, investing at the

foreign country’s interest rate, and then converting back via a forward contract:

1 +Rt+1 =
St
Ft

(1 + R̃t+1). (56)

Combining (55) and (56) implies that the so-called forward discount Ft/St is related

to appreciation (or depreciation) in the exchange rate via the expectation:

Ft
St

=

(
E∗t

[
St
St+1

])−1

. (57)

That is, high forward discounts indicate investors expect appreciation of the currency.

Equations 55 and 57, each constituting uncovered interest rate parity, have been

extensively tested and found to fail in the time series and in the cross section of

currencies. For example, Lustig et al. (2011) sort currencies on the basis of the left-

hand-side of (57) and then compute subsequent changes in exchange rates. Contrary

to (57), they find no relation between a high forward discount and future appreciation

of the currency. Nor is there a relation between the interest rate differential (55) and

future appreciation. What they do find is a relation between the forward discount and

excess returns on the foreign currency.

26The risk-neutral investor cares about expected returns being equated in real terms. Thus, if
∆πt+1 is log inflation between t and t + 1 in the U.S., (54) should have, inside the square brackets,
e∆−πt+1 . By using (54), we effectively assume (for simplicity) that U.S. inflation is uncorrelated with
innovations in the foreign exchange rate.
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Specifically, define the continuously-compounded excess return on the currency as

rxt+1 = log

(
St
St+1

(1 + R̃t+1)

)
− log(1 +Rt+1). (58)

Lustig et al. (2011) show sorting on the forward discount produces a large spread in

excess currency returns in the next period. We show their results in the data row of

Table 11. The currencies with the lowest forward discount have a subsequent excess

currency return of -3%, while those with the highest have a return of 6%. However,

their volatilities are approximately the same. This result parallels a time-series finding

that high forward discounts (equivalently, high interest rate differentials), predict high

excess returns on the currency (Backus et al., 2001).

To understand these results, we consider a very simple model for the exchange

rate. Consider a set of countries indexed by j, j = 1, . . . , n. Let sjt = logSjt, and

∆sj,t+1 = sj,t+1 − sjt. Assume that

∆sj,t+1 = xjt + σjuj,t+1, (59)

for some random variable xjt, with uj,t+1
iid∼ N(0, 1). It follows from (57) that the log

of the forward discount fjt − sjt = log(Fjt/Sjt) equals

fjt − sjt = xjt −
1

2
σ2
j (60)

Define continuously-compounded returns r̃j,t+1 = log(1 + R̃j,t+1) and rt+1 = log(1 +
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Rt+1). Consider the excess return on the foreign currency, defined in (58).

rxj,t+1 = sjt − sj,t+1 + r̃j,t+1 − rj,t+1

= −∆sj,t+1 + fjt − sjt (61)

= −xjt − σjuj,t+1 + xjt −
1

2
σ2
j (62)

= −σjuj,t+1 −
1

2
σ2
j , (63)

where (61) follows from (56), and (62) imposes equality between the subjective and

physical distribution, and uses (59). Thus continuously compounded excess returns are

unpredictable. In the cross-section, E[rxj,t+1] depend only σ2
j , a Jensen’s inequality ef-

fect. On the other hand, exchange rates should be predictable by the forward discount,

as is clear from comparing (60) and (59). This predictability is absent in the data.

Suppose instead that the true process for exchange rates is a random walk:

∆sj,t+1 = σjuj,t+1.

In this case,

rxj,t+1 = −∆sj,t+1 + fjt − sjt (64)

= −σjuj,t+1 + fjt − sjt (65)

where uj,t+1 is an iid shock. Clearly excess returns on currencies will be forecastable,

both in the time series and the cross-section, by the forward discount. Table 11 shows

that indeed this is the case, and that the model replicates the magnitude of the cross-

sectional relation.27

27The results of Lustig et al. (2011) indicate an HML-type factor in currency premia. To capture
this common factor, one could proceed as in Section 6.1 and model differential loadings on a common
forecast.
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Note that, unlike previous results, the one-period nature of the forward-premium

regressions implies that we need not specify a process for xjt. Bringing in term structure

information, such as in Lustig et al. (2018), would help pin down such a process. We

leave such extensions to future work.

7 Conclusion

Like the pigeons in Skinner’s classic (1948) experiment, investors discover meaning in

randomness. In this paper, we have shown that this simple insight has far-reaching

consequences for asset pricing. An asset price is today’s forecast of the future outcome

of a random process, such as a company’s dividend, or a country’s exchange rate.

Any information investors think they have about this future outcome will be in today’s

price. And yet if the process in question is not in fact forecastable, the price will adjust

to meet reality, rather than reality adjusting to meet the price. We have shown, in

four distinct settings, that the former is what occurs. For the aggregate stock market,

prices have adjusted to meet dividends. For the cross-section of stocks, those with high

prices relative to earnings see their prices fall. Long-term bond prices adjust to meet

stable short-term interest rates, rather than the other way around. Forward prices of

currencies adjust to meet spot prices.

A difficult and interesting question is how investors form their expectations. We

have shown that, regardless of the specifics of this process, a tendency to find structure

in randomness leaves a signature pattern in asset prices, one which we can observe in

a strikingly consistent way.
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Appendix

A Bayesian analysis of predictive regressions

Consider the predictive system

yt+1 = β0 + βxt + ut+1 (A.1)

xt+1 = φ0 + φxt + vt+1 (A.2)

The agent observes x0, . . . , xT and y1, . . . , yT , perhaps because yt represents a return

or a growth rate (and so one observation is lost relative to xt). We assume

 ut

vt

 iid∼ N (0,Σ) (A.3)

for a positive-semidefinite matrix Σ, representing the variance-covariance matrix.

Define

B =

 β0 φ0

β φ


and xt,yt, analogously to Section 5. Let L denote the joint likelihood of the data. The

agent forms the posterior

p(B,Σ |xT ,yT ) ∝ L(xT ,yT |B,Σ)p(B,Σ), (A.4)

where ∝ denotes up to a factor that does not depend on B and Σ.

We make the following assumptions, to reduce the problem to the one considered

in Section 5.

Assumption 1. The matrix Σ is diagonal.

Assumption 2. The parameters β0, β1 and σu are independent, under the prior, of
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φ0, φ1 and σv, where σ2
u is the first, and σ2

v the second, diagonal element of Σ.

As shown below, these assumptions guarantee strict exogeneity of xt in relation to

yt. If these assumptions hold approximately, i.e. if the contemporaneous correlation

between yt+1 and xt+1 is small, then it is likely that inference will not be strongly

effected. See Wachter and Warusawitharana (2015) for the analysis when these don’t

hold, as is the case when yt represents stock returns.

We now show the marginal posterior for β0, β and σu reduces to (37). Define

l(xt+1, yt+1 |xt, B,Σ) as the likelihood of the time-t observation. Note that (A.1–A.3)

imply

l(xt+1, yt+1 |xt, B,Σ) = l(xt+1, yt+1 |xt,ytB,Σ).

Conditional probability calculations imply

L(xT ,yT |B,Σ) =
T−1∏
t=0

l(xt+1, yt+1 |xt, B,Σ)l(x0 |B,Σ),

where we use l(x0 |B,Σ) to denote the likelihood of the initial observation.

Assumption 1 implies that, conditional on xt and on the parameters, yt+1 is inde-

pendent of xt+1. We can factor l as follows:

l(xt+1, yt+1 |xt, B,Σ) = l(yt+1 |xt, xt+1, B,Σ)l(xt+1 |xt, B,Σ)

= l(yt+1 |xt, B,Σ)l(xt+1 |xt, B,Σ) (A.5)

= l(yt+1 |xt, β0, β, σu)l(xt+1 |xt, φ0, φ1, σv) (A.6)

Note that (A.5) does indeed require Assumption 1. If this assumption does not hold,

then realizations of xt+1 give additional information about the shocks ut+1. Given

(A.5), (A.6) follows from the form of (A.1) and the definition of Σ.
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We apply Assumption 2 and (A.6) to find the following form of the posterior:

p(B,Σ |xT ,yT ) ∝
T−1∏
t=0

l(yt+1 |xt, β0, β, σu)
T−1∏
t=0

l(xt+1 |xt, φ0, φ, σv)l(x0 |φ0, φ1, σv)

× p(β0, β, σu)p(φ0, φ, σv). (A.7)

Furthermore,

p(B,Σ |xT ,yT ) = p(β0, β, σu |φ0, φ, σv,xT ,yT )p(φ0, φ, σv |xT ,yT ). (A.8)

The right hand side of (A.7) factors into two terms, one of which depends on (β0, β, σu),

and one of which depends on (φ0, φ, σv). Thus we can write:

p(φ0, φ, σv |xT ,yT ) ∝
T−1∏
t=0

l(xt+1 |xt, φ0, φ, σv)l(x0 |φ0, φ1, σv)p(φ0, φ, σv),

and, from (A.8),

p(β0, β, σu |xT ,yT ) ∝
T−1∏
t=0

l(yt+1 |xt, β0, β, σu)p(β0, β, σu).

This proves that (37) is the correct posterior.
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Table 1: Parameters Used in Simulations

Parameter Risk Neutral Disaster
Shock to realized log dividend growth σu 0.11 0.11
Shock to expected log dividend growth σv 0.01 0.01
Subjective persistence in expected log dividend growth φ 0.95 0.95
Time-discount factorδ 0.97 0.95
Expected dividend growth µ 0 0.02
Relative risk aversion γ 0 3.00
Disaster probability p 0 0.02
Disaster size 1− eξ - 0.33

The table shows parameters used in the simulations. For the model with disasters, the
agent has constant relative risk aversion with parameter γ. The physical distribution
of aggregate consumption growth is the same as that of dividends growth and is not
subject to bias. The model is simulated at an annual frequency.

48



Table 2: Empirical and Simulated Moments for the Aggregate Market, Full Sample

Data Model: Risk Neutral Model: Disaster
1927-2017 5 50 95 5 50 95

σ(Rm) 0.20 0.20 0.23 0.26 0.17 0.19 0.22
AC of Rm -0.01 -0.19 -0.02 0.14 -0.18 -0.01 0.16
σ(d− p) 0.45 0.30 0.46 0.71 0.21 0.33 0.52
AC of d− p 0.88 0.80 0.91 0.96 0.80 0.91 0.96
σ(∆d) 0.11 0.10 0.11 0.12 0.10 0.12 0.14
AC of ∆d 0.19 -0.18 -0.01 0.16 -0.19 -0.01 0.16
E[Rm] 0.09 0.00 0.03 0.06 0.03 0.06 0.09
E[Rf ] 0.01 0.03 0.03 0.03 0.01 0.01 0.01

We simulate 4000 samples each consisting of 91 years of data from the model with
risk-neutral investors, and the model with risk-averse investors and rare disasters. The
table reports moments from the 1927–2017 sample (second column), and medians, 5th
percentile values, and 95th percentile values (remaining columns). Rm denotes the net
return on the market, d − p the log dividend-price ratio,∆d log dividend growth, and
Rf the riskfree rate. AC refers to the first-order autocorrelation and σ(·) the standard
deviation. The model is simulated at an annual frequency.

Table 3: Empirical and Simulated Moments for the Aggregate Market, Post-war

Data Model: Disaster, No Realization
1948-2017 5 50 95

σ(Rm) 0.17 0.16 0.19 0.22
AC of Rm -0.07 -0.22 -0.02 0.17
σ(d− p) 0.42 0.19 0.31 0.50
AC of d− p 0.92 0.76 0.90 0.96
σ(∆d) 0.07 0.10 0.11 0.12
AC of ∆d 0.24 -0.21 -0.01 0.18
E[Rm] 0.09 0.04 0.07 0.10
E[rf ] 0.01 0.01 0.01 0.01

We simulate 4000 samples each consisting of 70 years of data from the model with rare
disasters. We remove samples that contain disaster realizations. The table reports
moments from the 1947–2017 sample (second column), and medians, 5th percentile
values, and 95th percentile values (remaining three columns). Rm denotes the net
return on the market, d − p the log dividend-price ratio,∆d log dividend growth, and
Rf the riskfree rate. AC refers to the first-order autocorrelation and σ(·) the standard
deviation. The model is simulated at an annual frequency.
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Table 4: Predictability of Stock Market Excess Return, Full Sample

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1927-2017
β 0.07 0.16 0.26 0.36 0.49 0.59
t-stat [1.39] [1.95] [2.72] [2.71] [2.86] [2.75]

R2 0.02 0.06 0.10 0.16 0.25 0.28
Panel B: Risk Neutral Model

β 0.09 0.18 0.34 0.48 0.60 0.71
5th percentile 0.02 0.05 0.09 0.12 0.15 0.17
95th percentile 0.22 0.41 0.72 0.97 1.16 1.30

R2 0.04 0.07 0.14 0.20 0.25 0.29
Panel C: Disaster Model

β 0.11 0.22 0.41 0.58 0.73 0.86
5th percentile 0.03 0.07 0.12 0.16 0.20 0.21
95th percentile 0.25 0.46 0.85 1.13 1.39 1.60

R2 0.04 0.08 0.15 0.21 0.26 0.30

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

rmt+i − r
f
t+i = β0 + β(dt − pt) + εt+H ,

where rmt+i = log(1 + Rm
t+i) is the continuously-compounded aggregate market return

between t + i − 1 and t + i, rft+i = log(1 + Rf
t+i) is the continuously-compounded

Treasury Bill return between t+ i−1 and t+ i, and dt−pt = logDt/Pt is the aggregate
dividend-price ratio. Panel A reports results from the 1927–2017 sample. Panel B and
Panel C report medians and 5th and 95th percentile values from simulated data for
predictive regressions, and medians for R2-statistics as described in Table 2. For the
data panel, t-statistics are adjusted for heteroskedasticity and autocorrelation.
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Table 5: Predictability of Stock Market Excess Return, Post-war

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1948-2017
β 0.10 0.20 0.28 0.40 0.51 0.59
t-stat [2.27] [2.59] [2.90] [2.91] [2.87] [2.71]

R2 0.07 0.13 0.16 0.22 0.27 0.31
Panel B: Disaster Model No Realization

β 0.12 0.24 0.44 0.62 0.77 0.89
5th percentile 0.03 0.06 0.11 0.13 0.16 0.16
95th percentile 0.30 0.55 0.95 1.28 1.53 1.74

R2 0.05 0.09 0.18 0.24 0.30 0.34

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

rmt+i − r
f
t+i = β0 + β(dt − pt) + εt+H ,

where rmt+i = log(1 + Rm
t+i) is the continuously-compounded aggregate market return

between t + i − 1 and t + i, rft+i = log(1 + Rf
t+i) is the continuously-compounded

Treasury Bill return between t+ i−1 and t+ i, and dt−pt = logDt/Pt is the aggregate
dividend-price ratio. Panel A reports results from the 1947–2017 sample. Panel B and
Panel C report medians and 5th and 95th percentile values from simulated data for
predictive regressions, and medians for R2-statistics as described in Table 3. For the
data panel, t-statistics are adjusted for heteroskedasticity and autocorrelation.
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Table 6: Predictability of Aggregate Dividend Growth, Full Sample

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1927-2017
β -0.07 -0.10 -0.12 -0.14 -0.14 -0.13
t-stat [-2.14] [-1.54] [-1.72] [-1.85] [-1.45] [-1.18]

R2 0.09 0.07 0.06 0.07 0.08 0.07
Panel B: Risk Neutral Model

β 0.00 0.00 0.00 0.00 -0.00 -0.00
5th percentile -0.04 -0.09 -0.17 -0.24 -0.31 -0.37
95th percentile 0.05 0.09 0.17 0.24 0.32 0.39

R2 0.01 0.01 0.02 0.03 0.04 0.05
Panel C: Disaster Model

β -0.00 -0.00 -0.01 -0.00 -0.00 -0.00
5th percentile -0.07 -0.13 -0.26 -0.38 -0.48 -0.59
95th percentile 0.07 0.14 0.26 0.38 0.49 0.59

R2 0.01 0.01 0.02 0.03 0.04 0.05

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

∆dt+i = β0 + β(dt − pt) + εt+H ,

where ∆dt+i is the change in log aggregate dividends between t + i − 1 and t + i and
dt − pt = logDt/Pt is the aggregate dividend-price ratio. Panel A reports results from
the 1927–2017 sample. Panel B and Panel C report medians and 5th and 95th percentile
values from simulated data for predictive regressions, and medians for R2-statistics as
described in Table 2. For the data panel, t-statistics are adjusted for heteroskedasticity
and autocorrelation.
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Table 7: Predictability of Aggregate Dividend Growth, Post-war

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1948-2017
β -0.01 -0.01 -0.04 -0.08 -0.09 -0.12
t-stat [-0.59] [-0.29] [-0.72] [-1.00] [-0.83] [-0.86]

R2 0.01 0.00 0.01 0.04 0.05 0.06
Panel B: Disaster Model No Realization

β -0.00 -0.00 -0.00 0.00 -0.01 -0.01
5th percentile -0.07 -0.15 -0.29 -0.41 -0.52 -0.61
95th percentile 0.08 0.15 0.28 0.42 0.52 0.63

R2 0.01 0.01 0.03 0.04 0.05 0.06

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

∆dt+i = β0 + β(dt − pt) + εt+H ,

where ∆dt+i is the change in log aggregate dividends between t + i − 1 and t + i and
dt − pt = logDt/Pt is the aggregate dividend-price ratio. Panel A reports results from
the 1947–2017 sample. Panel B and Panel C report medians and 5th and 95th percentile
values from simulated data for predictive regressions, and medians for R2-statistics as
described in Table 3. For the data panel, t-statistics are adjusted for heteroskedasticity
and autocorrelation.
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Table 8: Return statistics for value and growth portfolios

1 (Low) 2 3 4 5 (High) 5 - 1
Panel A: Data 1952-2017

E[R] 6.46 7.61 8.96 11.34 13.65 7.19
t-stat [2.72] [3.73] [4.25] [4.86] [4.79] [3.46]
σ(R) 19.29 16.60 17.13 18.97 23.17 16.87

α -2.05 -0.05 1.20 2.96 3.77 5.82
t-stat [-1.99] [-0.09] [1.59] [2.74] [2.72] [2.58]

βmkt 1.03 0.93 0.94 1.01 1.19 0.17
Panel B: Model

E[R] -0.14 -0.14 0.39 1.37 2.67 2.83
σ(R) 21.63 17.65 16.19 17.00 19.51 25.18

α -1.01 -1.01 -0.42 0.57 1.89 2.93

βmkt 1.07 1.02 0.99 0.97 0.95 -0.12

Each year we form portfolios based on the earnings-to-price ratio and compute value-
weighted portfolio returns over the subsequent year. Panel A reports the mean, stan-
dard deviation, CAPM alpha and beta with respect to the market in annual data
from 1952 to 2017. Panel B reports the 50th percentiles of these statistics over 1000
simulations of length designed to match the data, each with 1000 stocks in the cross
section.
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Table 9: Performance relative to a two-factor model

1 (Low) 2 3 4 5 (High)
Panel A: Data 1952-2017

α 0.27 0.08 -0.05 0.95 0.27
t-stat [0.57] [0.12] [-0.09] [1.47] [0.57]

βmkt 1.10 0.93 0.90 0.96 1.10

βhml -0.40 -0.02 0.22 0.35 0.60
Panel B: Model

α 0.49 -0.30 -0.48 -0.18 0.49

βmkt 1.01 1.00 1.00 1.00 1.01

βhml -0.52 -0.24 0.02 0.26 0.48

Each year we form portfolios based on the earnings-to-price ratio and compute value-
weighted portfolio returns over the subsequent year. Panel A reports coefficients gen-
erated from the regression ri,t = α + βhmlhmlt + βmktmktt where ri,t is the portfolio
return in excess of the riskfree rate, hmlt is the return on the 5th quintile (high) minus
that of the 1st quintile (low), and mktt is the average excess return on all 5 portfolios.
Panel B reports the 50th percentiles of those coefficients over 1000 simulated samples
of length designed to match the data. Data are annual, from 1952 to 2017.
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Table 10: Moments of Bond Yields

Maturity in Years
1 2 3 4 5

Panel A: Data 1952-2017
βn 1.61 2.13 2.39 2.50
t-stat [2.92] [3.51] [3.81] [3.60]

σ(yn) 3.10 3.05 2.97 2.92 2.85
AC(yn) 0.88 0.90 0.90 0.91 0.91
σ(yn − y1) 0.33 0.54 0.69 0.81
AC(yn − y1) 0.40 0.46 0.52 0.55

Panel B: Model
βn 1.45 1.29 1.17 1.08

σ(yn) 2.80 2.03 1.54 1.22 1.00
AC(yn) 0.85 0.85 0.85 0.85 0.85
σ(yn − y1) 0.77 1.26 1.58 1.80
AC(yn − y1) 0.85 0.85 0.85 0.85

Panel A of the table reports the volatility and the first-order autocorrelation of zero-
coupon bond yields and yields spread, as well as the regression coefficients βn as in
rxn,t+1 = αn + βn(ynt− y1t) + εt+1, where rxn,t+1 is the return of n-year bond in excess
of y1 over period t + 1. The t-statistics adjust for heteroskedasticity. Panel B report
the percentiles of those moments computed over 1000 simulations, each with 66 years
of length. Data are from 1952 to 2017.
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Table 11: Moments of Portfolios Sorted on Forward Discount

1 (Low) 2 3 4 5 6 (High)
Panel A: Data 1983-2008

µ(rx) -2.92 0.02 1.40 3.66 3.54 5.90
σ(rx) 8.22 7.36 7.46 7.53 7.85 9.26

µ(f − s) -3.90 -1.30 -0.15 0.94 2.55 7.78
σ(f − s) 1.57 0.49 0.48 0.53 0.59 2.09

Panel B: Model
µ(rx) -7.80 -4.66 -2.86 -1.15 0.71 3.80
σ(rx) 8.24 8.22 8.19 8.20 8.20 8.23

µ(f − s) -7.82 -4.71 -2.84 -1.16 0.71 3.81
σ(f − s) 1.07 0.85 0.79 0.79 0.85 1.07

Panel A of the table reports means and standard deviations of average log excess cur-
rency returns rx and log forward discount f − s within each of 6 currency portfolios
formed on the forward discount. Data, from Lustig et al. (2011), are monthly, from
1983–2018. Panel B reports the 50th percentiles of those moments over 1000 simula-
tions of the model, each with 293 monthly observations.
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Figure 1: Log Real Dividend and Log Real Price Level of the Aggregate Market, Full
Sample
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This figure plots the annual frequency log price level and log dividend of the US stock
market in the post-1926 era. The log real dividend is multiplied by 27.43, the mean
P/D ratio post-1926. The dividend and the price are adjusted for inflation.
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Figure 2: Log Real Dividends and Log Real Price Level of the Aggregate market,
Post-War
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This figure plots the annual frequency log price level and log dividend of the US stock
market in the post-1948 era. The log real dividend is multiplied by 27.43, the mean
P/D ratio post-1948. The dividend and the price are adjusted for inflation.

59



Figure 3: Predicting dividend growth using the dividend-price ratio
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This figure shows the posterior mean of the predictive coefficient in a regression of
one-year ahead dividend growth on the dividend-price ratio. The posterior mean is
calculated using Bayesian methods, assuming an informative prior, where g indexes
the degree of informativeness. For each year in the sample, the agent uses all available
data to form a posterior for the predictive coefficient. Data begin in 1927. A prior
parameter of g = 0.1 implies that the prior mean of the coefficient receives a weight
of 10% relative to the sample estimate, whereas a prior parameter of g = 0.01 implies
that the prior mean receives a weight of 1%.
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