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1 Introduction

“Sunlight is said to be the best of disinfectants,” wrote US Supreme Court Justice Louis Brandeis

in 1914, referring to the idea that requiring firms, governments or other entities to disclose privately

held information could reduce externalities or socially undesirable behavior. Regulators have taken

this idea to heart in domains from financial markets to food service: mandatory disclosure of

private information has become a commonly used regulatory tool in varied settings and with varied

aims. An abundant literature in economics (e.g. Jin and Leslie, 2003; Greenstone et al., 2006;

Bennear and Olmstead, 2008) explores how mandatory disclosure affects the behaviors of regulated

entities that are directly targeted by such rules — most often, negative externalities.

Other effects of information disclosure, such as on technology diffusion and incentives to in-

novate, have received less attention. These effects could be especially important in the context of

an emerging technology, where firms are still refining production methods and conducting exper-

iments to fine-tune inputs. In such a context, requiring firms to reveal private information about

production processes or inputs could promote inter-firm learning by reducing other firms’ search

costs. It could also inhibit investments in innovation by reducing the excess profits that firms can

make from successful innovation. Indeed, firms often lobby against mandatory disclosure regula-

tions on the grounds that they undermine the right to trade secrecy and thus constrain innovation.

The context of emerging technologies is especially relevant because this is one locus where disclo-

sure rules can be most helpful. When production technologies are still in rapid development and

potential risks to the environment or human health are not well documented, regulating through

disclosure rather than more prescriptive policy tools can preserve flexibility for innovators to ex-
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periment, while also providing regulators with more information about potential risks (Fung et al.,

2007).

In this paper we study the unintended consequences, with respect to technological diffusion and

innovation, of information disclosure laws in hydraulic fracturing for shale gas. Hydraulic fractur-

ing is an emerging technology that has transformed the nature of energy production in the US and

the world, even as it has raised a number of concerns regarding impacts on the environment, human

health, and local boom-bust cycles (e.g. Hausman and Kellogg, 2015; Muehlenbachs et al., 2015;

Wrenn et al., 2016). Public and regulatory concern about these impacts, including potential nega-

tive externalities from the use of toxic chemicals in proximity to residential and commercial land

uses, led to new legal requirements that firms publicly disclose information about chemicals used

in the fracturing process.1 These laws required firms to reveal previously confidential informa-

tion about specific inputs in a production process, down to the level of the quantities of individual

chemicals used to stimulate hydrocarbon production from individual wells. Prior regulations also

required firms to report high-temporal-resolution information about well production. Thus, the im-

plementation of the disclosure laws allowed competitors to observe both inputs and outputs of the

production function for individual wells. Our analysis suggests that mandatory information dis-

closure facilitated technology diffusion through inter-firm learning, but also caused firms to reduce

investments in innovation.

Our analysis is set in Pennsylvania, which provides a unique data environment in which to

analyze the effects of information disclosure. Pennsylvania, home to the Marcellus Shale, was

one of the earliest states to experience a dramatic increase in exploration and production of uncon-

1In the US, these laws are promulgated at the state level; by 2015, 18 states — including every state with significant
fracturing activity — had passed such laws.
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ventional shale gas, and continues to experience extensive unconventional development.2 Penn-

sylvania’s history also features an unusual regulatory episode that facilitates the identification of

the effects of disclosure laws. Typically, identifying the effects of information disclosure laws is

difficult because researchers cannot observe the disclosed information (in this case, chemical in-

puts) prior to their implementation. In Pennsylvania, for over a year during the height of the boom,

operators were required to disclose detailed information to the regulator, but a combination of ac-

cessibility restrictions and regulatory processing delays meant that the information was extremely

difficult for either the general public or competitors to access. We recovered pre-public disclo-

sures through a combination of “Right-to-Know” law requests and other methods; by observing

this information we can distinguish the effect of the public disclosure law from other simultaneous

phenomena, including secular technology change. Later, Pennsylvania altered its reporting plat-

form in such a way as to permit more rapid and essentially costless public observation of chemical

and other inputs. We collected this information too, as well as data on output for individual wells

during all periods.

To test the effects of disclosure on technological diffusion, we compare detailed, well-level in-

formation on inputs, including chemicals, and show that the chemicals used become more similar

following the requirement for public disclosure. We demonstrate that this convergence in inputs is

not simply an effect of convergence in technology over time, but is rather driven by the visibility

of well inputs to other firms. We then test whether the use of chemicals more similar to those in

high-performing firms’ wells improves productivity, using a measure of well-level input similarity

weighted by firm-level productivity. We construct this quality-weighted similarity metric sepa-

2The Marcellus Shale is the largest natural gas field in the US and one of the largest in the world; its richest deposits
underlie northeast Pennsylvania and southwest Pennsylvania (Ikonnikova et al., 2018).
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rately for wells that were observable to outsider firms and those that were not (i.e., where any input

similarity would be either accidental or driven by independent forces that motivated technological

convergence). We find that firms drilled more productive wells when (i) their chemical solutions

were more similar to those solutions used by more productive firms and (ii) those input sets were

visible in the public repository, suggesting that disclosure caused inter-firm learning. In a series of

subsequent tests, we show that this effect is robust to multiple alternative controls designed to rule

out the role of independent technological convergence, that is, an evolution toward an equilibrium

in the set of chemical inputs used. We also demonstrate that the effect of mandatory disclosure

is significant even conditional on including information about shared contractor firms that support

fracturing operations.

We next evaluate whether mandated disclosure undermines the incentives for firms to invest in

research and development for future innovations. We locate each well in high-dimensional space

based on the chemicals used in the fracture job, and identify experimental wells based on their

distance from clusters of prior wells in this chemical input space. We demonstrate that firms con-

duct fewer experiments after mandatory disclosure, and that this effect is particularly pronounced

among the most productive operators. We also show that firms are most likely to copy experiments

conducted by their most productive peers, and that this copying of experiments is much more com-

mon after mandatory disclosure. Taken together, the evidence suggests that the most important

experimentation — i.e., that of the most productive firms, which are also the most likely to be

copied by peers — falls after mandatory disclosure.

Our paper makes three primary contributions. Our first contribution is to the literature on the

relationship between secrecy and innovation. Most of this literature focuses on patent policies,

which allow inventors a temporary period of monopoly rights in exchange for public disclosure
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of their invention. In our empirical setting firms do not apply for patents for chemical mixtures,

evidently preferring to preserve monopoly rights by maintaining secrecy over their inventions.3

However, required public disclosure of a hitherto secret chemical formulation is comparable to

reducing the length of a patent.4 Despite theoretical expositions as early as Nordhaus (1969), the

empirical literature on causal effects of reduced patent length on innovative activity is somewhat

limited. However, prominent papers suggest that patent length does not affect research investments

(e.g., Sakakibara and Branstetter, 2001; Lerner, 2009) — a counterintuitive result that Budish et al.

(2016) and Williams (2017) suggest is driven by features of those papers’ empirical context, rather

than representing an unbiased estimate of the causal effect of patent terms. These features do not

arise in our empirical context, and our study indeed supports the more intuitive conclusion that a

shorter duration of monopoly rights decreases investments in innovation.

Second, we expand the literatures on both interfirm learning, and the empirical effects of in-

formation disclosure regulations, by bringing them together. The literature on interfirm learn-

ing is relatively small but recent work has analyzed themes such as how managerial knowledge

spillovers and peer-to-peer learning through business networks can affect performance (Cai and

Szeidl, 2018), including through particularly successful peers who can serve as role models (Dal-

ton et al., 2018). Yet much remains to learn about how firms learn from one another; in particular,

we are not aware of literature on disclosure regulations as a mechanism. Meanwhile, an extensive

literature on the effects of information disclosure addresses the effect of price or quality disclo-

sure on market structure and competition (e.g., Jin and Leslie, 2003; Bollinger et al., 2011; Luco,

3A likely explanation is that the protection of monopoly rights that patents provide is always incomplete, and
especially so when innovations can be adjusted in small ways that qualify as novel and non-encroaching (Lemley and
Shapiro, 2005). See also Cohen et al. (2000), who document the importance of secrecy for appropriating returns to
innovation.

4We appreciate an anonymous reviewer for elucidating this point.
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2018), on social or environmental outcomes (e.g., Greenstone et al., 2006; Fung et al., 2007; Ben-

near and Olmstead, 2008), and on investor behavior (e.g. Hamilton, 1995). Our research bridges

these streams: Our analysis is the first, to our knowledge, to study the effects of disclosure regu-

lations on inter-firm knowledge transfer. We find strong evidence that such regulations can enable

interfirm knowledge spillovers that would not have occurred otherwise.5

Third, we study the role that chemical additives have played in the development of hydraulic

fracturing technology. Several recent papers, beginning with Covert (2015), and continuing with

Steck (2019) and Agerton (2019), have documented the rise of hydraulic fracturing and how learn-

ing affects the decisions of firms. We are the first to seriously consider the role of chemicals in

firm learning, and thereby contribute to the literature on hydraulic fracturing specifically and social

learning about emerging technologies more generally.6

We stop short of attempting to analyze the net effects of the disclosure laws on social welfare,

in part because of the difficulty inherent in measuring the value of individual experiments (trials)

in a setting where knowledge is advanced by trial and error. We also do not address the effects of

the disclosure laws on their intended target, the use of toxic chemicals in the production process,

as that question is addressed thoroughly in Fetter (2019). However, our results suggest that the

laws reduced investment in the discovery of new technologies — that is, the expansion of the

technological frontier as the result of costly trial-and-error — even as they increased the diffusion

of better technologies through the industry. Mokyr (1992) points out that both forces represent

technological progress from a social point of view, and they are complementary in the long run:

neither a high level of discovery nor a high level of diffusion is sufficient on its own for sustained

5This could also be interpreted as a form of technology diffusion facilitated by regulation, though in our context
this is not a stated aim of the policy.

6We are aware of one other working paper, still in development, that addresses how chemicals affect well produc-
tivity (Fitzgerald and Mason, 2020).
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societal progress.

The paper proceeds as follows. In Section 2, we provide context and background for our study,

including background on hydraulic fracturing for shale gas, the role of information disclosure regu-

lations in this industry and others, and related literature on how public policy affects the incentives

for firms to invest in innovation. Section 3 describes our data. In Section 4 we present our anal-

ysis of how the disclosure rules affected chemical input choices, and how those choices related

to well productivity. Section 5 examines innovative activity following the disclosure rule. Sec-

tion 6 addresses a possible alternative explanation by testing the role of contractors in facilitating

information flows. Section 7 offers concluding remarks.

2 Background

2.1 Hydraulic Fracturing for Shale Gas

Shale gas grew from 5% of total US dry gas supply in 2004 to 56% in 2015, and forecasts of

international energy production indicate shale gas will be a principal driver of world natural gas

production for the foreseeable future.7 The ability to profitably recover hydrocarbons from shale is

largely based on advances in four key technology domains: horizontal drilling, three-dimensional

seismic imaging, micro-seismic fracture mapping, and massive hydraulic fracturing (Wang and

Krupnick, 2013). Elements of these technologies have been in development for decades, spurred

by both private and public investments in research and development. Technological advances since

the 1970s have ranged from changes in the major compounds comprising fracturing fluid to greater

control over directional drilling of wellbores. Foam was replaced by gels in the formulation of

7http://www.eia.gov/conference/2015/pdf/presentations/staub.pdf.
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fracturing fluid, and order-of-magnitude changes were made in the quantity of fluid and proppant

used. The 1990s saw advances in directional drilling, alongside massive hydraulic fracturing that

was enabled by the use of “slick water” fracturing fluid in place of gels. Fracturing fluid continues

to be refined in multiple dimensions to maximize output and minimize costs.

Operators use a wide array of chemicals in hydraulic fracturing fluid to enhance the productiv-

ity of the primary inputs, water and sand. Chemical additives help to open fractures in the rock,

transport proppant along the length of the fracture, lower viscosity so as to allow faster pumping

at higher pressure, minimize fluid loss into the face of the geologic formation, reduce chemical

corrosion or bacterial growth that might threaten the integrity of metal casings, facilitate breakup

of other chemicals post-fracture, and serve other purposes (Gulbis and Hodge, 2000; Montgomery,

2013). In short, fracturing fluid is a complex mixture, with design specifications that differ depend-

ing on the target geologic formation and well depth, and an additive that improves performance in

one dimension may reduce performance in another. Although the cost of the chemicals themselves

is usually small in comparison to the overall cost of the well stimulation operation, the choice of

chemicals may have dramatic effects on the overall cost and productivity of a well.8

As of 2014, the total estimated recovery for shale oil wells was on the order of 5%, compared to

50% for conventional oil wells.9 As engineers seek to improve recovery from shale wells, innova-

tion continues on several elements of the technology, including the use of longer fractures, greater

use (per foot) of water and proppant, shorter stages and “micro-perforations”, and improved identi-

fication of naturally existing fractures through higher-resolution micro-seismic mapping. Design-

ing fracturing fluid for optimal performance is complementary to several of these elements, and

8Mark Boling, Southwestern Energy, personal communication.
9R. Kleinberg, Schlumberger, April 2014: “Shale Gas & Tight Oil Technology: Evolution & Revolution”, presen-

tation to US Association for Energy Economics.
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represents a significant area of focus for oil and gas engineers seeking to advance productivity of

shale fractures (Gulbis and Hodge, 2000; Montgomery, 2013; Robart et al., 2013).

In some cases, the quest for superior fracturing fluids has led engineers to use chemicals known

to have adverse effects on human health or ecosystems (Stringfellow et al., 2014; Fetter, 2019).

From the start, public concern about shale gas development was driven partly by the possibility

that toxics in fluid — although they represent a small percentage of overall volume10 — might

leak into ground or surface water. Public concern about risk was accentuated by the often close

proximity of well-pads to residential and other non-industrial land uses, and by a few high-profile

incidents of water pollution.11 Media coverage of fracturing chemicals has highlighted the toxicity

of some chemicals along with the industry’s desire to maintain secrecy over the specific chemicals

involved (Elgin et al., 2012; Haas et al., 2012).

2.2 Mandatory Disclosure Regulations

The environmental and health concerns over toxics used in fracturing prompted calls for laws that

would either ban hydraulic fracturing, prohibit the use of toxics, or force companies to disclose the

identity and quantity of chemicals used in individual well fractures. While a handful of countries

and US states banned hydraulic fracturing outright, most jurisdictions chose mandatory disclosure

as a policy tool that balanced the concerns of regulators, firms, and the public. In this sense,

information disclosure was a “pragmatic compromise” (Fung et al., 2007) that allowed continued

production and technological development while also providing for regulators’ and the public’s

10The typical proportion of chemicals in slickwater fracturing fluid, other than water and sand, is 2 to 3%. Nonethe-
less, for a typical operation that uses on the order of five million gallons of fluid, even 1% of the fracturing fluid would
represent 50,000 gallons.

11See, for example, http://www.vanityfair.com/news/2010/06/fracking-in-pennsylvania-201006.
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right to know about proximate risks.

Pennsylvania was the third US state (after Wyoming and Arkansas) to mandate disclosure of

fracturing chemicals. All state-level chemical disclosure laws are nearly identical in terms of what

must be reported: ingredient name, chemical abstract service (CAS) number, a measure of concen-

tration in fluid (typically the maximum concentration used in any fracturing stage), trade name if

any, and supplier name. As of 2016, five of the eighteen states with disclosure laws, including many

that passed the earliest such laws, require operators to report to a state regulatory agency or com-

mission; six states require operators to upload forms to FracFocus, an online database created by

a multi-state commission in partnership with a non-profit organization (Council and Commission,

2015); and seven states allow firms to choose between FracFocus and the state regulator. Firms

must also provide well locations and characteristics including vertical depth and water volume.12

Disclosure of chemical information increases the ability of local landowners to bargain with

operators, since they can test for specific pollutants if they are concerned about infiltration into

water sources. Disclosure can also help establish liability for contamination, both by allowing

physical contaminant tracing and by allowing comparisons of chemical usage across sites. If the

information made available extends over a period of time, then disclosure can facilitate monitoring

of environmental releases, exposures, or health impacts over time. Information can also help emer-

gency personnel respond to a spill or accidental exposure. While many of these benefits could be

achieved equally well by disclosure only to a competent regulator (and not the public), disclosure

satisfies the public’s “right-to-know” about possible release of or exposure to hazardous materi-

als, which in the US is codified in the Emergency Planning and Community Right-to-Know Act

12State laws do allow exemptions for disclosure of additives that firms consider confidential business information;
operators wishing to invoke this provision must file separate exemptions for individual chemicals but must also (in
most cases) report the quantity used. Some states require operators to identify the chemical family to which each
proprietary substance belongs.
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(EPCRA).13

In addition to these benefits, mandatory disclosure has been shown to lead to “self-regulation”

(Lyon and Maxwell, 2004) as firms (or other regulated entities) change their behavior so as to

reduce the risk or harm that led to regulatory concern. For instance, Jin and Leslie (2003) show

that restaurants improve hygiene practices when required to prominently display cards with letter

grades in the front window; Greenstone et al. (2006) demonstrate that mandatory financial disclo-

sure leads firm managers to focus on maximizing shareholder value; and Bennear and Olmstead

(2008) find that drinking water quality improves when municipal providers must mail violation

reports directly to consumers. In the setting of hydraulic fracturing, Fetter (2019) shows that dis-

closure laws similar to those we study caused operators to reduce the use of toxic chemicals.

The question of whether mandatory information disclosure facilitates technological diffusion

is less well studied — in fact we are aware of no prior study on this topic. This may be because

mandatory disclosure rules often target performance aspects of firms (e.g., restaurant hygiene,

drinking water quality violations, corporate financial reports) that are unlikely to convey important

details about production processes. However, in settings where the information sought relates

directly to the production process, disclosure could facilitate diffusion. This appears to be the case

in shale gas, and may also be relevant for other contexts in which companies must report chemical

use or releases, such as the European Pollutant Release and Transfer Registry or the US Toxics

Release Inventory. To the extent that regulators consider information disclosure as a compromise

policy that carries little political or economic risk, our study sounds a note of caution about the

potential for unintended consequences related to both technology diffusion and innovation.

13Note that the shale gas industry is currently exempt from some provisions of this Act.
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2.3 Innovation, Secrecy, and Disclosure

Since innovation and technological progress are at the root of economic prosperity, there is a com-

pelling public interest in ensuring that would-be innovators can secure returns to costly investments

in research and development (Mokyr, 1992). As a result, there is an extensive literature on how

firms realize these returns and how public policy can facilitate innovation (Williams, 2017). The

observation that each successful invention indicates pathways others can follow and stimulates the

development of related ideas led to the “grand bargain” of patent systems, which provide inventors

with a temporary period of monopoly rights in exchange for publicly disclosing details of their

innovation. Nordhaus (1969) identifies patent length as a key policy variable that balances the

deadweight loss arising from an extended period of monopoly power and the incentives for firms

to invest in innovation.

Although much of the economic literature on innovation focuses on patent policy and, indeed,

uses patents as the key measure of innovation outcomes, in practice many firms use secrecy as a

primary tool to realize returns from their investments, and evidently consider secrecy more effec-

tive. For instance, Cohen et al. (2000) surveyed 3,240 R&D laboratories in the US manufacturing

sector and asked laboratory managers to judge the effectiveness of six appropriability mechanisms

(secrecy, patents, other legal mechanisms, lead time, complementary sales and service, and com-

plementary manufacturing facilities and knowledge). With few exceptions, managers in every one

of the 34 industry codes surveyed (including chemicals and petroleum) reported that secrecy was

more effective than any other mechanism, including patents, for protecting both product and pro-

cess innovations.14

14Cohen et al. (2000) asked managers to categorize the percentage of their innovations for which they considered
each mechanism an effective tool for appropriating returns. In the petroleum industry, for instance, managers identified
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In the sense that mandating disclosure of a trade secret is comparable to shortening the length

of a patent, it results in the benefits and costs that Nordhaus (1969) wrote about: social benefits

arising from the reduced duration of monopoly power, and social costs from the weakened incen-

tives to invest in innovation. One key difference is that patent applicants must reveal details of

their innovation in the application, thus allowing others to see some of the key ideas that paved

the way for a successful invention, whereas those who employ trade secrecy are under no such

obligation. As such, the forced disclosure of trade secrets can also promote faster take-up of tech-

nological improvements — not just in terms of adoption of the specific innovation but also in terms

of revealing a successful formulation to other would-be inventors, and thus stimulating further in-

novation in that direction. Of course, whether the net effect on innovation is positive or negative is

an empirical question.

3 Data

As this paper seeks to understand the effect of disclosed information, a central empirical challenge

is to identify precisely what information is available to each operator at the time of fracturing each

new well. At the time of a given fracture operation, each operator has access to input and output

data from its own prior wells as well as data from other firms on well locations, output, and —

in some cases, and subject to a delay that varies with the extent of disclosure requirements —

inputs. In order to address this empirical challenge, we assemble a rich and novel dataset that

includes production inputs and outputs, the date of each fracture, the date (if any) that input infor-

mation became publicly available, the operator name, and, if available, the name of the contractor

secrecy as an effective tool for 57% of process innovations, and patents as an effective tool for 37%.
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firm that helped to perform the frac job. We compile this dataset for all unconventional wells in

Pennsylvania.

We start with all of the unconventional wells in Pennsylvania with completion dates and initial

production between January 2007 and May 2015: 6,545 wells in total. We focus on shale gas

development from unconventional reservoirs (as defined by the Pennsylvania Department of Envi-

ronmental Protection, or DEP) because that is the primary locus of firms’ innovation during this

period, as well as the focus of the regulatory disclosure laws that are central to our analysis.15 Gas

production data comes from Enverus DrillingInfo, a national provider of information on the oil and

gas industry.

We collected data on inputs including chemicals and completion dates from two sources: Well

Completion Reports and Stimulation Fluid Additive reports from DEP, and the FracFocus database.

Well Completion Reports, which operators must submit within 30 calendar days following comple-

tion, contain the name of the operator (and, in many cases, the fracturing contractor), well location,

and various details about the perforation and stimulation process. Effective in February 2011, op-

erators also had to submit information on chemicals used in stimulation, including the chemical

name, identification number, and concentration in fracturing fluid.16

Under the February 2011 law, operators had to submit information about chemicals to DEP

either attached to the Well Completion Report or on a separate DEP form, the Stimulation Fluid

Additive report. Some operators elected to submit chemical additive information to the FracFocus

15According to industry engineers and geologists we consulted, the areas of current, active technological innovation
that is relevant to fracturing operations are largely distinct between unconventional and conventional production. In
other words, learning about production in conventional reservoirs does not transfer readily to provide insights into
production in unconventional reservoirs. These experts did advise us that learning about fracturing vertical wells is
transferable to fracturing in horizontal wells, and vice versa; thus we include both vertical and horizontal wells in our
analysis.

16Although the chemical disclosure requirement was new in 2011, operators have been required to submit Well
Completion Reports since 1989; see http://www.pacode.com/secure/data/025/chapter78/s78.122.html.
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registry as well as on state forms, sometimes submitting a printout of the FracFocus disclosure

form to the state rather than using the official state form. Operators from other states, too, were up-

loading chemical additive information to FracFocus at the same time. All disclosures to FracFocus

were voluntary at the time: Wyoming and Arkansas had also passed chemical disclosure laws as of

February 2011, but both required firms to report to a state registry. By April 2012, when Pennsyl-

vania switched to FracFocus as its required reporting site, several other states had passed chemical

disclosure regulations; some required the use of FracFocus, and others used a state registry instead.

Information that operators submitted to FracFocus was more readily observable by competi-

tors and the public: from the start, the registry allowed users to download individual PDF files

with fracturing fluid chemical composition, well location, operator name, water volume, and other

items.17 In contrast, Well Completion Reports and Stimulation Fluid Additive reports submitted to

the DEP were available for review by a paid subscription service or by in-person review at regional

DEP offices. Subscribers could view Well Completion Reports through the state-run Exploration

and Development Well Information Network (EDWIN), in which some chemical disclosure forms

were available as scanned PDF documents.18 However, in many cases there was a long lag after

well completion before stimulation chemicals and other information became available in the sys-

tem, especially during the height of the fracturing boom. For instance, one of the authors accessed

the system several times in 2012-13 and found lag times for stimulation fluid additive reports of 18

months — or more in some cases — were not uncommon. We also found that several dozen reports

for wells completed in 2011 or early 2012 were uploaded into the system between December 2015

and January 2017. Regulatory staff responsible for uploading stimulation chemical reports told

17Initially FracFocus was designed to inhibit bulk downloads or scraping, though at least two users (one nonprofit
and one for-profit) successfully scraped the database by late 2012 and one of these entities provided a public download
soon after (Skytruth, 2013).

18Prior to 2015, EDWIN was known as the Integrated Records and Information System, or IRIS.
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us that the most important contributing factors for delayed upload were a cumbersome workflow

and inadequate staff resources relative to workload, which is also supported by a contemporaneous

internal assessment (Pennsylvania Department of Conservation and Natural Resources, 2010).

Organizations that subscribed to EDWIN — as well as members of the public — could also

review physical copies of the Well Completion Reports and Stimulation Fluid Additive reports,

without having to wait for upload into the system. However, to do this, they would have had to

identify the well permit number, contact the appropriate regional DEP office, file an official records

request, schedule an appointment (typically three to four weeks in advance), and would then be

allowed to review a limited number of hard copy documents on site, on the order of 25 per day.

Furthermore, in our own experience using this in-person inspection system, we found that some

requested hard copy documents (on the order of 20% for some regional offices and times) were not

available on the appointment date, typically due to internal processes by which other departmental

users had “checked out” the hard copy reports. For this reason, we do not believe operators would

have expected others to observe their fluid contents, prior to the April 2012 rule revision that

mandated public disclosure of chemical information on FracFocus.

We assume full information flow within each firm’s internal organization: that is, that the

designers of each frac job had complete information about inputs and outputs for all prior same-

operator wells immediately upon completion and initial production. To determine the date by

which operator i could learn about the inputs used for subsequent wells fractured by operator j 6= i,

we incorporate information on the date (if ever) that a well was uploaded to FracFocus. We obtain

these dates from Konschnik and Dayalu (2016), who in turn received them from the administrators

of the FracFocus registry. In the case of wells for which operator j 6= i submits data only to the

DEP, and does not upload a report to FracFocus, we assume that operator i does not observe the
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chemical input data during the period of our study (i.e., by May 2015).

To capture productivity, we use the standard industry metric of initial gas output (first six

months of production) per foot of wellbore.19 Total output is highly correlated with initial output

(Newell et al., 2016), and dividing by the length of the perforated interval normalizes output by

well size to facilitate comparison across wells. In the process of creating this metric, we find

that operators failed to provide the length of the perforated interval for 168 wells, so we cannot use

these in the analysis.20 We drop an additional 282 wells that have nonsensical completion dates (the

recorded completion date is more than 30 days after the date of initial production) or insufficient

information on upload date. Finally, we drop 1,233 wells for which we lack information on key

inputs, i.e., chemicals or water volume.21

This leaves a sample of 4,862 wells. For each, we observe identifying information (operator,

location, and completion date), output (initial gas production per perforated foot), and inputs (vol-

ume of water and chemical additives to the stimulation fluid). We also observe gas-in-place, an

estimate of underlying resource quality, from a University of Texas Bureau of Economic Geology

study that uses shale thickness, total organic content, and other geological variables (Ikonnikova et

al., 2018).22

Data on chemical inputs is certainly the most difficult-to-access element that we observe; as

noted above, we collect this data from two sources: FracFocus, and DEP reports. The former are

19To ensure the analysis is not driven by outliers, we winsorize per-foot initial gas production at the 99th percentile.
20This omission of perforated interval appears to be out of line with basic reporting requirements.
21Nine of these wells appear to be out of compliance with Pennsylvania law, based on their lack of chemical disclo-

sure and completion date after February 2011. Another possibility is that operators provided chemical information for
these wells, but the reports had not been digitized and uploaded to EDWIN or its predecessor system by January 2017
when we searched the database for Well Completion Reports and Stimulation Fluid Additive reports.

22As Agerton (2019) points out, because gas-in-place is estimated from geological data rather than well production,
it is not affected by firms’ drilling decisions and thus provides an exogenous measure of resource quality. Furthermore,
since it is based on the type of information that all firms should have access to, we assume that it is in firms’ information
sets before they fracture new wells.
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available in digital form by combining a downloadable database from FracFocus itself (for wells

fractured from approximately May 2013) and a dataset released by an environmental organization

that scraped the “version 1” FracFocus website Skytruth (2013). The DEP reports are substantially

less accessible, as they are not amenable to optical character recognition. The DEP used a wide

variety of formats over the time period we analyze — over ten different formats, often with dif-

ferent headers on the pages of interest — and also use numbers that are sometimes handwritten or

crossed out and overwritten, as well as overlaid date stamps and raster images. Thus, we employed

a team of research assistants to digitize the relevant information manually. This effort took about

1,800 person-hours over 4 months, and involved the entry of about 200 data items per report. We

verified the quality of our data entry process with systematic checks for consistency and reason-

ableness, comparison of duplicate entries by different workers, and random spot checks in which

we compared the original reports to hand-entered data.

Unfortunately, not all variables are available for every well. In addition to fluid volume we

also considered incorporating information on proppant volume, and on the number of stages in

a frac; however, proppant volume is available for only 3,747 wells (77%), information on stages

per frac is available for only 3,421 wells (70%), and only 2,802 wells (58%) have information on

both proppant and stages. For the wells where we do have complete information, we analyzed the

variation in initial production per foot that is explained with and without these additional variables

and found that including proppant increases the portion of variation explained (based on adjusted

R2) from 0.4579 to 0.4873; including proppant and stages increases that to 0.4881.23 We concluded

that to include these variables would add only incrementally to explanatory power, but result in a

substantial cut in sample size and potentially introduce issues of sample selection.

23For consistency, this comparison includes only those wells for which proppant and stages are available.
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For most of the wells in our sample (4,595), chemical information is from FracFocus; we

have information from DEP for 267 wells. It is worth noting that for many of the wells whose

formulations were eventually released on FracFocus, the upload date was substantially later than

the completion date. For wells fracked prior to the mandatory public disclosure law in April

2012, the median and mean time lapse from completion to upload was 113 days and 231 days,

respectively (compared to 49 days and 99 days for wells fracked after mandatory disclosure). We

use the well-specific upload date from Konschnik and Dayalu (2016) to identify the information

set available to each operator at the time of fracturing each well. A more detailed look at upload

times is available in Figure 1.

[ Figure 1 about here ]

Table 1 provides a summary of information about the wells for which we observe chemical in-

put information. Although we have other information for wells beginning in 2007, chemicals data

are generally available only for wells starting in 2010. (Though mandatory disclosure started in

Pennsylvania in 2011, some operators voluntarily submitted chemical information for some wells

prior to this date — perhaps in an effort to forestall the very regulations that would require manda-

tory disclosure of all wells.)24 The table shows that the median and mean number of chemicals

per well has increased slightly over time, fluid volume has increased somewhat more substantially,

and gas production per foot has generally increased.

Table 2 provides additional information for wells in the sample for which we observe chemical

use. This table demonstrates that operators continued to innovate by introducing new chemicals

each year, with the largest innovation (in terms of number of new chemicals) occurring in 2011-

24Lyon and Maxwell (2004) document several explanations for why firms would voluntarily (but selectively) dis-
close valuable private information about production processes, including to forestall more stringent regulation.
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2012 — right around the time that the state was issuing laws requiring mandatory disclosure.

Companies also retired some chemicals from use: that is, we do not observe their subsequent use

in our sample.

[ Table 1 about here ]

[ Table 2 about here ]

4 Analysis

In this section, we perform a series of empirical analyses designed to answer two questions. First,

did mandatory disclosure of chemicals, even with provisions allowing for some chemicals to be

declared proprietary, create conditions by which firms could learn from each other? Second, did

the learning enabled by disclosure have value, enabling operators to improve productivity through

their chemical choices? After considering these questions we also address, in Section 5, whether

mandatory disclosure reduced operators’ innovative experimentation with new chemical formula-

tions.

If the answer to both questions is affirmative, we would expect to see convergence in inputs

across wells, with firms using available information (revealed by the disclosure laws) to imitate

successful wells. After confirming that this is the case, we examine each of the two questions

more closely to rule out alternative explanations. To answer the first question, we examine how the

design of fracturing fluids changed after disclosure. After finding a convergence in the chemicals

used that suggests firms are copying from other operators’ disclosed wells, we turn to the second

question. To answer it, we estimate a non-linear model relating well productivity to an index

of input similarities with other wells. We find evidence that using chemicals more similar to
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those used in high-productivity firms’ disclosed wells predicts higher productivity. Together, these

findings demonstrate that firms are learning through mandatory chemical disclosure.

4.1 Well-to-Well Similarity Measures

We first consider the effect of Pennsylvania’s disclosure rules on operators’ chemical choices. If

chemical disclosure compelled the release of valuable (formerly private) information, we might

expect to find that operators’ chemical recipes exhibit more similarity after disclosure than before-

hand. Our detailed chemical input data (discussed in Section 3) allows us to explore this hypothesis

by constructing measures of similarity for each well-to-well pair we observe.

We begin by introducing some notation, defining our similarity index of choice, and providing a

summary of the index in our data. Let C denote the set of all possible chemicals, and let xic ∈ [0,1]

be the concentration of chemical c ∈ C in well i. The sum of all such concentrations is therefore

∑C xic = 1. We also define the binary variable yic = 1{xic > 0}. Then we can define the following

quantities for a given (i, j) pair:

• Ai j ≡
∑C xicy jc

∑C xic
is the concentration-weighted share of well j chemicals in well i’s formula;

and

• Bi j ≡
∑C x jcyic

∑C x jc
= A ji is the converse.

We use the Jaccard index, under which the pairwise similarity between wells i and j can be

defined as:25

si j ≡
Ai jBi j

Ai j +Bi j−Ai jBi j
.

25See chapter 3 of Leskovec et al. (2014) for more details on the Jaccard index.
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The Jaccard index has several appealing properties. It is bounded by [0,1], which allows for

easier integration with our other metrics, notably the quality-similarity index defined in Section

4.3. (A value si j = 1 implies that the hydraulic fracturing fluids used in wells i and j are indistin-

guishable; i = j⇒ si j = 1. For completely dissimilar fluids that have no chemicals in common,

si j = 0.) Because the index is based on sets rather than vectors, it is not sensitive to effects that can

manifest with vector-based metrics in high-dimensional data. For instance, a Euclidean distance

metric based on vector endpoints might identify a pair of wells that each have a large diversity

of chemicals, but none in common, as “close”, because both endpoints are relatively “close”, in

a multidimensional sense, to the origin. The Jaccard index is not sensitive to this effect, which

would be a concern in our setting.

4.2 Disclosure and Similarities

We calculate the similarity index for each (i, j) well-pair in our data. Our chemical data on 4,862

wells gives us 11.8 million such pairs. Figure 2 shows the distribution of these measures for two

sub-samples of pairs: those where both wells are drilled by the same operator, and those where the

wells are drilled by different operators. The figure also plots the medians of the two distributions.

A few observations are noteworthy: the different-operator distribution has a mass point at si j = 0

and a median slightly below si j = 0.5. In contrast, the same-operator distribution has a large mass

point at si j = 1 and a median above si j = 0.6. This confirms what we might have expected: intra-

operator well-pairs tend to use more similar chemical mixes than inter-operator well-pairs.

[ Figure 2 about here ]

We next consider how well-pair similarities have changed with the advent of disclosure. We do
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this by running a regression of the following form:

si j = β0 +β1Di f f Operi j +β2Di f f Operi j ∗ visiblei j +φi j + εi j (1)

where si j is the Jaccard similarity index defined above, Di f f Operi j is a binary variable equal

to 1 if wells i and j are drilled by different operators, and visiblei j is a binary variable equal to

1 if either the wells were completed by the same operator, or the chemicals used in the earlier

well of the well-pair were disclosed prior to the later well’s fracture. It is worth reiterating that

the visibility of the earlier well’s chemicals cannot be taken for granted, even if there is a long

lag between the wells: Section 3 discusses the high variance of lags between completions and

chemical disclosures. We therefore use the upload date to determine visibility rather than simply

the date of the completion. We also include fixed effects for the first well’s operator, the second

well’s operator, and depending on the specification, 5th order polynomials for the second well’s

completion date, the days between the two wells, and the geographic distance between the two

wells are represented by the φi j term. The results of this regression, estimated separately with and

without the fixed effects, are shown in Table 3.26

For the purposes of inference, we note that the usual OLS standard error assumptions are not

satisfied for Equation (1) — given that the regression takes place at the well-pair level, we must

account for the possible correlation across well-pairs that share a particular well. Therefore the

standard errors we report in Table 3 are calculated from a standard bootstrap routine with 1,000

iterations.27

26We drop from this analysis roughly 8,000 well-pairs where each of the two wells was completed on the same day,
having no way to assign a “first” or “second” operator.

27We are grateful for a discussant pointing out that another approach would be to use the asymptotics developed in
Honoré and Powell (1994), who consider a more general case.
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[ Table 3 about here ]

A few things are worth noting from Table 3. First, all columns show a significantly negative

estimate of the coefficient on Di f f Operi j; this indicates that well-pairs with different operators

tend to use less-similar chemical mixes, providing statistical confirmation of the trends visible in

Figure 2. Second, the coefficient on the interaction of visiblei j with Di f f Operi j is significantly

positive, indicating that different-operator well-pairs use more similar chemical mixes when the

earlier-used mix is known to the later-fractured well. This is consistent with disclosure facilitating

the transfer of knowledge about chemical mixes, and motivates our further analysis in the next

section. As the various columns show, these results are robust to the inclusion of a variety of

temporal and spatial controls that might independently affect the similarity of the inputs for a pair

of wells. Incorporating 5th-degree polynomial functions of the completion date of the second

well, the number of days between the completion dates of the two wells, and the geographical

distance that separates the well-pair does not alter the sign nor the approximate magnitude of the

core results.

4.3 Effect of Information on Productivity

Next, we estimate a model in an attempt to understand the relationship between disclosure and

information, an operator’s choice of chemicals, and well productivity. The model accounts for

important observable variables, and additionally relates firm and well productivity to each other

through the channel of disclosed information. We find that disclosed chemical information can

play a statistically and economically significant role in improving well productivity.
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4.3.1 Model

We begin by defining the regression equation of interest:

lngp fi = βXi +θ f (i)+αOBS ln(1+QSOBS
i )+αUNOBS ln(1+QSUNOBS

i )+g(t)+ εi (2)

where gp fi is the per-foot quantity of gas produced over the first six months for well i; X contains

observables such as the amount of fracturing fluid injected, a binary indicator of whether the well

operator appears to have throttled production, the region where the well is located, and the natural

gas price at the time of the frac; and θ f (i) is a productivity fixed effect for the firm f (i) that drilled

well i.28 Finally, we include a time control term in g(t) — in the main specification this takes the

form of a linear time trend, and we present results under alternative controls in Appendix B.

In addition to these linear terms, and an assumed iid error term, we also include two addi-

tional terms containing objects QSOBS
i and QSUNOBS

i , which are included as natural logs in order

to facilitate an elasticity interpretation.29

These quantities are defined:

QSOBS
i ≡ ∑

f∈F\ f (i)

θ f
1

|J OBS
f | ∑

j∈J OBS
f

si j

 , (3)

QSUNOBS
i ≡ ∑

f∈F\ f (i)

θ f
1

|J UNOBS
f | ∑

j∈J UNOBS
f

si j

 . (4)

In these equations, F indicates the set of firms in the data, J f is a set of wells j drilled by firm f

28Throttling production refers to intentionally restricting hydrocarbon flow, which is a process operators sometimes
engage in for geological, economic, or logistical reasons. We classify a well as having been throttled if the ratio of
first 18 months’ production to first 6 months’ production is greater than 3, which is true for 11% of the wells in our
data.

29We shift the function by adding 1 before taking logs, as many QSi in our data are equal to 0.
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before well i, and si j is the same well-pair similarity index as given in Section 4.1. The superscripts

denote whether or not the chemical data for well j was uploaded and observable prior to well i’s

fracture — those wells whose chemicals were observable fall into J OBS
f , and those whose were

not fall into J UNOBS
f . QSOBS

i is thus a quality-weighted measure of the similarity between well

i and those wells whose chemical information was observable when well i was fractured. Its

inclusion in Equation (2) thus accounts both for how similar well i is to its comparison wells J ,

and also how successful those wells are (as measured by their firm fixed effects, θ ). QSUNOBS
i is

an analogous quality-similarity index for the recently drilled but unobserved wells.

This separation of recently fractured wells into sets whose chemicals are observed and unob-

served is a key component of the analysis. Identification is coming not just from the similarity

between well i and its recently fractured peers, but also which of those peers had observable chem-

ical information at the time. As discussed in Section 3 and shown in Figure 1, there is significant

variation in the lag between completion and upload: following disclosure, the mean and median

lags are 99 and 49 days respectively.

If firms realize private information during the fracturing operation that (i) alters their choices of

inputs, including chemicals, and (ii) is unobservable to us as econometricians, this could threaten

identification of the key quantities of interest. This concern appears to be nonexistent in our setting,

based on our conversations with several geologists and petroleum engineers with extensive expe-

rience in designing and implementing frac operations. This is because (i) design decisions about

fracturing configurations, including chemical mixtures, are made weeks to months in advance of

the actual stimulation operation, and (ii) due to logistical limitations and the difficulty of coordi-

nating the already-complex fracturing process, any last-minute changes can be only marginal. See

also Covert (2015), who finds the same in his study of fracturing operations in North Dakota.
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4.3.2 Estimation and Results

The inclusion of the QSi terms render the firm fixed effects θ f non-linear parameters: the same θs

that appear on their own in Equation (2) are the components of the QSOBS and QSUNOBS. We can

only infer the ‘quality’ portion of the QS objects from the estimated θs, and Equation (2) restricts

that those estimated θs account for the observable and unobservable similarities between wells.

The two quantities are therefore calculated in a single estimation procedure: we estimate Equation

(2 )using non-linear least squares (NLLS), and present results in Table 4.

[ Table 4 about here ]

The three columns of Table 4 consider different possible look-back restrictions on J , e.g.

restricting wells j to have been fractured within 180 days of well i’s fracture. From the first column

it can be seen that increasing fluid volume by 100% predicts a 21.6% increase in productivity, and

throttling the well predicts a 43% decrease (e−0.569−1) in productivity per foot, both statistically

significant at the 1% level. In turn, those wells drilled in the northeast region of Pennsylvania are

estimated to be e0.390−1 = 47.7% more productive per foot, and a $1 increase in the Henry Hub

price of natural gas predicts an 8.1% increase in productivity. Conveniently, the coefficient on

QSOBS
i , estimated to be statistically significant at the 1% level, can be understood as an elasticity:

a 100% increase in (1+QSOBS
i ) implies a 7.6% increase in productivity per foot.30 In turn, the

coefficient corresponding to QSUNOBS
i has a much smaller point estimate, and is not statistically

distinguishable from zero.

The second and third columns present analogous results for different specifications of the J

30Some caution is warranted when interpreting these results, as it is not necessarily straightforward to “increase
QSi”: each well can only have a single chemical mixture, and thus any changes that make si j higher for some j may
make it lower for others.
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used in constructing the QSi: column 2 restricts the consideration to wells completed within 360

days, and column 3 uses 720 days. The estimated coefficients on the controls β̂ are relatively

unchanged from the first column. In all specifications, α̂OBS is estimated to be positive and statis-

tically significant at the 5% level, while α̂UNOBS remains statistically indistinguishable from zero.

The declining point estimates of α̂OBS with increasing length of look-back period reflect a form of

attenuation bias: similarity to more recent wells (conditional on QS) explains more of the variation

in productivity, but extending the look-back period puts equal weight on the similarity to earlier

wells that have less influence on current productivity. More simply, what matters most for pro-

ductivity gains is copying the recent wells of high-quality operators, and using a longer look-back

period dilutes the information content of how QSOBS affects productivity.

Table 5 provides another reference for interpreting these estimates. Each entry in Table 5

represents a fitted value ˆgp f calculated using the estimates of Equation (2) presented in Table 4.

Entries in the top half of the table use the operator and location from the first two columns to

set θ f and northeast and set all other variables to sample means, with the exception of QSOBS.

Instead, QSOBS is set at the 25th or 75th empirical percentile as suggested by the column headings.

Results are presented for the 180-day, 360-day, and 720-day specifications. The bottom half of the

table performs a similar exercise, but keeps QSOBS at the sample mean and varies fracturing fluid

volumes at the 25th or 75th percentiles.

As an example, a well completed by Hunt in the northeast portion of Pennsylvania, that is

average in every other way, would move from a predicted production of 403 to 520 thousand cubic

feet of gas (MCF) per linear foot of fracture in the first 6 months if its QSOBS were increased from

the 25th to the 75th empirical percentile, using the estimates from the 180-day specification. If

the same well had an average QSOBS but its fluid volume moved from the 25th to 75th empirical
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percentile, we would expect to see increased production in the first 6 months from 442 to 512 MCF

per foot.

Altogether, these results suggest that those wells that used a chemical mix that was more similar

to those used in the recent, disclosed wells of the more productive operators realized significantly

greater productivity than those that did not. In other words, the information revealed through

disclosure can be valuable for those operators who pay attention.

[ Table 5 about here ]

The results above incorporate information about geographic variation by using a fixed effect for

well location, specifically, whether the well is located in the highly productive northeastern region

of the Marcellus. To control more finely for geographic or geologic variation, we also consider

a similar regression that conditions on the amount of gas in place. These results, presented in

Appendix Table B.1, do not substantially differ from those in Table 4, although the magnitude of

the coefficient on QSOBS is somewhat lower.

An alternative explanation that could generate some of the same results we see here would

be unobserved shocks, common across firms, that directly affect both input similarities si j and

output gp fi. For instance, there might be secular technological convergence that coincidentally

occurred around the same time as the disclosure regulation, such as if the industry as a whole

is evolving toward an equilibrium in the set of chemical mixtures considered most effective. If

that evolution occurs concurrently with the disclosure regulation, this could generate the pattern

of input convergence we see in Section 4.2. Furthermore, if the chemical-input convergence also

happens simultaneously with convergence in other production technology choices, this might also

explain part of the increase in productivity that we attribute to firms’ better copying of higher-

quality chemical mixtures when they are visible (i.e., α̂OBS).
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It is not clear, in this alternative version of events, why α̂OBS would differ significantly from

zero whereas α̂UNOBS would not. However, to help rule out whether unobserved shocks simultane-

ously affect input similarities and output, we estimate two other versions of Equation (2): one with

a year fixed effect, and one restricted to wells fractured within a narrower time window around the

disclosure law effective date, so as to reduce the effects of secular technological change or con-

vergence.31 The results are shown in Appendix Tables B.2 and B.3 respectively. The key results

do not change in either specification — α̂OBS remains positive and significant (and the magnitude

actually increases from that shown in Table 4), while α̂UNOBS remains smaller in magnitude and

not distinguishable from zero. We conclude that mandatory chemical disclosure affected inter-

firm knowledge transfer even factoring in other phenomena that may have facilitated technological

convergence at this time.

It is worth noting that a sophisticated, large, and forward-looking firm might choose to improve

its long-term value not by maximizing QS and imitating the current best practice, but rather by

experimenting in an attempt to find new, superior chemical combinations. We examine this issue

in more depth in Section 5.

5 Experimentation

Our findings in the previous section suggest that the mandatory disclosure policy forced operators

to reveal economically valuable information. A natural follow-on question is whether the policy

also resulted in decreased investments in innovation, or experimentation, among the firms involved.

To the extent that shale gas exploration and production firms rely on secrecy to capture value

31We are grateful to an anonymous reviewer for suggesting the latter test.
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from investments in innovation, the erosion of secrecy via mandatory disclosure may also reduce

incentives to experiment with new formulations.

We identify experimental chemical combinations by using a density-based clustering algo-

rithm, locating each well in high-dimensional space based on the chemicals used in the fracture

job and identifying wells that do not fit into groups as experimental. We demonstrate that the fre-

quency of experimentation fell after mandatory disclosure, especially among the most productive

operators. Finally, we show that when operators mimic the experiments conducted by their peers

— which, not surprisingly, happens significantly more often after mandatory disclosure — they are

most likely to copy those experiments conducted by the most productive operators. Taken together,

the evidence suggests that the most important experimentation — i.e., that of the most productive

firms, which are also the most likely to be copied by their peers — fell after mandatory disclosure.

This suggests that policymakers considering disclosure policies face a trade-off between socially

beneficial impacts (e.g., technological diffusion and perhaps reduced toxicity) and costs that accrue

from reduced innovation.

5.1 Measuring Experimentation

To test for a change in innovative activity, we start by measuring operators’ use of experimental

chemical combinations. We designate a chemical combination as experimental based on compar-

ing the chemical identities and proportions used in each well, to the combinations used in previ-

ously developed wells. We use a density-based clustering algorithm, DBSCAN, to identify clusters

of wells that have similar chemical input combinations. We choose the DBSCAN algorithm as it

has several valuable properties for our setting: it does not require a pre-specified number of clusters
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(thereby minimizing ‘supervision’ from the researchers), it accommodates any distance measure,

it works well with non-convex sets, and it does not need to assign every point to a cluster. This

last property will lead us to our definition of an experimental well. More details on the DBSCAN

algorithm and our implementation are available in Appendix A.

For consistency with prior sections, we measure proximity in chemical input space by using the

Jaccard distance di j ≡ 1− si j. A baseline approach might be to label a well as experimental if its

corresponding chemical mixture is novel compared to all prior wells. However, this method would

be mechanically biased toward finding less experimentation over time since, as more wells are

drilled, any new well is more likely to look similar to some prior well. To avoid this, we compare

each well to a comparison set that contains the 1,000 most recently developed wells, keeping the

size of the comparison set constant over time.32

5.2 Effects of Disclosure on Experimentation

Our key outcome of interest from the clustering analysis is wells that use an experimental chemical

combination and thus are classified as noise points. We first consider the incidence of experimen-

tation over time. Figure 3 shows a bin scatterplot in which each point represents a single calendar

month, and measures the proportion of wells for which operators used an experimental combina-

tion of chemicals in the fracturing fluid. The vertical line indicates the month at which full public

disclosure of chemicals became mandatory. The graph provides suggestive evidence of a decrease

in experimentation after mandatory disclosure. In the months prior to mandatory disclosure (April

2012), while the percentage from month to month was somewhat volatile, there is no strong trend

32Similar results hold for different alternative values of this “look-back” set, as well as look-back sets based on the
number of days rather than number of wells. For the sake of brevity, these results are available from the authors upon
request.
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upward or downward prior to the disclosure rule. After mandatory disclosure, the average rate of

experimentation remains volatile but generally falls.33 The decline in experimentation over time

is not monotonic, but is nonetheless evident in the graph, which also shows that in eleven of the

post-disclosure months operators conducted no experiments at all.

[ Figure 3 about here ]

A t-test, weighted by the number of wells fractured each month, verifies the difference in ex-

perimentation is significant: the mean incidence of experimentation prior to mandatory disclosure

is 6.6 percent compared to 3.8 percent afterwards (significantly different at p=0.0057). This effect

is also robust to controlling for the output price (see Appendix Table B.4.)

Another question of interest is how disclosure changes the degree to which operators copy

the experiments conducted by their peers. The analysis in Section 4.3 demonstrates the effects

of disclosure on copying in general; how much of this copying reflects inter-firm learning about

experimental wells, in particular? To investigate this question we begin by defining the concept

of firms “following” the experiments of other operators. We define the chemical use of later well

j as following that of earlier experimental well i if the Jaccard distance is less than ε , that is,

0 ≤ (1− si j) ≤ ε , where for consistency we use the same value of ε that is used to define the

clusters and experiments (see Appendix A for details). Figure 4 shows the incidence of inter-firm

following of experimental wells, compared to operator quality conditional on location, price, and

input choices — that is, the operator fixed effects θ f recovered from estimating Equation (2). The

figure demonstrates that it is the experiments of higher-quality firms that are most often copied by

their peers.

33As noted previously, since we apply the clustering algorithm to a comparison set of constant size, this is not a
mechanical result of the passage of time.
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[ Figure 4 about here ]

Table 6 offers more evidence on how the incidence of experiment following — and also ex-

perimentation — varies by operator quality, both before and after mandatory disclosure. The table

echoes Figure 3 in showing that experimentation declined post-disclosure, with operators in all

quartiles decreasing the mean monthly number of experiments and their proportion relative to total

wells fractured (except for those in the third quartile, whose level of experimentation was approx-

imately the same in both periods). Comparing the extent of inter-firm copying of experiments

for each quartile, before and after disclosure, shows that other-operator following increases after

disclosure for all quartiles, except for experiments conducted by the lowest quartile of operators,

which are never followed by other operators.34 Furthermore, the increase in other-operator fol-

lowing is greatest for experiments conducted by the most productive operators, suggesting that the

disclosure laws helped to facilitate the diffusion of innovation conducted by the most productive

firms. At the same time, the decrease in experimentation among these firms (and others) suggests

that disclosure erodes incentives to innovate by reducing the ability of firms to exclusively realize

the fruits of their investments in innovation.

[ Table 6 about here ]

We leave a more complete model of experimentation for further research, but reiterate here

the evidence of two notable phenomena. First, the imitation of experiments by other operators

increases after mandatory disclosure. Second, the leading operators in terms of overall well pro-

ductivity — who account for the most experimentation, the experiments that are most worthy of

being followed, and thus (by the revealed preference of other firms) the experimentation that is

34The difference between the values in the right-most column of Table 6, comparing pre- and post-disclosure for
each quartile, is always statistically significant at p < 0.001 except for the two zero values for bottom-quartile firms.
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most successful — decrease their experimental innovative activity in the wake of the disclosure

requirement. This finding serves as a cautionary note to regulators: it appears in our setting that

disclosure disseminated valuable knowledge, but also that it reduced incentives for firms to invest

in innovative experiments.

6 The Role of Contractors

Having provided evidence for the transfer of valuable information about chemical mixtures, in this

section we consider a possible channel of such information transfer that is unrelated to disclosure

regulations: contractors. Contractors perform a variety of roles, not limited to the fracture itself:

operators hire them to assist with tasks related to drilling, cementing, well logging, and other

tasks, as well as designing and conducting the fracturing job. In Pennsylvania, the DEP requires

operators to provide information about contractors on Well Completion Reports. These reports

indicate that for some wells in our data, operators hired up to 40 contractors to assist in various

roles; the median number of contractors per well is 8. The roles these contractors play are often,

but not always, specified on the DEP reports; as a result we were able to identify the fracturing

contractor for 3,529 wells, about 73% of our sample.

6.1 Contractors and Input Similarities

To test whether contractors facilitate the transfer of information about chemical mixtures, and

whether that role was changed by the institution of disclosure rules, we perform a series of regres-

sions of well-pair similarity indices on dummies for: (i) if the two wells share the same contractor

and (ii) if the chemicals used for earlier well in the well-pair are disclosed prior to the later well’s
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fracture (visiblei j). For these regressions, we consider only inter-operator well-pairs.

si j = β0 +β1contractori j +β2visiblei j +β3contractori j ∗ visiblei j +φi j + εi j (5)

For all of these regressions, we restrict ourselves to the sample of well-pairs with data on the

fracturing contractor for both wells (see above). As in Section 4.2, we include fixed effects for

the first and second wells’ operator and for the year the second well was completed, and calculate

standard errors from 1,000 bootstrap iterations. The results of these regressions are shown in Table

7.35

[ Table 7 about here ]

When it is the only non-constant regressor, the dummy for sharing a contractor predicts an in-

crease in the similarity index of 0.101. In the second column, the dummy for visibility is included:

this inclusion has no discernible effect on the contractor coefficient. The third column adds an

interaction term between these two dummies. The coefficient for same contractor increases, the

coefficient on visibility is altered slightly, and the interaction term is estimated to be negative and

significant. The role of the contractor in facilitating a similar chemical mix is reduced by about a

fifth when the first well’s chemicals are disclosed, suggesting that operators are not as reliant on

contractors as a source of chemical information when that information is being published. These

results suggest that the contractor channel is associated with more similar wells, but that this chan-

nel is less active when chemicals are publicly visible.

35As in the analysis in Section 4.2, we drop well-pairs where the wells were completed on the same day. See
Footnote 26.
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6.2 Contractors, Input Choices, and Productivity

In addition to examining contractors’ role in facilitating similar inputs across wells fractured by

different operators, we also test the role they play in influencing the relationship between produc-

tivity and chemical choice — that is, whether the relevant entity for learning from other firms’

disclosures is the operator or the fracturing contractor. To do so, we run a variant of the test em-

bodied in Equation (2) and Table 4, in which we restrict the estimation to wells that are fractured

by large operators. Our reasoning is that large operators, who have more specialized technical staff

and differentiated roles, may take a more direct role in the design of the fracturing job; whereas

for smaller operators, whose staff tend to play more generalist (albeit still highly technical) roles,

the fracturing contractor may be more likely to play the leading role in design and implementation

of the fracture job. Thus, running a “big-operator-only” version of the test in section 4.3 allows us

to test whether the relationship between chemical choices, productivity, and input disclosure holds

for the subset of wells in which the operator plays the key role in directing chemical choices and

fracture design.

Table 8 shows the results of this test among the set of wells fractured by operators with at least

50 wells. In sign and significance, the results are virtually identical to those in Table 4; indeed,

the magnitudes of the coefficients on QSOBS
i are somewhat larger among wells fractured by larger

operators — for instance, the results in column (1) suggest that a 100% increase in (1+QSOBS
i )

predicts a 9.07% increase in productivity per foot, and results are of similar magnitude for other

columns representing alternative choices for the look-back period.36

From both tests — the former regarding the role of contractors in facilitating similar inputs

36Appendix Table B.5 shows the results for operators with at least ten wells, and the results are again comparable
to those in Table 4.
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across different-operator wells, and the latter regarding the role of contractors in productivity-

enhancing information diffusion — we conclude that while contractors do facilitate greater simi-

larity of inputs across well-pairs, the disclosure laws we study still play a key role. Specifically,

mandatory information disclosure allows important, productivity-enhancing knowledge transmis-

sion across operators over and above that which arises due to shared contractors.

7 Discussion

Disclosure laws, often motivated by concerns about negative externalities that arise in part from

asymmetric information, are increasingly popular in part due to perceived low social costs. Prior

research shows that disclosure laws can induce voluntary self-regulation, suggesting low private

costs as well. We consider a new question — whether disclosure laws create pathways for knowl-

edge transmission that were previously inaccessible or overly costly — and assemble a rich and

novel dataset that is uniquely well positioned to answer it. In our context, a chemical disclosure law

required shale gas operators in Pennsylvania to reveal detailed inputs of their production function.

We assemble detailed data on inputs and outputs both before and after disclosure and ask, specifi-

cally, (i) if disclosure increases the transmission of information between firms, and (ii) whether the

associated erosion of private returns to innovation thereby reduces innovative activity.

Our first finding is that chemical inputs converged following the mandatory public disclo-

sure law, and that the use of chemical mixtures that are more similar to those in high-performing

wells implies significantly increased well productivity. The evidence suggests that disclosure laws

opened a new channel for inter-firm learning, and that operators who exploited this channel were

able to increase their wells’ productivity. This finding supports the argument that public disclosure
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laws can erode the competitive advantages of top-performing firms.

Our second finding is that experimental configurations declined following disclosure, espe-

cially among the top-performing firms, whose experiments are most likely to be imitated by oth-

ers. This evidence increases the concern over erosion of competitive advantages, and suggests that

policymakers ought to take seriously the potential long-run costs of reduced innovation. Nonethe-

less, the net effect of such disclosure laws on public welfare over the longer term remains an open

question: any welfare loss from reduced innovation needs to be weighed against the gains from

transparency and dissemination.
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TABLE 1: SUMMARY INFORMATION FOR WELLS IN SAMPLE WITH CHEMICALS DATA

Fluid Volume # Chemicals / Well First 6 Month Gas per Foot
Year Median Mean Median Mean Mean Median

2010 4.8 4.8 11 11.5 171 141.6
2011 4.3 4.4 9 10.1 157.2 123.5
2012 4.1 4.4 11 12.3 172.3 122.9
2013 5.7 6 13 15.3 192 148.5
2014 7.8 8.2 13 15.7 190.1 150.4
2015 8.5 8.6 14 15.6 171.7 150.7

Notes: Data sources are described in Section 3. Chemicals are listed, non-proprietary
chemicals with legitimate CAS numbers. Fluid volumes are expressed in millions of gal-
lons. Gas volumes are expressed in thousands of cubic feet (mcf).
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TABLE 2: ADDITIONAL INFORMATION FOR WELLS IN SAMPLE WITH CHEMICALS DATA

Chemicals

Year # Wells # Operators # New # Retiring # Total

2010 103 14 91 5 91
2011 1145 35 65 20 145
2012 1230 32 96 22 214
2013 1108 33 62 65 255
2014 1098 32 34 108 228
2015 177 19 6 – 134

Notes: Data sources are described in Section 3. Chemicals are listed, non-proprietary
chemicals with legitimate CAS numbers. New chemicals refers to the count of unique
chemicals appearing in our dataset for the first time in a given year. Retiring chemicals
refers to the count of unique chemicals appearing in our dataset for the last time in a given
year. Total chemicals refers to the count of unique chemicals used in a given year.
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TABLE 3: DETERMINANTS OF PRODUCTION INPUT SIMILARITIES

(1) (2) (3) (4)

Different Operator −0.195∗∗∗ −0.197∗∗∗ −0.198∗∗∗ −0.191∗∗∗

(0.000) (0.000) (0.000) (0.000)

Different Operator 0.009∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.013∗∗∗

x Visible (0.000) (0.000) (0.000) (0.000)

Polynomial Date X X X
Polynomial Time Between X X
Polynomial Distance X
Operator FEs X X X X
Observations 11,808,695 11,808,695 11,808,695 11,808,695
R2 0.339 0.340 0.341 0.341

Notes: Results are from the regression described in Equation (1); the similarity index is the
Jaccard Abundance index, described in detail in Section 4.1. An observation is a pair of
wells, as described in the text. Standard errors shown are not bootstrapped (1,000 iteration
bootstrap pending). Polynomial controls are all 5th degree. ∗, ∗∗, and ∗∗∗ indicate statistical
significance at the 10, 5, and 1 percent levels.
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TABLE 4: EFFECTS OF INPUT VISIBILITY ON PRODUCTIVITY

lnGPFi

J Restriction 180 Days 360 Days 720 Days

Log Fluid Volume 0.216∗∗∗ 0.216∗∗∗ 0.215∗∗∗

(0.0198) (0.0198) (0.0198)

Throttling −0.569∗∗∗ −0.572∗∗∗ −0.571∗∗∗

(0.0351) (0.0351) (0.0351)

Northeast 0.390∗∗∗ 0.391∗∗∗ 0.391∗∗∗

(0.0421) (0.0421) (0.0422)

Output Price 0.0810∗∗∗ 0.0788∗∗∗ 0.0745∗∗∗

(0.0141) (0.0149) (0.0148)

QSOBS 0.0756∗∗∗ 0.0659∗∗∗ 0.0611∗∗∗

(0.0158) (0.0170) (0.0166)

QSUNOBS −0.0177 −0.0131 −0.0137
(0.0164) (0.0159) (0.0155)

Date Controls Linear Linear Linear
Observations 4,794 4,794 4,794
RMSE 0.715 0.715 0.715

Notes: Coefficients are estimated via non-linear least squares (NLLS); standard errors are
shown in parentheses. Each column represents a different estimation that reflects a dif-
ferent specification of the “lookback period” J for constructing the QSOBS

i and QSUNOBS
i

weights. Superscripts +, ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10, 5, 1, and
0.1 percent levels. See text for details.
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TABLE 5: EFFECTS OF INPUT VISIBILITY AND WATER INTENSITY ON PRODUCTIVITY

180 days 360 days 720 days
Operator Northeast q25 q75 q25 q75 q25 q75

Hunt 272.9 352.1 286.7 360.1 372.5 463.1
Hunt X 403.2 520.3 424.0 532.5 550.9 684.8
Chesapeake 700.9 904.5 730.6 917.5 944.7 1,174.3
Chesapeake X 1,035.5 1,336.3 1,080.5 1,356.9 1,397.0 1,736.6

Hunt 299.1 346.8 310.0 359.6 401.1 464.8
Hunt X 441.8 512.3 458.5 531.8 593.2 687.4
Chesapeake 768.2 890.8 789.9 916.3 1,017.2 1,178.7
Chesapeake X 1,134.9 1,316.0 1,168.2 1,355.1 1,504.2 1,743.0

Notes: Each entry represents predicted first sixth month gas output per foot given the es-
timates of Equation 2 presented in Table 4. Entries in the top half of the table use the
estimated operator effect θ f for the operat in column 1, set the variable Northeast as in-
dicated in column 2, and use a value of QSOBS at the 25th or 75th empirical percentile as
indicated by the column labels. All other variables are set to sample means. The third and
fourth columns correspond to estimates from the 180-day lookback specification, the fifth
and sixth columns use the 360-day specification, and the seventh and eighth columns use
the 720-day specification.
The bottom half of the table repeats a similar exercise, but sets QSOBS to the sample mean
and sets Fluid Volume to the 25th or 75th empirical percentile respectively.
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TABLE 6: EXPERIMENTATION BY OPERATOR QUARTILE

Operator Mean Monthly Experiments % of Other-Operator
Period Quartile Experiments Experiments as % of wells Wells Following

Pre-disclosure 1 9 1.3 7.4 0
Pre-disclosure 2 12 1.7 4.9 0.03
Pre-disclosure 3 6 0.9 2 0.18
Pre-disclosure 4 11 1.6 10.3 0.06

Post-disclosure 1 2 0.1 1 0
Post-disclosure 2 12 0.3 1.5 0.21
Post-disclosure 3 41 1.1 3 0.56
Post-disclosure 4 27 0.7 3.5 0.64

Notes: Number of experimental wells equals number of chemical combinations that are not within a density-
based cluster relative to the most recent 1000 wells (starting in October 2011, after 1000 wells have been
developed). Operator quartiles are based on the firm fixed-effects, θ f , recovered in Section 4.3 from Equation
(2). Average number of experimental wells per month is based on 7 (37) months in the pre (post) disclosure
period. A later well “follows” an experiment if its distance to the novel chemical combination is within ε .
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TABLE 7: CONTRACTORS’ ROLE IN SIMILARITY OF PRODUCTION INPUTS

Similarity Index

(1) (2) (3)

Same Contractor 0.101∗∗∗ 0.101∗∗∗ 0.122∗∗∗

(0.000) (0.000) (0.001)

Visible −0.012∗∗∗ −0.010∗∗∗

(0.000) (0.000)

Contractor x Visible −0.028∗∗∗

(0.001)

Operator and Year FEs X X X
Observations 5,811,335 5,811,335 5,811,335
R2 0.360 0.360 0.360

Notes: Results are from the regression described in (5); similarities are from the subsample
where the fracturing contractor can be identified with confidence. See text for details. Stan-
dard errors are calculated through a standard bootstrapping routine, with 1,000 iterations.
∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10, 5, and 1 percent levels.
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TABLE 8: EFFECTS OF INPUT VISIBILITY ON PRODUCTIVITY (OPERATORS WITH AT LEAST

50 WELLS)

lnGPFi

J Restriction 180 Days 360 Days 720 Days

Log Fluid Volume 0.229∗∗∗ 0.228∗∗∗ 0.226∗∗∗

(0.0207) (0.0208) (0.0208)

Throttling −0.560∗∗∗ −0.561∗∗∗ −0.561∗∗∗

(0.0364) (0.0364) (0.0364)

Northeast 0.386∗∗∗ 0.388∗∗∗ 0.389∗∗∗

(0.0434) (0.0438) (0.0437)

Output Price 0.0854∗∗∗ 0.0830∗∗∗ 0.0821∗∗∗

(0.0167) (0.0168) (0.0167)

QSOBS 0.0907∗∗∗ 0.0849∗∗∗ 0.0813∗∗

(0.0200) (0.0255) (0.0270)

QSUNOBS −0.0176 −0.0135 −0.00992
(0.0167) (0.0189) (0.0193)

Date Controls Linear Linear Linear
Observations 4,528 4,528 4,528
RMSE 0.727 0.727 0.728

Notes: Limited to wells that are fractured by operators with at least fifty wells. Coefficients
(and standard errors, in parentheses) are estimated via non-linear least squares (NLLS).
Each column conducts the estimation using a different specification of J when construct-
ing the QSOBS

i and QSUNOBS
i weights. The different columns represent +, ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10, 5, 1, and 0.1 percent levels. See text for details.
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FIGURE 1: DAYS FROM STIMULATION TO FRACFOCUS UPLOAD

Notes: This plot contains densities of upload time in days, with the sample split between those wells stimu-
lated before and after the disclosure regulation came into effect; vertical lines indicate sub-sample medians.
The dashed red line indicates the stated deadline. See text for details.
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FIGURE 2: JACCARD SIMILARITIES BY SAME / DIFFERENT OPERATOR STATUS

Notes: The curves plot estimated densities for well-pair similarities si j, conditional on whether the wells in
the pair had the same or different operators. The vertical lines indicate the distribution medians.
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FIGURE 3: PROPORTION OF EXPERIMENTS OVER TIME

Notes: Each point represents one calendar month. The vertical axis indicates the proportion of wells hydrauli-
cally fractured in that month for which operators used an experimental combination of chemicals, compared
to the most recent 1,000 wells fractured in Pennsylvania. The vertical black line marks April 2012, the
month in which full public disclosure became mandatory. The best-fit line is a locally weighted linear (loess)
regression.
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FIGURE 4: EXPERIMENT FOLLOWING BY OTHER OPERATORS

Notes: Each point represents a single operator; size of points indicates the number of wells fractured by each
operator. The vertical axis measures the percent of experiments of this operator that other operators follow
(see text for details); the horizontal axis indicates operator ‘quality’ as measured by the estimated value of
theta from Equation 2. The best-fit line is a linear regression weighted by the number of wells fractured by
each operator.
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Appendices

Appendix A presents details about the algorithm used to identify experimental wells in chemical

input space. Appendix B presents additional tables with results from robustness checks in Section

4.3, and a table with additional results of the experimentation analysis.

A Illustration of DBSCAN Algorithm

This section describes the DBSCAN algorithm, which we use to sort wells into clusters in chemical

input space and identify experimental wells.

The DBSCAN clustering algorithm (Ester et al., 1996) provides an intuitive approach to iden-

tifying clusters of similar items (i.e., chemical combinations used for well stimulation) and items

that do not fit any cluster. The algorithm groups together points that have many nearby neighbors,

and also identifies points that are in low-density regions; points in the latter category are labeled

outliers or “noise points.” Specifically, the algorithm designates an ε-ball around each point and

scans for other points within that ball. If one or more observations lies within the radius of the

ε-ball, the algorithm then groups the collection together, constructs an ε-ball around the perimeter,

and continues in iterative fashion, searching for nearby data points and adding to the collection any

that lie within the new (larger) ball. To be designated a cluster, a collection of points must have

cardinality over a threshold that is set as a tuning parameter. An illustrative example is provided in

Figure A.1.

Observations that fall outside any cluster — because there is no other observation within an

ε-ball, or because the observations within a candidate cluster are too few to meet the minimum

points threshold — are deemed noise points. We interpret these as experimental wells, because

they represent novel combinations of chemical inputs that are relatively distant from prior practice.

Compared to alternative clustering algorithms in common use, DBSCAN has several advan-

tages. First, unlike methods that require a pre-specified number of clusters (e.g., k-means clustering

or finite mixture models), it identifies the number of clusters based on the observed data. Second,

it is effective in discovering clusters that do not form convex sets, because points are placed into

clusters based on their proximity to one another rather than on their location relative to space-
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FIGURE A.1: DBSCAN ALGORITHM ILLUSTRATION

Notes: An example of the density-based spatial clustering of applications with noise (DBSCAN) algorithm,
with the minimum-points parameter set at 3. In the first step, a point is selected and an ε-ball is drawn around
it (marked in red). In the next step, ε-balls are drawn around the encompassed points, and the process repeats
in the third step. The fourth pane shows the outcome of the algorithm: two clusters have been identified,
along with three noise points (marked as blue triangles).
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partitioning hyperplanes. The algorithm also requires the selection of just two parameters, and

established data-driven guidelines are available for choosing both. It also accommodates any dis-

tance measure (we use the Jaccard distance, di j ≡ 1− si j, to be consistent with prior sections). The

algorithm is computationally efficient, and has been used in a wide variety of applications (Ester et

al., 1996). Finally, DBSCAN does not require the assignment of every point to a cluster; the fact

that it identifies some observations as “noise points” is exactly why it is appealing in our setting.

DBSCAN requires the selection of two parameters: the minimum number of points in a cluster,

and the value of ε . Similar to the question of, say, the critical value to use from a test distribution

to determine statistical significance, there is some discretion in the choice of these two parameters,

but also a common practice. For choosing the minimum-points parameter, a common heuristic in

dense matrices is to use the number of dimensions in the data or, for sparse matrices, the intrinsic

dimensionality (Bruske and Sommer, 1998; Johnsson, 2016). In our setting the latter applies: there

are 379 chemicals used across all of the wells in our data, but on average each well uses 13 chem-

icals, and the median well uses 11 (the first and third quartiles use 8 and 16, respectively). That is,

if the chemical inputs for the median well in our dataset (ordered by the number of chemicals used)

were represented as a vector in 379-dimensional space, the value of all but 11 elements would be

zero. To estimate the intrinsic dimensionality we use the method of Bruske and Sommer (1998),

which applies principal components analysis to local subspaces of the observed data to identify the

minimum number of parameters needed to describe the data we observe. The resulting estimate of

intrinsic dimensionality varies from 10 to 16 depending on the number of local subspaces chosen;

accordingly, for the results that follow, we set the minimum-points parameter at 10.37

As suggested by Ester et al. (1996), we choose ε based on the location of the “knee” of a sorted

k-nearest-neighbor (kNN) distance plot: that is, a graph that shows the distance from each point

to its kth-nearest neighbor, where k is set at the threshold value for minimum points. Figure A.2

shows these distances for our data, based on a 1000-well lookback and a threshold cluster size

of 10. (The figure includes two curves: one that includes all wells in the dataset, and one that

omits the first 1,000 wells in the dataset, which do not have a full 1,000-well comparison set.)

Reading the sorted kNN distance plot from right to left, the knee of the plot shows where the 10th-

nearest-neighbor distance increases dramatically; this corresponds to a value of ε that would result

37Results using alternative values are similar to those reported here; details are available on request.
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in inclusion of the sparsest concentration of points as a cluster (Ester et al., 1996). Points to the

left of this threshold, with a higher distance to their 10th-nearest-neighbor, are considered to be

experiments; points to the right of the threshold fall into an existing cluster. Looking closely at the

graph, there appears to be a substantial increase in the percentage of noise points around a distance

of 0.3. Thus, in the results that follow, we set ε at 0.3. Results are quite similar when we use other

reasonable values of ε .

FIGURE A.2: JACCARD DISTANCE TO 10TH-NEAREST NEIGHBOR

Notes: Sorted Jaccard distance indicating the proximity of each well’s chemical mix to its 10th-nearest
neighbor, within a comparison set of the 1,000 most recent prior wells. The outer (black) curve includes
all wells, while the inner (yellow) curve excludes the earliest 1,000 wells ranked by completion date, as they
do not have the full set of comparison wells.

With the two necessary parameters in hand, we measure the Jaccard distance (i.e., one minus

the Jaccard similarity) from each well’s chemical combination to those of the 1,000 most recent

prior wells. We then use this distance matrix and the DBSCAN algorithm to classify the chemical

combination used for each well, at the time of its fracture date, into either an existing cluster of

similar chemical combinations, or an experimental combination if it is too distant from an existing

cluster.
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B Additional Tables

TABLE B.1: EFFECTS OF INPUT VISIBILITY ON PRODUCTIVITY (WITH ALTERNATIVE RE-
GIONAL CONTROLS)

lnGPFi

J Restriction 180 Days 360 Days 720 Days

Log Fluid Volume 0.211∗∗∗ 0.211∗∗∗ 0.210∗∗∗

(0.0189) (0.0189) (0.0189)

Throttling −0.595∗∗∗ −0.596∗∗∗ −0.596∗∗∗

(0.0340) (0.0340) (0.0340)

Gas-in-place 0.00500∗∗∗ 0.00499∗∗∗ 0.00500∗∗∗

(0.000245) (0.000246) (0.000246)

Output Price 0.0641∗∗∗ 0.0620∗∗∗ 0.0608∗∗∗

(0.0136) (0.0145) (0.0143)

QSOBS 0.0463∗∗ 0.0385∗ 0.0369∗

(0.0157) (0.0162) (0.0159)

QSUNOBS 0.00259 0.00667 0.00680
(0.0155) (0.0151) (0.0155)

Date Controls Linear Linear Linear
Observations 4,794 4,794 4,794
RMSE 0.692 0.692 0.692

Notes: This table differs from Table 4 by the use of regional gas-in-place estimates from
Ikonnikova et al. (2018) rather than a binary variable for the northeast region. Coefficients
are estimated via non-linear least squares (NLLS); standard errors are in parentheses. Each
column conducts the estimation using a different specification of J when constructing
the QSOBS

i and QSUNOBS
i weights. The superscripts +, ∗, ∗∗, and ∗∗∗ indicate statistical

significance at the 10, 5, 1, and 0.1 percent levels. See text for details.
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TABLE B.2: EFFECTS OF INPUT VISIBILITY ON PRODUCTIVITY (WITH YEAR FES)

lnGPFi

J Restriction 180 Days 360 Days 720 Days

Log Fluid Volume 0.210∗∗∗ 0.208∗∗∗ 0.208∗∗∗

(0.0191) (0.0195) (0.0196)

Throttling −0.572∗∗∗ −0.572∗∗∗ −0.573∗∗∗

(0.0351) (0.0351) (0.0351)

Northeast 0.386∗∗∗ 0.386∗∗∗ 0.385∗∗∗

(0.0420) (0.0421) (0.0422)

Output Price 0.0759∗∗∗ 0.0757∗∗∗ 0.0712∗∗∗

(0.0153) (0.0158) (0.0157)

QSOBS 0.0779∗∗ 0.0625∗ 0.0498+

(0.0251) (0.0262) (0.0266)

QSUNOBS −0.00796 0.000956 0.000886
(0.0211) (0.0215) (0.0200)

Date Controls Year FEs Year FEs Year FEs
Observations 4,794 4,794 4,794
RMSE 0.715 0.715 0.715

Notes: This table differs from Table 4 by the use of year fixed effects rather than a linear
time trend. Coefficients are estimated via non-linear least squares (NLLS); standard errors
are in parentheses. Each column conducts the estimation using a different specification of
J when constructing the QSOBS

i and QSUNOBS
i weights. The superscripts +, ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10, 5, 1, and 0.1 percent levels. See text for details.
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TABLE B.3: EFFECTS OF INPUT VISIBILITY ON PRODUCTIVITY (WITH TEMPORAL RESTRIC-
TIONS)

lnGPFi

J Restriction 180 Days 360 Days 720 Days

Log Fluid Volume 0.197∗∗∗ 0.195∗∗∗ 0.196∗∗∗

(0.0200) (0.0200) (0.0201)

Throttling −0.610∗∗∗ −0.610∗∗∗ −0.610∗∗∗

(0.0386) (0.0386) (0.0386)

Northeast 0.361∗∗∗ 0.360∗∗∗ 0.359∗∗∗

(0.0449) (0.0450) (0.0450)

Output Price 0.0586∗∗∗ 0.0581∗∗∗ 0.0574∗∗∗

(0.0145) (0.0149) (0.0155)

QSOBS 0.0591∗∗ 0.0544∗∗ 0.0499∗

(0.0186) (0.0201) (0.0204)

QSUNOBS 0.00459 0.00455 0.00932
(0.0174) (0.0179) (0.0180)

Date Controls None None None
Observations 4,111 4,111 4,111
RMSE 0.720 0.720 0.720

Notes: Observations include only those wells that are fractured within 14 months before
or after the mandatory disclosure law took effect. Coefficients are estimated via non-linear
least squares (NLLS); standard errors are in parentheses. Each column conducts the esti-
mation using a different specification of J when constructing the QSOBS

i and QSUNOBS
i

weights. The superscripts +, ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10, 5, 1,
and 0.1 percent levels. See text for details.
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TABLE B.4: EFFECT OF DISCLOSURE ON INCIDENCE OF EXPERIMENTATION

Experimental Well

(1) (2)

Intercept −2.642∗∗∗ −2.296∗∗∗

(0.154) (0.408)

Post-Disclosure −0.581∗∗∗ −0.551∗∗∗

(0.180) (0.182)

Price −0.120
(0.131)

Observations 3,861 3,861

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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TABLE B.5: EFFECTS OF INPUT VISIBILITY ON PRODUCTIVITY (OPERATORS WITH AT LEAST

10 WELLS)

lnGPFi

J Restriction 180 Days 360 Days 720 Days

Log Fluid Volume 0.219∗∗∗ 0.219∗∗∗ 0.218∗∗∗

(0.0200) (0.0201) (0.0201)

Throttling −0.565∗∗∗ −0.567∗∗∗ −0.566∗∗∗

(0.0353) (0.0353) (0.0353)

Northeast 0.389∗∗∗ 0.389∗∗∗ 0.388∗∗∗

(0.0424) (0.0426) (0.0426)

Output Price 0.0828∗∗∗ 0.0797∗∗∗ 0.0785∗∗∗

(0.0155) (0.0159) (0.0160)

QSOBS 0.0822∗∗∗ 0.0702∗∗∗ 0.0684∗∗

(0.0171) (0.0212) (0.0253)

QSUNOBS −0.0180 −0.0140 −0.0134
(0.0158) (0.0161) (0.0156)

Date Controls Linear Linear Linear
Observations 4,737 4, 737 4,737
RMSE 0.717 0.717 0.717

Notes: Limited to wells that are fractured by operators with at least ten wells. Coefficients
(and standard errors, in parentheses) are estimated via non-linear least squares (NLLS).
Each column conducts the estimation using a different specification of J when construct-
ing the QSOBS

i and QSUNOBS
i weights. The superscripts +, ∗, ∗∗, and ∗∗∗ indicate statistical

significance at the 10, 5, 1, and 0.1 percent levels. See text for details.
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