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1 Introduction

Committees often must choose to embark on risky policy experiments. Examples are gov-
ernments implementing reforms, and international organizations agreeing to new policies.
One objective of such a committee is to embark on a policy experiment if the expected
aggregate benefits exceed the aggregate costs, and, conversely, quit an existing policy ex-
periment when the likelihood that the benefits will materialize becomes sufficiently small.
However, the decision to begin or end a policy experiment is made by individual committee
members acting in their own interests. In spite of the promise of aggregate benefits, if a
sufficient number of members do not directly gain, then policy experiments may fail to be
implemented. Similarly, if a sufficiently large coalition of vested interests supports a failed
experiment, it may persist at the expense of other members. The political economy liter-
ature on policy experimentation — which we elaborate on below — has so far developed
independently of that on redistribution. However, redistribution might be a critical factor
to circumvent the vested interests opposing a socially beneficial reform or the cessation
of a failed reform: the gains to winners should be redistributed in such a way that losers
are fully compensated and the right level of experimentation occurs. Such compensatory
transfers are difficult to implement in practice because, as |Acemoglu et al.| (2015) points
out, there can be a number of (exogenous) direct constraints on redistribution. Even if
some redistribution is allowed, committees may face another critical constraint: potential
winners from a policy experiment may not be able to commit to compensating the losers.

The observations above motivate the three main questions addressed in this paper.
First, under what circumstances, if any, can committees achieve socially efficient policy
experimentation without redistribution? Second, if efficient experimentation cannot be
achieved without redistribution, can it be achieved if benefits can be redistributed among
members? Is there some minimal level of redistribution necessary for this to happen? And
third, how do the answers depend on voting rules?

To answer these questions we present a dynamic committee bargaining model that
combines policy experimentation and redistribution. A committee (such as a legislature,

the members of an international body, or a central bank governing board) meets each period



to decide policy. Policy has three components: the choice to implement a risky reform or
revert to a safe (known) alternative, a tax rate, and the choice of how to distribute tax
revenues. We model the constraint on redistribution as an exogenous maximum tax rate.
We assume that this is chosen separately from reforms and redistribution. For example,
U.S. tax legislation is primarily driven by the U.S. Treasury and the office of the President,
whereas other policies related to reforms and redistribution may come from the House of
Representatives or the Senate. Other possible interpretations are constitutional constraints
and the threat of capital flight (see |Acemoglu et al., [2015)), or that only part of individual
benefits are observable or transferable.

Policy is assumed to continue unless changed by the committee, and, in this sense,
exhibits an endogenous status quo featureE More precisely, in each period, policy making
is governed by the following protocol adapted from Diermeier et al.| (2017)). Committee
members have the opportunity to propose amendments to the ongoing status quo in ran-
dom order, determined at the start of the period. If a proposal is voted up, then it is
implemented in that period and becomes the next period’s status quo. If all proposers
fail to amend the status quo, then it is implemented and remains in place until the next
period.

The choice between a risky reform and a safe alternative is modeled as a bandit problem
in the spirit of |[Keller et al.| (2005), but with heterogeneous payoffs across committee mem-
bers. The safe alternative generates a certain benefit if selected, but these benefits differ
across members. If the reform is good, then it generates benefits stochastically. These
benefits also differ across committee members. If the reform is not good, then it never
generates benefits. There is a prior belief that the reform is good and this is common to all
committee members. With each failed attempt at reform, all committee members update
their beliefs about whether the reform is good or not according to Bayes’ rule. Thus, with

each failure the belief that the reform is good decreases, and the expected payoff from the

1This endogenous status quo feature of dynamic policymaking as been used in a number of recent papers
and in a variety of policy settings. These include Kalandrakis| (2004) (pure redistribution), Bowen et al.
(2014)) (entitlement programs), |Piguillem and Riboni| (2015)) (public spending), |Dziuda and Loeper| (2016))
(binary policy).



reform also decreases. If the reform produces a success, then all committee members know
the reform is good with probability one. In the absence of bargaining, a utilitarian social
planner follows a rule according to which the reform is attempted until the belief that it
is good is sufficiently small. We call this the optimal stopping rule.

We begin the analysis of the dynamic bargaining game with the case in which no
redistribution is allowed and find that the committee, in general, does not implement the
optimal stopping rule. More precisely, we show that there is a unique equilibrium outcome
and it is inefficient. Either experimentation never occurs, or the committee implements a
stopping rule whose cutoff belief for ending experimentation is the lowest median among
the committee members’ ideal cutoffs. We conclude that whenever this cutoff differs from
the social planner’s ideal cutoff, then the committee fails to implement the optimal stopping
rule.

We then turn to the other extreme case, in which the committee can freely redistribute
revenues among its members. Perhaps unsurprisingly, we find that all equilibria sustain
the optimal stopping rule. The heterogeneity of the relative benefits from experimentation
among committee members is immaterial when those benefits can be fully redistributed.
Coupled with the no-redistribution case, this result seems to suggest that constraints on
redistribution are the main impediments to socially efficient experimentation. But our
analysis of the more realistic case in which redistribution is limited reveals that this is
not the complete picture. Indeed, with a non-collegial voting rule (i.e., without veto
players), socially efficient experimentation is attainable as long as the exogenous constraint
on redistribution is relaxed (even marginally). In contrast, with collegial rules, a minimum
level of redistribution must be permitted to sustain the optimal stopping rule.

We conclude from our analysis that in situations where redistribution is limited, veto
rights, not the constraints on redistribution, are the main obstacle to efficient policy ex-
perimentation. Committees with veto players, who can block proposals to move away
from current policies, constitute an empirically important class of institutions (e.g., the
United Nations Security Council and presidential veto power in the US Congress). Our

focus on experimentation and redistribution thus offers a different perspective to exist-



ing analyses of the normative implications of voting rules on committee decision making,
which have mainly concentrated on the information-aggregation channel. In our collective-
experimentation framework, non-collegial voting rules permit socially efficient experimen-

tation for a larger set of parameters than do collegial rules, so that the former rules “dom-

inate” the latter in the sense of Bouton et al. (2018).

Related literature This project is most closely related to the literature on collective

experimentation and voting rules, including |Strulovici (2010), and Messner and Polborn

(2012). Like our paper, these papers study how various voting rules affect incentives to

experiment in committees. Messner and Polborn| (2012)) consider a two-period model and

compare the optimality of different majority rules. We consider an infinite horizon model
with general decision rules (collegial and non-collegial), which include all non-unanimity

majority rules as examples of non-collegial, and unanimity as an example of collegial. In

an infinite horizon setting, Strulovici (2010) shows that efficient policy experimentation

cannot be sustained with voting. This occurs as voters learn whether or not the policy

will be beneficial to them. In contrast to [Strulovici (2010), we assume that agents know

their potential future benefit from experimentation, but there is a common uncertainty
about whether the reform is good. In this sense, a conflict exists between voters prior to

beginning experimentation and continues throughout experimentation. We show that this

conflict can be mitigated with a sufficient level of redistribution. |Acemoglu et al.| (2015)

consider a model of collective experimentation over political institutions, in which trials

of the risky alternative involve uncertainty not only about its payoff implications but also

about who controls political power. |Strulovici (2010), Messner and Polborn| (2012) and

Acemoglu et al| (2015) do not consider redistribution. Other papers considering policy

experimentation and politics include Majumdar and Mukand| (2004)), Volden et al.| (2008),
|Cai and Treisman| (2009), |Callander]| (2011)), |Callander and Hummel (2014), Hirsch| (2016)

and |Freer et al|(2018). These papers do not consider dynamic committee bargaining and

policy experimentation.

Our paper compares committees with non-collegial voting rules (without veto players),



to committees with collegial rules (with veto players). This focus connects the current

paper to a rich literature on veto players. This literature includes the seminal works by

Tsebelis| (2002) and Krehbiel| (1998). As with a number of papers in this literature, we

conclude that the presence of veto players can generate inefﬁcieneiesﬂ The inefficiency
we identify is the inability of a committee to optimally experiment with reform when this
requires the decision to both optimally begin the experiment and end the experiment when
it proves to be unsuccessful [

We consider that policies, once implemented, can only be changed with a new round of
voting, and hence what we do relates to the literature on bargaining with an endogenous
status quo, pioneered by . Our framework extends the stationary divide-
the-dollar framework studied in [Kalandrakis (2004, 2010)), Battaglini and Palfrey| (2012),
Bowen and Zahran| (2012), Baron and Bowen| (2015), Nunnari (2014)), [Richter| (2014),

and |Anesi and Seidmann| (2015)), by adding experimentation and taxation components

to the choice space. To establish our efficiency result for non-collegial voting rules and

limited redistribution (Proposition 2), we exploit the constructive techniques developed

in [Baron and Bowen| (2015]), |Anesi and Seidmann| (2015), and |Anesi and Duggan (2018)

but push this further to construct an efficient Markovian equilibrium in a non-stationary
environment where: (i) the size of the benefits allocated in each period is endogenously
determined by policy choices, and (ii) the committee members’ policy preferences over an
additional (non-redistributive) policy dimension evolve with their endogenous beliefs. Our
characterization of non-stationary equilibria for collegial voting rules also extends the work
of who focuses on stationary Markov perfect equilibria in divide-the-dollar

environments with veto players.

\Merlo and Wilson/ (1995) and |[Eraslan and Merlo (2002)) also analyze legislative bargain-

ing games in which the size of the revenues to be distributed among committee members

evolves stochastically over time. In contrast to our framework, however, the stochastic

2 A notable exception is recent work by [Hirsch et al.| (2015) who find that veto players can have positive

effects under some conditions by forcing higher quality policy change.
3This inefficiency is also supported by some empirical work. For example, (2017)) provides

empirical evidence that a greater number of veto players can hinder compliance with WTO dispute rulings.



process that governs the evolution of benefits is autonomous, and bargaining ends as soon
as an agreement is reached.

This paper is related to the substantial body of political economy research studying
political failures, which was first articulated by [Besley and Coate| (1998). More closely
related are papers by |Alesina and Drazen| (1991)), |[Fernandez and Rodrik| (1991) and Dziuda
and Loeper| (2016). These papers explore inefficient policy persistence, but do not consider
how this might be affected by the voting rule of the committee deciding how to distribute
resources. [Dewatripont and Roland| (1992) examined gradualism in reforms, but did not
consider how this is affected by redistribution. |Tornell (1998) also provides a theory of
reform, but does not focus on the impact of redistribution.

The remainder of the paper is organized as follows. In Section [2] we present our model
of dynamic policy making in a committee. In Sections [3] and [l we analyze two important
benchmarks — the optimal stopping rule and the equilibrium outcome in the case of no
redistribution. In Section ] we consider that redistribution is allowed and consider non-
collegial and collegial rules separately. We conclude with a discussion of the results in

Section [6l

2 Model

Players, policies and preferences. We present a stylized model of dynamic policy
making by a committee (such as a legislature, or members of an international organization),
which consists of n > 3 members: N = {1,...,n}. Time is divided into discrete periods
of length A > 0, and the committee meets at the beginning of each period. We will

subsequently focus on the limiting case as A becomes arbitrarily shortE|

4This approach of “discretizing” dynamic games is common in the experimentation literature (e.g.,
Murto and Valimaki| (2011)). It permits the analysis of how heterogeneous agents collectively trade off
exploration and exploitation in experimentation, while avoiding the standard difficulties inherent in for-
mulating continuous-time games with history-dependent behavior (e.g.,Bergin and MacLeod| (1993)). The
heterogeneity of preferences over experimentation, which is crucial to our analysis, would vanish with

patience in the discrete analogue of our model.



In each period t the committee has to choose a policy p! that has three components.
The first component of the policy a’ is a choice to engage in a risky reform R or implement
a known safe alternative S. The reform R is either good or bad. There are two possible
outcomes if it is implemented, success or failure. The probability of success is YA if the
reform is good and the probability of success is 0 if it is bad. Thus good news from the
reform is conclusive. Committee member 7 places value r; > 0 on a success, and 0 on
a failure. If implemented, the safe alternative S gives individual ¢ a per-period benefit
of As; > 0 with probability one. Let 7 = ), yr; and 5 = ), 5;, and assume that
~F > § > 0, so that the reform, if good, is better than the safe alternative in expectation.
The second component of p' is a tax rate on individual benefits 7¢. We assume that
there is an exogenous upper bound 7 € [0,1] on 7!, so that 7t € [0,7]. This upper
bound represents an exogenous constraint on redistribution. The third component of p?,

denoted z, is a choice of how to redistribute the tax revenues raised in period ¢ and hence

st e X ={(z1,...,3,) €[0,1]": Y, cpzi =1}
If policy p! = (at, 7t, x') is implemented at the start of period ¢ and committee member
i believes that the reform is good with probability «, then her (per-period) expected payoff

is given by

ayA[(1 =78 + 7lalF] ifa =R,
A[(1—7)s; + T'als] ifat =5 .

tort ot |a) =

wi(a
Committee members discount at the continuously compounded rate p — so that the com-

mon discount factor is § = e ”® — and seek to maximize their average discounted sums

of payoffs.

Policy making. We model policy-making using a dynamic bargaining framework with

1 inherited

an endogenous status quo. Each period ¢ begins with a status quo policy p'~
from the previous period. An order of proposers (1, ..., m,) is randomly selected from the
set IT of all permutations of NV, with each permutation in IT having a positive probability of
being selected. Proposer 7; then makes the first proposal p = (a,7,2) € {R, S} x[0, 7] x X;

once the proposal is made committee members vote sequentially (in arbitrary order) over



whether to accept itE| The proposal is accepted if a coalition C' € D of committee members
vote to accept, and it is rejected otherwise, where D C 2N\ {{)} is the collection of decisive
coalitions. If the proposal is accepted, then it is implemented, payoffs accrue and the game
transitions to the next period, where the new status quo is p' = p; otherwise, proposer o
is called upon to make a proposal and the same process is repeated. If the n proposers

I'is implemented and remains the

all make unsuccessful proposals, then the status quo p'~
status quo in period ¢ + 1. Each proposal round takes a negligible amount of time.

The game begins with the exogenously given status quo p® = (a°, 7%, 2°), where a® = S,
70 =0 and x? = s;/5 for all ¢ € N. That is, the initial status quo consists of the safe
alternative and no redistribution of individual benefits.

We make standard assumptions on the set of decisive coalitions D (e.g., Austen-Smith
and Banks| (1999)). We assume the voting rule D is proper, i.e., every pair of decisive
coalitions has a nonempty intersection: Cy,Cs € D implies Cy N Coy # (). Moreover, we
assume D is monotonic, i.e., any superset of a decisive coalition is itself decisive: C € D
and C7 C Cy imply Cy € D. We will say that D is collegial if there is some committee
member who belongs to every decisive coalition, i.e., (D # (J; we refer to such a committee
member as a vetoer. The family of collegial voting rules includes unanimity rule (i.e.,
D = {N}) and dictatorships (i.e., D ={C C N: C 3 i} for some i € N). If no player has
a veto, then D is non-collegial. For example, any quota rule defined by D = {C : |C| > ¢},

where ¢ satisfies n/2 < g < n, is non-collegial.

Learning. The initial probability that the risky reform R is good is given by «g € (0, 1).
Committee members update their (common) belief about R’s type through the sequence
of policy choices using Bayes’ rule. The first successful trial of R reveals to all committee
members that it is good, and hence the common belief updates to one. In the event that
k € N trials are unsuccessful, the belief is

ag(1 —yA)*
ap(l=7A +1—ap

aE =

5Sequential voting is the standard approach with non-Markovian equilibrium concepts — e.g.,|/Cho et al.

(2009). This ensures that agents always vote as if pivotal.



Let A= {ak: k=0,1,2,... } U {1} be the set of possible values for the belief.

Equilibrium. As stated, our objective is to explore the institutional mechanisms that
support socially efficient experimentation. To do so, we follow closely the approach taken by
Acemoglu et al.| (2008), studying conditions under which efficient experimentation can be
sustained by renegotiation-proof (pure strategy) perfect Bayesian equilibria (PBEs). Note
that, in an equilibrium of this game, committee members’ beliefs are necessarily given by
Bayes’ rule. An equilibrium is said to be renegotiation-proof if, after any public history,
there does not exist another PBE that can make all players weakly better off (and some
strictly better off)ﬁ However, we will not impose any refinement of PBE when stating
our negative results (those claiming that efficient policies cannot be sustained) in order
to make them stronger. In order to limit the number of possible cases (without affecting
the paper’s conclusions), we will also assume that in case of a tie, a player will prefer to
continue rather than to stop experimenting. Henceforth we will refer to an equilibrium with
this tie-breaking rule as simply an equilibrium, and we will refer to a renegotiation-proof

PBE with this tie-breaking rule as a renegotiation-proof equilibrium.

3 The Optimal Stopping Rule

To highlight the normative implications of redistribution on experimentation outcomes,
we analyze the benchmark case of a utilitarian social planner to which later results can
be compared. Consider the problem of a social planner whose objective is to maximize
aggregate payoffs. This is a standard Markov decision problem with the planner’s belief as
a state variable. When the belief is a and the planner implements the risky reform R she
obtains, in addition to the expected aggregate revenue apyAF, some information that she
uses to update her beliefs. When she implements the safe alternative S she only obtains
the aggregate revenue sA and her belief remains unchanged. Therefore, if the optimal

solution requires S to be implemented in a given period ¢, then the belief will remain the

SThough the game has imperfect information, all players are symmetrically informed at every history

and, therefore, the usual interpretation of renegotiation-proofness applies.

10



same and S will also be implemented in all future periods. As is standard in the literature
on experimentation, it follows that the optimal solution is a stopping rule: there exists a
k* € N such that, after £* unsuccessful trials of R, the belief is so low that the planner
suspends experimentation and implements the safe alternative only.

Formally, let V*(«) be the planner’s average discounted value from a period that begins
with a belief a. That is, if the planner applies the optimal stopping rule, then V*(«) is the
expected sum of the committee members’ average discounted payoffs from the resulting
outcome path. As y7 > 5, we evidently have V*(1) = yA7. If the social planner chooses
to continue experimenting when the belief is oy, then her expected payoff is equal to
[1—6(1 —yA)]apyAF + 6(1 — apyA)V* (1) If she chooses to stop, then her payoff is

sA. Hence,
V* (o) = max { [1—0(1 = vA)]apyAT + 6(1 — apyA)V*(aps1), §A}.

Denote the optimal cutoff by a*. Recall that periods are discrete and thus o* must
be an element of the set of feasible beliefs A. The optimal cutoff a* may thus be strictly
smaller than the belief that makes the social planner indifferent between continuing with
the reform for one more period and switching to the safe alternative. Noting that if

ag = a*, then V*(agy1) = SA, we obtain

a® = min < ap, max <} « e o
= {o, { € 4: <7[(1—5<1—7A))(f/5)—5A}}}'

We will say that an equilibrium sustains the optimal stopping rule if the committee applies

the optimal stopping rule on the equilibrium path.
To make things interesting, we wish to study situations where social optimality dictates
to experiment for at least one period, and thus a* < «p, for A sufficiently small. Note

that, as A — 0, the social planner’s ideal cutoff converges to

min{ao P }
Ap+)(F/5) —1] |

Imposing ag > p/(v[(p +7)(7/5) — 1]) guarantees that there is a A > 0 such that, for all
A< 3, we have o < «p. And thus some experimentation is optimal for A sufficiently

small. Throughout, we maintain this assumption.

11



Assumption Al. ag > p/(v[(p+7)(7/5) — 1]).

4 Policy Experimentation without Redistribution

We now return to the analysis of the bargaining game introduced in Section[2] Throughout
this section, we assume that no redistribution is permitted, i.e., 7 = 0. Comparison of this
case to the social planner’s benchmark reveals that in the absence of redistribution, socially
efficient experimentation typically cannot be sustained in equilibrium.

To begin we must establish some notation. By the same logic as above, each committee

member ¢’s ideal experimentation plan is a stopping rule with cutoff

v = min ¢ ap, max | o Be o
G = { , { €A: <7[(1—5(1—7A))(Ti/3i)_5A]}}‘

This is the rule that committee member ¢ would implement in every equilibrium if she

were a dictator, i.e., if D = {C C N: C > i}. Note that &; is (weakly) decreasing in the
ratio r;/s;. That is, each committee member’s incentive to experiment increases with the
extent to which she values the reform over the safe alternative. Henceforth, without loss of
generality, we order committee members such that r;/s; < r;41/s;+1 and thus committee
member 1 wishes to cease experimenting first. Moreover, we refer to &; as committee

member i’s ideal cutoff, and to r;/s; as her benefit ratio. We find it useful to identify two

key members of the committee defined as follows/]

Definition 1. Committee member i € N is a pivot for voting rule D if {j € N: &; <
&;} ¢ Dand {j € N: &; > &;} ¢ D. The set of pivots for D is denoted P(D), and we

refer to | = min P(D) and r = max P(D) as the left and right pivots, respectively.

Observe that coalitions {1,...,r} and {l,...,n} must be decisive for every voting rule
D; otherwise, by monotonicity of D, the right pivot would be greater than r and the left

pivot smaller than I. Furthermore, it follows immediately from Definition [1| that coalition

"The terms left pivot and right pivot in Definition [1| are related to similar terms described in |Dziuda

and Loeper| (2018]). We provide a formal definition for our context.

12



{1,...,1} is blocking, in the sense that a policy proposal can only be accepted if at least
one member of that coalition votes to accept it.

Next, let V;(ay) be the average dynamic payoff to committee member i at the start of
the game induced by a stopping rule with cutoff ap € A\ {1}. When the cutoff is ay, in
each of the first k& periods, player i receives (1 — §)r; if the reform is good and successful.
This occurs with probability agyA. Starting from period k + 1 onward there are two
possible cases. In the first case, the reform succeeds in at least one of the first k periods,
and it is implemented from period k41 on. This occurs with probability ao[l — (1 —vA)¥]
and yields a per-period expected payoff of (1 —§)yAr;. In the second case, the first k trials
are all unsuccessful, and the safe alternative S is implemented from period k + 1 on. This
occurs with the complementary probability [1 — g (1 —(1=~A)F )] and yields a per-period

payoff of (1 — §)As;. Thus committee member i’s dynamic payoff for cutoff oy is given by

Vilag) = (1 — 5k)a07Ari + o {ozo[l —(1- ’yA)k]’yAri + [1 — ao(l - (1- 'yA)k)]Asi] ,

which simplifies to

Vilag) = [1—0"(1 —yA) T agyAr; + 6 [1 — ag(1 — (1 —vA)F)] As; . (1)

Our first result gives a complete characterization of the equilibria for the bargaining

game in terms of the voting rule and the distribution of ideal cutoffs.

Proposition 1. Suppose 7 = 0. For all voting rules there is a unique equilibrium outcome

that takes the form of a stopping rule with cutoff:

Gy if Vi(de) > s1A

Qi
Il

ag otherwise.

In words, Proposition[I]states that if experimentation begins it always ends at the right
pivot’s ideal cutoff &;. Furthermore, experimentation only begins if the left pivot’s dynamic
payoff using this cutoff, V; (@w), exceeds the left pivot’s status quo payoff, spA. Otherwise,
experimentation will never begin. Thus the left pivot determines whether experimentation

begins, and the right pivot determines the belief at which experimentation ends.

13



An immediate consequence of Proposition [I] is that if n is odd and the voting rule
is simple majority, ie. D = {C C N:|C| > (n + 1)/2}, then the stopping rule with
the median committee member’s ideal cutoff is implemented. This is reminiscent of the
well-known median voter theory, where an odd number of voters with static, single-peaked
preferences must collectively choose a policy from a unidimensional choice space. However,
the logic behind Proposition [I] is more subtle, not only because this is a dynamic setting
with evolving status quo and beliefs, but mainly because policy preferences in each period
are endogenously determined by equilibrium behavior in future periods. To see this, we
discuss the intuition for the proof below.

Although equilibrium continuation values could intricately depend on the previous
history of play, we first show that if the belief becomes smaller than or equal to committee
member n’s ideal cutoff, &,,, the safe alternative must be implemented in every period of
every continuation game. Therefore, when the belief is o, with a1 = é&y, the members of
the decisive coalition {1,...,r} can play in accordance with their own preferences without
risking to trigger adverse decisions in future periods: they will always agree to switch from
R to S if R is the status quo, and will always reject any proposal to change S to R if S is
the status quo.

Applying the same logic recursively, we obtain that whenever the belief oy is smaller
than &y, the equilibrium outcome of every continuation game is unique and has to be a
stopping rule with cutoff «. Now consider any belief ap > &,. All agents that wish
to experiment more prefer to do so right away rather than wait to experiment because by
waiting, expected future benefits are further discounted. This turns the dynamic bargaining
problem into the choice between two options: implementing the stopping rule with cutoff
&y, or maintaining the safe alternative. If V) (&W) > 514, then the left pivot I and, by
single-peakedness, all the other members of the decisive coalition {l,...,n} prefer the
first option. The stopping rule with cutoff &, must therefore be the unique equilibrium
outcome. If instead V| (olr) < s14, then the left pivot [ and all the other members of the
blocking coalition {1,...,1} prefer to maintain the initial status quo S and, consequently,

experimentation never occurs — i.e., the unique equilibrium cutoff is ay.

14



It follows from the previous discussion that with simple majority voting and an odd
number of heterogeneous committee members, the committee always over-experiments
if &, < o, and always under-experiments if &, > «*. With any voting rule, it over-
experiments if &, < o* and V; (dr) > 1A, and it under-experiments either if &, > o™ and
Vi (@r) > s\, or if V7 (éqr) < s1A and o # «ag. Assumption Al guarantees that o* > aq
for A sufficiently small and hence some experimentation is optimal. We summarize this in

the following corollary.

Corollary 1. Suppose 7 = 0. If ry/sy # 7/§, then there exists Ag > 0 such that, whenever

A < Ay, all equilibria fail to sustain the optimal stopping rule.

Corollary [I] states that, in the absence of redistribution, every equilibrium fails to
sustain the optimal stopping rule (in the limit as A — 0) whenever the right pivot’s
benefit ratio differs from 7/s, which is generically the case. We conclude that efficient
experimentation is typically impossible without redistribution.

We end this section with a remark on Pareto inefficiency. Proposition 1 and Corollary
1 show how under-experimentation may happen under any voting rule, yielding socially
inefficient outcomes in equilibrium (in a Utilitarian sense). But such equilibrium outcomes
may even be Pareto dominated. This is illustrated by the following example.

Suppose n = 5 and D is a quota rule with quota ¢ = 4 (so that | = 2 < 4 = r).
Set p = v =ap = 2/3, r;, =2 forall 7, s; =1 for all i € {1,2,3}, and s; = € for
all i € {4,5}, where € > 0 is arbitrarily small. It is readily checked that under these
assumptions, lima_o &; = 3/5 < oy for all 7+ € {1,2,3}, and lima_,o &; = 3¢/(8 — 3¢) for
all i € {4,5}. Hence, for arbitrarily small A > 0, the right pivot’s optimal stopping rule
converges to perpetual experimentation as € — 0. Further, Vi(a,) — 8A/9 < A = 51/, as
€ — 0, so the left pivot’s dynamic payoff under the right pivot’s optimal stopping rule is
lower than the left pivot’s status quo payoff. It therefore follows from Proposition [I] that,
for sufficiently small € (and sufficiently small A > 0), the reform is never implemented
in equilibrium, although all committee members would be better off experimenting for a
positive number of periods. The reason is that, while committee members in the blocking

coalition {1,2} would like to experiment, because of the endogeneity of the status quo,
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they fear that experimentation will go on for too long, so they prefer not to experiment at

all.

5 Policy Experimentation and Redistribution

We have seen in Section {4 that the optimal stopping rule is typically not sustainable in
equilibrium without redistribution. In this section, we ask whether this is still true when it
is possible to redistribute the revenues from experimentation among committee members.
We begin with the benchmark case in which the committee can freely redistribute revenues
among its members, and then turn to the (more empirically relevant) case of constrained

redistribution.

5.1 Policy Experimentation with Unconstrained Redistribution

Suppose 7 = 1, so that redistribution is unconstrained. As all resources can be redis-
tributed, benefit ratios are no longer relevant and each agent that receives a share of
the surplus has an incentive to maximize that share. This is maximized when the opti-
mal stopping rule is implemented. Moreover, full redistribution allows great flexibility in
creating ‘rewards” and “punishments” that provide the incentives to implement optimal
policies. Although we have such flexibility, we must still ensure that any such punishments
are themselves consistent with renegotiation-proofness. We can show that in spite of this
constraint, every renegotiation-proof equilibrium sustains the optimal stopping rule for

sufficiently small period length.

Proposition 2. Suppose 7 = 1. Then, for any voting rule, there exists A > 0 such that,
for all A < A, renegotiation-proof equilibria exist and all of them sustain the optimal

stopping rule.

The proof of this result borrows insights from the repeated-games literature. For every
voting rule D, we first identify a lower-bound w;(p | &) on each committee member i’s
equilibrium payoff at the start of any period that begins with status quo policy p and

belief . It follows that equilibrium payoff vectors must belong to the simplex W (p | a) =
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{(wi,...,w,) € R": 30wy < V*(a), and w; > w;(p | @) for all i}. Recall that p° is
the status quo policy in period zero with the safe alternative and no redistribution. Next,
for each payoff vector w* on the Pareto frontier of W (p® | o) we construct a renegotiation-
proof equilibrium that supports w* (for sufficiently small A), thus establishing that every
renegotiation-proof equilibrium payoff vector (w1, ..., w,) must satisfy > 1 ; w; = V*(ap),
as desired. In this equilibrium construction, committee members are able to coordinate on
an efficient experimentation rule not only at the beginning of the game but also at any time
during the game, whether on or off the equilibrium path. Should any member ¢ ever deviate
from the prescribed behavior at any status quo p and belief «, the committee implements
an efficient equilibrium point in W (p | «) that gives i her most severe punishment payoff
w;(p | @).

Thus, without bounds on redistribution, collective experimentation must yield efficient
outcomes. In view of Corollary [1} this result may give the impression that constraints
on redistribution are the primary cause of inefficiency in collective experimentation. In
the next section we will see that this is not the complete picture for the realistic case of

constrained redistribution. There we see that voting rules may play a more significant role.

5.2 Policy Experimentation with Constrained Redistribution

Proposition [2| prompts the following question: How much stronger is full redistribution
than the condition necessary for efficient experimentation in equilibrium? The answer
critically turns on the voting rule. We first consider non-collegial voting rules and then

collegial rules.

5.2.1 Non-collegial Voting Rules

In stark contrast to the case of no redistribution, our next proposition states that with non-
collegial voting rules the optimal stopping rule can be sustained by a renegotiation-proof
equilibrium for any level of redistribution. In fact, something stronger is true: although
stationary Markov strategies sharply constrain the ability to punish and reward committee

members for past behavior, the renegotiation-proof equilibrium that sustains the optimal
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stopping rule can be taken to be stationary Markov.lﬂ

Proposition 3. Suppose D is non-collegial, i.e., no committee member has a veto. Then,
the following holds for every upper bound 7 > 0: there exists A > 0 such that, for all
A < A, the optimal stopping rule is sustained by a (stationary Markov) renegotiation-

proof equilibrium.

The proof of Proposition [3| is constructive. The idea of the construction is simple:
it is built around a collection of (n — 1)-member coalitions — the potential “governing
coalitions.” These governing coalitions have the property that each committee member
belongs to at least one of these coalitions but not to all of them. The same thing inevitably
happens from any history (both on and off the equilibrium path): the optimal stopping
rule is implemented and, in every period, the members of a given governing coalition
equally share the sum of the expected aggregate revenues that can be redistributed, i.e.,
TapyAT > 0 if the belief ay exceeds a*, and 75A > 0 otherwise.

At the start of every period, the status quo policy and the current belief — which
are payoff relevant — reveal to the committee whether play in the previous period was
consistent with the optimal stopping rule, and whether a governing coalition formed (i.e.,
equally shared the entire transferable benefits among its members). If this is the case,
then the same governing coalition forms again and continues to implement the optimal
stopping rule; otherwise, the (randomly selected) first proposer successfully offers to form
a governing coalition and to follow the optimal stopping rule.

Given the inevitability of this process, the best possible scenario for any committee
member is to form or be a member of the governing coalition that will share the trans-
ferable revenues from experimentation in every future period. For any member ¢ of such
a coalition, the potential benefits of a one-period deviation vanish as the period length A
becomes arbitrarily small, whereas the long-run cost does not: a deviation would trigger

the formation of a new governing coalition in the next period, which ¢ might not be a

80f course, renegotiation-proofness already constitutes an obstacle to the construction of efficient equi-
libria, as it may reduce the severity of the off-path “punishments”’ available to support the appropriate

incentives (which must themselves be renegotiation-proof).
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member of. Though this would have no impact on the proportion (1 — 7) of her future
payoffs that cannot be redistributed (since the optimal stopping rule is implemented in
any case), she would potentially lose a proportion 7 > 0 of her share of future aggregate
revenues as a member of the governing coalition. As no member of a governing coalition
is prepared to run such a risk and governing coalitions are decisive (recall that no player
has a veto), profitable deviations from the prescribed path are impossible. Moreover, this
equilibrium is renegotiation-proof since it generates payoff vectors on the Pareto frontier
both on and off the path.

In contrast to Corollary [I} which is an “impossibility result”, Proposition [3] says that
it is possible for the committee to implement the optimal stopping rule in equilibrium. In
line with the relational-contracts literature, a possible interpretation of the proposition is
that committee members can credibly agree to play an equilibrium that sustains efficient
experimentation, and could not agree to replace it with another equilibrium once it is
in place. While we follow Acemoglu et al.’s (2008) approach of focusing on the “best
sustainable mechanisms,” it should be noted, however, that there are other renegotiation-
proof equilibria that do not sustain the optimal stopping rule. Therefore, it is not clear how
committee members would select an equilibrium. One can argue that the above equilibrium
is focal in the sense of [Schelling (1960), as it is the only one whose payoff vector belongs
to the (unconstrained) Pareto frontier; this is the approach taken, for example, by |[Dixit

and Olson| (2000)).

5.2.2 Collegial Voting Rules

Given the result obtained for non-collegial voting rules in the previous subsection, it is
natural to ask whether the optimal stopping rule is also sustainable with any level of
redistribution under collegial voting rules. A little reflection suggests that the answer is
no because of the presence of veto players. Indeed, efficient experimentation requires two
sets of incentive constraints to be met. The first set ensures that the “vetoers” all agree
to change the initial status quo policy to some (R, 7,z), z € X and 7 € [0, 7]; the second

ensures that if the belief becomes equal to o*, then they all agree to stop experimenting.
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Formally, the first constraint requires that each vetoer i’s equilibrium continuation
value from implementing (R, 7, ) in the first period is greater than or equal to her payoff
from maintaining the initial status quo in all future periods. In the benchmark case where
# = 0, this is equivalent to V;(a*) > As; for each committee member i who has a veto
(where V;(+) is given in equation (I)). We rearrange terms, take the limit as A goes to

zero, and apply I’'Hopital’s rule to obtain
[1- ew(HM)]ag’yn +e¥P (1 —ag + e¥ag)s; > s;

where 1) = log [%] < 0.

Let v be the vetoer who wishes to cease experimenting first, i.e., v = min(\D. It
follows that if v’s benefit ratio satisfies

Ty _ 1—e¥P (1 —ag+ e¥ag)
Sy [1 — e'@z)(l“‘P'Y)]aofy

(2)

then there exists T' > 0 such that, for every 7 € [0,T"), her incentive constraint is always
violated for arbitrarily small A’s. Intuitively, when 7 < T', the permitted level of redistribu-
tion is not sufficiently large to compensate committee member v’s loss from experimenting
and, consequently, the optimal stopping rule is not sustainable in equilibrium.

The second key incentive constraint in the construction of efficient equilibria formally
requires that if the belief becomes equal to o*, then each vetoer i’s continuation value from
from accepting a proposal to cease experimenting exceeds her equilibrium continuation
value from rejecting it. It is readily checked that the former continuation value can be
written as [(1 —7)si+ %yig] A, for some y € Xﬂ For every status quo policy (R, 7', z), the
latter continuation value is bounded below by a*yA [(1 — 7y + 7' zif]. Hence, an obvious
necessary condition for the existence of an equilibrium that supports the optimal stopping

rule is that (1 —7)s; + 7y;5 > oy [(1 — 7/)ri + 7/27| for some y,z € X, 7/ € [0, 7], and all

9Tf policy (S, 7%, 2%) is implemented in period ¢, then i receives a payoff of [(1 —7)si + ?yEE]A, where
yi = [1—(7"/#)] (s:/5)+(7"/7)z}. Letting y be the average discounted distribution of tax revenues from the
first period the committee stopped experimenting on, we obtain a continuation value of [(1 —7)85 +?yi§] A

for each 1.
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vetoers i. Setting 7 = 0 and letting A go to zero, we can rewrite this condition as

(p+ )7 —3

S5
Let T be the vetoer who wishes to cease experimenting last, i.e., ¥ = max () D. If the

latter’s benefit ratio is large relative to the social planner’s, i.e., if

(p+v)i<1+pr%, (3)

5 S%
then there exists 7' > 0 such that, for every 7 € [0,7) and arbitrarily small A, vetoer v’s
incentive constraint cannot hold. Because of the committee’s imperfect ability to redis-
tribute the benefits from ending experimentation towards vetoer v, the latter must reject

any proposal to stop experimenting when the belief is a* in equilibrium.

The discussion above is summarized in the following proposition.

Proposition 4. Suppose D is collegial (i.e., some players have a veto). If either condition
(@/ or (@ is satisfied, then there exists T > 0 such that the following holds for all 7 € [0,T):
there is A > 0 such that, whenever A < 3, every equilibrium fails to sustain the optimal

stopping rule.

This proposition shows that institutional details matter: in contrast to any non-collegial
voting rule, efficient experimentation may not be attainable under a collegial voting rule
if not enough redistribution is permitted. Under the premises of the proposition, even
unrefined equilibria all fail to support the optimal stopping rule. Moreover, there is no
general lower bound on 7 < 1 allowing to avoid this negative conclusion. This is easily seen
by considering the case where D is dictatorial, i.e., D ={C C N: C' > i} for some i € N.
It follows immediately from the analysis in Section 3 that if the dictator’s benefit ratio
differs from the social planner’s (i.e., if r;/s; # 7/§) and 7 < 1, then every equilibrium fails
to sustain the optimal stopping rule.

Coupled with Proposition [3] Proposition [ suggests that veto rights, instead of con-
straints on redistribution, can hamper optimal experimentation in committees: constraints
on redistribution (as long as they do not completely prevent redistribution) can only create

inefficiencies if the voting rule is collegial.
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6 Concluding Remarks

We analyze a dynamic model of committee decision making in which the benefits of re-
form may or may not be redistributed. Several conclusions emerge from the analysis.
First, except for nongeneric cases, socially efficient experimentation necessitates redistri-
bution. That is, when no redistribution is possible, the optimal stopping rule is generically
unachievable. Second, if the committee can freely redistribute all the revenues from exper-
imentation among its members, then the inefficiencies of the no-redistribution case vanish:
it always implements the optimal stopping rule. Third, in the more realistic case where
redistribution is constrained, arbitrarily small amounts of redistribution suffice to support
socially efficient experimentation if the voting rule is collegial. This applies to committees
such as legislatures governed by majority or supermajority rules. And fourth, if the voting
rule is non-collegial, then the optimal stopping rule can be sustained only with a suffi-
cient amount of redistribution. Collegial voting rules, such as unanimity, are ubiquitous in
international policymaking and other settingsm

Two implications directly follow from these results. The first speaks to a major question
in the study of political institutions (e.g., McCarty (2000)): How do veto powers affect
policy outcomes? It follows from our analysis that, in situations where committees can
only partially redistribute the gains from policy experimentation among their members,
veto powers may be detrimental to social welfare by rendering efficient experimentation
unachievable. Our results also speak to the normative question of what voting rules can
support efficient collective experimentation (e.g. Strulovici (2010))). Propositionprovides
a simple answer: As long as some share of aggregate revenues can be redistributed, efficient
experimentation can be sustained under any non-collegial voting rule.

The redistributive tool we have used to support efficient policy experimentation can be
used in other settings. In the case of non-collegial voting rules we have supported efficient
experimentation by linking the equilibrium of the experimentation game to an equilibrium

of the redistribution game with a structure of dynamic coalitions (similar to Anesi and

10Maggi and Morelli| (2006) provide theoretical conditions under which this is true if agents can choose

the voting rule ex-ante.
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Seidmann| (2015) and Baron and Bowen| (2015)). Such “linking” of policies can be used in

other settings to support efficient policy making, and, indeed, has been used in practice
with, for example, the Paris Climate Agreement and the Green Climate Fund.

Our analysis focuses on the frictions created by constraints on redistribution in col-
lective experimentation. Following the previous literature, we have assumed that the
committee is able to reconsider previous agreements arbitrarily frequently. It would be
interesting for future research to investigate how bargaining frictions (captured with val-
ues of A bounded away from zero) affect collective-experimentation outcomes. This would
require future work to overcome technical difficulties that have not yet been addressed
in the literature on dynamic bargaining with an endogenous status quo (even without

experimentation).

23



Appendix

A Proof of Proposition

We assume throughout this section that 7 = 0, so that redistribution has no impact
on players’ payoffs. We represent policies as elements of {R, S}, omitting the irrelevant
sharing-rule component, to lighten notation. To prove Proposition[l] it is useful to consider
a class of games {T'(a,): a € {R, S} and o € A}, where I'(a, @) is the same game as that
described in Section , except that it begins with an initial status quo alternative a (possibly
equal to R) and a probability « (possibly different from «g) that Alternative R is good.
It is useful to define the set of losers from the reform as L = {i € N: yr; < s;} and the

set of winners as W = {i € N : yr; > s;}.

Lemma A1l. Suppose 7 =0. Then,

(i) T'(R,1) has a unique equilibrium outcome: Alternative R is implemented in every period
if L ¢ D, and alternative S is implemented in every period otherwise;

(i) for alla € {R, S} and oy, < G, I'(a, ay) has a unique equilibrium outcome: Alternative

S is implemented in every period.

The proofs of Lemma and all other lemmas can be found in the Supplementary
Appendix online. We now return to the proof of the main proposition. Suppose first that
L ¢ D. Having characterized the unique equilibrium outcome of I'(R, 1) and I'(a, ay),
for all @ € {R,S} and all o < &, we begin with an inductive argument. Take any
k € N such that (i) for each a € {R, S}, alternative S is implemented in every period in
any equilibrium of I'(a, ag41), and (ii) o < dy. (From Lemma [A1fii), we already know
that this is the case if ay < @&,.) In the first period of I'(S, ), the expected payoff
to committee member ¢ in any equilibrium must be a convex combination of f;(ay) =
[1 —0(1— ’yA)]akfyAri +6(1 — agyA)s;A and s;A. It follows from the definition of d;,
siA > fi(ay,) if and only if aj < @&;. By the same logic as in the proof of Lemma [AT](i),
this implies that any proposal to change status quo S to the risky alternative R must be

rejected by the members of the decisive coalition {1,...,r}. (The latter coalition must be
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decisive; otherwise, monotonicity of D would imply that the right pivot is greater than
r.) Hence, s;A is committee member i’s unique equilibrium payoff in I'(S, ay). It follows
that committee member i’s payoff in the continuation game T'(R,ax) is fi(ay) if R is
implemented in the first period, and As; otherwise. This implies that every member of the
decisive coalition {1,...,r} must accept any proposal to amend R to S (when decisive)
and, therefore, at least one proposer must successfully propose S in the first period in
equilibrium. We have thus established that for all ap < &;, S is implemented in every
period of I'(R, ay) in any equilibrium. The unique equilibrium outcome of I'(R, &;) is
therefore the stopping rule with cutoff &,.

In Section 3, we defined V;(ay) as the expected payoff to committee member 4 induced
by the stopping rule with cutoff ay in I'(S, ap). For every 0 < ¢ < k, we can similarly
define the expected payoff to committee member i induced by this stopping rule in I'(.S, ay)

as
Vilag | ar) = [1- okt — WA)I“_Z] ayAr; + 5k_£[1 —ap+(1— yA)k_gag] SiA .

Differentiating the right side of the above equation with respect to k reveals that V;(ay|o)
is single-peaked in k and, therefore, in the cutoff aj: it decreases with ay if ap < &;,
and increases with oy if ap > &;. Now take any belief ay > &, such that the unique
equilibrium outcome of I'(R, ap41) is the stopping rule with cutoff 4. (From the previous
paragraph, this is the case if ayy; = &;.) The expected payoff to committee member
i in any equilibrium of I'(R,ay) is a convex combination between V;(4y | ay) and s;A.
Moreover, it follows from the single-peakedness of V;(- | ay) that V(& | ay) > s;A =
Vi(ag | ay), for all i > r — recall that &; < &, < ay for all i > r. Every member of
the blocking coalition {r,...,n} therefore rejects any proposal to amend the status quo R
to S in the first period of T'(R, o). This shows in particular that the unique equilibrium
outcome of I'(R, o) is the stopping rule with cutoff &,.

Finally, consider the first period of the game — i.e., the first period of I'(S, ap). It
follows from the previous paragraph that, in any equilibrium, committee member ¢’s payoff
must be a convex combination between V;(ay) = V(4 | ag) and s;A = Vi(ag | ap).

Suppose first that V(a,) < s34, so that V;(&,) < s;A for every member i of the blocking
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coalition {1,...,1}. Every member of this coalition must therefore reject any proposal to
amend the status quo S to R in the first period. This in turn implies that the stopping
rule with cutoff ag is the unique equilibrium outcome. Suppose now that V(&) > sjA.
Denoting the supremum of the equilibrium payoffs of each committee member i by U;"",
we thus have V;(&,) > U"P > s;A for every member ¢ of the winning coalition C' =
{l,...,n}. This implies that, in any equilibrium, the payoff of each committee member
i € C from accepting a proposal to amend status quo S to R (when decisive) in the first
period of the game — i.e. V;(A,) — must therefore exceed her payoff from rejecting it
— (1 = 8)As; + 6U;"P. Hence, at least one member of the committee must successfully
propose alternative R in the first period. This in turn implies that the stopping rule with

cutoff d&y is the unique equilibrium outcome, completing the proof of Proposition [I}

B Proof of Proposition

In this section we prove Proposition [2| for the case of non-collegial rules. The proofs for the
various collegial rules are relegated to the Supplementary Appendix, which can be found
online.

Suppose that D = 0. Let A =sup{A € Ry: (1 —eP2)y7 < e P25/(n—1)} > 0.

Observe for future reference that if A < A, then

(1= &)|wip | @) — wild | @)] < (1 - 6)7A < 5n§_A <) (B1)

17 n-1
forallie N, p,p’ € {R,S} x [0,1] x X, and o € A.

To establish the result it suffices to show that every payoff vector in the Pareto frontier
W* = {(wy,...,wp) € RT: Y7 w; = V*(ap)} can be supported in an equilibrium for
all A < A. Take an arbitrary w® € W*, and let y° € X be defined by 39 = w?/V*(ay)
for all ¢ € N. Our objective is to construct an equilibrium o, in which: (i) the committee
implements the optimal stopping rule in each period; (ii) on the path, aggregate revenues
are distributed according to y° in every period; and (iii) if committee member i deviates

from ¢ in period t then, from t + 1 on, aggregate revenues are distributed according to
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y' € X, defined by
0 ifj=1,
Y(n—1) ifj#i,

for all j € N. As the optimal stopping rule is implemented in every continuation game

i

Yj

both on and off the path, such an equilibrium must be renegotiation-proof.

More precisely, let
o*(a) = R ifa>a",
S otherwise.

We define the strategy profile ¢ in terms of “phases,” formally represented by pairs in
{1,...,n} x{0,1,...,n}. Every phase (¢,i) prescribes behavior in the ¢th proposal stage
of any given period and in the n voting stages that follow it: “¢” indicates that o prescribes
policy (a* (), 1,yi) to be implemented so that player ¢ is punished. Specifically, in any
period t in which the belief is @ € A and the order of proposers is (71,...,m,), if the
game is in phase (¢,i) # (n,m,), then o prescribes the following behavior: (i) proposer
¢ offers policy (a*(a), 1,yi); (ii) if m, offered (a*(a), 1,yi), then every voter accepts it
(irrespective of the previous voters’ behavior); and (iii) if 7y offered any p # (a*(a), 1, yi),
then every voter rejects it (irrespective of the previous voters’ behavior). If the game is
in phase (n,m,), then o prescribes the following behavior: (i) proposer m, passes; and (ii)
every voter rejects any proposal. Phases evolve according to the following recursive rules.
In period 1, play begins in phase (1,0). Then in every period, at the end of any sequence
of votes that began in any phase (¢,1) # (n, Wn)ﬂ

e If policy (a*(c),1,y") was proposed and (if there was a vote) unanimously accepted,
then the game transitions to phase (1,1);

e if policy (a* (), 1, yz) was accepted but not unanimously, then the game transitions
to phase (1, 7), where j is the identity of the last voter who rejected (a* (), 1, yi);

e if policy (a* (), 1, yl) was proposed and rejected, then the game transitions to phase
(¢ +1,7), where j is the identity of the last voter who rejected (a*(a), 1, yi);

e if the status quo differs from (a*(a), 1,yi) and proposer 7y passes, then the game

transitions to phase (¢ + 1, mp);

11 what follows, we set £ 4+ 1 = 1 whenever £ = n.
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e if proposer 7y offers to amend the status quo to a policy different from (a*(a), 1, yl)
and her offer is unanimously rejected, then the game transitions to phase (¢ + 1,7y);

e if the proposer offers to amend the status quo to a policy different from (a*(a), 1, yi)
and her offer is rejected but not unanimously, then the game transitions to phase (¢4 1, j),
where j is the identity of the last voter who accepted the proposal.

e if the proposer offers to amend the status quo to a policy different from (a*(a), 1, yi)
and her offer is accepted, then the game transitions to phase (1, j), where j is the identity
of the last voter who accepted the proposal.

At the end of any sequence of votes that began in phase (n,m,): if proposer m,’s
proposal is unanimously rejected, then the game transitions to phase (1,7,); otherwise,
the game transitions to phase (1, 7), where j is the identity of the last voter who accepted
the proposal.

We now verify that for A < A, this strategy profile is an equilibrium. Observe that,
by construction, each committee member j’s continuation value at the start of any phase

(¢,7) # (n,m,) is equal to
0 if =i,
Via)/(n—=1) ifj#i,

if that phase begins with belief a. As A < A, it follows from equation (BI) that j’s

iV (a) =

objective is to avoid that the game transitions to phase j. More precisely, consider j’s
voting behavior in phase (¢,i) # (n,m,) when the proposer has offered policy (a*(a), 1, yi)
different from the status quo. If all previous voters have accepted the proposal, or if j is
the first voter, then (a* (a),1, y’) will be implemented in the current period, irrespective
of her decision. Her choice will only determine whether the game will transition to phase
(¢ + 4,i) or to phase (£ + 1,j). As y; > yj for all 7,7 € N, she is better off accepting
the proposal. Now suppose that at least one of the previous voters has rejected proposal
(a* (a),1, yi); let k be the identity of the last voter who rejected. In this case, committee
member j’s vote will determine whether the game transitions to phase (¢ 4+ 1,k) (if she
votes to accept) or to phase (¢ + 1,7). It follows from equation (BI)) and A < A that she

is better off accepting, as prescribed by o. The argument for the case where the proposer
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has offered to amend the status quo to a policy different from (a*(a), 1, yz) is analogous if
either j # m, or (¢,i) # (n — 1,m,) (or both): voter j acts in accordance with o to avoid
a transition to phase (¢ + 1, 7).

Consider voter ,’s behavior in phase (n — 1,7,). Suppose first that proposer m,_1
has proposed policy (a* (a),1, y””). If all previous voters have accepted the proposal, or
if 7, is the first voter, then (a*(a), 1, y’T") will be implemented in the current period and
the game will transition to phase (1,,), irrespective of m,’s action. Hence, she cannot
profitably deviate from o in this case. If at least one of the previous voters has rejected
proposal (a*(a), 1, y’r"), then m,’s payoff depends on her decision. Let o be the current
belief; and let p = (a,7,z) (resp. p' = (a’,7',2')) be the policy that will be implemented
in the current period if 7, votes to accept (resp. reject) the proposal — p and p’ are
determined by the current status quo policy and by the actions prescribed by o to the

remaining voters. By definition of o, m, is better off accepting if
1 .~
(1= 8)wn, (p | @) +6—=E[V*(@) | a;p] = (1 = d)uwr, (| a) ,

where E [V* (@) | a, p] is the social planner’s expected value at the start of the next period
conditional on the current belief @ and on p being implemented in the current period. It
follows from equation and A < A that this inequality holds strictly and, therefore,
that m, cannot profitably deviate.

At the start of any phase (¢,7) with ¢ < n that begins with belief a € A, the proposer
can either propose (a* (), 1, yz) — in which case she receives payoff 3 , V*(a) — or propose
any other policy — in which case she receives y7:V*(a). As i , = Ynt, she is better off
proposing (a*(a), 1,yi), as prescribed by o. At the start of any phase (n,i) with ¢ # m,,
proposer m, can either propose (a* (), 1, yz) — in which case she receives yfrn V*(a) — or
propose any other policy — in which case she receives (1 —8)wr, (p | @) +E[V*(a) | o, p],
where p is the status quo. It follows from and A < A that she is strictly better off
proposing (a*(a), 1, yi).

Consider now phase (n,7,), and let @ € A be the committee members’ belief. The

argument to show that no voter j # m, has a profitable deviation from ¢ in this phase is the

same as above: as A < A, j’s objective is to avoid a transition to phase j, irrespective of
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the policy implemented in the current period. As for voter 7,, her decision has no impact
on her continuation payoff if all the previous voters rejected the proposal (as prescribed
by o), and she is strictly better off inducing a transition to a phase (1,k) with k # m, if
some previous voter accepted the proposal. Finally, whether she passes (as prescribed by
o) or makes an unsuccessful proposal, proposer m,’s payoff is the same, and therefore, any

deviation is unprofitable.

C Proof of Proposition

Fix 7 > 0. To prove Proposition |3| we will first define the threshold A (Subsection .
Then, for every A < A, we will construct a stationary Markov strategy profile ¢® that
supports the optimal stopping rule (Subsection . Finally, we will demonstrate that,
for all A < A, o® is a renegotiation-proof equilibrium (Subsection .

C.1 Definition of A

To begin we must establish some notation. For each i € N, let coalition C? be defined by
C'=N\{n}ifi=1,and C* = N\ {i — 1} otherwise. Note that, as D is non-collegial,

each coalition C? is winning. Let 2° € X be defined by

1/(n—1) ifjeCt,

[N

0 otherwise,

and let

j: Cii
where (; € (0,1) is the probability (induced by the protocol) that committee member j
proposes first in any period. Next, let £* € N be implicitly defined by oy« = o and, for
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every i,j € N, let the function le A — Ry be defined by

wi(R, 7,27 | 1) if =1,
, w; (S, 7,27 | ) if « = o with k& > k*,
W (a) =
[1— 6" *1 —yA) Fwy(R, 7,27 | a) if o = oy, with k < k*,
{ 4ok kK [1 —ar+ (1 — ’yA)k*_kak]wi(S,%,xj | o)

for all « € A. In words: for every «, I/Vl-j () is committee member i’s average discounted
payoff if the optimal stopping rule is implemented along with (constant) redistributive
policy (7,27) when the belief is a. Finally, let W?: A — Ry be defined by W2(a) =
D jeN CjVVij (@), for all & € A. The interpretation of W?(«) is analogous to Wij(oz)’s, but
each redistributive policy (7,27) is implemented with probability ;. Observe that, for all

a € A and j € N, the payoff vectors (le (@) and (Wio(o‘))ie]v belong to the Pareto

€N
frontier. This observation will play an important role in the equilibrium construction
below.

The definition of the threshold A hinges on the following lemma, whose proof can be

found in the supplementary appendix.

Lemma C1. Suppose 7 > 0 and, for all i,57 € N, let I/Vij and WY be defined as above.

There exists A > 0 such that the following inequalities hold for all A < A, all i,j € N
with i € C?, and all k € N:

W/ (1) > (1 — §)7AF + dW2(1)

7

W/ (ay) > (1 — 8)SA + W () , and

(2

W/ (ag) > (1 — 8) oy AT + Sy AW (1) + 6(1 — gy AYWL (s 1) -

(2

Let A be defined as in Lemma . Henceforth, we assume that A < A.

C.2 Definition of Stationary Markov Strategy Profile o2

This subsection describes the behavior prescribed by strategy profile o2 to each committee

member i € N, for all A < A. Observe that, in each proposal stage, i’s behavior only
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depends on the current status quo and belief and, in each voting stage, her behavior only
depends on the current status quo, the belief, and the list of remaining proposers in the

A

current period. Hence, o0 is stationary Markov.

e Proposal stages. Consider first proposer i’s behavior in a period where the order of
proposers is m = (my,...,m,) with my = i for some ¢; and the first £ — 1 proposers have
failed to amend the status quo. There are three cases:
Case P1: The belief is ag, where k < k*.
Proposer i offers (R, 7,z") (which, in cases where the status quo is (R, 7,2') means
that she passes).
Case P2: The belief is ay, where k > k*.
Proposer i offers (S,7,2%) (which, in cases where the status quo is (5,7, 2") means
that she passes).
Case P3: The belief is a*.
Case 3.1: If the status quo is a policy (a, 7, ) # (R,7,27) for all j € N, then proposer i
offers (S, 7, z%).
Case 3.2: If the status quo is (R,7,27) for some j € N, then proposer i offers (5,7, 27) if

i € CJ, and (S, 7,2") otherwise.

e Voting stages. Consider now voter i’s behavior in a period where the order of pro-

posers is m = (my,...,7T,). There are several cases:

Case V1: The status quo is (R, 7,27) for some j € N; the belief is ay, where k < k*; and a

proposer 7, has just proposed policy (a,T,y) # (R, 7, 27).

If voter 4 is a member of C7, then she rejects the proposal; otherwise, she accepts

the proposal if and only if

apyAWP(1) + (1 — gy AYW2 (agy1) if a = R,

sz(ak) > (1_6)wi(a77—7y | Oék)+5
W2 (ax) ifa=S5.



Case V2: The status quo is (a,7,z), where (a,7,2) # (R,7,27) for all j € N; the belief is ay,
where k < k*.

Case V2.1: Proposer 7, has just proposed policy (R, 7, z’) for some j € N.
If voter i is a member of C7, then she accepts the proposal; otherwise, she

accepts the proposal if and only if

j apyAWO(1) + (1 — apy A YW (« if a =R,
W (o) > (1=0)wi(a, 7,z | ag)+d RYAWE(D) + ( KYA)W (k1)
W (o) ifa=2S5.

Case V2.2: Proposer 7, has just proposed policy (b,7’,y), where (b, 7",y) # (R,7,27) for
all j € N.

Voter ¢ accepts the proposal if and only if

apyAWP (1) + (1 — gy AYW2(agy1) if a = R,
WO (ap) ifa=8.

(1 =0)wi(a,7,x | ax) + 9

aryAW2(1) + (1 — apyAYW2(agy1) if b= R,
W,L-O(ak) ifb=25.

< (1= 68)wi(b, 7,y | ag) + 6

Case V2.3: Proposer 1y, £ < m, has just proposed policy (R, 7,z7) for some j € N.
If voter i is a member of C7, then she accepts the proposal; otherwise, she
accepts the proposal if and only if WZJ () > W (ap).

Case V2.4: Proposer my, £ < m, has just proposed policy (b,7,y), where (b,7",y) #
(R,7,27) for all j € N.
Voter i accepts the proposal if and only if

apyAWP (1) + (1 — apy D)W (apq1) if b= R,

W (o) < (1=0)wi(b, 7',y | ag)+0
W2 (ay) if b=29.

Case V3: The status quo is (5, 7,27) for some j € N; the belief is oy, where k£ > k*; and a

proposer 7, has just proposed policy (a, 7,y) # (S, 7, 27).
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If voter i is a member of C7, then she rejects the proposal; otherwise, she accepts

the proposal if and only if

aryAWL(1) + (1 — apgyA)W2(agy1) if a = R,

W/ (ag) > (1-0)wi(a, 7,y | ) +9
WP (ay) ifa=25.

Case V4: The status quo is (a, 7, z), where (a,7,7) # (S,7,27) for all j € N; and the belief is
ag, where k > k*.

Case V4.1: Proposer m, has just proposed policy (S,7,x7) for some j € N.
If voter i is a member of C7, then she accepts the proposal; otherwise, she

accepts the proposal if and only if

: apyAWP (1) + (1 — apy A YW (« if a = R,
Wi (ax) > (1=0)wila, 72 | ag)+5{ i (1) + (1= axry D)W (1)
W () if a=25.

Case V4.2: Proposer , has just proposed policy (b,7',%), where (b,7,y) # (S,7,27) for
all j € N.

Voter i accepts the proposal if and only if

apyAWP (1) + (1 — apyAYW2(ag41) if a =R,

(1= d0)wi(a, 7,2 | ) + 0
WP2(ay) ifa=S5.

apyAWO(1) + (1 — apyAY WO ifb=R,
< (L= Sy | ap) +51 VAW T =@y AW k)
W (o) ifb=S.

Case V4.3: Proposer 7y, £ < m, has just proposed policy (S, 7,z’) for some j € N.

If voter i is a member of C7, then she accepts the proposal; otherwise, she

accepts the proposal if and only if Wf (o) > W (ap).

Case V4.4: Proposer my, £ < m, has just proposed policy (b,7',y), where (b,7",y) #

(S,7,27) for all j € N.

Voter ¢ accepts the proposal if and only if

apyAWP (1) + (1 — apyAYW2(ag11) if b= R,

W?re+1 (Oék) < (1_5)11}2(6, T,ay | ak)+6
Wo(ak) ifb=25.
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Case V5: The status quo is (R, 7,27) for some j € N; and the belief is a*.

Case V5.1: Proposer 7, has just proposed policy (S, T, xj/) for some j' € N.
If voter 7 is a member of Cj/, then she accepts the proposal; otherwise, she

accepts the proposal if and only if

Wi (0%) > (1= Oywi(R, 7,27 | o*) + 80" yAWL (1) + 6(1 — " yA)W (g 41) -

1

Case V5.2: Proposer , has just proposed policy (b,7',%), where (b,7,y) # (S,7,27) for
all j € N,

Voter i accepts the proposal if and only if

(1= Owi(R, 7,27 | o) + 6™ yAW (1) + 6(1 — oy A)W (e 11)
YAW? (1) + (1 — a*yAYWP (o y1) if b= R,

< (1=0)wi(b, 7",y | )+
WP(a*) ifb=29.

Case V5.3: Proposer 7y, £ < m, has just proposed policy (S,f',a:j’) for some j' € N.
If voter 4 is a member of C7 and j' = j, then she accepts the proposal; if she is
a member of €V, j' # j and there is ¢’ > ¢ such that 7, € C7, then she rejects
the proposal; otherwise, she accepts the proposal if and only if Wij/ (a*) >
W/ (o).

Case V5.4: Proposer my, £ < m, has just proposed policy (b,7',y), where (b,7",y) #
(R,7,27) for all j € N.

Voter i accepts the proposal if and only if

a*yAWO(1) + (1 — a*yA)Wiayeyq) if b= R,

W (@) < (1=0)wi(b, 7'y | a*)+0
WP(a*) ifb=29.

7

Case V6: The status quo is (a, 7, 2), with (a,7,z) # (R,#,27) for all j € N; and the belief is

o,

Voter i behaves as in Cases 3 and 4 (with k = k*).

Case V7: The belief is equal to one. In this case, apply Cases V1 and V2 replacing oy and

AL41 by 1.
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C.3 Verification that ¢ is a renegotiation-proof equilibrium

Optimal stopping rule. Before proceeding to the verification that o is a renegotiation-
proof equilibrium, it is worth noting that it sustains the optimal stopping rule. The game
starts with status quo (S,0,2%) and belief ap. The first proposer, say j, is prescribed
to propose policy (R, 7,27) (see Case P1 above), which is accepted by all the members of
decisive coalition C7 (see Case V2.3). This policy is then implemented again in every future
period that begins with a belief greater than o, as any proposal to amend it is voted down
by the members of C7 (see Case V1). If the belief becomes o*, then all members of C7
reject any proposal until one of them proposes policy (5,7, %), which they all accept (see
Cases P3.2 and V5.3). (As 7 is a decisive coalition, CjN{my,..., 7} # 0 and, therefore,
at least one of its members is a proposer.) Policy (S, 7,27) is then never amended, as any
proposal to change it is voted down by the members of C7 (see Case V3). Hence, the
optimal stopping rule is implemented on the path. Any deviation from this path leads
the next proposer j’ to successfully propose policy (R, T, wj/) if the belief is greater than
*

a*, or policy (S, T, xj/) if the belief smaller than or equal to a*. The induced path again

supports the optimal stopping rule.

Continuation values and renegotiation-proofness. Let V;(b,7,y|a) be player i’s
average discounted value (induced by O'A> from implementing policy (b, 7,y) when the
belief is equal to . Observe first that if a policy (R, 7,27), with j € N, is implemented in
a period that begins with belief ay, k£ < k*, then it is also implemented in any future period
beginning with a belief greater than a* (Cases V1 and V7 above). If the belief becomes
equal to a*, then (R, 7,27) is amended to policy (S, 7,27) (see Cases P3.2, V5.1 and V5.3),
which is then implemented in every future period (see Cases V6 and V3). This implies
that V;(R, 7,27 |ay) = VVZJ(ak) for all ¢,j € N and k < k*. Similar arguments establish
that Vi(R,7,27|1) = W7(1) and Vi(S, 7,27 |ag) = W} (ay), for all i,5 € N and k > k*.
By construction of o, these are all the possible continuation values induced by o at the

start of any continuation game. As they all belong to the Pareto frontier (Subsection |C.1J),

this implies that if o2 is an equilibrium, then it must be renegotiation proof.
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Now suppose that a policy (b, 7,y), where (b, 7,y) # (R, 7,27) for all j € N, is imple-
mented in a period that starts with a belief ay, k < k*. Player i receives (1 —)w; (R, T,y |
ay) in that period. If b is alternative R, then there are two possible cases: it succeeds with
probability axyA, in which case the next period’s first proposer j successfully offers policy
(R, 7,27) (see Cases P1, V7 and V1); and it fails with probability 1 —azyA in which case,
the next period’s first proposer j successfully offers policy (R, 7, 27) if k < k* — 1 (see Case
V2.3), or (S,7,27) if k = k* — 1 (see Cases V6 and V4.3). Therefore,

%(R,’T,yklk) = (1 - 5)wi(RaT7y | Olk) + 50%7A Z Cj‘/z(va-a ZL‘]|1)
JEN

Vi(R, 7,27 Jagy 1) ifk<k*—1
+6(1—ayd) D ¢ o _
jEN Vi(S, 7,27 |a*) ifk=FkF -1

= (1= O)wi(b, 7,y | o) + dapyA D GWI (1)
JEN

W/ (apy) ifk<k*—1
+6(1—ayd) D ¢ . .
jJEN WJ(Oé*) ifk=k"—-1

2

= (1= 0)wi(R, 7,y | ax) + 8 [y AW (1) + (1 — ap )y AW (agy1)] -

If b is alternative S then, in the next period, the first proposer j successfully offers policy

(R,7,27) (see Cases P1 and V2.3); so that

‘/'L(Say‘ak) = (1 - 6)wZ(S7 7Y | Oék) + o Z CJ‘/Z(S?%?:Ej’ak)
JjEM
= (1= w8,y | ar) +8 > GW/ (1)
JEN

- (1 - 5)wZ(S7 Y ‘ ak) + 6W7,0(1) .

Using parallel arguments, one can show that player ¢’s continuation value from implement-

ing a policy (b, 7,y), where (b, 7,y) # (S,7,27) for all j € N, in a period with belief oy,
k > k*, is given by

W(ag1) ifb=r,

‘/’L(b7 T,y|Oék) = (1 - 5)w1(b7 7Y | ak) +0
Wl(ay) ifb=s,
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and that her continuation value from implementing a policy (b,7,y), where (b, 7,y) #

(R,#,27) for all j € N, in a period where the belief is equal to one is given by
Vi(b, 7 y|1) = (1 = 8)wi(b, 7y | 1) + W (1) .

It follows directly from this characterization of continuation values and from Lemma[C]]
that (R, 7,27) with i € C7 is player i’s ideal policy when the belief is greater than o* — i.e.,
Vi(R,#,27|a) > Vi(b, 7,y|a) for all 4,5 € N such that i € C7, (b,7,y) € {R, S} x [0,7] x X,
and @ > o* — and that (S, 7,27) with i € C7 is her ideal policy when the belief is smaller
than or equal to a* — i.e., Vi(S, 7,27 |a) > V;(b, 7,y|a) for all 4,7 € N such that i € C7,
(b,7,y) € {R,S} x[0,7] x X, and a < a*.

Voting stages. To verify that ¢ is an equilibrium, we will first check that all possible
deviations in voting stages are unprofitable. To do so, we will consider in turn the various
cases in the definition of voting strategies.

In Case V1, (decisive) voter i receives a payoff of V;(R, 7, 27 |ay) = Wij(ozk) if she rejects
the proposal (a, 7,y) to amend status quo (R,7,27) (as any future attempt to amend it in

this period will be unsuccessful), and a payoff of

apyAWP(1) + (1 — axyA)W(ag41) ifa=R,

Vi(a,7,ylag) = (1=0)wi(a, 7,y | ax)+d
WO(ak) ifa=S5 s

if she accepts it. Hence, she cannot profitably deviate from o® if she is not a member
of CJ. Moreover, it follows from Lemma and the above equality that Vj(a, 7, y|lag) <
Wij(ak) = Vi(R, 7,27y, for all i € C7, so that voter i cannot profitably deviate from
rejecting (a,7,v) if she is a member of C7.

It follows immediately from our characterization of continuation values above that, in
Cases V2.1 and V2.2, 62 prescribes voter i to accept the last proposer’s offer if and only
if her continuation value from implementing this offer exceeds her continuation value from
implementing the status quo. Therefore, deviations are also unprofitable in these cases.
In case V2.3, (decisive) player i anticipates that if she rejects the ¢th proposer’s offer,

(R, 7,27), then the next proposer will successfully propose (R, 7,z™+1). It is therefore
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optimal for her to accept (R, 7,z7) if and only if V;(R, 7, 27 |ay) = VVZ-j(ak) > W (o) =
%(R,%,x”‘»’+1|ak), as prescribed by o® to every i ¢ C9. Moreover, by definition of Wij,
Wij(ak) > Wij/(ak) for all 4, j, 7" € N such that i € C7. Therefore, it is always optimal for
voter i to accept (R,7,27) if i € C7. The same argument applies to Case 2.4 except that
in this case, the fth proposal offer is some (b, 7,5) # (R,7,27) for all j € N, so that the

value from accepting it is equal to

aryAWL(1) + (1 — auyA)WP if b= R,
‘/l(ba T, y) = (1 - 5)w7;(b,7',y | O(k) +94 kY g ( ) ( k7Y ) i ( k+1)
VVz'D(Oék) iftb=G.

A in all the other cases,

The arguments to show that there is no profitable deviation from o
but Case V5.3, are analogous: in each of these cases, o prescribes decisive voter i the ac-
tion that maximizes her continuation value. In Case V5.3, (decisive) voter i anticipates that
if she rejects the £th proposer’s offer, (R, T, le), then the next proposer will successfully
propose (R, 7,2™+1), and she will consequently receive Vi(R, 7, xTe+ |a*) =W (a*). If

i
she is a member of coalition C7 and j' = j, then it is optimal for her to accept the offer
(as prescribed by o®): by definition of W}, V;(R,%,atj/\a*) =Vi(R,7,27|a*) = Wij(a*) >
W/ (a*). This implies that every member of coalition C7 knows that if the status quo is
(R,#,27) in a period where the belief is a*, then the first proposer in C7 will successfully
offer policy (S,7,27). It therefore follows from Lemma and our the characterization
of continuation values above that every member i of C7 obtains her highest possible con-
tinuation value, V;(S,7,2/]a*) = Wij(oz*), by rejecting any offer until a proposer in C7
successfully offers (S,7,27) (as prescribed by ¢®). Finally, if i is not a member of C7,
or if (off the path) all the proposers in C7 have failed to amend the status quo, then o

optimally prescribes her, as in the previous cases, to choose the action that maximizes her

continuation value.

Proposal stages. Consider now player ¢’s behavior in a period where she is the fth
proposer and the first £ — 1 proposers have failed to amend the status quo. We begin with
cases where the belief o is greater than o*. If the status quo is (R, 7, 27) for some j € N,

then any proposal to amend it is voted down by decisive coalition €/ (see Cases V1 and
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V7). Therefore, proposer i’s payoff will be V;(R, 7,2’ |a), irrespective of the action she
takes. If the status quo is a policy (a,7,z) # (R,7,27) for all j € N and she proposes
)

(R, 7,2") (as prescribed by 02), then her proposal is accepted by all the members of C? (see

Cases V2.1 and V2.3) and she obtains a payoff of V;(R, 7, z|a) = W}(a). As we established
above, this is the highest payoff she can get if & > o*. Therefore, any deviation from o
must be unprofitable.

Suppose now that the belief « is smaller than o*. If the status quo is (.S, 7, z7) for some
j € N, then any proposal to amend it is voted down by decisive coalition C/ (see Case V3).
Therefore, proposer i’s payoff will be V;(S, 7, 7|a), irrespective of the action she takes. If
the status quo is a policy (a,T,z) # (S, 7,27) for all j € N and she proposes (5,7, z") (as
prescribed by ¢?), then her proposal is accepted by all the members of C? (see Cases V4.1
and V4.3) and she obtains a payoff of V;(S,7,z%|a) = Wf(a). As we established above,

A must

this is the highest payoff she can get if a < a*. Therefore, any deviation from o
again be unprofitable.

Finally, suppose that the belief is equal to o*. If the status quo is a policy (a, T, x) #
(R,7,27) for all j € N, then the proof that proposer i cannot deviate from proposing
(8,7, z") is the same as in the previous paragraph. If the status quo is a policy (R, 7, z7)
for some j € N, then there are several possible cases:

(i) If i is a member of CV and she proposes (R, 7, 27), then her proposal is accepted by
all the members of decisive coalition C7. As this policy is one of her ideal policies when
the belief is a*, she cannot profitably deviate from the behavior prescribed in Case P3.2.

(ii) If i is not a member of C7 and all proposers in €V have already (unsuccessfully)
proposed, then all the members of decisive coalition C? accept proposal (9,7, z?) (see Case
V5.1 and the last sub-case in Case V5.3). As we established above, this is the policy that
maximizes her continuation value when the belief is o*. It is therefore impossible for her
to profitably deviate from proposing it, as prescribed in Case P3.1.

(iii) If 4 is not a member of C7 and some proposers in C7 have not yet proposed, then

any proposal that differs from (S, 7, 27) is rejected by the members of C7 (second sub-case

in Case V5.3) and, by the end of the period, some proposer in CV will successfully propose
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(S, 7,27). This implies that, irrespective of the proposal she makes, proposer i’s payoff will
be V;(S, 7,2 |a*). Therefore, any deviation is unprofitable.
This proves that o is a renegotiation-proof stationary equilibrium, thus completing

the proof of Proposition
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Supplementary Appendix:

For Online Publication

A Proof of Lemma Al

We begin with part (i). Suppose first that L ¢ D. To see that there exists an equilibrium

with the proposed outcome, consider the following (stationary Markov) strategy profile:

- Whenever the status quo is R, all proposers pass (i.e., propose R), and each voter i

accepts proposal S if and only if i € L ;

- whenever the status quo is S, each proposer i proposes R if i ¢ L and passes other-

wise, and each voter i accepts proposal R if and only if ¢ ¢ L.

It is easy to check that this strategy profile constitutes an equilibrium. (In particular,
proposers who prefer S to R do not deviate and propose to amend status quo R because
they anticipate that such a proposal would be rejected.)

Next we show that this is the unique equilibrium outcome. Our proof shares some of
the intuitions of the Shaked and Sutton (1984]) proof of equilibrium uniqueness for the
Rubinstein| (1982)) model. Let the set of equilibria of I'(R, 1) be denoted by £(R,1). In
I'(R,1), committee member i’s expected payoff in every period ¢ is a convex combination
of vAr; and As;. Therefore, for every strategy profile o her average discounted payoff is
of the form Vi(c) = B(0)vAr; + [1 — B(0)] As;, with 3(o) € [0,1]. This implies that, for
any two strategy profiles o and o', and any committee member i € {i € N : yr; > s;}, we
have V;(o) > V;(o') if and only if 8(o) > B(c’).

Let {o™} be a sequence in £(R,1) that satisfies lim,, 0o B(0™) = inf,cer 1) B(0),
so that limy, o Vi(0™) = infyeg(p) Vi(o) for alli € W = {i € N : yr; > s;}. Fix
m € N. Every proposal that may successfully be made by the last proposer in the first

period under ¢ (both on and off the path) must be accepted by some decisive player
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¢ in W. That is, i’s continuation payoff from accepting the proposal, say U/, must be
at least as large as her payoff from rejecting it; i.e., U? > (1 — §)yAr; + §Vi(o"), where
o" € (R, 1) is the equilibrium of I'(R, 1) that is played from the next period on if 7 rejects
the proposal in the first period. From the argument in the previous paragraph, we thus have
U > (1—6)yAr;+6Vj(o") for all j € W. Similarly, every proposal that may successfully
be made by the penultimate proposer in the first period under ¢ (both on and off the
path) must also be accepted by some member i of W. Her payoff (and therefore the payoff
of all members of W) from accepting must be at least as large as the payoff from rejecting
which, as previously shown, must be at least (1 — §)yAr; + 5inf{Vi(a): o € &R, 1)}
Applying the same argument recursively, we obtain that the acceptance of any proposal in
the first period must give a payoff of at least (1 — 6)yAr; + dinf {V;(0): 0 € E(R,1)} for
all 2 € W. Hence,

Vi(e™) = (1 = 6)yAr; + 6inf {V;(0): 0 € E(R, 1)} ,

for all i € W. Taking the limit as m — oo and recalling the definition of {¢™}, we obtain
~Ar; = inf {Vi(a): o€ &(R, 1)} (since yAr; is maximum feasible payoff for a player i € W
when R is good with probability one). This in turn implies that R must be implemented
with probability one in every period of every equilibrium of I'(R, 1).

The argument for the case where L € D is analogous.

We now turn to part (ii). To prove the second part of the lemma, we proceed in three
steps: first, we show that the infimum of every player i’s equilibrium payoff in I'(S, ax)
converges to As; as k — oo; then, we show that for sufficiently large k, alternative S is
implemented in every period of I'(S, ay); finally, we use the previous result to complete
the proof of the lemma.

Let ag, € A\ {1}; and let £(S, ay) be the set of equilibria of I'(S, o). Every period of
I'(S, ai) begins with a belief o that alternative R is good; then, either S is implemented,
in which case committee member ¢ receives a payoff of As;; or R is implemented, in which

case i’s expected payoff is ayAr;. Therefore, every strategy profile o yields an expected
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payoff of the form
Vi) = A|ak)si + 8(omi+ Y shoacn]
{=k

to player i in T(S,ay), where 85(a) + B(0) + 22, A (0) = 1 and B¥(0), 8H(0), BE(0) €
[0, 1] for each ¢ = k, k+1,.... Moreover, as R must have been successfully tried at least once
to be known to be good, 8¥(-) is bounded above by ayy. Coupled with the fact that oy < ay
for all £ > k, this implies that limy_,o, MF = SUDgeg(S ) {ﬁ]f(a) + >0k ﬁf(d)ag} ~r; for
each ¢ € N. This in turn implies that there is a null sequence {¢*} in R, such that, for all
o € E(S,ar), we have
max [Vi(0) — 55(0)siA] < Amax My <&,

for every k € N. Now for each k € N, let {¢"™} be a sequence in £(S,ay) such that

k,m)

lim,, 00 8% (0 = infreg(s,ay) B5(a). As o®™ is an equilibrium of T'(S, a}), there must

be at least one committee member, say 7, such that

k( _km : k .
VEGRT) 2 (1= 8)8s +5_int V(o)

otherwise some player would have a profitable deviation in the first period of I'(S, ay). It
follows that

BE(oF™) As; +eF > (1 - 8)As;, + 5[ inf  BF(0)Asy, — sﬂ .
oe&(S,ay)

Taking the limit as m — oo, we obtain inf;cg(gq,) BE(o) > 1 —2(¢¥/As;,). This implies
that inf,eg(s,a,) BF(o) converges to one as k — oo and, therefore, that there exists a null

< ¥ forall k € N,

sequence {n¥} such that limy_,., max;ey infeg(s,ap) VF(o) — As;
thus completing the first step of the argument.

We now turn to the second step of the proof. Observe first that, as (1 — d)(s; —
apyri) A — dnF converges to (1 — §)As; > 0 as k — oo, there is a sufficiently large K € N
such that (1 — 0)(s; — apyri)A — 6n* > 0, for all k > K. Let k > K, and suppose

that I'(S, o) has an equilibrium in which alternative R is implemented with positive

probability. Consider the first period of I'(.S, ) in which R may be implemented. Every
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decisive voter i’s benefit from rejecting any proposal to change S to R is bounded below
by (1—0)(s; — aryri) A+ [(As; —n*) — As;| > 0, where the bracketed term represents the
difference between the lower and upper bounds on ¢’s continuation payoffs from rejecting
R and accepting it, respectively. (Recall that each committee member i’s maximum payoff
is As; when the belief is smaller than or equal to é&,.) Hence, every proposal to amend S
to R is rejected in any equilibrium of I'(S, ). We thus have V*(0) = As;, for alli € N
and all o € £(S, ag).

If ag > Gy, then Lemma 1(ii) follows immediately from the previous paragraph; so
suppose that ag < é&,. To complete the proof of the result, consider the first period of
I'(S,ak). If alternative R is implemented, then the expected payoff to each committee
member ¢ is [1 —4(1 —vA)] agYAri+5(1—agyA)As; < As;, where the inequality follows
from ag < &y, and the definition of the committee members’ optimal cutoffs in Subsection
3.2; if alternative S is instead implemented, then her expected payoff will be a convex
combination of [1 — §(1 — yA)]agyAr; + 6(1 — agyA)As; (if R is implemented with
positive probability in a future period) and As;, with a positive coefficient on the latter.
Therefore, all committee members are strictly better off implementing R: they all reject
proposals to amend S to R (when decisive). Hence, V*(0) = As;, foralli € N, k > K
and o € £(S5, ar). Applying the same argument recursively from belief ax_1 to belief &,
we obtain that, for all a < Gy, I'(S, @) has a unique equilibrium outcome: Alternative S
is implemented in every period. By the same logic, the same is also true in game I'(.S, ax),
ar < G&p. In such a game, every decisive voter receives her largest possible payoff As; if
she accepts a proposal to change the status quo R to S, since the latter will then never be
amended. Any such a proposal must therefore be successful and, as S is the ideal policy
of all players, some proposer must successfully propose it in equilibrium.

Finally, S being the ideal alternative of all the players, it is easy to construct an equi-
librium in which all players always propose alternative S (conditional on being recognized
to propose), accept any proposal to change status quo R to alternative S, and reject any

proposal to amend status quo S.
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B Proof of Proposition [2} Collegial Rules

Section B in the main Appendix contains a proof of Proposition 2 for cases where the

voting rule is noncollegial. This section covers all other cases.

(i) Unanimity rule. Suppose now that D = {N}. As in the proof of Proposition 1, we
denote by I'(p | «v) the continuation game that begins with status quop € {R, S} x [0, 1] x X
and belief o € A.

Lemma B1. Suppose D is unanimity rule and 7 = 1. Then there exists Ay > 0 such that,
for all A < Ay and all (1,z) € [0,1] x X:

(i) T(R, 7,2 | 1) has a renegotiation-proof equilibrium and, in any such equilibrium, each
committee member i’s payoff is wi(R, T,z | 1) = 'yA[(l —7)r; + T:E[F] ;and

(ii) the set of renegotiation-proof equilibrium payoffs for T'(S,7,x | 1) is the simplex
{(wi,...;wp) €R™: 30wy =V*(1) and w; > [(1 = 7)s; + 72,5 A, Vi € N}.

Proof. Let Ay =sup {A € Ry: (1 —eP2) < e P2(n—2)} > 0. Henceforth, we assume
that A < Ay.

Let (1,2) € [0,1] x X, let w® € {(wy,...,w,) € R™: 31 | w; = V*(1) and w; > [(1 -
T)Si +7xi§] A}. To prove the lemma, we will construct a renegotiation-proof equilibrium o
for T'(S, 7,2 | 1) in which every committee member i receives wY, thus establishing part (ii).
In that equilibrium, the optimal stopping rule will be implemented in every period both
on and off the path. As I'(R, 7,z | 1) is itself a continuation game in I'(S, 7, x | 1), this will
also establish that I'(R, 7,z | 1) has a renegotiation-proof equilibrium. If the status quo is
(R, 7,z) and the belief is equal to 1, then each committee member i can obtain a payoff
of wi(R, T,z | 1) by rejecting any future proposal to amend the status quo. As the payoff

vector (wj(R, T,z | 1))j <y 18 in the Pareto frontier (and D is unanimity rule), it follows

N
that w;(R, 7,z | 1) is i’s payoff in any (renegotiation-proof) equilibrium for I'(R, 7,z | 1).

We begin with an intuitive description of the equilibrium o. Alternative R is im-
plemented in each period (both on and off the path). As the belief is equal to 1, this

implies that payoff vectors are Pareto optimal in every continuation game. Once S has
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been implemented, all proposers pass in all future periods, irrespective of the tax rate and
distribution of revenues. If R has not yet been implemented, then behavior is determined
by a set of n “phases,” each corresponding to one committee member in N. In commit-
tee member ’s phase, every proposer successfully offers a policy that gives a payoff of
VAT =34 [(1—7")s; +7y;5] A to i and a payoff of [(1—7")s; +7y;5] A to each commit-
tee member j # i, where (S, 7',y) is the status quo policy. The idea is that i receives her
“reward payoff” and the others their “punishment payoffs.” If a proposer, say i, deviates,
then every committee member (other than 7) rejects her proposal and the game transitions
to the phase of the first committee member who rejected the proposal. If voter i rejects a
proposal which she should have accepted, then the game moves to the another committee
member’s phase.

We now turn to the formal definition of ¢ for the continuation game I'(S, 7,2z | 1). As
in the case of noncollegial rules, we divide each period into n “parts,” each consisting of a
proposal stage and the n voting stages that follow it. Changes of phases can only occur
at the end of these parts. A phase is formally represented by a pair (¢,i) € {1,...,n} X
{0,1,...,n}. In every period that begins with status quo p = (a,7’,y) and an order of
proposers (71, ...,my,), o prescribes the following behavior in phase (¢, 1):

(a) If a = R, then proposer 7, passes; and if a = S, then she offers policy (R, 1,%"),

where
w}/V*(1) ifi=0,
y; =4 wilp | HA/VH(1) ifiA0&j#i,
VA1) = s wilp | D] /V*(1) ii#0&j=i,
for all j € N;

(b) if a = S and 7 offered (R, 1,y%), then every voter accepts it (irrespective of the
previous voters’ actions);
(c) if @ = R and 7, proposed some policy p' = (a’, 7", 2) # p, then voter j € N votes
to accept it if and only if
wi(p'|1) ifd =R,

wj(p]1)<(1—5)wj(p’| 1)+46 ‘ :
y;Ve(1) ifd =S
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(d) if a = S and 7y proposed some policy p’ ¢ {(R, 1, yi),p}, then every voter j acts
according to the following rules:

(d1) if any previous voter has already rejected p’, then j also rejects it;

(d2) if she is the nth voter and p’ has not yet been rejected by any voter, then she
accepts p’ if and only if the following holds

(1= &) (p' | 1)+ 0y7 V(1) > (1= de)wj(p | 1) + ey V(1) if j # me
(1= 8)uw;(p' | 1)+ 0y7 V(1) > (1= de)wj(p | 1) + e V(1) if j =,
where 2 = min N \ {m,} and

; 1 ifee{l,...,n—1},
0 ifl=n;

~
Il

(d3) if she is the kth voter, k < n, and p’ has not yet been rejected by any voter, then
she accepts p’ if and only if all the remaining voters will also accept it and the following

holds

(1= )wj(p' | 1) + 6y V(1) > (1= dp)w;(p | 1) + e V(1) if j # e

(1= O)w;(p' | 1) + 6y V(1) > (1= 0p)wy(p | 1) + gyt V*(1) if j =g .

Observe that, from (a) and (b) above, every committee member j’s continuation value
at the start of phase (¢,4) is w;(p | 1) if a = R, and y;:V*(l) ifa=S5.

In period 1, play begins in phase (1,0). Then in every period, at the end of any part that
began with status quo p = (a,7’,y) and in some phase (¢,i) € {1,...,n} x {0,1,...,n}:

(t1) If « = R and 7, passed, then the game transitions to phase (¢ + 1,7) (we set
¢+ 1 =1 whenever { = n);

(t2) if @ = S and 7 proposed (R, 1,%%) which was accepted, then the game transitions
to phase (1,14);

(t3) if a = S and 7, proposed (R, 1,y') which was rejected, then the game transitions
to phase (¢+1,7+1) (set j+1 =1 whenever j = n), where j is the first voter who rejected
it;

(t4) if a = R and 7, proposed some policy p’ # p, then the game transitions to phase

(1,1) if p’ was accepted, and to phase (¢ + 1,7) otherwise;
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(t5) if a = S and 7y proposed some policy p’ ¢ {(R, 1, yi),p} which was accepted, then
the game transitions to phase (£ + 1, m);

(t6) if @ = S and my proposed some policy p’ ¢ {(R, 1,yi),p} which was rejected by
some voter in N \ {m¢}, then the game transitions to phase (¢ + 1, j), where j is the first
voter in N \ {my} who rejected p’; and

(t7) if a = S and 7, proposed some policy p’ ¢ {(R, 1, yi),p} which was only rejected
by 7y herself, then the game transitions to phase (¢ 4 1,1);

(t8) if a = S and 7y passed, then the game transitions to phase (£ + 1,7 + 1).

We now verify that for A < Ay, ¢ is an equilibrium. Take an arbitrary committee
member j € N, and consider a voting stage with status quo p = (a,7’,y) in some phase
(¢,7). Suppose first that a = S and 7, proposed (R, 1,%%), so that o prescribes j to accept
this proposal (see (b)). If some previous voter has already rejected the proposal, then j
has trivially no profitable deviation: her decision will have no impact on her payoff. If she
is the first voter, or if all previous voters have accepted the proposal, then her decision
does impact her payoff. If she accepts (R, 1,y%) then, from (b) and (t2) above, she receives
a payoff of yj-V*(l); if she rejects (R, 1,%") then, from (t3), the game transitions to phase
(0 + 1,7+ 1) and she receives (1 — §)w;(p | 1) + 5y§+1V*(1). Since

iV (1) = wi(p | 1) = (1= )w;(p | 1) + o) V(1)

she is better off accepting.

Suppose now that @ = R and m, proposed some policy p' # p. If p’ is accepted
then, from (t4), the game transitions to phase (1,7) and committee member j receives
wi(p'|1) ifd =R,
yiVi(1) ifd =S;

It follows from (c) that, under o, her decision is optimal whenever she is decisive. Hence,

(1—-0w;p' |1)+0 if p’ is rejected then she receives w;(p | 1).

she cannot profitably deviate from o.
Finally, suppose that a = S and 7y proposed some policy p’ ¢ {(R, 1, %), p}:
e If some voter in N \ {my,j} has already rejected the proposal then, from (t6), her

decision will not have any impact on her payoff and is therefore optimal.
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e If 7, is the only voter who has already rejected p’, then the choice of voter j # my
has no impact on her stage-game payoff in this period but will impact the transition to
the next phase. It follows from (t6) and (t7) that she cannot improve on rejecting, which
is the action prescribed by o (see (d1)).

e If p’ has not yet been rejected and j is the nth voter, then it follows from (d2) and
(t5)-(t7) that o prescribes her to accept p’ if and only if she is strictly better off doing so.
The same is true if j is not the last voter and she anticipates that all the remaining voters
will accept p’ — see (d3).

e If p’ has not yet been rejected, j is not the last voter and she anticipates the some of
the remaining voters will reject p’, then her choice has no impact on the policy that will be
implemented in the current period. If, in addition, j = 7, then her choice does not have
any impact on her continuation value either and, therefore, rejecting is optimal. If instead
j # my, then her decision will impact the transition to the next phase. It follows from (t6)
and (t7) that she is better off rejecting, as prescribed by o. (She can only be indifferent if
¢ is the only other voter who will reject p/, and j = i.)

This proves that deviations in voting stages are unprofitable. We now turn to proposal
stages. Consider the proposal stage of any phase (¢,7) that begins with a status quo
p = (a,7',y). Suppose first that a = R. If j = 7y passes, as prescribed by o, then from
(t1) she receives a payoff of y}V*(l). If she deviates by proposing a policy p’ # p then,

from (c), her proposal will be rejected: as the payoff vector (wk(p | 1)) belongs to the

keN
Pareto frontier, it is impossible to offer every committee member k a higher payoff than
wi(p | 1). It then follows from (a) that proposer j gets a payoff of w;(p | 1) < y§V*(1)
(with a strict inequality if and only if ¢ = j). Hence, j cannot profitably deviate from
passing.

Suppose now that a = S. If j = 7, proposes (R, 1,3%), as prescribed by o, then from
(b), (t2) and (a), she receives a payoff of y;V*(l) If she deviates by passing, then she

receives (1 — §)w;(p | 1) in the current period and the game then transitions to phase

(+1,7+1) (see (t8)). She thus receives

(1= b0)wi(p| 1) + ey} T V(1) = wi(p | 1) < yjV*(1)
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(with a strict inequality if and only if ¢ = j). Hence, passing is not a profitable deviation.
Finally, if she deviates by proposing a policy p’ # (R, 1,y") then, from (c), her proposal
will be rejected. To see this, observe that from (d), she would have to offer more than
(1= dp)wi(p | 1) + Sgylle*(l) to all the other committee members k # j, and more than
w;(p | 1) to herself. Summing across the committee members and rearranging terms, a
successful proposal would have to generate a total sum of payoffs that exceeds (1 — 5@)§A +
0 [VF(1) + (n — 2)[V*(1) — 5A]] = (1 — §¢)5A + d¢[y7 + (n — 2)[y7 — 5]] A. As aggregate
payoffs are bounded above by V*(1) = yAr, this would require that

(1= 3¢)5 + O [yF + (n — 2)[y7 — 3] <7 (B2)

or, equivalently, 1 — §; < Sg(n — 2). This is impossible since A < Aj. Moreover, it follows
from (t6)-(t7) that the game will then transition to phase (£+ 1,7). As a result, j obtains
a payoff of

(1= d0)wi(p | 1) + by V(1) = wj(p | 1) < yiV*(1)

(with k # 7) if she deviates by making a proposal p’ # (R, 1,y%). Hence, such a deviation
is unprofitable. O

Lemma B2. Suppose D is unanimity rule and 7 = 1. Then there exists Ay > 0 such that,
for all A < Ag, all beliefs oy, < o* and all (1,z) € [0,1] x X:

(i) T(S, 7,2 | ag) has a renegotiation-proof equilibrium and, in any such equilibrium, each
committee member i’s payoff is wi(S, T, x | ag) = apyA[(1 — 7)s; + T2;8); and

(ii) the set of renegotiation-proof equilibrium payoffs for I'(R,T,x | o) is the simplex
{(wl, o wy) €R™ T wy = SA and w; > ozk’yA[(l — 7)1 —i—TxiF],W € N}.

Proof. An application of I’'Hopital’s rule gives

. * pS
lim o™ = —
A0 Y[(p+ )7 — 5]
so that
R ¢ i) B
A0 (p+~)r—5

95



It follows that
Ay = sup {A>0:[1-6(1-a"yA)]s—[1-0(1—vA)]a* 7 < (1 — " yA)(n — 2)[5 — ™ y7]}

is well-defined and positive. Observe that if A < Kz, then the following inequality holds

for all beliefs oy, < o*:
[1 —6(1— ak'yA)]E — [1 —6(1— 'yA)]ozkvf <01 — apyA)(n — 2)[5 — agy7] -

Henceforth, we assume that A < Ag = min{Aq, 82}

To prove the lemma, one can use an equilibrium construction that parallels that in the
proof of Lemma In this equilibrium, when the status quo is of the form p = (a,7’,y)
and the belief is @ < oy, committee member i’s reward payoff is V*(«a) — Z#i wj(p |
) = SA =3 ., ayA[(1 = 7)rj + 7'y;5] and her punishment payoff is wi(p | a) =
avyA [(1 — 7+ 7' yig] . If the belief becomes equal to one, then the equilibrium described
in Lemma is played. The argument is then exactly the same. In particular, the key

condition , necessary for proposers to have profitable deviations, now becomes
11— be(1 — YA)|ay AT + 6e(1 — ayA) V(@) + (n—2)(V*(a) — ayAT)] < V()
or, equivalently,
6e(1 — apyA)(n — 2)[5 — anyr] < [1- bo(1 — ayA)|s—[1- be(1 — YA)] i
This cannot hold since A < As. O

Lemma B3. Suppose D is unanimity rule and © = 1. Then there exists Ay > 0 such that,
for all A < Ag, all beliefs ay, € [a1,a*) and all (1,2) € [0,1] x X:

(i) T(a, 7,z | a), a € {R,S}, has a renegotiation-proof equilibrium that sustains the
optimal stopping rule; and

(1)) T(R,1,x | ax) has a renegotiation-proof equilibrium in which each committee member

i’s expected payoff is x;V*(ay).

Proof. Let Ay be defined as in Lemma To prove Lemma consider first the simple

variant on the standard Baron-Ferejohn model, denoted G(a, T,z | ag), in which the
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policy space is not the unit simplex but {(wl, conwp) €R™ ST w; < VF(ay) and w; >
wi(S, T,z | o), Vi € N }, and the probability that committee member i is selected to
propose is equal to the probability ¢; that she is the last proposer in our model. It is well
known that this game has a (pure strategy) stationary subgame perfect equilibrium, in
which the selected proposer makes the same (successful) proposal, w*(S, 7,z | o), in every
period.

Let k* € N be implicitly defined by ag« = o, and let (7,z) € [0,1] x X. Consider a
strategy profile o* ~1 for I'(R, 7,z | ag+_1) that prescribes the following behavior in any
period that begins with a status quo p = (a,7',y), a belief @ € {ay € A: k > k*—1}U{1},
and an order of proposers (7, ...,Ty):

a) If &« = ag+_1 and a = R, then all proposers pass (irrespective of the previous history
of play);

b) if @« = ag«_1, a = R, and some proposer has offered a policy p’ = (', 7", 2) # p,

then voter i votes to accept p’ if and only if

wilp | aw1) wiltlon )y () ifa =R,
Tap_Ar ¥ @) < . |
Q1727 (1 =06)si A+ o0V*(agr—1) ijl qgjw!(p' | ag=—1) ifad =8

¢) if @ = ap+—1 and a = 5, then each proposer 7y, ¢ < n, passes and proposer 7, offers
policy (R,1,y™ (S, 7",y | ar-_1));

d) if @« = ag+_1, a = S, and some proposer has offered a policy p' = (a/, 7", 2) # p,
then voter ¢ makes the same decision as when she is offered the following policy in the
stationary subgame perfect equilibrium of G(S, 7',y | ag_1):

wi (P |ogex —1) 1 74 e
el (1) ifd =R,

(1 —0)siA + V™ (aue—1) D54 qug(p’ | ag—1) ifd =5
e) if @ < o* and a = R, then the committee plays an equilibrium of T'(R, 7,y | «) in
which each committee member i’s payoft is %V* () (see Lemma (ii)); if o« < a* and
a = S, then the committee plays an equilibrium of I'(R, 7,y | &) in which each committee
member i’s payoff is w;(p | @) (see Lemma B2(1));
d) if @ = 1 and a = R, then the committee plays an equilibrium of I'(R, 7',y | 1) in

which each committee member i’s payoff is w;(p | 1) (see Lemma [BIfi)); if & = 1 and
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a =S, then the committee plays an equilibrium of I'(S,7/,y | 1) in which each committee

member i’s payoff is % (see Lemma (11))

It is readily checked that o* ! is an equilibrium for I'(R, 7,z | ag-_1). In particular,
the acceptance condition in case b) compares the voter’s continuation value from reject-
ing the proposal (left side of the inequality) with her continuation value from accepting
it (right side). As the optimal stopping rule is implemented in case of rejection (and the
voting rule is unanimity), at least one voter must voter to reject the proposal. It follows
that any proposal is unsuccessful in case a) and, therefore, passing is optimal for all pro-
posers. In the other cases, any deviation is by construction unprofitable. Moreover, as
the optimal stopping rule is implemented in every continuation game both on and off the

equilibrium path, o* 1

is a renegotiation-proof equilibrium. As I'(S, 7,z | ag+_1) is a
continuation game of I'(R, 7,z | ag+_1), the restriction of o* =1 to I'(S, 7,2 | ay_1) is also
a renegotiation-proof equilibrium. To complete the proof of the lemma for the case where
k = k* — 1, observe that if 7 = 1, then each committee member i’s payoff in equilibrium
of s 2 VF (ape_1).

To obtain the result for any k € {1,...,k*—1}, one can then proceed recursively: having
obtained an equilibrium o**! for every continuation game of the form I'(a, 7',y | cpi1),

one can apply the same construction as above at belief oy to obtain a renegotiation-proof

equilibrium o* for every game I'(a, 7,z | az). O

Lemma B4. Suppose D is unanimity rule and ¥ = 1. Then there exists A > 0 such that,
for all A < A, the set of renegotiation-proof equilibrium payoffs for T'(S,0,2° | ag) is the
simplex {(wl, conwp) €R™ ST w; = Vi (ap) and w; > s;A, Vi € N}.

Proof. 1t follows from Assumption A1l that, for sufficiently small A, V*(ag)/A > 5. There-
fore, the threshold

Ay ={A>0:0(n—2)[(V(ag)/A) — 5] < (1—8)[(V*(a0)/A) — 5]}

is well-defined and positive. Henceforth, we assume that A < A = min{As, 53}
To prove the lemma, one can use again an equilibrium construction that parallels that in

the proof of Lemma In this equilibrium, when the status quo is of the form p = (S, 7/, y)
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and the belief is cg, committee member i’s reward payoff is V*(cg) — >_, ., w;(p | o) =
SA — > ;. s;A and her punishment payoff is wi(p | ao) = s;A. If the belief becomes
equal to aq, then an equilibrium as described in Lemma is played — in particular, the
equilibrium described in Lemma [B3[(ii) if the status quo is of the form (R,1,z) for some
x € X — and if the belief becomes equal to one, then the equilibrium described in Lemma
[BI] is played. The argument is then exactly the same. In particular, the key condition

, necessary for proposers to have profitable deviations, is now
(1= 00)5A + 8 [V* () + (n — 2)(V*(aw0) — 5A)] < V*(ap)

or, equivalently,

§o(n — 2) {V*(AO‘O) _ g} <(1-8) [V*(O‘“) _ g]

As A < A, this inequality cannot hold. O

Let A < A, where A > 0 is the threshold defined in Lemma To complete the
proof for the unanimity case, observe that in any equilibrium, each committee member 7’s
expected payoff must be greater than or equal to s;A; otherwise, i could profitably deviate
by rejecting all proposals in every period. Hence, the set of equilibrium payoff vectors is a
subset of {(wl, o wp) €R™ T w; < VF(ap) and wy; > s;A, Vi€ N}. It follows from
Lemma [B4] that any equilibrium that fails to support the optimal stopping rule is Pareto
dominated by some renegotiation-proof equilibrium. Therefore, the set of renegotiation-
proof equilibrium payoff vectors is {(w1,...,w,) € R™: 37" w; = V*(ap) and w; >

5iA,Vi € N} (Lemma .

(ii) Other collegial rules. Suppose first that ) # V = (D ¢ D. Let m = [N\ V|,
and let A = sup{A € Ry:2(1 — e P2) < e 2/m} > 0. To establish the result in this
case, we will use an analogous argument to that used for noncollegial rules: we will show
that every payoff vector in W = {(wl, coowy) €RME T w = Vi (o), wi > siAVioe
V,and w; > 0Vi ¢ V} can be supported in a renegotiation-proof equilibrium. As the

set of equilibrium payoff vectors must be contained in {(wl, cowy) € RS w <
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V*(ap), wi > siA Vi € V, and w; > 0 Vi ¢ V'}, this implies that the set of renegotiation-
proof equilibrium vectors is W.

Take an arbitrary w® € W, and let y € X be defined by ¥ = w?/V*(ap) for all i € N.
Our objective is to construct an equilibrium o, in which: (i) the committee implements the
optimal stopping rule in every continuation game (so that o is renegotiation-proof); (ii) on
the path, aggregate revenues are distributed according to 3° in every period. To this end,

we first define revenue distributions y*(p | a) € X, for alli € N and p € {R, S} x[0,1] x X,
as follows: Let S(p | a) = V*(a) — Y ey wi(p | @); and let

( wilola) -
V%@ ifjev,
0 fj=i& gV,

yi(p | a) =
’ LS(pla) ifjAieV&j¢V,

| 25 S la) ifjAi¢V&jEV,

for all j € N. As the optimal stopping rule is implemented in every continuation game

both on and off the path, such an equilibrium must be renegotiation-proof.

We define the strategy profile ¢ in terms of “phases,” formally represented by pairs in
{1,...,n} x{0,1,...,n}. Every phase (¢,i) prescribes behavior in the ¢th proposal stage
of any given period and in the n voting stages that follow it: “¢” indicates that ¢ prescribes
policy (a*(a), 1, yi) to be implemented. Specifically, in any period in where the status quo
is p, the belief is @ € A and the order of proposers is (71, ...,7,), if the game is in phase
(¢,1) # (n,m,), then o prescribes the following behavior:

(P1) proposer 7y offers policy (a* (), 1, yi);

(Vl.a) if m; offered (a*(c),1,y") where i ¢ V, then every voter j # i accepts it, and
voter 7 accepts it if and only if one of the following conditions hold: she is the first voter;
or all the previous voters accepted (a* (a),1, yi); or some of the previous voters rejected it
and

(1= d)wi(p | a) + OE[yf(p | &)V*(&) | a,p] ifL=mn,
yf(p!a)V*(a)z orl=n—1&i=m,,
yzk(p | )V*(a) otherwise,

where k is the last of the previous voters who rejected it.
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(V1.b) if m; offered (a*(a),1,y") where i € V, then all voters accept it.

(V2a) if mp offered any p’ # (a*(a),1,5") in P(p | @) = {p” € {R, S} x[0,1]x X : w;(p" |
@) <wj(p | @),Vj € V}, then each voter j acts as follows:
o If she is a vetoer and w;(p’ | @) < w;(p | ), then she rejects p’ (irrespective of the
previous voters’ choices);
e otherwise, she accepts p’ if and only if (1 — 6)w;(p’ | @) + JE [yf(p’ | a@)V*(@) | a,p] is

greater than

(1—5)wj(p|a)+5E[yf(p|d)V*(d)|oz,p] fl=n—-1&k=m,,or{=n,

yf (p | )V*(a) otherwise,

where k is the last of the vetoers in V" = {i € V: w;j(p' | ) < w;(p | @)} in the sequence
of voters.

(V2b) if mp offered any p’ # (a*(a),1,y") outside P(p | a), then each voter j acts as
follows:

o If she is a vetoer, then she accepts p’ if and only if w;(p’ | @) > w;(p | a);

e if she is not a vetoer, then she rejects p’.

If the game is in phase (n,7,), then o prescribes the following behavior: (i) proposer 7,
passes; and (ii) if m, proposed some policy p’ # p, then j behaves as in case (V2a) if
p' € P(p| a), and as in case (V2b) otherwise.

Phases evolve according to the following recursive rules. In period 1, play begins in
phase (1,0). Then in every period, at the end of any sequence of votes that began in any
phase (¢,7) # (n,wn)ﬂ

(t1l.a) If policy (a* (a),1, yi), where ¢ ¢ V', was proposed and accepted by all voters but
i, then the game transitions to phase (1,1);

(t1.b) If policy (a*(a), 1,yi), where ¢ € V, was proposed and accepted by all voters,
then the game transitions to phase (1,1);

(t2.a) if policy (a*(a), 1, yi), where i ¢ V| was accepted but some voters different from

i rejected it, then the game transitions to phase (1, k), where k is the last of those voters;

12%We set £ 4+ 1 = 1 whenever £ = n.
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(t2.b) if policy (a*(a), 1,yi), where i € V', was accepted but some voters rejected it,
then the game transitions to phase (1, k), where k is the last of those voters;

(t3.a) if policy (a* (), 1, yi), where i ¢ V', was proposed and rejected, then the game
transitions to phase (¢ + 1,k), where k is the last voter different from i who rejected
(a*(a), 1,y');

(t3.b) if policy (a* (), 1, yi), where 7 € V', was proposed and rejected, then the game
transitions to phase (¢ + 1, k), where k is the last voter who rejected (a*(a), 1, yi);

(t4) if the status quo differs from (a* (), 1, yz) and proposer m; passes, then the game
moves to phase (¢ + 1,my);

(t5) if proposer 7, offered a policy p’ # (a* (), 1, yz) in P(p | «) and her proposal was
rejected by all vetoers j such that w;(p’ | o) < w;(p | ), then the game transitions to
phase (¢ + 1,mp);

(t6) if proposer 7, offered a policy p’ # (a* (), 1, yi) in P(p | &) and her proposal was
rejected by the committee, but accepted by some vetoers j such that w;(p’ | o) < w;(p | @),
then the game transitions to phase (¢ + 1,k), where k is the last of those vetoers who
accepted p;

(t7) if proposer 7, offered a policy p’ # (a* (), 1, yl) in P(p | «) and her proposal was
accepted by the committee, then the game transitions to phase (1, k), where k is the last
vetoer j such that w;(p’ | o) < wj(p | a);

(t8) if proposer 7, offered a policy p’ # (a*(a), 1, y’) outside P(p | a) and her proposal
was rejected by all voters in N \ V', then the game transitions to phase (¢ + 1, m);

(t9) if proposer 7y offered a policy p’ # (a*(a), 1, yi) outside P(p | @) and her proposal
was rejected by the committee, but accepted by some voters in N \ V, then the game
transitions to phase (¢ + 1, k), where k is the last of the voters in N \ V' who accepted p/;

(t10) if proposer my offered a policy p’ # (a* (), 1, yi) outside P(p | «) and her proposal
was accepted by the committee, then the game transitions to phase (1, k%), where k is the
last of the voters in N \ V' who accepted p/;

At the end of any sequence of votes that began in phase (n,m,), we have the following

transitions that parallel cases (t5)-(t10) above:
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(t11) If the proposer 7, passed, then the game transitions to phase (1, 7,);

(t12) if proposer 7y offered a policy p’ # p in P(p | &) and her proposal was rejected by
all vetoers j such that w;(p’ | @) < w;(p | @), then the game transitions to phase (1, m,);

(t13) if proposer 7, offered a policy p’ # p in P(p | @) and her proposal was rejected
by the committee, but accepted by some vetoers j such that w;(p’ | @) < w;(p | @), then
the game transitions to phase (1, k), where k is the last of those vetoers who accepted p';

(t14) if proposer my offered a policy p’ # p in P(p | a) and her proposal was accepted
by the committee, then the game transitions to phase (1, k), where k is the last vetoer j
such that w;(p’ | @) < w;(p | @);

(t15) if proposer my offered a policy p’ # p outside P(p | «) and her proposal was
rejected by all voters in N \ V, then the game transitions to phase (1, 7);

(t16) if proposer my offered a policy p’ # p outside P(p | @) and her proposal was rejected
by the committee, but accepted by some voters in N \ V, then the game transitions to
phase (1, k), where k is the last of the voters in N \ V' who accepted p';

(t17) if proposer m; offered a policy p’ # p outside P(p | ) and her proposal was
accepted by the committee, then the game transitions to phase (1, k), where k is the last
of the voters in N \ V who accepted p';

We now verify that for A < A, this strategy profile is an equilibrium. We begin with
committee member j’s voting behavior. Consider in any period in where the status quo is
p, the belief is @ € A and the order of proposers is (71, ...,7,). There are several cases:
e Case 1: In phase (£,i) # (n,m,), T has proposed (a*(a),l,yi). Observe first that it
follows from the definition of ¢ that voter j’s continuation value at the start of any phase
(0,7) is

y;(p | a)V* () ifl<n,
(1—=90)w;(p|a)+ 5E[y§-(p |@)V*(a) | a,p] ifl=mn.
We assume that ¢ ¢ V; the case where i € V' is analogous — just replace “all the previous
voters but ¢” and “the previous voters different from ¢” by “all the previous voters.” We
consider several cases in turn:

(1.a) i =0 (so that £ =1 and a = ayg).
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(1.a.i) j # . Voter j is better off accepting (R, 1,%°), as prescribed. Indeed, if she is
the first voter, or if all the previous voters but i have accepted (R, 1,4"), then she receives
y9V* () if she accepts; while if she rejects, then the game moves to phase (2, j) and she
receives yg (p | a0)V*(ap); and, by construction y? > yj (p | ap). If some of the previous
voters different from i have rejected (R, 1,3"), then she receives yg (p | 2)V* () if she
also rejects it, and y}“(p | ap)V* () > y? (p | «)V* () if she instead accepts it, where k
is the last of the previous voters different from ¢ who rejected it.

(1.a.11) j = i. If voter ¢ is the first voter, or if all the previous voters have accepted
(R, 1,y"), then her choice does not affect her payoff. If some of the previous voters rejected
(R,1,y"), then her decision can only affect her payoff if she is pivotal. In the latter case,
her voting strategy prescribes her to accept if and only if her continuation value from
accepting is greater than or equal to her continuation value from rejecting. Hence, she
cannot profitably deviate from o.

(1.b) i #0.

(1.b.1) j #i. There are several cases:
el/<n—1,0orl=n—1andj # m,. In this case, the same argument as in (1.a) shows
that voter j is better off accepting (a*(a), Ly (p | a)), as prescribed by o.

e/ =n—1and j = m,. If jis the first voter, or if all the previous voters different
from i have accepted (a*(),1,y"(p | @)), then her payoff is y;'-V*(a) if she also accepts
it, and (1 — d)w;(p | a) + 6E [yg(p | &)V*(&) | a,p] if she rejects it. We have yéV*(a) =

(1-0)w;j(p|a)+JE [yj(p | @)V*(&) | o, p] = w;j(p | @) when j is a vetoer, and

YV (@)= —S(pla)> (1-9)Sp|a) > (1-duw;p|a)

1
m
= (1= 6)w;(p | @) + B[y (p | &)V*(@) | . p]
when she is not a vetoer. (The strict inequality follows from A < A.) Hence, j cannot
profitably deviate from accepting the proposal (as prescribed by ) in this case.
Now suppose that some of the previous voters different from 7 have rejected (a*(a), Ly (p |

a)). If j7 choice is not pivotal, then she is better off accepting the proposal (as prescribed

by o) in order to ensure a transition to a phase where she will receive her largest contin-
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uation payoff. If j’s choice is pivotal and she is a vetoer, then she is indifferent between
accepting and rejecting: in both cases, some committee member k (possibly equal to j)
will be “punished” and she will receive w;(p | o). If j’s choice is pivotal and she is not a
vetoer, then she has two options:

o If she votes to accept p* = (a*(a),1,3'(p | @)) (so that it is accepted by the commit-
tee), then p* is implemented and the game transitions to phase (1, k), where k # j is the
last voter different from ¢ who voted to reject p*. In this case, j receives a payoff of

1

* * |~ * [~ * 1 * 1
(1= yuyp" | @)+ SE[E (" | 8)V*(@) | ,p"] = 256" | 0) = ~S(p | ) >
where the first equality follows from y;(p* | ) = y;“(p* | @) (since j ¢ {i,k}), and the
second from the fact that wy(p* | o) = we(p | @) for all £ € V.
o If she votes to reject p* = (a*(a),1,y"(p | @)) (so that it is rejected by the committee),

then the game moves to phase (n,7,), in which she will first pass as a proposer and will

then receive her “punishment payoff.” That is, she obtains
. B .~ 1
(1= 8)w;(p | @) +E[y;(p | &)V*(@) | ap] < (1= 8)S(p| @) < —S(p|a) ,

where the first inequality follows from the fact that yj (p | @) for all @ € A, and the second
from A < A.

We conclude that voter j is better off accepting the proposal, as prescribed from o.

e { =n (so that i # m,). The argument is exactly the same as in the case where £ =n —1
and j = m,. (In particular, as in that case, if the proposal is rejected both by j and
by the committee, then the status quo policy p is implemented and j receives her lowest
continuation value from the next period on.)

(1.b.i) j =i. The argument is exactly the same as in case (1.a.ii).

e Case 2: In phase (£,i) # (n, ), m; has proposed a policy p’ # (a*(a), l,yi) in P(p| ).
(2.a) j is a vetoer and w;i(p’ | a) < wj(p | o). Suppose first that, given the previous
voters’ choices and the remaining voters’ strategies, voter j’s decision is not pivotal. In
this case, her choice only affects the transition to the next phase. It follows from the

transition rules (t5)-(t7) that she is always (weakly) better off rejecting p/, as prescribed
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by o. Now suppose that her decision is pivotal. If she rejects p’ then, from (t5)-(t7),
the game transitions to phase (¢ + 1,k) for some k # j, and she receives a payoff of
(1 = d)wj(p | @) +E[yf(p | @)V(@) | a,p] = yj(p | @)V*(a) = wj(p | a). If instead
she deviates, then the game transitions to phase (¢ + 1,7) (see (7)), and she receives
(1= 6)wy(p' | @) + SE[ (7 | &)V (@) | avp] = wj(0' | ). As wj( | @) < wj(p | ), she
is better off rejecting.

(2.b) Either j is not a vetoer or w;(p’ | o) > wj(p | a). If, given the previous voters’ choices
and the remaining voters’ strategies, voter j’s decision is not pivotal then, as above, any
deviation from o is unprofitable. If j’s vote is pivotal given the previous voters’ moves and
the remaining voters’ strategies, then it must be the case that all the vetoers in V" have
already voted and they all chose to accept p’. Let k be the last member of V" who moved. If
j chooses to accept p/, then her payoff will be (1—8)w;(p’ | a)+E [y (p' | @)V*(a) | o, p];

if she chooses to reject p/, then her payoff will be

(1—=90)w;(p | a) +5E[y}“(p |a)V*(@) |a,p] ifl=n—-1&k=my,orl=n,
yf(p | @)V* () otherwise.
It follows that j cannot profitably deviate from o.

e Case 3: In phase (£,i) # (n,my), m has proposed a policy p' # (a*(a),l,yi) outside
P(p | a).

(3a) j is a vetoer. By the same logic as above, she cannot profitably deviate from o if
she is not pivotal (given the previous voters’ choices and the remaining voters’ strategies).
Suppose she is pivotal. If she chooses to accept p’, then she receives (1 — d)w;(p’ | a) +
OE [yf(p’ | @)V*(@) | a,p] = w;(p' | @), where k is the last of the previous voters who
accepted p’ — there must be such voter, otherwise j would not be pivotal. If she chooses
to reject p/, then she receives wj(p | @): if £ = n—1 and k = m,, or if £ = n, then
she gets (1 — d)w;(p | o) + 5E[y;-“(p | &)V*(a) | a,p] = wj(p | a); otherwise, she gets
yf(p | )V*(a) | o, p] = w;(p | @). It follows that she cannot profitably deviate from o.
(8b) j is not a vetoer. By the same logic as in case (2.a) above, voter j cannot profitably
deviate from o if she is not pivotal (given the previous voters’ choices and the remaining

voters’ strategies). If she is pivotal, then there are several cases:
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(8.b.i) ¢ <n—1, or=n—1 and j # m,. If j accepts the proposal, then she receives
(1= 8wy | @) + SB[ | &V(@) | arp] = (1 - Suy @ | ) < (1 - 5)SE | a) <
(1 -96)S(p | ), where the equality follows from the fact that yg (p' | a@)=0forall @ € A,
and the second inequality follows from p’ ¢ P(p | o) (and, therefore, >, oy wi(p' | @) >
ey wi(p | @)). If she rejects p’ (as prescribed by o), then she receives yf(p | @) V*(a) =
LS(pla)>LSp|a)>(1-6)Sp|a), where the last inequality follows from A < A.

(8.b.ii) £ = n—1 and j = 7,, or £ = n. If j accepts the proposal then, by the
same logic as above, she receives a payoff that is smaller than (1 — 9)S(p | «). If she
rejects p’ (as prescribed by o), then she receives (1 — 0)w;(p | o) + JE [y;?(p | ) V*(a) |
a,p] = (1 =0)wi(p | a) +6[£5p | @) = (1 = Owj(a*(a),L,yf(p | a) | a)] = 6[=S(p |
a)—(1-=9)S(p| a)] > (1 —06)S(p | a), where the last inequality follows from A < A.

e Case 4: In phase (n,m,), T, has proposed a policy p' # p. One can show that voter j

cannot profitably deviate from ¢ by using the same arguments as in Cases 2 and 3.

We now turn to committee member ¢’s proposal behavior. Consider in any period in
where the status quo is p, the belief is &« € A and the order of proposers is (71,...,m,). In
phase (¢,i) # (n,7,), o prescribes her to propose (a* (), 1, yi), thus receiving a payoff of
y;(p | @)V*(«). Suppose that either £ <n —1, or £ =n — 1 and i # m,. If j deviates by
making any proposal p’ # (a*(a), 1, yi), then her proposal is rejected by the committee, the
game transitions to phase (£+1, ), and she receives yj (p|a)V*(a) < y} (p| ®)V*(a). The
deviation is therefore unprofitable. Now suppose that either f =n—1andi=m,,or{=n
(so that j # i). In this case, if j deviates by making any proposal p’ # (a* (), 1, yi), then
her proposal is rejected, the status quo policy p is implemented, and the game transitions
to the next period in phase (1,5). Hence, her payoff is equal to w? = (1 — &)w;(p |
a) + (5E[y§(p | @)V*(&) | a,p]. If j is a vetoer, then w? = w;(p | @) < y}(p | a)V* ()
(which holds with equality whenever ¢ # 0), and the deviation is therefore unprofitable. If

7 is not a vetoer, then

| =

wh=(1=8)wi(p|a) < (1-8)Sp|a)< =Sk |a)=yp|a)V(a),

3

where the second inequality follows from A < A, and the last equality from i # j ¢ V.
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Finally, in phase (n,m,), o prescribes proposer j = 7, to pass. If she does so, then the
status quo policy p is implemented and the period starts in phase (1,7,) (see (t11)). If
she deviates, proposing any policy p’ # p, then her proposal is rejected by the committee:
if p’ € P(p | «), then it is rejected by at least one vetoer (see (V2a)); if p’ ¢ P(p | ), then
it is rejected by all the voters without a veto (see V2b). Therefore, the status quo policy is
implemented and, from (t12) and (t15), the next period starts in phase (1,7,). It follows
that the proposer receive the same payoff irrespective of her choice and, consequently,
cannot profitably deviate from o.

We now turn to the case where ) # V = (D € D, i.e., the voting rule is oli-
garchich. If |[V| = 1, then the result is trivial: in every continuation game, the dicta-
tor redistributes all revenues to herself and, therefore, has the same objective function
as the social planner. If |V| > 3, then one can use the same equilibrium construc-
tions as above — or as in the V' = N case (section B in the main text) — to estab-
lish that {(wl, coown) € RY ST w = Vi(ap) and w; > s;A, Vi € V} is a subset of
renegotiation-proof equilibrium payoff vectors. As the set of equilibrium payoff vectors
must be a subset of {(wl,...,wn) e RY: Y0 w < V¥ag) and wy > s;A,Vi € V},
this proves that the set of renegotiation-proof equilibrium vectors is {(wl,...,wn) €
R} : >0 wi = V¥ () and w; > A, Vi € V}.

To complete the proof of the result for oligarchic rules, it remains to show that the same
is true if |V| = 2. In the previous cases, we could sustain equilibria in which a vetoer i
would receive a payoff of w;(p | @) in any continuation game I'(p | o) because it was always
possible to ensure that every proposal giving her more than w;(p | «) would be rejected by
at least one decisive coalition. In those equilibria, it was always impossible for ¢ to offer all
of the decisive voters more than their rewards for rejecting ¢’s proposals. The only reason
why the previous constructions do not apply in the |V| = 2 case is that ¢ only needs one
of the other players (the other vetoer) to accept her proposal. As § < 1, whenever i is
the last proposer (an event that occurs with positive probability in every period), she can
always make proposal that gives her more than w;(p | @) and the other vetoer more than

the maximum the latter would get by rejecting the proposal. This in turn implies that,
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in any period where she proposes last, vetoer 7 can guarantee herself some payoff greater
than w;(p | @) by rejecting the first (n — 1) proposals. One must therefore change the
lower bounds on the vetoers’ continuation values to account for this possibility. As in the
previous construction, if a vetoer ¢ deviates then, from the next period on, we “punish” her
by giving the other vetoer the total surplus minus #’s minimum continuation value. For
each i € V, let p; be the probability is the last proposer in each period, and let V" (p | «)

and V;” (p | @) be the solutions to the following functional equations:

Vo (p| @) = (1= 8)uwi(p | ) + 0B [@i(p| &) | o p]

Vii(pla)=V"(a) = (1-dw;p|a) - 5E[V*(07) —wi(p|a) | e,p|,
where w;(p | a) = p VT (p | a) + (1 — pi)V; (p | @) and j € V' \ {i}, for all p € {R, S} x
[0,1] x X. Intuitively, V" (p | ) [resp. V" (p | a)] stands for vetoer i’s minimum payoff in
continuation game I'(p | @) conditional on her being the last proposer [resp. not being the
last proposer|, and w;(p | @) stands for her minimum payoff in continuation game I'(p | «)
(computed before the realization of the order of proposers). We then obtain the result

with an equilibrium construction as above, but substituting w;(p | @) to w;(p | ) for each

1eV.

C Proof of Lemma C1

Let i,7 € N with ¢ € C7, and all k € N. By definition of W;, we have

J —(1— F— 0
Wz’ (1) (1 (2’7A 5Wz (1) — (1 _ 5)’)/(1 o %)(Tz _ 7:)

Fyrr[d(al — 7)) — (1-8)(1—a))] .

As xf —x; > 0, there exists Azlj > 0 such that Wf(l) — (1= 8)y7 — dW?2(1) > 0 whenever
A< Azl] By the same logic, if & > k*, then there exists Afj > 0 such that Wij(ozk) —

(1 —8)5A — sW2(ay) = 5A [(5(:17{ —z;)—(1-9)(1 - a:‘Z)] > 0 whenever A < Afj Now

suppose that k& < k*. Observe that

Wi (ax) = W (cx)
A

:{ [1- oF k(1 — WA)k*_k]akvf + ok 11— o+ (1- 'yA)k*_kozk] 5}
x (@ = 1)
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where the first bracketed term on the right-hand side represents the expected social welfare
(divided by A) under the optimal stopping rule. As ay > o, this term is greater than or

equal to 5. Hence, Wij(ak) — W2(ay) > §A(.%'g — ;) > 0, and

W (ag) — (1 —8)5A — W) _ 1—6__ . I
2 L > W (o) — — — y—
> Tog) — (1= 0)5 4+ =57 (x] — ) .

An application of I’'Hopital’s rule shows that (1 — 0)/A — p as A — 0. As WZJ() and
WP(-) are bounded, there exists Af] > 0 such that Wij(ak) > (1 —6)5A — dW2(ay) > 0
whenever A < Af’]

Consider now the last inequality in the lemma. Let U(ay) = Wz] (o) — (1 =) apyATF —
SapyAW?(1) — 6(1 — apyA)W2(ags1). Suppose first that k > k*. Tt is readily checked
that

. W(ag)
ilglo A

Therefore, there exists A;{j > 0 such that Wij(ak) > (1= §)agyr + Sy AW (1) +6(1 —

= (1 —7)s; +7al5 — [(1 — 7)s; + 725 = 7(a) — ;)5 >0 .

ayA)WO (ag11) whenever A < A;{j. Finally, suppose that k < k*. By definition of Wij,

we have

(o) = —(1 = )aryAT(1 = a) + dayy A[W] (1) = WP (1)]
+0(1 = apyA) [W] (1) = W (ag1)]

> —(1 = )y A#(1 — 27 + 6(x] — 3;) [y AT + (1 — gy A) 73]

> —(1 = O)ayyAF(1 — )7 + 67 (2] — )5 ,
where the first inequality follows from WZ] (1) = W2(agy1) > E%(xg —Z;) (as established
above), and the second follows from our assumption that v7 > 5. Therefore, there exists
Afj > 0 such that Wij(ak) > (1 — §)apyAT + Sy yAWL(1) + 6(1 — apy A)WP (gt 1)
whenever A < Afj Setting A = min{Afd: i,j € N&{¢ =1,...,5}, we obtain the

lemma.
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