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1 Introduction

One intriguing fact about sovereign debt markets is that emerging economies pay high credit

spreads on their sovereign debt, despite generally having much lower debt-output ratios than

developed countries. Reinhart, Rogoff, and Savastano (2003) call this phenomenon “debt

intolerance.”

In this paper, we propose a model of sovereign debt in which countries vary in their

level of financial development. By “financial development,” we mean the extent to which a

country can issue debt denominated in domestic currency in international capital markets.1

We show that low levels of financial development generate debt intolerance.

As in the literature on rare disasters, we assume that there are sporadic downward jumps

in output.2 In our model, output follows the jump-diffusion process estimated by Barro and

Jin (2011) in which the size distribution of jumps is governed by a power law. This process

is consistent with the evidence presented in Aguiar and Gopinath (2007) that permanent

shocks are the primary source of fluctuations in emerging markets.

Since domestic currencies generally depreciate in disaster periods (Farhi and Gabaix

(2016)), the dollar value of domestic currency debt falls in these periods. This property

makes domestic currency debt a natural partial hedge against rare disasters. Countries that

can borrow more in domestic currency have a greater ability to manage disaster risk. As a

result, they have higher debt capacity and pay lower spreads on foreign currency debt. In

other words, they have less “debt intolerance.”

We assume that countries face exogenous limits to their ability to issue domestic currency

debt in international capital markets. This assumption is motivated by the key finding of

the literature on the original-sin hypothesis: the ability to borrow in domestic currency is

more closely related to the size of the economy than to the soundness of fiscal and monetary

policy or other fundamentals (Hausmann and Panizza (2003) and Bordo, Meissner, and

Redish (2004)).

Our key result is that the more limited is a country’s ability to issue debt in domestic

1Another aspect of financial development is a country’s access to commitment mechanisms such as posting
collateral or depositing money in escrow accounts that can be seized by creditors. We do not consider these
mechanisms because sovereign debt is generally unsecured in practice.

2This framework has proved useful in modeling many asset-pricing and macroeconomic phenomena. Ex-
amples include the equity premium (Rietz (1988), Barro (2006), Barro and Jin (2011), and Gabaix (2012)),
business cycles (Gourio (2012)), the predictability of excess stock returns (Wachter (2013)), investment,
interest rates, and equity returns (Pindyck and Wang (2013)), and the returns to the carry trade (Burnside,
Eichenbaum, Kleshchelski, and Rebelo (2011) and Farhi and Gabaix (2016)).
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currency, the lower is its overall debt capacity and the more severe is its debt intolerance.

In other words, domestic currency debt and foreign currency debt are complements. This

implication is consistent with the key finding in Du, Pflueger, and Schreger (2020). These

authors show that countries that can issue more domestic currency debt also issue more debt

denominated in foreign currency.

An important question is: how much better would a country be if it could hedge rare-

disaster risk with a full set of state-contingent hedging contracts? To answer this question,

we compare two economies. The first has a high level of financial development and uses

domestic currency debt to hedge its rare-disaster risk. The second is a “full-spanning”

economy that uses a full set of state-contingent hedging contracts to hedge its rare-disaster

risk, as in Kehoe and Levine (1993) and Kocherlakota (1996).

We find that the limited commitment, full-spanning economy has higher welfare than the

economy that hedges rare-disaster risk by issuing debt denominated in domestic currency.

But this difference is quantitatively small. In contrast, the welfare gain from increasing the

ability of economies with low financial development to issue more domestic currency debt in

international capital markets is much larger. These results suggest that expanding the ability

of emerging markets to issue domestic currency debt might be an effective and expedient

way to improve their welfare.

We write our sovereign debt model in continuous time. This approach has several signif-

icant advantages. First, our model can be solved in closed form for both the value function

and the policy rules up to an ordinary differential equation (ODE) for certainty-equivalent

wealth with intuitive boundary conditions. Second, the analytical expressions for optimal

consumption, debt issuance, and default policies yield valuable insights into the key mech-

anisms at work in our model. Third, we obtain a sharp characterization of the properties

of our model as the country approaches its debt capacity: the diffusion volatility of the

debt-output ratio approaches zero, and the country’s endogenous risk aversion approaches

infinity.

Our method for characterizing global nonlinear dynamics is similar to that used in the

dynamic optimal contracting and macro-finance diffusion-based literature (e.g., DeMarzo

and Sannikov (2006), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014),

Williams (2015), and Bolton, Wang, and Yang (2019)). As our model features jump shocks

that cannot be fully hedged and equilibrium credit risk pricing, we generalize the numerical

solution methodology used in these papers to accommodate these features.
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The representative agent has the continuous-time version of the Epstein-Zin-Weil prefer-

ences proposed by Duffie and Epstein (1992). These preferences allow our model to generate

empirically plausible average debt-to-output ratios without resorting to the very high dis-

count rates used in the literature. Our calibration combines a conventional value of the

discount rate (5.2 percent per year) with a low elasticity of intertemporal substitution (EIS

= 0.025) and a conventional value for relative risk aversion (γ = 2). We interpret the low

EIS as reflecting expenditure commitments that are difficult to change, as in Bocola and

Dovis (2016). Recursive preferences are key to making this calibration work. With standard

expected utility, a low EIS implies a high risk aversion that creates an incentive to avoid the

debt region, generating a low average debt-to-output ratio.

Following Aguiar and Gopinath (2006) and Arellano (2008), we assume that, upon de-

fault, the country suffers a decline in output and loses access to international capital markets.

It then regains access to these markets with constant probability per period. Outside of the

default state, the country can issue debt denominated in both domestic and foreign currency

that can be defaulted upon. The country can also invest at a risk-free rate and can hedge

diffusion shocks.

As emphasized by Bulow and Rogoff (1989), autarky might be difficult to sustain because

the rest of the world cannot commit ex ante to excluding the defaulting borrower from ex

post risk-sharing arrangements. In our model, the permanent output loss that occurs upon

default is sufficient to sustain the existence of sovereign debt. In this sense, our model is

immune to the Bulow-Rogoff critique.

One virtue of our model is that it does not require the nonlinear default costs commonly

used in the literature to generate plausible average debt-output ratios. Our linear specifica-

tion of default costs is consistent with recent evidence by Hébert and Schreger (2016) and

Trebesch and Zabel (2017).

In response to large jump shocks, it is optimal for countries to default on their debt.

In response to moderate jump shocks, the country fully repays its domestic and foreign

currency debt. However, the domestic currency depreciates, reducing the dollar value of

domestic currency debt. The larger is the shock, the larger is the rate of depreciation and

the lower is the ex post dollar value of domestic currency debt. Domestic currency debt

serves as a natural partial hedge against rare disasters because the dollar value of output

and domestic currency debt move in the same direction when disasters occur.

The equilibrium credit spread on foreign currency debt reflects its default risk. The
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equilibrium credit spread on domestic currency debt reflects both default and currency de-

preciation risk.

We consider two variants of our model. In the first variant, lenders demand a credit risk

premium calibrated using estimates in Longstaff, Pan, Pedersen, and Singleton (2011). In

this setting, it is more costly to service debt, so debt capacity is lower. In the second variant,

the output cost of defaulting is temporary instead of permanent. Since the overall cost of

default is lower, the country is more tempted to default. As a result, debt capacity is lower

than in our benchmark model.

The paper is organized as follows. Section 2 presents a limited commitment model in

which the country can issue domestic currency debt up to a limit. Section 3 discusses this

benchmark model’s solution. Section 4 summarizes the properties of the first-best model

solution. Section 5 calibrates our benchmark model and explores its quantitative proper-

ties. Section 6 compares our benchmark model with a model in which the country also has

limited commitment but can hedge with a set of full-spanning hedging contracts. Section 7

generalizes our benchmark model to a setting with credit risk premia. Section 8 presents a

version of our benchmark model with transitory default costs. Section 9 concludes.

2 Model Setup

We consider a continuous-time model in which the country’s infinitely lived representative

agent receives a perpetual, stochastic output stream and can issue both domestic and foreign

currency debt.

2.1 Output Processes

Output Process in the Normal Regime. In the normal regime, the country can borrow

and lend in international capital markets as well as hedge its diffusion shocks.

We model output in this regime, Yt, as a jump-diffusion process. Diffusion shocks repre-

sent normal economic fluctuations. Large jump shocks represent rare disasters. The law of

motion for output is given by

dYt
Yt−

= µdt+ σdBt − (1− Z)dJt , Y0 > 0 , (1)

where µ is the drift parameter, σ is the diffusion volatility parameter, B is a standard

Brownian motion process, and J is a pure jump process with a constant arrival rate, λ. Let
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τJ denote the jump arrival time. Since Brownian motion is continuous, if a jump does not

occur at t (dJt = 0), we have Yt = Yt−, where Yt− ≡ lims↑t Ys denotes the left limit of output.

If a jump occurs at t (dJt = 1), output falls from Yt− to Yt = ZYt−. We call Z ∈ (0, 1) the

fraction of output recovered after a jump arrival. We assume that Z follows a well-behaved

cumulative distribution function, F (Z).

Since the expected percentage output loss upon the arrival of a jump is 1 − E(Z), the

expected growth rate of output in levels is given by

g = µ− λ(1− E(Z)) . (2)

Here, the term λ(1−E(Z)) represents the reduction in the expected growth rate associated

with jumps.

We can write the dynamic equation for the logarithm of output, lnYt, in discrete time as

follows:

lnYt+∆ − lnYt =

(
µ− σ2

2

)
∆ + σ

√
∆ εt+∆ − (1− Z)νt+∆ , (3)

where the time-t conditional distribution of εt+∆ is a standard normal and νt+∆ = 1 with

probability λ∆ and zero with probability (1− λ∆). Equation (3) implies that the expected

change of lnY over a time interval ∆ is (µ− σ2/2) ∆−λ(1−E(Z))∆. The term σ2/2 is the

Jensen inequality correction associated with the diffusion shock.

The Exchange Rate Process. Let St denote the spot exchange rate, defined as dollars

per unit of domestic currency. We measure output, Yt, and consumption, Ct, in U.S. dollars.

We assume that absolute purchasing power parity holds and that the price of output in

U.S. dollars is constant and equal to one. Given these assumptions, there is no drift in the

exchange rate process. So, the law of motion for St is given by the following martingale

process:
dSt
St−

= σSdBt − π(Z)dJt + λE[π(Z)]dt , (4)

where σS is a positive constant and π(Z) ∈ (0, 1) with π′(Z) < 0 and π(1) = 0. When a

jump shock arrives at time t, the exchange rate changes from St− to St = (1− π(Z))St−.

Specification (4) is consistent with empirical evidence that it is difficult to beat the

random walk as a short-term forecast of the exchange rate (see Rossi (2013) for a recent

survey of this evidence). This specification is also consistent with the joint fluctuations

between rare disasters and exchange rates modeled by Farhi and Gabaix (2016) and the role

of exchange rates in the financial adjustment considered by Gourinchas and Rey (2007).
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Output Process If the Country Defaults on Its Debt. We assume that if the country

decides to default, it defaults on both foreign currency and domestic currency debt.3 After

default, the country immediately enters autarky. Let 1Dt be an indicator function that takes

the value one if the country defaults on its debt at t and zero otherwise. Let τD denote the

endogenous time when the country chooses to default. We show below that, because markets

are incomplete, jump shocks that cause sufficiently large output losses lead the country to

optimally default on its debt.

Defaulting entails two costs. The first is that the country loses access to international

capital markets and enters a state of autarky in which consumption equals output. The

second is an output loss that proxies for the disruptions of economic activity associated with

default. We assume that upon default, output drops permanently from YτD− ≡ lims↑τD Ys,

the output in the normal regime just prior to default, to αZYτD−, where α ∈ (0, 1).

Let Ŷt denote the level of output in the autarky regime. We assume that Ŷt follows the

same process as output in the normal regime:

dŶt

Ŷt−
= µdt+ σdBt − (1− Z)dJt . (5)

This process starts at time τD with the value of ŶτD = αZYτD−.

While in autarky, the country regains access to international capital markets with proba-

bility ξ per unit of time. Let τE denote the stochastic exogenous exit time from autarky. The

stochastic duration of the autarky regime is τE − τD. Upon randomly exiting from autarky

at time τE , the country starts afresh with no debt and regains access to international capital

markets. Then, output follows the process given by equation (1) starting with YτE , which is

equal to ŶτE−, the pre-exit output level under autarky: YτE = ŶτE− .

In this formulation, default results in the permanent loss of a fraction 1−α of output. In

Section 8, we discuss a version of the model in which the output loss associated with default

is temporary.

2.2 Preferences

We assume that the lifetime utility of the representative agent, Vt, has the recursive form

proposed by Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990). We use

3See Reinhart and Rogoff (2011) for evidence of outright default on domestic currency debt.
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the continuous-time version of these preferences developed by Duffie and Epstein (1992),

Vt = Et
[∫ ∞

t

f(Cu, Vu)du

]
, (6)

where f(C, V ) is the normalized aggregator for consumption C and utility V . This aggregator

is given by

f(C, V ) =
ρ

1− ψ−1

C1−ψ−1 − ((1− γ)V )χ

((1− γ)V )χ−1
. (7)

Here, ρ is the subjective discount rate and

χ =
1− ψ−1

1− γ . (8)

This recursive, non-expected utility formulation allows us to separate the coefficient of

relative risk aversion, γ, from the elasticity of intertemporal substitution (EIS), ψ. This

separation plays an important role in our quantitative analysis. The time-additive separable

CRRA utility is a special case of recursive utility where the coefficient of relative risk aversion,

γ, equals the inverse of the EIS, γ = ψ−1, implying χ = 1. In this case, f(C, V ) = U(C)−ρV ,

which is additively separable in C and V , with U(C) = ρC1−γ/(1− γ).

2.3 Foreign and Domestic Currency Debt

Both domestic and foreign currency debt markets are perfectly competitive. In the normal

regime, the country chooses to: (1) issue domestic currency debt, Bt; (2) issue foreign

currency debt (denominated in U.S. dollars), B∗t ; and (3) insure against diffusion shocks

using hedging contracts.

The country’s wealth measured in dollars, Wt, is

Wt = − (BtSt +B∗t ) . (9)

When BtSt + B∗t < 0, the country is a net saver. We assume that the country can save in

foreign currency but not in domestic currency (i.e. Bt ≥ 0).

As in discrete-time settings, both domestic and foreign currency debt are borrower spe-

cific, non-contingent, unsecured, and short term.4 Foreign currency debt is continuously

4Auclert and Rognlie (2016) show that sovereign debt models with short-term debt have a unique Markov-
perfect equilibrium. Sovereign debt models with long-maturity debt include Hatchondo and Martinez (2009),
Arellano and Ramanarayanan (2012), and Chatterjee and Eyigungor (2012).
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repaid and reissued at the dollar interest rate r + δ∗t , where δ∗t is the endogenous credit

spread. The country either fully repays its debt or defaults.

Similarly, domestic currency debt is continuously repaid and reissued at the nominal

interest rate r + δt, where δt is the endogenous credit spread in local currency. Since the

exchange rate is a martingale, there is no expected currency depreciation and the two spreads

coincide, δt = δ∗t . Upon default, both foreign currency and domestic currency debt holders

receive nothing.

As emphasized by Eaton and Gersovitz (1981), Zame (1993), and Dubey, Geanakoplos,

and Shubik (2005), the possibility of default provides a partial hedge against risks that

cannot be insured because of limited financial spanning.5

Financial Development. Following the original-sin literature, we assume that the ability

to issue debt in local currency in international capital markets is limited. The dollar value

of domestic currency debt, BtSt, has to satisfy the following constraint at all time t:

BtSt ≤ κYt . (10)

Here, κ is a parameter that represents the level of financial development. The lower is κ,

the less developed are financial markets.

Foreign and domestic currency debt are priced in competitive markets by well-diversified

foreign investors. The maximal amount of foreign and domestic currency debt that the

country can issue is stochastic and endogenously determined in equilibrium by the creditors’

break-even conditions.

Diffusion Risk Hedging Contracts. We assume that diffusive shocks are idiosyncratic

and that markets for contracts that hedge these shocks are perfectly competitive. An investor

who holds one unit of the hedging contract at time t receives no up-front payment, since

there is no risk premium for bearing idiosyncratic risk, and receives a gain or loss equal to

σdBt = σ (Bt+dt − Bt) at time t+ dt. We normalize the volatility of this hedging contract so

that it is equal to the diffusion volatility parameter, σ. This hedging contract is analogous

to a futures contract in standard no-arbitrage models (see, e.g., Cox, Ingersoll, and Ross

(1981)). We denote the country’s holdings of diffusion risk contracts at time t by Θt.

5For simplicity, we consider only the possibility of complete default. Our model can easily be generalized
to allow for partial default. See Yue (2010) and Asonuma, Niepelt, and Ranciere (2017) for models with
partial default.
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Optimality. The country chooses its consumption, Ct, diffusion risk hedging demand,

Θt, domestic and foreign currency debt issuances, Bt and B∗t , and default timing, τ , to

maximize the agent’s utility defined by equations (6)-(7), given the output processes specified

in equations (1) and (5), the exchange rate process given in equation (4), and equilibrium

pricing of domestic and foreign currency debt.

3 Model Solution

We solve our model using dynamic programming. Let V (Wt, Yt) and V̂ (Ŷt) denote the

representative agent’s value function for the normal and autarky regime, respectively. The

autarky value function depends only on contemporaneous output because financial wealth is

always zero in autarky.

3.1 Normal Regime

In the normal regime, financial wealth expressed in dollars, W , evolves according to

dWt =
[
Yt− − Ct− − (r + δ∗t−)B∗t− − (r + δt−)Bt−St−

]
dt−Bt−dSt + σΘt−dBt − 1Dt Wt−dJt .(11)

The first term on the right side of equation (11) is the drift of financial wealth that occurs

in the absence of jumps. This drift is equal to output minus the sum of consumption and

interest payments for both domestic and foreign currency debt. The second term, −Bt−dSt,

is the realized gain or loss from exchange rate movements. When the domestic currency

depreciates (dSt < 0), the dollar value of domestic currency debt falls. Since the domestic

currency depreciates in disaster periods, domestic currency debt is a natural hedge against

rare disasters. The third term, σΘt−dBt, is the realized gain or loss from diffusion risk-

hedging contracts. Given that diffusion shocks are idiosyncratic with zero mean, the country

incurs no up-front payment. The last term states that upon default, the country enters

autarky and starts with Wt = 0.

Since the diffusion shock influences both the output and exchange rate process, it is

convenient to define and work with the following effective diffusion risk hedging demand:

Θ̃t− = Θt− + σSσ
−1
(
Wt− +B∗t−

)
. (12)

Given solutions for Θ̃t− and B∗t−, we can back out the diffusion risk hedging demand Θt−.
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Using the effective diffusion risk hedging demand, Θ̃t− defined in (12), we rewrite equation

(11) as

dWt =
[
Yt− − Ct− + (r + δ∗t−)Wt− + (Wt− +B∗t−)λE[π(Z)]

]
dt+ σΘ̃t−dBt

−(Wt− +B∗t−)π(Z)dJt − 1Dt Wt−dJt . (13)

Equation (13) shows that Θ̃t− controls the country’s total exposure to the diffusion shock,

which takes into account the partial natural hedge against the diffusion shock provided by

domestic currency debt.

Next, we use dynamic programming to solve for optimal consumption, Ct, effective dif-

fusion hedging demand, Θ̃t, and domestic and foreign currency debt issuances, Bt and B∗t .

Dynamic Programming. Let Wt denote the country’s optimal default boundary. In the

normal regime (W ≥ W ), the country chooses Ct−, Θ̃t−, Bt−, and B∗t− to maximize the value

function V (W,Y ) by solving the following Hamilton-Jacobi-Bellman (HJB) equation:6

0 = max
Ct−, Θ̃t−, B∗t−

f(Ct−, Vt−) +
[
Yt− − Ct− + (r + δ∗t−)Wt− + (Wt− +B∗t−)λE[π(Z)]

]
VW (Wt−, Yt−)

+
σ2Θ̃2

t−

2
VWW (Wt−, Yt−) + µYt−VY (Wt−, Yt−) +

σ2Y 2
t−

2
VY Y (Wt−, Yt−)

+ σ2 Θ̃t−Yt−VWY (Wt−, Yt−) + λEt−
[
V J (Wt, Yt)− V (Wt−, Yt−)

]
, (14)

subject to the financial development constraint (10).

The HJB equation (14) states that at the optimum, the sum of the normalized aggregator,

f(C, V ), and the expected change in the value function V (W,Y ) (the sum of all other terms

on the right side of equation (14)) must equal zero.

The second and third terms of equation (14) describe the drift and diffusion volatility

effects of wealth W on V (W,Y ). The fourth and fifth terms reflect the drift and volatility

effects of output, Y , on V (W,Y ). The sixth term captures the effect of the intertemporal

diffusion risk hedging demand on V (W,Y ). Diffusion shocks do not trigger default because it

is always more efficient to hedge them with actuarially fair insurance contracts than default

and incur default costs.

The last term, which appears in the third line of equation (14), represents the effect

of jumps. We show that there are two possible outcomes upon a jump arrival at time t

6Duffie and Epstein (1992) generalize the standard HJB equation for the expected-utility case to allow
for non-expected recursive utility such as the Epstein-Weil-Zin utility used here.
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(dJt = 1) depending on the fractional output loss (1 − Z), the debt-output ratio, and the

level of financial development (κ). The first is no default. The second is default on both

domestic and foreign currency debt. We characterize these state-contingent outcomes using

an endogenous stochastic threshold, Zt.

If the output loss is sizable (i.e., Z < Zt), the country defaults on both domestic and

foreign currency debt and enters autarky. Its output falls to Ŷt = αZYt− and its wealth

drops to zero, so the value function at t = τD is V J (Wt, Yt) = V̂ (Ŷt) = V̂ (αZYt−).

If Z ≥ Zt, the country repays both its domestic and foreign currency debt. But the dollar

value of domestic currency debt discretely falls so that the country’s wealth changes from

Wt− to Wt = Wt− − (Wt− + B∗t−)π(Z) and the value function changes from the pre-jump

value, V (Wt−, Yt−), to V J (Wt, Yt) = V (Wt− − (Wt− +B∗t−)π(Z), ZYt−).

To sum up, the value function upon a jump arrival at time t is

V J (Wt, Yt) = V (Wt− − (Wt− +B∗t−)π(Z), ZYt−)1Z≥Zt + V̂ (αZYt−)1Z<Zt . (15)

First-Order Conditions. As in Duffie and Epstein (1992), the first-order condition (FOC)

for C is

fC(C, V ) = VW (W,Y ) . (16)

This condition equates the marginal benefit of consumption, fC(C, V ), to the marginal utility

of savings, VW (W,Y ). With expected utility, fC(C, V ) = U ′(C), we recover the standard

FOC for consumption: U ′(C) = VW (W,Y ).

The FOC for the effective diffusion risk hedging demand is

Θ̃ = −Y VWY (W,Y )

VWW (W,Y )
. (17)

Equation (17) is similar to the intertemporal hedging demand in Merton (1971) for expected

utility and in Duffie and Epstein (1992) for recursive preferences.

The country chooses foreign currency debt issue, B∗t−, to solve the following problem:

max
B∗t−

[
(r + δ∗t−)Wt− + λE(π(Z))(Wt− +B∗t−)

]
VW (Wt−, Yt−) + λEt−

[
V J (Wt, Yt)

]
, (18)

subject to the financial development constraint (10), which we write as B∗t− ≥ −Wt−−κYt−.

Both V J (Wt, Yt), given in (15), and the credit spread δ∗t− depend on B∗t−.

Domestic currency debt investors require a higher rate of return (in dollars) absent jumps

in order to compensate for the depreciation of local currency that occurs when disasters hit.
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As a result, it is more costly for the country to service domestic currency debt than foreign

currency debt in normal times. The first term in equation (18) captures the cost of issuing

domestic currency debt. The second term shows that domestic currency debt is a partial

hedge against output losses caused by disasters. The country optimally chooses domestic

currency debt issuance, Bt−St− = −(Wt− + B∗t−), to maximize (18) subject to the financial

development constraint (10).

After obtaining B∗ from (18) and Θ̃ from (17), we obtain the diffusion risk hedging

demand, Θ, by using

Θ = −Y VWY (W,Y )

VWW (W,Y )
− σS

σ
(W +B∗) . (19)

Equation (19) has two terms. The first is the standard Merton intertemporal hedging de-

mand. Since the country is endowed with a long position in domestic output, this hedging

demand is negative. The second term is always positive because domestic currency debt

issuance is weakly positive.

Value Function. We show that the value function in the normal regime, V (W,Y ), is given

by

V (W,Y ) =
(aP (W,Y ))1−γ

1− γ , (20)

where the coefficient a is given by

a = ρ

[
r + ψ(ρ− r)

ρ

] 1
1−ψ

. (21)

To ensure that utility is finite, we impose the following regularity condition:

ρ > (1− ψ−1) r . (22)

We can interpret P (W,Y ) as the certainty-equivalent wealth, which is the total wealth

that makes the agent indifferent between the status quo (with financial wealth W and output

process Y ) and having a wealth level P (W,Y ) and no output for all of the indefinite future:

V (W,Y ) = V (P (W,Y ), 0) . (23)

Next, we turn to the autarky regime.
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3.2 Autarky Regime

In the autarky regime, wealth is zero and the country cannot borrow or lend, so consumption

equals output and wealth is not an argument of the value function. This function, V̂ (Ŷ ),

satisfies the following differential equation:

0 = f(Ŷ , V̂ ) + µŶ V̂ ′(Ŷ ) +
σ2Ŷ 2

2
V̂ ′′(Ŷ ) + λE

[
V̂ (ZŶ )− V̂ (Ŷ )

]
+ ξ

[
V (0, Ŷ )− V̂ (Ŷ )

]
. (24)

The first term on the right side of equation (24) is the net utility flow, often referred

to as the normalized aggregator. The second and third terms represent the impact of the

output drift and diffusion volatility, respectively. The fourth term describes the possibility

of output jumping from Ŷt to ZŶt− while the country is in autarky. The last term reflects the

possibility of exiting from autarky. This exit occurs at an exogenous rate, ξ. Upon exiting

from autarky at time τE and entering the normal regime, the country’s value function is

V (0, YτE ), where YτE = ŶτE−.

We show that the value function in the autarky regime, V̂ (Ŷ ), is

V̂ (Ŷ ) =
(a p̂ Ŷ )1−γ

1− γ , (25)

where the coefficient a is given by equation (21) and p̂ is the endogenous (scaled) certainty-

equivalent wealth in the autarky regime.

3.3 Characterizing Default Decisions

The value functions V (W,Y ) and V̂ (Ŷ ) are connected by recurrent transitions between the

normal and autarky regimes (see the two HJB equations, (14) and (24)).

Upon a jump arrival at t, output drops from Yt− to Yt = ZYt−. If the country then

defaults on domestic and foreign currency debt, output drops further from Yt = ZYt− to

αYt = αZYt− and the country enters autarky. Therefore, the value of wealth at t, Wt, that

makes the country indifferent between repaying its debt and defaulting, which we denote by

Wt, satisfies the following value-matching condition:

V (Wt, Yt) = V̂ (αYt) , (26)

where Yt = ZYt−. Condition (26) defines the default boundary Wt as a function of Yt:

Wt = W (Yt) . (27)
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We refer to −Wt as the country’s debt capacity since it is the maximum amount of debt that

the country can issue without triggering default in equilibrium. We need one more condition

to determine Wt, which is a free boundary. We present this condition in Section 3.4 after we

simplify the model solution.

Whenever the country’s total debt exceeds its endogenous debt capacity (i.e., when Wt <

Wt), the country defaults and enters autarky. The value function in this region satisfies

V (Wt, Yt) = V̂ (αYt) , when Wt < Wt . (28)

Next, we characterize the default threshold expressed in terms of the recovery fraction,

Z, upon a jump arrival at t. The country defaults on its foreign and domestic currency debt

provided that the following condition holds:

V (Wt, Yt) ≤ V̂ (αYt) , (29)

where Yt = ZYt−. Let Zt denote the highest fractional recovery Z at t that satisfies equation

(29) (i.e., Zt is the supremum for the set of Z satisfying equation (29)).

3.4 Simplifying the Model Solution

It is useful to define a scaled state variable, scaled financial wealth, wt, as

wt =
Wt

Yt
. (30)

Similarly, we define scaled versions of the control variables: consumption ct = Ct/Yt, diffusion

hedging demand θt = Θt/Yt, effective diffusion risk hedging demand θ̃t = Θ̃t/Yt, foreign

currency debt issuance b∗t = B∗t /Yt , domestic currency debt bt = BtSt/Yt , and debt capacity

wt = Wt/Yt. The scaled certainty-equivalent wealth, p(wt), is equal to P (Wt, Yt)/Yt. Euler’s

theorem implies that PW (Wt, Yt) = p′(wt). The value of p′(w) plays a crucial role in our

analysis.

The default boundary, Zt, is given by

Zt = Z(wt−) =
wt− − π(Zt)(wt− + b∗(wt−))

w
. (31)

Using the homogeneity property, we express δ∗t− as functions of pre-jump scaled wealth wt−,

which we characterize below.
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Equilibrium Credit Spreads. When the country issues foreign currency debt (B∗t− > 0),

the competitive market zero profit condition for diversified investors implies that the credit

spread, δ∗t−, satisfies

B∗t−(1 + rdt) = B∗t−(1 + (r + δ∗t−)dt) [1− λF (Z(wt−))dt] + λF (Z(wt−))dt× 0 . (32)

The first term on the right side of equation (32) is the expected total payment to investors,

which is the product of the probability of repayment, [1− λF (Z(wt−))dt], and the cum-

interest value of debt repayment, B∗t−(1 + (r + δ∗t−)dt). The second term on the right side

of equation (32) corresponds to the zero payment that occurs upon default. The left side of

equation (32) is the investors’ total expected payoff (including principal B∗t−) at t+ dt.

Equation (32) shows that jumps are necessary to generate default in our model. To see

this result, suppose that there are no jumps. Then, equation (32) implies that the credit

spread δ∗t is zero. This result requires that diffusion shocks be hedgeable so that they do not

trigger default.7

Simplifying equation (32), we obtain the following expression for δ∗t− = δ∗(wt−), where

δ∗(wt−) = λF (Z(wt−)) . (33)

This equation ties the equilibrium credit spread to the country’s default strategy. For a

unit of debt per unit of time, the left side of equation (33) is the compensation for bearing

credit risk and the right side is the expected loss given default. Both terms are of order dt.

Because there is zero recovery upon default, investors are perfectly diversified, and default

risk is idiosyncratic, the credit spread is equal to the probability of default.8

The competitive market zero profit condition for domestic currency debt (Bt− > 0) is

given by

Bt−St−(1 + rdt) = Et− [Bt−St(1 + (r + δt−)dt)] [1− λF (Z(wt−))dt] + λF (Z(wt−))dt× 0 .(34)

Since Et− (St) = St−, simplifying equation (34), we obtain δt− = δ(wt−) = λF (Z(wt−)).

7Short-term debt in pure diffusion models has to be risk free as creditors cannot break even for any
defaultable short-term debt. The intuition is as follows. For a small time increment, dt, diffusion shocks can
cause losses of order

√
dt with strictly positive probability. These losses cannot be compensated with a finite

credit spread, as this compensation is only of order dt, which is much lower than
√
dt. For this reason, other

diffusion-based debt models work with term debt in order to generate default (see, e.g., Leland (1994), Nuño
and Thomas (2015), and Tourre (2017)). DeMarzo, He, and Tourre (2020) show that it is optimal to have
smooth debt issuance in their model. Bornstein (2020) generates default by assuming that output follows a
Poisson process in a continuous-time version of Arellano (2008).

8When scaled wealth is positive, there is no debt outstanding, so the probability of default is zero.
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Time-varying Endogenous Relative Risk Aversion γ̃t. To better understand our

results, it is useful to introduce the following measure of endogenous relative risk aversion,

denoted by γ̃t. We show that γ̃t is a function of wt, which we write as γ̃(wt):

γ̃t ≡ −
VWW (Wt, Yt)

VW (Wt, Yt)
× P (Wt, Yt) = γp′(wt)−

p(wt)p
′′(wt)

p′(wt)
= γ̃(wt) . (35)

The first part of equation (35) defines γ̃t. The second part follows from the homogeneity

property.

The economic interpretation of γ̃t given in equation (35) is as follows. Because lim-

ited commitment and incomplete markets result in endogenous market incompleteness, the

country’s endogenous risk aversion is given by the curvature of the value function V (W,Y )

rather than by the risk aversion parameter, γ. We use the value function to characterize the

coefficient of endogenous absolute risk aversion: −VWW (W,Y )/VW (W,Y ).

We can build a measure of relative risk aversion by multiplying −VWW (W,Y )/VW (W,Y )

with “total wealth.” There is no well-defined market measure of the total wealth under

either incomplete markets or limited commitment. However, the certainty-equivalent wealth

P (W,Y ) is a natural measure, so we use it in our definition of γ̃t in equation (35).

The marginal certainty-equivalent value of wealth exceeds one (i.e., PW (W,Y ) = p′(w) ≥
1). Also, in our model, p′′(w) < 0, which implies that γ̃(w) > γ (see equation (35)). That is,

the representative agent is endogenously more risk averse than indicated by the coefficient of

relative risk aversion, γ. Moreover, as we show later, the endogenous risk aversion increases

as the country becomes more indebted (i.e., as wt becomes more negative). In contrast, in

the first-best solution described below, the country fully hedges against diffusion and jump

shocks and γ̃(wt) = γ for all levels of wt.

Using the homogeneity property, we obtain the following expression for the scaled effective

diffusion risk hedging demand, θ̃(w):

θ̃(w) = w − γp(w)p′(w)

γ(p′(w))2 − p(w)p′′(w)
= w − γp(w)

γ̃(w)
, (36)

where γ̃(w) is the endogenous relative risk aversion given by equation (35). The scaled

diffusion risk hedging demand, θ(w), is then given by

θ(w) = θ̃(w)− σS
σ

(w + b∗(w)) = w − γp(w)

γ̃(w)
− σS

σ
(w + b∗(w)) . (37)

Equation (37) determines the hedging demand with respect to diffusion shocks. The
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country hedges to avoid defaulting in response to diffusive shocks and to preserve the option

to default in response to large downward jump shocks.

Dynamics for Scaled Financial Wealth, wt. Using Ito’s lemma, we obtain the following

law of motion for wt in the normal regime:

dwt = µw(wt−) dt+ σw(wt−) dBt +
(
wJt − wt−

)
dJt . (38)

The first term in equation (38) is

µw(wt−) =
(
r + δ∗(wt−)− µ+ σ2

)
wt− − σ2θ̃(wt−) + 1 + λE[π(Z)](wt− + b∗(wt−))− c(wt−) .(39)

The second term in equation (38) is the volatility function, σw(wt−), given by

σw(wt−) =
(
θ̃(wt−)− wt−

)
σ = (θ(wt−)− wt−)σ + σS(wt− + b∗(wt−)) . (40)

The third term in equation (38) captures the effect of jumps on w, where the post-jump

scaled financial wealth, wJt , is given by

wJt =
wt− − π(Z)(wt− + b∗(wt−))

Z
. (41)

Substituting equation (37) into equation (40), we obtain

σw(w) =
(
θ̃(w)− w

)
σ = −σγp(w)

γ̃(w)
< 0 . (42)

The absolute value of the volatility of w is proportional to the ratio between p(w) and

endogenous risk aversion, γ̃(w).

Scaled Debt Capacity w. To maximize the country’s debt capacity, the country hedges

diffusion shocks so that they do not trigger default. However, even though the representa-

tive agent is risk averse, it is not optimal to fully hedge diffusion shocks, making certainty-

equivalent wealth immune to diffusion shocks. The reason is that limited commitment and

incomplete financial spanning make the first-best risk-sharing outcome infeasible. Techni-

cally speaking, the country optimally sets the volatility of w to zero at its endogenous debt

capacity:9

σw(w) = 0 . (43)

9Bolton, Wang, and Yang (2019) derive a similar boundary condition in a corporate finance continuous-
time diffusion model in which the entrepreneur has inalienable human capital.
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The intuition for this result is as follows. Suppose that the diffusion volatility σw(wt)

evaluated at wt = w is not zero. Then, over a small interval dt, the realized value of wt+dt

can cross the default boundary w with strictly positive probability in response to a small

diffusive shock, triggering default. Such default is clearly inefficient since diffusive shocks

can be hedged at an actuarially fair price. So, optimality requires σw(w) = 0.

Substituting the zero-volatility condition (43) into equation (40), we obtain θ̃(w) = w,

which is the effective diffusion risk hedging demand at w. While this hedging strategy

eliminates the volatility of w at w, it does not in general eliminate the idiosyncratic volatility

of unscaled consumption and unscaled certainty-equivalent wealth. In this sense, hedging

is incomplete. We provide intuition for this incomplete-hedging result in Section 3.5 after

describing the first-best and limited commitment solutions.

Finally, to ensure that w weakly moves toward zero and away from w in the absence of

jumps, it is necessary to verify that µw(w) ≥ 0. Substituting equation (43) into equation

(39), we show that µw(w) ≥ 0 is equivalent to the following constraint at w < 0:

c(w) ≤ 1 + µ · (−w)− [(r + δ∗(w)) · (−w) + λE[π(Z)](−w − b∗(w))] . (44)

Evaluating equation (42) at w and using σw(w) = 0 and p(w) > 0, we see that endogenous

relative risk aversion, γ̃(w), approaches infinity, as w → w.

3.5 Summary

The following proposition summarizes the main properties of the solution.

Proposition 1 The scaled certainty equivalent wealth in the normal (p(w)) and autarky (p̂ )

regimes satisfies the following two interconnected ODEs:

0 =

(
ζ(p′(w))1−ψ − ψρ

ψ − 1
+ µ− γσ2

2

)
p(w) + [ (r + δ∗(w)− µ)w + 1 + λE[π(Z)](w + b∗(w)) ] p′(w)

+
γ2σ2p(w)p′(w)

2 γ̃(w)
+

λ

1− γE



(
Zp
(
wJ
)

p(w)

)1−γ

− 1


 p(w) , (45)

0 =
ρ
[
(a p̂ )−(1−ψ−1) − 1

]

1− ψ−1
+ µ+

λ(E(Z1−γ)− 1)

1− γ − γσ2

2
+

ξ

1− γ

[(
p(0)

p̂

)1−γ

− 1

]
, (46)
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where wJ is given by equation (41). When w < w, the country defaults and hence

p(w) = α p̂ . (47)

In addition, we have the following boundary conditions:

p(w) = α p̂ , (48)

p′′(w) = −∞ , (49)

lim
w→∞

p(w) = w + h , (50)

where h is given by

h =
1

r − g . (51)

The equilibrium credit spreads for foreign and domestic currency debt, δ(wt−) = δ∗(wt−),

are given in (33). The country defaults when τD = inf{t : wt < w}.
In the no-default region where w ≥ w, the following policy rules apply. The optimal

consumption-output ratio, c(w), is

c(w) = ζp(w)(p′(w))−ψ , (52)

where ζ is given by

ζ = r + ψ (ρ− r) . (53)

The scaled foreign currency debt issuance, b∗, maximizes

max
b∗≥−w−κ

[δ∗(w)w + λE(π(Z))(w + b∗(w))]p′(w) +
λp(w)

1− γ E

(
Zp
(
wJ
)

p(w)

)1−γ

. (54)

The scaled diffusion risk hedging demand, θ(w), is given by equation (37). The optimal

default threshold, Z(w), is given by equation (31).

Equation (48) follows from the value-matching condition, (26). Equation (49) follows

from the zero-volatility condition, (43) evaluated at w, and p(w) > 0. Equations (48) and

(49) characterize the properties of the economy when −w equals the country’s debt capacity,

−w. Equation (50) states that, as w → ∞, the effect of limited commitment wanes and

p(w) converges to w + h, the value of p(w) in the first-best solution (see Section 4).
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Equation (52) shows that consumption is a nonlinear function of w, which depends on

both the certainty-equivalent wealth, p(w), and its derivative, p′(w). Later, we show that

p′(w) ≥ 1 and p′(w) decreases with w. These properties imply that c(w) is lower than the

product of certainty-equivalent wealth p(w) and the marginal propensity to consume in the

first-best solution, ζ (i.e., c(w) < ζp(w)). Equation (54) determines the country’s foreign

currency debt issuance, b∗(w).

4 First Best: Full Commitment and Full Spanning

Before discussing the quantitative properties of our model, we make a small digression to

summarize the first-best (FB) solution to our model. This solution obtains when there is

full commitment and full spanning. Full commitment means that the country always honors

its contractual agreements, so it never defaults. Full spanning means that both diffusion

and jump risks (for all values of Z) are hedgeable at actuarially fair prices. We use the

superscript FB to denote the value of different variables in the FB solution.

As in Friedman (1957) and Hall (1978), we define non-financial wealth, Ht, for the case

in which all risks are hedgeable as the present value of output, discounted at the constant

risk-free rate, r,

Ht = Et
(∫ ∞

t

e−r(u−t)Yudu

)
. (55)

Because Y is a geometric jump-diffusion process, we have Ht = hYt. Scaled non-financial

wealth, h, is given by equation (51). The expected growth rate of output, g, is given by

equation (2). To ensure that non-financial wealth is finite, we require that r > g. This

convergence condition is standard in asset-pricing and valuation models.

Let P FB
t ≡ P FB(Wt, Yt) denote the country’s certainty-equivalent wealth, defined in

equation (20), for the FB case. We show below that P FB
t is equal to

P FB
t ≡ P FB(Wt, Yt) = Wt + hYt . (56)

In other words, in the FB case, certainty-equivalent wealth coincides with total wealth,

defined as the sum of financial wealth Wt and non-financial wealth Ht.

The following proposition summarizes the properties of the FB solution.

Proposition 2 Scaled total wealth, pFB(w) = P FB(W,Y )/Y = (W +H)/Y , is

pFB(w) = w + h , (57)
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where h is given by equation (51) and wt ≥ wFB. The scaled endogenous debt capacity is

−wFB = h. The optimal consumption-output ratio, ct = cFB(w), is given by

cFB(w) = ζ pFB(w) = ζ(w + h) , (58)

where ζ, the marginal propensity to consume (MPC) in the FB case, is given by equation

(53). There is no default, meaning Z = 0. The endogenous relative risk aversion defined in

equation (35), γ̃t, is equal to γ for all t.

5 Quantitative Results

To explore the quantitative properties of our model, we calibrate it with the eleven param-

eter values reported in Table 1. We divide these parameters into two groups. The seven

parameters in the first group are set to values that are standard in the literature. The four

parameters in the second group are calibrated to match key features of data for Argentina.

5.1 Baseline Calibration

We first describe the parameters drawn from the literature.

Parameters from the Literature. Following Aguiar and Gopinath (2006), we set the

coefficient of relative risk aversion (γ) to 2, the annual risk-free rate (r) to 4 percent, and

the rate at which the country exits autarky (ξ) to 0.25 per annum. This choice of ξ implies

that after default, the country stays in autarky for four years on average. This implication

is consistent with the empirical estimates reported in Gelos, Sahay, and Sandleris (2011).

Following Barro (2009), we set the annual subjective discount rate (ρ) to 5.2 percent.

Since ρ > r, the country wants to borrow to front-load consumption, holding everything else

constant. This ability to front-load consumption is lost when the country defaults and enters

autarky.

As in the rare-disasters literature, we assume that the cumulative distribution function

of the recovery fraction, F (Z), is governed by a power law:

F (Z) = Zβ , 0 ≤ Z ≤ 1 . (59)

We choose β = 6.3, which is the point estimate obtained by Barro and Jin (2011). Since

large disasters are rare, Barro and Jin (2011) obtain these estimates by pooling long time
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Table 1: Parameter Values

Parameters Symbol Value
risk aversion γ 2
subjective discount rate ρ 5.2%
risk-free rate r 4%
jump arrival rate λ 0.073
power law parameter β 6.3
autarky exit rate ξ 0.25
financial development parameter κ 10%

Parameters chosen to target observables
output drift (in the absence of jumps) µ 2.7%
output diffusion volatility σ 4.5%
output recovery post default α 97%
elasticity of intertemporal substitution ψ 0.025

Targeted observables
average output growth rate g 1.7%
output growth volatility 6.85%
average debt-output ratio 15%
unconditional default probability 3%

All parameter values, whenever applicable, are continuously compounded and annualized.

series for different countries. Barro and Jin (2011) also estimate the probability of disasters

to be 3.8 percent per annum. This estimate is based on their definition that a disaster is a

macroeconomic contraction (measured in consumption or output) that exceeds 10 percent.

Since the stochastic recovery fraction upon a jump arrival, Z, can take values from zero to

one, our estimate of λ is given by λF (0.9) = λF (0.9) = λ× 0.9β = 0.038 with β = 6.3. We

obtain an annual jump arrival rate, λ = 0.073. For simplicity, we assume that π(Z) = 1−Z.

Calibrated Parameters from Argentinean Data. We set the financial development

parameter κ to 10 percent. This choice results from the following calculations. Coppola,

Maggiori, Neiman, and Schreger (2020) report that the share of gross Latin American domes-

tic currency debt that foreigners hold is relatively low: 22 percent in Argentina, 23 percent

in Chile, and 33 percent in Brazil and Mexico. During the period from 1992 to 2001, Ar-

gentina’s gross domestic debt fluctuated between 25 and 48 percent of GDP. Combining a
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domestic gross debt of 48 percent of GDP with a foreign ownership share of 22 percent yields

a value of κ of about 10 percent.

Next, we choose the parameters that control the drift in the absence of jumps (µ), the

diffusion volatility (σ), the default distress cost (1 − α), and the elasticity of intertemporal

substitution (ψ) to target the following four moments estimated with Argentinean data:

an average growth rate of output of 1.7 percent per annum, a standard deviation of the

growth rate of output of 6.8 percent, an average debt-to-GDP ratio of 15 percent, and an

unconditional default probability of 3 percent per annum. We obtain estimates of the average

and standard deviation of the annual growth rate of real GDP for Argentina using Barro

and Ursua’s (2008) data for the period from 1876 to 2009.

Our model consolidates the expenditure and borrowing decisions of the private sector

and the government. For this reason, we calibrate it to match the ratio of net debt to GDP.

In Argentina, as in most countries, a significant fraction of government debt is owned by

the domestic private sector, so debt held by foreigners is much smaller than the country’s

total debt. We compute our target for the debt-to-output ratio by calculating the difference

between Argentina’s debt liabilities and debt assets using the data compiled by Lane and

Milesi-Ferretti (2007) for the period from 1970 to 2011. The average net debt-to-GDP ratio

during this period is 15 percent. Since defaults are rare, it is helpful to use as much data as

possible to estimate the probability of default. Argentina defaulted six times in roughly 200

years, so we target an annual default probability of 3 percent.10

Our calibration procedure yields the following parameter values: ψ = 0.025, µ = 2.7

percent per annum, σ = 4.5 percent per annum, and α = 97 percent. The calibrated value

of α implies that the direct cost of defaulting is 3 percent of output. This cost of default is

conservative relative to the estimates reported by Hébert and Schreger (2017) for Argentina.

In this calibration, the value of the EIS (ψ = 0.025) is low, so the representative agent

has a strong preference for smooth consumption paths.11

We can interpret the low value of the EIS as resulting from rigidities in spending patterns

and expenditure commitments that are difficult to change.

10Argentina defaulted in 1830, 1890, 1915, 1930, 1982, and 2001. See Sturzenegger and Zettlemeyer (2006)
for a discussion.

11There is currently no consensus on what are empirically plausible values for the EIS (see Attanasio and
Weber (2010) for a discussion). Our choice is consistent with Hall (1988), who argues that the elasticity of
intertemporal substitution is close to zero. It is also consistent with the recent estimates by Best, Cloyne,
Ilzetzki, and Kleven (2017), which are based on mortgage data.
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5.2 Debt Intolerance

We now discuss how a country’s average debt-output ratio, average default probability, and

debt capacity vary with financial development, κ. We fix all other parameters at the values

reported in Table 1.

Table 2: The effect of financial development, κ

κ average debt-output ratio default probability debt capacity |w|

10% 14.5% 2.9% 18.4%
20% 18.4% 0.6% 23.4%
50% 42.0% 0 42.4%

All parameter values other than κ are reported in Table 1.

Table 2 illustrates the key result in our paper: the higher is financial development, κ, the

higher are debt capacity and the average debt-output ratio and the lower is the probability

of default. As discussed above, the intuition for these results is that domestic currency debt

is a natural hedge against disaster risk. A country that can issue more domestic currency

debt has a greater ability to manage its disaster risk, takes on more debt, and defaults less.

5.3 Quantitative Results and Economic Mechanisms

In this subsection, we use the calibration described above to explore the quantitative prop-

erties of our model. Figures 1, 2, and 3 illustrate these properties for four levels of financial

development: κ = 10, 20, 50, and 100 percent. In our benchmark calibration, we set κ = 10

percent, which means that the country can issue domestic currency debt only up to 10

percent of its output.

It is useful to first discuss the FB solution. In this solution, the country fully uses its

debt capacity, which is the present discounted value of output, h = 1/(r − g), and never

defaults. Given our calibration, the country borrows 4,348 percent of its current output in

the FB solution, an implication that is clearly unrealistic.

Certainty-equivalent wealth, Marginal Certainty-equivalent Value of Wealth, and

Consumption. Improving financial development by increasing κ from 10 to 50 percent has
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Figure 1: Scaled certainty-equivalent wealth, p(w), marginal certainty-equivalent value of
wealth, p′(w), consumption-output ratio, c(w), and c′(w), for four levels of financial devel-
opment: κ = 10, 20, 50, and 100 percent.

a large impact on debt capacity, average debt-output ratio, and default probability: debt

capacity rises from 18.4 to 42.4 percent of output, the average debt-output ratio increases

from 15 to 42 percent, and the probability of default drops from 3 percent to zero.

Further improving financial development by increasing κ from 50 to 100 percent has a

negligible impact on debt capacity and average debt-output ratio. The reason for this small

impact is that the ability to issue domestic currency debt up to 50 percent of output already

provides the country with a sizable hedge against disaster shocks.

Panels A and B of Figure 1 display the scaled certainty-equivalent wealth, p(w), and the

marginal certainty-equivalent value of wealth, PW (W,Y ) = p′(w), respectively. The function

p(w) is increasing and concave, which implies that p′(w) is decreasing in w and p′(w) is

greater than one.12 Panels C and D display the consumption-output ratio, c(w), and the

12Wang, Wang, and Yang (2016) derive similar properties for certainty-equivalent wealth in a self-insurance
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MPC out of wealth, c′(w), respectively. The function c(w) is increasing and concave, which

implies that c′(w) is decreasing in w. As w goes to infinity, p(w) approaches pFB(w) = w+h,

p′(w) approaches one, c(w) approaches cFB(w) = ζ(w + h), and c′(w) approaches the MPC

obtained in the FB, ζ = 0.0403.

We see that the higher is financial development, κ, the higher is p(w). The ability to issue

more domestic currency debt, which is a natural hedge against disaster risk, increases the

country’s debt capacity, |w|. As a result, the marginal certainty-equivalent value of wealth,

p′(w), is lower. Consumption is higher because both a higher p(w) and a lower p′(w) cause

c(w) to be higher (see equation (52)). Consider w = −15 percent, which is the average

debt-to-output ratio in our baseline calibration. The net marginal certainty-equivalent value

of wealth, p′(−0.15) − 1, is 7.92 in the economy with κ = 10 percent. This value is 130

percent higher than the value of p′(−0.15)− 1 in the economy with κ = 50 percent.

The MPC out of wealth, c′(−0.15), is equal to 63.4 percent in the economy with κ = 10

percent. This value is 382 percent higher than the value of c′(−0.15) in the economy with

κ = 50 percent.

Domestic and Foreign Currency Debt, Default Threshold, and Credit Spreads.

Panels A and B of Figure 2 plot, as a function of w, the dollar value of domestic and foreign

currency debt, b(w) and b∗(w), respectively. Consider the case in which κ = 0.10. In this

case, the country’s debt capacity is−w = 18.4 percent. The country issues domestic currency

debt, b(w) = 0.1, and saves (0.1 + w) > 0 in foreign currency assets in the region where

w ∈ (−0.1, 0). In the region where w ∈ (−w,−0.1) = (−0.184,−0.1), the country issues

foreign currency debt, b∗(w) = −(w + 0.1) > 0, and exhausts its domestic currency debt

issuance capacity (κ = 0.1).

With κ = 0.5, the country only issues domestic currency debt, b(w) = 0.5, for all levels

of w up to its debt capacity, −w = 0.424, and saves the amount −(w+ 0.424) > 0 in foreign

currency assets.

With κ = 1, the financial development constraint (10) binds in the region where w ∈
(−0.4, 0) but does not bind in the region where w ∈ (−0.43,−0.4). The reason is that

the “implicit” jump insurance premium from using domestic currency debt, which is the

domestic currency appreciation that occurs absent jumps, becomes much more costly when

the country is near its debt capacity (very large p′(w)).

model in which labor income shocks are uninsurable and the agent can only save via a risk-free asset.
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Figure 2: Scaled foreign currency debt, b∗(w), scaled currency domestic debt, b(w) =
−(w + b∗(w)), default boundary, Z(w), and credit spread, δ∗(w), for four levels of finan-
cial development: κ = 10, 20, 50, and 100 percent.

Panels C and D plot the optimal default threshold, Z(w), and the credit spread δ∗(w),

respectively. Low values of κ are associated with debt intolerance. Debt capacity is lower,

default is more likely, and the credit spread, δ∗(w), is higher for a given level of w.

The country never defaults when κ ≥ |w| because all its debt is denominated in domestic

currency, which is a natural hedge against disaster risk. For example, when κ = 50 percent,

the country’s debt capacity is 42.4 percent. The country never defaults, so its credit spread

is zero.

Diffusion Hedging Demand, Drift and Volatility of w, and Endogenous Risk

Aversion. Panel A of Figure 3 shows that the scaled effective hedging demand, θ̃(w), is

negative and that its absolute value increases with w. That is, a less indebted country hedges

more diffusive risk. Hedging and financial wealth are complements. The higher is the level of
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Figure 3: The effective diffusion risk hedging, θ̃(w), volatility of w, σw(w), drift of w, µw(w),
and endogenous risk aversion, γ̃(w), for four levels of financial development: κ = 10, 20, 50,
and 100 percent.

financial development, the more the country hedges for a given value of w. So hedging and

financial development are also complements. Even though the country incurs no up-front

cost to hedge diffusion shocks, it is not optimal to fully hedge the diffusion risk.

Panel B plots the volatility function, σw(w). Because a less indebted country has a

higher p(w) and a lower endogenous relative risk aversion, γ̃(w), the absolute value of σw(w)

increases with w (see equation (42)). In the limit, as w → w, the absolute value of σw

reaches zero, σw(w) = 0. The intuition for this property, which is visible in panel B, is that

it is inefficient for the country to use default to manage diffusive shocks. Since these shocks

do not trigger default, σw(w) = 0.

Panel C shows the drift function for w, µw(w), which is negative for most values of w.

This result follows from two observations. First, the country’s consumption is often larger

than output (see Figure 1). Second, interest payments for domestic and foreign currency
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debt drain the country’s financial wealth. Both forces increase the country’s average debt

level. However, as debt approaches debt capacity, −w, the country voluntarily adjusts its

consumption, diffusion hedging demand, and domestic and foreign currency debt issuances

so that µw(w) ≥ 0. The property µw(w) ≥ 0 together with σw(w) = 0 are necessary to

ensure that the country does not default in response to diffusive shocks.

Panel D shows the behavior of endogenous risk aversion, γ̃(w). We see that the less

indebted is the country, the lower is its endogenous risk aversion. In addition, the higher is the

level of financial development, the lower is its endogenous risk aversion. As w approaches the

lower bound, w, γ̃(w) approaches infinity. This result follows from equation (42), p(w) > 0,

and the zero-volatility condition at the boundary, σw(w) = 0.

6 Domestic Currency Debt versus Hedging Contracts

So far, we have discussed the role of domestic currency debt as a natural hedge against jump

shocks. An alternative approach to managing rare-disaster risk, emphasized by Cantú and

Chui (2020), is to use state-contingent hedging contracts.

In this section, we compare two economies. The first economy hedges its disaster risk

using domestic currency debt and has a sufficiently high level of financial development, κ,

so that the financial development constraint, (10), does not bind.

The second economy hedges its disaster risk with a set of full-spanning, state-contingent

hedging contracts that are actuarially fair. This economy has limited commitment and

full spanning, so it corresponds to the case considered by Kehoe and Levine (1993) and

Kocherlakota (1996). In this economy, it is more cost effective to manage risk by hedging

than by using default. So, the country never defaults and its credit spread is zero. The

country’s debt capacity is reduced to a level such that, in equilibrium, the country weakly

prefers repaying its outstanding debt over defaulting on it.13

We find that the full-spanning economy has higher certainty-equivalent wealth than the

domestic currency economy, but this difference is not large. The domestic currency econ-

omy hedges less diffusion and jump risk than the full-spanning economy. The full-spanning

economy hedges the risk of large disasters much more than the domestic currency economy.

13Other work that emphasizes the importance of limited commitment includes Alvarez and Jermann (2000,
2001), Kehoe and Perri (2002), Albuquerque and Hopenhayn (2004), Cooley, Marimon, and Quadrini (2004),
Krueger and Perri (2006), Krueger and Uhlig (2006), Chien and Lustig (2010), and Lustig, Syverson, and
Van Nieuwerburgh (2011).
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Jump Insurance Contracts and Insurance Premium Payments. We assume that

jump shocks are idiosyncratic and that markets for contracts that hedge these shocks are

perfectly competitive. Bulow and Rogoff (1989) define a “cash-in-advance” contract as a

“conventional insurance contract under which a country makes a payment up front in return

for a state contingent, nonnegative future payment.” Following Bulow and Rogoff (1989), we

consider an insurance contract initiated at time t that covers the following jump event: the

first stochastic arrival of a downward jump in output with a recovery fraction in the interval

(Z,Z + dZ) at jump time τJ > t.

The buyer of a unit of this insurance contract makes continuous insurance premium pay-

ments. Once the jump event occurs at time τJ , the buyer stops making payments and

receives a one-time unit lump-sum payoff. The insurance premium payment is equal to

λdF (Z), the product of the jump intensity, λ, and the probability dF (Z) that the recovery

fraction falls inside the interval (Z,Z + dZ). Conceptually, this insurance contract is analo-

gous to one-step-ahead Arrow securities in discrete-time models. In practice, this insurance

contract is similar to a credit default swap.14

We denote the country’s holdings of jump-risk insurance contracts at time t contingent

on a recovery fraction Z by Xt(Z). The country pays an insurance premium to hedge jump

risk at a rate Xt(Z)λ dF (Z) before the first jump with recovery fraction Z arrives at time

τJ . At this time, the country receives a lump-sum payment Xt(Z) if the recovery fraction

is in the interval (Z,Z + dZ). The total jump insurance premium payment per unit of time

is given by

Φt = λ

∫ 1

0

Xt(Z)dF (Z) ≡ λE [Xt(Z) ] , (60)

where the expectation, E[ · ], is calculated with respect to the cumulative distribution func-

tion, F (Z).

In the normal regime, financial wealth, Wt, evolves according to

dWt = [(r + δ∗t−)Wt− + Yt− − Ct− − Φt−]dt+ σΘt−dBt +Xt−(Z) dJt − 1Dt Wt−dJt . (61)

The jump insurance premium payment, Φt−, is deducted in the first term in equation (61).

The last two terms reflect the effect of a jump arrival. The first term is the jump-insurance

payment to the country, Xt−(Z), for the insurance purchased at t−. The second term

captures the effect of default.

14Pindyck and Wang (2013) discuss a similar insurance contract in a general equilibrium setting with
economic catastrophes.
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The value function V (W,Y ) in the normal regime satisfies the following HJB equation:

0 = max
C,Θ

f(C, V (W,Y )) + [(r + δ∗)W + Y − C − Φ]VW (W,Y )

+
Θ2σ2

2
VWW (W,Y ) + µY VY (W,Y ) +

σ2Y 2

2
VY Y (W,Y ) + Θσ2Y VWY (W,Y )

+ λE
[
V (W +X,ZY )1Z≥Z + V̂ (αZY )1Z<Z − V (W,Y )

]
. (62)

If Z < Z, the country defaults and enters autarky. Its output falls to Ŷt = αYt, where

Yt = ZYt−, so the value function at t = τD is V̂ (Ŷt) = V̂ (αZYt−).

First-Order Conditions (FOCs). The FOCs for consumption and diffusion risk hedging

are the same as in the benchmark model. The optimal jump-risk hedging demand for each

value of Z, Xt−(Z) ≡ X(Z;Wt−, Yt−), solves the following problem

max
Xt−(Z)

V (Wt− +Xt−, ZYt−)−Xt−VW (Wt−, Yt−) . (63)

Equation (63) applies for all values of Z, and this flexibility in choosing Z-contingent hedging

demand Xt−(Z) enhances the country’s ability to manage risk, creating value.

The FOC for X(Z;W,Y ) is

VW (W +X(Z;W,Y ), ZY ) = VW (W,Y ) . (64)

Without jump insurance, output falls upon a jump arrival, VW (W,Y ) < VW (W,ZY ). The

country chooses X(Z;W,Y ) > 0 to equate the pre- and post-jump marginal utility of wealth.

The homogeneity property allows us to solve p(w) using the following equation:

0 =

(
ζ(p′(w))1−ψ − ψρ

ψ − 1
+ µ− γσ2

2

)
p(w) + [ (r + δ∗(w)− µ)w + 1− λE[x(Z,w)] ] p′(w)

+
γ2σ2p(w)p′(w)

2 γ̃(w)
+

λ

1− γE



(
Zp
(
wJ
)

p(w)

)1−γ

− 1


 p(w) , (65)

where x(Z,w) = X(Z;W,Y )/Y is the scaled jump-risk hedging demand,

wJt =
wt− + x(Z,w)

Z
, (66)

and the FOC for x(Z,w) is

p′(w)

p′(wJ )
=

(
Zp(wJ )

p(w)

)−γ
. (67)
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Figure 4: Scaled certainty-equivalent wealth, marginal certainty-equivalent value of wealth,
p(w), p′(w), consumption-output ratio, c(w), and MPC, c′(w), for the domestic currency
and full-spanning economies. The debt capacity is 44.6 percent for the domestic currency
economy and 52 percent for the full-spanning economy. All other parameters are reported
in Table 1.

To compare the two economies, stating the following result is useful. The domestic

currency economy is observationally equivalent to a full-spanning economy that is constrained

to using a hedging policy where x(Z,w) is proportional to the percentage depreciation of

domestic currency upon a jump arrival, π(Z), where the constant of proportionality is the

level of domestic currency debt:

x(Z,wt−) = b(wt−)π(Z) . (68)

The corresponding scaled jump insurance premium is φt− = λb(wt−)E[π(Z)]. This premium

reflects the domestic currency appreciation that occurs in non-disaster states. This appreci-

ation makes domestic currency debt more costly to service in U.S. dollars in these states.

Panel A of Figure 4 shows that the full-spanning economy has higher net certainty-
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equivalent wealth (e.g., for w = 0, p(0) = 28.31) than the domestic currency economy (e.g.,

for w = 0, p(0) = 28.14). As we can see, this difference is modest (less than 0.6 percent

for p(0)). Recall that p(0) = 27.22 for the domestic currency economy with κ = 0.1 .

Improving financial development from κ = 0.1 up to the point where the domestic currency

debt issuance constraint, (10), is not binding increases welfare by about 3.3 percent.

Figure 4 also shows that, for a given w, the full-spanning economy has higher debt

capacity, lower marginal value of wealth, higher consumption-output ratio, and lower MPC

than the domestic currency economy. These results are consistent with our intuition that

improving risk management opportunities makes the country better off.
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Figure 5: The effective jump-risk hedging demand and insurance premium for the domestic
currency and full-spanning economies. The debt capacity is 44.6 percent for the domestic
currency economy and 52 percent for the full-spanning economy. All other parameters are
reported in Table 1.

Panel A of Figure 5 compares the state-contingent jump hedging policy in the full-

spanning economy to the effective hedging demand delivered by domestic currency debt
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issuance (equation (68)). We see that the two policies are similar for small jump shocks.

However, the optimal hedging policy in the full-spanning economy involves much higher

hedging of large disasters (low-Z states).

Panel B of Figure 5 shows the effective jump hedging costs (φt− = λb(wt−)E[π(Z)]) for

the domestic currency economy. This cost is the extra interest payment in U.S. dollars on

domestic currency debt to compensate for the stochastic depreciation of domestic currency

upon a jump arrival. The jump insurance premium payments in the full-spanning economy

are higher than the effective jump hedging costs in the domestic currency economy.
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Figure 6: Scaled foreign currency debt, b∗(w) and scaled domestic currency debt, b(w) =
−(w + b∗(w)). All other parameters are reported in Table 1.

Panel C of Figure 5 compares the hedging demand for a Z = 0.5 disaster in the domestic

currency and full-spanning economies for different levels of w. This panel shows that for

large disasters, the domestic currency economy hedges less than the full-spanning economy.

Also, for both economies, hedging decreases as the country gets closer to its debt capacity.

Panel D of Figure 5 contains the analogous information for a relatively small disaster

(Z = 0.9). We see that the domestic currency economy hedges more than the full-spanning

economy when w is close to the origin but hedges less when w is close to the debt capacity.

This property reflects the constraint that the effective jump hedging demand implied by

the issuance of domestic currency debt has to be proportional to π(Z) = 1 − Z. So, it is

not possible to increase hedging against the risk of large disasters without also increasing

hedging against the risk of small disasters. Since the country has only one instrument, b(wt−),

it cannot choose how much to hedge each jump, Z. So, it has to balance overhedging small-
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disaster states with underhedging large-disaster states. The net effect is that the domestic

currency economy spends less to hedge. As a result, this economy is more exposed to disaster

shocks.

−0.5 −0.4 −0.3 −0.2 −0.1 0
−2.5

−2

−1.5

−1

−0.5

0
A. “effective” diffusion risk hedging

 

 

−0.5 −0.4 −0.3 −0.2 −0.1 0
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
B. volatility of w: σw(w)

−0.5 −0.4 −0.3 −0.2 −0.1 0

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

w

C. drift of w: µw(w)

−0.5 −0.4 −0.3 −0.2 −0.1 0

50

100

150

200

w

D. endogenous risk aversion: γ̃(w)

full spanning
domestic currency

6

Figure 7: Effective diffusion risk hedging, θ(w), volatility and drift of w, and endogenous risk
aversion, γ̃(w), for the domestic currency and full-spanning economies. The debt capacity
is 44.6 percent for the domestic currency economy and 52 percent for the full-spanning
economy. All other parameters are reported in Table 1.

Figure 6 plots the optimal debt policy for the domestic currency economy. Recall that

financial development is such that constraint (10) does not bind. The economy issues do-

mestic currency debt and saves in the form of foreign currency bonds. As discussed before, a

country with high net debt (more negative w) issues less domestic currency debt. That is, it

effectively hedges its disaster risk less because, as the country approaches its debt capacity,

the marginal value of wealth is very high (Figure 6), so hedging is more costly.

Figure 7 shows that the diffusion risk hedging demand is larger in the full-spanning

economy than in the domestic currency economy. The intuition for this result is that the
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full-spanning economy can better manage its risk by choosing how much to hedge each value

of Z. As a result, its debt capacity is larger, and the endogenous risk aversion for each given

w is lower. The drift of w is also lower. The country can manage risk better, and hence

it can take on more debt to smooth consumption. In the full-spanning economy, there is

no equilibrium default, as in Kehoe and Levine (1993), because using default is more costly

than hedging risk with contingent contracts. In this domestic currency economy in which

the financial development constraint does not bind, there is no default either.

7 Credit Risk Premium

In this section, we relax the assumption that all shocks are idiosyncratic and generalize our

model to incorporate a credit risk premium. We model credit risk along the lines of Pan and

Singleton (2008), Longstaff, Pan, Pedersen, and Singleton (2011), and Borri and Verdelhan

(2015). To simplify, we assume that realizations of the recovery fraction, Z, and diffusion

shocks are idiosyncratic. As a result, credit risk results from jump-arrival timing risk.

Model Setup and Solution. As in the credit risk literature (see, e.g., Duffie and Single-

ton, 2012), we model the jump-arrival timing risk by working under the risk-neutral measure,

Q. We assume that the risk-neutral jump-arrival intensity, λQ, is larger than the physical

jump-arrival intensity, λ. This assumption captures the idea that well-diversified, risk-averse

investors demand a premium for downward jump arrivals. As a result, they perceive these

jump arrivals as more likely under Q than under the physical measure, λQ/λ > 1.

The higher the ratio λQ/λ, the higher the default risk premium. Given that the realiza-

tions of the recovery fraction, Z, and diffusion shocks are idiosyncratic, their distributions

are the same under the risk-neutral and physical measures.

The Exchange Rate Process. Since foreign investors price the domestic currency, we

assume that the exchange rate process is a martingale under the risk-neutral measure, Q,

dSt
St−

= σSdBt − π(Z)dJ Q
t + λQE[π(Z)]dt . (69)

Under the physical measure,

dSt
St−

= σSdBt − π(Z)dJt + λQE[π(Z)]dt , (70)
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where Jt is a pure jump process with arrival rate λ. When a jump shock arrives at time t, the

exchange rate changes from St− to St = (1− π(Z))St−. The expected currency appreciation

is Et−(dSt/St−) =
(
λQ − λ

)
E[π(Z)]dt, which is positive given that λQ > λ.

Under these assumptions, the competitive market zero-profit condition for diversified

risk-averse investors implies that the credit spread for foreign currency debt, δ̃∗, satisfies

B∗t−(1 + rdt) = B∗t−(1 + (r + δ̃∗t−)dt)
[
1− λQ F (Z(wt−))dt

]
+ λQ F (Z(wt−))dt× 0 . (71)

Simplifying this equation, we obtain the following credit spread equation:

δ̃∗(wt−) = λQ F (Z(wt−)) . (72)

The key difference between this equation and the one that applies when shocks are idiosyn-

cratic (equation (32)) is that λQ instead of λ appears in equation (72).

When the country issues domestic currency debt (Bt− > 0), the competitive market zero-

profit condition for diversified investors implies that the credit spread for domestic currency

debt, δ̃, satisfies

Bt−St−(1+rdt) = EQ
t−

[
Bt−St(1 + (r + δ̃t−)dt)

] [
1− λQF (Z(wt−))dt

]
+λQ F (Z(wt−))dt×0 .

(73)

Simplifying (73), we obtain δ̃t− = δ̃(wt−) = λQ F (Z(wt−)).

The law of motion for Wt under the physical measure is given by

dWt =
[
Yt− − Ct− + (r + δ̃∗t−)Wt− + (Wt− +B∗t−)λQE[π(Z)]

]
dt+ σΘ̃t−dBt

−(Wt− +B∗t−)π(Z)dJt . (74)

The corresponding ODE for p(w) is given by

0 =

(
ζ(p′(w))1−ψ − ψρ

ψ − 1
+ µ− γσ2

2

)
p(w) +

[
(r + δ̃∗(w)− µ)w + 1 + λQE[π(Z)](w + b∗(w))

]
p′(w)

+
γ2σ2p(w)p′(w)

2 γ̃(w)
+

λ

1− γE



(
Zp
(
wJ
)

p(w)

)1−γ

− 1


 p(w) . (75)

The optimal level of foreign currency debt issuance is the solution to the following max-

imization problem

max
b∗≥−w−κ

[
λQ F (Z(w))w + λQE(π(Z))(w + b∗(w))

]
p′(w) +

λp(w)

1− γ E

(
Zp
(
wJ
)

p(w)

)1−γ

. (76)

All other first-order and boundary conditions are the same as those stated in Proposition 1.
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Figure 8: Scaled certainty-equivalent wealth, p(w), and marginal certainty-equivalent value
of wealth, p′(w), for our baseline case (λQ/λ = 1) and the case with a credit risk premium
(λQ/λ = 1.3). Debt capacity is equal to −w = 18.4 percent and −w = 16.8 percent for the
λQ/λ = 1 and λQ/λ = 1.3 cases, respectively. All other parameters are reported in Table 1.

Calibration and Quantitative Results. To calibrate the default risk premium, we use

the estimates in Longstaff, Pan, Pedersen, and Singleton (2011) for Brazil and Colombia

since they do not have estimates for Argentina. In that paper, the authors assume that the

logarithmic default intensity under both the physical and the risk-neutral measures follow an

Ornstein-Uhlenbeck process (analogous to an AR(1) process in discrete time) with different

mean reversion and long-run mean parameter values. We use their estimates to infer the

long-run mean and variance of the logarithmic default intensity under both the physical and

risk-neutral measures.

Since the long-run default intensity under both measures is log-normal, we can calculate

the long-run mean of the default intensity under both measures. The ratio between the

average default intensity under the risk-neutral and the physical measure is 1.33 and 1.31 for
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Brazil and Colombia, respectively. Since we assume that the distribution of Z is idiosyncratic,

we set the ratio between the jump-arrival rate under the risk-neutral measure (λQ) and the

physical measure (λ) to λQ/λ = 1.3.

Figure 8 compares the λQ/λ = 1.3 model with the one without a credit risk premium

(λQ/λ = 1). In the economy with a credit risk premium, risk-averse foreign investors price

disaster risk as if they were risk neutral, and the arrival rate is 30 percent higher than under

the physical measure. As a result, for a given value of w, credit spreads are larger in the

economy with credit risk premia. In equilibrium, these higher credit risk premia translate

into a lower debt capacity, which in turn is associated with a lower p(w) and a higher p′(w),

(see panels A and B of Figure 8).

Panels C and D show that a country that is close to its debt capacity is more likely

to default in the economy with a credit risk premia. For a given level of w, the default

threshold, Z(w), is higher in the economy with a credit risk premium.

In sum, credit risk premia exacerbate debt intolerance by reducing debt capacity and

increasing conditional credit spreads. However, these effects are not strong in our calibration.

8 Transitory Default Costs

In this section, we consider an extension of our model in which output losses associated with

default are temporary and disasters are followed by recoveries.15 To conserve on the number

of state variables, we model recoveries as coinciding with the country’s resumption of access

to international capital markets.

When the country enters the autarky regime at t = τD, output falls to Ŷt = αYt. Output

follows the stochastic process (5) as long as the country is in the autarky regime. We denote

by τE the time at which the country exits autarky and enters the normal regime. At this

time, output discretely jumps upward from ŶτE− to YτE = ŶτE−/α = αYτE−/α = YτE− , so

the output loss associated with default is temporary. After exiting autarky, output follows

the process (1).

We rewrite the HJB equation (24) for V̂ (Ŷ ) as follows:

0 = f(Ŷ , V̂ ) + µŶ V̂ ′(Ŷ ) +
σ2Ŷ 2

2
V̂ ′′(Ŷ ) + λE

[
V̂ (ZŶ )− V̂ (Ŷ )

]
+ ξ

[
V
(

0, Ŷ /α
)
− V̂ (Ŷ )

]
.(77)

15See Nakamura, Steinsson, Barro, and Ursua (2013) for a rare-disaster model in which disasters are
followed by recoveries.
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Figure 9: Scaled certainty-equivalent wealth, p(w), and marginal certainty-equivalent value
of wealth, p′(w), for both the permanent and transitory default cost cases. Debt capacity is
equal to −w = 18.4 percent and −w = 14 percent for the permanent and transitory default
cost cases, respectively. All other parameters are reported in Table 1.

The last term in equation (77) captures the effect of the upward jump in output from Ŷ to

Ŷ /α that occurs when the country exits autarky. The corresponding implicit equation for

scaled certainty-equivalent wealth, p̂ , is given by

0 =
ρ
[
(a p̂ )−(1−ψ−1) − 1

]

1− ψ−1
+ µ+

λ(E(Z1−γ)− 1)

1− γ − γσ2

2
+

ξ

1− γ

[(
p(0)

αp̂

)1−γ

− 1

]
. (78)

The remaining first-order and boundary conditions are the same as in Proposition 1.

Figure 9 compares the model with permanent and temporary default costs using our

benchmark calibration. Given that the output losses associated with default are temporary,

the cost of default is lower than in a model with permanent default costs. In equilibrium,

this lower default cost translates into a lower debt capacity, which in turn is associated with

a lower welfare (p(w)) and a higher p′(w).
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Panels C and D show that a country that is close to its debt capacity is more likely to

default when the output loss is temporary rather than permanent.

In sum, making default costs transitory exacerbates debt intolerance by reducing debt

capacity and increasing credit spreads for a given level of debt.

9 Conclusions

We present a tractable model of sovereign debt that features a jump-diffusion process for

output used in the rare-disasters literature and recursive preferences that separate the role

of intertemporal substitution and risk aversion.

We define financial development as the ability to issue domestic currency debt in interna-

tional capital markets. Since domestic currency depreciates when disasters occur, domestic

currency debt is a natural hedge against disaster risk.

We show that countries with low levels of financial development suffer from debt intoler-

ance: they have low debt capacity and pay high conditional credit spreads even when their

debt level is modest.

To focus on the impact of financial development on sovereign debt, we abstracted from

two forces that could influence demand and supply of sovereign debt. The first is the moral

hazard problem that is associated with insurance. The second is the impact of sudden stops

(Calvo (1998) and Mendoza (2010)) and debt roll-over risk. We plan to address these issues

in future research.
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Cantú, C. and M. Chui, “Financial Market Development and Financial Stability.” in “Fi-

nancial Market Development, Monetary Policy and Financial Stability in Emerging

Market Economies,” Bank of International Settlements, December 2020.

Chatterjee, S., and B. Eyigungor, 2012. “Maturity, Indebtedness, and Default Risk.” Amer-

ican Economic Review, 102: 2674-2699.

Chien, Y. and Lustig, H., 2010. “The Market Price of Aggregate Risk and the Wealth

Distribution.” The Review of Financial Studies, 23(4): 1596-1650.

Cooley, T., Marimon, R., and Quadrini, V., 2004. “Aggregate Consequences of Limited

Contract Enforceability.” Journal of Political Economy, 112(4): 817-847.

Coppola, A., M. Maggiori, B. Neiman, and J. Schreger. “Redrawing the Map of Global

Capital Flows: The Role of Cross-border Financing and Tax Havens.” No. w26855.

National Bureau of Economic Research, 2020.

Cox, J., Ingersoll, J., and Ross, S., 1981. “The Relation Between Forward Prices and

Futures Prices.” Journal of Financial Economics, 9(4): 321-346.

DeMarzo, P., He, Z., and Tourre, F., 2020. “Sovereign Debt Ratchets and Welfare Destruc-

tion.” Working paper.

DeMarzo, P. M., and Sannikov, Y., 2006. “Optimal Security Design and Dynamic Capital

Structure in a Continuous-time Agency Model.” Journal of Finance, 61(6): 2681-2724.

Du, W., Pflueger, C., and Schreger, J., 2020. “Sovereign Debt Portfolios, Bond Risks, and

the Credibility of Monetary Policy.” Journal of Finance, 75(6): 3097-3138.

Dubey, P., Geanakoplos, J., and Shubik, M., 2005. “Default and Punishment in General

Equilibrium.” Econometrica, 73(1): 1-37.

Duffie, D., and Epstein, L., 1992. “Stochastic Differential Utility.” Econometrica, 60(2):

353-394.

Duffie, D. and Singleton, K.J., 2012. Credit Risk: Pricing, Measurement, and Management.

Princeton University Press.

44



Eaton, J. and Gersovitz M., 1981. “Debt with Potential Repudiation Theoretical and

Empirical Analysis.” Review of Economic Studies, 48(2): 289-309.

Epstein, L., and Zin, S., 1989. “Substitution, Risk Aversion, and the Temporal Behavior

of Consumption and Asset Returns: A Theoretical Framework.” Econometrica, 57(4):

937-969.

Farhi, E., and Gabaix, X., 2016. “Rare Disasters and Exchange Rates.” The Quarterly

Journal of Economics, 131(1): 1-52.

Friedman, M., 1957. A Theory of the Consumption Function, Princeton University Press,

Princeton.

Gabaix, X., 2012. “Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles

in Macro-finance.” The Quarterly Journal of Economics, 127(2): 645-700.

Gelos, R. G., Sahay, R., and Sandleris, G., 2011. “Sovereign Borrowing by Developing

Countries: What Determines Market Access?” Journal of International Economics,

83(2): 243-254.

Gourinchas, Pierre-Olivier, and Rey, H., 2007. “International Financial Adjustment.” tex-

titJournal of Political Economy, 115, 4: 665-703.

Gourio, F. 2012. “Disaster Risk and Business Cycles.” American Economic Review, 102,

6: 2734-66.

Hall, R.E., 1978. “Stochastic Implications of the Life Cycle-Permanent Income Hypothesis:

Theory and Evidence.” Journal of Political Economy, 86(6): 971-987.

Hall, R. E., 1988. “Intertemporal Substitution in Consumption.” Journal of Political Econ-

omy, 96(2): 339-357.

Hatchondo, J. C., and Martinez, L., 2009. “Long-duration Bonds and Sovereign Defaults.”

Journal of international Economics, 79(1): 117-125.

Hausmann, R., and Panizza, U., 2003. “On the Determinants of Original Sin: an Empirical

Investigation.” Journal of International Money and Finance, 22(7): 957-990.

45



He, Z., and Krishnamurthy, A., 2013. “Intermediary Asset Pricing.” American Economic

Review, 103(2): 732-70.
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A Appendices

A.1 Derivation of Proposition 1

We show that the value function in the normal regime, V (W,Y ), is given by equation (20)

and the value function in the autarky regime, V̂ (Ŷ ), is given by equation (25).

Substituting equation (20) and the first and second derivatives of V (W,Y ) into the HJB

equation (14) and using the homogeneity property of the value function, we obtain

0 = max
c, θ̃, b∗≥−w−κ

(
c(w)
bp(w)

)1−ψ
− 1

1− ψ−1
ρp(w) + θ̃(w)σ2

(
−wp′′(w)− γp′(w)(p(w)− wp′(w))

p(w)

)

+ [ (r + δ∗(w)− µ)w + 1− c(w) + λE(π(Z))(w + b∗(w)) ] p′(w)

+
(θ̃(w)σ)2

2

(
p′′(w)− γ(p′(w))2

p(w)

)
+
σ2

2

(
w2p′′(w)− γ(p(w)− wp′(w))2

p(w)

)

+
λ

1− γE
[(

Zp(wJ )

p(w)

)1−γ

− 1

]
p(w) , (A.1)

where wJ is given by equation (41).

We simplify the FOCs for consumption (equation (16)) and diffusion risk hedging demand

(equation (17)) to obtain equations (52) and (36)-(37). Simplifying (18), we obtain the

condition for the optimal scaled foreign currency debt issue, b∗(w), which is given by equation

(54). Substituting equations (52) and (37) into equation (A.1), we obtain the ODE (45) for

p(w).

Substituting the value functions (20) and (25) into the HJB equation (24), we obtain

equation (46) for p̂. The value-matching condition that equates the cost of repaying debt

and defaulting, given by equation (26), implies the boundary condition (48). Substituting

equation (37) into (43), we obtain the boundary condition (49).

A.2 Limited Commitment, Full-Spanning Economy in Section 6

The value function in the normal regime is also homothetic (in W and Y ) and given in

equation (20). Substituting equation (20) and the first and second derivatives of V (W,Y )
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into the HJB equation (62) and simplifying, we obtain

0 = max
c, θ, x

(
c(w)
bp(w)

)1−ψ
− 1

1− ψ−1
ρp(w) +

(θ(w)σ)2

2

(
p′′(w)− γ(p′(w))2

p(w)

)

+ [ (r + δ∗(w)− µ)w + 1− c(w)− λE[x(Z,w)] ] p′(w) +
σ2

2
w2p′′(w)

+
σ2

2

(
−γ(p(w)− wp′(w))2

p(w)

)
+ θ(w)σ2

(
−wp′′(w)− γp′(w)(p(w)− wp′(w))

p(w)

)

+
λ

1− γE
[(

Zp(wJ )

p(w)

)1−γ

− 1

]
p(w) , (A.2)

where wJ is given by equation (66). Simplifying the FOC for the jump-risk hedging demand

(X(Z;W,Y )) given by equation (64), we obtain the following condition for the optimal scaled

hedging demand for jump risk, x(Z,w) = X(Z;W,Y )/Y :

p′(w) =

(
Zp((w + x(Z,w))/Z)

p(w)

)−γ
p′((w + x(Z,w))/Z) , (A.3)

which implies equation (67). Using the FOCs for consumption and diffusion risk hedging

demand, we obtain c(w) = ζp(w)(p′(w))−ψ and θ(w) = w− γp(w)
γ̃(w)

. Substituting these expres-

sions into equation (A.2), we obtain the ODE (65) for p(w).

Finally, p̂ and the boundary conditions for p(w) are the same as those in our benchmark

domestic currency economy stated in equations (46)-(51), Proposition 1.

First Best. We conjecture and verify that the scaled certainty-equivalent wealth is given

by p(w) = w + h. Substituting this expression into c(w) = ζp(w)(p′(w))−ψ and the scaled

diffusion hedging demand, θ(w) = w− γp(w)
γ̃(w)

, we obtain the following closed-form expressions:

c(w) = ζ(w + h) , (A.4)

θ(w) = −h . (A.5)

Substituting p(w) = w + h into equation (A.3), we obtain the following expression for the

optimal scaled jump-risk hedging demand: x = (1− Z)h.

Substituting p(w) = w + h into the ODE (A.2), we obtain

0 =

(
ζ − ψρ
ψ − 1

+ µ

)
(w + h) + [(r − µ)w + 1] + λ(E(Z)− 1)h (A.6)

=

(
ζ − ψρ
ψ − 1

+ r

)
w +

(
ζ − ψρ
ψ − 1

+ µ− λ(1− E(Z))

)
h+ 1 . (A.7)
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As equation (A.7) must hold for all levels of w, ζ−ψρ
ψ−1

+ r = 0 has to hold. This condition

implies that ζ = r+ψ(ρ−r) (see equation (53)). Using ζ = ρψa1−ψ, we obtain equation (21)

for the coefficient a. Finally, substituting ζ = r + ψ(ρ− r) into equation (A.7), we obtain

h =
1

r − [µ− λ(1− E(Z))]
=

1

r − g . (A.8)

A.3 Credit Risk Premium in Section 7

Using the dynamics of Wt under the physical measure given by (74) and the standard prin-

ciple of optimality, we obtain the following HJB equation for the value function V (W,Y ):

0 = max
Ct−, Θ̃t−, B∗t−

f(Ct−, Vt−) +
[
Yt− − Ct− + (r + δ̃∗t−)Wt− + (Wt− +B∗t−)λQE[π(Z)]

]
VW (Wt−, Yt−)

+
σ2Θ̃2

t−

2
VWW (Wt−, Yt−) + µYt−VY (Wt−, Yt−) +

σ2Y 2
t−

2
VY Y (Wt−, Yt−)

+ σ2 Θ̃t−Yt−VWY (Wt−, Yt−) + λEt−
[
V J (Wt, Yt)− V (Wt−, Yt−)

]
, (A.9)

where δ̃∗t− = λQ F (Z(wt−)). Using the value function given by (20), we obtain the following

simplified equation for p(w):

0 = max
c, θ̃, b∗≥−w−κ

(
c(w)
bp(w)

)1−ψ
− 1

1− ψ−1
ρp(w) +

(θ̃(w)σ)2

2

(
p′′(w)− γ(p′(w))2

p(w)

)
+
σ2

2
w2p′′(w)

+
[

(r + δ̃∗(w)− µ)w + 1− c(w) + λQE[π(Z)](w + b∗(w))
]
p′(w)

− σ2

2

γ(p(w)− wp′(w))2

p(w)
+ θ̃(w)σ2

(
−wp′′(w)− γp′(w)(p(w)− wp′(w))

p(w)

)

+
λ

1− γE
[(

Zp(wJ )

p(w)

)1−γ

− 1

]
p(w) , (A.10)

where wJ is given by equation (41). We obtain equation (76) for the optimal level of

foreign currency debt issuance. The implied FOCs for diffusion risk hedging demand and

consumption are given by equations (36) and (52). Substituting the optimal consumption

and diffusion risk hedging demand into (A.10), we obtain the ODE (75) for p(w).

Finally, p̂ and the boundary conditions for p(w) are the same as those in our benchmark

domestic currency economy, stated in equations (46)-(51) in Proposition 1.

B Solution Algorithm

We numerically solve the ODE in Proposition 1 using the following algorithm.
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1. Start with a sufficiently large region (w,w) by setting w = −h and a sufficiently large

w (e.g., w = 104). We use the superscript (i) to denote the i-th iteration value for

p(w), b∗(w), wJ , and p̂. That is, p(i)(w), b∗(i)(w), wJ (i), and p̂ (i).

2. Assign an initial value for the scaled certainty-equivalent wealth p(w), which we denote

by p(1)(w). For example, we start with the following initial linear function for p(w):

p(1)(w) = αh, p(1)(w) = w + h, and p(1)(w) = p(1)(w) + w−w
w−w (p(1)(w) − p(1)(w)) for

w < w < w.

3. For a given p(i)(w), where i = 1, 2, · · · , compute b∗(i)(w), wJ (i) and p̂ (i) by using

equation (54), equation (41), and equation (46), respectively.

4. Substitute the policy rules, b∗(i)(w), wJ (i), and p̂(i) obtained in step 3 into ODE (45).

Use the Matlab function ode45 (or another variant of the finite-difference method) to

solve for p(i+1)(w) given by ODE (45).

5. Repeat steps 3 and 4 until |p(i+1)(w) − p(i)(w)| is sufficiently low (e.g., |p(i+1)(w) −
p(i)(w)| < 10−10).

6. Compute p′′(w) until p′′(w) becomes sufficiently low (e.g., p′′(w) < −1010), that is,

until the program converges. Otherwise, go back to step 1 and increase w with a new

guess and iterate until the program converges.
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