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1 Introduction

A key challenge for macro asset pricing theories is to account for the large magnitude

of equity premia and their substantial variations over time and across firms. In this

paper, we provide an incomplete–markets–based asset pricing model that uses limited

commitment and moral hazard as microfoundations to address these patterns in risk premia.

Uninsured tail or downside risk in labor earnings arises as an outcome of optimal risk-

sharing arrangements. Time variation in that tail risk drives aggregate equity premium

and the volatility of stock market returns. The model is also consistent with firm-level

labor share predicting both future returns and pass-throughs of firm-level shocks to labor

compensation. Overall, the paper provides a unified view of labor market risk and asset

prices within a general equilibrium optimal contracting framework.

The setup consists of two types of agents: firm owners and workers. Firm owners are

well diversified and use long-term compensation contracts to provide insurance to workers

in order to guard against idiosyncratic shocks to their human capital. Two agency frictions

distinguish our paper from a standard representative agent asset pricing model. First,

neither firm owners nor workers can commit to contracts that yield continuation values

lower than their outside options. Second, owing to costly and unobservable retention effort,

worker-firm relationships have endogenous durations. We embed these contracting frictions

in a general equilibrium setting with aggregate shocks to study their labor market and asset

pricing implications.

Downside risk in labor earnings, a key feature of the data, is driven by firm-side

limited commitment and further amplified by the presence of moral hazard. Compensation

contracts providing perfect risk sharing would insure workers against idiosyncratic labor

productivity shocks. But when firms cannot commit to negative net present value projects,

large drops in labor productivity are accompanied by reductions in worker earnings. In

addition, because retention effort is not observable, firms have a lower incentive to keep

workers when the firm-worker match is less profitable. Thus, separation risk is elevated

after adverse productivity shocks.

In the general equilibrium, exposure to downside risk drives several of our asset pricing

results. First, it generates a stochastic discount factor that is more volatile than that in

an otherwise identical economy without agency frictions. A necessary condition is recursive

utility with preference for early resolution of uncertainty and persistent and countercyclical

idiosyncratic risk to human capital. During recessions, the anticipation of lack of risk sharing

in the future raises workers’ current marginal utilities. The optimal risk-sharing scheme

compensates by allocating a higher share of aggregate output from firm owners to workers.
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Therefore, the labor share moves inversely with aggregate output. The countercyclicality of

labor share translates into a procyclical consumption share of all unconstrained investors,

including firm owners. This amplifies risk prices. In our quantitative analysis, owing to

agency frictions, we find that Sharpe ratios are more than doubled.

The high volatility of the stochastic discount factor is further amplified by the moral

hazard in firms’ choice of retention effort. Higher expected returns during recessions

lower valuation and weaken firms’ incentive to retain workers, resulting in countercyclical

separations. This feature of our model supplements a large macro labor literature that

argues that discount rate variations are central in driving unemployment fluctuations. In

our model, higher separations exacerbate tail risk and therefore the need for firm owners to

provide insurance against aggregate shocks. This further raises equilibrium discount rates

and amplifies risk prices.

Second, without relying on heteroskedastic aggregate shocks, our model produces

substantial predictable variations in the risk premium, especially over long horizons. The

dynamics of the pricing kernel depend on the fraction of firms that are likely to hit their

limited commitment constraint. This introduces persistent variations in the volatility of

the stochastic discount factor and makes returns predictable. In our model, regressions of

returns for a claim to aggregate consumption on price-dividend ratios gives R-squares that

are significant and increasing in horizon. Time variation in discount rates also amplifies the

response of asset prices to aggregate shocks and further elevates the market equity premium.

Lastly, the above economic mechanism also results in a significant heterogeneity in

the cross section of expected equity returns and pass-through of firm-level shocks to labor

compensation. Under the optimal contract, payments to workers insures them against

aggregate productivity shocks and is countercyclical, making the residual capital income

procyclical and thus more exposed to aggregate shocks. This delivers a form of operating

leverage at the firm level. In particular, firms that have experienced adverse idiosyncratic

shocks have a higher fraction of their value promised to workers and are therefore more

sensitive to aggregate shocks. As a result, they have lower valuation ratios and higher

expected returns. Furthermore, firms with larger obligations to workers are more likely

to hit the firm-side limited commitment constraint and are more likely to lower wage

payments in response to an adverse idiosyncratic shock. We test these implications using

CRSP/Compustat panel data and show that firm-level measures of labor share predict both

future returns and pass-throughs of firm-level shocks to labor compensation.

Related literature This paper builds on the literature on limited commitment. Kehoe

and Levine (1993) and Alvarez and Jermann (2000) develop a theory of incomplete markets,

3



based on one-sided limited commitment. Alvarez and Jermann (2001) and Chien and Lustig

(2010) study the asset pricing implications of such environments. Most of the above theory

builds on the Kehoe and Levine (1993) framework and implies that agents who experience

large positive income shocks have an incentive to default because they have better outside

options. As a result, positive income shocks cannot be insured, while downside risk in labor

income is perfectly insured. Our paper develops a model of two-sided lack of commitment

as in Thomas and Worrall (1988) and augments it with moral hazard. We add aggregate

shocks and focus on the general equilibrium effects of the firm-side limited commitment and

moral hazard that have not been studied before.1

Our paper is related to asset pricing models with exogenously incomplete markets.

Krueger and Lustig (2010) provide theoretical conditions under which the presence

of idiosyncratic risk is irrelevant for the market price of aggregate risks. Mankiw

(1986) and Constantinides and Duffie (1996) demonstrate how countercyclical volatility

in incomes amplifies aggregate risk premia in the general equilibrium. Schmidt (2015)

and Constantinides and Ghosh (2014) calibrate such incomplete markets models to recent

administrative data on earnings and show that higher moments of labor income shocks

require a significant risk compensation. For tractability, the Constantinides and Duffie

(1996) framework requires an assumption of independently distributed shocks to income

growth, which rules out any trading of financial assets in equilibrium. Heaton and Lucas

(1996) and Storesletten et al. (2007) are among the few papers that depart from the no-

trade equilibria to study risk premia in quantitative incomplete markets models. In contrast

to the above papers, we take an optimal contracting approach to microfound incomplete

markets and use empirical evidence on labor earnings dynamics to restrict the choice of the

parameters governing agency frictions. Our model allows investors access to a rich set of

state-contingent payoffs. We explicitly characterize history dependence in labor earnings

risk and exposure to aggregate shocks.

Theoretical predictions of our model are also consistent with a recent literature that

emphasizes the importance of labor-share dynamics in understanding the equity market.

Our operating leverage results connect to insights in Danthine and Donaldson (2002) and

Berk and Walden (2013). More recently, Favilukis and Lin (2016b) use models with sticky

wages to demonstrate how countercyclical movements in labor shares help explain equity

and credit risk premia in production economies. Our model’s implication that variations

in labor shares can account for a large fraction of aggregate stock market variations is

1The firm-side limited commitment problem in our model has a similar structure to those studied in
Bolton et al. (2014) and Ai and Li (2015). Recently, several papers such as Tsuyuhara (2016), Abraham
et al. (2017), and Lamadon (2016) study versions of long-term wage contracts with moral hazard. Lamadon
(2016) allows for richer features such as worker and firm complementarities, on-the-job search, and search
frictions. However, none of these papers allow for aggregate risks or study asset pricing.
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consistent with the evidence in Greenwald et al. (2014) and Lettau et al. (2014).

Our computational method builds on Krusell and Smith (1998). Using techniques

contributed by the dynamic contracting literature, such as Atkeson and Lucas (1992), we

represent equilibrium allocations recursively by using a distribution of promised values as a

state variable. However, in contrast to those papers, our environment has aggregate shocks,

and the distribution of promised values responds to such shocks, even in an ergodic steady

state. As in Krusell and Smith (1998), we approximate the forecasting problem facing

agents.

The paper is organized as follows. In section 2, we describe the physical as well as the

contracting environment, and formalize a recursive competitive equilibrium with long-term

contracts. In section 3, we discuss the optimal contract. In section 4, we derive the asset

pricing implications that arise from agency frictions and general equilibrium considerations.

Finally, in sections 5 and 6, we present quantitative implications after calibrating to several

aggregate and cross-sectional facts. Section 7 concludes.

2 Model

We start with the physical and contracting environment.

2.1 Setup

Demographics We consider a discrete time economy with t = 0, 1, . . .. There are two

groups of agents: a unit measure of firm owners and a unit measure of workers. Members

of both groups have Epstein-Zin preferences with a common risk aversion γ and a common

intertemporal elasticity of substitution (IES) ψ.

In each period, workers die with probability 1−κ, and a similar measure of new workers

are born. This specification guarantees that the total measure of workers equals one at all

times. Upon birth, a worker is endowed with one unit of human capital.

Production and human capital Production is organized within N firms. We assume

that N is large so that firms are perfectly competitive. In any period, a worker is either

unemployed or matched to a firm. A worker produces output only in the firm in which he

is employed. If employed in period t, worker i with human capital hi,t produces output

yi,t = Ythi,t,
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where Yt is the aggregate productivity. We assume Y0 = 1, and for t ≥ 1,

lnYt+1 = lnYt + gt,

where gt is a finite state Markov process with a one-step transition matrix {π (g′|g)}g,g′ .

The evolution of worker human capital in the next period depends on whether the

worker is employed or unemployed. The law of motion for the human capital of worker i

who remains employed with firm j in period t+ 1 is

hi,t+1 = hi,te
ηj,t+1+εi,t+1 , (1)

where conditioning on the aggregate Markov state gt, the firm component ηj,t is i.i.d.

across firms but common to all workers in a firm; the worker-specific shock εi,t is i.i.d.

across workers; and ηj,t and εi,t are mutually independent. We use f (η, ε|g) for the

conditional density of (η, ε) and normalize so that E [eεi,t |gt] = 1 and E [eηj,t |gt] = 1. We

use zi,j,t = (ηj,t, εi,t) for match-specific shocks for the worker-firm pair (i, j) at time t. The

human capital of a worker not matched with a firm—that is, a worker who becomes (or

remains) unemployed in period t+ 1—depreciates deterministically according to

hi,t+1 = λhi,t, (2)

where the parameter λ < 1 describes human capital obsolescence. In each period,

unemployed workers receive unemployment benefit bYthi,t, where b is a constant.

Matching and separation A match between a worker and a firm can end in two ways:

stochastically upon the arrival of a separation shock, or voluntarily by the firm or the

worker. Firms can influence the probability of separation by exerting costly effort. We

interpret such effort as a proxy for investments in organization capital that allow firms to

retain workers and help them accumulate human capital on the job. We denote the effort

for keeping a worker at time t by θt and assume that the cost of effort per unit of output is

specified by a function A (θ) with the first three derivatives strictly positive all θ ∈ (0, 1).

It is without loss of generality to denominate effort in probability units because the cost

of effort is captured by the functional form of A (θ). In period t + 1, conditioning on the

survival of the match, both firms and workers can unilaterally initiate a separation. We

denote such a voluntary separation decision by an indicator function δt+1, with δt+1 = 0 for

separation.

Upon separation, a worker enters into unemployment. In each period, an unemployed
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worker receives an employment opportunity with probability χ ∈ (0, 1). An employment

opportunity enables a worker to access a labor market where firms offer long-term contracts.

In addition to unemployed workers, newborn workers also have an employment opportunity.

A worker with an employment opportunity can choose to establish a match with the firm

that offers the most favorable contract. We assume that there is no cost for posting vacancies

and all firms can compete for new workers.

Contracts Let τ denote the beginning of an employment relationship between a firm and

a worker. A employment contract offered by a firm to a newly employed worker at time τ

specifies: (i) net transfers or compensation from the firm to the worker {Ct}∞t=τ , (ii) firm’s

effort for keeping the match {θt}∞t=τ , and (iii) match termination decisions {δt}∞t=τ for the

duration of the match. Formally, an employment contract offered in period τ by firm j

to worker i with human capital hi,τ specifies {Ct, θt, δt}∞t=τ as functions of aggregate and

match-specific histories:

Ci,j,τ ≡
{
Ci,j,t

(
hi,τ , z

τ→t
i,j , gt

)
, θi,j,t

(
hi,τ , z

τ→t
i,j , gt

)
, δi,j,t

(
hi,τ , z

τ→t
i,j , gt

)}∞
t=τ

.

We use the convention that superscript t denotes the history of shocks up to time t:

gt = {g1, g2, · · · , gt}, and superscript τ → t denotes the history of shocks from time τ

to t: zτ→ti,j = {zi,j,τ+1, zi,j,τ+2, . . . , zi,j,t}, with zτ→τi,j = Ø representing the trivial history.

We have made two simplifying assumptions in the choice of the contract space. First,

we restrict our attention to employment contracts and do not allow payments from firms to

workers who are not matched with the firm. In appendix A, we show that because of two-

sided limited commitment—an agency friction that we introduce below—firms are unable

to insure unemployed workers or workers employed by other firms, even if they are allowed

to offer insurance contracts to these workers.

Second, we assume that the terms of a new employment contract depend on worker-

specific history only through the human capital at the time of employment. This is true as

long as workers with an employment opportunity have no pre-existing obligations or claims

and can extract full surplus from a new match. In our setup, limited commitment means

that any pre-existing contracts can be costlessly reneged, while perfect competition among

firms implies that the best contract indeed gives workers all the surplus. Therefore, it is

without loss of generality to index new contracts with the human capital of the worker at

the time when the match is formed. To simplify notion and exposition, we impose both of

the above restrictions at the outset.
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Firm value Let
{

Λt
(
gt
)}

t
denote the stochastic process for state prices; that is, Λt

(
gt
)

is

the price at history gt of one unit of consumption goods measured in period-0 consumption

numeraire. For t ≥ τ , let Vt

(
hi,τ , z

τ→t
i,j , gt|Ci,j,τ

)
be the time-t present value of the cash-flow

stream generated by a worker i currently matched to firm j under the employment contract

Ci,j,τ . Dropping the explicit dependence on
(
hi,τ , z

τ→t
i,j , gt

)
, the value of the employment

contract Ci,j,τ to a firm in period t ≥ τ can be recursively constructed using

Vt (Ci,j,τ ) = yi,t [1−A (θi,j,t)]− Ci,j,t + κEt
[

Λt+1

Λt
θi,j,tδi,j,t+1Vt+1 (Ci,j,τ )

]
.

In the above equation, the flow profit for the firm equals the output of the worker net of

compensation and retention cost. In the next period, the match continues with probability

κθi,j,t, and δi,j,t+1 is the indicator function for the decision to voluntarily terminate. The

future cash flows are discounted using state prices {Λt}.

Worker utility Let U∗
(
h, gt

)
be the highest utility a worker with human capital h can

achieve after receiving an opportunity to match with a firm at aggregate history gt. The

utility for an unemployed worker i with human capital hi,t at time t, denoted by U
(
hi,t, g

t
)
,

is recursively constructed using

U
(
hi,t, g

t
)

=
[
(1− β) (byi,t)

1− 1
ψ + βM

(
hi,t, g

t
)1− 1

ψ

] 1

1− 1
ψ , (3)

where byi,t is the flow consumption from unemployment benefits provided by the

government.2 The term M
(
hi,t, g

t
)

is the certainty equivalent of the next-period utility:

with probability 1 − χ, unemployed workers stay unemployed with continuation utility

U
(
hi,t+1, g

t+1
)
, and with probability χ, they are matched with a new firm and receive

utility U∗
(
hi,t+1, g

t+1
)
. Combining both of these possibilities,

M
(
hi,t, g

t
)

=
(
κEt

[
(1− χ)U

(
hi,t+1, g

t+1
)1−γ

+ χU∗
(
hi,t+1, g

t+1
)1−γ]) 1

1−γ
.

For t ≥ τ , let Ut

(
hi,τ , z

τ→t
i,j , gt|Ci,j,τ

)
be the utility of a matched worker i at time t

under the employment contract Ci,j,τ . It satisfies the recursion

Ut (Ci,j,τ ) =
[
(1− β) (Ci,j,t)

1− 1
ψ + βMt (Ci,j,τ )

1− 1
ψ

] 1

1− 1
ψ , (4)

2See appendix A for a discussion of why an unemployed worker cannot obtain any insurance, from either
the previous employer or any other firm and, as a result, consumes only the value of unemployment benefits.
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where

Mt (Ci,j,τ ) =
(
κEt

[
θi,j,tδi,j,t+1Ut+1 (Ci,j,τ )1−γ + (1− θi,j,tδi,j,t+1)U

(
hi,t+1, g

t+1
)1−γ]) 1

1−γ
.

The computation of the certainty equivalent Mt (Ci,j,τ ) accounts for the fact that the match

between work i and firm j can be terminated exogenously with probability 1 − θi,j,t or

endogenously by setting δi,j,t+1 = 0.

Agency frictions We impose two types of agency frictions. First, neither firms nor

workers can commit. At the beginning of each period t, before production takes place,

firms and workers have an opportunity to terminate their match by setting δi,j,t = 0. Once

a match is dissolved, the worker is unemployed, and the firm has the option of keeping open

the vacancy or hiring a new worker. Second, firms’ choices of effort θi,j,t, which determine

the probability that the match will continue to the next period, are observable neither to

workers nor to any other firms. We show later that our specification of the moral hazard

problem provides a tractable way to generate equilibrium separations and non-trivial labor

market dynamics.3

The presence of agency frictions imposes incentive compatibility constraints on the

feasibility of a contract Ci,j,τ . Perfect competition on the labor market and no cost for

keeping or posting vacancies imply that the value of a firm’s option of terminating a match

is zero. Thus, incentive compatibility with respect to the firm-side limited commitment

requires that the present value of any employment contract must be non-negative at all

times. That is, for all match specific histories, either Vt

(
hi,τ , z

τ→t
i,j , gt|Ci,j,τ

)
≥ 0, or

Vt

(
hi,τ , z

τ→t
i,j , gt|Ci,j,τ

)
< 0 and the firm voluntarily terminates the match by setting

δi,j,t

(
hi,τ , z

τ→t
i,j , gt

)
= 0. Thus, for all

(
zτ→ti,j , gt

)
,

δi,j,tVt (Ci,j,τ ) ≥ 0. (5)

Similarly, a worker always has the option of terminating a match and becoming unemployed

to obtain utility U t
(
hi,t, g

t
)
. Therefore, the worker-side limited commitment implies that

at any match-specific history zτ→ti,j , either the worker continues the employment relationship

and obtains a utility that is higher than his outside option, or he unilaterally terminates

the match. Therefore, for all
(
zτ→ti,j , gt

)
,

δi,j,t
[
Ut (Ci,j,τ )− U

(
hi,t, g

t
)]
≥ 0. (6)

3For a similar specification of the moral hazard problem between firms and workers, see Lamadon (2016).
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Finally, the fact that retention effort is not observable implies that the choice of θ must be

incentive compatible from the firm’s perspective. This requires that for any match-specific

history
(
zτ→ti,j , gt

)
,

Vt (Ci,j,τ ) ≥ yi,t
[
1−A

(
θ̃
)]
− Ci,j,t + κθ̃Et

[
Λt+1

Λt
δt+1Vt+1 (Ci,j,τ )

]
(7)

for all θ̃.4

Feasibility and efficiency We now define feasible and privately efficient contracts. These

definitions take as given a stochastic process for state prices
{

Λt
(
gt
)}

t
and values of newly

employed workers
{
U∗
(
·, gt
)}

t
.

Definition 1. A contract Ci,j,τ offered by a firm to a newly employed worker with

human capital hi,τ in period τ is feasible given
{

Λt
(
gt
)
, U∗

(
·, gt
)}

t
, if it satisfies limited

commitment constraints (5) and (6) and incentive compatibility constraints (7).

Definition 2. A contract Ci,j,τ offered by a firm to a newly employed worker with human

capital hi,τ in period τ is privately efficient given
{

Λt
(
gt
)
, U∗

(
·, gt
)}

t
, if it is feasible,

and there does not exist an alternative feasible contract Ĉ such that Vτ

(
h, /O, gτ |Ĉ

)
>

Vτ
(
h, /O, gτ |Ci,j,τ

)
and Uτ

(
h, /O, gτ |Ĉ

)
≥ Uτ

(
h, /O, gτ |Ci,j,τ

)
.

A competitive equilibrium with long-term contracts needs to specify values of newly

employed workers
{
U∗
(
·, gt
)}

t
, and equilibrium state prices

{
Λt
(
gt
)}

t
. The value of a

newly matched worker U∗
(
·, gt
)

is determined by workers’ optimal choice of contract on

the competitive labor market. Given the process
{

Λt
(
gt
)}

t
, at any aggregate history gτ ,

the function U∗ (·, gτ ) solves

U∗ (h, gτ ) = max
C

{
Uτ
(
h, /O, gτ |C

)
: C is privately efficient given

{
Λt
(
gt
)
, U∗

(
·, gt
)}

t

}
.

(8)

Because firms can always choose to keep open a vacancy, any contract offered must satisfy

the condition Vτ (Ci,j,τ ) ≥ 0. Among all firms that offer employment contracts, a worker

chooses to match with the firm that offers the most favorable terms. An implication of

equation (8) is that at the beginning of each match, competitive labor markets drive firm

value to zero.

Finally, firm owners’ optimal consumption and investment decisions impose a restriction

on the a relationship between state prices
{

Λt
(
gt
)}

t
and firm owners’ equilibrium

4We rely on the standard result in dynamic mechanism design: there is no profitable deviation in the
dynamic environment if and only if one-step deviations are not profitable.
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consumption. Because the firm owners hold the equity of all firms, they are well diversified

and their consumption and investment choices depend only on aggregate quantities. Given

a stochastic process for firm-owner consumption
{
Xt

(
gt
)}

t
, the utility of firm owners is

given recursively by

Wt

(
gt
)

= max
{

(1− β)X
(
gt
)1− 1

ψ + βNt
(
gt
) 1− 1

ψ

} 1

1− 1
ψ ,

where the certainty equivalent

Nt
(
gt
)

=
(
EtWt+1

(
gt+1

)1−γ) 1
1−γ

.

As is standard in asset pricing models with recursive utility, the optimality condition for

firm owner’s consumption and investment choice implies that the stochastic discount factor

must satisfy

Λt+1

(
gt+1

)
Λt (gt)

= β

[
Xt+1

(
gt+1

)
Xt (gt)

]− 1
ψ
[
Wt+1

(
gt+1

)
Nt (gt)

] 1
ψ
−γ

. (9)

It is important to note that our formulation does not assume any form of exogenously

incomplete market. From equation (9), firm owners have access to complete markets, and

their intertemporal rate of substitution is a valid stochastic discount factor. Because long-

term contracts can replicate aggregate and idiosyncratic state-contingent payoffs between

firm owners and workers, the same condition holds true for workers unless an incentive

compatibility constraint is binding.5 In the absence of those agency frictions, all workers in

our setup have access to a complete set of state-contingent payoffs via insurance contracts,

and our setup becomes isomorphic to a standard representative agent complete markets

model.

Equilibrium state prices, workers’ outside valuations, and optimal contracts for each

worker-firm pair depend on past histories of aggregate as well as firm- and worker-level

idiosyncratic shocks. In general, this means that one needs to keep track of the distribution

of worker characteristics such as human capital and terms of contracts within firms and

across firms in the economy. This can quickly become unmanageable. However, thanks to

the functional form choices on preferences and technology, we can define a competitive

equilibrium with long-term contracts that is recursive in an appropriately constructed

parsimonious set of state variables.

5This is formally shown later in proposition 2.
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2.2 Recursive Competitive Equilibrium

To define a recursive competitive equilibrium, we follow the dynamic contracting literature

(for instance, Thomas and Worrall 1988 or Atkeson and Lucas 1992) and express the

contracting problem using promised utility as a state variable. We show that in our model,

the homotheticity properties of preferences and technology and the random walk assumption

of exogenous shocks imply that an individual worker’s history can be summarized by a one-

dimensional state variable u, which equals the current-period continuation utility divided by

the current-period worker output. The aggregate history can be summarized by a vector of

aggregate state variable S ≡ (g, φ,B). Here, g is the growth rate of aggregate productivity,

φ is a one-dimensional measure that summarizes agent types, and B is the fraction of

total output consumed by unemployed workers. That we ultimately need to keep track of

only a one-dimensional distribution as a state variable is a key computational step for our

quantitative analysis.

Normalized variables Before stating the normalized version of the optimal contracting

problem, we define firms’ value function V (y, U, S) to be the maximum value of

Vt

(
hi,τ , z

τ→t
i,j , gt|C

)
that can be achieved by any contract C such that it is feasible and

provides the worker a utility of at least U ; that is, Ut

(
hi,τ , z

τ→t
i,j , gt|C

)
≥ U . Homogeneity

of preferences and technology implies that the value function V (y, U, S) satisfies

V (y, U, S) = v

(
U

y
, S

)
y (10)

for some normalized value function v. This motivates the concept of normalized promised

utility u ≡ U
y . In addition, the highest utility a worker can achieve from a new match

U∗ (h, gτ ) = u∗ (S) y and the worker’s utility in unemployment U(h, gt) = u (S) y, where

u∗ (S) and u (S) are functions of aggregate states. It is possible to prove that the value

function v (u, S) must be strictly decreasing in u.6 Therefore, equation (8) implies that

u∗ (S) has to satisfy

u∗ (S) = max {u : v(u, S) ≥ 0} . (11)

In addition, (3) requires the following relationship between u (S) and u∗ (S):

u (S) =
[
(1− β) b

1− 1
ψ + βλm (S)

1− 1
ψ

] 1

1− 1
ψ , (12)

with m (S) ≡
(
κ
∑

g′ π (g′|g)
[
e(1−γ)g′

{
(1− χ)u (S′)1−γ + χu∗ (S′)1−γ

}]) 1
1−γ

.

6See appendix B.1 for details on existence and monotonicity of the function v.
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Recursive optimal contracting Let Γφ(g′, S) and ΓB(g′, S) be the laws of motion for

the endogenous aggregate states φ and B so that S′ ≡ (g′, φ′, B′) = (g′,Γφ(g′, S),ΓB(g′, S)).

Let {Λ (S′, S)}g′ be the set of one-period-ahead Arrow security prices, and let ζ ′ = (g′, η′, ε′)

be the vector of next period aggregate and match-specific shocks. The Markov transition

matrix {π (g′|g)}g,g′ together with the conditional density f (η, ε|g) define a probability

distribution for ζ ′ conditional on g, which we denote as Ω(dζ ′|g).

The normalized firm value v (u, S) satisfies the following Bellman equation:

v (u, S) = max
c,θ,{u′(ζ′),δ′(ζ′)}ζ′

1− c−A (θ) +

κθ
�

Λ (S′, S) eg
′+η′+ε′δ′ (ζ ′) v (u′ (ζ ′) , S′) Ω(dζ ′|g),

(13)

subject to

u =
[
(1− β) c

1− 1
ψ + βm

1− 1
ψ

] 1

1− 1
ψ , (14)

δ′
(
ζ ′
)
v
(
u′
(
ζ ′
)
, S′
)
≥ 0, for all ζ ′, (15)

δ′
(
ζ ′
) [
u′(ζ ′)− λu

(
S′
)]
≥ 0, for all ζ ′, (16)

A′ (θ) = κ

�
Λ
(
S′, S

)
eg
′+η′+ε′δ′

(
ζ ′
)
v
(
u′
(
ζ ′
)
, S′
)

Ω(dζ ′|g), (17)

where

m =

{
κ

�
e(1−γ)(g′+η′+ε′)

[
θδ′
(
ζ ′
)
u′
(
ζ ′
)1−γ

+
(
1− θδ′

(
ζ ′
))
λu
(
S′
)1−γ]

Ω(dζ ′|g)

} 1
1−γ

.

Equation (14) is the promise-keeping constraint ensuring that the current compensation

and effort choices, together with the choices for future continuation values, deliver the utility

u that is promised to the worker. Inequalities (15) and (16) are the recursive counterparts of

the limited commitment constraints (5) and (6). Equation (17) is the first-order necessary

condition for firms’ choice of retention effort. Because the cost function A (θ) is strictly

convex in θ, first-order conditions (17) are equivalent to (7) and therefore, as we prove

in appendix B, necessary and sufficient for incentive compatibility. We label the above

maximization problem as P1.

Aggregation Let xt
(
gt
)

=
Xt(gt)
Yt(gt)

be the normalized consumption of the firm owners.

Given a consumption function x (S), firm owners’ normalized utility, which we denote as

w (S), can be constructed from

w (S) =
[
(1− β)x (S)

1− 1
ψ + βn (S)

1− 1
ψ

] 1

1− 1
ψ , (18)

13



with the certainty equivalent n (S) =
{∑

g′ π (g′|g) e(1−γ)g′w (S′)1−γ
} 1

1−γ
. Using the

normalized notation, the stochastic discount factor (SDF) Λ (S′, S) is given by

Λ
(
S′, S

)
= β

[
x (S′) eg

′

x (S)

]− 1
ψ
[
w (S′) eg

′

n (S)

] 1
ψ
−γ

. (19)

Finally, we describe the construction of the aggregate state variable φ, which we will

refer to as the “summary measure.” Let Φj (du, dh) denote the joint distribution of (u, h)

for workers in firm j and Φ0 (dh) the distribution of human capital of unemployed workers.

In general, {Φj}Nj=0 is a state variable in the construction of a recursive equilibrium because

the resource constraint,

Y

�
bhΦ0 (dh)+Y

N∑
j=1

� �
[c (u, S) +A(θ, S)]hΦj (du, dh)+Y x(S) = Y

N∑
j=1

� �
hΦj (du, dh) ,

(20)

depends on {Φj}Nj=0.

Let c (u, S) be the policy function for worker compensation in the problem P1. The

total compensation to all workers

Y

N∑
j=1

� �
c (u, S)hΦj (du, dh) = Y

�
c (u, S)

N∑
j=1

[�
hΦj (dh|u)

]
Φj (du) ,

where we decompose the joint distributions into a marginal distribution and a conditional

distribution: Φj (du, dh) = Φj (dh|u) Φj (du). We define the summary measure by

φ (du) ≡
∑N

j=1

�
hΦj (dh|u) for all u. For a given h, the term

∑N
j=1 Φj(du, dh) is the

joint distribution of (u, h) across all firms, and thus φ(du) is the average human capital of

employed workers of type u. We define the total compensation to all unemployed workers

normalized by aggregate productivity as B =
�
bhΦ0 (dh). Using the fact that total output

equals Y
�
φ (du), the resource constraint can be written as

B +

�
[c (u, S) +A(θ(u, S))]φ (du) + x (S) =

�
φ (du) . (21)

The above procedure reduces the N + 1 two-dimensional distributions {Φj}Nj=0 into a one-

dimensional measure φ and a scalar B. This greatly simplifies our analysis.

Recursive competitive equilibrium Equilibrium can be constructed in two steps. In

the first, we obtain policy functions c (u, S), θ (u, S), {u′ (u, S, ζ ′) , δ′ (u, S, ζ ′)}ζ′ by solving

14



problem P1. In the second, we use the policy functions to construct the laws of motion for

the endogenous state variables Γφ and ΓB.

The summary measure φ has a continuous density on [λu (S) , u∗ (S)] which describes

the human capital of all currently employed workers and a mass point on u∗ (S) for newly

employed workers. The law of motion φ′ = Γφ (g′, S) specifies the summary measure in the

next period for each possible realization of g′ as a function of current state S. The density

of the continuous part of φ′ is

φ′(dũ) = κ

�
θ (u, S)

[�
eη
′+ε′f

(
η′, ε′|g′

)
δ
(
ζ ′
)
I{u′(u,S,ζ′)∈dũ}dη

′dε′
]
φ (du) (22)

∀ũ ∈ [λu (S′) , u∗ (S′)], where I is the indicator function. The mass point of φ′ at u∗ (S′) is

given by

φ′
({
u∗
(
S′
)})

= (1− κ) + κχλ
B

b
. (23)

In the above expression, 1− κ is the total amount of human capital of newborn workers, a

measure 1 − κ of whom arrive in each period with one unit of human capital. The second

term is the amount of human capital of workers who will move to employment from the

current unemployed pool. The term B is total unemployment benefit in the current period

and B
b is the total human capital of all unemployed workers. A fraction κ of them survive

to the next period, their human capital decpreciates at rate 1−λ, and a fraction χ exit the

unemployment pool.

The law of motion ΓB (g′, S) maps (g′, S) to B′, which is the total unemployment benefit

in the next period in state g′ and is given by

B′ = κλ

[
B(1− χ) + b

� � (
1− θ (u, S) δ

(
ζ ′
))
f
(
η′, ε′|g′

)
φ (du) dη′dε′

]
, (24)

where the first term B(1 − χ) accounts for all unemployed workers in the current period

who will stay unemployed in the next period, and the second term accounts for workers

who transit from the currently employed pool to unemployment in the next period.

Definition 3. A recursive competitive equilibrium consists of stochastic discount factor

{Λ (S′, S)}, workers’ value from unemployment u(S), the value from a new match u∗ (S),

firm values v (u, S) and policy functions
(
c (u, S) , θ (u, S) , {u′ (u, S, ζ ′) , δ′ (u, S, ζ ′)}ζ′

)
,

consumption share of firm owners x (S), and laws of motion Γφ and ΓB such that (i) the

stochastic discount factor satisfies (19); (ii) the firm value function and the policy functions

solve problem P1; (iii) the laws of motion for aggregate states φ and B satisfy (22), (23),

and (24); (iv) values for new and unemployed workers satisfy (11) and (12); and (v) the

resource constraint (21) holds.
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3 The Optimal Contract

In this section, we provide a characterization of the optimal contract by discussing the

properties of policy functions to problem P1. The policy functions of firm retention effort

θ(u, S) and the termination decision δ′ (u, S, ζ ′) determine the labor market dynamics in our

model, while the choices of consumption c(u, S) and the next-period continuation utility

u′ (u, S, ζ ′) are responsible for the model’s implications on risk sharing. We start with the

labor–market related policy functions.

First, there are no voluntary terminations under the optimal contract. In the absence

of complementarity between firm and worker productivities, an adverse shock to human

capital makes the worker equally unproductive in all firms and proportionally lowers his

eligible unemployment benefit. Separations, which lead to human capital losses, therefore

lower worker utility without benefiting firms. The optimal contract avoids such inefficient

separations by setting δ (u, S, ζ ′) = 1 for all ζ ′. In our setup, although the possibility of

separation serves as a punishment device and sustains some risk sharing between firms and

their employees, it is never specified as an equilibrium outcome under the optimal contract.

Next, firms’ retention policy function θ (u, S) is decreasing in u. Incentive compatibility

constraint (17) requires that the marginal cost A′(θ) of retaining the worker equal its

marginal benefit, the present value of the cash flow that the worker brings to the firm,

κ
�

Λ (S′, S) eg
′+η′+ε′v (u′ (u, S, ζ ′) , S′) Ω(dζ ′|g). Because firm value is a decreasing function

of the utility promised to workers, these marginal benefits are also decreasing in u. Thus,

it is harder to induce a higher retention effort when the promised utility to worker is high.

The following lemma summarizes the above discussion of δ (u, S, ζ ′) and θ (u, S).

Proposition 1. In any equilibrium in which the stochastic discount factor and the law of

motion for aggregate state variables satisfy condition (6) in appendix B, for all (u, S, ζ ′),

δ′ (u, S, ζ ′) = 1, and the policy function for retention effort, θ(u, S) is decreasing in u for

all S.

Proof. See appendix B.

More generally, the above proposition implies that separation rates are higher when the

value of a worker to the firm is low. This may be due to either a lower future surplus from

the worker (that is, lower levels of v (u′ (u, S, ζ ′) , S′)) or a higher discount rate (that is,

lower values of Λ). Therefore, the specification of the moral hazard problem—in particular,

the incentive compatibility constraint (17)—generates countercyclical unemployment. Also,

the implication that δ′ (u, S, ζ ′) = 1 is useful for the tractability of the model. It allows us
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to replace the firm- and work-side limited commitment constraints in equations (15) and

(16) by

v
(
u′
(
ζ ′
)
, S′
)
≥ 0, (25)

u′(ζ ′) ≥ λu
(
S′
)
. (26)

We now turn to the implications of the optimal contract for risk sharing. With full

commitment, firms can perfectly insure workers against idiosyncratic shocks. Therefore,

workers’ continuation utilities yeε
′+η′u′ (u, S, ζ ′) do not respond to these shocks and are

equalized across all possible realizations of (η′, ε′). When 0 is a possible realization of η′

and ε′, this optimal risk-sharing condition can be written as

u′
(
u, S, ζ ′

)
= e−(ε′+η′)u′

(
u, S, g′, 0, 0

)
,∀ζ ′. (27)

Thus, under perfect risk sharing, the elasticity of normalized utility with respect to

idiosyncratic shocks is −1.

Under limited commitment, equation (27) cannot hold for all values of (η′, ε′). Because

a worker can always separate voluntarily, the promised utility under the optimal contract

cannot be lower than what he receives upon a voluntary termination, λu (S′). Clearly, for

large and positive realizations of ε′+η′, the full risk sharing policy in (27) would imply that

e−(ε′+η′)u′ (u, S, g′, 0, 0) < λu (S′) and violate the worker-side limited commitment (26). As

a result, given the current state (u, S), there is a threshold level ε(u, S, g′) for every g′, such

that for all ε′ + η′ ≥ ε(u, S, g′), the worker-side limited commitment constraint binds and

u′
(
u, S, ζ ′

)
= λu

(
S′
)
. (28)

Conversely, the firm-side limited commitment imposes an upper bound on u′ (u, S, ζ ′).

Because u∗ (S′) is the highest utility a worker can achieve and v (u∗ (S′) , S′) = 0, any

promised utility higher than u∗ (S′) results in a negative firm value. Large and negative

realizations of ε′ + η′ therefore imply that the full risk sharing policy (27) would lead

to e−(ε′+η′)u′ (u, S, g′, 0, 0) > u∗ (S′) and thus violate the firm-side limited commitment

(25). Under the optimal contract, there is a threshold function ε(u, S, g′), such that for all

ε′ + η′ < ε(u, S, g′), the firm-side limited commitment constraint has to bind, and

u′
(
u, S, ζ ′

)
= u∗

(
S′
)
. (29)

In the interior, ε(u, S, g′) < ε′ + η′ < ε(u, S, g′), none of the above constraints bind,

and the intertemporal marginal rate of substitution of all agents has to equalize. In the
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following proposition, we summarize the properties of consumption and continuation utility

policies.

Proposition 2. In any equilibrium in which the stochastic discount factor and the law

of motion for aggregate state variables satisfy condition (6) in appendix B, there exist

threshold levels ε(u, S, g′) and ε(u, S, g′) with ε(u, S, g′) < ε(u, S, g′), such that for all

ε′ + η′ > ε(u, S, g′), u′(u, S, ζ ′) is given by (28), and for all ε′ + η′ < ε(u, S, g′), u′ (u, S, ζ ′)

satisfies (29). For all ε′ + η′ ∈ [ε(u, S, g′), ε(u, S, g′)], u′ (u, S, ζ ′) is strictly decreasing in

ε′ + η′ and satisfies

[
x (S′)

x (S)

]− 1
ψ
[
w (S′)

n (S)

] 1
ψ
−γ (

1 +
ι (u, S)

θ (u, S)

)
= e−γ(η′+ε′)

[
c (u′ (u, S, ζ ′) , S′)

c (u, S)

]− 1
ψ
[
u′ (u, S, ζ ′)

m (u, S)

] 1
ψ
−γ
, (30)

where ι (u, S) > 0 is given in Appendix B.

Proof. See appendix B.

The above proposition has several implications. First, large and positive realizations of

ε′ and η′ imply that u′ (u, S, ζ ′) must be set to a constant and cannot respond to further

increases in η′ + ε′. As a result, the level of continuation utility, yeε
′+η′u′ (u, S, ζ ′), must

increase with positive productivity shocks. High promised values are met with higher future

compensation. This feature of our setting is similar to that in Harris and Holmstrom (1982),

Kehoe and Levine (1993), and Alvarez and Jermann (2000).

Second, in contrast to these papers in which workers are perfectly insured against

downside risk, the limited commitment constraint on the firm side implies that sufficiently

negative realizations of η′ + ε′ also cannot be hedged. A sequence of negative worker- or

firm-specific productivity shocks lowers worker output. Keeping an extremely unproductive

worker is a negative net present value undertaking for the firm, since the cash flow produced

by the worker is not enough to pay for his promised compensation. In addition to lower

retention effort as mentioned above, lack of commitment from the firm side requires

reductions in future worker compensation in order to provide incentives for the firm to

continue the match. As we will demonstrate in subsequent sections, this feature is key for

our model to generate volatile asset prices along with tail risk in labor earnings.

Third, equation (30) in proposition 2 implies that the intertemporal marginal rate of

substitution has to be equal for all agents in the economy unless the limited commitment

constraints are binding. This includes firm owners as well as a subset of workers. Equation
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(30) also highlights the difficulty in generating a high volatility of stochastic discount factor

without directly assuming exogenous market segmentation. Given preference parameters,

the volatility of the SDF is determined entirely by the risk exposure of the consumption

of marginal investors. If a heterogeneous agent-based model such as ours generates a

stochastic discount factor that is more volatile than a representative agent model, then it

must also provide an explanation for why the additional risk exposure in marginal investors’

consumption is not insured away through conditions like equation (30). In the next section,

we demonstrate conditions under which agency frictions generates downside risk in labor

earnings and amplify the volatility of the stochastic discount factor in equilibrium.

4 Agency Frictions and Asset Pricing

In this section, we highlight how agency frictions affect aggregate and cross-sectional asset

returns. General equilibrium linkages between tail risk in labor earnings and the pricing

kernel are key for agency frictions to amplify risk premia. We start with an “irrelevance”

result in the spirit of Krueger and Lustig (2010) that provides conditions under which agency

frictions are irrelevant for both the price of aggregate risk and aggregate labor market

dynamics. We then analyze a special case of our model to isolate the mechanism that

amplifies the volatility of the stochastic discount factor and distinguish it from alternatives

in the literature. We also derive a set of testable predictions of our model mechanism, which

are later confronted with the data.

4.1 An Irrelevance Result

Krueger and Lustig (2010) show that if the aggregate endowment growth is i.i.d. and the

distribution of idiosyncratic shocks f (η, ε| g) is independent of the aggregate states, then

uninsurable idiosyncratic risk does not affect the price of aggregate shocks in a wide set

of incomplete markets models. To formalize a version of their result in our setting with

contracting frictions, we start with the following definition.

Definition 4. Given the economy described in section 2.2, an equivalent deterministic

economy with a modified discount rate is an otherwise identical economy except that

the aggregate growth rate is set to zero and the time discount factor β is modified to

β
(
E
[
e(1−γ)g′

]) 1− 1
ψ

1−γ
.

In the following proposition, we provide conditions under which a recursive competitive

equilibrium in the stochastic economy can be constructed from the equilibrium of an
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equivalent deterministic economy with a modified discount rate.

Proposition 3. (Krueger and Lustig) Suppose that gt is i.i.d. over time and f (η, ε| g)

does not depend on g. If there exists an equilibrium in the equivalent deterministic economy

with a modified discount rate, then there exists an equilibrium of the stochastic economy

described in section 2.2 with the stochastic discount factor

Λ
(
S′, S

)
=

1

R̂ (φ,B)

e−γg
′

E
[
e(1−γ)g′

] , (31)

where R̂ (φ,B) is the risk-free interest rate in the equivalent deterministic economy with a

modified discount rate.

Proof. See appendix B.

With i.i.d aggregate growth rates, the stochastic discount factor in the section 2.2

economy with full commitment and no moral hazard equals βe−γg
′
.7 This is also the

stochastic discount factor for a representative agent economy in which the growth rate

of aggregate consumption is gt. Equation (31) states that the stochastic discount factor

in the economy with agency frictions differs only by a multiplicative constant. Therefore,

agency frictions affect the risk-free interest rate but are irrelevant for the pricing aggregate

risks. Proposition 3 imposes no other restriction on the distribution of idiosyncratic risk

and, in particular, allows f (η, ε| g) to contain a fat tail as long as it is the same across

all realizations of g. We show in appendix B that the optimal contract in the equivalent

deterministic economy with a modified discount rate can be used to construct the optimal

contract in the stochastic economy by simply adjusting for aggregate growth and that the

consumption share of firm owners in the stochastic economy equals that in the equivalent

deterministic economy.

4.2 Aggregate Implications

Proposition 3 tells us that for agency frictions to have an impact on aggregate risk premia,

we must deviate from its assumptions of i.i.d. growth and a time-invariant distribution of

idiosyncratic shocks. In the rest of this section, we use a special case of our model to analyze

such a departure. The special case highlights the interaction between agency frictions, risk

in labor earnings, and the market price of aggregate risk.

7In absence of agency frictions, the consumption share of firm owners x (S) is constant, and equations

(18) and (19) simplify to Λ (S′, S) = βe−γg
′
.

20



We proceed by making several simplifying assumptions. Many of these assumptions

are designed to isolate features and implications that are novel to our setting and to help

us obtain closed-form solutions for equilibrium returns. We relax these assumptions later

in the quantitative section, where we use numerical methods to solve the general model

described in section 2.2.

Assumption 1. Aggregate shocks gt ∈ {gL, gH} with gL < gH . From period one on, the

transition probability from state g to state g′ satisfies π (g′| g) = 1 if g′ = g. Each firm

has a single worker and η = 0. Let the distribution f(ε|g = gH) be degenerate, and the

distribution f(ε|g = gL) be a negative exponential with parameter ξ.8

This assumption includes the main departures from proposition 3. To capture the

persistence of aggregate shocks, we assume that booms (gt = gH) and recessions (gt = gL)

are permanent. To parsimoniously model countercyclical idiosyncratic shocks, we impose no

idiosyncratic shocks in booms and negatively exponentially distributed shocks in recessions.

The assumption that firm-level shocks η = 0 is without loss of generality, since proposition

2 shows that the optimal contract depends only on ε + η. In what follows, we interpret ε

as both a firm- and a worker-level shock.

Assumption 2. Preferences satisfy γ ≥ ψ = 1.

The crucial part here is that γ ≥ ψ. The assumption of unit elasticity of intertemporal

substitution is merely for tractability.

Assumption 3. Workers can fully commit.

As shown in proposition 2, uninsurable risk in the left tail of labor earnings comes from

the firm-side limited commitment and separations. In section 6.1, we show the that worker-

side limited commitment has little quantitative impact on the equity premium but matters

for accounting for patterns in earning dynamics. Hence, here we abstract from the lack of

commitment on the worker side.

Assumption 4. Effort is costly only in period one, in which case A (θ) = a
[
ln
(

1
1−θ

)
− θ
]

for some a > 0.

The parameter a in function A(θ) measures the severity of the moral hazard problem,

with a = 0 corresponding to the case in which effort is costless and moral hazard is irrelevant.

Assumption 5. For t = 2, 3, . . ., both employed and unemployed workers produce output

and consume α fraction of their output: Ct = αyt.

8The form of the negative exponential distribution is described in equation (77) in appendix C.
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From period 2 on, workers consume a fixed fraction of their output. This assumption

captures that because of lack of full risk sharing, workers’ consumption exposed to

idiosyncratic shocks in future recessions. We assume that unemployed workers lose 1 − λ
fraction of their human capital but keep producing output. They are otherwise subject to

the same law of motion of human capital as employed workers.

In figure 1, we plot an event tree for the simple economy. Let the firm owners’

consumption share in period 0 be x0, and let workers’ initial promised utility be u0. We

assume all workers have the same promised utility u0; therefore, there is a unique u∗0 that

is consistent with the aggregate resource constraint. In comparative static exercises, we

study optimal contracting with an arbitrary u0, even though in equilibrium the measure of

agents at u0 might be zero unless u0 = u∗0. We let xH ≡ x (gH) and xL ≡ x (gL) denote the

firm owners’ consumption share at nodes H and L, respectively. For an arbitrary initial

promised utility u0, we use θH (u0) ≡ θ (u′ (u0, gH) , gH) and θL (u0, ε) ≡ θ (u′ (u0, gL, ε) , gL)

to denote the effort choice; cH (u0) ≡ c (u′ (u0, gH) , gH) and cL (u0, ε) ≡ c (u′ (u0, gL, ε) , gL)

to denote the compensation policy; and vH (u0) ≡ v (u′ (u0, gH) , gH) and vL (u0, ε) ≡
v (u′ (u0, gL, ε) , gL) to denote firms’ value function at nodes H and L, respectively. The

policy functions for compensation, firm effort, and the value functions at node H do not

depend on ε since there is no idiosyncratic shock at node H. The following proposition

provides conditions under which agency frictions amplify the equity premium and generate

countercyclical unemployment.

Proposition 4. (Aggregate Implications) Under assumptions 1–5, for expected utility

preferences, i.e., γ = 1, firm owners’ consumption share is countercyclical; that is, xH < xL.

For general recursive utility, there exists a γ̂ ∈ [1, 1 + ξ) such that if γ > γ̂, then (i) firm

owners’ consumption share is procyclical; that is, xH > xL and (ii) separation rates are

countercyclical; that is, θH (u0) > θL (u0, ε) for all (u0, ε).

Because the consumption Euler equation must hold for the unconstrained firm owners,

amplification in the market price of risk relative to a representative agent model is equivalent

to firm owner’s consumption share being procyclical. The first part of proposition 4 implies

that countercylical idiosyncratic risk by itself is not sufficient for amplifying the volatility of

the equilibrium stochastic discount factor. Independent of the risk aversion γ, the optimal

contract generates uninsurable tail risk (proposition 2). However, under expected utility,

the pricing kernel is less volatile than the pricing kernel in an otherwise identical economy

with full commitment.

Countercyclical idiosyncratic risk means that relative to booms, a larger fraction of

worker-firm pairs are constrained in recessions. Because constrained firms cut compensation,

in the aggregate, there is a higher fraction of resources available for firm owners during a
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recession. Since goods markets need to clear, these resources are allocated between the

firm owners and the unconstrained workers by equating their intertemporal marginal rates

of substitution. With expected utility, this amounts to equalizing the growth rates of

consumption of the firm owners and the unconstrained workers. Therefore, for γ = 1 = 1
ψ ,

the consumption share for firm owners increases in a recession, resulting in xL > xH . This

makes aggregate asset prices less volatile.

The second implication of proposition 4 is that keeping the intertemporal elasticity of

substitution fixed, a large enough risk aversion results in a procyclical consumption share

for firm owners. Why does the cyclicality of x flip signs when risk aversion becomes larger

relative to inverse of the intertemporal elasticity of substitution? Persistent recessions that

are associated with a lack of risk sharing in the future imply lower continuation values

for all workers. As risk aversion exceeds the inverse of the intertemporal elasticity of

substitution, contemporaneous marginal utilities are decreasing functions of continuation

utility.9 Optimal risk sharing, which requires equating marginal rates of substitution

between firm owners and unconstrained workers, is now achieved by transferring resources

away from the firm owners in recessions. Proposition 4 says that for sufficiently high risk

aversion, this incentive is strong enough to dominate the effect of market clearing and

delivers procylical consumption shares for firm owners.

The last part of proposition 4 says that separation rates are higher in recessions relative

to booms. In our model, labor income has two sources of tail risk. First, the distribution of

productivity shock ε has a left tail. As shown in proposition 2, under firm-side limited

commitment, this tail risk cannot be fully insured within optimal labor compensation

contracts. Second, workers become unemployed with probability θ and lose a fraction 1−λ
of human capital in each period until they are matched with a new firm.

The countercyclicality of unemployment risk asserted in part (ii) of proposition 4

is a direct consequence of incentive compatibility under moral hazard. Without moral

hazard, to efficiently deliver promised utility to workers, firms will typically choose a lower

separation rate in recessions, when human capital depreciation and consumption reduction

are more costly for workers. With moral hazard, such arrangements are no longer incentive

compatible, and firms equalize the marginal cost of retention effort to the present value of

profits that a worker can create without considering the cost of separation to workers. Since

valuation ratios in recessions are lower relative to booms, firms exert less effort to retain

workers, leading to countercyclical separation rates.

9Ai and Bansal (2018) define the class of preferences under which marginal utility decreases with
continuation utility as generalized risk-sensitive preferences. Generalized risk sensitivity is the key property
of preferences captured by the assumption γ > 1

ψ
that is responsible for the procyclical consumption share

in our model.
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The effects of limited commitment and those of moral hazard reinforce each other to

amplify the volatility of the stochastic discount factor. Limited commitment amplifies risk

prices because optimal contracts insure workers against adverse aggregate shocks which

makes firm owners’ consumption more risky. Higher separations in recessions magnify the

downside risk in labor earnings and hence the need for insurance. Thus, higher separation

risk leads to more procyclical consumption for marginal agents, and the resulting higher

discounting in turn leads to lower worker valuations, lower retention effort from firms, and

more separations.

Contrasting the mechanism to alternatives proposed in the literature

Proposition 4 contrasts our setup with several exogenously incomplete market models—for

example, Constantinides and Duffie (1996), Constantinides and Ghosh (2014), and Schmidt

(2015), as well as setups that impose exogenous market segmentation such as Basak and

Cuoco (1998) or Guvenen (2009). In these papers, agents are not allowed to offer any

insurance contracts to one another. In our model, agents are allowed access to a rich set of

state-contingent payoffs, the only restriction being incentive compatibility constraints. In

the Constantinides and Duffie (1996)–style models, all agents are marginal investors in risky

assets, and hence countercyclical uninsurable risk in consumption automatically translates

into a more volatile pricing kernel. In our simple example, because market incompleteness

is determined by agency frictions, agents with adverse idiosyncratic shocks are constrained

and therefore are not marginal. Hence, higher idiosyncratic volatility by itself does not

increase the market price of risk.

Alvarez and Jermann (2001) and Chien and Lustig (2010) derive asset pricing

implications in a setting with one-sided limited commitment. This corresponds to a

version of our model where firms can fully commit but workers cannot. Such environments

produce high equity premia when more workers are constrained in adverse aggregate states.

The worker-side limited commitment constraint binds for worker-firm pairs that receive

large positive idiosyncratic productivity shocks. Because constrained workers need to be

compensated with higher current consumption, by market clearing, the consumption for

unconstrained agents drops, raising their marginal utilities. To amplify the risk premium,

such a model would necessarily require more positive skewness in labor earnings in recessions

relative to booms; an implication that is inconsistent with the key feature of labor market

risk that we highlight in the introduction. In addition, quantitatively, uninsurable tail risk

on the downside are much more powerful than on the upside in amplifying the volatility

of the stochastic discount factor. The workings of the simple example explain how a

combination of firm-side limited commitment with recursive utility jointly deliver downside

risk in labor earnings and higher risk premia.

24



Proposition 4 also distinguishes our model from Danthine and Donaldson (2002),

Favilukis and Lin (2016b), and other papers that use sticky wages to explain the high

equity premium. In these models, markets are complete and labor compensation contracts

do not affect the pricing kernel. These models produce higher equity premia through an

“operating leverage” channel: labor compensation is less sensitive to aggregate shocks, and

this amplifies the risk exposure of capital income. Since operating leverage affects only the

volatility of cash flows, these models need to assume a high level of risk aversion to match

aggregate Sharpe ratios.

In contrast to models with exogenous wage rigidity, in our setup, risk premia are

amplified primarily through the effect of agency frictions on the volatility of the stochastic

discount factor and not because of a higher volatility of dividends.10 We return to this

implication in our quantitative analysis in section 6.1.

4.3 Cross-Sectional Implications

In addition to the implications for aggregate risk prices and aggregate unemployment

dynamics, our model has predictions for the cross section of returns and labor earnings.

We outline these implications here, and in section 6.3 we formally test them using panel

data on firm-level returns and firm-level labor shares.

In our model, heterogeneity in firms is summarized by a single state variable u. High-u

firms promise a larger fraction of current and future cash flow to workers than low-u firms.

Thus, u can be interpreted as “labor leverage.” For a firm with labor share u0, define the

elasticity of wage payments with respect to idiosyncratic shocks as

Υ (u0) = E
[
∂ ln [eεcL (u0, ε)]

∂ε

]
.

The term eεcL (u0, ε) is the level of compensation to a worker with initial promised utility

u0 at node L. Next, define the valuation risk exposure or beta of a firm indexed by u0 as

B (u0) =

(
vH (u0)

E [eεvL (u0, ε)]

)
.

Below, we provide two comparative static results with respect to u0.

Proposition 5. (Cross-Sectional Implications) Under assumptions 1–5, (i) ∂
∂u0

Υ (u0) > 0

10In our model, the claim on aggregate dividends also has a higher price-to-dividend ratio in booms relative
to recessions. In appendix C, we show that under assumptions 1–5, ∃ γ̂ ∈ [1, 1 + ξ) such that γ > γ̂ implies

vH(u∗0)
E[eεvL(u∗0 ,ε)]

> 1.
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and (ii) there exists a γ̂ ∈ [1, 1 + ξ) such that ∀γ > γ̂, ∃û, where û is defined by

ε(û, gL) = ln 1+ξ
ξ , such that ∀u0 < û, ∂

∂u0
B (u0) > 0.

Part (i) of the proposition says that the average elasticity of compensation with respect

to idiosyncratic shock ε is increasing in promised utility u0. Firms that promised a

higher fraction of cash flows to workers are more likely to be constrained. Whenever the

limited commitment constraint binds, perfect risk sharing is no longer possible, and worker

compensation responds to idiosyncratic productivity shocks. Thus, labor shares predict

firm-level wage pass-throughs. In section 6.3, we show that consistent with the above

implication of our model, payments to workers in firms with higher labor leverage are more

sensitive to firm-level idiosyncratic shocks.

Part (ii) of the proposition summarizes our model’s implications for the cross section

of equity returns. Compensation contracts insure workers against aggregate shocks, which

makes the residual dividends more risky. In our model, firms with high u0 have low market-

to-book ratios and high labor leverage. In the cross section, the operating leverage effect

is stronger for high u0 firms. These firms promise a large fraction of their cash flow to

workers, bear more aggregate risk, and compensate investors by delivering higher expected

returns. In section 6.2, we use panel data on firm-level measures of labor obligations and

equity prices to show that low market-to-book ratio and high labor leverage firms indeed

have higher expected returns.

From a worker’s perspective, proposition 5 implies that the exposure of their

consumption is increasing in promised utility, which is a measure of their wealth.

This implication further contrasts our setup with those with only worker-side limited

commitment. In these settings, (rich) agents who have experienced a history of positive

shocks are more likely to be constrained, and (poor) agents who have experienced a history

of negative shocks are typically not constrained. For these models to generate an amplified

equity premium, the marginal rate of substitution of the unconstrained agents necessarily

needs to be more volatile than that of an average agent. Therefore, they imply that the

unconstrained poor agents’ risk exposure to the stock market must be higher than that

of the constrained wealthy agents, an implication that is inconsistent with the empirical

evidence on stockholding patterns by wealth and income.11

11See for instance Malloy et al. (2009).
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5 Quantitative Analysis

5.1 Numerical Algorithm

Policy functions and state prices depend on the infinite-dimensional state variable φ.

The distribution φ shows up directly in the market clearing condition and indirectly as

an argument in the stochastic discount factor when we describe the optimal contracting

problem P1. We use a numerical procedure similar to that in Krusell and Smith (1998)

and replace the distribution φ with suitable summary statistics. We assume that agents

compute future state prices by projecting the stochastic discount factor on the space spanned

by {gt, xt} and use xt+1 = Γx(xt, gt, gt+1) as a forecasting rule for xt. Our choice of the

forecasting rule is numerically efficient because given a law of motion for x, the stochastic

discount factor is completely pinned down.12

Using the forecasting function Γx, we compute the stochastic discount factor Λ (g′, x, g).

With Γx (x, g, x′) and Λ (g′, x, g), we solve the Bellman equation for the optimal contracting

problem using an endogenous grid method and value function iteration. In appendix

D, we describe a procedure that uses a grid on ε (u, S, g′), which is the threshold for

the idiosyncratic shock such that the firm-side limited commitment constraint binds, to

tractably solve the contracting problem P1. After approximating the policy functions, we

simulate a panel of agents and use the simulated data to update the law of motion Γx.

We repeat this procedure until the the function Γx converges. Appendix D describes the

detailed steps and related diagnostics.

5.2 Calibration

Model parameters are divided into two sets: (i) parameters governing the stochastic process

for aggregate shocks and (ii) parameters governing labor market flows and the distribution

of idiosyncratic shocks to workers’ human capital.

Aggregate shocks A period is a quarter. We time aggregate outcomes and report annual

moments. We assume that the aggregate productivity process {gt}t is a sum of a two-state

12The market clearing condition equation (21) implies that x is linear in a c(u, S) weighted average of the
distribution φ. It summarizes information in φ by assigning relatively more weight to values of u that have
a larger effect on aggregate resources. This choice contrasts our algorithm to that in Krusell and Smith
(1998), who use the first moment of the distribution of wealth as a summary statistic.
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Markov chain and a homoskedastic i.i.d. Gaussian component:13

lnYt+1 − lnYt = gt+1 + σEEt.

The state space for the Markov chain is {gH , gL}. We refer to states with g = gH as “booms”

and states with g = gL as “recessions.” The aggregate shock process {gt, Et}t is calibrated as

in Ai and Kiku (2013). They jointly estimate the values for {gH , gL}, the Markov transition

matrix, and the volatility parameter σE from post-war aggregate consumption data. Our

calibration implies an average duration of 12 years for booms and four years for recessions.

The parameters for aggregate shocks are listed in the top part of table 1.

Labor market flows and evolution of human capital We calibrate the parameters

that govern labor market flows and the evolution of human capital using transition rates

between employment status, estimates of earning losses after separation, cross-sectional

moments of labor earnings distributions, and other aggregate moments such as the mean

and volatility of total labor compensation relative to aggregate consumption. Below, we

specify our functional form choices and discuss the identification of key parameters by

pairing them with the most relevant moments.

We set κ = 1% to obtain an average working life of 25 years. To better match the

observed aggregate unemployment dynamics, we use a richer specification for the cost of

retention function A (θ, g) = ea0[θ−a1,g ]. The scale of the cost function is normalized such

that overall the costs are negligible relative to the total output. We interpret a separation

in the model as a transition to the state of long-term unemployment (12 months and

beyond). The parameters for A(·), and {χ, λ, b} are pinned down by the transition rates

from employment to long-term unemployment in booms and recessions, the duration of long-

term unemployment, the average earnings losses upon separation, and the estimate of the

flow value of unemployment. To compute the flows in and out of long-term unemployment,

we use data from the Current Population Survey summarized in table 1 of Shibata (2015).

For earnings losses on separation, we use information from Davis and von Wachter (2011),

who estimate the present value of earning losses due to job separations. We target the

consumption equivalent of the flow value of unemployment to be 65% of pre-separation

wage earnings.14 The parameters and moments related to labor flows are listed in the

13To better fit the autocorrelation of aggregate consumption growth, we use a more flexible process than
the one listed section 2.1. Equilibrium prices and the optimal contract satisfy a homogeneity property, and
the presence of i.i.d E shocks does not increase the state space for the value and policy functions.

14The empirical labor literature has a wide range of values for the flow value of unemployment. Shimer
(2008) uses the unemployment insurance replacement rate of 40%, Rudanko (2011), and Mulligan (2012) add
the value of home production and leisure and target a higher number of 85%, and Hagedorn and Manovskii
(2008) use an even higher estimate of about 95%.
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middle panel of table 1.

Workers’ human capital is affected by worker- and firm-level idiosyncratic shocks ε+ η.

We assume ε = αεW and η = (1− α) εF , where εW and εF are i.i.d. according to a

continuous density f(·|g). To capture the feature that the (negative) skewness of labor

earnings is cyclical, we model the distribution f(·|g) to be a Gaussian distribution in booms

and a mixture distribution of a Gaussian and a fat-tailed distribution with a negative

exponential form in recessions. We assume that both the Gaussian distributions as well as

the negative exponential distribution satisfy a normalization such that the exponential of

the draw has a unit mean. These restrictions imply f(·|g) is paramterized by the following:

the standard deviation of the Gaussian distribution for booms σH ; the standard deviation

of the Gaussian distribution for recessions σL; the intensity parameter for the negative

exponential distribution ξ; and the mixture weight ρ ∈ (0, 1), which is the probability of

drawing from the negative exponential distribution in recessions.

We set the parameter α to match the within- and across-firm variations in labor earnings

as reported in Song et al. (2015) and calibrate the parameters {σH , σL, ρ, ξ} to match

the cyclical properties of the moments of labor earnings calculated using the Panel Study

of Income Dynamics (PSID).15 We restrict the sample to households where the “head of

household” is a male whose working age is between 15 and 64 and who reports at least 500

hours of work in two consecutive years. Our measure of earnings is the regression residual

of post-tax labor earnings on observable characteristics: age of the head, the age square,

family size, and education level of the head. To obtain our target moments, we compute the

cross-sectional standard deviation and Kelly skewness for log earnings growth, which are

then averaged separately for “boom years” and “recession years.”16 In the bottom part of

table 1, we report the parameter values and moments related to the earnings distribution.

Our model closely matches the standard deviations of the earnings growth in booms

and recessions. We obtain a Kelly skewness of -3% in booms and -10% in recessions, as

compared with -3.2% and -9%, respectively, in the PSID.17

All parameters affect the aggregate labor share. In our model, the employed workers’

15The PSID is a longitudinal household survey of U.S. households with a nationally representative sample
of over 18,000 individuals. Information on these individuals and their descendants has been collected
continually, including data covering employment, income, wealth, expenditures, health, education, and
numerous other topics. The PSID data were collected annually during the period 1968–97 and biennially
after 1997.

16We treat 1980–82, 1991–92, 2000–01, and 2007–09 as recession years and the remaining ones as boom
years.

17In a previous version, we also reported results for an alternative calibration that targeted moments from
Guvenen et al. (2014) and produced similar asset pricing results. Compared to the Guvenen et al. (2014)
data, the PSID allows us to control for transfers from the government and lifecycle earning patterns that we
abstract from in our setup.
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consumption as a fraction of aggregate consumption is countercyclical. It has a mean of

70%, a standard deviation of 3%, and an autocorrelation of 0.58. These moments are

consistent with the data of aggregate labor compensation. We use national income and

product accounts (NIPA) to compute the ratio of aggregate labor compensation to aggregate

consumption and then detrend the series. For the sample 1947–2015, the mean labor share

in consumption is 75%, the standard deviation is 2.94%, and the autocorrelation is 0.88.

6 Results

We discuss the implications for asset pricing and labor market dynamics.

6.1 Aggregate Asset Prices

In table 2, we summarize aggregate asset pricing moments. The baseline calibration is

under the column labeled “Model-Baseline,” and the column labeled “Model-No Frictions”

is the version without limited commitment and moral hazard. We report the properties

of returns on both a claim to aggregate consumption Yt
�
φt(du) and a claim to aggregate

corporate dividends xtYt. Our model generates a high equity premium and a low risk-free

interest rate with a risk aversion γ = 5 and an IES ψ = 2. Without assuming any financial

leverage, the equity premium on the claim to corporate dividends is about 3.67% per year in

the baseline model. The average debt-to-equity ratio for publicly traded U.S. firms is about

50%.18 Accounting for financial leverage, our model implies a market equity premium of

5.5%, which is close to the historical average excess return of 6.06% on the U.S. aggregate

stock market index. In contrast, the equity premium on the unlevered corporate dividends

is 0.62% per year in the first-best economy without limited commitment and moral hazard.

The premium on a risky asset is proportional to the covariance between the stochastic

discount factor and its return. Our model generates a high equity premium for two reasons.

First, agency frictions amplify the unconditional volatility of the stochastic discount factor.

As explained in proposition 4, the insurance motives against persistent countercyclical tail

risk in labor earnings imply a procyclical consumption share of the marginal investors. A

more volatile stochastic discount factor is reflected in higher Sharpe ratios. Using the mean

and the standard deviation of excess returns from table 2, the Sharpe ratio on the claim to

aggregate dividends in the baseline is 48.5%, which is more than twice as large as that in

the case with no frictions.

The second reason for the high equity premium is the large volatility of stock returns.

18See Graham et al. (2015) for details on measurement of corporate leverage.
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In our model, stock returns are volatile because agency frictions generate fluctuations

in the volatility of the stochastic discount factor over time. The general equilibrium

implications of the agency problem introduce a new channel that raises the volatility of the

stochastic discount factor in recessions relative to booms. The reason is the presence of the

distributional state variable φ, whose slow-moving dynamics are summarized in persistent

changes in the firm owners’ share of aggregate consumption xt. Prolonged recessions are

associated with increasingly lower levels of the firm owner’s consumption share. This

implies that small changes in xt translate into large variations in xt+1

xt
egt+1 , which is the

consumption growth rate of the firm owners. In equilibrium, the amplified volatility of the

firm owner’s consumption is compensated by a higher risk premium. The second effect

of low xt in recessions is a higher discounting of the future match surplus. This lowers

firms’ incentives to retain workers and exacerbates the moral hazard problem. Agents

anticipate more separations and a higher downside earnings risk, which feeds back into a

higher risk premia. On the other hand, in booms, the level of xt is high, and the volatility

and discounting effects are diminished.

This asymmetry results in countercyclical risk prices, high return volatility, and

predictability of market returns by valuation ratios. The model delivers a 7.40% standard

deviation of the return on the unlevered claim to corporate dividends, which is about three

times higher than its counterpart in the economy with full commitment and no moral

hazard. Given a low volatility of aggregate consumption and an only moderately volatile

risk-free rate, most of the increase in the volatility of the market return is accounted for by

the time-varying equity premium.

Time variation in the risk premium also generates the predictability of future excess

returns by price-to-dividend ratios, an empirical regularity documented by several papers

including Campbell and Shiller (1988), Fama and French (1988), and Hodrick (1992). In

table 3, we report the results of predictability regressions in our model and those in the

data. We regress excess stock market returns measured at one-to-twelve quarter horizons

on the log price-to-dividend ratio at the start of the measuring period. The “Data” column

reports coefficients and R2 of these regressions using the SP500 returns over the period

1947–2015, where the data construction follows Beeler and Campbell (2012). We report

the same regression results using model-simulated data in the “Model-Baseline” column.

Overall, the model produces regression coefficients and R2 that are consistent with those in

the data. We also match the pattern that predictability is higher for longer-horizon returns.

As a comparison, the first-best case in the column “Model-No Frictions” has a very low R2.

Our calibration does not explicitly target moments in return predictability regressions.

In fact, compared with the data, our model has a higher R2 in predictability regressions.
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Leading asset pricing models, such as the habit model of Campbell and Cochrane

(1999) and the long-run risk model of Bansal and Yaron (2004), typically assume that

dividend growth contains an extra stochastic component that is orthogonal to shocks in

aggregate consumption, which implies that a significant component stock price movements

is unpredictable. For parsimony, our model does not make this assumption and therefore

generates a higher predictability relative to the data.

The moments of risk-free interest rate in our model are fairly in line with standard

asset pricing models. The volatility of the risk-free rate in our baseline model is 2.86% per

annum. There is a wide range of estimates for this moment in the literature depending on

estimation details and sample choices. The volatility of risk-free interest rate in our model

is slightly higher than standard asset pricing models such as Campbell and Cochrane (1999)

and Bansal and Yaron (2004). However, it is consistent with recent papers that construct

“ex ante” measures of the risk-free rate; see, for example, Schorfheide et al. (2018) and

Beeler and Campbell (2012).

Model benchmarking In this section, we compare our results to nested cases that

capture important benchmarks in the literature. The comparisons highlight why our model

generates risk premia that are high and countercylical relative to setups such as those with

one-sided limited commitment or exogenous wage rigidity when we require consistency with

the aggregate and distributional data on labor earnings across models. Table 4 summarizes

the findings.

Assume that firms can fully commit. This version of our model is similar to Alvarez

and Jermann (2001) or Chien and Lustig (2010), who study the asset pricing implications

of worker-side limited commitment. We keep all other features of the model unchanged,

including the assumption that workers obtain all the surplus from new matches and the

specification of the moral hazard problem. The results are under the column labeled “Only-

Worker-Side Limited Commitment” in table 4.

The risk premium on the aggregate endowment claim and the volatility of returns are

lower in the model with only-worker-side limited commitment. The intuition for this result

can be explained as follows. First, the tightness of the worker-side limited commitment

constraint does not significantly change over time. In the model, the worker-side limited

commitment constraint binds for workers that receive sufficiently positive idiosyncratic

shocks. However, the right tail of the distribution of idiosyncratic shocks is similar in booms

and recessions. This is because our calibration is disciplined by the feature of the data that

the standard deviation and the right skewness of labor earnings are almost acyclical. Second,

worker-side limited commitment generates uninsurable upside risk in labor earnings. Even
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with recursive utility, this does not produce quantitatively significant effects on marginal

utilities.

In terms of the labor market moments, we find that the model with only-worker-side

limited commitment misses the large negative Kelly skewness of labor earnings in recessions

and other measures of tail risk, which in our baseline model is generated by the firm-side

limited commitment constraint. In addition, the lack of time variation in discount rates

mitigates the cyclicality of separation rates through the moral hazard channel.

Next we compare our model to a version of Favilukis and Lin (2016b). Their model

features a complete-markets stochastic discount factor and exogenous wage rigidity that

generates countercyclical labor shares. We capture the Favilukis and Lin (2016b) mechanism

in our setup by assuming that the aggregate dividend process follows x̃(gt)Yt, where

x̃(gH) > x̃(gL). We keep all other parameters of the model unchanged and discipline the

choice of x̃(gH) and x̃(gL) by calibrating them to match the mean and standard deviation

of labor shares of 67% and 2%, respectively, as in Favilukis and Lin (2016b). We then

price the resulting x̃(g)Y claim using a stochastic discount factor that is derived from a

representative agent economy version of our model.

The “Exogenous Wage Rigidity” version of the model delivers a low equity premium

of 0.681% and a small volatility of excess returns of 3.09%. These values are only slightly

higher than those in our first-best case reported in table 2 under the column labeled “No

Frictions.” The volatility of aggregate labor share in the data is small and this limits the

ability of models relying exclusively on operating leverage to generate high risk prices.

In contrast, our baseline generates a significantly higher premium. Agency frictions in

our model amplify the volatility of the stochastic discount factor as well as the risk exposure

of the aggregate dividend claim. For example, in table 2 under the column labeled “Model-

Baseline,” we see that while the risk premium on the aggregate consumption claim is 3.59%,

the premium on the claim to corporate dividends is 3.67%. The small difference in these

risk premia highlights that the amplification is primarily due to a more volatile stochastic

discount factor and the role of the cash flow volatility channel is small.

Modeling the mixture distribution is necessary to match the extent and cyclicality of tail

risk observed in labor earnings and, at the same time, deliver an approximately acyclical

standard deviation of earnings growth as observed in the PSID. To highlight its importance,

in table 4 under the column labeled “No Mixture,” we report two calibrations without

assuming a mixture distribution: (i) σH = σL and (ii) σH < σL.

In the case where the distribution of idiosyncratic risk is independent of the aggregate

state—that is, σH = σL = 8.3%—we find that the asset pricing implications are almost
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similar to the first-best case, consistent with the Krueger and Lustig (2010) intuition

outlined in section 4.1. In the case σL > σH , it is possible to make σL sufficiently higher than

σH so that the implied volatility of the stochastic discount factor is similar to the baseline

calibration. With σL = 10.3% and σH = 8%, we are able to get an equity premium on the

unlevered aggregate consumption claim of 3.2%. However, we find that the earnings growth

distribution has (counterfactually) countercylical standard deviation, 38% in recessions and

30% in booms, and almost no cyclicality in Kelly skewness.

Discount rates in general equilibrium models can be constructed from the marginal

rate of substitution of marginal investors. Although all agents who do not face a binding

limited commitment constraint are marginal investors in our model, it is more convenient

to construct the SDF from firm owners’ consumption, because they are never constrained.19

To further illustrate the mechanism for the high volatility of SDF in our model, we report

the volatility of firm owner’s consumption in all four versions of the model in table 4.

First, the standard deviation of consumption growth for firm owners is 10% per year.

In the data, it is difficult to reliably measure the consumption of wealthy stockholders.

Using the sample from Consumer Expenditure Survey (CEX), Wachter and Yogo (2007)

report that the median standard deviation of consumption growth for the bottom 50% of

stock-holding households is 7.26% and that of the top 25% is about 11.38% per year. Firm

owners’ consumption is more procyclical than aggregate consumption. As we explain in

section 4, this extra risk exposure in not insured away in equilibrium, because workers’

marginal utility is high in recessions owning to uninsurable idiosyncratic risk, and it is

optimal for firm owners to bear more aggregate risks than workers.

Second, the pattern of the volatility of consumption growth for firm owners echoes the

pattern of the volatility of stochastic discount factor across models. The inability for other

versions of the model to generate a high volatility of SDF can be attributed to the lack of risk

exposure of firm owners’ equilibrium consumption. The version of our model with counter-

cyclical second moment (σL > σH) also generates a high volatility of consumption growth

for firm owners and a high volatility of SDF, but at the expense of excessive countercyclical

standard deviation in labor earnings growth.

6.2 Cross Section of Expected Returns

Value premium Stocks with low valuation ratios (value stocks) earn higher average

returns than stocks with high valuation ratios (growth stocks). The difference in the mean

19Firm owners are not the only investors whose marginal rate of substitution is a valid stochastic discount
factor. This is true for all unconstrained workers. In our baseline calibration, less than 5% of workers are
constrained in any given quarter.
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returns of value and growth stocks is robust to various ways of constructing the valuation

ratio—for example, as the ratio of the market value of the firm to its book value or as the

ratio of the market price of the stock to earnings per share; see Fama and French (1992)

and Fama and French (1993).

Our model generates a value premium. The price-to-earnings ratio and expected returns

are functions of the state variable ut, which summarizes the fraction of future cash flows

that is promised to workers. Firms with high-u workers have a high operating leverage and

a low valuation ratio. Proposition 5 states that such firms should have a higher expected

return. To compare our model implications with data, we sort stocks into three portfolios

ranked by earnings-to-price ratios.20 The mean high-minus-low return is 6.27% per year,

with a t-statistic of 5.01. The same portfolio-sorting procedure in the data simulated from

the model generates a value premium of 4.66% per year.

In our model, firms with a history of negative idiosyncratic shocks have higher expected

return. A similar effect is documented by Bondt and Thaler (1985) as “long-term reversal.”

In our model, long-term reversal and value premium are due to the same economic

mechanism, and hence they are highly correlated. Consistent with this implication of our

theory, Fama and French (1996) show that the returns on value-growth portfolios and long-

term reversal sorted portfolios are highly correlated.

Labor leverage and the cross section of expected returns A more direct test of the

model mechanism is the connection between the value premium and firm-level obligations

to workers. We use the merged CRSP/Compustat panel to test this implication.

We focus on publicly traded firms in the Compustat database and regress excess returns

on a firm’s equity, which are defined as the difference between equity returns and the three-

month T-bill rate, on firm-level labor shares and time fixed effects.

Excess Returnf,t+1 = αr + βr ×LaborSharef,t + λrt. (32)

Following Donangelo et al. (2016), labor share for firm f at period t is constructed using

LaborSharef,t =
XLRft

OPIDf,t +XLRf,t + ∆INVf,t
, (33)

where XLR is the total wage bill, OPID is operating profit before interest and depreciation,

and INV is change in inventories. Whenever XLR is not available, we construct an extended

labor share (ELS) using the procedure described in Donangelo et al. (2016). In table 5,

20The return series for these portfolios is obtained from Kenneth French’s website and covers the period
1956—2016.
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we report our results both with labor share, under the column labeled “Using LS,” and

with extended labor share, under the column labeled “Using ELS.” Consistent with our

model, labor share predicts expected returns, and the point estimate for βr is positive

and significant.21 These findings are consistent with and complementary to other studies

such as Donangelo et al. (2016), who document returns on labor share–sorted portfolios

and estimate versions of (32), as well as Favilukis and Lin (2016a), who use wage rigidity

as a proxy for labor leverage at the industry level and show that labor leverage predicts

cross-industry expected returns.

6.3 Labor Market Implications

In this section, we focus on the implications for aggregate and cross-sectional labor market

dynamics.

Discount rates and unemployment risks The incentive compatibility condition (17)

links unemployment risk to worker valuations that are influenced by discount rate variations.

In our model, prolonged recessions are states with high expected returns and low present

values of cash flows from workers. Because firms’ retention effort is not observable, they have

a lower incentive to keep workers in times of low valuations. Several papers in the recent

literature emphasize the link between discount rates and unemployment; see, for example,

Hall (2017), Kehoe et al. (2019) and Borovicka and Borovickova (2018). In contrast to

these papers, the variation in discount rates in our setting is driven by general equilibrium

implications of contracting frictions, and our model is consistent with broad patterns in

aggregate and cross-sectional asset returns.

In our model, average separation rates are countercyclical: 3% per year in recessions

and 2% per year in booms. In the presence of separations, part of the tail risk in labor

earnings is driven partly by the extensive margin when workers transition from employment

to long-term unemployment. We decompose large earnings drops—that is, reductions

in individual earnings of more than 20%—into two categories: separations and within-

employment compensation cuts. In our calibration, 48.5% of large earnings drops are due

to separation and the remaining 51.5% are due to a binding firm-side limited commitment

constraint. This pattern is consistent with Guvenen et al. (2014), who document that

workers in the left tail of the income distribution are more likely to experience a large drop

in earnings, and claim that a nonnegligible fraction of the drop is due to unemployment

risk. The separation risk is also quantitatively important in accounting for the volatility of

21The estimates are robust to including various control variables such as leverage and total assets in the
regression (32). See appendix E.
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the stochastic discount factor. Shutting down separations—that is, under a calibration with

θ = 1—and keeping all other parameters unchanged lowers the annualized risk premium on

the aggregate consumption claim from 3.6% to 2.14%. We interpret this as both channels

being salient and paycut-driven tail risk accounting for about two-thirds of the equity

premium.

Exposures to idiosyncratic and aggregate shocks Propositions 4 and 5 have direct

implications for how idiosyncratic and aggregate shocks are insured in the presence of agency

frictions. Owing to to firm-side limited commitment, workers with adverse histories are more

exposed to idiosyncratic shocks in recessions. The optimal contract compensates this lack

of insurance by providing such workers an additional hedge against aggregate shocks. Thus,

the consumption of workers with adverse histories would have a relatively higher exposure

to idiosyncratic shocks and a lower exposure to aggregate shocks.

To test whether firms with larger obligations to workers provide less insurance against

idiosyncratic shocks, we measure the pass-through of firm-level shocks to their wage

payments and check whether these pass-throughs systematically vary with the firm-level

labor share. We estimate the regression

∆ log WageBillf,t+1 = αw + βw0 LaborSharef,t + βw1∆ log Salesf,t

+ γw∆ log Salesf,t × LaborSharef,t + λwt, (34)

where WageBillf,t+1 is the total wage bill of firm f in year t + 1 and LaborSharef,t is

as defined in equation (33). Our sample includes all firms in Compustat for the period

1959-2017.

We report our regression results in table 6, where standard errors are in parentheses.

Consistent with our model’s implication of imperfect risk sharing, the point estimate of the

pass-through coefficient β1 is positive but less than one.22 Furthermore, the interaction

term γw > 0 and is statistically significant. This confirms the conclusion of proposition 5

that firms with higher labor leverage have a higher pass-through coefficient. In appendix E,

we estimate a version of (34) where we split the sales growth into a negative sales growth

part and positive sales growth part. We find that consistent with the model, the interaction

term is driven mainly by the negative part of sales growth.

22Guiso et al. (2005) also estimate the extent of insurance within the firm using administrative-level
matched employer-employee data and similar regressions.
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7 Conclusion

We present an asset pricing model where risk premia are amplified by agency frictions.

Under the optimal contract, sufficiently adverse shocks to worker productivity are uninsured.

In general equilibrium, exposure to downside tail risk results in a more volatile stochastic

discount factor and time variations in discount rates. These features of the pricing kernel

yield quantitatively large and volatile risk premia and generate a substantial cross-sectional

variation in returns across firms. Our model is also consistent with firm-level measures of

labor share that predict both future returns and pass-throughs of firm-level shocks to wage

payments.

An interesting extension of our setup would be to allow for a storage technology, such

as physical capital, along with related agency frictions such as hidden savings for workers

or the ability of firm owners to additionally use capital as collateral. This will open up a

host of new predictions about aggregate business cycle fluctuations, firm-level and aggregate

asset prices as well as capital misallocation in the cross section of firms. A recent paper by

Tong and Ying (2019) builds on our setup and studies asset pricing implications of limited

commitment in production economies.
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Online Appendix for Asset Pricing with Endogenously

Uninsurable Tail Risk

A Additional details for restrictions on the space of contracts

In this section, we show that given the equilibrium we construct in the main text, there

are no incentives for firms to offer any insurance to workers that are not currently matched

with the firm. We build the argument in several steps. We first show that firms do not have

incentives to offer any unemployment insurance to workers after separation. Then we show

that the restricted employment contract that we construct in the main text of the paper is

in fact optimal in a larger contracting space where all firms are allowed to offer insurance

to all workers.

A.1 Insurance provision to unemployed workers

First, consider an optimal contracting problem of a firm that offers payments
{
C̃t+s

}∞
s=0

to an unemployed worker subject to two-sided limited commitment. Let Ṽ (U, y, S) be the

value of the insurance contract to a firm as a function of worker output y, promised utility

U for a given aggregate state S. Following the steps in the main text, the above contracting

problem can be expressed as

Ṽ (U, y, S) = max
C̃,{Ũ ′(g′)}

g′

−C̃ + κ
∑
g′

π
(
g′|g
)

Λ
(
S′, S

)
(1− χ) Ṽ

(
Ũ ′
(
g′
)
, λy, S′

)
subject to

(1− β)
[
by + C̃

]1− 1
ψ

+ β

κ∑
g′

π
(
g′|g
) [

(1− χ) Ũ ′
(
g′
)1−γ

+ χ
(
u∗
(
S′
)
λy
)1−γ] 1

1−γ

1− 1
ψ


1

1− 1
ψ

≥ U,

(35)

Ũ ′
(
g′
)
≥ ū

(
S′
)
λy, for all g′, (36)

Ṽ
(
Ũ ′
(
g′
)
, λy, S′

)
≥ 0, for all g′. (37)

where functions u∗ (S) and ū (S) are defined in equations (12) and equation (11) respectively.
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The optimal contract chooses the current period payment to the worker C̃ and a menu

of continuation utilities
{
Ũ ′ (g′)

}
g′

to maximize the net present value of the contract to

the firm. The human capital of an unemployed worker depreciates deterministically at rate

1 − λ; therefore, in the absence of idiosyncratic shocks, the continuation utility is only a

function of aggregate shock g′. To understand the expression for the continuation payoff,

note that in the next period, with probability χ, the worker stay unemployed, in which

case the value of the contract is Ṽ
(
Ũ ′ (g′) , λy, S′

)
. With probability 1 − χ, the worker

receives an opportunity to match with a firm, which can be a different firm or the same

firm who is providing the insurance. In either case, because of competition, the value of the

continuation contract after the worker finds an employment opportunity give the worker a

continuation value of u∗ (S)λy and a value of zero to the firm.

Inequality (35) is the promise keeping constraint. The worker receives by as

unemployment benefit and a transfer of C̃ from the insurance firm. In the next period,

with probability 1 − χ, the worker stays unemployed and receives promised utility Ũ ′ (g′).

With probability χ, the worker has an opportunity to match with another firm and receives

u∗ (S′)λy. Inequality (36) is the limited commitment constraint for workers: promised

utility under the insurance contract has to be higher than the utility associated with

consuming unemployment benefit as workers always have an option to default on the

contract offered by the insurance firm and to consume the unemployment benefit thereafter.

Because workers’ human capital depreciate at rate 1 − λ, the utility associated with

consuming unemployment benefit is ū (S′)λy in the next period. Finally, inequality (36) is

the limited commitment constraint for the firm which requires the net present value of the

insurance contract to be non-negative for the firm.

The lemma below provides a sufficient condition for the absence of unemployment

insurance offered by firms.

Lemma 1. Suppose λ is small enough, in particular, for all S and S′,

λ ≤
[
x (S′)

x (S)

] [
w (S′)

n (S)

]ψγ−1

. (38)

Then, at U = ū (S) y, we must have C̃ (U, y, S) = 0, Ũ ′ (U, y, S, g′) = ū (S′)λy, and

Ṽ (U, y, S) = 0.

Proof. As in the main text, the optimal contracting problem can be normalized.

Homogeneity of the problem implies Ṽ (U, y, S) = ṽ (u, S) y for some ṽ, where u = U
y .

Using normalized value and policy functions, we can write the optimal contracting problem
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in the normalized form. Define the T operator as

T ṽ (u, S) = maxc,{u′(g′)}g′

−c̃+ κ
∑
g′

π
(
g′|g
)

Λ
(
S′, S

)
χeg

′
ṽ
(
u′
(
g′
)
, S′
) (39)

s.t.
{

(1− β) [b+ c̃]
1− 1

ψ + β (λm)
1− 1

ψ

} 1
1−1/ψ ≥ u (40)

m =

κ∑
g′

π
(
g′|g
) [

(1− χ)u′
(
g′
)1−γ

+ χu∗
(
S′
)1−γ] 1

1−γ

 (41)

u′
(
g′
)
≥ ū

(
S′
)
, for all g′ (42)

ṽ
(
u′
(
g′
)
, S′
)
≥ 0, for all g′. (43)

Under standard discounting assumptions, T is a contraction on the set of bounded

continuous functions and ṽ (u, S) is the unique fixed point of the T operator. The conclusion

of the above lemma is therefore equivalent to the following property of the normalized

optimal contracting problem, that is, for u = ū (S),

c̃ (u, S) = 0; u′
(
u, S, g′

)
= ū

(
S′
(
g′
))

for all g′; and ṽ (u, S) = 0. (44)

Consider the constrained maximization problem (39). Let µ be the Lagrangian multiplier

for the constraint (40). The first order conditions are:

1 = µ (1− β)
( c
u

)− 1
ψ
,

Λ
(
S′, S

) d

du
ṽ
(
u′
(
g′
)
, S′
)

+ µβe−γg
′
(
λm

u

)− 1
ψ
(
u′ (g′)

m

)−γ
≥ 0, for all g′ (45)

and “=” holds if ṽ (u′ (g′) |S′) > 0. The envelope condition implies d
du ṽ (u, S) = µ.

Combining the above conditions, and using the expression for the stochastic discount factor

in (19), the optimality condition (45) can be written as

[
x (S′)

x (S)

]− 1
ψ
[
w (S′)

n (S)

] 1
ψ
−γ
≤ λ−

1
ψ

[
b+ c̃ (ū (g′) , S′)

b+ c̃ (u, S)

]− 1
ψ
[
u′ (g′)

m

] 1
ψ
−γ
, (46)

and “=” holds if ṽ (u′ (g′) |S′) > 0. Because (43) is a standard convex programming problem,

(46) is both necessary and sufficient for optimality.

To prove (44), note that set of functions that are concave in its first argument and

satisfy ṽ (ū (S) , S) = 0 is a closed subset in the set of bounded continuous functions. To

prove that the unique fixed of T satisfies ṽ (ū (S) , S) = 0, we start by assuming ṽ (u, S) is
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concave in the first argument and satisfies ṽ (ū (S) , S) = 0, and we need to show that T ṽ

satisfies the same properties.

Because ṽ (u, S) is concave in its first argument, condition (46) together with the promise

keeping constraint (40) are sufficient for optimality. Under assumption (38), the proposed

policy functions in (44) satisfy the first order condition (46). In addition, the promise

keeping constraint is satisfied by the definition of ū (S) in (12). Therefore, the policy

functions (44) are optimal. Clearly, under the proposed policy functions, T ṽ (ū (S) , S) = 0.

The fact that T ṽ (ū (S) , S) must be concave follows from standard argument (see, for

example, Ai and Li (2015)).

The above lemma has two implications. First, under condition (38), in equilibrium,

a firm cannot earn a positive profit by offering a non-trivial insurance contract to any

unemployed worker. To see this, note that the value function Ṽ (U, y, S) must be strictly

decreasing in U . Because the utility provided by the unemployment benefit is the lower

bound of the utility that an unemployed worker can achieve, we must have U ≥ ū (s) y

under any non-trivial insurance contract. Therefore, Ṽ (U, y, S) ≤ 0, i.e. no firm can make

a positive profit by deviating from the trivial insurance contract.

Second, employer firms cannot offer any severance pay to a worker upon unemployment.

To see this, consider an augmented contract space C ∪ C̃ with C̃ specifying payments to

worker after separation. From the history at which the worker is unemployed, the firm’s

value under any contract with non-trivial payment to the worker cannot exceed Ṽ (U, y, S)

defined in (37). An augmented contract with non-trivial severance pay will give unemployed

workers a value higher than the autarky value of consuming the unemployment benefits

ū (S′) y′. Thus by the same argument as in the previous paragraph, any such arrangement

will imply Ṽ (U, y, S) < 0, which violates the firm-side limited commitment.

Intuitively, it is the joint assumption of two-sided limited commitment and perfect

competition on firm side that rule out unemployment insurance in equilibrium. The income

of unemployed workers are front loaded. In our model, as human capital depreciates, so

does the unemployment benefit. To provide any non-trivial intertemporal consumption

smoothing to unemployed workers, a firm would need to backload its payment. The limited

commitment on firm side (ṽ (ū (S) , S) ≥ 0) implies that firms cannot commit to backloaded

payments unless they can expect some profit in the future. However, there is no profit to be

made in an insurance contract with an unemployed worker: the worker will need continued

payment as long as he is unemployed; once the worker is employed, limited commitment

on worker side and perfect competition between firms mean that the worker will extract

all surplus in the new match and cannot commit to pay back the unemployment insurance
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provider. The fact that workers extract all surplus in a new employment contract is the key

feature of our model that rules out equilibrium private unemployment insurance.

Finally, from a quantitative point of view, condition (38) is a fairly weak assumption

on λ. In an economy without aggregate risk, it is equivalent to λ ≤ 1. In our calibration,

λ = 0.96 at the quarterly level, and (38) is certainty satisfied.

A.2 Insurance provision to other workers

Here we show that the employment contract that we construct in the main text of the paper

is in fact optimal in a larger contracting space where all firms are allowed to offer insurance

to all workers. To do so, we follow several steps. In step 1, we describe a dynamic game in

which firms compete for workers by offering long-term contracts where all firms are allowed

to pay all workers subject to incentive compatibility. In step 2, we describe an equilibrium

strategy in the above game where contracts only involve non-trivial payments from firms

to their employees. In step 3, we show that the proposed contract is optimal in a Subgame

Perfect Nash Equilibrium (SPNE) of the game.

Step 1: Here, we describe a game where all firms are allowed to offer contracts to all

workers. We first introduce some terminologies and notations. We define {ιi,t}∞t=0 to be

the stochastic process that records the birth, death, and unemployment shocks experienced

by worker i.23 In addition, upon receiving an opportunity to match, a worker randomizes

among all firms that offer the most favorable contract. We use υi,t to denote the outcome

of the randomization device, with υi,t = j if firm j is chosen by worker i in period t.

We use ζi,j (t) = (gt, ηj,t, εi,t, ιi,t, υi,t) to denote time t shocks for a firm-worker pair and

ζti,j =
(
gt, ηtj , ε

t
i, ι

t
i, υ

t
i

)
= {gs, ηj,s, εi,s, ιi,s, υi,s}ts=0 to denote the history of shocks of a firm-

worker pair up to time t.24 Because all workers are endowed with one unit of human capital

at birth, given the history of shocks, ζti,j , we can recover hi,t and yi,t for all t using equations

23To keep the convention that {ιi,t}∞t=0 are exogenous shocks not influenced by agents’ actions, we can
assume that they are i.i.d. random variables uniformly distributed on [0, 1]. If worker i is employed in period
t, the outcome of the match with the employer firm is decribed by I{ιi,t+1≤θi,j,t}, where I is the indicator

function. That is, I{ιi,t+1≤θi,j,t} = 0 if the worker separates from the current firm and become unemployed

in period t+ 1 and I{ιi,t+1≤θi,j,t} = 1 if the worker continues the match with his current employer in period

t+ 1. Consistent with the setup of our model, the probability of the survival of the match is θi,j,t. Similarly,
for worker i who is unemployed in period t, I{ιi,t+1≤1−χ} = 0 if the worker continue to stay unemployed in

period t+ 1,and I{ιi,t+1≤1−χ} = 1 if the worker receives an employment opportunity to match with a firm

in period t+ 1.
24The usage of ζ is consistent with the main text in the sense that it is a vector of aggregate and

idiosyncratic shocks in period t. However, unlike in the main text of the paper, here, worker i and firm j do
not necessarily have an employment relationship. In addition, the shock structure in this more general setup
is richer — for example, it contains unemployment shocks, ιi,t — in order to allow for a larger contracting
space.
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(1) and (2), which we denote as ht(ζ
t
i,j).

A contract offered by firm j to worker i specifies the net transfers from the firm to

the worker and the retention effort , Ci,j ≡
{
Ci,j,t

(
ζti,j

)
, θi,j,t

(
ζti,j

)}∞
t=0

, as functions of

the history of shocks.25 Clearly, our setup implies that θi,j,t

(
ζti,j

)
= 0 unless worker i is

matched with firm j at history ζti,j . We use CCC = 〈Ci,j〉i,j as the collection of contracts offered

by all firms to all workers. We suppress the decision for keeping the firm-worker match δi,j,t

and assume from the outset that a firm-worker match is never voluntarily separated. As we

have shown in proposition 1 in the main text of the paper, this is without loss of generality.

We consider a repeated game in which in each period t, all firms offer longer term

contracts to all workers and denote a contract offered by firm j as 〈Ci,j〉i. After all firms

make offers, workers make decisions on which contract(s) to accept. A worker is free to

default on previous contracts at any history. Default on the contract offered by the employer

firm results in a separation of the match and termination of all future cash transfers. Default

on a contract offered by an unrelated firm results in termination of all future cash flows

and nothing else. In addition, a worker who has an employment opportunity can choose

the firm that offers the most attractive employment contract to match. If indifferent, he

randomizes. Finally, firms are free to default on their contract at any point in time. A

default on the firm side results in a separation of the match (if this is a contract with an

employee) and termination of all future cash transfers.

In a typical period t, given the action of all firms, CCC , a firm’s payoff is calculated as the

present value of all cash flows generated by contracts with all workers. A worker’s payoff

is the present value of utility that the worker receives under all accepted contracts with all

firms.

Step 2: Here we construct a SPNE of the game specified above using the optimal

employment contract that we describe in the main text of the paper. To decribe an

equilibrium contract, we can without loss of generality focus on contracts that will be

accepted at all times and all histories, because if part of the contract is not accepted at

some history in equilibrium, we can simply rename the contract so that it prescribes zero

transfer between the firm and the worker after that history. As a result, even though firms

are allowed to offer a different contract in every period, in the construction of the SPNE of

the game, we can focus on the case where the same contract (that will be accepted at all

future histories and all times) is offered in every period.

In every period, firms offer contracts to three different types of workers: workers

employed by them, workers employed by other firms, and unemployed workers. To decribe

25Here, we use the same notation Ci,j as in the main text to denote contracts in a larger space.
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an SPNE strategy, we first specify the contract offered to an employee based on the optimal

employment contract we describe in the paper. Given the pricing kernel Λ (S′, S) and the

equilibrium value of workers with a job opportunity, yu∗ (S), firms’ value function defined

in (10) is the unique fixed point of the following T operator:

TV (U, y, S) = maxC,θ,{U ′(ζ′)}

{
(y − C) + κθ

�
Λ
(
S′, S

)
V
(
U ′
(
ζ ′
)
, yeg

′+η′+ε′ , S′
)

Ω
(
dζ ′|g

)}
s.t.

{
(1− β)C

1− 1
ψ + β

(
κ

� [
θU ′

(
ζ ′
)1−γ

+ (1− θ)
[
ū
(
S′
)
yeg

′+η′+ε′
]1−γ

]
Ω(dζ ′|g)

) 1
1−γ
}
≥ U

U ′
(
ζ ′
)
≥ u

(
S′
)
yeg

′+η′+ε′ (47)

V
(
U ′
(
ζ ′
)
, yeg

′+η′+ε′ , S′
)
≥ 0. (48)

We denote the policy functions associated with the above dynamic programming program

as C (U, y, S) and {U ′ (U, y, S, ζ ′)}ζ′ .

As is standard in the dynamic contracting literature, in any period t, given a

vector of initial state variables, (U, y, S), the continuation contract from period t that

specifies payment to employed workers in all future dates and states can be constructed

recursively from the policy functions of the above dynamic contracting problem. We

denote an employment contract with initial condition (U, y, S) as C (U, y, S). To specify

the continuation contract from any history ζti,j , we only need a procedure to construct the

initial state variables
(
Ui,t

(
ζti,j

)
, yi,t

(
ζti,j

)
, St
(
gt
))

at that history. The construction of the

exogenous state variables yi,t

(
ζti,j

)
and St

(
gt
)

are straightforward and are described in the

main text of the paper. We use the following procedure to construct the promised uitility at

history ζti,j . Let ζτi,j < ζti,j be the closest history that preceeds ζti,j such that at ζτi,j , the worker

has an employment opportunity to match with a firm. Set Ui,τ

(
ζτi,j

)
= u∗ (Sτ ) yτ

(
ζτi,j

)
.

Given this initial promised utility at history ζτi,j , we use the history of shocks between ζτi,j

and ζti,j and the policy function from (48) to construct the promised utility at ζti,j , Ui,t

(
ζti,j

)
.

Below is our proposed SPNE strategy.

• Offer the contract C
(
Ui,t

(
ζti,j

)
, yi,t

(
ζti,j

)
, St
(
gt
))

to worker i if worker i is currently

an employee.

• Promise to offer C
(
Ui,τ

(
ζτi,j

)
, yi,τ

(
ζτi,j

)
, Sτ (gτ )

)
at any future history ζτi,j where

the worker has an employment opportunity, where Ui,τ

(
ζτi,j

)
= u∗ (Sτ ) yτ

(
ζτi,j

)
.

• Offer a trivial contract, that is, a contract with zero transfers between the firm and

the worker at all future contingencies, if worker i is not currently anemployee. Here

the worker can either be unemployed or employed by another firm.
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With a slight abuse of terminology, we will call the above contracts employment contracts.26

Step 3: Here we provide a formal proof that the above described employment contracts

constitute an SPNE in the game we describe in Step 1. We first summarize our results in

the following lemma.

Lemma. The employment contracts described above is an SPNE.

Proof. Because at any history ζti,j , a worker can either be employed by a firm, or unemployed

but have an employment opportunity to match with a firm, or unemployed and do not

have an employment opportuntiy in the current period, to establish that the employment

contract is an SPNE, we need to show that given all other firms’ strategy, none of the

following deviations can yield a higher profit for the firm without violating any of the

incentive compatibility constraints:

1. a different contract to an employed worker,

2. a different contract to a worker who is employed by another firm,

3. a different contract to a worker who is previously unemployed but has an employment

opportunity in the current period,

4. a different contract to an unemployed worker who remains unemployed in the current

period.

5. a combination of the above.

First, because the employment contact solves the optimal contracting problem (48),

firms cannot obtain a higher profit by offering a different contract to an employee. Second,

no firm can obtain a higher profit by offering a non-trivial insurance contract to a workers

who is currently working for another firm. We prove this claim by contradiction. Suppose at

ζti,j , a firm has a profitable deviation by offering a nontrivial insurance contract to a worker

who is currently employed by another firm, the policy functions and the associated value

26The notion of employment contract here is the same as the one defined in the main text of the paper but
extended to a larger contracting space that allows the specification of payment between firms and unrelated
workers.
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functions for the insurance contract must solve the following optimal contracting problem:

Ṽ (U, y, S) = max
C̃,{Ũ ′(ζ′)}

z′

{
−C̃ + κ

�
Λ
(
S′, S

)
Ṽ
(
Ũ ′
(
ζ ′
)
, y′
(
ζ ′
)
|S′
)

Ω
(
dζ ′|S

)}
subject to

{
(1− β)

[
C (U, y) + C̃

]1− 1
ψ

+ β
(
E
[
Ũ ′
(
ζ ′
)1−γ |S]) 1

1−γ
}1− 1

ψ

≥ U, (49)

Ũ ′
(
ζ ′
)
≥ U ′

(
U, y, ζ ′, S′

)
, (50)

Ṽ
(
Ũ ′
(
ζ ′
)
, y′
(
ζ ′
)
|S′
)
≥ 0. (51)

where C (U, y) and {U ′ (U, y, ζ ′, S′)} are the policy functions of the optimal contracting

problem in (48). In the objective function of the optimal contracting problem,

(51), C̃ is the net payment from the firm to the unrelated worker. Inequality (49)

is the promise keep constraint. If the worker accept the contract, his utility is

given by

{
(1− β)

[
C (U, y) + C̃

]1− 1
ψ

+ β
(
E
[
Ũ ′ (ζ ′) |S

]) 1
1−γ
}

, where the current period

consumption includes the payment from the current employer, C (U, y) as well as the tranfer

from the unrelated firm, C̃. Equation (50) is the limited commitment constraint for the

worker. Because the worker can always default on the contract offered by the unrelated firm

and obtain the utility under the employment contract U ′ (U, y, ζ ′, S′), in order to prevent

the worker from default, the promised utility for the next period, Ũ ′ (ζ ′), must be at least

as high as what the worker can obtain under the employment contract, U ′ (U, y, ζ ′, S′).

Inequality (51) in the firm-side limited commitment constraint.

Because the insurance contract is a profitable deviation, we must have Ṽ (U, y, S) >

0. To arrive at a contradiction, we define C̆ (U, y, S) = C (U, y, S) + C̃ (U, y, S) and

Ŭ (U, y, S, ζ ′) = Ũ (U, y, S, ζ ′). Note that
{
C̆ (U, y, S) ,

[
Ŭ (U, y, S, ζ ′)

]}
is a feasible policy

for (48) with V̆ (U, y, S) = V (U, y, S) + Ṽ (U, y, S) as the value function. However,

V̆ (U, y, S) > V (U, y, S), which contracts V (U, y, S) being the optimal solution to (48).

Third, given that all firms offer the optimal contract that provides the highest utility to

workers when worker obtains an employment opportunity, no firm can make a higher profit

by deviating from this strategy.

Fourth, as we show in lemma 1, firms cannot make a positive profit by offering a non-

trivial insurance contract to unemployed workers.

Finally, combining all of the above arguments, it is clear that a combinations of

deviations will not be profitable either.
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B Proof for propositions 1, 2, and 3

B.1 Characterization of equilibrium

In this section, to prepare for the proofs for propositions 1, 2, and 3, we provide a set

of necessary and sufficient conditions that characterize the equilibrium. We first state a

lemma that establishes that the equality constraint (17) can be replaced by an inequality

constraint so that the optimal contracting problem P1 is a standard convex programming

problem.

Lemma 2. Suppose A′ (θ), A′′ (θ), and A′′′ (θ) > 0 for all θ ∈ (0, 1). The policy functions

for the optimal contracting problem P1 in the main text can be constructed from the solution

to the a convex programming problem described below

v (u, S) = max
c,θ,{u′(ζ′),δ′(ζ′)}ζ′

{
1− c−A (θ) +

κθ
�

Λ (S′, S) eg
′+η′+ε′ [δ′ (ζ ′) v (u′ (ζ ′) , S′)] Ω(dζ ′|g),

}
(52)

s.t : u ≤
[
(1− β) c

1− 1
ψ + βm

1− 1
ψ

] 1

1− 1
ψ , (53)

δ′
(
ζ ′
)
v
(
u′
(
ζ ′
)
, S′
)
≥ 0, for all ζ ′, (54)

δ′
(
ζ ′
) [
u′(ζ ′)− λu

(
S′
)]
≥ 0, for all ζ ′, (55)

A′(θ) ≤ κ
�

Λ
(
S′, S

)
eg
′+η′+ε′δ′

(
ζ ′
)
v
(
u′
(
ζ ′
)
, S′
)

Ω(dζ ′|g), (56)

where

m =

{
κ

�
e(1−γ)(g′+η′+ε′)

[
θδ′
(
ζ ′
)
u′
(
ζ ′
)1−γ

+
(
1− θδ′

(
ζ ′
))
λu
(
S′
)1−γ]

Ω(dζ ′|g)

} 1
1−γ

.

(57)

Proof. We label the above-stated maximization problem as P2. The assumption that A′ (θ)

is strictly convex means that (53)–(56) describe a convex set with a nonempty interior and

the objective function (52) is concave. Thus, problem P2 is a convex programming problem.

Suppose the stochastic discount factor and the law of motion of the aggregate state variables

jointly satisfy the following condition:

Assumption 6. For some ε > 0, and for all (S),∑
π
(
g′
∣∣ g)Λ

(
S′, S

)
eg
′
< 1− ε. (58)

Given assumption 6, standard arguments from Stokey et. al (1989) imply that there is

a unique v in the space of bounded continuous functions that satisfies (52). In addition,
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v is continuous, strictly decreasing, strictly concave and differentiable in the interior. We

denote the optimal policy functions for P2 by{
c (u, S) , θ (u, S) ,

{
δ′
(
u, S, ζ ′

)
, u′
(
u, S, ζ ′

)}
ζ′

}
. (59)

We first show that policy function for separations satisfies δ′ (u, S, ζ ′) = 1 for all ζ ′.

Suppose there exists some (u, S) such that with strictly positive probability, δ′
(
ζ̃ ′
)

= 0.

Consider an alternative set of policy functions denoted by hats:

ĉ (u, S) = c(u, S)

θ̂ (u, S) = θ(u, S)

δ̂′
(
u, S, ζ ′

)
= 1 for all ζ ′

û′
(
u, S, ζ ′

)
= I{δ′(u,S,ζ′)=1} × u

(
u, S, ζ ′

)
+ I{δ′(u,S,ζ′)=0} ×

(
λu
(
S′
)

+ ε
)

for some ε > 0 such that

λu
(
S′
)

+ ε < u∗
(
S′
)

where u∗ (S) is such that v (u∗ (S) , S) = 0. Because the value function is strictly decreasing,

we have v
(
û′
(
u, S, ζ̃ ′

)
, S′
)
> 0 for ζ̃ ′ where δ′

(
ζ̃ ′
)

= 0 Then it is easy to verify that see

that the hat policy functions satisfy (53)–(56) and achieve a higher value for the objective

in equation (52) and therefore cannot be optimal. Thus,

δ′
(
u, S, ζ ′

)
= 1 for all ζ ′ (60)

We next show that optimal choices for P2 are feasible for problem P1. Optimal policies

for P2 satisfy a set of first-order necessary conditions. In particular, let ι ≥ 0 be the

Lagrange multiplier of the constraint (56), first-order conditions with respect to θ after

imposing (60) implies

ιA′′ (θ) =
β

1− β
c

1
ψm

γ− 1
ψ

1

1− γ

�
e(1−γ)(η′+ε′)

{
u′
(
ζ ′
)1−γ − λū (S′)1−γ}Ω(dζ ′|g). (61)

The limited commitment constraint on worker side, equation (55) along with (60) implies

that right-hand side of (61) must be strictly positive. Therefore, ι > 0 and (56) must holds

with equality at the optimum.

Let ιu be the Lagrange multiplier of the promise keeping constraint (53), the first-order
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condition with respect to c implies

ιu =
1

1− β

( c
u

) 1
ψ
> 0. (62)

Thus, inequality (53) must also hold with equality at the optimum. As a result, the optimal

policy for P2 satisfy all of the constraints for P1 and as the constraint set for P2 larger,

the optimal policies to P2 also attain the maximum for P1.

The first-order necessary conditions for P2 imply that the above policy functions must

satisfy

1. ∀η′ + ε′ ∈ [ε(u, S, g′), ε̄(u, S, g′)], u′ (u, S, ζ ′) satisfy

Λ
(
S′, S

)
=
βe−γ(g′+η′+ε′)

1 + ι(u,S)
θ(u,S)

[
c (u′ (u, S, ζ ′) , S′)

c (u, S)

]− 1
ψ
[
u′ (u, S, ζ ′)

m (u, S)

] 1
ψ
−γ
. (63)

2. ∀η′ + ε′ ≥ ε̄ (u, S, g′),

u′
(
u, S, ζ ′

)
= λū

(
S′
)

; (64)

and ∀η′ + ε′ ≤ ε (u, S, g′),

u′
(
u, S, ζ ′

)
= u∗

(
S′
)
, (65)

where u∗ (S′) satisfies that v (u∗ (S) , S) = 0 for all S.

3. The Lagrange multiplier ι(u, S) satisfies

ι(u, S) =
1

A′′ (θ (u, S))

β

1− β
c (u, S)m (u, S)× 1

1− γ

×
{�

e(1−γ)(η′+ε′)
{
u′
(
u, S, ζ ′

)1−γ − λū (S′)1−γ}Ω
(
dζ ′
∣∣ g)} . (66)

The policy functions must satisfy the equality constraints of the problem P1

A′(θ (u, S)) = κ

�
Λ
(
S′, S

)
eg
′+η′+ε′v

(
u′
(
s′
)
, S′
)

Ω
(
ζ ′
)
, (67)

u =
[
(1− β) c

1− 1
ψ + βm (u, S)

1− 1
ψ

] 1

1− 1
ψ , (68)

where

m (u, S) =

{
κ

�
e(1−γ)(g′+η′+ε′)

[
θ (u, S)u′ (u, S, ζ ′)1−γ

+(1− θ (u, S))λu (S′)1−γ

]
Ω
(
dζ ′
∣∣ g)} 1

1−γ

.
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The following lemma states that conditions (63) - (68) are both necessary and sufficient

for optimality.

Lemma 3. Suppose there exist an SDF Λ (S′, S), a worker’s value from unemployment,

ū (S), and a law motion for aggregate state variables that satisfy assumption 6. Suppose

that given Λ (S′, S), ū (S), and the law of motion for state variables, policy functions for

problem P2 satisfy (60), the optimality conditions (63)-(66), and the equality constraints

(67)-(68). In addition, c(u,S)
u is nondecreasing in u for all S. Let v (u, S) be the unique

fixed point of the operator T :

Tv (u, S) =
1− c (u, S)−A(θ (u, S))+

κθ (u, S)
�

Λ (S′, S) eg
′+η′+ε′v (u′ (u, S, ζ ′) , S′) Ω (dζ ′| g) .

(69)

Then, the policy functions together with the value function v (u, S) solve the problem P2.

Proof. Suppose there exists a set of policy functions that satisfy conditions (63)-(68). Given

condition (6), the operator defined in (69) is a contraction, and we can construct the value

function v (u, S) from the policy functions as the unique fixed point of (69). The first-order

conditions (63)-(65) imply that the value function constructed above must satisfy

∂

∂u
v (u, S) = − 1

1− β

(
c (u, S)

u

) 1
ψ

. (70)

Because c(u,S)
u is nondecreasing in u, ∂

∂uv (u, S) must be nonincreasing, that is, v (u, S) is a

concave function of u. As a result, given v (u, S), the first-order conditions, (63)-(68) can

be shown to be equivalent to the set of first-order conditions for the programming problem

P2, which is necessary and sufficient for optimality. Therefore, the above constructed

value functions and policy functions must solve the optimal contracting problem P2, as

needed.

Given the above discussion, it is straightforward to provide a characterization for the

equilibrium price and quantities using optimality conditions. We summarize these

conditions in the following lemma. The proof is omitted as it follows directly from lemma

2 and lemma 3.

Lemma 4. The equilibrium prices and quantities can be summarized as:

i) a set of policy functions,

x (S) , c (u, S) , θ (u, S) , ι(u, S),
{
ε̄(u, S, g′), ε(u, S, g′)

}
g′
,
{
δ
(
u, S, ζ ′

)
, u′
(
u, S, ζ ′

)}
ζ′
,
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ii) worker’ outside option ū (S) and initial utility at employment u∗ (S),

iii) a law of motion of φ and B,

iv) a SDF and a firm value function v (u, S), such that

1. the SDF is consistent with capital owner’s consumption, that is, Λ (S′, S) and x (S)

satisfy equation (19), where the capital owner’s utility, w (S) is constructed from x (S)

using equation (18),

2. the value function and policy functions satisfy (60), and the optimality conditions

(63)-(68),

3. the outside option ū (S) satisfies (12), u∗ (S) satisfies v (u∗ (S) , S) = 0 for all S, and

4. the law of motion of the aggregate state variables satisfy (22) and (24).

We now prove proposition 1 and 2.

B.2 Proofs of propositions 1 2

In lemma 2, we have already proved that δ (u, S, ζ ′) = 1 for all ζ ′ is optimal for problem P2

and lemma (4) asserts that the same policy rule is optimal for problem P1 too.

We next provide the characterization for the policy functions u′ (u, S, ζ ′) and then

θ (u, S). Given assumption 6 and lemma 2, standard arguments from Stokey et. al (1989)

imply that the value function v for the optimal contracting problem (13) is continuous,

strictly decreasing, strictly concave and differentiable in the interior. Because the value

function is strictly decreasing, the limited commitment constraint (15) can be written as

u′ (s′) ≤ u∗ (S′) for all s′, where u∗ (S) is defined by equation (11). Therefore, the first-

order condition with respect to continuation utility and the envenlope condition for the

programming problem (52) together imply that one of the following three cases have to

true:

1. In the interior, equation (30) holds.

2. The worker-side limited commitment constraint binds, u′ (u, S, ζ ′) = λū (S′), and,

[
x (S′)

x (S)

]− 1
ψ
[
w (S′)

n (S)

] 1
ψ
−γ (

1 +
ι (u, S)

θ (u, S)

)
≥ e−γ(η′+ε′)

[
c (u′ (u, S, ζ ′) , φ′, B′)

c (u, S)

]− 1
ψ
[
u′ (u, S, ζ ′)

m (u, S)

] 1
ψ
−γ
, (71)
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3. The firm-side limited commitment costraint binds, u′ (s′) = u∗ (S′),

[
x (S′)

x (S)

]− 1
ψ
[
w (S′)

n (S)

] 1
ψ
−γ (

1 +
ι (u, S)

θ (u, S)

)
≤ e−γ(η′+ε′)

[
c (u′ (u, S, ζ ′) , φ′, B′)

c (u, S)

]− 1
ψ
[
u′ (u, S, ζ ′)

m (u, S)

] 1
ψ
−γ
. (72)

Define E = {η′ + ε′ : equation (30) holds}. Also, let

ε
(
u, S, g′

)
= inf E , ε

(
u, S, g′

)
= sup E . (73)

Let lu (u, S) be the Lagrange multiplier for the promise-keeping constraint of the programing

problem (52), then

∂

∂u
v (u, S) = lu (u, S) =

1

1− β

(
c (u, S)

u

) 1
ψ

, (74)

where the first equality is the envelope theorem, and the second equality is the first-

order condition, (62). Because v is concave, the above condition implies that c (u, S)

must be strictly increasing in u. Thereore, the optimality condition (30) implies that on

E , u′ (u, S, ζ ′) must be strictly decreasing in η′ + ε′. Clearly, the strict monotonicity of

u′ (u, S, ζ ′) implies that u′ (u, S, ζ ′) = λū (S′) if η′+ε′ = ε (u, S, g′) and u′ (u, S, ζ ′) = u∗ (S′)

if η′ + ε′ = ε (u, S, g′).

First, ∀η′ + ε′ > ε (u, S, g′), we must have u′ (u, S, ζ ′) = λū (S′). Otherwise, none of

the equations, (30), (71), or (72) can hold. Similarly, ∀η′ + ε′ < ε (u, S, g′), we must have

u′ (u, S, ζ ′) = u∗ (S′).

Second, to complete the proof of part 1 and 2 of proposition 2, we need to show

that ∀η′ + ε′ ∈ (ε (u, S, g′) , ε (u, S, g′)), condition (30) must hold. It is enough to

show u′ (u, S, ζ ′) ∈ (λū (S′) , u∗ (S′)). This can be proved by contradiction. Suppose

η′ + ε′ ∈ (ε (u, S, g′) , ε (u, S, g′)) and u′ (u, S, ζ ′) = λū (S′), then the fact that equation

(30) holds at ε (u, S, g′) implies that (note that η′ + ε′ < ε (u, S, g′))

[
x (S′)

x (S)

]− 1
ψ
[
w (S′)

n (S)

] 1
ψ
−γ (

1 +
ι (u, S)

θ (u, S)

)
< e−γ(η′+ε′)

[
c (λū (S′) , φ′, B′)

c (u, S)

]− 1
ψ
[
λū (S′)

m (u, S)

] 1
ψ
−γ
,

which is a contradiction to condition (71). Similarly, one can show that u′ (u, S, ζ ′) = u∗ (S′)

cannot be true either.
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To prove the second part of proposition 1, note that because the value function is

strictly concave in u, the Lagrange multiplier ιu (u, S) must be strictly increasing in u.

The first-order condition with respect to u′ (u, S, ζ ′) in the programming problem (52) then

implies that u′ (u, S, ζ ′) must be strictly increasing in u as well. Given constraint (17),

the monotonicity of θ (u, S) with respect to u then follows directly from the u′ (u, S, ζ ′) is

increasing with respect to u and the fact that v (u′, S′) is strictly decreasing in u′.

B.3 Proof of proposition 3

Proposition 3 follows directly from the lemma below, which provides the details for the

construction of the equilibrium in the stochastic economy from a given equilibrium of the

deterministic economy with a modified discount rate.

Lemma 5. Suppose gt is i.i.d. over time and f ( ·| g) does not depend on g. Suppose there

exists an equilibrium in the equivalent deterministic economy with modified discount rate.

An equilibrium of the stochastic economy can be constructed as follows.

i) The SDF is given by equation (31) in proposition 3.

ii) Workers’ value from unemployment and the value of a new job are given by:

ū (S) = ̂̄u (φ,B) , u∗ (S) = û∗ (φ,B) ,

respectively, where ̂̄u (φ,B) and û∗ (φ,B) are the corresponding equilibrium quantities

in the equivalent deterministic economy with a modified discount rate.

iii) The consumption share of capital owners is

x (S) = x̂ (φ,B) ,

where x̂ (φ,B) is the capital owner’s consumption share in the equivalent deterministic

economy with a modified discount rate.

iv) The value function and policy functions of the optimal contracting problem are given by

v (u, S) = v̂ (u, φ,B) , c (u, S) = ĉ (u, φ,B) ,

θ (u, S) = θ̂ (u, φ,B) , u′
(
u, S, g′, ε′

)
= û′

(
u, φ,B, ε′

)
.

v) The law of motion for aggregate state variables (φ,B) is the same as that in the equivalent

deterministic economy with a modified discount rate.
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Proof. To prove that the proposed allocations and prices constitutes an equilibrium, we use

lemma 4 to verify the equilibrium conditions. First, we show that the proposed stochastic

discount factor is consistent with capital owners’ consumption and utility process. Given

capital owner’s consumption and utility in the stochastic economy, using equation (19),

Λ
(
S′, S

)
= βe−γg

′
[
x̂ (φ′, B′)

x̂ (φ,B)

]− 1
ψ

 w (φ′, B′)(
E
[
e(1−γ)g′ŵ1−γ (φ′, B′)

]) 1
1−γ

 1
ψ
−γ

The utility w (φ′, B′) is deterministic and the above can be written as

Λ
(
S′, S

)
= βe−γg

′
[
x̂ (φ′, B′)

x̂ (φ,B)

]− 1
ψ (

E
[
e(1−γ)g′

]) γ− 1
ψ

1−γ
= β̂

[
x̂ (φ′, B′)

x̂ (φ,B)

]− 1
ψ e−γg

′

E
[
e(1−γ)g′

] .
(75)

Given the consumption policy in the deterministic economy, the SDF in the deterministic

economy reduces to a risk-free discount rate R (φ,B) with

1

R (φ,B)
= β̂

[
x (φ′, B′)

x (φ,B)

]− 1
ψ

. (76)

Combing equations (75) and (76), it is clear that the SDF defined in (31) is consistent with

capital owners’ consumption in the stochastic economy.

Next, we show that the proposed value function and policy functions also solve the

optimal contracting problem in the stochastic economy. It is enough to show that the

value function of the deterministic economy is also a fixed point of the Bellman operator

implied by the optimal contracting problem P1. Given that the two economies have the

same workers’ outside options ū (S) and that β̂ = β
(
E
[
e(1−γ)g′

]) 1− 1
ψ

1−γ
, it is easy to see that

constraints (14), (15), and (16) are identical in both economies. Given v (u, φ,B) the term

�
Λ
(
S′, S

)
eg
′+η′+ε′v

(
u′
(
s′
)
, S′
)

Ω
(
dζ ′
∣∣ g)

can be written as

1

R (φ,B)

∑
π
(
g′
) � e−γg

′

E
[
e(1−γ)g′

]eg′+ε′+η′v (u′ (ε′, η′) , φ′, B′) f (ε′ + η′
)
dε′dη′

=
1

R (φ,B)

� E
[
e(1−γ)g′

]
E
[
e(1−γ)g′

] eε′+η′v (u′ (ε′, η′) , φ′, B′) f (ε′ + η′
)
dε′dη′

=
1

R (φ,B)

�
eε
′+η′v

(
u′
(
ε′, η′

)
, φ′, B′

)
f
(
ε′ + η′

)
dε′dη′,
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which is identical to that in the deterministic economy. Therefore, v (u, S) = v̂ (u, φ,B) is

also the value function of the optimal contracting problem in the stochastic economy.

Finally, conditions 3 and 4 in lemma 4 also hold, because these requirements are identical

in the deterministic economy and the stochastic economy. This completes the proof.

C Proofs of propositions 4 and 5

C.1 Equilibrium in the simple economy

In this section, we start with deriving explicit expressions for several equilibrium objects to

prepare for the proofs of propositions 4 and 5. We first introduce some notation.

Notation In the simple model in Section 4, we assume that the worker-specific shock

follows a negative exponential distribution. The density of a negative exponential

distribution with parameter ξ takes the following form:

f (ε| gL) =
0 ε > εMAX

ξeξ(ε−εMAX) ε ≤ εMAX .
(77)

For later reference, we note that the moments of f (ε| gL) can be easily computed as

� ε

−∞
eθtf ( t| gL) dt =

ξ

ξ + θ
e−ξεMAX+(θ+ξ)ε for ξ + θ > 0. (78)

Equation (78) shows that the assumption E [eε] = 1 amounts to a parameter restriction

that εMAX = ln 1+ξ
ξ .

In the simple economy illustrated in figure 1, we let xH ≡ x (gH) and xL ≡ x (gL)

denote capital owners’ consumption share and wH ≡ w (gH) and wL ≡ w (gL) denote their

normalized utility at node H and L, respectively.

In solving the optimal contracting problem, it is more convenient to represent policy

functions and value functions as functions of the period-0 promised utility u0. For an

arbitrary u0, we use uH (u0) ≡ u′ (u0, gH), and uL (u0, ε
′) ≡ u′ (u0, gL, ε

′) to denote the

normalized promised utility for a worker with initial promised utility u0 at nodes H and L,

respectively. We use c0 (u0), cH (u0) ≡ c (uH (u0) , gH), and cL (u0, ε
′) = c (uL (u0, ε

′) , gL)

for workers’ consumption policy at nodes 0, H, and L, respectively. Similarly, vH (u0) ≡
v (uH (u0) , gH), vL (u0, ε

′) ≡ v (uL (u0, ε
′) , gL), θH (u0) ≡ θ (uH (u0) , gH) and θL (u0, ε

′) ≡
θ (uL (u0, ε

′) , gL) are value functions and policy functions at note H and L, respectively.
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We also denote εL (u0) ≡ ε (u0, gL) as the lowest level of realization of the ε′ shock such

that the limited commitment constraint does not bind at node L.

In addition, let uFBH and uFBL denote the utility-to-consumption ratio of an agent who

consumes the aggregate consumption in state gH and gL, respectively. That is, they are the

normalized utility associated with full risk sharing. The first best levels, uFBH and uFBL are

determined by

uFBH =
(
egHuFBH

)β
uFBL =

(
egLuFBL

)β
.

Also, we use uCDL to denote the normalized utility of an agent in an economy without risk

sharing. That is, it is utility-consumption ratio of an agent who consumes yt every period:

uCDL =

(� [
e{ε
′+gL}uCDL

]1−γ
f(ε′|gL)dε

) β
1−γ

. (79)

It is straightforward to show that as γ → 1 + ξ, uCDL → 0. We solve the general equilibrium

in the simple economy by backward induction. We first solve the value functions and

policy functions at nodes H and L in period 1. In the second step, we analyze the optimal

contracting problem in period 0 for an arbitrary promised utility u0. Finally, we impose

market clearing to solve for the equilibrium stochastic discount factor.

Value functions at nodes H and L The following lemma characterizes the value

functions at nodes H and L in period 1.

Lemma 6. (Value function in period 1)

The firm’s value function at nodes H and L are give by

v (u, gH) = 1− c (u, gH) +
β

1− β
xH − a ln

[
1 +

βxH
a (1− β)

]
, and (80)

vL (u, gL) = 1− c (u, gL) +
β

1− β
xL − a ln

[
1 +

βxL
a (1− β)

]
, (81)

respectively, where the consumption policies are given by

c (u, gH) =
(
αegHuFBH

)− β
1−β u

1
1−β , c (u, gL) =

(
αΥegLuCD

)− β
1−β u

1
1−β ,

and the effort choices are

θH = 1− a

a+ β
1−βxH

, θL = 1− a

a+ β
1−βxL

. (82)

Proof. Here, we only provide details for the deviation of the value function at node H.
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The value function at node L can be computed in the same way. At node H, the optimal

contracting problem is written as

v (u, gH) = max
c,θ,u′

{
1− c−A (θ) + θ

1

RH
egHv2,H

(
u′
)}

(83)

subject to : u = c1−β (egHu′)β
u′ = αuFBH

v2,H

(
u′
)
≥ 0

A′ (θ) =
1

RH
egHv2,H

(
u′
)

where we use v2,H (u′) for the value function in period 2. Because there is no aggregate

uncertainty in period 2, we replace the stochastic discount factor by a risk-free discount rate,
1
RH

. The absence of idiosyncratic shocks and the fact that workers consume α fraction of

their output imply that workers’ utility is α times the utility of a representative consumer,

that is u′ = αuFBH . Note also, because the firm always receive 1 − α fraction of yt after

period 2, the limited commitment constraint v2,H (u′) ≥ 0 does not bind.

To derive a close-form solution for vH (u), we first note that v2,H (u′) = 1−α
1−β . From

period 2 and on, capital owner’s consumption and firms’ cash flow are both proportional

to aggregate output. Under the assumption of unit elasticity, the price-to-dividend ratio of

the firm’s cash flow is 1
1−β . Because the firm receive 1 − α fraction of yt, the ratio of firm

value normalized by yt is 1−α
1−β .

Second, because capital owner’s consumption share is xH in period 1 and 1−α in period

2, the discount factor is 1
RH

= β
[

1−α
xH

egH
]−1

. Therefore, the value function can be written

as

vH (u) = 1− c−A (θ) + θ
β

1− β
xH . (84)

The consumption policy can be backed out from the promise-keeping constraint u =

c1−β (egHu′)β. In addition, given then functional form of A (θ), the optimal effort θ can

be solved from the incentive constraint, A′ (θ) = β
1−βxH , which gives (82). Replacing θ in

(84) with the optimal policy, we obtain the representation of the value function in (80).
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The optimal contracting problem at node L has a similar structure:

v (u, gL) = max
c,θ,u′(ε′)

{
1− c−A (θ) + θ

1

RL

� ∞
−∞

egL+ε′v2,L

(
u′
(
ε′
))
f
(
ε′
∣∣ gL) dε′}

subject to : u = c1−β
{� ∞
−∞

[
egL+ε′u′

(
ε′
)]1−γ

f
(
ε′
∣∣ gL) dε′} β

1−γ

u′
(
ε′
)

= αuCDL

v2,L

(
u′
(
ε′
))
≥ 0

A′ (θ) =
1

RL
egL

� ∞
−∞

v2,L

(
u′
(
ε′
))
f
(
ε′
∣∣ gL) dε′.

The above problem can be greatly simplified by noting that v2,L (u′ (ε′)) = 1−α
1−β and

u′ (ε′) = αuCDL do not depend on ε′. Also, we define

Υ =

{� ∞
−∞

e(1−γ)ε′f
(
ε′
∣∣ gL) dε′} 1

1−γ
, (85)

so that

{�∞
−∞

[
eε
′
u′ (ε′)

]1−γ
f (ε′| gL) dε′

} 1
1−γ

= αuCDL Υ. The rest of the proof can be

completed by following the same steps in the solution of (83).

At node L, limited commitment on firm side requires that vL (u) ≥ 0. Therefore, by

equation (81), the maximum amount of consumption that the firm can promise to deliver

to a worker at node L is 1−A (θL) + θL
β

1−βxL, which we will denote as cMAX
L . Recall that

for a worker with initial promised utility u0, εL (u0) is the lowest level of realization of the

ε′ shock such that the limited commmitment constraint does not bind at node L. We must

have, for all u0,

cL (u0, εL (u0)) = 1 +
β

1− β
xL − a ln

[
1 +

βxL
a (1− β)

]
. (86)

We now turn to the optimal contracting problem as node 0.

Optimal contracting at node 0 We first prove the following lemma that uses the

optimal risk sharing condition (30) to relate the marginal rate of substitution of a marginal

worker whose limited commitment constraint is just about to bind to that of the capital

owners.

Lemma 7. (FOC for the marginal agent)

Given the consumption share of the capital owners, xH and xL, for all u0, the normalized
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consumption of the marginal worker with ε1 =εL (u0) must satisfy:

cH (u0)

e(1+τ)εL(u0)cL (u0, εL (u0))

[
uFBL k (θH)

ΥuCDL k (θL)

]τ
=
xH
xL

, (87)

where we denote

k (θ) =
[
θ + (1− θ)λ1−γ] 1

1−γ , (88)

τ = β(γ−1)
1+(1−β)(γ−1) , and Υ is defined in (85).

Proof. By proposition 2, the optimal risk sharing condition (30) must hold with equality

for the marginal worker with the realization of εL (u0) at node L. Comparing the optimal

risk-sharing conditions for consumption at node H and at L, we have[
cH (u0)

eεL(u0)cL (u0, εL (u0))

]−1 [ uH (u0)

eεL(u0)uL (u0, εL (u0))

]1−γ
=

[
xH
xL

]−1 [wH
wL

]1−γ
. (89)

We can use the promise-keeping constraint to represent continuation utilities as functions

of consumption. For capital owners,

wH = x1−β
H nβH , where nH = (1− α) egHuFBH ,

wL = x1−β
L nβL, where nL = (1− α) egLuFBL , (90)

where the computation of continuation utility nH and nL uses the fact that capital owners

are not exposed to idiosyncratic risks and that together they consume 1 − α fraction

of aggregate output. Because workers are not exposed to idiosyncratic risks at node H

and consume α fraction of aggregate output, their continuation utility at node H can be

computed using

uH (u0) = [cH (u0)]1−βmβ
H , where mH = αuFBH egHk (θH) , (91)

where k (θ) is defined in (88). At node L, workers consume αyt for t = 2, 3, . . .. In period 2,

following node L, a worker stays employed with probability θL, in which case his output is

y2 = y1e
gL+ε′ . With probability 1− θL, a worker loses 1− λ fraction of human capital and

his output is y2 = λy1e
gL+ε′ . Therefore, the certainty equivalent for a worker at node L is

mL =

{� ∞
−∞

[
eg
′+ε′

(
θLαu

CD
L + (1− θL)λαuCDL

)]1−γ
f
(
ε′
∣∣ gL) dε′} 1

1−γ

= αΥuCDL egLk (θL) , (92)

where we define Υ ∈ (0, 1) as in (85). Therefore, the normalized utility of the marginal
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agent at node L can be written as

uL (u0, εL (u0)) = [cL (u0, εL (u0))]1−βmβ
L, where mL = αΥuCDL egLk (θL) . (93)

Now we use expressions in (90) and (93) to replace the continuation utilities in (89) and

simplify to get

[
cH (u0)

e[1+τ ]εL(u0)cL (u0, εL (u0))

]−Ω [ΥuCDL k (θL)

uFBL k (θH)

]−β(1−γ)

=

[
xH
xL

]−Ω

, (94)

where to simplify notation, we denote

Ω ≡ 1 + (1− β) (γ − 1) > 0, and τ ≡ β (γ − 1)

Ω
. (95)

We can therefore obtain (87) by raising both sides of equation (89) to their − 1
Ω th power.

Next, we provide a lemma that links the consumption of a marginal worker to the

expected consumption of an average worker at node L.

Lemma 8. (Expected worker consumption at node L)

Given the consumption share of the capital owners, xH and xL, the expected consumption

of a worker with promised utility u0 at node L is given by:

E
[
eε
′
cL
(
u0, ε

′)] = e(1+τ)εL(u0)cL (u0, εL (u0)) Φ (εL (u0)) , (96)

for all u0, where the function Φ (ε) is defined as

Φ (ε) =
ξ

ξ − τ
e−τεMAX − ξ (1 + τ)

(1 + ξ) (ξ − τ)
e−ξεMAX+(ξ−τ)ε. (97)

Proof. Note that ∀ε′ ≤ εL (u0), the limited commitment constraint binds, and cL (u0, ε
′) =

cL (u0, εL (u0)). Therefore, the expected consumption of a worker with promised utility u0

at node L can be computed as

� εL(u0)

−∞
eε
′
cL (u0, εL (u0)) f

(
ε′
∣∣ gL) dε′ + � εMAX

εL(u0)
eε
′
cL
(
u0, ε

′) f (ε′∣∣ gL) dε′. (98)

To compute cL (u0, ε
′), note that the first order condition (30) implies that for all
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ε′ ≥ εL (u0),

e−γε′
[
cL
(
u0, ε

′)]−1 [
uL
(
u0, ε

′)]1−γ = e−γεL(u0) [cL (u0, εL (u0))]−1 [uL (u0, εL (u0))]1−γ .

(99)

We can compute uL (u0, ε
′) as:

uL
(
u0, ε

′) = c1−β
L

(
u0, ε

′)mβ
L, (100)

where the expression of mL is given in equation (92). Equations (99) and (100) together

imply

e−γε
′ [
cL
(
u0, ε

′)]−1+(1−γ)(1−β)
= e−γεL(u0) [cL (u0, εL (u0))]−1+(1−γ)(1−β) .

Raising both sides of the above equation to the − 1
Ω th power and using the definition of

Ω and τ in (95), we have, for all ε ≥ εL (u0),

eε
′
cL
(
u0, ε

′) = e−τε
′
e(1+τ)εL(u0)cL (u0, εL (u0)) . (101)

Now, we compute the first term in the integral in (98) as:

� εL(u0)

−∞
eε
′
cL (u0, εL (u0)) f

(
ε′
∣∣ gL) dε′ = cL (u0, εL (u0))

� εL(u0)

−∞
eε
′
f
(
ε′
∣∣ gL) dε′

=
ξ

1 + ξ
e−ξεMAX+(1+ξ)εL(u0)cL (u0, εL (u0)) ,(102)

and the second term as

� εMAX

εL(u0)
eε
′
cL
(
u0, ε

′) f (ε′∣∣ gL) dε′
= e(1+τ)εL(u0)cL (u0, εL (u0))

� εMAX

εL(u0)
e−τε

′
f
(
ε′
∣∣ gL) dε

= e(1+τ)εL(u0)cL (u0, εL (u0))
ξ

ξ − τ

[
e−τεMAX − e−ξεMAX+(ξ−τ)εL(u0)

]
(103)

We obtain equation (96) by summing up (102) and (103).

lemma 7 is the optimal risk sharing condition that equalizes the marginal rate of

substitution of workers and capital owners across the two states in period 1. The next

lemma provides another first-order condition that links the marginal rate of substitution of

capital owners and workers across time. Together lemma 7 and lemma 9 below completely

characterize optimal risk sharing conditions.
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Lemma 9. (Optimal risk sharing)

Optimal risk sharing requires that for all u0,[
xH

cH (u0)

]1+(1−β)(γ−1)

=

[
x0

c0 (u0)

] [
n̄0 (xH , xL)

m̄0 (u0)

]γ−1

, (104)

where

n̄0 (xH , xL) =

[
π
(
e(1+β)gHx

(1−β)
H

(
uFBH

)β)1−γ
+ (1− π)

(
e(1−γ)gLx

(1−β)
L

(
uFBL

)β)1−γ
] 1

1−γ
,

and

m̄0 (u0) =

 π
(
e(1+β)gH c1−β

H

(
uFBH k (θH)

)β)1−γ
+

(1− π) e(1−γ)gL
[
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ) { 1
αmL

}β(1−γ)
Ψ (εL (u0))

 1
1−γ

,

(105)

where Ψ (ε) is given by:

Ψ (ε) =

{
ξ

ξ − τ
e−τεMAX − ξ (1− γ + τ)

(ξ − τ) (ξ + 1− γ)
e−ξεMAX+(ξ−τ)εL(u0)

}
. (106)

Proof. The optimal risk sharing condition implies that[
cH (u0)

c0

]−1 [uH (u0)

m0

]1−γ
=

[
xH
x0

]−1 [wH
n0

]1−γ
. (107)

Using equation (90),

wH = x1−β
H

[
(1− α) egHuFBH

]β
, wL = x1−β

L

[
(1− α) egLuFBL

]β
, and

n0 =
[
π (egHwH)1−γ + (1− π) (egLwL)1−γ

] 1
1−γ

. (108)

To calculate workers’ utility, use (91) to obtain

uH (u0) = [cH (u0)]1−β
[
αuFBH egHk (θH)

]β
. (109)

Using equations (108) and (109) to replace the relevant terms in (107), we obtain equation

(104). It remains to calculate workers’ certainty equivalent,

m0 =

{
π [egHuH (u0)]1−γ + (1− π)

� ∞
−∞

[
egL+ε′uL

(
u0, ε

′)]1−γ
f
(
ε′
∣∣ gL) dε′} 1

1−γ
. (110)
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Note that for ε′ ≥ εL (u0), using equation (99), we can write[
eε
′
uL
(
u0, ε

′)]1−γ
=

[
eε′cL

(
u0, ε

′)] e−γεL(u0) [cL (u0, εL (u0))]−1 [uL (u0, εL (u0))]1−γ

=
[
eε′cL

(
u0, ε

′)] e−γεL(u0) [cL (u0, εL (u0))]−1+(1−β)(1−γ)m
β(1−γ)
L ,

where the second equality uses (93) to compute uL (u0, εL (u0)) as a function of

consumption. Therefore,

� εMAX

εL(u0)

[
eε
′
uL
(
u0, ε

′)]1−γ
f
(
ε′
∣∣ gL) dε′

=

� εMAX

εL(u0)

[
eε′cL

(
u0, ε

′)] f (ε′∣∣ gL) dε′ × e−γεL(u0) [cL (u0, εL (u0))]−1+(1−β)(1−γ)m
β(1−γ)
L

=
ξ

ξ − τ

[
e−τεMAX − e−ξεMAX+(ξ−τ)εL(u0)

]
× e(1−γ+τ)εL(u0) [cL (u0, εL (u0))](1−β)(1−γ)m

β(1−γ)
L

=
ξ

ξ − τ

[
e−τεMAX − e−ξεMAX+(ξ−τ)εL(u0)

] [
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ)
m
β(1−γ)
L ,(111)

where the second equality uses the same calculation as in (103) and the last equality uses

the definition of τ to simplify. For ε′ < εL (u0), the firm-side limited commitment constraint

binds, and [
eε
′
uL
(
u0, ε

′)]1−γ
= e(1−γ)ε′ [uL (u0, εL (u0))]1−γ

= e(1−γ)ε′ [cL (u0, εL (u0))](1−β)(1−γ)m
β(1−γ)
L ,

where the second equality applies equation (93). Therefore,

� εL(u0)

−∞

[
eε
′
uL
(
u0, ε

′)]1−γ
f
(
ε′
∣∣ gL) dε′

=

� εL(u0)

−∞
e(1−γ)ε′f

(
ε′
∣∣ gL) dε′ × [cL (u0, εL (u0))](1−β)(1−γ)m

β(1−γ)
L

=
ξ

ξ + 1− γ
e−ξεMAX+(1−γ+ξ)εL(u0) × [cL (u0, εL (u0))](1−β)(1−γ)m

β(1−γ)
L

=
ξ

ξ + 1− γ
e−ξεMAX+(ξ−τ)εL(u0) ×

[
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ)
m
β(1−γ)
L ,(112)

where the last equality uses the definition of τ to simplify. Combining (111) and (112), we
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have

� ∞
−∞

[
eε
′
uL
(
u0, ε

′)]1−γ
f
(
ε′
∣∣ gL) dε′

=
[
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ)
m
β(1−γ)
L Ψ (εL (u0)) , (113)

where εL (u0) is defined in (106). We obtain the expression (105) by combing (110) and

(113).

General Equilibrium Unit measure of a single type of workers and market clearing at

node 0, node H, and node L implies u∗0 solves

c0 (u∗0) = 1− x0, cH (u∗0) = 1− xH , and E
[
eε
′
cL
(
u∗0, ε

′)] = 1− xL,

respectively. Note that equation (86) implies

cL (u∗0, εL (u∗0)) = 1 +
β

1− β
xL − a ln

[
1 +

βxL
a (1− β)

]
. (114)

Using market clearing at node L and lemma 8,

1− xL = e(1+τ)εL(u∗0)cL (u0, εL (u∗0)) Φ (εL (u∗0)) . (115)

Combining (114) and (115), we have:

e(1+τ)εL(u∗0)Φ (εL (u∗0)) =
1− xL

1 + β
1−βxL − a ln

[
1 + βxL

a(1−β)

] . (116)

Equations (114) and (116) together define cL (u0, εL (u∗0)) and εL (u∗0) as functions of xL.

With a bit abuse of notation, we denote these functions as cL (xL) and ε(xL).

Focusing on type-u∗0 agents, using lemma 8, we can replace the term

e(1+τ)εL(u∗0)cL (u∗0, εL (u∗0)) in equation (87) by the following

e(1+τ)εL(u∗0)cL (u∗0, εL (u∗0)) = (1− xL) Φ (ε (xL))−1 . (117)

Therefore, the first order condition (87) can be written as

Φ (ε (xL))

[
uFBL k (θH)

ΥuCDL k (θL)

]τ
=
xH
xL

1− xL
1− xH

. (118)

70



Also, using the marketing clearing condition to replace cH by 1− xH , and use (117) to

replace e(1+τ)εL(u∗0)cL (u∗0, εL (u∗0)), we define workers’ certainty equivalent as a function of

xH , xL, and ε using (105)

m̄0 (xH , xL, ε) =


π
[
e(1+β)gH (1− xH)(1−β) (uFBH k (θH)

)β]1−γ

+ (1− π)

[
e(1+β)gL

[
1−xL
Φ(ε)

](1−β) [
ΥuCDL k (θL)

]β]1−γ
Ψ (ε)


1

1−γ

,

(119)

and the first order condition (104) can be written as[
xH

1− xH

]1+(1−β)(γ−1)

=

[
x0

1− x0

]−1 [ n̄0 (xH , xL)

m̄0 (xH , xL, ε (xL))

]1−γ
. (120)

Give an inital condition of x0, equations (118) and (120) can be jointed solved for xH and

xL. Other equilibrium quantities can then be constructed analogously.

C.2 Proof of proposition 4

1. From the definition of uCDL in (79), it is clear that as γ → 1 + ξ, uCDL → 0. Consider

equation (118). It is straightforward to verify that Φ (ε) is strictly positive and

bounded (see equation (97)). Also, both k (θH) and k (θL) are bounded. Therefore,

as γ → 1 + ξ the left hand side converges to ∞, and we must have xH
xL
→ ∞. By

continuity, there exists γ̂ ∈ (1, 1 + ξ) such that xH
xL

> 1 if and only if γ > γ̂, as needed.

In addition, if γ = 1, then τ = 0. Using the definition of Φ (ε),

Φ (ε) = 1− 1

(1 + ξ)
e−ξ(εMAX−ε) < 1.

Therefore, we must have xH
xL

< 1.

2. The economy without moral hazard is a special case in which the parameter for

cost of effort, a = 0. We use θH (a) and θL (a) to denote policy functions with the

understanding that they are policy functions of the moral hazard economy if a > 0, and

they stand for policy functions in the economy without moral hazard if a = 0. Using

our result from Part 1 of the proof, as γ → 1+ξ, xHxL →∞. Because both xH and xL are

bounded between [0, 1], we must have xL → 0. Therefore, θL (a)→ 0 by equation (82).

Also, equation (120) implies that as γ → 1 + ξ, m̄0 (xH (a) , xL (a) , ε (xL (a))) → 0;

therefore, xH (a) → 0 as well. Therefore, as γ → 1 + ξ, θH (a) → 1 − a

a+ β
1−β x

∗
H

.
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Consider equation (118), for an arbitrary a,

[
k (θH (a))

k (θL (a))

]τ
=

[
θH (a) + (1− θH (a))λ1−γ

θL (a) + (1− θL (a))λ1−γ

] τ
1−γ

.

Suppose a > 0, then as γ → 1 + ξ, there exist ε > 0 such that

[
θH (a) + (1− θH (a))λ1−γ

θL (a) + (1− θL (a))λ1−γ

] τ
1−γ
→

1− a

a+ β
1−β x

∗
H(a)

+

(
1− a

a+ β
1−β x

∗
H(a)

)
λ−ξ

λ−ξ


− 1
ξ

βξ
1+ξ(1−β)

> 1+ε.

In addition, equation (116) implies that as γ → 1 + ξ, xL → 0, and therefore,

εL (a) → ε∗ for all a, where ε∗ is such that e(1+τ)ε∗Φ (ε∗) = 1. Therefore, with

a > 0, for γ close enough to 1 + ξ, we must have

Φ (εL (a))

[
uFBL k (θH (a))

ΥuCDL k (θL (a))

]τ
> Φ (εL (0))

[
uFBL

ΥuCDL

]τ
.

Equation (118) implies that for γ close enough to 1+ξ, xHxL > xH
xL

because as γ → 1+ξ,

xL → 0 and xH → x∗H has a limit.

3. By Part 1 of the proposition, for γ large enough, xH > xL. The fact that θH > θL

follows from equation (82).

Proof for the claim that Price-dividend ratio is procyclical Here we provide a

proof for claim in footnote 13. Consider first firm value at node H, (80). Because there is

no idiosyncratic shock at node H, there is only one type of firm, and u = uH . Using the

market clearing condition at node H, 1− cH = xH . Therefore, in equilibrium,

vH (u∗0) = 1− cH (u∗0) +
β

1− β
xH − a ln

[
1 +

βxH
a (1− β)

]
= xH +

β

1− β
xH − a ln

[
1 +

βxH
a (1− β)

]
=

1

1− β
xH − a ln

[
1 +

βxH
a (1− β)

]
.

At node L, firm value is given by eεvL (u∗0, ε). Using equation (81),

vL (u∗0, ε) = 1− cL (u∗0, ε) +
β

1− β
xL − a ln

[
1 +

βxL
a (1− β)

]
.
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Note that

E [eεcL (u∗0, ε)] = 1− xL

by market clearing. Therefore,

E [eεvL (u∗0, ε)] = 1− E [eεcL (u∗0, ε)] +
β

1− β
xL − a ln

[
1 +

βxL
a (1− β)

]
=

1

1− β
xL − a ln

[
1 +

βxL
a (1− β)

]
.

Using our previous arguement, as γ → 1 + ξ, xH
xL
→ ∞. Therefore, for γ large enough, we

must have
vH(u∗0)

E[eεvL(u∗0,ε)]
> 1, as needed.

C.3 Proof of proposition 5

Firm risk pass through Fixing u0, equation (101) implies that ∀ε′ ≥ε(u0),

d ln [eεcL (u0, ε)]

dε
= −τ.

For ε′ <ε(u0), the limited commitment constraint binds, and eεcL (u0, ε) = eεcL (u0, ε (u0)).

Therefore,
d ln [eεcL (u0, ε)]

dε
= 1

Combining the above two equations, we have

E

[
∂ ln [eεcL (u0, ε)]

∂ε

]
=

� εL(u0)

−∞
f
(
ε′
∣∣ gL) dε′τ +

� εMAX

εL(u0)
f
(
ε′
∣∣ gL) dε′

= e−ξ(εMAX−εL(u0)) − τ
[
1− e−ξ(εMAX−εL(u0))

]
.

Clearly, the average elasticity is increasing in εL (u0). Using the optimal risk sharing

conditions (89) and (104), we can show that εL (u0) is an increasing function of u0.

Cross section of expected returns To characterize the dependence of vH(u0)
E[eεvL(u0,ε)]

, note

that in general,

cH (u0) =
xH
xL

[
ξuCDL k (θL)

uFBL k (θL)

]τ
e(1+τ)εL(u0)cL

(
u0, εL (u0)

)
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by lemma 7 and

E [eεcL (u0, ε)] = e(1+τ)εL(u0)cL (u0, εL (u0)) Φ (εL (u0))

by lemma 8. Because at ε = εL (u0), the limited commitment constraint, vL (u0, ε) = 0

binds, cL (u0, εL (u0)) = 1 + β
1−βxL − a ln

[
1 + βxL

a(1−β)

]
by (86). To simplify notation, we

denote ΓH = 1 + β
1−βxH − a ln

[
1 + βxH

a(1−β)

]
and ΓL = 1 + β

1−βxL − a ln
[
1 + βxL

a(1−β)

]
. We

then write vH(u0)
E[eεvL(u0,ε)]

as

vH (u0)

E [eεvL (u0, ε)]
=

ΓH − φe(1+τ)εL(u0)

ΓL
{

1− e(1+τ)εL(u0)Φ (ε (u0))
} ,

where we denote φ = xH
xL

[
ξuCDL k(θL)

uFBL k(θL)

]τ
ΓL to simplify notation. By proposition 2, ε (u0) is a

strictly increasing function of u0. Therefore, to prove proposition 5, it enough to show

∂

∂ε

ΓH − φe(1+τ)ε{
1− e(1+τ)εΦ (ε)

} > 0,

which is given by the following lemma.

Lemma 10. There exists γ̃ ∈ (1, 1 + ξ) such that γ > γ̃ implies that for all ε ∈
(−∞, εMAX),

∂

∂ε

[
ΓH − φe(1+τ)ε

1− e(1+τ)εΦ (ε)

]
> 0. (121)

Proof. We can compute (121) as :

∂

∂ε

[
ΓH − φe(1+τ)ε

1− e(1+τ)εΦ (ε)

]

=
−φe(1+τ)ε (1 + τ)

[
1− e(1+τ)εΦ (ε)

]
+
[
ΓH − φe(1+τ)ε

]
e(1+τ)ε [(1 + τ) Φ (ε) + Φ′ (ε)][

1− e(1+τ)εΦ (ε)
]2 .

We focus on the numerator and simplify:

−φe(1+τ)ε (1 + τ)
[
1− e(1+τ)εΦ (ε)

]
+
[
ΓH − φe(1+τ)ε

]
e(1+τ)ε

[
(1 + τ) Φ (ε) + Φ′ (ε)

]
= ΓH

[
(1 + τ) Φ (ε) + Φ′ (ε)

]
− φ

[
(1 + τ) + e(1+τ)εΦ (ε)

]
It is therefore enough to show

ΓH
[
(1 + τ) Φ (ε) + Φ′ (ε)

]
− φ

[
(1 + τ) + e(1+τ)εΦ (ε)

]
> 0 (122)
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Using the expression of Φ (ε), we can compute

(1 + τ) Φ (ε) + Φ′ (ε) = (1 + τ)
ξ

ξ − τ

[
e−τεMAX − e−λεMAX+(ξ−τ)ε

]
= (1 + τ)

ξ

ξ − τ
e−τεMAX

[
1− e−(ξ−τ)εMAX+(ξ−τ)ε

]
= (1 + τ)

ξ

1 + ξ
e−τεMAX

1 + ξ

ξ − τ

[
1− e−(ξ−τ)εMAX+(ξ−τ)ε

]
= (1 + τ) e−(1+τ)εMAX

1 + ξ

ξ − τ

[
1− e−(ξ−τ)(εMAX−ε)

]
> 0,

where the last line uses the fact εMAX = ln 1+ξ
ξ . Also, the second term in equation (122)

can be written as

(1 + τ) + e(1+τ)εΦ′ (ε) = (1 + τ)

[
1− ξ

1 + ξ
e−λεMAX+(1+ξ)ε

]
= (1 + τ)

[
1− e−(1+ξ)(εMAX−ε)

]
.

Therefore, to prove (122), it is enough to show that for all ε,

ΓHe
−(1+τ)εMAX

1 + ξ

ξ − τ

[
1− e−(ξ−τ)(εMAX−ε)

]
− φ

[
1− e−(1+ξ)(εMAX−ε)

]
> 0.

Because φ→ 0 as γ → 1 + ξ, we have ΓHe
−(1+τ)εMAX > φ for γ close enough to 1 + ξ. We

complete the proof by making the following observation

Define

f (ε) =
1 + ξ

ξ − τ

[
1− e−(ξ−τ)(εMAX−ε)

]
g (ε) = 1− e−(1+ξ)(εMAX−ε),

then f (ε) > g (ε) for all ε < εMAX . To see this, note that f (εMAX) = g (εMAX) = 0. Also,

f ′ (ε) < g′ (ε) for all ε < εMAX , because

f ′ (ε) = − (1 + ξ) e−(ξ−τ)(εMAX−ε)

g′ (ε) = − (1 + ξ) e−(1+ξ)(εMAX−ε).
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D Computational Algorithm

We describe our computation algorithm. The algorithm consists of an “outer loop”, in

which we iterate over the law of motion for aggregate states and an associated stochastic

discount factor, and an “inner loop”, in which we solve for the optimal contract.

From the theoretical perspective, the summary measure φ as well as B are state variables

that summarize the history of aggregate shocks. Computationally, we use firm owner’s

consumption share, x as a proxy to summarize the information in (φ,B). This is an

efficient choice for two reasons. First, given the dynamics of x, the pricing kernel is complete

determined. Second, even through we only keep track of x as the state variable, we compute

the summary measure (φ,B) in each step to update the law of motion of x. In what follows,

we replace the state variables (φ,B) by x. Below are the steps of our numerical procedure.

1. Initialize the law of motion of x, Γx (g, x, g′). We use a log-linear functional form:

log x′ = a(g, g′) + b(g, g′) log x. (123)

Given the law of motion of x, the SDF Λ (x, g, g′) is calculated using

Λ
(
x, g, g′

)
= β

[
x′ (g′|g, x) eg

′

x

]− 1
ψ
[
w (x′, g′) eg

′

n(g, x)

] 1
ψ
−γ

,

where w(g, x) and n(g, x) are given by

w (g, x) =
[
(1− β)x

1− 1
ψ + βn (g, x)

1− 1
ψ

] 1

1− 1
ψ ,

n (g, x) =

κ∑
g′

π
(
g′|g
)
e(1−γ)g′w1−γ (g′,Γx (g, x, g′))


1

1−γ

.

2. The inner loop consists of using Γx (g, x, g′) and Λ (x, g, g′), to solve the value function

v (u, g, x), the worker-outside value u (g, x) and value of a new job u∗(g, x) along

with the policy functions c (u, g, x), θ (u, g, x) and u′ (u, g, x, ζ ′) that solve the optimal

contracting problem P1. We solve Bellman equation by a modified value function

iteration as appplying a standard value function iteration is complicated by the

presence of the occasionally binding constraints (15) and (16). Our procedure borrows

elements from endogenous grid method of Carroll (2006). We describe it below

(a) Guess v (u, g, x) and c (u, g, x). These imply functions u∗(g, x) and u(g, x) using
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equations

v (u∗ (g, x) , g, x) = 0,

ū (g, x) =
[
(1− β) b

1− 1
ψ + β [λm̄ (g, x)]

1− 1
ψ

] 1

1− 1
ψ ,

with

m̄ (g, x) =
(
κE
[
e(1−γ)g′

{
(1− χ)ū1−γ (g′, x(g′)

)1−γ
+ χu∗1−γ

(
g′,Γx

(
g, x, g′

))}∣∣∣ g]) 1
1−γ

.

We denote c(u∗(g, x)|g, x) and c(λu(g, x), g, x) by c∗(g, x) and c(g, x).

(b) Let {ε(u, S, g′), ε(u, S, g′)}g′ be the thresholds for η′ + ε′ such that constraint

(15) and (16) bind for a worker with state u, aggregate states (S) and

next period for aggregate shock g′ = gL. Define a grid EL × X ≡{
(εL,0, x0),

(
εL,1, x0

)
, . . . ,

(
εL,nE , xnX

)}
with the understanding that εL(j) and

x(j) are the entries in the jth element of the grid EL × X with j ∈
{1, 2, . . . , nE × nX} .

(c) For all j ∈ {1, 2, . . . , nE × nX}, we solve for
{
εg′(j), εg′(j)

}
g′

that are consistent

with εL(j) and the guess for functions v and c in step (a) using the following

equations that need to hold for all g′

Λ (x(j), g, g′)

Λ
(
gL, g, x(j)

) =
e−γ(εg′ (j))

e
−γ
(
εgL

(j)
) [ c∗ (g′,Γx (x(j), g, g′))

c∗ (gL,Γx (x(j), g, g′))

]− 1
ψ
[
u∗ (g′,Γx (x(j), g, g′))

u∗ (gL,Γx (x(j), g, g′))

] 1
ψ
−γ

and

Λ (x(j), g, g′)

Λ
(
gL, g, x(j)

) =
e−γ(εg′ (j))

e−γ(εgL (j))

[
c (g′,Γx (x(j), g, g′))

c (gL,Γx (x(j), g, g′))

]− 1
ψ
[
u (g′,Γx (x(j), g, g′))

u (gL,Γx (x(j), g, g′))

] 1
ψ
−γ
.

(d) Now we construct the policy function u′ (ζ ′, j) using :

u′(η′ + ε′|j) = u∗
(
g′,Γx

(
x(j), g, g′

))
∀η′ + ε′ < εg′(j)

u′(η′ + ε′|j) = λu
(
g′,Γx

(
x(j), g, g′

))
∀η′ + ε′ < εg′(j)

and for η′ + ε′ ∈
(
εg′(j), εg′(j)

)
use

e−γ(εg′ (j))

e−γ(η′+ε′)

[
c∗ (g′,Γx (x(j), g, g′))

c (u′)

]− 1
ψ
[
u∗ (g′,Γx (x(j), g, g′))

u′

] 1
ψ
−γ

= 1

to solve out for u′.
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(e) We compute c(j), θ(j) and ι(j) using

Λ
(
x(j), g, g′

)(
1 +

ι (j)

θ (j)

)
= e−γ(εg′ (j))

[
c∗ (g′,Γx (x(j), g, g′))

c (j)

]− 1
ψ
[
u∗ (g′,Γx (x(j), g, g′))

m (j)

] 1
ψ
−γ
,

A′(θj) = κEgΛ
(
x(j), g, g′

)
eg
′+η′+ε′v

(
u′
(
ζ ′, j

))
,

(
1− β
β

)
ι(j)A′′(θj)

= c(j)
1
ψm(j)

γ− 1
ψEg

(
1

1− γ

)(
e(1−γ)(ε′+η′)

[
u
(
ζ ′, j

)1−γ − u (g′,Γx (x(j), g, g′
))1−γ])

,

where certainty equivalent m(j) only depends on {u′(s′, g)}s′ and

{u (g′,Γx (x(j), g, g′))}g′ .

(f) Finally, we use the promise keeping constraint (14) to back out u(j) that is

consistent with c(j) and {u′(s′, g)}s′ and we use the objective function of the

firm, the right hand side of (13) to obtain vj :

u(j) =
[
(1− β) c(j)

1− 1
ψ + βm(j)

1− 1
ψ

] 1

1− 1
ψ

v(j) = 1−c(j)−A(θ(j))+κθ(j)EgΛ
(
g′|g, x

)
eg
′+η′+ε′v

(
u′
(
ζ ′, j

)
|g′,Γx

(
x, g, g′

))
(g) The guess for v (u, g, x) and c (u, g, x) are updated by interpolating values {uj , vj}

and {uj , cj} . We then iterate until the value function and consumption functions

both converge with a tolerance of 1e− 7 under a sup norm.

3. To check the accuracy in computing the optimal contract, we plot a version of Euler

equation errors in Figure 2. Fixing u, x, g and the aggregate state next period g′,

we draw 1000 idiosyncratic shocks ε′ + η′ such that both agent and firm-side limited

commitment constraints are not binding. We then use the maximum absolute log10

ratio of worker’s MRS to owners’ MRS across these shocks as our measure of Euler

Equation Error. We repeat this procedure for different (u, x, g) and g′ combinations

with values of (u, x) that are not on the grid points where the value function is solved.

The Euler equation errors computed this way has the magnitude of -4, which suggests

that our approximation is reasonable.

4. We now describe the outer loop where we use optimal policies to simulate the model

and update Γx. The details of the simulation procedure are given below:

(a) Let φ (t) denote the summary measure at time t. In simulations, we approximate
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the continuous distribution φ (t) by a finite-state distribution as follows. We

choose u
(t)
1 , u

(t)
2 , · · · , u(t)

N+1, where u
(t)
1 = λu (gt, xt) and u

(t)
N+1 = u∗ (gt, xt). A

density φ is characterized by a set of grid points {û [n] (t)}N+3
n=1 and corresponding

weights {φ [n] (t)}N+3
n=1 such that

• û [1] and û [N + 1] are the boundaries where the limited commitment

constraint binds: û [1] = λu (gt, xt) and û [N + 1] = u∗ (gt, xt); û [N + 2] =

u∗ (gt, xt) is the restarting utility.

• {û [n]}n=2,3,···N are the interior points: û [j] ∈ (uj−1, uj), for j = 2, 3 · · ·N,
are chosen appropriately to minimize the approximation error.

• φ [1] and φ [N + 1] are the total amount of human capital owned by

agents with a binding limited commitment constraint at û [1] and û [N + 1],

respectively.

• {φ [n]}n=2,3,···N are the human capital owned by agents in the interior.

• The mass on φ [N + 2] is the human capital of agents who (re)start at

u∗ (g, x), this include both the newly employed and the new born.

• The mass φ [N + 3], which is the total human capital owned by workers in

the the unemployed pool.

(b) Start with an initial distribution of u, denoted {φ0 (u)}.

(c) Having solved x0, use the law of motion of u′ (u, g, x, ζ ′) to compute φ1. Here we

describe a general procedure to solve for {φ [n] (t+ 1) ; û [n] (t+ 1) ; xt+1}N+3
n=1

and Bt+1 given {φ [n] (t) ; û [n] (t) ; xt}N+3
n=1 and Bt. Note that the assumed law

of motion gives a natural candidate for xt+1. We denote xt+1 = Γ (xt, gt, gt+1).

i. First, we approximate the distribution s ∼ f (ε+ η| g) by a finite

dimensional distribution such that
∑K

k fg [j] = 1 and
∑K

k e
skfg [j] = 1,

for g = gH , gL.

ii. Given {φ [n] (t) , û [n] (t)}N+3
n=1 for period t, conditioning on the realization

of aggregate state gt+1, for each n = 1, 2, · · · , N + 2, we compute

{φt+1 [n, k]}n,k. The interpretation is that φt+1 [n, k] is the total measure

of income share that comes from agents with û [n] (t) and with realization of

εk, which is given by:

φt+1 [n, k] = κθ (û [n] (t) , gt, xt) fgt+1 [k]φt [n] esk , k = 1, 2 . . . ,K.

The continuation utility of these agents is u′ (û [n] (t) , gt, xt, gt+1, sk), a fact

that we will use below.

iii. We now compute {φt+1 [m]}m=1,2,...N+3 for the next period. First, compute
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the measure on the grid points:

φt+1 [1] =
N+2∑
n=1

K∑
k=1

φt+1 [n, j] I{u′(û[n](t),gt,xt,gt+1,sk)≤λu(gt+1,xt+1)},

φt+1 [2] =

N+2∑
n=1

K∑
k=1

φt+1 [n, k] I{
u′(û[n](t),gt,xt,gt+1,sk)∈

(
u
(t+1)
1 ,u

(t+1)
2

)},

φt+1 [m] =
N+2∑
n=1

K∑
k=1

φt+1 [n, k] I{
u′(û[n](t),gt,xt,gt+1,sk)∈

[
u
(t+1)
m−1 ,u

(t+1)
m

)}, m = 3, . . . N

φt+1 [N + 1] =

N+2∑
n=1

K∑
k=1

φt+1 [n, k] I{u′(û[n](t),gt,xt,gt+1,sk)≥u∗(gt+1,xt+1)},

Second, we compute the measure of all restarting agents, which include the

newly employed and the new born:

φt+1 [N + 2] = 1− κ+ κλχφt [N + 3]

Finally, we compute the measure of the unemployed pool:

φt+1 [N + 3] = κλ

{
N+2∑
n=1

[1− θ (û [n] (t) , gt, xt)]φt [n] + [1− χ]φt [N + 3]

}

iv. The interpretation is again that φ [1] and φ [N + 1] are the human capital

owned by agents with a binding limited commitment constraint at û [1] and

û [N + 1], respectively, and {φ [n]}n=2,3,···N are the amount of human capital

owned by agents in the interior. φ [N + 2] is the human capital of agents

who enter the employment pool (which include newly employed and the

new born), and φt+1 [N + 3] is the total human capital of workers in the

unemployed pool.

v. We need to update the vector normalized utilities {û [n] (t+ 1)}N+2
n=1 .

Clearly, we should have û [1] (t+ 1) = λu (gt+1, xt+1), û [N + 1] (t+ 1) =

u∗ (gt+1, xt+1) and û [N + 2] (t+ 1) = u∗ (gt+1, xt+1). For m = 2, . . . , N ,

we choose û [m] (t+ 1) ∈
[
u

(t+1)
m−1 , u

(t+1)
m

)
such that the resource constraint

holds exactly for u ∈
[
u

(t+1)
m−1 , u

(t+1)
m

)
. That is, we pick û [m] (t+ 1) to be the

solution (denoted û) to

N+2∑
n=1

K∑
k=1

φt+1 [n, k] c (u′ (û [n] (t) , gt, xt, gt+1, εj) , gt+1, xt+1) I{
u′(û[n](t),gt,xt,gt+1,εk)∈

[
u
(t+1)
m−1 ,u

(t+1)
m

)}
= c(û, gt+1, xt+1)φt+1 [m] .
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vi. Finally, the total unemployment benefit consumed by all unemployed workers

isBt+1 = bφt+1 [N + 3].

(d) Up to now, we have described a procedure to simulate forward the economy.

This allows us to compute the market clearing
{
xMC
t+1

}∞
t=0

as follows:

xMC
t+1 =

N+2∑
m=1

φt+1 [m]−
N+2∑
m=1

c( û [m] (t+ 1)| gt+1, xt+1)φt+1 [m]−Bt+1. (124)

Given the sequence of {gt}Tt=1, we simulate the economy forward for T periods

to obtain
{
xMC
t

}T
t=0

. We divide the sample into four cases: gH → gH , gH → gL,

gL → gH , gL → gL and use regression to update the law of motion of x. We

go back to step 1 to iterate. Note the under the above procedure, given the

sequence of {gt}Tt=1, the sequence of xt+1 that is used for computing decision

rules is complete determined by (124). In the simulation, we assume that xt+1

follows the perceived law of motion, based on which agent make their decisions.

We use the market clearing condition to update the actual law of motion of x

and iterate.

(e) We divide the sample into four cases: gH → gH , gH → gL, gL → gH , gL → gL

and use regressions (123) to update the law of motion of x. We go back to step

1 to iterate until the unconditional R2 approaches 99.9%.

E More details on wage-pass-through and returns in the

cross section

In this section, we provide corroborating evidence for the empirical results in sections 6.2

and 6.3. As a robustness for specification (34), we estimate

∆ log WageBillf,t+1 = αw + βw0 LaborSharef,t + β+
w1 max{∆ log Salesf,t, 0}

β−w1 min{∆ log Salesf,t, 0}+ γ+
w∆ max{log Salesf,t, 0} × LaborSharef,t

+ γ−w min{∆ log Salesf,t, 0} × LaborSharef,t + λwt. (125)

The firm-side limited commitment binds with adverse firm-level shocks. This would

imply that γ−w or the coefficient on the negative part of sales growth should be positive and

statistically significant. In table 7, we verify this.

Next we estimate a version of (32) with total assets and book leverage as further controls.

In table 8, we verify that the coefficient on labor leverage remains positive and statistically
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significant.
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Figure 1: Timing of the simple model
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Figure 2: Euler equation errors for g = gL and g′ = gL.
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Table 1: PARAMETERS

Parameters Values Targeted moments Values

Aggregate Risk
gH , gL 0.35%,

-0.15%
Mean, std of consumption growth 1.94%, 2.14%

π(gH |gH) 0.99 Duration of booms 12 yrs
π(gL|gL) 0.95 Duration of recessions 4 yrs
σE 1.2% Autocorr of consumption growth 0.44

Labor Market
a1,H , a1,L .995,.9925 Annualized separations rate in

booms, and recessions
2%, 3%

χ 8% Long-term unemployment duration 3 years
λ 96% PV of earning losses on separation 30%
b 1 Flow value of unemployment 40-95%
κ 0.99 Duration of working life 25 years

Idiosyncratic Risk
α 82% Across firm wage variation 40%
σL, σH 7.0%, 8.0% Std. of labor earnings change in

booms and recessions
32%, 31%

τ, ρ 4.155, 2% Kelly skewness of labor earnings
change in booms and recession

-3.2%, -8.9%

Other parameters
β,ψ,γ 0.989, 2, 5 Discount factor, IES, risk aversion

Notes: All reported moments are annualized. The NIPA sample for aggregate consumption is 1930-2007.

We follow the estimation procedure in Ai and Kiku (2013). The CPS transition rates are computed using the

monthly average of workers’ transitions over 12-month intervals between January 1976 and July 2014. Davis

and von Wachter (2011) use longitudinal Social Security records from 1974 to 2008. The earnings losses are

computed using job displacements defined as in long-tenure men, 50 years or younger, in mass-layoff events

at firms with at least 50 employees. The earnings losses are accumulated for 20 years at a discount rate of

5% and are expressed as a percentage of displaced workers’ average annual predisplacement earnings. The

flow value of unemployment is relative to wages and in the range of estimates in Shimer (2008), Rudanko

(2011), and Hagedorn and Manovskii (2008). The within- and between- firm wage variation is taken from

table 6 in Song et al. (2015). We use the PSID for periods 1968-2014. The sample selection is explained in

the text.
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Table 2: AGGREGATE ASSET PRICING IMPLICATIONS

Moments Model Data
Baseline No Frictions

Excess return on consumption
mean 3.59% 0.62% -
std. 7.40% 2.86% -

Excess return on dividends
mean 3.67% 0.62% 6.06%
std. 7.61% 2.86% 19.8%

Std of log SDF
booms 19.15% 17.83% 38.00%
recessions 35.70% 27.80% 66.00%

Risk free rate
mean 2.81% 5% 0.56%
std. 2.86% 0.85% 2.89%

Notes: All moments are annualized. In the “Model” column, the claim to consumption is Yt
�
φt(du). The

the claim to dividends is xtYt and assumes zero financial leverage. The column labeled “No Frictions”

is the first best economy, i.e., without limited commitment and moral hazard with same parameters for

preferences and technology as the baseline. The column labeled “Data” column computes market return as

value-weighted returns from CRSP stock index and adjusted for CPI inflation. Estimates of debt-to-equity

for publicly traded U.S. firms range from 40%-50%. The risk-free rates are computed as in the appendix of

Beeler and Campbell (2012). The estimates for Sharpe ratios on the market return in booms and recessions

are from Lustig and Verdelhan (2012).
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Table 3: AGGREGATE RETURN PREDICTABILITY

Horizon Model Data
(quarters) Baseline No Frictions

β R2 β R2 β R2

2 -0.356 0.157 -0.381 0.001 -0.062 0.042
4 -0.580 0.251 -0.739 0.001 -0.113 0.075
8 -0.788 0.329 -1.409 0.002 -0.190 0.119
12 -0.860 0.345 -2.029 0.003 -0.236 0.142
16 -0.871 0.328 -2.600 0.003 -0.277 0.166

Notes: The coefficients and R2 of the regressions
∑J
j=1(rt+j − rf,t+j) = α + β(pdt) + εt+j . The column

labeled “Model-Baseline” uses data simulated by the baseline calibration. The column labeled “Model-No

Frictions” is the first best economy, i.e., without limited commitment and moral hazard with same parameters

for preferences and technology as the baseline. The column labeled “Data” follows the construction in Beeler

and Campbell (2012).
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Table 4: COMPARISON TO OTHER BENCHMARKS

Moments Baseline Only-
Worker-
Side
Limited
Commit-
ment

Exogenous
Wage
Rigidity

No Mixture

σH = σL σH < σL

Excess return on consumption
mean 3.59% 1.16% 0.62% 1.03% 3.20%
std. 7.40% 2.43% 2.86% 3.16% 6.75%

Excess return on dividends
mean 3.67% 0.91% 0.68% 1.04% 3.27%
std. 7.61% 2.52% 3.09% 3.36% 6.94%

Std of log SDF
booms 19.34% 13.75% 17.83% 9.43% 18.95%
recessions 35.7% 23.00% 27.80% 21.22% 36.26%

Consumption growth of firm owners
std. 10% 4.54% 3.84% 3.82% 7.72%

Risk free rate
mean 2.81% 5.07% 4.73% 4.33% 3.21%
std. 2.86% 1.44% 0.39% 0.77% 2.28%

Notes: All moments are annualized. In the “Model” column, the claim to consumption is Yt
�
φt(du). The

the claim to dividends is xtYt and assumes zero financial leverage. For all cases, technology and preferences

parameters are the same as the baseline. The column labeled “Only-Worker-Side Limited Commitment”

relaxes constraint v (u, S) ≥ 0. The column labeled “Exogenous Wage Rigidity” uses the first-best stochastic

discount factor, in the row “Excess returns on xtYt” we price an unlevered claim to corporate dividends.

The cash flow from this claim is modeled as x̃(g)Y where x̃(g) has a mean of 33% and a standard deviation

of 2%, as in Favilukis and Lin (2016b). In the column labeled “No Mixture”, we set the mixture probability

of drawing from the negative exponential ρ to zero. For subcolumn labeled “σH = σL” the value for std. in

booms and recessions is set to 8.3% and for the subcolum labeled of “σH < σL”, the value for σL = 10.3%

and the value of σH = 8.3%.
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Table 5: FIRM-LEVEL RETURNS AND LABOR SHARES

Coefficients Using LS Using ELS

Labor share 1.38 1.25
(0.41) (0.19)

Time fixed
effects

Yes Yes

no. of obs. 15170 83611
no. of entities 1645 9591

Notes: The sample consist of firm-year observations from CRSP/Compustat merged files for the years 1968-

2016. In the column labeled “Using LS” we use labor share computed using (33), and in the column labeled

“Using ELS” we use the procedure described in Donangelo et al. (2016) and construct “extended labor

share.” In both specifications, labor shares are standardized and twice lagged, and standard errors are

clustered at firm level.
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Table 6: FIRM-LEVEL WAGE PASS-THROUGHS AND LABOR SHARES

Coefficients Using LS Using ELS

LogSales 0.4159 0.3187
(0.0422) (0.0276)

LaborShare -0.0726 -0.1648
(0.007) (0.0061)

LaborShare ×
LogSales

0.3871 0.3538

(0.0776) (0.0517)

Time fixed
effects

Yes Yes

no. of obs 40289 117128
no. of entities 4028 12806

Notes: The sample consist of firm-year observations from Compustat for the years 1959-2016. We follow

Donangelo et al. (2016) in the construction of firm labor share, the results of which are reported in the

column labeled “Using LS”, and the construction of extended labor share, the results of which are reported

in the column labeled “Using ELS.” In both specifications, labor shares are twice lagged, and standard errors

are clustered at the firm level.
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Table 7: FIRM-LEVEL WAGE PASS-THROUGHS AND LABOR SHARES

Coefficients Using LS Using ELS

LogSales plus 0.69 0.55
(0.05) (0.04)

LogSales minus 0.13 0.12
(0.06) (0.04)

Labor share -0.02 -0.12
(0.01) (0.01)

Labor share × LogSales plus 0.00 0.1
(0.12) (0.06)

Labor share × LogSales minus 0.76 0.55
(0.12) (0.08)

Time Fixed Effects Yes Yes

Notes: The sample consist of firm-year observations from COMPUSTAT/CRSP merged files for the years

1959-2016. In the column labeled “Using LS” we use labor share computed using (33), and in the column

labeled “Using ELS” we use the procedure described in Donangelo et al. (2016) and construct “extended

labor share.” In both specifications, labor shares are standardized and twice lagged, and standard errors are

clustered at firm level.
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Table 8: FIRM-LEVEL RETURNS AND LABOR SHARES

Coefficients Using LS Using ELS

Labor share 1.24 0.85
(0.43) (0.20)

Leverage 0.63 1.17
(0.91) (0.35)

log Assets -1.06 -2.22
(0.43) (0.21)

Time Fixed
Effects

Yes Yes

Notes: The sample consist of firm-year observations from COMPUSTAT for the years 1959-2016. We follow

Donangelo et al. (2016) in the construction of firm labor share, the results of which are reported in the

column labeled “Using LS”, and the construction of extended labor share, the results of which are reported

in the column labeled “Using ELS.” In both specifications, labor shares are twice lagged, and standard errors

are clustered at the firm level. Log Assets is the logarithm of book value of assets and Leverage is defined

as the ratio of long-term debt plus debt in current liabilities divided by total assets.
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