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ABSTRACT

We provide causal evidence that regulation induced product shocks significantly impact 
aggregate demand and firm performance in pharmaceutical markets. Event study results suggest 
an average loss between $569 million and $882 million. Affected products lose, on average, $186 
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$696 million attributable to declines in future innovation. Our findings complement research that 
shows drugs receiving expedited review are more likely to suffer from regulation induced product 
shocks. Thus, it appears we may be trading off quicker access to drugs today for less innovation 
tomorrow. Results remain robust to variation across types of relabeling, market sizes, and levels 
of competition.
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1.0 Introduction 

 The role that downstream market demand plays on upstream innovation has long been 

recognized in the literature (e.g., Schumpeter, 1942; Griliches and Schmookler, 1963; 

Schmookler, 1966; Nordhaus, 1969). More recent work has linked R&D intensity and demand 

(Pakes and Schankerman, 1984), market entry and expected revenues (Scott Morton, 1999; 

Reiffen and Ward, 2005), market size and innovation (Acemoglu and Linn, 2004; Finkelstein, 

2004; Dubois et al., 2015), public procurement and innovation (Edler and Georghiou, 2007) and 

societal demands and research priorities (Ciarli and Rafols, 2019). Another strand of literature 

has considered the interplay between various demand-side and supply-side factors and their 

impact on innovation (Peters et al., 2012; Kalcheva et al., 2018). 

 The above stream is enriched by scholars focusing on shocks to demand and its resulting 

impact on innovation. Recent work by Manso et al. (2019) finds large positive demand shocks 

generate more R&D, however it tends to be more incremental than radical innovation. Several 

papers find evidence that the passage of Medicare Part D increased innovation of drugs targeting 

conditions prevalent among elderly patients (Blume-Kohout and Sood, 2013; Dranove et al., 

2014). Using the same identification strategy, Hermosilla and Wu (2018) demonstrate the impact 

on external technology markets; downstream commercializers increased their rate of licensing 

from upstream innovators. Finally, at a more macro-level, shocks to aggregate demand have been 

shown to impact investments in innovation capacities (Paunov, 2012; Armand and Mendi, 2018). 

 Given this link between downstream market demand and upstream innovation, 

understanding how exogenous product shocks influence demand in the first place itself is critical 

for firms and policymakers. Herein, one important and understudied source of demand-side 

shocks is regulation. Regulation plays an important role in protecting consumers but regulation 

can also impede firms (Aghion et al., 2019) and markets. For example, regulation can restrict 

firms’ freedom of actions (Palmer et al, 1995) and slow the diffusion of new technologies (e.g., 

Joskow, 1981). If these demand shocks are significant enough, we would expect them to 

negatively impact current firm performance and potentially dampen future innovation (Ball et al., 

2018). 

 Our study uses novel data to examine the impacts of safety-related regulatory product 

shocks in the pharmaceutical industry on aggregate demand and firm performance. The drug 

development process is long and expensive with a low probability of receiving Food and Drug 



 3 

Administration (FDA) approval (Wong et al., 2018).1 As part of the approval process drug 

candidates undergo clinical trials designed to test their safety and efficacy. In the post-approval 

period, the FDA maintains a surveillance program that continues to monitor drug safety. The 

FDA Adverse Events Reporting System (FAERS) database was designed to collect complaints 

and adverse events for approved drugs. Depending on the situation and severity of the data 

collected, the FDA will act and move to change the safety label associated with a drug (known as 

‘relabeling’).  

While prior studies have focused on various types of relabeling (e.g., Macher and Wade, 

2016; Qureshi et al., 2011; Dorsey et al., 2010), most have limited their analyses to a single or 

small number of therapeutic markets (e.g., Olfson et al., 2008; Jacoby et al., 2005). These studies 

are important because we learn about the intricacies and nuances of specific markets but we are 

unable to draw conclusions about the overall impact of relabeling across markets. In contrast, 

using a dataset of all drugs sold across all therapeutic markets in the U.S. and U.K. we use a 

difference-in-differences (diff-in-diffs) specification to provide causal evidence relating the 

impacts of FDA drug relabeling on aggregate consumer demand and firm performance.2 We find 

that, on average, aggregate demand declines by 16.9 percent within two years of a relabeling 

event. Our data allows us to capture intra- and inter-market substitution patterns as well as 

competitive responses. Critically, after accounting for these factors we still find that aggregate 

demand declined by 4.7 percent, an estimate that represents consumers that prematurely leave 

the market.  

 Next, we explore the variation across the severity of relabeling events. Not unexpectedly, 

we find an increasing aggregate demand response as relabeling severity increases, ranging from a 

decline of 15.6 percent for the least severe to a decline of 36.3 percent for the most severe. After 

accounting for all plausible substitution patterns we find declines in aggregate demand ranging 

from 4.0 percent for the least severe to 8.3 percent for the most severe relabel. This pattern, 

however, is not homogenously distributed across all markets. When we focus on the variation in 

relabeling activity across individual markets, interesting patterns begin to emerge. In “low-

intensity markets” or those with low levels of relabeling activity we find declines in drug 

 
1 Wong et al (2018) place the probability of a drug candidate reaching FDA approval at 13.8 percent. 
2 For ease of exposition we use the term aggregate consumer demand interchangeably with demand. To be precise 
we are referring to aggregate consumer demand. Our data is at the standard unit level and not at the individual 
prescription level. Standard units are determined by IMS Health and are intended to equate pills, tablets and liquids.  
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aggregate demand are completely absorbed by intra-market substitution. In contrast, in “high-

intensity markets” or those with high levels of relabeling activity, after accounting for plausible 

substitution patterns, aggregate demand declines by 5.0 percent.   

 Our findings have implications for firms. First, our results suggest that current efforts by 

firms to counteract these impacts from these negative regulatory shocks, on average, appear to be 

failing. Importantly, the magnitude of our results for relatively minor safety relabeling suggests 

that physicians may be proactively shifting consumers to other drugs (or competitors are 

successfully “pulling” consumers away). This implies that while detailing (i.e., direct advertising 

to physicians) may be effective at influencing initial physician prescription behavior (e.g., Datta 

and Dave, 2017), this influence appears to break down when confronted with negative safety 

information. Unfortunately, while we can detect the shift in behavior, we can only conjecture on 

the underlying motivations driving physician behavior.3   

 Given the prior literature, these effects may not be isolated to just downstream aggregate 

demand but may also extend upstream. In a recent paper, Krieger et al. (2018) explore how 

pharmaceutical firms react to negative shocks to existing products. They show that affected firms 

increase R&D expenditures but those expenditures are more likely to go towards the acquisition 

of new pipeline candidates versus internally developed candidates.4 Importantly, they also show 

that competitors move resources away from affected therapeutic categories, reshuffling their own 

drug portfolios. Our findings and those of Krieger et al. (2018) are intimately linked; we provide 

evidence of the initial downstream aggregate demand impacts from negative regulatory shocks 

while they provide evidence of subsequent upstream innovation changes.5  

 In an effort to estimate the economic losses from these regulatory shocks on firm 

performance, we conduct an event study. The advantage of the event study methodology in this 

 
3 Explanations range from physicians practicing “defensive medicine”, being concerned that less serious safety 
concerns will eventually unmask more serious concerns (“where there is smoke, there is fire”), lack of adequate 
information, or being induced by competitor firm detailing efforts (Macher and Wade, 2016). Current work by the 
authors involve a large-scale survey with a national association of physicians to understand what drives prescription 
changes in the face of negative safety-related information. Preliminary, qualitative evidence seems to suggest some 
combination of defensive medicine and marketing efforts by competitors - consist with those described in Macher 
and Wade (2016).  
4 The relationship between product or pipeline shocks and subsequent technology acquisition in the pharmaceutical 
industry was previously considered in Higgins and Rodriguez (2006), Danzon et al. (2007) and Chan et al. (2007). 
The importance of Krieger et al. (2018), however, is they provide causal evidence of this relationship.   
5 The linkage of downstream product shocks and upstream innovation has been explored in other contexts. For 
example, Ball et al. (2018) examines the upstream innovation impacts as a result of downstream medical device 
recalls.  
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instance is that it will capture not only the effects from the unanticipated loss in revenues from 

the affected product but also loss in value from declines in future innovation. Results across two 

different standard event windows translate into an average loss in the range of $569 million to 

$882 million. Back of the envelope calculations suggest that the unanticipated loss in revenues 

from affected products averages $186 million over their remaining effective patent life. This 

leaves an unanticipated loss of between $383 million and $696 million, on average, from 

declines in future innovation. These results, along with Krieger et al. (2018), support the notion 

that downstream regulatory shocks have significant impacts on upstream innovation.  

Finally, our findings contribute empirical evidence to the economics of regulation 

literature dating back to Brown et al. (1964), Nelson (1970) and Stigler (1971). The breadth and 

depth of our data allow for a unique analysis of aggregate demand that captures all plausible 

substitution patterns. Regulation is rarely without cost, as is the case here. Importantly, this is a 

market that is under immense time constraints given the limited nature of patent protection. 

Regulators therefore face a tension between length of trials and getting new drugs to market.6 

Into this mix the FDA has developed pathways for expedited development and review including 

priority review, breakthrough therapy, accelerated approval and fast track.7 Recent evidence 

suggests, however, that there has been an increase in safety label changes for drugs that have 

moved through some form of expedited pathway (Mostaghim et al., 2017; Moore and Furberg, 

2014; Carpenter et al., 2008; Olson, 2008). These label changes are not trivial; Mostaghim et al. 

(2017) report a doubling of the most severe types of relabel for expedited drugs relative to non-

expedited drugs. With impacts from safety label changes rippling both downstream and 

upstream, it suggests that regulators may have tipped the balance too far towards getting new 

drugs to market. More fundamentally, our results combined with those of Krieger et al. (2018) 

suggest that we may be trading off quicker access to new drugs today for less innovation 

tomorrow.8   

 
6 In response to COVID-19, there has been immense pressure to speed the trials of Remdesivir®: 
https://www.nytimes.com/2020/05/02/us/politics/vaccines-coronavirus-research.html 
7 https://www.fda.gov/forpatients/approvals/fast/default.htm. These are coupled with other initiatives such as the 21st 
Century Cures Act. 
8 We must include the caveat that while there may be less innovation tomorrow, we cannot say anything about the 
type or novelty of the lost innovation. In a Health Affairs blog post, Pranav Aurora and authors conjectured about 
possible innovation implications from priority review vouchers. 
https://www.healthaffairs.org/do/10.1377/hblog20160615.055372/abs/ 
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 The remainder of the paper is organized as follows. In Section 2.0 we discuss the FDA 

drug relabeling process and in Section 3.0 we focus on adverse regulatory events. This is 

followed by our empirical strategy and data in Section 4.0. Results and robustness are reported in 

Sections 5.0 and 6.0, respectively, before we conclude in Section 7.0 

2.0 FDA drug relabeling 

The pharmaceutical industry in the U.S. is highly regulated and drug candidates undergo 

rigorous clinical testing prior to being submitted to the FDA for approval. During this process 

possible risks and side effects of a drug candidate are identified. This information becomes part 

of the FDA approved label and drug insert that accompanies a newly approved drug. 

Unfortunately, some side effects do not become known until after a drug has been approved. To 

help with the reporting and collection of these adverse events the FDA founded MedWatch in 

1993. Healthcare professionals or consumers (patients) can voluntary report to Medwatch. In 

more recent times this adverse events data has been made available via FAERS.9 

During the post-approval time period the FDA monitors adverse reporting along with 

results from post-approval studies and peer-reviewed literature. Negative safety-related 

information is scrutinized and the FDA can form an investigation team to determine if a safety 

label update is needed. If they believe a safety label change is warranted the manufacturer is 

notified and is required to report back to the FDA within a predetermined period. The agency 

works privately with a manufacturer to determine which type of safety label change will be 

made.10 At the end of the process the FDA will publish this information online while allowing 

firms additional time to change actual printed material.11 Prior to 2016 product safety data was 

available via MedWatch but has since shifted to the FDA Drug Safety Label Change database. 

The main safety labeling changes that the FDA issues include: adverse reaction, 

precaution, warning, contraindication, and box warning.12 These classifications serve to inform 

physicians and consumers of possible health concerns that have been clinically identified, 

anticipated to occur, or associated with unapproved uses. A drug that has been relabeled can 

undergo additional safety label changes in the future, if warranted. The box or “black box” 

 
9 http://www.nber.org/data/fda-adverse-event-reporting-system-faers-data.html.  
10 A firm may know that a relabel will impact demand and firm performance and as such they have the incentive to 
‘drag their feet’. The extent this is possible or occurs is unknown but remains a possibility.  
11 https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm250783.pdf  
12 Guidance for industry is provided by: https://www.fda.gov/downloads/drugs/guidances/ucm075096.pdf  
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warning is the most severe of type of label change and is intended to communicate potentially 

severe health risks resulting from taking a drug.  

While the FDA’s procedure and process for a drug safety relabel is well established, there 

is no guarantee that the updated information will be read by physicians or consumers. In a world 

of perfect-information we might assume that this new information will be read, however, the 

evidence seems to suggest otherwise. One form of communication that firms use to convey new 

safety information, the “Dear Doctor letter” (DDL) was found in 28% of cases to be deficient in 

their overall level of effectiveness (Mazor et al., 2005).13 Other studies have shown that fewer 

than one in ten physicians routinely read drug labels.14 Similarly, Hoy and Levenshus (2018) find 

that consumers routinely ignore safety related information.  

Macher and Wade (2016) shed an important light on the underlying mechanism of how 

physicians may be learning about safety label changes. In the case of black-box warnings, they 

find that affected firms themselves may increase physician detailing (i.e., direct-to-physician 

advertising) but they also find that competitor firms also increase detailing efforts. So while 

affected firms may try to actively deal with the problem, it does appear that competitors take 

advantage of the opportunity and try to pull physicians to their products. While this study is 

limited to black-box warnings, there is no reason to believe that there wouldn’t some type of 

similar response across the spectrum of relabeling activity. 

There appears to be some hope in that new technology may be able to help with this 

information asymmetry. In a recent paper, Arrow et al (2020) show that physicians with access 

to a drug reference database changed their prescribing behavior. While this study focused on the 

shift from branded to generic drugs, they suggest that physicians may be responding to non-

clinical information such as whether a drug is covered by a consumer’s insurance plan or plan-

specific drug pricing. The database in this study included FDA drug safety information and alerts 

but the information was not explicitly analyzed. However, given the fact that physicians were 

taking the time to interact with this type of technology does suggest that it may be an effective 

mechanism to deliver safety relabel information. A major concern with new technology is 

 
13 Attempts to improve the effectiveness of labels is on-going with draft guidance as recently as 9 July 2018 
intended to assist applicants in writing drug labels: https://www.policymed.com/2018/07/fda-releases-draft-
guidance-on-indications-and-usage-labeling-sections.html  
14 https://www.nytimes.com/2006/01/19/us/new-drug-label-rule-is-intended-to-reduce-medical-errors.html  
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ensuring that it diffuses out to physicians, especially those practicing in non-academic or rural 

settings.15   

3.0 Adverse regulatory events   

 We draw on several strands of literature starting with the economics of regulation. Early 

work in this area theorizes on the impact of regulation on consumer and firm behavior (e.g., 

Stigler, 1971; Peltzman, 1976; Migue, 1977). Brown et al. (1964) argued that regulation could be 

viewed as an information transmission process. As consumers receive new information they are 

able to update and change their behavior. Subsequent work built on this idea to show how 

information influences consumer perception of product quality (Zeithaml, 1988) and how 

behavior changes with positive information (Nelson, 1970). In contrast, Hartley (1994) showed 

how negative product information led to decreased sales. More broadly, Oberholzer-Gee and 

Mitsunari (2006) examined how non-related negative events, in their case the release of pollution 

information, decreased property values. In our context, the process of relabeling in the 

pharmaceutical industry can be viewed as an information transmission process that subsequently 

impacts behavior.  

 Our paper also draws on studies in healthcare where scholars have explored the 

implementation of regulatory procedures on public health (e.g., Gruenspecht and Lave, 2006). In 

the case of the pharmaceutical industry, Dranove (2011) stresses the importance of quality 

certification for efficient and optimal regulation. For drugs, this certification comes in the form 

of the FDA approval process. This process can be divided into pre- and post-approval stages. 

The pre-approval stage includes clinical testing and provides the first line of defense to ensure 

safety and efficacy of products. This creates a tension, however, for regulators between length of 

trials and getting new drugs to market. For example, adverse events have been increasing (Moore 

et al, 2007) and have been associated with declines in pre-approval times (Olson, 2003). This 

makes post-approval safety monitoring critically important. In recent times FAERS has served as 

an important source of data for updating safety labeling information (Wysowski and Swartz, 

2005).  

 
15 Worryingly, in a recent study, electronic health records commonly used in hospitals nationwide failed to detect up 
to one in three potentially harmful drug interactions and other medication errors (Classen et al, 2020). 
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 Based on these prior studies, adverse safety related information should, on the margin, 

improve physician awareness about the potential safety of a drug and lead to changes in 

behavior. Presumably physicians (or consumers) may shift away from a drug given a safety 

concern. A number of studies focused on specific therapeutic markets support this association 

(e.g., Dranove and Olsen, 1994; Smalley et al., 2000; Cheah et al., 2007; Olfson and Marcus, 

2008; Tekin and Markowitz, 2008; Bunniran et al., 2009; Dorsey et al., 2010; Kales et al., 2011; 

Dusetzina et al., 2012; Briesacher et al., 2013; Lu et al., 2014). Prior work also documents that 

this association could be differential; new drugs tend be impacted more than existing drugs 

(Wilkinson et al., 2004) and geographic variation could cause the usage of a warned drug to be 

different (Shah et al., 2010).   

 What remains unknown from this batch of prior work is what constitutes a rational, 

medically appropriate response? One might expect physicians to switch some consumers to other 

drugs as the severity of relabeling events increase but are all of these changes medically 

appropriate or is there some other underlying motivation driving the switch? Are physicians 

being influenced by detailing as suggested by Macher and Wade (2016), anticipating future 

problems (i.e., “where there is smoke, there is fire”), practicing defensive medicine or 

responding to consumer concerns? Similarly, do consumers just seamlessly switch to different 

drugs or might they decide to stop treatment altogether and leave the market?   

 Prospect theory (Tversky and Kahneman, 1992; Kahneman and Tverksy, 1979) provides 

a behavioral explanation as to why physicians may switch consumers to other drugs (Verma et 

al, 2014). While a safety relabel is serious it is not necessarily relevant for all consumers, in all 

situations. However, physicians may overestimate the probability of a negative event occurring 

an incorrectly switch a consumer to another drug. Prospect theory can also help explain why 

consumers may ultimately choose to leave the market. When confronted with new information 

about a drug from their physicians, consumers may also vastly overestimate the probability of a 

negative event. As a result, they may incorrectly attribute these same negative effects to 

substitute drugs that physicians prescribe. If consumers make this link they may incorrectly 

conclude that the benefit of a new drug does not outweigh the risk and exit the market.  

 There is experimental evidence that supports these negative responses by consumers. For 

example, Bunniran et al. (2009) study trust and blame due to the withdrawal of pharmaceutical 

products as a result of safety related concerns. They found that consumers taking the withdrawn 
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drug or those taking another drug within the same class were highly likely to blame 

pharmaceutical companies and the FDA. After an event trust in both institutions remained fairly 

low. These declines provide one plausible explanation as to why consumers may formulate and 

attribute the negative effects described by Tversky and Kahneman (1992) and Kahneman and 

Tverksy (1979) to an affected drug or a substitute. It also suggests that there are behavioral 

considerations at play that physicians (and regulators) need to consider when consumers get 

switched to a new drug due to safety-related concerns. 

 Regulation can also have unintended consequence from spillovers. For example, toy 

recalls due to safety reasons tend to cause negative industry-wide spillover effects for similar 

types of toys (Freedman and Lederman, 2009). In our setting, such spillovers would manifest in 

the drugs within the same market or related market as the affected drug that is relabeled due to a 

safety concern. Krieger et al. (2018) supports this notion and demonstrates that there are also 

innovation impacts to consider. They find a decline in the total number of drugs developed in an 

affected area, implying that these negative shocks may slow overall innovation in a given 

therapeutic category.  

 These results are concerning given the increase in drugs receiving some type of expedited 

review by the FDA.16 On the one hand, it has been shown that drugs cleared via expedited 

review appear to offer greater quality-adjusted life years (QALYs) than those approved via 

conventional methods (Chambers et al., 2017). It appears that the expedited review process has 

helped the FDA prioritize drugs that offer greater health gains (0.182 versus 0.003 QALYs). On 

the other hand, these approvals have come at a cost. The evidence appears to suggest that the 

drugs receiving some type of expedited review are more likely to receive some type of serious 

safety label change (e.g., Mostaghim et al., 2017; Moore and Furberg, 2014; Carpenter et al., 

2008).  

   

4.0 Empirical strategy and data 

4.1. Empirical strategy 

 
16 These issues were discussed in a recent JAMA Forum post: https://newsatjama.jama.com/2018/05/23/jama-forum-
the-risks-and-benefits-of-expedited-drug-reviews/ 
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We exploit FDA relabeling events to estimate a diff-in-diffs specification. As we 

discussed above, the relabeling process involves private interactions between the FDA and a firm 

and remains unknown to consumers and physicians prior to formal action. We use two groups of 

observations. The first group (treated) includes drugs sold in the U.S. Because FDA relabeling 

events only affects drugs sold in the U.S., our treated group is exposed to treatment in the post-

relabel period but not in the pre-relabel period. The second group (control) is comprised of the 

same exact drugs as those in the treated group but sold in the U.K.17 As such, we estimate the 

following model: 

(1)															𝑌!,# 	= 	𝛼 + 𝛽$𝑅𝑒𝑙𝑎𝑏𝑒𝑙!,# + 𝛽%𝑈𝑆! + 𝛽&1𝑅𝑒𝑙𝑎𝑏𝑒𝑙!,#	𝑥	𝑈𝑆!3 + 𝛾𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠!,# + 𝜇! + 𝛿# 	+ 	𝜀!,# 

where Yi,t is demand (i.e., drug sales). Relabeli,t is a dummy variable for the post-treatment period 

represented by drug relabeling events and captures aggregate factors that would cause changes in 

Yi,t even in the absence of the treatment. USi is a dummy variable and captures possible 

differences between the treatment and control groups. We include a variety of controls, discussed 

below, as well as drug-level (𝜇!) fixed effects to control for time-invariant heterogeneity between 

drugs and year fixed effects (𝛿") to control for common shocks impacting all drugs across time. 

This base specification is estimated at differing levels of aggregation so 𝜇! will also represent 

therapeutic market fixed effects. The coefficient of interest across all models is 𝛽# and it 

represents the impact induced by drug relabeling events on U.S. drugs relative to U.K. drugs.  

 Our identification strategy relies on the fact that the control group is not exposed to 

treatment in either period. Importantly, the FDA does not have regulatory jurisdiction over drugs 

sold in the U.K.18 This can be visually shown in Figure 1 where the pre-trends do not appear to 

 
17 There are two ways to approach a control group given our identification strategy. First, we could try to find a 
matched sample of other drugs in the U.S. that were not ‘treated’ or did not experience a relabeling event in the 
same time period. One problem with this approach is that ‘matches’ will always be done with some error as they 
would need end up having significantly different mechanisms of action because of our intra- and inter-market 
substitution specifications. The second approach, and the one we took here, is the equivalent of the ‘twin’ studies in 
psychology and genetics (e.g., Polderman et al., 2015). By using the same exact drug, with the same mechanism of 
action, we remove that potential error or bias from our study. Theoretically, the only bias from our approach would 
be if there were differences between how patients in the U.S. and U.K. metabolized a drug; but no evidence exists 
that suggests that this is the case. The variable US will pick up differences between the treated and control groups.  
18 The U.K. was chosen for reasons of common language and legal frameworks. La Porta et al (2008) has shown that 
a country’s laws are highly correlated with a broad range of its legal rules and regulations, as well as with economic 
outcomes. There also exists an extensive cross-cultural communications literature that suggests these issues are 
important. For example, there are negative effects of language, such as distortion, blockages and filtration, that have 
long been recognized in the literature (e.g., Bargiela-Chiappini and Nickerson, 2003). Additionally, language can 
have a ‘foreignness’ attached to it that can act as a barrier and includes coded terms that are common within and 
between groups (Hedlund, 1999; Nahapiet and Ghoshal, 1998). Ultimately, we are dealing with medical side-effects 
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violate the parallel trend assumption. To test the parallel trend assumption more formally we take 

our pre-trend data and split it in half, defining the midpoint as an arbitrary treatment event and 

estimating our diff-in-diffs specification. If the parallel trend assumption is violated the 

coefficient 𝛽#will be statistically significant. The results for this placebo test are reported in 

Appendix Table 1. The coefficient of interest is not statistically significant across any model or 

level of analysis. Combined, the visual evidence along with these placebo test results suggest that 

the parallel trends assumption is not violated.  

4.2. Data 

 Our sample consists of all drugs sold in both the U.S. and U.K. during 2003 to 2009 as 

identified by IMS MIDAS™. Relabeling data for drugs sold in the U.S. was collected from the 

FDA MedWatch database and we restricted the data to those drugs that experienced a first-

instance of a drug relabel.19 Relabeling data for drugs sold in the U.K. was gathered from 

Datapharm’s electronic Medicines Compendium that covers all drugs approved by the U.K. 

Medicines and Healthcare Products Regulatory Agency (MHRA).20 In order to create a clean 

control group we further restricted our treated drugs to include only those that experienced a 

relabel in the U.S. but no relabel in the U.K. within eight quarters of the U.S. relabel. Table 1 

provides the distribution of relabel activity in the U.S. and U.K. For those drugs that were 

subsequently relabeled in the U.K. the average time until relabel was 12.95 months after the 

relabel event in the U.S. This was shorter than 18.5 months documented by Pfistermeister et al. 

(2013) for a limited sample of psychiatric drugs.21 Importantly, we could find no evidence that 

drug relabeling in the U.S., on average, systematically impacted contemporaneous physician 

prescription patterns in the U.K. (Figure 1). This further validates our U.K. sample as a clean 

control for causal estimates in our study. 

 
that are often reported in technical terms which will be common across the U.S. and U.K. By focusing on countries 
with a common language we are minimizing any bias that may be introduced from different terms, interpretations, or 
meanings of words. 
 
19 It is possible to have multiple different types of relabeling activity at the same time. This is not a concern for our 
baseline models. However, when we examine the variation across types of relabeling activity we include those 
observations in each type of relabeling activity. We focus on four types of relabeling events: precaution, adverse 
reaction, warning and box warning. There was only one first-instance of a contraindication that met our sample 
criteria. It was excluded from the final sample; our results do not change with this exclusion.  
20 https://www.medicines.org.uk/emc/  
21 In Appendix Table 2 we extend the time frame for our baseline model from eight quarters to 12 and 16 quarters; 
our results remain robust to these longer time frames. 



 13 

 Next, we gathered quarterly drug-level sales, detailing (i.e., direct to physician 

promotions), and price data from IMS MIDAS™. Sales or quantity data is standardized by IMS 

into a ‘standard unit’ that equates pills, tablets and liquids. The data for both the U.S. and U.K. 

includes both hospital and retail channels. IMS MIDAS™ includes all branded and generic drugs 

and covers every therapeutic category. Detailing or direct-to-physician promotion data is 

available for all approved drugs.22 Financial variables from the U.K. have been converted by 

IMS to U.S. dollars and all financial variables have been converted to real 2009 dollars using a 

GDP deflator.23 Descriptive statistics are presented in Table 2. 

 Note that drugs are approved for use within 4-digit anatomical therapeutic chemical 

(ATC) markets. The ATC classification is controlled by the World Health Organization and was 

designed to categorize drugs into different groups according to the organ or systems that they 

treat.24 There are four different levels of classification ranging from the most aggregate (1-digit 

ATC) to most disaggregate (4-digit ATC). For example, the 1-digit ATC market N comprises 

drugs for the nervous system. Within ATC N there are seven 2-digit ATC markets that contain 

19 3-digit ATC markets. Each of these 3-digit ATC markets, in turn, contains 4-digit ATC 

markets. An advantage of our data is that it is available at the 4-digit ATC market level and can 

be aggregated as needed allowing us to capture intra- and inter-market substitution patterns. An 

example of the ATC structure across its multiple levels is mapped in Figure 2. 

  4.2.1. Dependent variable  

 Our baseline dependent variable is drug sales (quantity) in standard units as determined 

by IMS. Sales are aggregated across varying dosages to the drug level since a relabeling event 

will impact the drug similarly across dosage types. We define Sales as the natural logarithm of 

quarterly drug sales plus one. In addition to the baseline drug level, we will consider two 

additional aggregate models. First, we consider sales of all drugs within a drug’s 4-digit ATC 

market. These drugs can be reasonably viewed as close substitutes. For example, both anti-viral 

 
22 Detailing is legal in the U.K. during our sample period. The Blue Guide: Advertising and Promotion of Medicines 
in the UK (3rd Edition, Sept 2014) published by MHRA outlines the regulations and processes for promoting 
branded drugs in the U.K. Ultimately, the Association of the British Pharmaceutical Industry (ABPI) sets the Code 
of Practice (contained in The Blue Guide) for drug promotion in the U.K.   
23 It is critical to note that the price data within IMS MIDAS™ is a wholesale price. It does not include adjustments 
as a result of back-end rebate payments or any other discounts that may be offered to insurance or prescription 
benefit companies.   
24 For a more detailed discussion: https://www.whocc.no/atc_ddd_methodology/purpose_of_the_atc_ddd_system/  
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drugs Invirase® and Norvir® are contained in the 4-digit ATC market J5AE (protease inhibitors). 

Importantly, this aggregation allows us to capture intra-market substitution by physicians.  

 Second, we move up one more level of aggregation to the 3-digit ATC market. At this 

level of analysis we capture all drugs within multiple 4-digit ATC markets but contained within 

the same 3-digit ATC market.25 For example, the two 4-digit ATC markets J5AE (protease 

inhibitors) and J5AF (nucleotide reverse transcriptase inhibitors) are contained within the 3-digit 

ATC market J5A (direct acting antivirals). As a second example, the two 4-digit ATC markts 

N3AF (carboxamide derivatives) and N3AG (fatty acid derivatives) are contained within the 3-

digit ATC market N3A (anti-epileptics). This level of aggregation allows us to capture inter-

market substitution by physicians.26  

  4.2.2. Independent variables and controls 

 As indicated above, our sample includes drugs that were sold both in the U.S. and U.K. 

We define U.S. as a dummy variable that equals one if the drug was sold in the U.S., zero 

otherwise. In order to implement our diff-in-diffs strategy, we define a dummy variable (Relabel) 

that equals one for all observations after a drug’s first relabeling event, zero otherwise. Relabel 

encompasses four types of events: precaution, adverse reaction, warning and box warning.  

Prior work has demonstrated the importance of detailing on physician prescription 

behavior (e.g., Datta and Dave, 2017; Manchanda and Honka, 2005) and reducing price elasticity 

(Windmeijer et al, 2006; Rizzo, 1999). However, contemporaneous detailing is a function of 

current sales, which can create a reverse causal relationship. To resolve this issue we use lagged 

promotion stock as studies have shown that promotions have a carry-over effect (e.g., Zhao et al, 

2011). Importantly, prior promotion expenditures should not be impacted by contemporaneous 

sales. As such we define Lagged promotion stock as the discounted sum of the prior three 

quarters detailing expenditures. We follow the literature (Leone, 1995) and use a 70 percent 

 
25 These markets can be explored at: https://www.whocc.no/atc_ddd_index/?code=J05A.  
26 As a robustness check, and as a method to verify we have captured all reasonable substitution patterns, on 
average, we aggregate markets up one more level to the 2-digit ATC market. At this level of aggregation we capture 
all 3-digit ATC markets contained within a 2-digit ATC market. Each of those 3-digit ATC markets will include 4-
digit ATC markets. For example, let’s consider the 2-digit ATC market J04 (antimycobaterials). It contains two 3-
digit ATC markets, J04A (drugs for treatment of tuberculosis) and J04B (drugs for treatment of lepra). The 3-digit 
ATC market J04A contains six 4-digit ATC markets: J04AA (aminosalicylic acid and derivatives), J04AB 
(antibiotics), J04AC (hydrazides), J04AD (thiocarbamide derivatives), J04AK (other drugs for the treatment of 
tuberculosis), and J04AM (combinations of drugs for the treatment of tuberculosis). The 3-digit ATC market J04B 
contains one 4-digit ATC market, J04BA (drugs for the treatment of lepra). Like our 3-digit ATC market level of 
analysis this 2-digit ATC market level of analysis can also be viewed as capturing inter-market substitution. 
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discount rate, however our baseline results are not sensitive to inclusion or variation in the 

discount rate.27 

Focusing on black-box warnings in the Type-2 diabetes market Macher and Wade (2016) 

found that affected firms took strategic actions with respect to promotions to mitigate losses from 

the relabeling event. Lagged promotion stock in the drug-level models will capture these effects. 

They also found that competitors take advantage of these adverse events by increasing promotion 

activity in order to try to steal market share. Lagged promotion stock in the aggregated models at 

the 4-digit and 3-digit ATC market-level will control for these competitive dynamics. These 

latter two models will also capture and control for any affected firm promotion response.  

Next, we control for several drug and market characteristics that may influence sales or 

demand. First, we define Vintage as a measure of elapsed time, in quarters, from introduction to 

the time of relabel. Drugs that have been on the market longer have time to build up brand 

loyalties with consumers and physicians even though they may become ‘outdated’ as newer 

treatments come to market. Finally, we include count variables for the Number of brands and 

Number of generics. The former controls for the intra-market substitution possibilities. The latter 

controls for cross-molecular substitution or the insurance company’s ability to attempt to 

influence physicians to switch patients to a generic of another branded drug within the same 

therapeutic market (Branstetter et al, 2016 and 2014; Castanheira et al, 2019).  

4.2.3. Endogeneity of price 

As indicated above, for those drugs that have multiple dosages sold by the same firm we 

aggregate the data together to the drug-level. We define Price by dividing drug-level revenues by 

the quantity of drugs sold. It is important to note that we are capturing wholesale price and this 

does not include any unmeasured discounting (rebates) by pharmaceutical companies, which is 

not currently commercially available. This price variable, however, will be highly correlated 

with ultimate consumer price and as such will be endogenous.28 To address this concern we 

follow the literature (e.g., Nevo, 2001) and use the mean and median price of other drugs in 

closely related markets as instruments for the drug’s price. Specifically, we use the mean and 

median price of other drugs within the same 2-digit ATC market. For example, if our affected 

 
27 Following Leone (1995) we vary the discount rate between 50 and 70 percent. 
28 A significant body of prior research on the pharmaceutical industry uses earlier versions of the IMS Health data 
that we employ here. Like us, these prior researchers do not directly observe retail sales or prices.  
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drug is a MAO-inhibitor (4-digit ATC market C02KC) we take the mean and median price of 

drugs in the broader 2-digit ATC market, C02 (anti-hypertensives). Drugs within the same 2-

digit ATC should, on average, be correlated due to similar marginal costs but uncorrelated with 

the affected drug’s unobserved product characteristics. The instruments pass the usual tests and 

are reported in the bottom panel of each table.    

5.0 Empirical findings 

 5.1 Impact of drug relabeling on demand 

 In Table 3 we present empirical results from Equation 1. Model 1 presents estimates at 

the drug level, Model 2 presents estimates at the 4-digit ATC market level and Model 3 presents 

estimates at the 3-digit ATC market level. Model 1 can be viewed as testing the casual impact of 

drug relabeling on aggregate drug demand while Model 2 captures intra-market drug 

substitution. In other words, Model 2 helps us understand if physicians switch consumers to 

another drug in the same 4-digit ATC market. An example of such a substitution would be a 

switch from the anti-viral Invirase® to Norvir®. Finally, Model 3 captures inter-market drug 

substitution. In this case, physicians switch patients to another drug in a different 4-digit ATC 

market but within the same 3-digit ATC market. In the prior example, both Invirase® and 

Norvir® are in the 4-digit ATC market J5AE (protease inhibitors). In the current example, a 

physician would be switching a patient from either of those two drugs to Retrovir®, which is in 

the 4-digit ATC market J5AF (nucleotide reverse transcriptase inhibitors). All three drugs are 

treatments for HIV and both 4-digit ATC markets, J5AE and J5AF, are contained within the 3-

digit ATC market J5A (direct acting antivirals). 

 The dependent variable across all three models is Sales and includes our full set of 

controls. In Model 1 we include drug and time fixed effects while in Models 2 and 3 we include 

market and time fixed effects. Price is instrumented in all models and passes the usual test 

statistics, which are reported at the bottom of the table. Standard errors are clustered at the 2-

digit ATC market level.29 The coefficient of interest is the interaction term (Relabel * U.S.); it is 

negative and statistically significant across all models. In Model 1 we find a 16.9 percent decline 

in aggregate drug sales caused by the first instance of a drug relabel.30 When we aggregate 

 
29 There are 126 2-digit ATC markets. 
30 In unreported regressions we exclude ln(Price) and ln(Lagged promotion stock), results remain consistent. In a 
second set of unreported regressions we include competitor promotions in Model 1 (Table 3). Again, results remain 
consistent. 
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within 4-digit ATC markets in Model 2 we find a 5.1 percent decline in aggregate sales. 

Importantly, this model accounts for demand of the affected drug that was absorbed by other 

drugs within that same 4-digit ATC market. In other words, physicians engaged in intra-market 

substitution and switched patients to another drug within the same therapeutic market. From the 

previous example, this would be a switch from Invirase® to Norvir® within the 4-digit ATC 

market J5AE.31 

 This is not the only substitution that can take place. It is possible that physicians can 

engage in inter-market substitution and switch consumers to another drug in a different 4-digit 

ATC market but still within the same 3-digit ATC market. Again, in the above example, this 

would be a switch from Invirase® (4-digit ATC market J5AE) to Retrovir® (4-digit ATC market 

J5AF) which are both in 3-digit ATC market J5A. In Model 3 we find a 4.7 percent decline in 

sales for drugs within a 3-digit ATC market that experienced a relabel. Critically, the result in 

Model 3 implies that after controlling for affected firm and competitor actions and capturing 

intra- and inter-market substitution patterns aggregate demand still declined by 4.7 percent.  

 It is important to recall the process that is involved with these types of substitutions. Only 

a physician can switch a consumer to another drug. While we can detect ex post that a 

substitution has occurred, we do not know what precipitated the move.32 There are several 

possibilities. First, consumers could become informed of the relabel and push a physician to 

switch them. Second, physicians could independently learn about the relabel and decide to 

proactively switch a consumer either for medically related reasons or for defensive medicine 

concerns. Third, physicians could learn about the relabel through detailing, either by the affected 

company or by a competitor and then decide to switch a consumer to another drug. These 

explanations are not mutually exclusive and there is recent evidence to support the role of 

detailing (Macher and Wade, 2016).33  

 
31 In Appendix Tables 2 and 3 we test alternative treatment periods. First, in Appendix Table 2 we consider time 
periods of three (Model 2) and four years (Model 3) before and after a drug relabeling. Our base model (Model 1, 
Table 3) is included as Model 1 for comparative purposes. Second, in Appendix Table 3 we widen the treatment 
window around the actual drug relabel. As a reminder, our baseline model excludes the quarter when a relabeling 
event occurred. In Model 1 and Model 2 we increase that exclusion to one and two quarters, respectively, before the 
quarter of relabel. This increase in exclusion will help if information leaks prior to announcement. All of the 
robustness results are consistent with our main findings in Table 3. 
32 This would require data on why physicians switched or changed a prescription.  
33 While detailing may help explain why physicians may switch consumers we are only able to conjecture why 
consumers choose to prematurely leave the market. The study of this consumer behavior is critical but beyond the 
scope of this paper.  
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 Given that our data is at the standard unit level we do not know exactly how many 

consumers this represents because prescription patterns will differ across drugs and consumers. 

We can, however, calculate a conservative, lower bound if we assume that the loss was for 

chronic conditions that require daily uptake. Under this assumption, we can multiply the decline 

in aggregate demand from Model 3 by average sales over the two-year sample period prior to the 

relabeling event. This translates into an estimated decline of 7.97 million standard units or 

slightly over 265,000 30-day prescriptions. If all of these prescriptions were for chronic 

conditions then this translates into a loss of approximately 11,000 consumers.34 Again, this is 

likely to be a conservative, lower bound estimate because not every prescription is for a chronic 

condition requiring a daily dose. As the number of prescriptions for acute conditions increase so 

would the resulting loss. 

 5.2 Heterogeneous impacts across relabeling intensity   

 Relabeling intensity varies across therapeutic markets (see Appendix Table 4). In Tables 

4 and 5 we explore how these differential intensities impact aggregate demand. We divide our 

data into two sub-samples and define ‘low-intensity markets’ and ‘high-intensity markets’.35 In 

Table 4, low-intensity markets are defined as those 4-digit ATC markets where there was only 

one relabeling event over our sample period. In contrast, in Table 5, we define high-intensity 

markets as those 4-digit ATC markets where more than one relabeling event occurred over the 

sample period. In Table 4, Model 1 the coefficient on the interaction term (Relabel * U.S.) is 

negative and statistically significant at the one percent level. We find a decline of 10.8 percent in 

aggregate demand for drugs in these low-intensity markets. Interestingly, however, in Model 2 

and Model 3 the interaction is not statistically significant. This suggests that intra-market 

substitution absorbed the decline in aggregate drug demand. In other words, in these markets 

physicians were successfully able to switch consumers to another drug within that same 4-digit 

ATC market. To the extent that consumer or physician concerns are warranted due to a 

relabeling event, this is the expected outcome. 

 In high-intensity markets, on the other hand, results are more complex. Across all models 

in Table 5 the interaction term is negative and statistically significant. In Model 1 aggregate drug 

 
34 Average quarterly sales (21.2 million) x 4.7% = 0.99 million standard units x 8 quarters = 7.97 million standard 
units. Next, 7.97 million divided by 30 = 265,707 30-day prescriptions. Finally, 265,707 divided by 24 months = 
11,071 chronic patients. 
35 At the 4-digit ATC market-level there are 61 markets categorized as low-intensity and 76 as high-intensity.  
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demand declined by 18.9 percent while in Model 2 aggregate demand declined by 6.0 percent for 

drugs within a drug’s 4-digit ATC market. As before, Model 2 represents intra-market 

substitution or consumers being switched to other drugs within the same 4-digit ATC market. 

Shifting to the 3-digit ATC market that incorporates inter-market substitution patterns, Model 3, 

aggregate demand declined by 5.0 percent.  

 In Appendix Tables 5 and 6 we redefine low-intensity and high-intensity markets as those 

markets in the bottom and top quartile of relabeling activity.36 Results remain robust with those 

reported in Tables 4 and 5. In low-intensity markets, Appendix Table 5, Model 1 aggregate 

demand declined by 10.3 percent. The interaction was not significant in Model 2 or Model 3 

again suggesting that intra-market substitution absorbed the entire decline. For the high-intensity 

markets, Appendix Table 6, Model 1 aggregate drug demand declined by 20.1 percent. In Model 

2, which incorporates intra-market substitution patterns, aggregate demand declined by 13.0 

percent. Finally, in Model 3 that incorporates inter-market substitution, aggregate demand 

declined by 8.3 percent; markets with repeated negative shocks appear to reinforce consumers’ 

behavioral responses.  

   5.3. Heterogeneous impacts across levels of relabeling severity  

 As discussed in Section 2.0 the severity of drug relabeling spans from precaution (least 

serious) through box warnings (most serious). Table 6 explores whether the aggregate demand 

response we document varies across this continuum of severity. We split the data into three sub-

samples representing precaution (Model 1), adverse reaction (Model 2) and warning/box warning 

(Model 3). The categorization continues to be based on the first time a drug is relabeled and 

allows us to isolate out the effects of any potential prior relabeling activity. Drugs that have 

multiple types of relabeling are counted individually in each category.37 Across all models the 

interaction remains negative and statistically significant. As expected, we see an increasingly 

negative aggregate demand response as severity increases; aggregate demand declines by 15.6 

percent, 20.3 percent and 36.3 percent in Models 1, 2 and 3, respectively.  

 The increasing decline in aggregate demand as severity increases should not be 

surprising; physicians appear to be switching consumers to other drugs as new potential risks 

 
36 At the 4-digit ATC market-level there are 35 markets in the bottom quartile and 36 markets in the top quartile. 
37 For example, if a relabeling event included both a precaution and an adverse reaction it would be included both as 
a precaution and adverse reaction individually.  
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reveal themselves. Notwithstanding this general decline, the magnitude of results in Model 1 are 

unexpected. This appears to be a rather strong aggregate demand response given the limited 

severity of the relabeling event. Unfortunately, we don’t know what caused physicians to react in 

such a significant way. That said, if the response is medically warranted or if physicians believe 

there may be future problems with a relabeled drug, then we should see intra-market substitution 

absorb this decline.38   

 We examine this in Table 7 where we split the sample and combine the two least severe 

relabeling events (i.e., precaution and adverse reaction) together. Again, across the models we 

find a negative and statistically significant coefficient on our interaction of interest. At the drug 

level, Model 1, aggregate demand declined by 14.7 percent while at the 4-digit ATC market 

level, which incorporates intra-market substitution, aggregate demand declined by 5.1 percent. 

At the 3-digit ATC market level, Model 3, which accounts for inter-market substitution 

aggregate demand still declines by 4.0 percent.  

 In Table 6 Model 3, aggregate demand declined by 36.3 percent for drugs that received 

either a warning or box warning. This response should not be surprising given the severity of the 

relabeling event. In Table 8, we combine warnings and box warnings and examine their intra- 

and inter-market substitution patterns. Across all three models in Table 8 our coefficient on the 

interaction term is negative and statistically significant. At the 4-digit ATC market level that 

incorporates intra-market substitution patterns (Model 2), aggregate demand declined by 10.0 

percent. At the 3-digit ATC market level that accounts for inter-market substitution patterns 

(Model 3), aggregate demand declined by 8.3 percent. As the severity of the relabeling event 

increases (Table 7, Model 3 versus Table 8, Model 3) the aggregate demand response increases 

as well.39 Importantly, given the substitution patterns captured within Model 3, consistent with 

prospect theory, consumers appear to be viewing potential substitutes in the same negative 

manner as the affected drug.  

 
38 The average probability that a drug that has received a precaution receives another relabel is 72.2 percent. As 
such, physicians may be pre-emptively switching patients to another drug. However, in this case we should see the 
entirety of aggregate demand decline of a drug absorbed by intra-market substitution. 
39 In Appendix Tables 7a, 7b, 8a and 8b we consider alternative time periods. First, in Appendix Tables 7a and 7b 
we consider three and four years before and after a relabeling event (as opposed to two years in our baseline model). 
Second, our baseline model excludes the quarter in which a relabeling event occurred. In Appendix Tables 8a and 8b 
we exclude one and two quarters prior to the relabeling event (along with the quarter of the event). In both tables 
and across all models our results remain robust to our baseline findings.  
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 Finally, we combine the intensity levels of relabeling activity from the prior section and 

examine how it impacts the heterogeneity of relabeling severity that we considered in this 

section. In Appendix Tables 9 and 10 we replicate Tables 7 and 8 for low-intensity markets. 

Results are consistent with our prior findings (Table 4 and Appendix Table 5). In Appendix 

Tables 9 and 10 we see declines in aggregate demand (Model 1) of 6.6 and 45.0 percent, 

respectively. Results in Models 2 and 3 are not statistically significant, suggesting that the entire 

decline in aggregate drug demand was absorbed by intra-market substitution.  

 In Appendix Tables 11 and 12 we replicate Tables 7 and 8 for high-intensity markets. 

Again, results are consistent with our prior findings for high-intensity markets (Table 5 and 

Appendix Table 6). For relabeling events that involved precaution or adverse warnings in high 

intensity markets, aggregate demand declined by 17.3 percent (Appendix Table 11, Model 1). At 

the 4-digit ATC market (Model 2) that incorporates intra-market substitution patterns, aggregate 

demand declined by 5.9 percent. Finally, at the 3-digit ATC market level (Model 3) that 

incorporates inter-market substitution patterns, aggregate demand declined by 4.8 percent. The 

most significant declines are in high-intensity markets with warnings or box warnings (Appendix 

Table 12). Aggregate demand declined by 34.3 percent at the drug level (Model 1), 10.4 percent 

at the 4-digit ATC market level (Model 2), and 15.8 percent at the 3-digit ATC market level 

(Model 3). Unlike low-intensity markets where intra-market substitution absorbed the decline in 

aggregate drug demand, in high-intensity markets we see significant declines in aggregate 

demand. 

 5.4 Impact on firm performance 

 Prior research has demonstrated that positive demand shocks generate more R&D 

(Blume-Kohout and Sood, 2013; Dranove et al., 2014; Manso et al., 2019). To the extent that a 

negative shock decreases market size, we would expect to see a decline in R&D (Acemoglu and 

Linn, 2004); which is consistent with Krieger et al. (2018). In an effort to estimate the economic 

losses from these regulatory shocks on firm performance we conduct an event study. The 

advantage of the event study methodology in this instance is that it will capture the loss in future 

discounted cash flows from two sources: (1) the unexpected losses in revenues from the 

relabeled drug over its remaining lifecycle; and, (2) the unexpected losses from declines in future 

innovation. 
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We follow McWilliams and Siegel (1997) to compute cumulative abnormal returns 

(CAR). First, we estimate the market model using OLS over a period of 250 days prior to the 

event. The estimation equation is the following: 

(2)    𝑅!# = 𝛼!# + 𝛽!# ∗ 𝑅'# + 𝜖!# 

where Rit is the return for firm i at time t and Rmt is the market return. The estimated OLS 

parameters represent the stock’s “normal” return with respect to the market in a period prior to 

the event. The abnormal return (AR) is defined as the return during a time span that includes the 

relabeling event minus the estimated return accounting only for the market effect. In other words, 

the abnormal return is the forecast error between the “actual” and the “normal” rate of returns. 

Empirically it is estimated as: 

(3)     𝐴𝑅!# = 𝜖!# = 𝑅!# − (𝛼!# + 𝛽!# ∗ 𝑅'#) 

After estimating the abnormal returns for each firm i at time t, CAR is computed as the 

cumulative value of the standardized abnormal returns or: 

 (4)     𝐶𝐴𝑅! = B $
(!.#

C ∗ ∑ )*$%
+,$%

(
#-$  

where ARit is defined by Equation 3, SDit is the abnormal return standard deviation and k 

represents the event window. We consider two different standard event windows (-1,+1) and (-3, 

+1). The event date is defined as t=0 and it represents the date of the public announcement of the 

relabeling event. Thus, the first event window considers the day of the event plus one day on 

other side of the event. The second event window considers the day of the event plus one day 

after and three days prior to the event. Finally, we multiple CARs by firm market capitalization 

data obtained from COMPUSTAT. The monetized value of CAR represents the unexpected 

change in the stream of future discounted cash flows from the two sources identified above. 

We find CARs of -0.49 percent and -0.76 percent, significant at the 1 percent level, 

across the two event windows, (-1, +1) and (-3, +1), respectively. Multiplying these CARs by 

firm market capitalization data translate into average losses of between $569 million and $882 

million. A back of the envelope calculation allows us to parse the losses into their two sources. 

From Model 1, Table 3 we know that drug demand falls, on average, by 16.9 percent. 

Multiplying this by average quarterly sales (21.2 million SU x 16.9%) and dividing by three 

equals monthly losses of 1.2 million SU. Next, we multiply this loss in demand by median price 

($2.36) and by the average effective remaining patent life (66 months) for a total loss of $186 
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million.40 The remaining difference of between $383 million and $696 million can be attributed 

to the unexpected losses from declines in future innovation.41 Importantly, this result combined 

with Krieger et al. (2018), provides evidence that the impact on upstream innovation from 

downstream regulatory shocks are significant. 

6.0 Robustness 

 6.1. Variation across market concentration and market size 

 It may be possible that variation in market size or the level of competition within markets 

may differentially influence physician prescribing behavior or consumer behavior. For example, 

business or general news stories may enhance physician or consumer awareness about a drug. 

We examine these issues in Appendix Table 13. In Models 1 and 2 we separate markets into the 

bottom and top quartiles of sales while in Models 3 and 4 we create a HHI index and separate 

markets into the bottom and top quartiles, respectively. Across all models we find a negative and 

significant coefficient on our interaction term. Aggregate demand declined by 9.5 percent and 

19.8 percent in the bottom and top sales quartiles (Models 1 and 2), respectively. However, when 

we consider the bottom and top quartiles of HHI, the difference becomes negligible. In Models 3 

and 4, aggregate demand declined by 22.8 percent and 21.3 percent, respectively. Thus, we see 

some variation in response across market sizes but not across levels of competition.   

 6.2 Heterogeneity across therapeutic markets 

 A benefit of the breadth of our data is that we capture all therapeutic markets; the impacts 

we find are average effects across these markets. Lost in our analysis, however, is the potential 

heterogeneity that may exist between markets. Thus, we examine two therapeutic markets that, 

according to our discussions with physicians and prior research, exhibit significantly different 

adherence rates and treatment periods. The first market we consider is ATC N (nervous system), 

which is comprised of seven 2-digit ATC therapeutic markets: anesthetics (N01), analgesics 

(N02), antiepileptics (N03), anti-Parkinson (N04), psycholeptics (N05), psychoanaleptics (N06) 

and other nervous system drugs (N07).  

 
40 Grabowski and Vernon (2000) report an average effective patent life for branded drugs of 11.5 years. The 
mean/median of Vintage is 24 quarters or 6 years resulting in an average remaining effective patent life of 5.5 years 
or 66 months. 
41 This is a significant loss as the most recent estimates of the cost of new drug development range from $1.39 
billion to $2.55 billion (DiMasi et al., 2016). 
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 Within these 2-digit ATC markets we have additional 3-digit and 4-digit ATC markets. 

For example, within N06 resides anti-depressants (N06A) and anti-dementia (N06D) drugs. In 

general, ATC N exhibits lower levels of non-adherence and longer treatment periods than our 

second therapeutic market. One study places the non-adherence rates of antiepileptic drugs at 26 

percent (Faught et al, 2008). In Appendix Table 14 we find a decline in aggregate drug demand 

of 21.4 percent (Model 1), however, the coefficient of interest is not significant in Model 2 or 

Model 3. These markets experience greater declines in aggregate demand, in percentage terms, 

than we saw for the overall sample, however, the entire decline is absorbed by intra-market 

substitution. That is, physicians successfully switch consumers to other drugs within the same 4-

digit ATC market.  

 The second market that we consider is ATC J (anti-infectives), which is comprised of six 

2-digit ATC markets: anti-bacterials (J01), anti-mycotics (J02), anti-mycobaterials (J04), anti-

virals (J05), immune sera and immunoglobulins (J06), and vaccines (J07). The 2-digit ATC 

market J01 includes 10 different 3-digit ATC markets comprising various classes of anti-

bacterials; for example, tetracyclines (J01A) and beta-lactam anti-bacterials/penicillins (J01C). 

In general, these ATC markets exhibit greater rates of non-adherence and shorter treatment 

periods than ATC N. Two recent studies (Fernandes et al., 2014 and Tong et al., 2018) place the 

non-adherence rates for antimicrobial therapies at greater than 57 percent. In Appendix Table 15 

we find a decline in aggregate demand of 24.2 percent (Model 1). In these markets, however, we 

also see declines of 13.8 percent and 13.5 percent in the 4-digit (Model 2) and 3-digit (Model 3) 

ATC markets, respectively.  

 While we only explore two markets we see rather significant heterogeneity in physician 

substitution patterns and consumer response. These two markets were intentionally chosen 

because they differed in non-adherence rates and average treatment lengths. Unfortunately, we 

lack the data to say for certainty what specific attribute of these markets caused the physician and 

consumer responses that we observed. What we can say, however, is that there appears to be 

significant heterogeneity across markets and this has implications for firm and competitor 

responses as well as for regulators. Further work exploring the why behind these movements is 

clearly warranted. 

7.0. Discussion and conclusions 
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 Regulatory interventions rarely occur without consequences, many a times unintended. 

Understanding how they impact markets are important for both firms and policymakers, 

especially in markets that are R&D intensive, like pharmaceuticals. While we are not the first to 

analyze the impacts of drug relabeling in the U.S, we are the first to do so in such a 

comprehensive and causal manner. Given the breadth of our data we are able to incorporate all 

plausible intra- and inter-market substitution patterns along with affected firm and competitor 

actions. This allows us to estimate not only the causal impact of a relabeling event on a drug but 

also quantify the overall effects on aggregate demand. In our baseline regressions (Table 3, 

Model 1) we find a decline in aggregate drug demand of 16.9 percent. Our back of the envelope 

calculation suggests that this decline translates into an average loss of $186 million over the 

drugs remaining effective patent life.  

 This is not the only loss that the affected firm suffers. In addition to losses in current and 

future sales from the affected drug, there can be unexpected losses from declines in future 

innovation (Krieger et al., 2018). In order to calculate the economic losses from these combined 

effects we utilize an event study. Results across two standard event windows translate into 

average losses of between $569 million and $882 million. Backing out the $186 million from the 

average loss to the affected product suggests that the market is anticipating unexpected losses 

from future innovation in the range of $383 million to $696 million. Combined with Krieger et 

al. (2018) our results suggest that these regulatory shocks are causing significant enough damage 

to downstream aggregate demand such that upstream innovation is being impacted. 

 When we take a step back and consider intra-market substitution patterns, or the shifting 

of consumers to another drug within the same 4-digit ATC market, we find an aggregate demand 

decline of 5.1 percent (Table 3, Model 2). In a different setting, Macher and Wade (2016) find 

that competitors take advantage of drugs when they are hit with black-box warnings. Our 

findings are broadly consistent with Macher and Wade (2016) as this specification controls for 

both the promotion activity by the affected firm as well as competitor firms. However, the extent 

to which competitor firms ‘pull’ consumers via promotion activity or they are ‘pushed’ by 

physicians due to behavioral explanations, is undetermined.  

 If we take yet another step back and consider both intra- and inter-market substitution 

patterns, or the shift of consumers to another drug in a different 4-digit ATC market but within 

the same 3-digit ATC market, we still find a decline in aggregate demand of 4.7 percent (Table 
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3, Model 3). This result suggests that not all consumers are absorbed by competitors after 

accounting for all plausible substitution patterns; some consumers prematurely leave the market. 

Thus, across our baseline results these regulatory shocks have implications for affected firms, 

intra-market competitors, inter-market competitors and welfare, which we discuss below. 

Importantly, all of these results should be viewed as lower bounds. Given evidence that not all 

consumers and physicians may be fully informed of these regulatory shocks it is probable that 

the effects we document may not be capturing the full aggregate demand shock and impacts on 

firm performance.   

Complementing our baseline results, we find increasing impacts across all levels of 

relabeling severity (Table 6). Consistent with prior literature (e.g., Dorsey et al., 2010) we find 

the greatest impact for the most severe type of relabel. Less intuitive, however, is why we see 

such a significant demand response for the least severe relabel (i.e., precaution). Conditional on 

receiving a precaution, there is a significant probability that a drug will be relabeled again in the 

future. So it is plausible that physicians are preemptively switching consumers to other drugs. 

After accounting for intra- and inter-market substitution (Table 7) we find a 4.0 percent decline 

in aggregate demand. While we conjectured in the paper as to physician and consumers 

motivations, understanding their respective why is left for future work.  

 We exploit other variation in our data. For example, we break markets into “low-

intensity” and “high-intensity” markets based on the level of relabeling activity within a 

particular 4-digit ATC market. In the case of low-intensity markets (Table 4 and Appendix Table 

5) and low-intensity markets across types of relabeling (Appendix Tables 9 and 10), we find that 

the entire decline in aggregate demand was absorbed by intra-market substitution. That is 

consumers were all successfully switched to other drugs within the same 4-digit ATC market. In 

contrast, in the case of high-intensity markets (Table 5 and Appendix Table 6) and high-intensity 

markets across types of relabeling (Appendix Tables 10 and 11) we find persistent declines in 

aggregate demand. This split is an important caveat to the extant literature, especially the work 

focused on box warnings (e.g., Dorsey et al., 2010; Olfson et al., 2008; Jacoby et al, 2005) 

because it suggests the impacts are more nuanced.  

 A significant body of work has focused on elasticity and brand loyalty within the 

pharmaceutical industry (e.g., Bala et al, 2017). These issues are critical, for example, for pricing 

strategies and how firms respond to competitors and structure end of life strategies of branded 
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products. The culmination of our baseline findings suggest that firms should also be concerned 

with the magnitude of consumer (and physician) response to adverse news from relabeling 

events. While some of these shifts may be medically warranted, others may be due to competitor 

behavior (Macher and Wade, 2016), physicians responding defensively, consumers acting 

irrationally or some combination of these. Given that we control for firm detailing/promotion 

activities our findings suggest that affected firms are not able to stem the decline in demand. All 

of this suggests that how physicians (and consumers) receive information may have important 

implications. 

More broadly, our results have implications for policymakers. There are a number of 

FDA programs that offer expedited development and review for new drugs. These programs all 

attempt to bring new, novel drugs to market more quickly. Evidence exists that these programs 

have been successful (Chambers et al., 2017). However, drugs approved through these expedited 

pathways are also more likely to suffer from serious safety label changes (Mostaghim et al., 

2017; Moore and Furberg, 2014; Carpenter et al., 2008). As we have documented throughout this 

analysis, those changes have significant impacts on firm performance, including downstream 

aggregate demand as well as upstream innovation. These impacts add another layer of 

complication for regulators to consider in balancing safety with speed. Importantly, these results 

combined with our results and of those of Krieger et al (2018) all point in the direction that we 

may be trading quicker access to new, novel drugs today for less innovation tomorrow. 

This trade-off suggests our results have plausible welfare implications. By its nature, 

regulation should be welfare enhancing but there is evidence that this may not always be the case 

(e.g., Kessel, 1967; Sloan and Steinwald, 1980; Bartel and Thomas, 1985, 1987; Peltzman, 1987; 

Ter-Martirosyan and Kwoka, 2010). If consumers that leave the market should be treated, then 

this shift to the non-treated population could be a detriment to welfare. Moreover, if consumers 

remain treated but are switched to drugs that are less effective, this will again be a detriment to 

welfare. On the other hand, it is widely believed that some drugs are overprescribed (Lembke et 

al., 2018; Sacarny et al., 2016; Forgacs, 2008; Price et al., 1986). If it is these consumers that 

exit the market then the impact on welfare may be dampened. Combined with this dynamic is the 

impact on welfare from lost future innovation. Balanced against these potential losses are the 

gains from the true purpose of relabeling – potentially preventing consumers from being harmed. 
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As we can observe in the recent past, the world is already witnessing a demonstration of these 

tradeoffs in rapid approval of COVID-19 drugs and vaccines. Further work is warranted.   
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Figure 1. Drug demand in U.S. and U.K. surrounding relabel events. The figure shows the sales 
quantity of drugs in the U.S. (treated) and U.K. (control) before and after relabeling. The relabeling event 
is set at t=0 where time horizon is in quarters and labeled on the x-axis. Sales are shown over eight 
quarters before and after the quarter of relabeling. Drug sales (thousands) are in standardized units 
determined by IMS Health and natural logarithms are taken (y-axis). 
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Figure 2. Mapping of ATC. This figure maps an example of the ATC therapeutic category N from the 1-
digit (ATC 1) to 4-digit (ATC 4) level. Therapeutic category N represents the nervous system. This 
category has seven different 2-digit ATC categories. Focusing on the 2-digit category, N03 – 
Antiepileptics, it contains only one 3-digit ATC category, N03A Antiepileptics, which itself contains eight 
4-digit ATC categories. The 4-digit ATC category, N03AC Oxazolidine derivatives, includes three 
different drugs: (1) paramethadione, (2) trimethadione, and (3) ethadione. As an example, assume that 
trimethadione undergoes a drug relabel. Our primary specification analyzes the direct effect on 
trimethadione. Intra-market substitution considers the extent to which the other drugs within N03AC 
absorb sales from trimethadione. Inter-market substitution considers sales across all 4-digit ATC 
categories, N03AA – N03AX, within the same 3-digit ATC category, N03A. Drugs within the same 4-digit 
ATC category can be viewed as near perfect substitutes while drugs within the same 3-digit ATC 
category can be viewed as less perfect, but still medically viable, substitutes. Drugs across different 2-
digit ATC therapeutic categories are not related for purposes of treatment. 
 

  

ATC 1
N: Nervous system ATC 2

N01: Anestheics
N02: Analgesics
N03: Antiepileptics
N04: Anti-Parkison Drugs
N05: Psycholeptics
N06: Psychoanaleptics
N07: Other Nervous System Drugs

ATC3
N03A: Antiepileptics ATC4

N03AA: Barbiturates and derivatives
N03AB: Hydantoin derivatives
N03AC : Oxazolidine derivatives
N03AD: Succinimide derivatives
N03AE: Benzidiaepine derivatives
N03AF: Carboxamide derivatives
N03AG: Fatty acid derivatives
N03AX: Other antiepileptics

Drugs
1. paramethadione
2. trimethadione
3. ethadione
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Table 1. Distribution of relabel activity between the U.S. and U.K. Our sample consists of drugs sold 
both in the U.S. and U.K. In order to create a clean control window we excluded drugs if they were 
relabeled in the U.K. within eight quarters of a U.S. relabel. This table shows the variation in relabeling 
types across the U.S. and U.K. for our sample. Within the imposed restrictions the average elapsed time 
between relabeling in the U.S. and U.K. is 12.95 quarters. 
 
 
 
 

Relabeling Type U.S. U.K. Average time (Quarters) 
Precaution 226 166 13.48 

Adverse Reaction 176 134 11.83 
Warning 161 115 12.06 

Box Warning 53 35 9.40 
     

Label Changes 251 180 12.95 
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Table 2. Descriptive statistics. Sales (quantity) are measured in millions of standardized units. IMS 
Health has converted financial variables for U.K. drugs to U.S. dollars. All financial variables have been 
converted to real 2009 U.S. dollars using a GDP deflator. 
 

Variable N Mean Median 
Std. 
Dev. Min Max 

        
U.S. 6,519 0.54 1.00 0.50 0.00 1.00 
Sales (standard units) 6,519 21.20 0.88 45.81 0.00 577.85 
Promotion 6,519 1.73 0.02 5.40 0.00 63.18 
Lagged promotion stock 6,519 6.84 0.68 15.46 0.00 135.17 
Price 6,519 91.78 2.36 357.43 0.01 5352.50 
Relabel 6,519 0.27 0.00 0.45 0.00 1.00 
Precaution 6,519 0.22 0.00 0.42 0.00 1.00 
Adverse reaction 6,519 0.16 0.00 0.37 0.00 1.00 
Warning 6,519 0.11 0.00 0.31 0.00 1.00 
Box warning 6,519 0.03 0.00 0.17 0.00 1.00 
Vintage 6,519 23.53 24.00 11.53 1.00 56.00 
Number of brands 6,519 7.98 6.00 6.31 0.00 32.00 
Number of generics 6,519 13.70 5.00 23.70 0.00 149.00 
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Table 3. Effects of relabeling on demand. Dependent variable is the natural logarithm of sales, 
ln(Sales). The unit of analysis in Model 1 is the drug level, Model 2 is the 4-digit ATC market (ATC4) 
level and Model 3 is the 3-digit ATC market (ATC3) level. Price is instrumented in all models with 
relevant tests reported in the table. Controls include Vintage, Number of brands, and Number of generics. 
The models are log-linear, as such the marginal effects are calculated using the equation exp(β-1) where β 
is the respective coefficient on our variable of interest, (Relabel*U.S.). Marginal effects for our variable 
of interest are reported in the lower panel. Standard errors are clustered at the 2-digit ATC market level. 
Constants are included in all specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 
0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales)  Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.108*** 0.058** 0.023 
  (0.032) (0.024) (0.020) 
     

U.S. 0.712*** 1.796*** 1.375*** 
  (0.034) (0.040) (0.036) 
     

Relabel * U.S. -0.185*** -0.052* -0.048** 
  (0.025) (0.028) (0.023) 
     

ln(Price) -0.610*** -1.158*** -0.544*** 
  (0.053) (0.049) (0.049) 
     

ln(Lagged promotion 
stock) 0.742*** 0.186*** 0.151*** 

  (0.015) (0.009) (0.007) 
Controls Y Y Y 

Drug fixed effect Y N N 
Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 6,519 5,946 4,946 
Adjusted R2 0.531 0.765 0.820 

First stage F-statistic 37.12 64.79 26.56 
Hansen J-statistic 2.12 0.15 2.621 
Hansen J p-value 0.145 0.698 0.105 

     
Marginal effects:    

Relabel * U.S. -0.169 -0.051 -0.047 
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Table 4. Effects of relabeling on demand: Low-intensity markets. Dependent variable is the natural 
logarithm of sales, ln(Sales). Low-intensity markets are defined as those 4-digit ATC markets where there 
was only one relabeling event over our sample period. The unit of analysis in Model 1 is the drug level, 
Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market (ATC3) level. 
Price is instrumented in all models with relevant tests reported in the table. Controls include Vintage, 
Number of brands, and Number of generics. The models are log-linear, as such the marginal effects are 
calculated using the equation exp(β-1) where β is the respective coefficient on our variable of interest, 
(Relabel*U.S.). Marginal effects for our variable of interest are reported in the lower panel. Standard 
errors are clustered at the 2-digit ATC market level. Constants are included in all specifications but 
omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales)  Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.096* -0.008 -0.071 
  -0.052 -0.094 -0.089 
     

U.S. 0.350*** 1.640*** 0.842*** 
  -0.056 -0.094 -0.085 
     

Relabel * U.S. -0.114*** -0.012 -0.015 
  -0.04 -0.07 -0.064 
     

ln(Price) -0.522*** -1.073*** -0.445*** 
  -0.055 -0.046 -0.072 
     

ln(Lagged promotion stock) 0.691*** 0.153*** 0.166*** 
  -0.034 -0.021 -0.019 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 1,576 1,576 749 
Adjusted R2 0.655 0.561 0.638 

First stage F-statistic 79.67 150.21 16.34 
Hansen J-statistic 1.235 0.477 0.092 
Hansen J p-value 0.267 0.490 0.761 

     
Marginal effects:    

Relabel * U.S. -0.108   
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Table 5. Effects of relabeling on demand: High-intensity markets. Dependent variable is the natural 
logarithm of sales, ln(Sales). High-intensity markets are defined as those 4-digit ATC markets where 
there was more than one relabeling event over our sample period. The unit of analysis in Model 1 is the 
drug level, Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market 
(ATC3) level. Price is instrumented in all models with relevant tests reported in the table. Controls 
include Vintage, Number of brands, and Number of generics. The models are log-linear, as such the 
marginal effects are calculated using the equation exp(β-1) where β is the respective coefficient on our 
variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are reported in the lower 
panel. Standard errors are clustered at the 2-digit ATC market level. Constants are included in all 
specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1  Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.118*** 0.072*** 0.026 
  -0.037 -0.022 -0.02 
     

U.S. 0.904*** 1.874*** 1.539*** 
  -0.038 -0.034 -0.043 
     

Relabel * U.S. -0.210*** -0.062** -0.051** 
  -0.03 -0.028 -0.023 
     

ln(Price) -0.846*** -1.137*** -0.539*** 
  -0.099 -0.081 -0.076 
     

ln(Lagged promotion stock) 0.706*** 0.180*** 0.129*** 
  -0.019 -0.008 -0.006 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 4,943 4,370 4,197 
Adjusted R2 0.526 0.833 0.852 

First stage F-statistic 17.61 48.22 33.22 
Hansen J-statistic 1.501 0.218 0.778 
Hansen J p-value 0.221 0.640 0.378 

     
Marginal effects:    

Relabel * U.S. -0.189 -0.060 -0.050 
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Table 6. Heterogeneous impacts across levels of relabeling severity. Dependent variable is the natural 
logarithm of sales, ln(Sales). Data is split into three sub-samples representing precaution (Model 1), 
adverse reaction (Model 2) and warning/box warning (Model 3). The categorization is based on the first 
time a drug is relabeled and allows us to isolate out the effects of any potential prior relabeling activity. 
The unit of analysis across all models is the drug level. Price is instrumented in all models with relevant 
tests reported in the table. Controls include Vintage, Number of brands, and Number of generics. The 
models are log-linear, as such the marginal effects are calculated using the equation exp(β-1) where β is the 
respective coefficient on our variable of interest, (Relabel*U.S.). Marginal effects for our variable of 
interest are reported in the lower panel. Standard errors are clustered at the 2-digit ATC market level. 
Constants are included in all specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 
0.01. 
 

 Model 1 Model 2 Model 3 
DV = ln(Sales) Precaution     Adverse reaction Warning/Box 

Relabel 0.111*** 0.143*** 0.176*** 
  (0.030) (0.040) (0.050) 
     

U.S. 0.838*** 0.749*** 0.607*** 
  (0.039) (0.041) (0.051) 
     

Relabel * U.S. -0.170*** -0.227*** -0.451*** 
  (0.027) (0.036) (0.059) 
     

ln(Price) -0.759*** -0.528*** -0.709*** 
  (0.069) (0.039) (0.070) 
     

ln(Lagged promotion stock) 0.725*** 0.790*** 0.756*** 
  (0.017) (0.022) (0.026) 

Controls Y Y Y 
Drug fixed effect Y Y Y 

Market fixed effect N N N 
Time fixed effect Y Y Y 

N 5,183 3,166 2,236 
Adjusted R2 0.517 0.579 0.430 

First stage F-statistic 29.39 65.76 37.76 
Hansen J-statistic 0.81 5.821 1.451 
Hansen J p-value 0.368 0.055 0.228 

     
Marginal effects:    

Relabel * U.S. -0.156 -0.203 -0.363 
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Table 7. Effects of precaution/adverse reaction relabeling on demand. Dependent variable is the 
natural logarithm of sales, ln(Sales). Sample includes the combination of precaution and adverse reaction. 
The unit of analysis in Model 1 is the drug level, Model 2 is the 4-digit ATC market (ATC4) level and 
Model 3 is the 3-digit ATC (ATC3) level. Price is instrumented in all models with relevant tests reported 
in the table. Controls include Vintage, Number of brands, and Number of generics. The models are log-
linear, as such the marginal effects are calculated using the equation exp(β-1) where β is the respective 
coefficient on our variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are 
reported in the lower panel. Standard errors are clustered at the 2-digit ATC market level. Constants are 
included in all specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.068** 0.067*** 0.021 
  (0.032) (0.024) (0.021) 
     

U.S. 0.659*** 1.779*** 1.440*** 
  (0.039) (0.042) (0.033) 
     

Relabel * U.S. -0.159*** -0.052* -0.041* 
  (0.035) (0.028) (0.023) 
     

ln(Price) -0.569*** -1.175*** -0.700*** 
  (0.053) (0.045) (0.027) 
     

ln(Lagged promotion stock) 0.808*** 0.186*** 0.151*** 
  (0.018) (0.009) (0.007) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 6,310 5,722 4,955 
Adjusted R2 0.407 0.768 0.812 

First stage F-statistic 49.62 70.28 42.90 
Hansen J-statistic 0.065 0.090 2.254 
Hansen J p-value 0.799 0.765 0.133 

     
Marginal effects:    

Relabel * U.S. -0.147 -0.051 -0.040 
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Table 8. Effects of warning/box warning relabeling on demand. Dependent variable is the natural 
logarithm of sales, ln(Sales). Sample includes the combination of warning and box warning. The unit of 
analysis in Model 1 is the drug level, Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 
3-digit ATC market (ATC3) level. Price is instrumented in all models with relevant tests reported in the 
table. Controls include Vintage, Number of brands, and Number of generics. The models are log-linear, as 
such the marginal effects are calculated using the equation exp(β-1) where β is the respective coefficient on 
our variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are reported in the 
lower panel. Standard errors are clustered at the 2-digit ATC market level. Constants are included in all 
specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.176*** 0.020 0.005 
  (0.050) (0.034) (0.029) 
     

U.S. 0.607*** 1.821*** 1.545*** 
  (0.051) (0.048) (0.042) 
     

Relabel * U.S. -0.451*** -0.105** -0.087** 
  (0.059) (0.044) (0.036) 
     

ln(Price) -0.709*** -0.997*** -0.533*** 
  (0.070) (0.059) (0.028) 
     

ln(Lagged promotion stock) 0.756*** 0.174*** 0.117*** 
  (0.026) (0.012) (0.012) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 2,236 2,189 1,991 
Adjusted R2 0.430 0.834 0.812 

First stage F-statistic 37.76 96.64 753.48 
Hansen J-statistic 1.451 0.824 1.653 
Hansen J p-value 0.228 0.364 0.199 

     
Marginal effects:    

Relabel * U.S. -0.363 -0.100 -0.083 
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Appendix Table 1. Placebo test of parallel trend assumption. This placebo test is on the pre-trend data 
where it is divided in two with the mid-point being assigned as the arbitrary event date. The dependent 
variable is the natural logarithm of sales, ln(Sales). The unit of analysis in Model 1 is the drug level, 
Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market (ATC3) level. 
Price is instrumented in all models with relevant tests reported in the table. Controls include Vintage, 
Number of brands, and Number of generics. The models are log-linear, as such the marginal effects are 
calculated using the equation exp(β-1) where β is the respective coefficient on our variable of interest, 
(Relabel*U.S.). Standard errors are clustered at the 2-digit ATC market level. Constants are included in 
all specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales)  Drug level 
ATC4 
market 

ATC3 
market 

Relabel -0.026 0.025 0.003 
  (0.041) (0.030) (0.026) 
     

U.S. 0.600*** 1.693*** 1.433*** 
  (0.059) (0.054) (0.043) 
     

Relabel * U.S. -0.069 -0.008 -0.006 
  (0.050) (0.037) (0.032) 
     

ln(Price) -0.483*** -0.966*** -0.672*** 
  (0.066) (0.059) (0.048) 
     

ln(Lagged promotion 
stock) 0.878*** 0.202*** 0.153*** 

  (0.024) (0.013) (0.009) 
Controls Y Y Y 

Drug fixed effect Y N N 
Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 3,141 2,865 2,383 
Adjusted R2 0.481 0.790 0.823 

First stage F-statistic 25.71 49.62 36.46 
Hansen J-statistic 2.22 0.15 2.728 
Hansen J p-value 0.157 0.658 0.135 
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Appendix Table 2. Baseline results across alternative time periods. Dependent variable is the natural 
logarithm of sales, ln(Sales). Model 1 replicates Model 1, Table 3. The time period of analysis is extended 
to three years (12 quarters) in Model 2 and four years (16 quarters) in Model 3. Price is instrumented in 
all models with relevant tests reported in the table. Controls include Vintage, Number of brands, and 
Number of generics. The models are log-linear, as such the marginal effects are calculated using the 
equation exp(β-1) where β is the respective coefficient on our variable of interest, (Relabel*U.S.). Marginal 
effects for our variable of interest are reported in the lower panel. Standard errors are clustered at the 2-
digit ATC market level. Constants are included in all specifications but omitted from the table. * p < 0.10, 
** p < 0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 
DV = ln(Sales) 2 years 3 years 4 years 

Relabel 0.108*** 0.113*** 0.132*** 
  (0.032) (0.027) (0.025) 
     

U.S. 0.712*** 0.696*** 0.711*** 
  (0.034) (0.027) (0.026) 
     

Relabel * U.S. -0.185*** -0.235*** -0.279*** 
  (0.025) (0.022) (0.021) 
     

ln(Price) -0.610*** -0.499*** -0.506*** 
  (0.053) (0.033) (0.036) 
     

ln(Lagged promotion stock) 0.742*** 0.760*** 0.772*** 
  (0.015) (0.013) (0.012) 

Controls Y Y Y 
Drug fixed effect Y Y Y 

Market fixed effect N N N 
Time fixed effect Y Y Y 

N 6,519 9,229 11,842 
Adjusted R2 0.497 0.498 0.484 

First stage F-statistic 37.12 36.23 39.12 
Hansen J-statistic 2.120 4.310 3.982 
Hansen J p-value 0.145 0.635 0.679 

     
Marginal effects:    

Relabel * U.S. -0.168 -0.209 -0.243 
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Appendix Table 3. Baseline results across alternative treatment periods. Dependent variable is the 
natural logarithm of sales, ln(Sales). In our baseline model specification the quarter of relabel is excluded 
from analysis. Model 1 drops the quarter of relabel (t = 0) and the quarter prior (t = -1) Model 2 drops the 
quarter of relabel (t = 0) and the two quarters prior (t = -1, -2). Dropping prior quarters controls for any 
possible leakage of information. Price is instrumented in all models with relevant tests reported in the 
table. Controls include Vintage, Number of brands, and Number of generics. The models are log-linear, as 
such the marginal effects are calculated using the equation exp(β-1) where β is the respective coefficient on 
our variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are reported in the 
lower panel. Standard errors are clustered at the 2-digit ATC market level. Constants are included in all 
specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 

 Model 1 Model 2 
DV = ln(Sales) T = 0, -1 T = 0, -1, -2 

Relabel 0.118*** 0.124*** 
  (0.036) (0.041) 
    

U.S. 0.671*** 0.673*** 
  (0.032) (0.034) 
    

Relabel * U.S. -0.203*** -0.210*** 
  (0.027) (0.028) 
    

ln(Price) -0.472*** -0.470*** 
  (0.040) (0.042) 
    

ln(Lagged promotion stock) 0.739*** 0.745*** 
  (0.016) (0.016) 

Controls Y Y 
Drug fixed effect Y Y 

Market fixed effect N N 
Time fixed effect Y Y 

N 6,074 5,661 
Adjusted R2 0.501 0.498 

First stage F-statistic 48.86 44.81 
Hansen J statistic 3.791 3.457 
Hansen J p-value 0.150 0.178 

    
Marginal effects:   

Relabel * U.S. -0.183 -0.189 
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Appendix Table 4. Variation in relabeling activity. Count of first instance relabeling activity across 
type and over time. If a drug has multiple relabel types they are each counted below. 
 
 
 

ATC Relabel Type 2003 2004 2005 2006 2007 2008 2009 

A 

Precaution 6 13 17 19 24 26 26 
Adverse Reaction 4 7 12 17 21 26 29 
Warning 1 3 4 6 7 12 13 
Boxed Warning 0 0 0 0 3 5 5 

Total Relabel 6 14 19 22 28 31 33 

B 

Precaution 4 5 7 7 7 8 8 
Adverse Reaction 4 7 9 9 9 9 9 
Warning 2 3 6 6 7 7 7 
Boxed Warning 0 0 0 0 1 1 3 

Total Relabel 4 7 9 9 9 10 11 

C 

Precaution 10 15 20 26 30 36 39 
Adverse Reaction 11 15 19 22 22 24 26 
Warning 9 11 15 17 20 23 24 
Boxed Warning 0 0 1 2 3 4 4 

Total Relabel 16 23 27 31 34 40 42 

D 

Precaution 1 5 7 7 7 7 7 
Adverse Reaction 0 3 4 4 5 5 5 
Warning 0 0 1 3 3 3 3 
Boxed Warning 0 0 0 2 2 3 3 

Total Relabel 1 5 7 8 8 8 8 

G 

Precaution 5 7 14 15 16 17 17 
Adverse Reaction 2 4 10 11 11 12 13 
Warning 0 0 1 1 5 9 11 
Boxed Warning 0 0 0 0 0 0 0 

Total Relabel 5 7 14 15 17 18 18 

H 

Precaution 1 5 5 6 6 7 7 
Adverse Reaction 1 4 5 6 6 7 7 
Warning 0 2 2 3 3 4 4 
Boxed Warning 0 0 0 0 0 0 0 

Total Relabel 1 5 5 6 6 7 7 

J 

Precaution 18 44 50 56 59 64 68 
Adverse Reaction 12 30 40 45 46 53 57 
Warning 6 16 22 30 41 53 56 
Boxed Warning 2 8 9 10 13 15 16 

Total Relabel 22 49 55 59 62 69 72 
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Appendix Table 4. Variation in relabeling activity (continued). 
 
 
 

ATC Relabel Type 2003 2004 2005 2006 2007 2008 2009 

L 

Precaution 14 25 31 38 44 46 52 
Adverse Reaction 11 19 30 35 41 46 51 
Warning 7 10 17 29 38 41 47 
Boxed Warning 4 5 6 16 21 21 25 

Total Relabel 17 30 39 43 52 54 57 

M 

Precaution 8 17 20 23 24 24 24 
Adverse Reaction 5 11 15 15 17 18 19 
Warning 1 6 9 14 16 18 18 
Boxed Warning 0 1 3 10 11 11 12 

Total Relabel 10 19 21 23 24 24 24 

N 

Precaution 12 24 32 40 45 47 51 
Adverse Reaction 7 14 18 27 35 38 39 
Warning 7 11 22 30 38 40 44 
Boxed Warning 0 0 9 14 16 19 19 

Total Relabel 14 28 36 44 52 55 56 

P 

Precaution 1 1 2 2 2 2 2 
Adverse Reaction 1 1 1 1 1 1 1 
Warning 0 0 0 0 0 0 0 
Boxed Warning 0 0 0 0 0 0 0 

Total Relabel 1 1 2 2 2 2 2 

R 

Precaution 3 5 6 6 9 11 11 
Adverse Reaction 3 3 4 4 5 7 7 
Warning 2 3 3 3 4 5 6 
Boxed Warning 1 1 1 1 2 2 2 

Total Relabel 6 8 8 8 10 12 12 

S 

Precaution 6 8 9 11 11 11 11 
Adverse Reaction 0 1 3 4 4 4 4 
Warning 0 0 0 0 0 0 0 
Boxed Warning 0 0 0 0 0 0 0 

Total Relabel 6 8 10 12 12 12 12 

T 

Precaution 2 2 3 3 5 5 5 
Adverse Reaction 0 1 1 1 1 1 1 
Warning 0 0 0 1 2 2 3 
Boxed Warning 0 0 0 0 1 1 1 

Total Relabel 2 3 4 4 5 5 6 
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Appendix Table 4. Variation in relabeling activity (continued). 
 
 
 

ATC Relabel Type 2003 2004 2005 2006 2007 2008 2009 

V 

Precaution 1 2 2 3 3 4 5 
Adverse Reaction 1 2 2 2 3 3 3 
Warning 1 1 1 1 3 3 3 
Boxed Warning 0 0 0 0 0 0 0 

Total Relabel 1 2 2 3 4 4 5 
 
 
 

ATC Therapeutic Code Definition: 
A: Alimentary tract and metabolism 
B: Blood and blood forming organs 
C: Cardiovascular system 
D: Dermatological 
G: Genitourinary system and sex hormones 
H: Systemic hormonal preparations, excluding sex hormones 
J: Anti-infectives 
L: Anti-neoplastic and immunomodulating agents 
M: Musculoskeletal system 
N: Nervous system 
P: Anti-parasitic products 
R: Respiratory system 
S: Sensory organs 
T: Diagnostic agents 
V: Various 
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Appendix Table 5. Effects of relabeling on demand: Low-intensity markets (bottom quartile). 
Dependent variable is the natural logarithm of sales, ln(Sales). Low-intensity markets are defined as those 
4-digit ATC markets in the bottom quartile of relabeling activity over our sample period. The unit of 
analysis in Model 1 is the drug level, Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 
3-digit ATC market (ATC3) level. Price is instrumented in all models with relevant tests reported in the 
table. Controls include Vintage, Number of brands, and Number of generics. The models are log-linear, as 
such the marginal effects are calculated using the equation exp(β-1) where β is the respective coefficient on 
our variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are reported in the 
lower panel. Standard errors are clustered at the 2-digit ATC market level. Constants are included in all 
specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 
 

 
  Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.077 0.140** 0.007 
  (0.054) (0.059) (0.051) 
     

U.S. 0.386*** 1.013*** 1.092*** 
  (0.051) (0.117) (0.080) 
     

Relabel * U.S. -0.109*** -0.104 -0.018 
  (0.041) (0.067) (0.054) 
     

ln(Price) -0.564*** -1.068*** -0.740*** 
  (0.129) (0.097) (0.047) 
     

ln(Lagged promotion stock) 0.971*** 0.321*** 0.070*** 
  (0.024) (0.028) (0.016) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 1,264 1,202 1,170 
Adjusted R2 0.725 0.726 0.599 

First stage F-statistic 12.81 38.02 81.74 
Hansen J-statistic 0.558 0.017 0.590 
Hansen J p-value 0.455 0.897 0.442 

     
Marginal effects:    

Relabel * U.S. -0.103   
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Appendix Table 6. Effects of relabeling on demand: High-intensity markets (top quartile). 
Dependent variable is the natural logarithm of sales, ln(Sales). High-intensity markets are defined as those 
4-digit ATC markets in the top quartile of relabeling activity over our sample period. The unit of analysis 
in Model 1 is the drug level, Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit 
ATC market (ATC3) level. Price is instrumented in all models with relevant tests reported in the table. 
Controls include Vintage, Number of brands, and Number of generics. The models are log-linear, as such 
the marginal effects are calculated using the equation exp(β-1) where β is the respective coefficient on our 
variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are reported in the lower 
panel. Standard errors are clustered at the 2-digit ATC market level. Constants are included in all 
specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.157*** 0.172*** 0.088*** 
  (0.051) (0.063) (0.028) 
     

U.S. 0.812*** 1.809*** 1.574*** 
  (0.048) (0.128) (0.055) 
     

Relabel * U.S. -0.224*** -0.139** -0.087*** 
  (0.043) (0.064) (0.033) 
     

ln(Price) -0.628*** -1.209*** -0.814*** 
  (0.051) (0.056) (0.028) 
     

ln(Lagged promotion stock) 0.695*** 0.259*** 0.165*** 
  (0.036) (0.026) (0.012) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 1,903 1,669 1,533 
Adjusted R2 0.508 0.692 0.882 

First stage F-statistic 100.28 147.89 1054.4 
Hansen J-statistic 0.147 1.459 0.066 
Hansen J p-value 0.701 0.227 0.798 

     
Marginal effects:    

Relabel * U.S. -0.201 -0.130 -0.083 
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Appendix Table 7a. Heterogeneous relabeling severity across alternative time periods. Data split 
across types of relabeling activity and across alternative periods of analysis. Models 1-3 are extended to 
three years or 12 quarters before and after a relabeling event.  
 

 Model 1 Model 2 Model 3 
 3 years 

DV = ln(Sales) Precaution Adverse 
Reaction Warning/Box 

Relabel 0.075*** 0.108*** 0.036 
  (0.026) (0.03) (0.034) 
     

U.S. 0.731*** 0.770*** 0.566*** 
  (0.035) (0.032) (0.034) 
     

Relabel * U.S. -0.207*** -0.237*** -0.285*** 
  (0.023) (0.027) (0.041) 
     

ln(Price) -0.700*** -0.473*** -0.372*** 
  (0.063) (0.039) (0.045) 
     

ln(Lagged promotion stock) 0.773*** 0.720*** 0.698*** 
  (0.013) (0.014) (0.016) 

Controls Y Y Y 
Drug fixed effect Y Y Y 

Market fixed effect N N N 
Time fixed effect Y Y Y 

N 8,711 6,428 5,943 
Adjusted R2 0.487 0.558 0.433 

First stage F-statistic 40.01 42.48 35.42 
Hansen J-statistic 0.978 1.781 2.76 
Hansen J p-value 0.323 0.619 0.43 

     
Marginal effects:    

Relabel * U.S. -0.186 -0.211 -0.247 
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Appendix Table 7b. Heterogeneous relabeling severity across alternative time periods. Data split 
across types of relabeling activity and across alternative periods of analysis. Models 4-6 are extended to 
four years or 16 quarters before and after a relabeling event.  
 

 Model 4 Model 5 Model 6 
 4 years 

DV = ln(Sales) Precaution Adverse 
Reaction Warning/Box 

Relabel 0.083*** 0.119*** 0.063** 
  (0.024) (0.028) (0.031) 
     

U.S. 0.708*** 0.740*** 0.741*** 
  (0.027) (0.030) (0.044) 
     

Relabel * U.S. -0.238*** -0.270*** -0.213*** 
  (0.021) (0.026) (0.039) 
     

ln(Price) -0.611*** -0.470*** -0.698*** 
  (0.043) (0.039) (0.072) 
     

ln(Lagged promotion stock) 0.795*** 0.762*** 0.703*** 
  (0.011) (0.013) (0.015) 

Controls Y Y Y 
Drug fixed effect Y Y Y 

Market fixed effect N N N 
Time fixed effect Y Y Y 

N 10,877 8,059 7,587 
Adjusted R2 0.505 0.549 0.418 

First stage F-statistic 44.13 39.64 35.92 
Hansen J-statistic 4.699 0.843 1.261 
Hansen J p-value 0.454 0.974 0.261 

     
Marginal effects:    

Relabel * U.S. -0.211 -0.236 -0.192 
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Appendix Table 8a. Heterogeneous relabeling severity across alternative treatment periods. Data 
split across types of relabeling activity and across alternative exclusion windows. Models 1-3 exclude the 
quarter of a relabeling event and prior quarter from the analysis (T = 0, -1).  
 

 Model 1 Model 2 Model 3 
 T = 0, -1 

DV = ln(Sales) Precaution Adverse 
Reaction Warning/Box 

Relabel 0.124*** 0.155*** 0.179*** 
  (0.038) (0.050) (0.054) 
     

U.S. 0.847*** 0.745*** 0.468*** 
  (0.042) (0.044) (0.047) 
     

Relabel * U.S. -0.191*** -0.255*** -0.456*** 
  (0.029) (0.039) (0.061) 
     

ln(Price) -0.758*** -0.515*** -0.408*** 
  (0.073) (0.040) (0.044) 
     

ln(Lagged promotion stock) 0.725*** 0.804*** 0.738*** 
  (0.018) (0.024) (0.026) 

Controls Y Y Y 
Drug fixed effect Y Y Y 

Market fixed effect N N N 
Time fixed effect Y Y Y 

N 4,552 2,786 1,975 
Adjusted R2 0.491 0.552 0.374 

First stage F-statistic 48.17 55.94 36.8 
Hansen J-statistic 0.934 2.399 2.316 
Hansen J p-value 0.334 0.301 0.314 

     
Marginal effects:    

Relabel * U.S. -0.173 -0.225 -0.366 
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Appendix Table 8b. Heterogeneous relabeling severity across alternative treatment periods. Data 
split across types of relabeling activity and across alternative exclusion windows. Models 4-6 exclude the 
quarter of a relabeling event and two prior quarters (T = 0, -1, -2).  
 

 Model 4 Model 5 Model 6 
 T = 0, -1, -2 

DV = ln(Sales) Precaution Adverse 
Reaction Warning/Box 

Relabel 0.134*** 0.166*** 0.184*** 
  (0.043) (0.056) (0.056) 
     

U.S. 0.848*** 0.758*** 0.471*** 
  (0.044) (0.047) (0.048) 
     

Relabel * U.S. -0.203*** -0.273*** -0.455*** 
  (0.031) (0.041) (0.062) 
     

ln(Price) -0.749*** -0.510*** -0.398*** 
  (0.075) (0.041) (0.046) 
     

ln(Lagged promotion 
stock) 0.734*** 0.807*** 0.730*** 

  (0.018) (0.025) (0.027) 
Controls Y Y Y 

Drug fixed effect Y Y Y 
Market fixed effect N N N 
Time fixed effect Y Y Y 

N 4,240 2,599 1,839 
Adjusted R2 0.49 0.548 0.365 

First stage F-statistic 21.06 51.52 33.89 
Hansen J-statistic 0.57 1.641 3.03 
Hansen J p-value 0.45 0.44 0.22 

     
Marginal effects:    

Relabel * U.S. -0.165 -0.238 -0.365 
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Appendix Table 9. Effects of precaution/adverse selection relabeling: Low-intensity markets. 
Dependent variable is the natural logarithm of sales, ln(Sales). Sample includes the combination of 
precaution and adverse reaction along with low-intensity markets. The unit of analysis in Model 1 is the 
drug level, Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market 
(ATC3) level. Price is instrumented in all models with relevant tests reported in the table. Controls 
include Vintage, Number of brands, and Number of generics. The models are log-linear, as such the 
marginal effects are calculated using the equation exp(β-1) where β is the respective coefficient on our 
variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are reported in the lower 
panel. Standard errors are clustered at the 2-digit ATC market level. Constants are included in all 
specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.075* 0.024 -0.063 
  (0.039) (0.088) (0.086) 
     

U.S. 0.333*** 1.559*** 0.829*** 
  (0.052) (0.101) (0.088) 
     

Relabel * U.S. -0.068* -0.020 0.011 
  (0.035) (0.072) (0.065) 
     

ln(Price) -0.287*** -1.044*** -0.584*** 
  (0.053) (0.045) (0.036) 
     

ln(Lagged promotion stock) 0.804*** 0.165*** 0.178*** 
  (0.034) (0.021) (0.020) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 1,564 1,564 737 
Adjusted R2 0.622 0.558 0.638 

First stage F-statistic 76.21 160.56 204.09 
Hansen J-statistic 0.248 0.977 2.462 
Hansen J p-value 0.618 0.323 0.117 

     
Marginal effects:    

Relabel * U.S. -0.066   
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Appendix Table 10. Effects of warning/box warning relabeling: Low-intensity markets. Dependent 
variable is the natural logarithm of sales, ln(Sales). Sample includes the combination of warning and box 
warning along with low-intensity markets. The unit of analysis in Model 1 is the drug level, Model 2 is 
the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market (ATC3) level. Price is 
instrumented in all models with relevant tests reported in the table. Controls include Vintage, Number of 
brands, and Number of generics. The models are log-linear, as such the marginal effects are calculated 
using the equation exp(β-1) where β is the respective coefficient on our variable of interest, (Relabel*U.S.). 
Marginal effects for our variable of interest are reported in the lower panel. Standard errors are clustered 
at the 2-digit ATC market level. Constants are included in all specifications but omitted from the table. * 
p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1  Model 2 Model 3 

DV = ln (Sales)  Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.228* -0.251** -0.007 
  (0.117) (0.098) (0.118) 
     

U.S. 0.174** 1.842*** 1.051*** 
  (0.072) (0.078) (0.095) 
     

Relabel * U.S. -0.597*** 0.163 0.021 
  (0.148) (0.113) (0.120) 
     

ln(Price) -0.310*** -0.812*** -0.449*** 
  (0.077) (0.048) (0.039) 
     

ln(Lagged promotion stock) 0.596*** 0.183*** 0.181*** 
  (0.049) (0.022) (0.029) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 654 762 430 
Adjusted R2 0.746 0.707 0.638 

First stage F-statistic 18.28 410.61 580.23 
Hansen J-statistic 0.708 1.67 1.276 
Hansen J p-value 0.400 0.196 0.259 

     
Marginal effects:    

Relabel * U.S. -0.450   
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Appendix Table 11. Effects of precaution/adverse selection relabeling: High-intensity markets. 
Dependent variable is the natural logarithm of sales, ln(Sales). Sample includes the combination of 
precaution and adverse reaction along with high-intensity markets. The unit of analysis in Model 1 is the 
drug level, Model 2 is the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market 
(ATC3) level. Price is instrumented in all models with relevant tests reported in the table. Controls 
include Vintage, Number of brands, and Number of generics. The models are log-linear, as such the 
marginal effects are calculated using the equation exp(β-1) where β is the respective coefficient on our 
variable of interest, (Relabel*U.S.). Marginal effects for our variable of interest are reported in the lower 
panel. Standard errors are clustered at the 2-digit ATC market level. Constants are included in all 
specifications but omitted from the table. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.035 0.071*** 0.019 
  (0.041) (0.023) (0.021) 
     

U.S. 0.773*** 1.889*** 1.630*** 
  (0.047) (0.034) (0.032) 
     

Relabel * U.S. -0.190*** -0.061** -0.049** 
  (0.045) (0.027) (0.024) 
     

ln(Price) -0.658*** -1.176*** -0.781*** 
  (0.071) (0.072) (0.033) 
     

ln(Lagged promotion stock) 0.803*** 0.174*** 0.133*** 
  (0.022) (0.007) (0.007) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 4,746 4,158 4,218 
Adjusted R2 0.360 0.844 0.846 

First stage F-statistic 31.25 54.03 405.85 
Hansen J-statistic 0.011 0.218 1.095 
Hansen J p-value 0.915 0.641 0.295 

     
Marginal effects:    

Relabel * U.S. -0.173 -0.059 -0.048 
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Appendix Table 12. Effects of warning/box warning relabeling: High-intensity markets. Dependent 
variable is the natural logarithm of sales, ln(Sales). Sample includes the combination of warning and box 
warning along with high-intensity markets. The unit of analysis in Model 1 is the drug level, Model 2 is 
the 4-digit ATC market (ATC4) level and Model 3 is the 3-digit ATC market (ATC3) level. Price is 
instrumented in all models with relevant tests reported in the table. Controls include Vintage, Number of 
brands, and Number of generics. The models are log-linear, as such the marginal effects are calculated 
using the equation exp(β-1) where β is the respective coefficient on our variable of interest, (Relabel*U.S.). 
Marginal effects for our variable of interest are reported in the lower panel. Standard errors are clustered 
at the 2-digit ATC market level. Constants are included in all specifications but omitted from the table. * 
p < 0.10, ** p < 0.05, *** p < 0.01. 
 

 Model 1 Model 2 Model 3 

DV = ln (Sales)  Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.212** 0.093*** 0.041 
  (0.087) (0.034) (0.031) 
     

U.S. 0.670*** 1.778*** 1.675*** 
  (0.070) (0.052) (0.041) 
     

Relabel * U.S. -0.420*** -0.110*** -0.172*** 
  (0.091) (0.040) (0.038) 
     

ln(Price) -0.891*** -0.581*** -0.594*** 
  (0.098) (0.068) (0.039) 
     

ln(Lagged promotion stock) 0.791*** 0.132*** 0.114*** 
  (0.034) (0.014) (0.011) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 1,582 1,409 1,561 
Adjusted R2 0.425 0.902 0.862 

First stage F-statistic 41.69 60.91 652.71 
Hansen J-statistic 0.674 1.030 0.101 
Hansen J p-value 0.412 0.310 0.751 

     
Marginal effects:    

Relabel * U.S. -0.343 -0.104 -0.158 
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Appendix Table 13. Effects of relabeling on demand across market size and concentration. 
Dependent variable is the natural logarithm of sales, ln(Sales). Models 1-2 split the sample across the 
bottom and top quartile of sales within a 4-digit ATC market. Models 3-4 split the sample across the 
bottom and top quartile of market concentration or HHI within a 4-digit ATC market. Price is 
instrumented in all models with relevant tests reported in the table. Controls include Vintage, Number of 
brands, and Number of generics. The models are log-linear, as such the marginal effects are calculated 
using the equation exp(β-1) where β is the respective coefficient on our variable of interest, (Relabel*U.S.). 
Marginal effects for our variable of interest are reported in the lower panel. Standard errors are clustered 
at the 2-digit ATC market level. Constants are included in all specifications but omitted from the table. * 
p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
 

 Model 1 Model 2         Model 3 Model 4 

 
   Bottom 
Quartile 

    Top 
Quartile 

  Bottom 
Quartile 

   Top 
Quartile 

DV = ln(Sales) Sales HHI 
Relabel 0.055** 0.058 0.151* 0.175*** 

  (0.027) (0.070) (0.085) (0.054) 
       

U.S. 0.204*** 1.116*** -0.029 0.890*** 
  (0.024) (0.061) (0.059) (0.049) 
       

Relabel * U.S. -0.100*** -0.221*** -0.259*** -0.240*** 
  (0.025) (0.055) (0.063) (0.043) 
       

ln(Price) -0.221*** -1.280*** 0.173 -0.681*** 
  (0.036) (0.125) (0.119) (0.046) 
       

ln(Lagged promotion 
stock) 0.459*** 0.721*** 1.057*** 0.685*** 

  (0.031) (0.026) (0.047) (0.036) 
Controls Y Y Y Y 

Drug fixed effect Y Y Y Y 
Market fixed effect N N N N 
Time fixed effect Y Y Y Y 

N 1,369 1,972 1,300 1,930 
Adjusted R2 0.241 0.504 0.332 0.431 

First stage F-statistic 21.26 54.41 26.57 113.48 
Hansen J-statistic 1.927 4.276 0.054 0.002 
Hansen J p-value 0.165 0.233 0.817 0.961 

       
Marginal effects:      

Relabel * U.S. -0.095 -0.198 -0.228 -0.213 
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Appendix Table 14. Effects of relabeling on market ATC N. Dependent variable is the natural 
logarithm of sales, ln(Sales). The sample includes only those drugs within the 1-digit ATC market N or 
nervous system. The unit of analysis in Model 1 is the drug level, Model 2 is the 4-digit ATC market 
(ATC4) level and Model 3 is the 3-digit ATC market (ATC3) level. Price is instrumented in all models 
with relevant tests reported in the table. Controls include Vintage, Number of brands, and Number of 
generics. The models are log-linear, as such the marginal effects are calculated using the equation exp(β-1) 
where β is the respective coefficient on our variable of interest, (Relabel*U.S.). Marginal effects for our 
variable of interest are reported in the lower panel. Standard errors are clustered at the 2-digit ATC 
market level. Constants are included in all specifications but omitted from the table. * p < 0.10, ** p < 
0.05, *** p < 0.01. 
 

 Model 1 Model 2 Model 3 

DV = ln (Sales)  Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.100 0.017 -0.010 
  (0.092) (0.040) (0.042) 
     

U.S. 0.289*** 1.117*** 1.026*** 
  (0.109) (0.067) (0.057) 
     

Relabel * U.S. -0.241*** -0.022 0.039 
  (0.074) (0.053) (0.054) 
     

ln(Price) -0.236 1.744*** 1.372*** 
  (0.311) (0.148) (0.155) 
     

ln(Lagged promotion stock) 0.961*** 0.170*** 0.188*** 
  (0.032) (0.014) (0.010) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 1,148 1,027 949 
Adjusted R2 0.602 0.852 0.859 

First stage F-statistic 92.95 243.58 156.74 
Hansen J-statistic 0.342 0.286 0.839 
Hansen J p-value 0.559 0.593 0.360 

     
Marginal effects:    

Relabel * U.S. -0.214   
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Appendix Table 15. Effects of relabeling on market ATC J. Dependent variable is the natural 
logarithm of sales, ln(Sales). The sample includes only those drugs within the 1-digit ATC market J or 
anti-infectives. The unit of analysis in Model 1 is the drug level, Model 2 is the 4-digit ATC market 
(ATC4) level and Model 3 is the 3-digit ATC market (ATC3) level. Price is instrumented in all models 
with relevant tests reported in the table. Controls include Vintage, Number of brands, and Number of 
generics. The models are log-linear, as such the marginal effects are calculated using the equation exp(β-1) 
where β is the respective coefficient on our variable of interest, (Relabel*U.S.). Marginal effects for our 
variable of interest are reported in the lower panel. Standard errors are clustered at the 2-digit ATC 
market level. Constants are included in all specifications but omitted from the table. * p < 0.10, ** p < 
0.05, *** p < 0.01. 
 
 

 Model 1 Model 2 Model 3 

DV = ln(Sales) Drug level 
ATC4 
market 

ATC3 
market 

Relabel 0.174 0.292*** 0.187*** 
  (0.128) (0.076) (0.040) 
     

U.S. 1.549*** 1.557*** 1.888*** 
  (0.128) (0.167) (0.153) 
     

Relabel * U.S. -0.277*** -0.149** -0.145*** 
  (0.103) (0.072) (0.044) 
     

ln(Price) -3.225*** -0.159 -1.216*** 
  (0.513) (0.126) (0.260) 
     

ln(Lagged promotion stock) 0.541*** 0.241*** 0.137*** 
  (0.064) (0.031) (0.027) 

Controls Y Y Y 
Drug fixed effect Y N N 

Market fixed effect N Y Y 
Time fixed effect Y Y Y 

N 1,126 1,108 1,022 
Adjusted R2 -0.107 0.781 0.882 

First stage F-statistic 15.86 240.35 20.23 
Hansen J-statistic 3.808 1.779 0.457 
Hansen J p-value 0.149 0.182 0.499 

     
Marginal effects:    

Relabel * U.S. -0.242 -0.138 -0.135 
        

 




