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1 Introduction

The gender gap in average science and math achievement by the end of high school has

narrowed significantly in recent decades and is qualitatively small today (Xie and Shauman

2003; Goldin et al. 2006; Hyde et al. 2008; Guiso et al. 2008). However, girls are underrepre-

sented among high-achieving students in middle and high school (Hedges and Nowell 1995;

Ellison and Swanson 2010) and in the science, technology, engineering, and math (STEM)

workforce (Ginther and Kahn 2004; Carrell et al. 2010). These gaps have been shown to

vary with potentially manipulable environmental factors such as local culture (Pope and

Sydnor 2010) and availability of same-gender instructors (Carrell et al. 2010). To the extent

that there is a role for policy in addressing female underrepresentation in STEM, several

natural questions arise: at what point in students’ development do these gaps occur, how

do they evolve over time, and why?1

This paper examines the gender gap among high-achieving math students from a dy-

namic perspective using data from the American Mathematics Competitions. We document

that girls are underrepresented among high-achieving math students at the beginning of

high school, and this gender gap widens significantly over the high school years. We then ex-

amine gender-related differences in students’ entry into test-taking, exit out of test-taking,

and year-to-year improvement in scores in order to better understand the growth of the

gender gap.

Section 2 provides more detail on the AMC contests, some summary statistics, and

presents our two most basic observations about the gender gap that motivate the rest of

the paper. One is that that there is already a substantial gender gap among high-achieving

9th graders. The second is that the gender gap widens substantially over the high school

years. For example, we find a 4.6:1 male-female ratio among the 500 highest scoring 9th

graders on the AMC contests. This widens to a 7.4:1 ratio among the 500 highest scoring

12th graders. The first observation motivates examining the individual-level persistence in

high scores: if it is substantial (which we will find), then future work on pre-high school

high achievement will be needed to understand the 9th grade gap, which is in turn a large

contributor to the end of high school gender gap. The second observation motivates a richer

examination of the dynamics of achievement among high-achieving high school students and

the gender-related differences that combine to produce the widening gap. Many potential

explanations have been discussed to account for the single fact that boys outnumber girls

1As discussed in Fryer and Levitt (2010), boys and girls perform equally well upon entry to school, but
over the first six years of school, girls lose more than two-tenths of a standard deviation.
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among high math achievers. A fuller understanding of the dynamics will provide a much

larger set of facts that any proposed explanation (or set of explanations) for why there is a

large gender gap at the end of high school would need to explain.

Section 3 takes a step back from the focus on gender to provide some initial observations

on the dynamics of high achievement in high school. We present both raw transition

matrices and regression analyses looking at how students at a given performance level

in year t will perform in year t + 1. We also examine the rates at which high-achieving

students appear to drop out of participation in the following year, and the rates at which new

“entrants” start participating and perform well. We present many more facts than should be

summarized in an introduction. One important observation is that high-achieving students

are substantially improving their mastery of the precalculus mathematics and problem

solving skills tested by the AMC contests over the high school years. The magnitude of the

average increases and the fact that there are many more lower-ranked students looking to

move up than students close to the top implies that high-achieving students must improve

substantially to maintain their position and the probability of making substantial gains

relative to one’s cohort is low. Improvement presumably requires substantial effort – indeed,

many of the very best performers come from schools with advanced math curricula and

coaching outside regular school hours (Ellison and Swanson 2016). Finally, these results

indicate that a rough answer to our first motivating question is that there is a lot of

performance persistence.

Section 4 then explores gender-related differences in the dynamics to identify factors

that lead to the widening gender gap. Studies of other environments have identified several

gender-related differences that could affect patterns of entry, exit, and improvement on the

AMC tests. Niederle and Vesterlund (2007), for example, show in a laboratory experiment

in which men and women have equal ability that men are more likely than women to opt

for tournament-based compensation, which suggests that gender differences in preferences

over competition could affect entry.2 Women have also been found to have higher exit rates

in competitive settings – Hogarth et al. (2012) study gender differences in a TV game show

testing general knowledge, and show that women earn 40 percent less than men and exit the

game prematurely at a faster rate. Finally, as noted above, high achievement in the AMC

2These differences in preferences have real-world implications – Buser et al. (2014) analyze data on Dutch
high schoolers and find that, although boys and girls display similar levels of academic ability, boys choose
substantially more prestigious math- and science-intensive academic tracks, and that the gender difference in
competitiveness accounts for a substantial portion (about 20 percent) of the gender difference in track choice.
In a related finding, Azmat et al. (2016) show that gender differentials in the performance of Barcelona high
school students on standardized tests depends on the stakes of the tests for university entry.
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requires a substantial ongoing investment of time and effort. Conditional on continuing to

participate in the AMC, girls and boys may allocate their time or effort differently across

extracurricular activities over the course of high school (see, e.g., Chachra et al. (2009)). Our

analyses indeed uncover several distinct differences by gender. High-achieving girls improve

by less on average from year to year than do boys with similar performance levels in the

initial year. The variance of the girls’ improvements is lower. Girls at each performance

level are more likely to drop out of participating. And girls are underrepresented among

the high-scoring entrants. We propose a method for decomposing the net change in the

fraction female among high scoring students into several components reflecting different

gender-related differences in these dynamics. The decomposition suggests that the most

important gender-related difference is that fewer girls are making large enough increases

from year to year to move up into the top rank groups. But the widening gender gap is

clearly a multifaceted phenomenon with several contributing factors.

Section 5 has a somewhat different flavor. Here, we venture into the realm of assess-

ing potential explanations for the gender gap in looking at whether a portion of the gap

may be attributable to gender-related differences in students’ reactions to disappointment.

Specifically, we note that the structure of the AMC contests is such that high-achieving

students will be quite disappointed if they fall short of a threshold score needed to move

on to a second stage exam, and that this disappointment can be viewed as a treatment

that is applied at a different cutoff level of performance on different tests. Prior evidence

has demonstrated that men and women react differently to losing contests: in the lab, Gill

and Prowse (2014) find that women who lose a contest score lower in subsequent contests;

Buser (2016) finds that men (but not women) react to losing by seeking greater challenges;

and Buser and Yuan (2018) find that, even within populations who have already opted into

competing, women are more likely to react to losing by ceasing to compete. Buser and

Yuan (2018) also present field evidence on a setting very similar to our own using data

from the Dutch Math Olympiad; using a regression discontinuity design, they estimate

that girls failing to advance in competition in a given year are about 11 percentage points

more likely to drop out of participating in the next year, with no statistically significant

effect of losing on boys’ participation. In our setting, we also argue that a variant of a

regression-discontinuity design is appropriate for analyzing students’ reactions, and with a

great deal of precision. Our large sample (approximately 100 times as many student-years

as that available in Buser and Yuan (2018)) allows us to examine a narrow window around

the cutoff for progressing to the second stage exam, and we find strong evidence that both
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boys and girls are more likely to drop out of participating in future years if they score just

below the cutoff, and that the tendency to drop out after experiencing disappointment is

more common among girls.3 Thus, we confirm Buser and Yuan (2018)’s finding that girls

are more likely to react by dropping out, but document that the effect among boys is also

large and that the differential effect for girls in the United States contest is not as extreme

as they find in the Netherlands.

The final Section provides a more complete recap of results and presents conclusions

and implications for future research.

Our investigation in related to a number of literatures in addition to those mentioned

above. Most notably, it is motivated in several respects by the rich literature on gender gaps

in wages and career development. As summarized in Blau and Kahn (2017), gender gaps in

mathematics and career-oriented college majors declined substantially between the 1960s

and 1980s, but there has been less progress since.4 This is notable, as gender differences in

college major are an important determinant of the pay gap between college-educated men

and women. The literature also contains analyses of the dynamics of the gender gap in pay

with interesting observations. Goldin et al. (2017) examine the 34 log point expansion in

the gender earnings gap between ages 26 and 39, and attribute half of the gap widening

for college graduates to differential mobility between establishments by gender. Bertrand

et al. (2010) document that male and female MBAs have nearly identical earnings at the

outset of their careers, but the male earnings advantage reaches almost 60 log points a

decade later, due in large part to gender differences in the effects of parenthood on career

interruptions and weekly hours. This literature highlights that differences in mathematics

achievement may have significant economic implications. The fact that the broadening gaps

identified in these papers do not start at zero also motivates looking back at an earlier point

in students’ lives. And while some factors like motherhood that these papers identify will

not be relevant to our setting, the interesting dynamics these papers uncover suggest more

generally that other examinations of dynamics may also be fruitful.

3Buser and Yuan (2018) find that boys are roughly 1 percentage point more likely to drop out after
failing to advance, vs. 11 percentage points among girls. Their standard errors are about 6 percentage
points, implying that it is unclear whether there is an effect for boys and the effect for girls is quite large
but only borderline significant. We find estimates of 3 percentage points for boys (a 9 percent effect, relative
to dropout rates among boys scoring just above the cutoff) and 5 percentage points for girls (a 15 percent
effect), with standard errors below 1 percentage point.

4Focusing on STEM fields specifically, Ceci et al. (2014) present evidence on lower female propensities to
major in math-intensive subjects in college and higher female propensities to major in non-math-intensive
sciences. They then examine career development in STEM fields and find greater evidence of pipeline leakage
in fields such as psychology, life science, and social science, rather than in math-intensive fields in which
they are more underrepresented.
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2 The High-Achievement Gender Gap in AMC Scores

In this Section, we bring out some basic facts about the gender gap among AMC high

scorers. In Ellison and Swanson (2010), we noted that there was a large gender gap at

high achievement levels and that the gaps get larger as one looks at achievement levels

further above those that can be reliably measured with more commonly used standardized

tests. Among the new observations we make here is that the high-achievement gender gap

is already quite large by the time students are in 9th grade and that it continues to widen

over the course of the high school years.

2.1 Background and data

The primary subject of our analysis is a database of scores on the Mathematical Association

of America’s AMC 10 and AMC 12 contests from 1999 to 2007. The tests are 25-question,

multiple choice tests designed to identify and distinguish among students at very high

performance levels. They are administered to over 200,000 students in about 3,000 U.S.

high schools. The AMC 10 is open to students in grades 10 and below. The AMC 12 is

open to students in grade 12 and below.

Several features of the AMC exams make them well suited to studying the development

of high math achievement over the high school years. One is that the tests are designed to

asses a broad range of (high) performance levels and are reliable even for very high-achieving

students.5 Another is that many of the high-achieving students in our sample take the tests

annually over a four year period, which lets us track the year-to-year improvement in their

absolute achievement levels.

The structure of the AMC contests changed twice in the period we study. In 1999, all

students took a common test similar to the AMC 12. In 2000, the AMC introduced the

AMC 10 and began offering younger students the option of taking either test. The AMC 10

and 12 are similar – 14 of the 25 questions were common to both tests in the first year – but

to be less intimidating to younger students and less affected by knowledge of above grade-

level material, the AMC 10 avoids logarithms and trigonometry, and rarely has questions

as difficult as the five most difficult on the AMC 12. In 2002, the AMC began offering four

tests per year: the AMC 10A and 12A were offered on one date in early February, and

the AMC 10B and 12B were offered two weeks later. One motivation was to accommodate

5Ellison and Swanson (2010) note that AMC scores are a stronger predictor of how students will do when
retaking the math SAT than is the previous math SAT score and the tests remain a calibrated predictor
of future test scores at upper tail percentiles that are an order of magnitude higher than can be measured
with the SAT.
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students whose school was on vacation or cancelled due to snow on the A-date. But schools

could offer both the A-date and B-date tests and some students choose to take a test on

each date. In 2007, about 3 percent of A-date takers also took a B-date test.

The test multiplicity necessitates rescaling scores from the various year-t tests to make

them comparable to other tests from the same year. In the years 2000-2006, the way in

which we do this is to think of year-t scores as predictors of year-t + 1 AMC 12 scores.

Focusing on students who participate in both year t and year t+ 1, we run separate linear

regressions of year-t + 1 AMC 12 scores on scores on each year-t test and consider two

year-t scores to be equivalent if the predicted year-t + 1 AMC 12 score is the same. This

year-ahead prediction is not possible in the final year of our data, so in 2007 we instead

normalize scores by comparing the performance of students who take both an A test and

a B test in 2007. Appendix A provides more details on the methodology and the resulting

normalizations. An AMC 10 score of x turns out to be roughly equivalent to a score of 7
8x

on the AMC 12, but there are idiosyncratic differences from test to test of about 5 to 10

points on the AMC 12’s 150 point scale. There is more top-coding of AMC 10 scores than

AMC 12 scores, but top-coding is still at least an order of magnitude less common than on

more commonly studied standardized tests.6

The normalization described above is not designed to put year-t and year-t′ scores on a

common scale. Instead, we mostly avoid the difficulties inherent in comparing scores across

calendar years by focusing on students’ ranks within the set of students who participate in

a given year. In Section 3.1 we present data which suggests that transforming scores to log

ranks is a very natural way to normalize student performance in that it produces a measure

in which the additive improvement in performance from year to year is similar over a wide

range of (high) initial performance levels. We see the ability to renormalize scores in this

way as another attractive feature of the AMC environment.

Our raw data consists of separate files of student-level scores on each test in each year.

In addition to the scores, the records contain a school identifier, the state in which the

school is located, an anonymization of the student’s name, and the student’s gender, grade,

age, and home zip code. We create a student-level panel data set by merging these files

assuming that two scores belong to the same student if the name and school match and the

age, grade, and gender are consistent, or if the name and state are the same and the city,

6A perfect 150 on the AMC 10 is usually equivalent to about a 130 on the AMC 12. A few hundred
students per year score at least 130 on the AMC 12 versus about 15,000 who get perfect scores on the math
SAT.
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ZIP code, age, grade, and gender are consistent.7

In the full pre-2007 dataset, we match 43 percent of 9th to 11th grade students to a

score in the subsequent year. Note that failures to match result both from students who

do not participate in the following year and the limitations of our procedure; e.g., we will

miss students who report their name differently in different years, students who skip a

grade, most students who move, etc. One would expect high-achieving students to be more

likely to take the AMC in subsequent years, and our match rates are consistent with this.

For example, among 9th to 11th grade students who were among the 500 highest scoring

students in their cohort, the subsequent-year match rate is 80 percent.

In our analyses of the evolution of students’ scores over time, we define a student’s

AdjustedScore in year t to be the rescaling of the score that they received on the first test

offered by their school. Note that, at schools that offer both the A-date and B-date tests,

students who only take the B-date test in year t are coded as not participating in that

year. The primary reason for this decision is that we think doing otherwise would lead to

substantial miscounts of high-scoring students.8

2.2 Summary statistics and the gender gap in AMC participation

Table 1 provides some summary statistics on participation and scores by grade and gender.

For each grade-gender pair, it reports an equally weighted average across the nine years

1999-2007 of several summary statistics for that grade and gender. For example, the 18,984

9th grade girls listed as participating indicate that this is the average number of 9th grade

girls who participate in each of the nine years of our dataset. The top panel contains

information for female students. Female participation grows substantially from 9th to 10th

grade, from an average of about 19,000 9th grade girls per year to about 28,000 10th grade

girls per year. One reason for this growth may be that some teachers may hesitate to

recommend the AMC tests to 9th graders, regarding the tests as too advanced and/or too

likely to be a discouraging experience. Awareness of the AMCs also presumably diffuses

over time. Female participation remains roughly constant from 10th to 11th grade. It then

7Only unique matches are kept in the dataset for analysis. Students’ demographic variables are missing
for 3-6 percent of observations; we consider two values of a variable to be “consistent” if they match or
if one or more values is missing. Grade is considered a match between a year-t observation and a year-t′

observation if gradet − gradet′ = t− t′.
8Miscounting is a concern because most schools offer only the A-date tests and some of the most serious

students at such schools try to take a B-date test at some other area school that does offer it. Our procedure
avoids double-counting these students if the alternate location they find is a school offering the test on both
dates, which we think is by far the most common situation in which this occurs.
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drops by about 18 percent from 11th to 12th grade.9 One reason for this decline may be

that 12th grade scores and awards come out too late to be listed on college applications.

The bottom portion of the Table reports comparable statistics for boys. Male partici-

pation is about 11 percent higher than female participation in 9th grade. Its growth from

9th grade to 10th grade is similar to what we saw for girls. The series then diverge a

bit more, as male participation continues to grow from 10th grade to 11th grade, and has

an 11th-to-12th grade decline that is less than half as large as the decline for females in

percentage terms. At the end of high school about 35 percent more 12th grade boys than

12th grade girls are taking the AMC 12.

Grade Number of Statistics on AdjustedScore
level Students Mean St.Dev % ≥ 100 % ≥ 120

Girls

Grade 9 18,984 56.8 14.8 0.7 0.04
Grade 10 28,008 60.3 15.3 1.2 0.06
Grade 11 28,348 66.3 15.7 2.9 0.11
Grade 12 23,294 69.1 16.2 4.5 0.18

Boys

Grade 9 21,067 61.7 16.6 2.5 0.26
Grade 10 31,152 66.0 17.2 4.0 0.40
Grade 11 33,988 72.8 17.2 7.8 0.64
Grade 12 31,391 76.0 17.8 11.3 1.04

Table 1: Average annual AMC participation and scores by gender and grade level

The Table also provides summary statistics on normalized AMC scores in each grade-

gender cell. The overall mean adjusted score is 66 on the AMC 12’s 0 to 150 scale. We

will not discuss population average scores much because the AMC tests are not a good

source for insights on average performance given the highly-selected populations, but it is

true that the means and variances are higher in each grade in the male population. We

will say a lot about year-to-year improvement for the average AMC participant, but defer

these discussions until later Sections analyzing the student-level data. Our previous papers

focused on counts of students achieving scores above higher thresholds, for which we think

selection is less of an issue. Scoring 100 on the AMC 12 can be thought of as roughly similar

in difficulty to scoring 780 or 800 on the math SAT. Among 12th graders scoring at this

level or higher, we find a male-female ratio of about 3.4:1. The male-female ratio among

9We have constructed the sample to include 9th, 10th, 11th, and 12th graders from all years, so the drop
in female participation noted here should not be contaminated by the time-trend in AMC participation.
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students achieving comparable scores on the SATs is about 2:1. The gender gap could be

somewhat different on the AMC and SAT due to differences in what is being tested, but

the magnitude of the difference does suggest that there are some gender-related differences

in participation rates even among high-achieving 12th graders. Scoring 120 on the AMC 12

represents a much higher level of achievement – roughly in the 99.99th percentile in the full

US 12th grade population. Here, we think that selection into test-taking is less important.

Note that the male-to-female ratio is much larger among students reaching the higher score

level on the AMC. This is part of a larger pattern noted in Ellison and Swanson (2010).

One implication is that one needs to be careful in constructing comparisons; e.g., we would

expect the male-to-female ratio among 9th graders scoring at least 100 to be larger than the

male-to-female ratio among 12th graders scoring at least 100, because looking at students

scoring 100 in 9th grade is looking at students who are much farther out into the right tail.

2.3 The gender gap in high math achievement over the high school years

In this Section, we illustrate how the gender gap among AMC high scorers changes over

the course of high school. In Ellison and Swanson (2010), we noted that there was a large

gender gap among AMC high scorers and that it was larger at higher achievement levels.

Among the additional observations here are that the gender gap is already quite large in

9th grade and that it widens substantially over the course of high school.

Table 2 reports the fraction of AMC high scorers in each grade who are female for various

definitions of high scoring. The first row examines the 5,000 highest-scoring students in

each grade-year. These are very high-achieving students, but not extremely unusual ones:

one could think of them as students on a trajectory to score 780 or 800 on the math SAT by

the end of high school. In the upper left cell, we see that there is a substantial gender gap

in 9th grade: only 30.5 percent of the high-scoring 9th graders are female.10 Comparing

from left-to-right across the columns, we see that the gender gap widens in each subsequent

year. By 12th grade, only 21.8 percent of the high-scorers are female. The drop from 9th

grade to 10th grade is the largest, but the decline is fairly steady over the high school years.

Subsequent rows present comparable figures using more and more demanding definitions

of high-achieving, going all the way out to a definition that allows only the top 1 percent

of our initial high-achieving pool. Looking from left-to-right within each row, we see the

finding that the gender gap widens over the course of high school is quite robust to how

one defines high-scoring. In proportional terms, the decline in the fraction female from

10The figure reports the average across the six cohorts that we observe for all four of their high school
years of the fraction female within each cohort.
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Level of % female among top students in grade % change
achievement Grade 9 Grade 10 Grade 11 Grade 12 9 → 12

Top 5000 30.5 25.8 24.3 21.8 -29%
Top 1000 21.1 17.6 16.3 14.6 -31%
Top 500 17.9 15.5 13.1 11.7 -35%
Top 100 11.0 11.4 8.0 7.5 -32%
Top 50 8.4 8.4 7.7 6.8 -19%

Table 2: Percent female by grade and achievement level

9th grade to 12th is between 19 percent and 35 percent in every row. The proportional

decline over the course of high school appears largest when we use the top 500 definition

and smallest when we use the top 50 definition, but it should be kept in mind that the

estimates in the final row will be quite noisy given the small sample sizes.

Ellison and Swanson (2010) highlighted that the gender gap is much larger when one

examines more extreme high achievers. The first column of Table 2 shows clearly that this

pattern is already present by 9th grade. Girls comprise 30.5 percent of the top 5000 9th

graders, but only 8.4 percent of the top 50 9th graders. Indeed, the decline from the top row

to the bottom row is roughly similar in each column. One implication is that it is important

to understand the persistence of performance over the high school years. If performance is

highly persistent (which we will find), then the Ellison and Swanson (2010) finding about

how the gender gap differs for extreme high achievers relative to ordinary high achievers

cannot be primarily a finding about things that are happening in high school. What is

clearly an issue that must be understood by studying the high school years, however, is

that the gender gap is widening among ordinary high achievers, extreme high achievers,

and everyone in between. Our subsequent analyses are motivated in large part by a desire

to better understand this widening of the gender gap.

3 Dynamics of Achievement Among High Achievers

In this Section, we take a step back from gender-related issues and present some more gen-

eral evidence on the dynamics of achievement among high-achieving math students. Among

our observations are that the distribution of mathematical achievement is sufficiently spread

out so that the top 9th graders are already very high up in the overall score distribution,

that high-achieving students must substantially improve their performance from year to

year to keep up with their cohort, and that there is substantial performance persistence:
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the highest scoring students are much more likely to achieve a very high score in the fol-

lowing year than students ranked just a little lower, and it is unlikely that students will

greatly improve their within-cohort rank.

3.1 Growth and variation in absolute performance

Although it is becoming increasingly common to take calculus in the junior year and the

AMC contests only cover precalculus topics, top students are increasing their command of

the AMC material and problem-solving techniques over the course of high school.11 To give

some sense of how performance grows over time, Table 3 lists the average overall rank that

a student needed to have in order to be in the grade-specific top 50, top 100, top 500, etc.

For example, to rank among the top 100 9th graders, one only needs to score in the top

1,173 overall, whereas a 12th grader needs to score in the top 241 overall to be in the top

100 in his or her cohort.

Within- Decrease in overall rank
grade Corresponding overall rank to maintain rank in grade
rank Grade 9 Grade 10 Grade 11 Grade 12 9→ 10 10→ 11 11→ 12

5000 52,554 32,686 15,654 11,395 38% 52% 27%
1000 15,674 5,734 3,293 2,186 63% 43% 34%
500 8,350 3,234 1,738 1,356 61% 46% 22%
100 1,173 668 290 241 43% 57% 17%
50 875 310 152 106 65% 51% 30%

Table 3: Growth in absolute performance: the full-population rank of the Nth best student
in each grade

One immediate observation from the Table is that some students have already reached

very high achievement levels by 9th grade. For example, the 500th best 9th grader is

already well within the top 5000 12th graders, and hence is already at the level where we

would expect a nearly perfect SAT score. The 50th best 9th grader is similarly well within

the top 500 12th graders.

While some 9th graders are already very good, the Table also makes very clear that

students must improve substantially from year to year if they wish to maintain their within-

cohort position. The right panel reports the percentage reduction in the overall rank that

students in various positions must make to maintain their within-grade rank. High scoring

11In 2015, over 120,000 AP Calculus exams were taken by students in 11th grade and below. It was less
common for the cohorts we study, but there were already over 30,000 students in 11th grade or below taking
AP Calculus when our first cohort was in 11th grade (2001).
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9th graders will need to improve their overall rank by roughly 40-60 percent in order to

achieve the same position relative to their peers as a 10th grader. High scoring 10th graders

will need to improve their overall rank by about 50 percent. The required improvement

between 11th and 12th grades is somewhat smaller. But we think of the 20-30 percent

improvement required as still surprisingly large, given that the 12th grade competitor pool

is smaller and most high scoring 12th graders will be studying calculus (or something more

advanced), which is not covered on the AMC tests.

The similarity of the percentage change numbers within each column is striking given

that the stringency of the definition of high achievement varies by two orders of magnitude

from the top to the bottom. We take this as suggesting that the log of a student’s rank is

a natural cardinal measure of performance to use when analyzing high-achieving students.

We see this as another feature of the AMC environment which makes it attractive to study.12

One simple way to get a feel for what size of year-to-year improvement is typical at

the individual level is to examine the distribution of log(Rankt+1) − log(Rankt) among

students who take the test in both years t and t + 1. This variable has a mean of -0.28

for 9th graders, -0.39 for 10th graders, and -0.26 for 11th graders. These are substantial

increases in performance. For example, a student who scores at the 50th percentile of the

AMC-taking population as a 9th grader and improves his or her log rank by the expected

amount in each year would reach the 62nd percentile in 10th grade, the 75th percentile in

11th grade, and the 80th percentile in 12th grade. However, note also that they are not

nearly enough to bring the already strong 9th grader in the example up to the top of the

distribution by the end of 12th grade. We think of this as another way in which AMC

scores suggest that the distribution of mathematical performance is quite spread out even

among students that are normally lumped together as high achievers.

One would expect that the degree to which students improve from year to year will

differ for students in different parts of the distribution. The effort that students are putting

into improving their knowledge and problem solving skills will differ. And although the

right panel of Table 3 suggests that a log-rank transformation of performance is natural,

any cardinalization of mathematical achievement is inherently arbitrary. Because AMC

performance in any given year is a noisy measure of a student’s underlying achievement

level, one cannot estimate average achievement gains as a function of initial achievement

12When student performance can only be measured as a within-year z-score, the dynamics of the year-
to-year changes in relative-to-cohort performance are more difficult to analyze for high-scoring students
because changes are highly asymmetric: high-achieving students can only improve their performance very
slightly from year to year, but can easily do much worse.
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via an OLS regression. We can, however, use IV regressions to estimate such gains when

some instrument for the measurement error is available. The columns of Table 4 present

regressions of log(Rankt+1)− log(Rankt) on −(log(WithinGradeRankt)− log(5000)), using

the log of a student’s within-grade rank in year-t − 1 as an instrument on the subsample

where this variable is available. The constant terms in these regressions can be thought of

as the average improvement for a student who has the 5000th best score in their cohort

in year t. The estimates suggest that these improvements in log rank are -0.50 for 10th

graders and -0.33 for 11th graders. If we convert the mean improvements in Rank needed

to maintain a given within-grade rank in Table 3 to changes in log(Rank), they would

be approximately -0.74 in 10th grade and -0.32 in 11th grade. Hence, a 10th grader who

ranks 5000th in his grade must improve by substantially more than the expected amount

in order to maintain his or her rank. Intuitively, this reflects that there are many more

students ranked below the 5000th student than above. If the 5000th ranked student makes

the average improvement, then there will be more students jumping ahead of her due to

above-average gains than falling behind due to below-average gains.

Dep. Var.: log(Rankt+1)− log(Rankt)
10th→ 11th 11th→ 12th

Variable Coef. Std. Err. Coef. Std. Err.

Constant -0.50∗∗∗ (0.005) -0.33∗∗∗ (0.005)
−(log(GradeRankt)− log(5000)) -0.07∗∗∗ (0.004) -0.05∗∗∗ (0.004)

Number of observations 81,430 100,270
Root MSE 0.92 1.01

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: IV regressions of growth in absolute performance as a function of initial perfor-
mance relative to cohort

The negative coefficient estimates on the term reflecting initial achievement levels in-

dicates that students at higher achievement levels in the initial year are expected to make

even larger improvements in log rank. For example, the predicted improvements for a stu-

dent who ranks 500th in his or her cohort in year t are -0.66 for a 10th grader and -0.45 for

an 11th grader. The former is very close to what is needed for a 10th grader to maintain

the same rank; the latter is more than sufficient for an 11th grader.

Standard deviations of the full sample increases in log rank are 0.73, 0.86, and 0.96

for 9th to 10th, 10th to 11th, and 11th to 12th grades, respectively. Note that these

will reflect both the measurement error of the test as a measure of students’ underlying
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achievement levels in both years, and also true variation in the growth in achievement from

year to year. A comparison of performance changes over multiple years can give some

insight on the relative magnitudes of measurement error and true performance increases.

Suppose that year-t performance yit = ait + εit reflects both student i’s true ability ait and

an additive mean-zero measurement error εit. Suppose that ability evolves according to

ait+1 = α0 + α1ait + uit+1. And suppose that the measurement errors εit are independent

of all other terms. We then have

Var(yit+1 − α1yit) = Var(εit+1) + α2
1Var(εit) + Var(uit)

Cov(yit+1 − α1yit, yit − α1yit−1)) = −α1Var(εit) + Cov(uit+1, uit)

One would assume that the true improvements uit are positively correlated, as some students

are presumably working harder on improving than others. Hence, one could think of the

covariance term as providing a lower bound on the measurement error variance:

Var(εit) ≥ −
1

α1
Cov(yit+1 − α1yit, yit − α1yit−1),

that would be close to the true value if Cov(uit+1, uit) is small. If we use log(Rankit) as

the performance measure yit, estimate α1 via an IV regression of yit+1 on yit using yit−1

as an instrument run on the sample of students who took the AMC for three consecutive

years, and compute the above variances and covariances on the same sample, we get a lower

bound estimate of Var(εit) that corresponds to εit having a standard deviation of 0.62. This

indicates that a substantial portion of the apparent year-to-year variation in scores is due

to the measurement error of the test as a measure of underlying achievement.

If we assume that this lower bound also applies to Var(εit+1), we can also plug into the

formulas above to get an upper bound on the standard deviation of uit, which describes the

heterogeneity in students’ true improvement from year to year. Again, this should be close

to the true value if the covariance of year-to-year improvement is low. This estimate corre-

sponds to uit having a standard deviation of 0.37, which suggests that there is substantial

heterogeneity in students’ true improvement from year to year, albeit not nearly as much

as naively looking at year-to-year changes in scores might suggest.

3.2 Persistence and mobility in relative-to-cohort performance

We now focus on how students move up and down within their cohort from year to year.

Table 5 presents an estimated rank-to-rank transition matrix. For example the element in
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the third column of the first row presents the probability that a student who is among the

top 50 in their cohort in year t will rank from 101 to 200 in year t+ 1.13

Year t Probability of reaching year t+ 1 rank group conditional on year t rank
rank 1-50 51-100 101-200 201-500 501-1000 1001-5000 5000+ No match

1-50 0.36 0.14 0.13 0.12 0.06 0.04 0.01 0.14
51-100 0.16 0.12 0.13 0.19 0.10 0.11 0.04 0.15
101-200 0.06 0.08 0.11 0.17 0.12 0.20 0.04 0.20
201-500 0.02 0.03 0.06 0.15 0.14 0.28 0.11 0.21
501-1000 0.01 0.01 0.03 0.09 0.10 0.33 0.19 0.25
1001-5000 0.00 0.00 0.00 0.02 0.04 0.23 0.36 0.35

Table 5: Persistence in math performance: forward transition matrix of probability of each
year-t+ 1 within-grade rank group for students in each year-t within-grade rank group

One clear observation from the Table is that performance in year t is a strikingly strong

predictor of performance in year t + 1, even when making comparisons that rely on fine

distinctions in year-t performance. Comparing students who were ranked in the top 50 in

their grade in year t to those ranked 51-100, for example, the higher-ranked students are

more than twice as likely to achieve a top 50 score in year t+ 1 (36 percent vs. 16 percent),

and less than half as likely to score outside the top 500 (10 percent vs. 25 percent). Similar

patterns are visible over and over in the additional rows. Students who were ranked from

51-100 are more than twice as likely to achieve a top 100 score in year t+1 than are students

who were ranked 101-200 at t. Students ranked from 101-200 at t are more than twice as

likely to achieve a top 200 score at t+ 1 than are students who ranked 201-500, and so on.

A second observation is that it is possible to move up in the distribution, but substantial

improvements are quite unlikely. Four group improvements are close to zero percent events

– the probability of moving from the 501-1000 group into the top 50 is estimated to be

slightly above 0.5 percent. However, making less sizable gains is also quite uncommon.

Only 6-16 percent of the student in each rank group make enough of an improvement to

move into a higher rank group in the next year. And only 2-6 percent make enough of an

improvement to move up two or more groups. Declines in within-cohort ranks are much

more common. For example, 53 percent of students ranked from 201-500 in year t will score

13Due to the discreteness of AMC scores, there will typically be a number of students tied for positions
that cross each boundary. For example, in 2006, fourteen 11th graders had scores of 124, which left them
tied for positions 196 to 209. In this situation, we would include the experience of each of these students
with weight 0.64 in our calculation of what happened to students with ranks of 201 to 500 in year t. And
we similarly record each student’s outcome as their probability of being in each rank group as though ties
are broken at random.
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outside the top 500 in year t+ 1.

A third observation is that dropping out of participation is relevant even among high-

achieving students. In our full sample, we are unable to match 57 percent of grade 9-11

year-t participants to a year-t + 1 score. Among students who are ranked from 1001-5000

in their grade in year t, the percent unmatched drops to 35 percent. But the fact that the

unmatched rate is 35 percent for students with ranks from 1001-5000 and just 14 percent

for students with ranks from 1-50 suggests that at least 20 percent of the students in the

1001-5000 truly do not participate in year t. Dropping out appears to be less and less likely

as one moves up in the ranks. The majority of the unmatched students in the top group

are probably unmatched because of the limitations of our dataset rather than due to the

students actually dropping out.14

One final comment on the Table is that we feel it bolsters the case that the AMC is

an interesting measurement tool. While we always encourage readers to look up old test

questions online, with the belief that many will feel that the test seems nicely designed to

test both problem solving skills and students’ command of core precalculus topics, such

impressions cannot tell us how noisy a test is as a measure of some student capability, nor

how much we should care about the capability being measured. In the case of the AMC,

the level of persistence in Table 5 makes very clear that the test is a sufficiently accurate

and consistent measure of some capability related to high achievement such that it is a

good predictor of year-ahead performance. And our earlier results on students’ gains from

year to year indicate that the capability being measured is something that builds over the

high school years, versus something more stable like differential quickness or accuracy in

performing calculations.

We also present here a longer horizon backward-looking transition matrix. Table 6

reports in each column the fraction of students who achieved the rank corresponding to

14To investigate this issue, we looked manually through published lists of 2006 and 2007 high scorers.
Among the top 50 students in each grade in 2006, we failed to find 2007 matches for 2.6 percent of 9th
graders, 4.3 percent of 10th graders, and 12.1 percent of 11th graders. These figures should be compared
to the sum of the dropout rate and the probability of finishing outside the 2000 in our mechanical match,
which is about 18 percent on average across grades. Several factors are involved in the superiority of this
manual match over our mechanical match: manually, we were able to identify students who switched schools,
students who took the test at a testing center in one year and in their high school in another year, and
students who appear to have listed their first name differently in different years. While the 12 percent
dropout rate after 11th grade may seem surprising, it includes at least one extremely strong student who
left high school after 11th grade to start college, as well as several 11th-to-12th grade dropouts whose 2006
AMC scores were surprisingly high given their previous 2005 AMC scores and their subsequent 2006 AIME
scores. It is worth noting that matching failures are likely more prevalent at the highest score levels due
to high-performing students taking the exams at testing centers in lieu of or in addition to their own high
schools.
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that column in 12th grade who were in each rank category in 9th grade. Note that the

numbers in each column now sum to one. At the very highest levels of achievement, the

performance persistence we noted earlier remains striking. There are more holdovers from

the 9th-grade top 50 in the 12th-grade top 50 than there are students who have moved

up from the entire 201-40,000 range. Only 5 percent scored outside the top 1000 as 9th

graders. Although there are a substantial fraction, 35 percent, whom we were unable to

match to a 9th grade score, given how few students manage to move up from the 1000+

range into the top 50, we imagine that many of these students are students whom we failed

to match rather than true entrants. Some causes of matching failures, including students

who switch high schools or skip grades, will likely be more severe when we are matching

across a three year span.

Within- Fraction of students in each grade 12 rank group
grade who were in each rank group in grade 9

rank in Within-grade rank in grade 12
grade 9 1-50 51-100 101-200 201-500 501-1000 1001-5000

1-50 0.25 0.11 0.06 0.02 0.01 0.00
51-100 0.10 0.10 0.06 0.03 0.01 0.00
101-200 0.09 0.07 0.07 0.05 0.02 0.00
201-500 0.10 0.11 0.12 0.09 0.05 0.02
501-1000 0.06 0.09 0.07 0.10 0.07 0.03
1001-5000 0.03 0.09 0.14 0.18 0.20 0.15

5001+ 0.02 0.01 0.05 0.07 0.12 0.19

No match 0.35 0.42 0.43 0.47 0.53 0.62

Table 6: Early performance of top math students: backward transition matrix of probability
of each within-9th-grade rank group for students in each within-12th-grade rank group

At the still extremely high level of students who rank 201-500 among 12th graders,

there is more heterogeneity in 9th grade origins. Students moving down from the top 200,

holdovers from the 9th grade 201-500 group, and students moving up from the 501-1000

group each comprise about 10 percent of this group. We also see a much larger number of

students who had not done as well in 9th grade, with 18 percent coming from the 1001-5000

range and 7 percent from the above 5000 range.

At the lower (but still high) levels of 12th grade achievement in the Table, improvement

since 9th grade plays an even more prominent role. Only about 5-9 percent of these students

in the 12th-grade 501-1000 and 1001-5000 rank groups are students who have dropped down

from a higher 9th grade rank group. Meanwhile, 12 percent and 19 percent, respectively,
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are students who have moved into these groups after having scores that placed them outside

the top 5000 9th graders. These students have improved by enough to overcome both their

initial disadvantage and the substantially higher score needed to make the within-grade top

5000 as a 12th grader. The fraction of students that we cannot match to a 9th grade score

is also much larger in these groups at 53 percent and 62 percent, respectively. The fact

that the failure-to-match rate is so much larger here than it was for the top 50 students

suggests that a substantial number of the unmatched 12th graders in these groups are true

entrants who had not participated in 9th grade.

Early in this Section, we noted that the gender gap among high-achieving math students

is already large in 9th grade. Given that performance is highly persistent, it is not sur-

prising that the girls are not able to overcome their initial disadvantage. But performance

persistence makes it all the more striking that the gender gap among high-achieving math

students actually widens substantially over the the high school years. Some of the more de-

tailed findings in this Section highlight channels that could be relevant: large performance

improvements are needed to maintain one’s within-cohort rank; some students are dropping

out of participating (at least at all but the highest ranks); and the three-year time span

between 9th and 12th grades is long enough to allow quite a number of students who were

not high-performers in 9th grade to improve or enter and achieve a high rank by the end of

high school. Gender-related differences in any of these dimensions could contribute to the

widening gender gap that we document.

4 Gender Differences in Dynamics and a Decomposition

In this Section, we look at gender-related differences in the dynamics of year-to-year perfor-

mance and present a decomposition that lets us quantify the relative importance of several

factors to the broadening of the gender gap in high math achievement over the high school

years.

4.1 Differences in dynamics

A number of gender-related differences could in principle lead to a widening gap: girls

might be more likely to drop out of participating; participating girls might improve less on

average from year to year; there may be less variance in year-to-year improvement for girls;

and/or fewer high-achieving girls may drop into participating.

We first look for gender-related differences in year-to-year improvement within the pop-

ulation of students who participate in the AMC tests in consecutive years. Table 7 presents
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estimates from an OLS regression which has the change in each student’s within-grade rank

as the dependent variable. The left panel reports estimates from a regression run on the

set of students who ranked in the top 5000 within their grade in the initial year.15 The

negative coefficient on the initial rank indicates substantial mean-reversion in within-grade

rank, as one would expect given that test scores are a noisy measure of underlying ability.

A primary coefficient of interest in the regression is the coefficient on the Female dummy.

It is highly significant and indicates that girls are improving by less from year to year than

boys by about 30 log points. The second main estimate of interest is whether there are

gender-related differences in the variance of year-to-year improvement. The lower part of

the Table reports gender-specific means of the squared residuals from the above regression.

Again, we find a statistically significant gender difference: there is greater year-to-year

variance in the boys’ performances. Hence, we have identified two separate features of the

dynamics that would tend to contribute to a widening of the gender gap among the highest

achievers: (1) the girls’ mean improvement from year to year is lower; and (2) the variance

in their year-to-year improvement is also lower.

Dep. Var.: log(GradeRankt+1)− log(GradeRankt)
Variable Top 5000 in grade at t Top 500 in grade at t

Female 0.30∗∗∗ 0.32∗∗∗

(0.010) (0.043)
Adj log(GradeRankt) -0.18∗∗∗ -0.08∗∗∗

(0.004) (0.016)
Female×Adj log(GradeRankt) -0.04∗∗∗ 0.02

(0.011) (0.051)

σ̂2male 1.53∗∗∗ 2.21∗∗∗

(0.009) (0.034)
σ̂2female 1.22∗∗∗ 1.99∗∗∗

(0.015) (0.079)

Number of observations 81,570 9,682

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7: Gender difference in within-cohort rank dynamics for high-achieving students

In the above regression, there is a moderately-sized but statistically significant coefficient

on the interaction between the Female dummy and within-grade rank, indicating that the

gender gap in mean improvement is larger for higher achievers. To examine whether this

15The sample is restricted to the set of students who were in grades 9, 10, or 11 in the initial year and
whose genders were nonmissing. The regressions also include unreported year and grade dummies. The
log(GradeRankt) control is adjusted by subtracting the sample mean.
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may reflect a substantial difference among the highest achievers, the right panel of Table

7 estimates the same regression on the sample of even higher achievers who were ranked

in the top 500 in their cohort in the initial year. We find that things are not appreciably

different at this level. The gender gap in mean improvement is estimated to be 32 log points

per year. And the residual variance is again lower for the girls. As an additional robustness

test, we also estimated the above regressions separately on 9th, 10th, and 11th graders and

did not find substantial differences in either finding across grades.

Recall that we earlier noted that the fraction of year-t students whom we cannot match

to a year-t + 1 score is substantially higher for students lower down in the top 5000 than

for the highest scorers, which suggested that dropping out of test taking is relevant to the

composition of the set of high scorers. To look for gender-related differences in dropout

rates, we define an indicator Dropoutit for whether each year-t high scorer could not be

found in the year-t+ 1 data, and regress this on the student’s within-grade rank in year t,

the square of this variable, a Female dummy, a Female × rank interaction, and grade, year

and B-date dummies.16

The first column of Table 8 reports estimates from a linear regression run on the full

sample of 9th-11th grade students who were in the top 5000 in their grade in year t. The

mean dropout rate in this sample is 32 percent, and dropout rates are similar across grades.

The primary coefficient of interest is the Female dummy. The estimate of 0.023 indicates

that girls are 2.3 percentage points more likely to drop out of participating than boys

with comparable scores. Again, the estimate is highly statistically significant, so we have

identified a third factor contributing to the widening of the gender gap over the course of

high school.

The second through fourth columns of the Table present similar regressions estimated

separately on the students in 9th, 10th, and 11th grades, respectively. Here, we do see

a substantial difference across grades. The gender gap in dropout rates is much larger in

the 11th to 12th grade transition than in the other years. We estimate that girls are 4.6

percentage points less likely to participate in 12th grade than boys who had comparable

11th grade scores. Early in high school, the gender gap in dropout rates is much smaller.

All regressions include controls for the student’s within-grade rank in the initial year.17

16Dropoutit will reflect both true dropouts and students whom we fail to match due to inconsistently
reported names, etc. The B-test dummy takes on a value of 0.02 and is statistically significant. We suspect
that this reflects in part that a higher fraction of students taking B-date tests are students taking the test
at a location other than their regular school, which makes us more likely to fail to match their performances
across years. We hope that such matching failures are not gender-related.

17We have normalized this variable separately by grade to have mean zero within the sample of students
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Dep. Var.: Dropout t→ t+ 1
Sample: Top 5000 in grade X in year t Top 500

Variable All grades Grade 9 Grade 10 Grade 11 All Grades

Female 0.023∗∗∗ 0.009 0.017∗∗ 0.046∗∗∗ 0.007
(0.003) (0.005) (0.005) (0.006) (0.010)

Adj log(GradeRankt) 0.071∗∗∗ 0.077∗∗∗ 0.066∗∗∗ 0.071∗∗∗ 0.033∗∗∗

(0.002) (0.004) (0.004) (0.004) (0.006)
Adj log(GradeRankt)

2 0.008∗∗∗ 0.009∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.005∗

(0.001) (0.001) (0.001) (0.001) (0.002)
Female × Adj log(GradeRankt) 0.001 0.001 0.003 -0.003 -0.012

(0.004) (0.006) (0.006) (0.007) (0.012)

Number of observations 119,325 39,284 39,747 40,294 12,020

Standard errors in parentheses. p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Gender difference in within-cohort rank dynamics for high-achieving students

The coefficients on these controls reflect that higher-scoring students are substantially less

likely to drop out. The coefficients are quite similar across all three grades, indicating that

this relationship is fairly stable over the course of high school.

The final column of Table 8 looks at more extreme high scorers who were among the

top 500 students in their grade in year t. The mean dropout rate in this sample is lower

at 19 percent, reflecting again that higher-scoring students are less likely to drop out in

year t + 1. The point estimate of the gender-related difference in dropout rates is also

much smaller, just 0.7 percentage points, but the standard error is such that we can neither

reject that the gender gap is zero, nor that it is the same as in the top 5000 sample. In

unreported grade by grade regressions, the gender gap in dropout rates again appears much

larger in 11th grade than in the earlier years, but the standard errors are such that the

only statistically significant conclusion one could draw about top 500 students is that that

there is a substantial gender gap in dropout rates after the 11th grade year.

We noted earlier that a nontrivial number of high scorers at the end of high school

are students whom we could not match to a 9th grade score. While some of this is due

to difficulties in matching, part is the real phenomenon of students participating in the

AMCs after not having been involved with math competitions from the outset. To examine

whether there are also gender-related differences in this aspect of the dynamics, Table 9 lists

the fraction female among all grade 9-11 students who were in each rank group in some year

from 1999-2006, and the fraction female among grade 10-12 students in the rank group in

in each grade, to facilitate interpretation of the coefficient of the Female dummy as reflecting the difference
in dropout rates for the mean student in our sample.
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2000-2007 who are entrants; i.e., students who are in the rank group in year t+1 and whom

we were unable to match to the year-t dataset.18 In all but the top rank group, we find that

the fraction of female students among the entrants is slightly lower than the fraction among

the students who were in that group in the previous year. On average the difference in the

percent female is about one percentage point. It is possible that there are gender-related

differences in our ability to match students; e.g., one gender could be more likely to fill

in their name differently in different years. However, girls are overrepresented in the pool

of year-t high scorers whom we cannot match to a year-t + 1 score, and underrepresented

among year-t + 1 high scorers whom we cannot match to a year-t score: the potential

gender-related matching errors suggested by these results have opposite sign. The lower

number of female students among students who achieve high scores after not having taken

the AMC in the previous year is a fourth contributor to the broadening of the gender gap

over the high school years.

Fraction of students in each rank group who are female
1-50 51-100 101-200 201-500 501-1000 1001-5000 Average

All year-t students 0.09 0.12 0.14 0.18 0.21 0.29 0.17
Year-t+ 1 entrants 0.10 0.11 0.14 0.16 0.20 0.26 0.16

Table 9: Gender composition of highly ranked students new to the AMC in comparison
with highly ranked students from the previous year

To recap, we have identified several gender-related differences in the dynamics of student

achievement that will contribute to the widening of the gender gap in high achievement on

the AMC over the high school years. High-achieving girls are on average not improving by

as much from year to year, there is less variance in their year-to-year improvement, they

are more likely to drop out of participating (especially after 11th grade), and we see fewer

girls among the high-scoring entrants whom we cannot find in the previous year’s data.

4.2 A decomposition of changes in the gender gap

In the previous Section, we noted that the dynamics of boys’ and girls’ achievement differ

in multiple ways. In this Section, we define a decomposition of the change in the gender gap

into portions attributable to various differences that provides a measure of their relative

importance.

Our analysis focuses on changes in the fraction µfXt of students in achievement group

18All figures are simple unweighted averages of the means for each grade-year cell.

22



X at time t who are female. (We will often use being in the top 50, 500, or 5000 as the

group X.) We relate this to various aspects of differences in the boys’ and girls’ transition

matrices. To define these, we write µfrt for the fraction female at rank r at time t. We

define arX as the fraction of students at rank r at time t who achieve a score in X at time

t+ 1. We will define this both for numerical rank groups r ∈ X and for the set of students

who do not participate at time t+ 1, which we denote by r = NP . Write afrX and afrNP for

the analogous objects for female students. Write Nrt and NX for the number of students

at rank r at time t and the number with ranks in the set X. Write µnewXt+1 for the fraction

of students in group X at time t+ 1 who had not participated at time t and µf,new
Xt+1 for the

fraction of students in group X at time t+ 1 who are female and who had not participated

at t.

Proposition 1 The change in the fraction female in group X can be written as19

µfXt+1 − µ
f
Xt = ∆drop

X + ∆cont
X + ∆grow

X + ∆entry
X + ∆mech

X ,

where

∆drop
X =

1

NX

∑
r 6=NP

µfrt(arNP − afrNP )
afrX

1− afrNP

Nrt

∆cont
X =

1

NX

∑
r∈X

µfrt(1− arNP )

(
afrX

1− afrNP

− arX
1− arNP

)
Nrt

∆grow
X =

1

NX

∑
r 6∈X,r 6=NP

µfrt(1− arNP )

(
afrX

1− afrNP

− arX
1− arNP

)
Nrt

∆entry
X = µf,newXt+1 − µ

f
Xtµ

new
Xt+1

∆mech
X =

1

NX

∑
r 6=NP

µfrtarXNrt − µfXt(1− µ
new
Xt+1)

The first term in the decomposition, ∆drop
X , can be thought of as the change in female

representation that is due to girls dropping out at a different rate (assuming that the girls

who dropped out would have succeeded at the same rate as the girls who continued to

participate). The second term, ∆cont
X , reflects the difference in rates at which girls who con-

tinue to participate improve by enough to remain in rank group X. The third term, ∆grow
X ,

reflects the difference in rates at which lower-ranked girls versus boys subsequently climb

into group X. The fourth, ∆entry
X , reflects any discrepancies between female representation

among the high scorers who did not participate in the previous year and what would be

19See Appendix B for proof.
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expected given the total number of entrants and female representation among the previous

year’s high scorers.

The final term in the decomposition, ∆mech
X , captures mechanical changes that would

occur even if there were no gender-related differences in the transition process, due to asym-

metries in the initial conditions. There are mechanical effects pushing in both directions.

A negative effect is that the girls in each rank group X are disproportionately found in the

lower part of the rank group, so girls in X would be less likely to avoid dropping into a

lower group in the following year. Working in the opposite direction, there are also more

girls in the rank group just below X than in group X. With gender-independent dynamics,

this would result in the set of students who move up into rank group X in the next year

being more heavily female.20 The sign of the mechanical effect ∆mech
X will depend on which

is larger.

The decomposition is an accounting identity that will hold exactly in the data for any

one year if one defines the top X so that it has exactly X students in each year, sets

all transition probabilities like arX to be the actual fraction of students at rank r at t

who scored in the top X at t + 1, and is consistent in what one plugs in for the multiple

occurrences of conditional transition probabilities like afrX/(1 − a
f
rNP ) that are undefined

because the denominator is zero.21 It will also hold exactly in data from multiple years if

one uses appropriate weighted averages.

We instead implement the decomposition by estimating the transition probabilities both

for the full population and for girls as smooth functions of the initial year rank via local

linear regressions with log(Rank) as the right-hand-side variable.22 This makes all of the

transition probabilities continuous in rank and provides a natural definition for the con-

ditional probabilities, avoiding any indeterminacies. We do this separately for students in

9th, 10th, and 11th grades, pooling the data for all six cohorts within each regression.

20We can make this intuition precise by further decomposing ∆mech
X into terms reflecting these two effects.

Write µcont
Xt+1 for the fraction of students in the top X in year t+ 1 who had been in the top X in year t and

µ
grow
Xt+1 for the fraction of students in the top X in year t+1 who participated but were not in the top X in year

t. We then have ∆mech
X = ∆

mech,cont
X + ∆

mech,grow
X where ∆

mech,cont
X = 1

NX

∑
r∈X µf

rtarXNrt−µf
Xtµ

cont
Xt+1

and ∆
mech,grow
X = 1

NX

∑
r 6∈X,r 6=NP µ

f
rtarXNrt − µf

Xtµ
grow
Xt+1 . We would expect ∆

mech,cont
X to be negative

and ∆
mech,grow
X to be positive.

21Plugging in different numbers will, however, alter the results of the decomposition, shifting between
attributing changes to dropouts and to attributing them to differential growth and continuation rates.

22For example, to estimate arX for X being the top 500 students, we use a dependent variable which
is one for all students who score strictly in the top 500, zero for all students who are outside the top 500
(including students who did not take the test), and an intermediate fraction for all students whose t + 1
score is at the level that spans the boundary. The fraction female in the top X similarly uses fractional
counting for students at the score spanning the boundary.
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One version of our basic fact about the widening gender gap was that the percentage

of female students in the top 5000 drops from 30.5 in 9th grade to 21.8 in 12th grade. This

is a drop of 8.7 percentage points over three years, which is about 3 percentage points per

year. The first row of Table 10 presents a decomposition of this change.23 It indicates that

by far the largest source of the drop – indeed responsible for 3.6 percentage points, which is

more than 100 percent of the drop – is ∆grow
X , the term in our decomposition which reflects

differences in the rates at which male and female students at ranks r below 5000 improve

their performance and “grow” into the top 5000. Note that this term is designed to control

for how far below the top 5000 cutoff male and female students were in the previous year:

it is due only to differences in the probabilities that male and female students at each given

rank outside the top 5000 move up into the top 5000. This in turn will reflect both the

differences we identified earlier in both average improvements from year to year and in the

variance of students’ improvements.24

Two other features of the dynamics are a little less than one-third as important as the

growth effect: ∆cont
X which reflects the reduced rate at which highly-ranked female students

who take the test maintain their top 5000 position; and ∆entry
X which reflects the lower

fraction of female students among “entrant” high scorers. The difference in dropout rates

is a smaller contributor on average.

Grade Achievement Change in Decomposition of decline
Level Level % Female Drop Cont Grow Entry Mech

Average Top 5000 -3.1 -0.4 -1.2 -3.6 -1.1 3.5

9→ 10 Top 5000 -4.6 -0.1 -1.4 -2.8 -2.2 1.5
10→ 11 Top 5000 -2.3 -0.4 -1.1 -3.7 -0.8 3.6
11→ 12 Top 5000 -2.1 -0.9 -1.1 -4.3 -0.3 4.7

Average Top 500 -2.0 -0.3 -0.9 -4.5 -0.4 3.8
Average Top 50 -0.5 -0.3 -0.8 -3.0 0.2 3.2

Table 10: Decomposition of declines in fraction female

The final column indicates that the total drop would be much larger were it not for a

positive mechanical effect: the growth-related subcomponent turns out to be much more

important than the continuation-related subcomponent. To appreciate why this effect can

be large in practice, recall that the fraction female is much higher in the population of

23The “average” decomposition is obtained by averaging separately estimated decompositions of the
changes from 9th to 10th, 10th to 11th, and 11th to 12th grades.

24The latter matters here because students outside the top 5000 will need to improve by substantially
more than the average amount to move into the top 5000.
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test-takers outside the top 5000. For example, for 10th graders it is 0.263 for students in

the top 5000 and 0.401 for students who are ranked between 5,001 and 20,000. Although

each individual 5,001-20,000 student is not very likely to move into the top 5000 in 11th

grade, together they will account for about 23 percent of the year-t+ 1 grade 11 top 5000.

If the dynamics were gender-independent, then the fraction of girls in this moving-up group

would be close to 40 percent, and this would substantially bring up the average percent

female variable in the top 5000.

The next three rows of the Table report the separate 9th to 10th, 10th to 11th, and

11th to 12th grade decompositions that went into the average discussed above. Recall that

gender gap widened most from 9th grade to 10th grade. The entry effect is relatively more

important at this stage and the mechanical effect does less to offset the other sources of

female disadvantage. The changes from 10th to 11th grade are very similar to the overall

average. In the 11th to 12th grade transition, the entry effect becomes quite unimportant,

but the growth effect is even more important and dropout also plays a role.

The final two rows of the Table focus on more extreme high achievers. Recall that the

fraction female in the top 500 declined from 18 percent in 9th grade to just 12 percent in

12th grade. This 35 percent decrease was larger than the 29 percent decrease at the top

5000 level, although it is smaller in percentage point terms (about 2 percentage points per

year). The importance of the growth process to the evolution in the gender gap comes

through even more strongly here – differences in the probabilities with which boys and girls

at each lower rank r are able to move into the top 500 are much more important than

the other differences we’ve identified. The entry and dropout effects are both just minor

factors, consistent with the view that few true entrants will make it all the way to the top

500 and few students will drop out after earning such high scores.

The bottom row looks at even more extreme high achievers who scored in the top 50 in

their grade. Here, the dropout and entry effects continue to fade to insignificance relative

to the large growth effect. What remains are the large growth effect and a continuation

effect, again offset in large part by the mechanical effect.25

The small numbers that come up when doing top 50 calculations may make it easier to

understand why the mechanical effect is so large. Going back to Table 5 and inverting the

relationship there to count moves into the top 50, we can infer that 18.1 of the year-t + 1

25In order to account for noise in the decomposition exercise introduced by the local linear regressions,
we performed a nonparametric bootstrap of the decomposition procedure, resampling at the student level
and holding ranks fixed across 2,000 bootstrap draws. As shown in Table A2 in the Appendix, all terms
in Table 10 are estimated with a great deal of precision, with the exception of several factors at the top 50
level.
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top 50 will be repeats from last year’s top 50, but they will be joined by 8.1 students who

ranked between 51 and 100 last year, 6.4 who ranked between 101 and 200, and 5 who

ranked from 201-500. On average about 9 percent of the 9th-11th grade top 50 is female.

Ranks 51-100 are about 12 percent female. Ranks 101-200 are about 14 percent female.

And ranks 201-500 are about 18 percent female. Together, the students moving up from

these three lower groups make up about 40 percent of the year-t + 1 top 50. If they were

randomly drawn from their rank groups, then about 16 percent of them would female.

Hence, their presence would increase the overall percent female in the top 50 by about

0.4× (16− 9) ≈ 3 percentage points. The magnitude of these mechanical effects can make

our finding of a broadening gender gap even more striking – the widening of the gender gap

over the course of high school occurs despite the fact that every year there are many more

girls in the set of students well positioned to move into the top 50 (or 500 or 5000) than

currently in the top 50 (or 500 or 5000).

5 Reactions to Disappointment

So far, we have tried to improve our understanding of the widening of the gender gap in high

math achievement over the high school years by providing detailed descriptive evidence on

the dynamics of performance that any potential explanation would have to account for. In

this Section, we exploit the multistage nature of the AMC series to provide evidence with

a more causal flavor on one potential mechanism: gender differences in how students react

to disappointment.

The AMC 10/12 contests on which we have focused are the first stage of a multistage

series. Students who score highly enough on the AMC 10 or 12 are invited to participate in

the American Invitational Mathematics Exam (AIME). Roughly 500 high scorers from that

exam advance to the USA Math Olympiad (USAMO). A few dozen high scorers on that

test are invited to the Math Olympiad Summer Program (MOP). And in the end, six MOP

students are selected to represent the United States at the International Math Olympiad.

While this technically means that all but six of the 200,000 plus students who participate

in the AMC 10/12 contests each year eventually lose, a number of awards are given out

along the way and students take pride in how far they advance. For most of the high-

achieving students in our sample, the most salient potential accomplishment is qualifying

for the AIME. In a typical year in 1999-2006, roughly 500-750 9th graders, 1000-2000 10th

graders, 3000-5000 11th graders, and 4000-6000 12th graders qualify. Many who make it

will regard AIME qualification as making their AMC season a success. It keeps their math
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competition season alive for another month, and they will plan to list it on their college

applications. Many who fall just short of the cutoff for AIME qualification will be quite

disappointed.

The “rational” response to falling just short would probably be to redouble one’s efforts:

not having been an AIME qualifier should raise the incremental benefit that qualifying

provides to one’s resume; students have gotten a signal that with a little more preparation

they would have made it; and they’ve also learned (given how much students typically

improve from year to year) that they have a good chance of qualifying in the subsequent

year. But in practice, it seems likely that some students will instead be discouraged and

decide to invest less in their math skills. In light of the literature on gender differences in

self-confidence and interest in competition (e.g., Niederle and Vesterlund 2007; Croson and

Gneezy 2009), one could easily imagine that there are gender differences in this respect.

The rules for advancement from the AMC 10/12 to the AIME are a bit complicated.

Students qualify if they score at least 120 on the AMC 10 or 100 on the AMC 12. They

also qualify if they are among the top 1 percent of US test takers on the particular (A or

B) AMC 10 that they took, or among the top 5 percent on the particular AMC 12. The

rules are an ex ante attempt to treat the tests roughly equally, but in practice the ex post

level of correctly-measured performance at which the cutoff falls will vary depending on

which test a student took: when the absolute score thresholds bind it is better to have

taken whichever test date (A or B) is easier; and the percentage thresholds will not exactly

correct for differences between the talent in the AMC 10 and AMC 12 student pools and

do not attempt to correct for the A vs. B distinction, even though the B pool is historically

stronger.

One’s initial thought might be that this provides a classic opportunity to apply a stan-

dard regression-discontinuity design: each year-10/12-A/B combination provides a cutoff;

students with scores just above and below the cutoff are similar in performance but get

different disappointment treatments. Due to the details of the scoring, however, a standard

RD design is not really appropriate. For an RD design, one wants the relationship between

unobserved student characteristics and the score to be smooth around the cutoff. The va-

garies of how the AMC scores the exams and penalizes guessing make this unlikely to be a

good assumption. For example, the AMC 10 cutoff is most often 120. The unique way to

get a 120 was to answer all 25 questions and get 20 correct and 5 wrong.26 The unique way

to get the score just below 120, 119.5, was to attempt just 18 of the 25 questions and get

26The AMC contests changed the guessing penalty after 2007, so the calculations here are different from
what they would be on current contests.
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17 correct, 1 wrong, with 7 left blank. It is easy to imagine that the 119.5 and 120-scoring

students are different in unobserved ways. The 120 students may be quicker, less accurate,

and more risk loving. A more subtle observation is that the 119.5 students might also be

less sophisticated in not having realized that their chances of reaching a potential 120 cut-

off would have been higher if they had guessed on two additional questions.27 Differences

of this variety are not smooth or even monotone. The score just above 120, 120.5, was

obtained by answering 20 of the 25 questions and having 18 correct and 2 wrong, with 5

left blank. Students with this outcome may be more like 119.5 students than 120 students

on the speed/accuracy/risk-loving dimension, but different from both (although more like

120 students) on the strategic sophistication dimension.

The structure of the AMC scoring is, however, very well suited to applying a variant of

the RD design. The patterns in the score vs. “number of questions attempted” relationship

repeat every six points (which corresponds to the point value of a correct vs. an incorrect

answer.) If one compares students with scores that range from 6 points below the AIME

cutoff to 5.5 points above, one can think of the comparison as a pooled comparison of stu-

dents in 12 different score pairs, each of which should be similar in unobserved dimensions.

For example, students who score 120 (20 correct, 5 wrong) should be similar in unobserv-

ables to students who score 114 (19 correct, 6 wrong). And students who score 119.5 (17

correct, 1 wrong) should be similar to students who score 125.5 (18 correct, 0 wrong).

Within each pair, students who make one fewer mistake will be a little stronger on average,

but it seems the difference should not be very large and can presumably be controlled for

reasonably well, as in our earlier regressions which used the log of a student’s within-grade

rank as a flexible control for the general tendency of higher performing students to be less

likely to drop out of participating in the AMCs. Given that the location of the cutoff varies

from year to year and from test to test within each year, we can hope to identify (and

hence control for) this smooth relationship fairly accurately even in a dataset restricted to

students who are within 6 points of the AIME cutoff. Given such a control, a regression

including a dummy for whether a student was just above or below the AIME cutoff on the

test they took can be thought of as investigating the effect of a “disappointment” treatment

that is close to randomly assigned.

Table 11 presents estimates from regressions which use the above approach to examine

the effect of disappointment on the probability that students will drop out of participating in

27If all 18 of the answers they gave were correct, their score would exceed 120 even if the two added
guesses were both incorrect. If one of the 18 was wrong, they would surpass 120 if either of the two added
guesses were correct, but not if they made no guesses.
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the AMC tests. The first column contains estimates from a linear regression like those which

we used previously to examine gender-related differences in dropout rates, but estimated on

the sample of students in the close-to-the-cutoff window described above and adding dummy

variables for failing to qualify for the AIME. In light of the differences noted earlier, we

also allow the coefficient on Female dummy to vary across grades.28 We again normalize

within-grade rank separately within each grade, but here have done the normalization so

that the adjusted log of within-grade rank variable has mean zero within each grade for

students with scores exactly at the AIME cutoff. With this normalization, the coefficients

on the Female × Grade X interactions can be thought of as giving the gender difference

in dropout rates for students who qualified for the AIME with the lowest possible score.

Here, we find that 11th grade girls are significantly more likely to drop out of participation

(by 4.1 percentage points) even after having qualified for the AIME. The corresponding

estimates for 9th and 10th grade girls are smaller and not statistically significant, but the

standard errors are such that we also cannot rule out effects on the order of 2-3 percentage

points.

Our main interest in conducting these regressions was on the effect of the disappointing

outcome of failing to qualify for the AIME. The main effect on this variable is substantial,

2.9 percentage points, and highly statistically significant. One way to think about the

magnitude is that it is comparable to the participation gender gap for 11th grade girls: i.e.,

it means that an 11th grade boy with a score just below the AIME cutoff will be almost as

likely to drop out of participating as an 11th grade girl who scored just above the cutoff.

The second main coefficient of interest is the differential effect that failing to qualify

for the AIME has on girls. The estimate indicates that the decrease in the probability of

participation is 2.2 percentage points larger for girls than for boys: i.e., girls are even more

likely than boys to cease participating in the AMCs when they experience a disappointing

outcome. The effect on a girl of just missing the AIME will be the sum of the two estimated

coefficients, so girls with scores just below the AIME cutoff will be 5.1 percentage points

less likely to participate in the following year than girls who just barely qualify for the

AIME. This is consistent with previous literature on gender differences in self-confidence

and responses to competition, suggesting that those findings are relevant even to the set

of highly accomplished girls we are studying. It is also noteworthy in connection with our

earlier finding that the differential dynamic that contributes most to the widening gender

gap is that we see fewer girls moving up and substantially improving their within-cohort

28As before, the regressions also include unreported year, grade, and B-test dummies.
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Dep. Var.: Dropout t→ t+ 1
Sample: within 1 question of AIME cutoff

Variable All grades Grade 9 Grade 10 Grade 11

Female × Grade 9 0.004 -0.037
(0.015) (0.022)

Female × Grade 10 0.013 0.014
(0.010) (0.014)

Female × Grade 11 0.041∗∗∗ 0.047∗∗∗

(0.007) (0.009)
Below AIME Cutoff 0.029∗∗∗ 0.011 0.033∗∗ 0.035∗∗∗

(0.008) (0.017) (0.011) (0.008)
Female × Below AIME Cutoff 0.022∗ 0.071∗ 0.018 0.018

(0.010) (0.032) (0.020) (0.012)
Adj log(GradeRankt) 0.030∗∗∗ 0.026 0.025∗ 0.066∗∗∗

(0.009) (0.022) (0.012) (0.012)
Adj log(GradeRankt)

2 0.015∗∗ 0.012 0.017 0.009
(0.005) (0.015) (0.010) (0.007)

Female × Adj log(GradeRankt) -0.017 0.003 -0.007 -0.024∗

(0.009) (0.027) (0.016) (0.011)

Number of observations 71,853 6,455 17,017 48,381

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 11: Reaction to disappointment: dropout rates around the AIME cutoff

31



rank from year to year.

The final three columns of the Table report coefficients from regressions estimated sep-

arately on the 9th, 10th, and 11th grade subsamples. Note that the 11th grade subsample

is much larger than the others: there are many more 11th graders than younger students

with scores very close to the AIME cutoff. Several results are clearly significant just in the

11th grade subsample: girls who just barely qualify for the AIME are more likely to drop

than boys with the same score; and students of either gender who just miss out on qualify-

ing are more likely to cease participating. The coefficient on the male-female difference in

the effect of disappointment is also similar to the full sample estimate, but now significant

only at the 14 percent level. While one might have hoped that the regressions in the other

columns would shed light on whether disappointment effects and gender differences therein

are different for 9th and 10th graders, the smaller sample sizes prevent us from saying

much. The point estimates on both the main effect and the female interaction are positive

in all grades and none are significantly different from the all-grades estimates. The main

effect is significantly different from zero at the 1 percent level in the 10th grade subsample

and the female interaction is significant at the 3 percent level in the 9th grade sample, but

mostly we are unable to provide much in the way of statistically significant conclusions

when examining the earlier grades in isolation. Note that we also lose much of our ability

to identify the general relationship between performance levels and dropout rates, which is

a critical control in these regressions.

Disappointment may also affect the performance of students who continue to participate

in the AMC tests by affecting the effort students put in over the course of the following

year. To look for effects of this type, Table 12 reports coefficient estimates from regressions

like those in Table 7 examining the change in within-grade rank between year t and year

t + 1, but as in Table 11 restricting the sample to students with year t scores close to the

AIME cutoff and including dummies for missing the AIME.29

The first main coefficient of interest in this regression is again the coefficient on the

dummy for missing an AIME. We get a positive, significant coefficient, which again suggests

that students are not responding well to disappointment: students with scores just below

the AIME cutoff have a larger increase in their expected year t+1 rank (i.e., they do worse)

than do students with scores just above the AIME cutoff. The magnitude is not very large in

economic terms – students ranks are increasing by a little more than 10 percent. However,

the fact that it is positive is noteworthy: we have seen that scoring just below the AIME

29The regressions also include unreported grade and year dummies, and a dummy for the year t test being
a B-date test.
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D. V.: log(GradeRankt+1)− log(GradeRankt)
Sample: within 1 question of AIME cutoff

Variable All grades Grade 9 Grade 10 Grade 11

Female 0.303∗∗∗ 0.343∗∗∗ 0.287∗∗∗ 0.296∗∗∗

(0.019) (0.076) (0.042) (0.023)
Below AIME Cutoff 0.106∗∗∗ 0.241∗∗∗ 0.173∗∗∗ 0.079∗∗∗

(0.017) (0.059) (0.032) (0.023)
Female × Below AIME Cutoff -0.074∗ -0.047 -0.031 -0.104∗∗

(0.029) (0.115) (0.062) (0.034)
Adj log(GradeRankt) -0.422∗∗∗ -0.463∗∗∗ -0.457∗∗∗ -0.436∗∗∗

(0.018) (0.056) (0.031) (0.027)
Female × Adj log(GradeRankt) 0.022 0.060 0.026 0.035

(0.026) (0.098) (0.052) (0.032)

Number of observations 45,761 4,821 12,140 28,800

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 12: Reaction to disappointment: changes in performance subsequent to scoring
around the AIME cutoff

cutoff induces some students to drop out, and the most natural guess would be that these

dropouts are relatively weak students, which would result in the pool of continuing students

with scores just below the AIME cutoff being positively selected.

In contrast to our earlier result on girls’ reacting worse to disappointment in terms

of being more likely to drop out, girls who continue participating despite experiencing

disappointment show less of a disappointment effect in their performance. This could reflect

that the sample of continuing girls is more selected, but could also reflect that girls who do

not drop out are less likely to reduce their effort. Regardless, it appears that differences

in dropout rates are the main channel through which gender differences in reactions to

disappointment contribute to a widening gender gap. The positive coefficient estimate on

the Female dummy indicates that (along the lines of what was reported earlier) girls just

above and below the AIME cutoff are still improving by less on average than boys with

comparable scores.

The final three columns of the Table provide estimates from regressions run separately

on the 9th, 10th, and 11th grade subsamples. The estimates on the control variables are

quite consistent across the grades. The main effect of falling below the AIME cutoff is

noticeably larger in 9th and 10th grades than in 11th. Recall that the disappointment-

related dropout effects were less precisely estimated (and perhaps smaller) in the younger

grades. The significance here means that we can now conclude that adverse effects of
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disappointment are visible in all three grades. The interaction between the female dummy

and falling below the AIME cutoff is significant only in the 11th grade sample.

To summarize, students appear to react to the disappointment at falling short of the

AIME cutoff both by being more likely to drop out and by improving by less in the subse-

quent year conditional on not dropping out. The dropout effect is larger for girls and will

be one factor contributing to the widening of the gender gap.

6 Conclusions

In this paper, we noted that data from the American Mathematics Competitions indicate

that the gender gap among high-achieving math students is already quite large by 9th

grade. Girls comprise just 30 percent of the 5000 highest scoring 9th graders on the AMC

contests, a figure that is quite close to the 33 percent female representation one sees in the

set of high school seniors who earn perfect 800 scores on the mathematics SAT. The AMC

tests make it possible to look much farther into the upper tail of mathematics performance

and draw consistent distinctions among students whose performance would be top-coded

on other tests. Here, we see that the even larger gaps we noted in previous work are already

present by 9th grade. Girls comprise just 18 percent of the 500 highest scoring 9th graders

on the AMC contests and just 8 percent of the top 50. One of our primary takeaways

is that to fully understand the gender gap in high math achievement among high school

students, it will be necessary to examine pre-high school data. We hope that our paper will

spur further work in this direction.

A second main finding of our paper is that the gender gap in high math achievement

widens substantially over the high school years. The largest change occurs between 9th

and 10th grades, but it is a fairly steady process clearly visible in every year. The fraction

female among students who are among the top 5000 in their grade on the AMC test drops

from 30 percent in 9th grade to 22 percent in 12th grade. Among students who are among

the top 500 in their grade the drop is from 18 percent in 9th grade to just 12 percent in 12th

grade. These are substantial changes. They would be hard to reconcile with the simplest

views of gender gaps stemming from some time-invariant biological difference and motivate

looking more closely at the year-to-year dynamics of student performance over the high

school years.

Our initial analysis of the dynamics of high math achievement brings out several new

facts. Two that are particularly important to thinking about the gender gap are that

high-achieving students must substantially improve their absolute performance from year
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to year to maintain their within-cohort rank, and yet within-cohort ranks are still quite

persistent. The persistence reinforces our earlier comment that pre-high school factors are

important to understanding the gender gap in high school. One can think of the need for

substantial improvement to stay in place as deriving from a combination of two effects. One

is that the typical high-achieving math student is substantially improving their knowledge

and problem solving skills from year to year. The other is that there are many more

students outside the top 500 than in the top 500. Some lower-ranked students are making

far-above-average improvements, and this forces highly ranked students to make above-

average improvements to maintain their place. The need for these improvements highlights

that our high-achieving students are exerting substantial effort in bolstering already highly

advanced math skills. There are many, many demands on elite high school students’ time

that could lead to systematic differences in the opportunity costs of and interest in making

such investments.

We have identified four distinct gender-related differences in the dynamics of student

performance that contribute to the widening gender gap. In comparison with boys who

had the same score in the previous year, high-achieving girls are more likely to drop out of

participating in the AMC tests (particularly in 12th grade), and the performance gains of

those who do participate again are lower on average and less variable. Girls are also under-

represented in the pool of high-scoring “entrants” whom we could not match to a score in

the previous year. Our decompositions point to “growth” differences, the underrepresenta-

tion of girls in the set of students who manage to move up from lower ranks to high ranks,

as the most important source of the widening gap. The other effects are more moderate in

size, but in combination and cumulated over the years also contribute substantially to the

observed widening of the gender gap.

In 9th grade, the dearth of female entrants is nearly as important, the effect of high-

scoring girls being less able to hold their ranks is consistently part of the story, and from

11th to 12th grade, dropouts become an issue. But the growth differences are consistently

the largest effect both across grades and across levels of achievement. In most cases, even

by themselves they account for well over 100 percent of the observed broadening of the

gender gap. Again, this suggests a line of further inquiry – why are there so few girls who

move up substantially relative to their cohort in the later high school years?

Our final Section suggests that reactions to disappointment may be part of the answer.

Both boys and girls who experience the disappointing outcome of just barely failing to

qualify for the AIME are more likely to not participate in the following year. And we note
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that the dropout effect is even larger for girls. Apart from psychological effects related

to disappointment, of course, one could also potentially explain such reactions in more

standard “rational” ways; e.g., conditional on both boys and girls reacting “irrationally”

to disappointment, high-achieving girls might have a greater breadth of other skills and

interests that compete for their time when math seems less promising. We hope to see

future work on this as well.
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Appendix

A Score Adjustments

The adjusted scores for students who took a test other than the AMC 12A in year t are
given by formulas of the form

AdjustedScoreijt = b0jt + b1jtScoreijt,

where i indexes the student and j ∈ {10A, 10B, 12A} indexes the test that the student
took in year t. For each t from 2000 to 2006, the construction of year t adjusted scores is
based on a regression of year t + 1 AMC 12 scores on dummies for the test taken in year
t, interactions between these dummies and the score on the year t test, and a dummy for
whether the year t + 1 score was on the 12B.30 For each year t test, this regression gives
the predicted year t+ 1 AMC 12A score as an affine function of the year t score. We define
the adjusted score for each year t test as the score on the year t AMC 12A that has the
same predicted year t+ 1 score given the regression estimates.

We cannot adjust 2007 scores in the same way because our dataset does not contain 2008
scores. For the AMC 10 tests, we instead set the slope coefficient b1j2007 ≡ 1

5

∑2006
t=2002 b1jt

equal to the average of the b1jt for the previous five years, and set b0j2007 = 1
5

∑2006
j=2002 b0jt+

∆j , which is an average of the constants from the previous five years plus an adjustment
factor that reflects whether each 2007 test appears to be easier or harder relative to the
2007 AMC 12A than were previous-year AMC 10’s relative to their contemporaneous AMC
12A’s, in light of data on students who took both tests in each year.31 To determine the
adjustments, we run regressions examining the difference between B-date scores and A-date
scores for students who took both tests in each year on dummies for which tests they took,

ScoreBit−ScoreAit = c10A,tDummy10Ait−c10B,tDummy10Bit−c12B,tDummy12Bit+εit,

and set ∆j = cj,2007 − 1
5

∑2006
t=2002 cj,t. We adjust AMC 12B scores in a somewhat similar

manner, but imposing that b1,12B,2007 = 1 rather than estimating the coefficient.32 We then

set b0,12B,2007 = 1
5

∑2006
j=2002 b0,12B,t+c12B,2007− 1

5

∑2006
t=2002 c12B,t+

(
1
5

∑2006
j=2002 b1,12B,t − 1

)
X

where X ≈ 99.4 is the mean AMC 12B score among students who scored at least 90 on the
2007 AMC 12 and attend a school that did not offer the 2007 AMC 10A.33

To give a feel for the linear adjustments, Table A1 reports the contemporaneous AMC
12A scores corresponding to scores of 100 and 150 on each of the other tests. Recall that

30We run these regressions on the set of students who scored at least 90 on their year t AMC 12 or at
least 105 on the AMC 10 because we will be primarily interested in high-achieving students. The linear
functional forms appear to fit well for students with scores in this range.

31We do not use this approach in all years because the population of students taking A and B date tests
are quite different and students may select into taking B date test in addition to an A date test if their A
date score was below what they expected.

32If we had estimated the coefficient via the same procedure we use for the AMC 10 tests, the estimated
coefficient would have been 1.015.

33The final term is a small correction designed to correct for the fact that we are imposing a slope
coefficient of one when the regression coefficients on the AMC 12B score are not exactly equal to one in the
regressions used to estimate the b012Bt.
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AMC 12A equivalents
AMC 10A AMC 10B AMC 12B

Year 100 150 100 150 100 150

2000 83.9 116.7
2001 64.7 116.1
2002 90.4 135.2 83.4 131.0 89.0 143.8
2003 92.1 133.2 86.6 126.1 101.9 139.3
2004 94.1 141.0 82.9 131.6 94.4 149.5
2005 91.9 134.7 87.2 133.6 97.6 158.3
2006 94.4 135.5 96.7 131.6 99.5 146.2
2007 79.2 122.6 86.0 129.4 95.9 146.6

Table A1: Adjusted scores for AMC 10A, 10B, and 12B scores of 100 and 150

100 is roughly the 95th percentile score on the AMC 12 and 150 is a perfect score. The
left and center parts of the Table give the AMC 10A-to-AMC 12 and AMC10B-to-AMC 12
conversions. The median AMC 10 test will have its scores adjusted downward by 13 points
at the 100 level and by 18 points at the 150 level. There is some variation around this – the
AMC 10 seems to have been much easier in its first two years and the 2006 AMC 10 tests
appear to have been nearly as hard as the 2006 AMC 12 for students scoring around 100
– but most tests are within one question (6 points) of the average relative difficulty level.
Most of the AMC 12B adjustments are also less than the point value of one question.
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B Decomposition Appendix

Proof of Proposition 1
With all transition probabilities like arX representing the realized fraction of students

at rank r at time t who score in the top X at t+ 1, and taking the sum over all ranks that
have at least one female student at time t we have we have

µfXt+1 − µ
f
Xt =

1

NX

∑
r 6=NP

µfrta
f
rXNrt + µf,new

Xt+1 − µ
f
Xt

=
1

NX

∑
r 6=NP

µfrtarXNrt + µf,new
Xt+1 − µ

f
Xt +

1

NX

∑
r 6=NP

µfrt(a
f
rX − arX)Nrt

=
1

NX

∑
r 6=NP

µfrtarXNrt − µfXt(1− µ
new
Xt+1) + µf,new

Xt+1 − µ
f
Xtµ

new
Xt+1

+
1

NX

∑
r 6=NP

µfrt(a
f
rX − arX)Nrt

= ∆mech
X + ∆entry

X +
1

NX

∑
r 6=NP

µfrt(1− arNP )

(
afrX

1− arNP
− arX

1− arNP

)
Nrt

= ∆mech
X + ∆entry

X +
1

NX

∑
r 6=NP

µfrt(1− arNP )

(
afrX

1− afrNP

− arX
1− arNP

)
Nrt

+
1

NX

∑
r 6=NP

µfrt(1− arNP )

(
afrX

1− arNP
−

afrX

1− afrNP

)
Nrt

= ∆mech
X + ∆entry

X + ∆cont
X + ∆grow

X +

+
1

NX

∑
r 6=NP

µfrt

(
(1− afrNP )

afrX
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− (1− arNP )
afrX
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)
Nrt

= ∆mech
X + ∆entry
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1

NX

∑
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(
afrX
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)
Nrt

= ∆mech
X + ∆entry

X + ∆cont
X + ∆grow

X + ∆drop
X �
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Grade Achievement Change in Decomposition of decline
Level Level % Female Drop Cont Grow Entry Mech

Average Top 5000 -3.1 -0.4 -1.2 -3.6 -1.1 3.5
[-3.2,-2.9] [-0.5,-0.4] [-1.3,-1.1] [-3.8,-3.5] [-1.2,-1.0] [3.4,3.6]

9→ 10 Top 5000 -4.6 -0.1 -1.4 -2.8 -2.2 1.5
[-5.1,-4.2] [-0.2,0.0] [-1.5,-1.2] [-3.1,-2.7] [-2.5,-1.9] [1.9,2.2]

10→ 11 Top 5000 -2.3 -0.4 -1.1 -3.7 -0.8 3.6
[-2.7,-1.9] [-0.5,-0.3] [-1.2,-1.0] [-3.9,-3.5] [-1.0,-0.5] [3.7,4.0]

11→ 12 Top 5000 -2.1 -0.9 -1.1 -4.3 -0.3 4.7
[-2.7,-1.9] [-1.0,-0.7] [-1.3,-1.0] [-4.5,-4.1] [-0.5,-0.2] [4.5,4.9]

Average Top 500 -2.0 -0.3 -0.9 -4.5 -0.4 3.8
[-2.4,-1.5] [-0.4,-0.1] [-1.2,-0.7] [-4.8,-4.1] [-0.7,-0.1] [3.9,4.5]

Average Top 50 -0.5 -0.3 -0.8 -3.0 0.2 3.2
[-1.6,0.5] [-0.6,0.3] [-1.7,0.1] [-4.1,-2.2] [-0.4,0.7] [2.4,4.2]

Table A2: Decomposition of declines in fraction female, with 90% confidence intervals from
nonparametric bootstrap
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