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1 Introduction

What are the macroeconomic consequences of climate change? Over the past decade, a

rapidly growing body of empirical work has documented large potential growth impacts of

weather shocks. While many of these studies seek to enhance our understanding of the social

costs of climate change, their findings have often been slow to be incorporated into macro-

economic climate-economy models, as has been the case for other impact areas (Greenstone,

2016; Auffhammer, 2018). One general issue is that new empirical studies are often based on

weather variation, whereas climate-economy models feature damages as a function of the cli-

mate, i.e., the long-run average of weather. Frontier work continues to develop econometric

techniques to harness the identifying power of weather variation whilst accounting for adap-

tation to long-run climate change in areas such as energy demand, mortality, and agriculture

(see, e.g., Deryugina and Hsiang, 2017; Auffhammer, 2018; Lemoine, 2019). However, for

macroeconomic or general equilibrium impacts, there are fundamental additional challenges

that must be overcome in maping reduced-form evidence into structural models. Given that

policymakers use climate-economy models to quantify the social cost of carbon emissions

(Greenstone, Kopits, and Wolverton, 2013), and given that growth impacts may add signif-

icantly to these costs (e.g., Moore and Diaz, 2015), this "micro-macro" gap also represents

a critical policy concern (Obama, 2017).

This paper analyzes the causes of this gap and proposes a novel joint empirical-structural

approach to overcome it in the context of tropical cyclones (i.e., hurricanes, typhoons). Cy-

clones are the leading cause of natural disaster damages world-wide1 and losses are projected

to increase with global changes (e.g,. Nordhaus, 2010b; Mendelsohn et al., 2012; Ranson

et al., 2014), making them a climate risk of special academic and policy interest. However,

empirical estimates of cyclone impacts on economic growth have again been slow to be incor-

porated into climate-economy models.2 One of the first challenges facing interested modelers

is that the empirical literature has found a wide range of results, ranging from positive im-

pacts of cyclones on growth (e.g., Skidmore and Toya, 2002, "ST") to mixed impacts (e.g.,

Noy, 2009) and very large negative effects (e.g., Hsiang and Jina, 2014, "HJ").

First, we thus present an empirical and conceptual review of competing approaches to

quantifying cyclone impacts on growth. We assemble a modern global dataset encompassing

the full history of cyclones around the globe from 1970-2015 in order to revisit some of these

1 Comparing overall natural event losses worldwide (1998-2008) from cyclones to earthquakes/tsunamis,
convective storms, winter storms, floods, and heatwaves/fires in MunichRe’s NatCatService database.

2 Narita, Tol, and Anthoff (2009) use the FUND climate-economy model to project direct cyclone damage
impacts on the SCC, but not growth impacts. Fried (2019) develops a general equilibrium model of
weather disasters and the U.S. economy using an original quantification. We discuss these studies below.
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prior results in a harmonized sample. For example, re-estimating both a cross-sectional

specification à la ST and a standard panel specification in the spirit of HJ, we find that

the qualitative difference in results remains. We then argue that this difference can be

resolved through the lens of macroeconomic theory. Cross-sectional regressions capture the

effect of cyclone risk on average growth, which is theoretically ambiguous in several types

of growth models through, e.g., precautionary savings effects. Panel fixed-effects models, on

the other hand, isolate the effects of cyclone strikes, which should decrease contemporaneous

growth through the destruction of productive assets. Importantly, theory also tells us that

neither reduced-form approach may be individually suffi cient to characterize the welfare

effects of future changes as, for example, cyclone risk can affect economic growth and welfare

in opposite ways.

Second, we propose and implement a novel approach to estimating and modeling cyclone

impacts designed to combine empirical evidence with the structure of a model to deliver

welfare cost estimates and policy implications. On the empirical side, we first quantify cy-

clone impacts on the structural determinants of growth, rather than on growth itself, which

is typically endogenous in macroeconomic climate-economy models. Specifically, we esti-

mate cyclone strike impacts on total factor productivity (TFP), capital depreciation, and

fatalities within our global panel. On the modeling side, we present a stochastic endoge-

nous growth cyclone-climate-economy model designed to incorporate both these estimated

damage functions and the broader empirical evidence on cyclones and growth. Structurally,

the model builds closely on Krebs (2003ab, 2006; see also Krebs et al., 2015) who studies

the implications of business cycle and idiosyncratic human capital risks for household in-

vestment, growth, and welfare. One key feature of the model in our setting is that it makes

an explicit distinction between climate and weather : households face repeated risks to their

physical and human capital from cyclone strikes (weather), whose probability distribution

is determined by the climate. This setup enables us to directly calibrate cyclone impacts

to the plausibly causally identified estimates from panel (weather) regressions. In addition,

the model structure enables us to account for some long-run general equilibrium responses

to climate change that panel regressions may not be able to capture, as households respond

to changing cyclone risks (climate) by adapting their savings and asset allocation decisions.

We then quantify our cyclone-climate-economy model separately for each of 40 cyclone-

vulnerable nations using a combination of data, estimation, matching of moments, and ex-

ternal calibration. The calibration includes country-specific probability density estimates of

current and future cyclone risks which we compute based on 68,000 synthetic storm track

simulations from Emanuel et al. (2008) and grounded in historical best track cyclone data.

Comparing steady-state outcomes under the current and future climate, we find significant
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heterogeneity of projected effects, ranging from substantial negative impacts in vulnerable

small island states (e.g., a -5% welfare change in St. Vincent and the Grenadines), to small

welfare gains in countries where cyclone risks are predicted to decline with global warm-

ing (e.g., Australia). The United States stands out among the most negatively impacted

countries, which are otherwise mostly poor and small island states. This result is informed

by prior empirical work identifying the United States as an outlier in cyclone vulnerability

conditional on its income levels and exposure (e.g., Bakkensen and Mendelsohn, 2016), and

highlights the importance of work investigating the determinants of adaptation to storms in

the United States (e.g., Fried, 2019).

Third, in order to assess the global climate policy implications of changing cyclone risks

and to illustrate the broader applicability of our approach, we integrate our cyclone impact

estimates into the seminal DICE climate-economy model (Nordhaus, e.g., 1992, 2010a).

As damages in DICE are a function of the global climate, we compute expected global

aggregate impacts to TFP, capital depreciation, and human capital losses resulting from

cyclone risk changes, and add dedicated damage functions for each component into DICE.

The results suggest only a modest increase in the optimal global carbon price. That is,

while some countries may suffer enormous losses from future cyclone risk increases, others

are projected to experience risk declines, so that the aggregate addition to global climate

damages appears modest in our setting. Of course, as further climatological projections and

empirical estimates become available, it will be a rich area for future work to expand upon

these quantifications and conclusions.

These findings have important research and policy implications. First, our results re-

contextualize empirical and theoretical understandings of the reduced-form literature on

cyclones and growth. That qualitatively different results from prior studies survive in a con-

sistent sample suggests that data improvements such as satellite-based storm measures are

not suffi cient to account for the difference in results.3 Instead, from a theoretical perspec-

tive, we argue that different empirical specifications capture different elements of the overall

impact of cyclones on growth. By themselves, output growth regressions appear insuffi cient

to characterize the welfare consequences of cyclone risk changes and to quantify standard

macroeconomic climate-economy models, although they can provide critical insights to guide,

e.g., model structure.

These findings also relate to an important parallel literature on temperature shocks and

economic growth. Several influential empirical studies have documented negative economic

growth impacts due to temperature shocks (e.g., Bansal and Ochoa, 2011; Dell, Jones, and

3 We do also highlight some differences in results that arise due to data variation across studies, such as
sample restrictions based on macroeconomic control variable availability.
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Olken, 2012, "DJO"; Burke, Hsiang, and Miguel, 2015; Colacito, Hoffman, Phan, 2018,

etc.). There have been efforts to incorporate these findings into climate-economic models.

One pioneering analysis by Moore and Diaz (2015) incorporates DJO’s estimates into DICE,

demonstrating the potential of growth impacts to significantly increase optimal climate policy

stringency. As output growth impact estimates do not provide a clear mapping into models

such as DICE, Moore and Diaz (2015) consider multiple pathways, calibrating either TFP

growth or capital depreciation to match DJO estimates.4 A similar issue arises in Fankhauser

and Tol (2005) and Dietz and Stern (2015), who extend DICE to an endogenous long-

run growth framework with capital- or investment-based knowledge spillovers, inter alia.

Absent empirical guidance, they also consider a capital depreciation specification and a

TFP depreciation specification. Notably, the optimal carbon price in 2015 is 55% higher

with the TFP specification, again highlighting the importance of impact channels. In order

to overcome these ambiguities, we propose a joint empirical-structural approach that first

estimates cyclone impacts on the determinants of growth relevant for each model (e.g,. TFP,

capital depreciation, fatalities).5 ,6

Second, our approach thus highlights opportunities to reduce the "micro-macro" gap be-

tween growing empirical evidence on macroeconomic impacts and the quantification climate-

economy models. On the one hand, we show that only minor extensions of existing em-

pirical approaches yield structurally interpretable impact estimates, such as using growth

decompositions to distinguish TFP from output growth effects. On the other hand, we also

demonstrate how modifying structural models to make weather explicit permits (i) direct

incorporation of plausibly causally identified impact estimates, (ii) accounting for macro-

economic adaptation through endogenous adjustments in savings and investments, and (iii)

computing welfare costs of changes in climatic risks. These three goals match the desirable

properties of climate impact quantification identified by Auffhammer (2018) and Greenstone

(2016).

4 More and Diaz (2015) ultimately focus on the TFP pathway. Supplementary results for the depreciation
pathway suggest broadly similar patterns but a significantly higher social cost of carbon. Gauging
visually from the relevant graphs, the SCC appears to reach well over $1,500+ per ton by 2080 for
depreciation damages, compared to around $1,000 per ton for the TFP pathway in the benchmark.

5 Alternative approaches include, e.g., Bansal and Ochoa (2011) who present a Long-Run Risk model
calibrated to their own estimates of temperature shock growth impacts. Consumption growth is a given
process in this model; that is, it is not a production-based growth model, thus side-stepping questions
of impact mechanisms.

6 A growing number of studies present climate-economy models with growth impacts but without focus on
empirical connections. Bretschger and Valente (2011) provide a theoretical foundation for climate change
growth impacts through multiple channels (capital and TFP depreciation). Lemoine (2019) presents
an endowment economy-based IAM with temperature impacts on consumption growth to study the
implications of uncertainty for the SCC. Of course there is also a large general theoretical literature on
the environment and endogenous growth (e.g,. Bovenberg and Smulders, 1995).
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On the quantitative modeling side, our analysis complements several advancements in the

literature. Perhaps most closely related in methodology, Fried (2019) presents a dynamic

general equilibrium model of the U.S. economy where heterogeneous households face risks

of capital destruction from storms. She presents an original calibration using, e.g., U.S.

Federal Emergency Management Agency (FEMA) disaster assistance across regions, and

utilizes the model to quantify adaptation capital, FEMA policy effects, and the role of

adaptation in mitigating welfare costs from future storm intensity increases. Hallegatte et

al. (2007) develop a ‘non-equilibrium dynamic model’(NEDyM) of disasters and apply it to

extreme weather events (albeit not cyclones)7 in Europe. NEDyM builds on a Solow growth

model with limits on reconstruction investment and non-clearing short-run labor and goods

markets. As both our model structure and research goals are fundamentally different, we

abstract from some of the important nuances featured in these studies, and focus instead on

detailed linkages to empirical reduced-form approaches and long-run growth impacts under

aggregate risk.8 The broader literature also features seminal contributions on rare disasters

in macroeconomics and finance (e.g., Barro, 2006; Pindyck and Wang, 2013), but cyclones

are typically not examples of such rare disasters.9

Lastly, we contribute new estimates of the impact of a major climate risk - tropical cy-

clones - on the social cost of carbon. Previously, Narita, Tol, and Anthoff (2009) used the

FUND model to estimate climate change impacts on direct cyclone damages, fatalities, and

the SCC. Our analysis advances their approach in several ways including by (i) adding TFP

damages, (ii) estimating country-specific damage functions over wind speeds, (iii) estimat-

ing country-specific cyclone probability distributions based on new climatological research

(Emmanuel et al., 2008) and (iv) formally computing expected damages. Despite these new

features, we ultimately find a similar result, namely that cyclones add only modestly to the

optimal global carbon price. This aggregate result masks considerable global heterogeneity,

however, and for many countries - including the United States - cyclone risk changes are

likely to be a first-order climate concern.

7 Hallegatte (2009) combines empirical direct cyclone impact estimates for the United States with esti-
mates of the relationship between direct and indirect losses (based on a case study applying an Input-
Output model to Hurricane Katrina’s sectoral impacts) to project total economic losses from hurricanes
in the United States both with and without climate change-induced hurricane intensity increases.

8 For example, besides structural differences, Fried (2019) features no aggregate risk from storms which
are assumed to be evenly distributed across space in the United States. In contrast, we study aggregate
growth impacts of cyclone risk across 40 vulnerable countries. Similarly, Hallegatte et al. (2007) focus
on short-run transitional additions to overall disaster costs. While we also depart from the standard
Ramsey model to capture the persistence of disaster losses, our model allows for long-run growth effects
through changes in asset allocations and savings rates (exogenous in NEDyM).

9 Cyclones are common in many countries and physically limited (Emanuel and Holland, 2011). Pindyck
and Wang (2013) define catastrophic shocks as reducing capital by "more than 10 or 15 percent." In
our data, even the 95th percentile of capital destruction is only 2.8 percent.
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2 Revisiting Empirical Approaches

2.1 Data

The first step in our analysis is to compile a harmonized global panel of cyclones and relevant

economic indicators at the country-year level.

Cyclone Data: Building on best practices in the literature (Hsiang and Jina, 2014), we

gather historical global tropical cyclone tracks from the International Best Track Archive for

Climate Stewardship (IBTrACS; Knapp et al., 2010). Considered the most comprehensive

record of global historical tropical cyclone tracks by the World Meteorological Organiza-

tion, IBTrACS contains best track records of cyclone position and intensity characteristics

collected from meteorological agencies across the world. We focus on 1970-2015, the post-

satellite era for which cyclones have been most reliably tracked. For all 3,346 cyclone landfalls

during this period, we calculate cyclone intensity metrics including annual maximum wind

speed at landfall (in knots) and annual energy (the sum of cubes of wind speeds recorded

within a country), a metric based on the power dissipation index developed by Emanuel

(2008).10 We process the tracks in ArcGIS and aggregate data up to the country-year

level.11 Next, in order to estimate future changes in cyclone risks, we incorporate 68,000

simulated future tropical cyclone tracks based on advancements in climatological research

by Kerry Emanuel and co-authors (Emanuel, 2008; Emanuel, Sundararajan, and Williams,

2008). These synthetic tracks and their usage are described in detail in Section 4.

Macroeconomic Indicators: We collect annual national-level macroeconomic indicators

including real GDP (2011 $US), physical and human capital stocks, and population from

the Penn World Tables 9.0 ("PWT", Feenstra et al., 2015). We also collect educational

attainment estimates from Barro and Lee (2012). Though not directly used in our analysis,

we further obtain World Bank data (from World Development Indicators) on several other

macroeconomic indicators (gross capital formation and imports, foreign direct investment,

and government surplus all as percentage of GDP) included in analyses such as Noy (2009)

in order to construct a comparable sample based on data availability (described in Section

2.1.2).

Geography: Country areas and absolute latitudes are collected from the HarvardWorldMap.

10 Given that some cyclone wind speeds are listed as zero while a cyclone necessarily has non-zero wind
speeds, we interpolate missing wind speeds from minimum pressure readings following Atkinson and
Holliday (1977). For a minority of observations missing both wind and pressure, we assume a wind
speed of 35 knots for categorized cyclones and 25 knots for tropical depressions. Lastly, we convert 1
minute sustained wind speeds to 10 minute sustained wind speeds for unit consistency.

11 We process the data without a dedicated wind-field model. For recent advancements on such modeling,
see, e.g., Strobl (2011), Hsiang and Narita (2012), Hsiang and Jina (2014).
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We calculate the fraction of a country’s population residing within 100 kilometers of naviga-

ble water (defined as a coast, major river, or major lake) in ArcGIS using geospatial shoreline

data from NOAA’s Global Self-consistent, Hierarchical, High-resolution Geography Database

and population data from the Gridded Population of the World v4 produced by the Center

for International Earth Science Information Network (CIESIN) at Columbia University and

as published through NASA’s Socioeconomic Data and Applications Center (SEDAC). We

calculate in ArcGIS the fraction of a country’s land area in a tropical climate zone based on

Köppen-Geiger climate classification maps provided by Rubel and Kottek (2010). Finally,

we collect information on countries’populations living below five meters of elevation from

the Low Elevation Coastal Zone Urban-Rural Population and Land Area Estimates, from

CIESIN and SEDAC.

Institutions: We consider several measures of institutions across countries, including

the "Statistical Capacity Rating" from the World Bank and the "Corruptions Perception

Index" from Transparency International. In line with the broader disasters literature (e.g.,

Noy, 2009; McDermott et al., 2014), we consider the World Bank’s measure of domestic

credit provided by the financial sector (as a percentage of GDP) as a proxy for financial

market development. Finally, we obtain estimates of natural disaster insurance rates from

MunichRe’s NatCatService, a leading industry data source on disaster losses. We specifically

collect data on insured versus total economic losses from meteorological events from 1998-

2018 by country income group, and compute the average insured fractions.

Cyclone Damages: Finally, we obtain cyclone damage estimates from two sources. Our

benchmark measure of property damages and fatalities is gathered from EMDAT, the Inter-

national Disaster Database (Guha-Sapir et al., 2016). EMDAT is the most comprehensive

publicly available database on disaster losses and arguably the most widely used in the

literature (e.g., Skidmore and Toya, 2002; Raddatz, 2007; Noy, 2009; Hsiang and Narita,

2012; etc.). At the same time, EMDAT data are subject to certain data quality caveats

(e.g., Hsiang and Narita, 2012). While comparative analyses with proprietary damage data

from global re-insurance companies fail to indicate that these would necessarily dominate

EMDAT data coverage (Guha-Sapir et al., 2002), for robustness, we also consider damage

estimates from MunichRe. We specifically use country-year aggregates of total direct losses

from cyclones as computed by Neumayer, Plumper, and Barthel (2014) from the MunichRe

database.

2.1.1 Cross-Sectional Estimates

Conceptually, a natural starting point for exploring the association between the climate and

economic outcomes has been through cross-sectional analyses. As famously noted by Mendel-
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sohn, Nordhaus, and Shaw (1994) in an early empirical study of agriculture and climate, a

cross-sectional approach enables researchers to study the independent variable of interest

- the long-run climate - and thus impacts net of all relevant adaptation margins. A core

concern with this approach is omitted variable bias, on account of which many scholars have

considered panel and mixed approaches instead (Auffhammer, 2018). Here, we nonetheless

begin with a discussion of the cross-sectional approach. We argue that, in the context of

natural disasters and economic growth, cross-sectional analyses provide both unique insights

and entail conceptual limitations above and beyond standard econometric concerns which

are important to consider. For example, even a perfectly identified cross-sectional regression

would provide only limited insights into welfare and Integrated Assessment Model (IAM)

quantification, but can inform the structure of IAMs seeking to capture cyclone growth

impacts.

In the empirical literature, Skidmore and Toya (2002, "ST") present an early and highly

influential analysis which regresses countries’average 1960-90 growth rates on disaster met-

rics such as the average number of climatic events per year in country j in a sample of 89

countries. They document a positive correlation between disasters and growth. This result

differs markedly from subsequent literature which typically finds negative impacts in panel

analyses, as discussed in Section 2.1.2. Hsiang and Jina (2015) moreover document a neg-

ative cross-sectional relationship between average cyclone-induced capital depreciation and

growth. From an empirical perspective, one may first raise questions about Skidmore and

Toya’s results vis-à-vis the literature based on the data differences. For example, ST (2002)

use countries’ reported disaster occurrences in EMDAT to measure general disaster risk,

which are subject to several inclusion criteria and thus constitute a partly selected sample.

More recent work has thus moved towards using meteorological data to measure climatic

events (e.g., Hsiang and Jina, 2014). More broadly, modern data also span a longer time

period (+25 years since 1990) and larger sets of countries.

To begin our empirical examination, we first revisit a cross-sectional specification building

on Skidmore and Toya (2002) in our harmonized global dataset. Specifically, we regress each

country j′s average growth rate from 1970-2015 (gj) on different cyclone risk measures (µε,j)

and a host of control variables (Xj), including the fraction of land area in the tropics,

absolute latitude, our water access measure, an institutional quality proxy, and initial GDP

per capita.12

gj = β0 + β1µε,j +Xj
′β + εj (1)

12 A central challenge in correlating cyclone risk with economic growth is that the climate is not randomly
distributed across space, and likely correlated with other factors that may influence growth, such as
geography (Hall and Jones, 1996) and institutions (Acemoglu, Johnson, Robinson, 2001). We thus
include these controls for geography and institutional quality in the cross-sectional specification.
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Table 1 presents the results. Column (1) confirms that a significant positive correlation be-

tween economic growth and ST’s main disaster risk measure, the natural logarithm of disaster

counts (per land area), survives in our extended global sample using modern meteorological

data. Before describing the rest of the results, we discuss their theoretical foundations.

Conceptually, cross-sectional regressions capture the impact of average storm risk on

average growth. Broadly speaking, a vast literature in macroeconomics analyzes the effects

of different kinds of (uninsurable) risks on economic growth and welfare (e.g., Bewley, 1977;

Lucas, 1987; Ayiagari, 1994; Krebs, 2003ab, etc.). In recent years, a number of theoretical

analyses have focused on natural disaster risks and growth in particular, including several

studies that allow disaster probabilities or damages to depend on pollution stocks. Examples

of the latter include Ikefuji and Horii (2012), Müller-Fürstenberger and Schumacher (2015),

and Bretschger and Vinogradova (2016); Akao and Sakamoto (2013) characterize the effects

of exogenous disaster risk on growth. The theoretical insights we invoke here are based both

on this literature and can also be shown to hold within our own model (see Section 5 and

Online Appendix).

From a macro-theoretical perspective, one may expect the relationship between cyclone

risk and long-run growth to be ambiguous in sign as economic risks can affect growth through

numerous channels. Though the details depend on the growth model in question, some gen-

eral mechanisms can be noted. First, an increase in economic risk may generally induce

households to save more, that is, to undertake precautionary savings (e.g., Bewley, 1977).

Ceteris paribus, an increase in savings rates can increase average growth rates across a range

of models, including (i) in a Solow growth model during the transition to a long-run bal-

anced growth path, (ii) in an endogenous growth model with aggregate capital externalities

(see, e.g., Devereux and Smith, 1993), (iii) in an AK-type endogenous growth model (see,

e.g., Krebs, 2006), and (iv) in a Lucas (1988)-style model of human capital-driven growth

(see, e.g., Ikefuji and Horii, 2012). Second, an increase in storm risks can alter growth by

changing households’optimal portfolio choice. That is, to the extent that cyclone risk alters

the relative attractiveness of different investment options (e.g., human versus physical cap-

ital), an increase in cyclone risk may also alter overall returns by changing the composition

of an economy’s investments. Ceteris paribus, such a portfolio effect could lower average

growth through a ‘flight to safety’of lower return assets, or could increase average growth

by increasing human capital in models where it is a driver of growth (as in, e.g., Akao

and Sakamoto, 2013). A third impact channel is that higher storm risk may have a direct

negative effect on growth (ceteris paribus) by increasing average depreciation rates, in line

with Hisang and Jina’s (2015) empirical findings, and also by lowering average productivity.

Importantly, from a theoretical perspective, the overall impact of cyclone risk on long-run
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growth is thus ambiguous in sign. In the context of our model (presented in Section 2), we

further demonstrate how this relationship may specifically be non-monotonic even within a

given economy (see Online Appendix).

In light of these considerations, we next extend the standard cross-sectional specification

(1) à la ST to allow for quadratic effects of cyclone risk on growth. The results in Table

1 Columns (2) and (4) confirm significant non-monotonicity: cyclone risk is positively cor-

related with economic growth initially, but this association turns negative at higher levels

of risk. As a final empirical check on the relevance of the aforementioned theoretical mech-

anisms, we add controls for average savings rates and educational attainment to (1). The

results in Columns (3) and (5) reveal that the initial positive association between cyclone

risk and growth is attenuated in both magnitude and precision once these controls are added,

consistent with the theoretical prediction that higher savings and human capital investment

rates are a part of the underlying mechanism.
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Table 1: Cross-Sectional Cyclone Risk and Growth Association
Dependent Variable: Avg. Real GDP/Capita Growth g1970−2015,j
Cyclonesj Measure: ln(Landfallssqkm ) Landfalls/sqkm Max. Wind/sqkm

(1) (2) (3) (4) (5)
Cyclonesj 0.100*** 185.934** 135.233 7.077** 5.765

(0.032) (76.478) (93.210) (3.516) (3.565)

(Cyclonesj)
2 -6,470.275** -6,647.325* -11.266** -11.733*

(2,695.255) (3,999.375) (5.562) (6.281)

SavingsRatej 0.093*** 0.092***

(0.022) (0.022)

YearsSchoolingj 0.009 0.020

(0.064) (0.063)

Tropics (%Area) -0.009* -0.011** -0.008 -0.010** -0.007

(0.005) (0.005) (0.005) (0.005) (0.005)

Abs. Latitude -0.015 -0.021 -0.017 -0.021 -0.016

(0.013) (0.014) (0.014) (0.014) (0.014)

Water Proximity (%Area) 0.001 0.004 0.012*** 0.004 0.013***

(0.005) (0.005) (0.005) (0.005) (0.005)

Institutions (CPI2015) 0.030*** 0.035*** 0.016* 0.035*** 0.015

(0.009) (0.009) (0.009) (0.009) (0.009)

Initial GDP/Cap.1970 -0.000*** -0.000*** -0.000*** -0.000*** -0.000***

(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 131 132 113 132 113

Adj. R-Squared 0.303 0.274 0.392 0.261 0.398

Table presents OLS regression of countries’avg. real GDP per capita growth rate (1970-2015) on natural

log of avg. number of cyclone landfalls per year +0.0000001 normalized by area (Col. 1), the avg. number

of landfalls per year normalized by area in levels (Cols. 2, 3) and squared (Col. 3), or avg. max. sustained

wind speed per year normalized by area in levels (Cols. 4, 5) and squared (Col. 5). All specifications control

for the share of land area in the tropics, absolute value of latitude, fraction of pop. within 100km of major river,

lake, or coast, the Transparency International Corruption Perceptions Index, initial (1970) GDP per capita, and

a constant. Cols. (3) and (5) further control for avg. savings rates and avg. years of schooling. Standard

errors are heteroskedasticity-robust and presented in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

Lessons and Limitations: Climate change is altering the distribution of cyclone risks
across the globe (e.g., Emanuel, 2008; see also Section 4). In principle, the coeffi cients of a

cross-sectional specification such as (1) thus represent the relevant thought experiment for

predicting the corresponding long-run growth impacts of climate change. The results are

consistent with the theoretical predictions that growth impacts may be empirically relevant

and occurring through countervailing channels such as precautionary savings and direct

losses. While the cross-sectional results are thus qualitatively informative, there are at least

two core limitations on their quantitative use in inferring climate change costs. The first is

the potential for omitted variable bias inherent in cross-country comparisons. The second
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and more fundamental concern is that growth impacts need not be informative about welfare.

It is long known that changes in economic risk can affect growth and welfare in opposite

ways (see, e.g., Devereux and Smith, 1993). For example, if higher cyclone risk increases

growth by increasing precautionary savings, this change is clearly welfare-reducing. The

Online Appendix formally confirms the possibility of higher growth but lower welfare in

the context of our model. Consequently, even a perfectly identified cross-sectional growth

regression would not be suffi cient to quantify welfare impacts of cyclone risk changes. In

sum, these results thus highlight the need for a structural approach to capture both the

welfare and general equilibrium effects of climate-induced changes in future cyclone risks.

2.1.2 Panel Estimates

The most common empirical approach to studying natural disaster impacts on growth is to

use panel variation. This literature has documented a range of results, with most finding

broadly negative effects of varying magnitude and duration (reviewed by, e.g., Kousky, 2014)

but some finding no impacts in all but the most extreme disasters (Cavallo et al., 2013).

Prior research has already identified several study design features which can contribute to

differences in results. For example, Loayza et al. (2009) document heterogeneous impacts

across disaster types (e.g., earthquakes versus storms). Similarly, different proxies for disaster

intensity (e.g., property damages versus fatalities) have been shown to yield different results

(e.g., Noy, 2009).

Thus, we next consider a panel specification in our harmonized global sample. That is,

we focus on one disaster type (cyclones), meteorological intensity measures (e.g., maximum

wind speeds), and a standard panel fixed-effects specification similar to Hsiang and Jina

(2014):

gj,t = γj + δt + (θj · t) +

L∑
l=0

β1+lεj,t−l + βInt(qj,t · εj,t) + εj,t (2)

Here, gj,t is a country’s annual real GDP per capita growth rate, γj are country fixed-effects,

(θj ·t) are country-specific linear time trends, and εj,t−l are cyclone realization measures (e.g.,
maximum wind speed) up to lag L. Here we focus on contemporaneous impacts (L = 0), but

consider richer lag structures in our main empirical impact channel estimation in Section

3. The empirical literature has frequently found that disaster impacts vary with country

characteristics, particularly the level of development and the quality of (financial) institutions

(e.g., Kahn, 2005; Loayza et al., 2009; Noy, 2009; Raddatz 2009; Fomby, Ikeda, and Loayza,

2013; McDermott et al., 2014). Specification (2) consequently allows for the impact of
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cyclones to vary with covariates qj,t, specifically domestic credit or lagged GDP per capita.13

Standard errors εj,t are heteroskedasticity-robust and clustered at the country level.

In reviewing the empirical literature, we document another potential source of variation

in results: sample composition based on macroeconomic control variable availability. That

is, prior studies differ in the supplemental controls they include in panel growth regressions

alongside disaster measures. One classic example, Noy (2009), includes a rich set of controls

such as government budget surplus and foreign exchange reserves, permitting a final sample

of 109 countries. Numerous other recent studies end up with similar or smaller samples,14

whereas, e.g., Cavallo et al. (2013) use a synthetic controls approach and construct certain

variables permitting a sample of 196 countries. In order to gauage whether such sample

differences may be contributing to differences in studies’ results, we estimate (2) for two

samples: (i) "Unfiltered" includes all available countries (182 countries), whereas (ii) "Has

Controls" includes only country-years for which control variables such as used by Noy (2009)

and others are available in our sample.15 We do not actually include those controls in the

regressions so as to isolate sample effects.

Tables 2 present the results for landfall counts and maximum wind speed (normalized

by land area) as intensity metrics. Results for energy are presented in the Online Appendix

(Table A1). First, the results generally confirm that cyclone strikes have a negative effect

on contemporaneous economic growth. That is, in the same global analysis that yields

a positive cross-sectional correlation between growth and cyclone risk, we find a negative

effect of cyclone strikes. Second, we note that the statistical precision of these results differs

notably across the unfiltered and data-restricted country samples. In the unfiltered sample,

contemporaneous cyclone impacts are precisely estimated only for energy, whereas they

are generally significantly different from zero in the data-restricted sample, broadly in line

with some of the underlying heterogeneity in the literature.16 Table 3 compares some key

13 We lag GDP to avoid endogeneity to the year t disaster realization, but consider contemporaneous
credit as it reduces impacts precisely through its response to disasters.

14 For example, Loyaza et al. (2012) have a sample of 94 countries and Fomby et al. (2013) study 84
countries.

15 We specifically define a sample of country-years that have data on gross capital formation, do-
mestic credit, imports as percentage of GDP, foreign direct investment, government surplus, and
countries that have at any point had institutional quality ratings from the International Country
Risk Guide (ICRG). This sample does not match Noy’s exactly due to changes in source databases
over time. We also do not purchase the ICRG data and utilize public metadata instead (URL:
https://epub.prsgroup.com/available-countries). If countries have entered this database since the time
of Noy’s (2009) analysis, they may also change the relative samples. Importantly, our goal is not to
replicate Noy’s sample per se, but to demonstrate how a representative example of standard controls
can affect the sample precision and results.

16 For example, studies such as Noy (2009) have found significant negative effects of disasters on growth,
whereas Cavallo et al. (2013) do not except in the largest disasters. Of course, there are many other
methodological differences across these and other studies, and it is beyond the scope of our study to
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attributes of the two samples. We find that countries in the typical data-restricted sample

feature significantly higher average Statistical Capacity Ratings, significantly lower volatility

in GDP growth, and significantly larger average populations than the unfiltered sample, likely

contributing to the difference in precision of the estimated results. Finally, in line with prior

studies, we see that these negative growth impacts are generally lower in countries with

better financial institutions (proxied by domestic credit, Columns (2) and (5)) and higher

levels of development (Columns (3) and (6)).

formally decompose differences in results across these factors.

15



Table 2: Panel Analysis: Cyclone Strikes and Growth
Dependent Variable: Real GDP/Capita Growthj,t

Unfiltered Has Controls

(1) (2) (3) (4) (5) (6)

#Landfalls/sqkmj,t 0.637 -1.970 -19.395 -67.112** -472.355** -1,212.980***

(1.282) (20.518) (33.566) (29.058) (191.126) (427.418)

Creditj,t·(#Landfalls/sqkmj,t) 0.010 5.370**

(0.273) (2.669)

ln (GDP p.c.)j,t−1·(#Landfalls/sqkmj,t) 1.962 115.904***

(3.308) (41.925)

Domestic Creditj,t -0.000 -0.000**

(0.000) (0.000)

ln (GDP p.c.)j,t−1 -0.103*** -0.220***

(0.013) (0.033)

Adj. R-Squared 0.110 0.0985 0.165 0.177 0.201 0.277

Max. Wind/sqkmj,t 0.004 -0.899 -2.708 -2.280*** -3.731** -5.183

(0.050) (1.202) (2.065) (0.298) (1.821) (9.959)

Creditj,t·(Max. Wind/sqkmj,t) 0.010 0.020

(0.015) (0.023)

ln (GDP p.c.)j,t−1·(Max. Wind/sqkmj,t) 0.275 0.306

(0.207) (0.993)

Domestic Creditj,t -0.000 -0.000**

(0.000) (0.000)

ln (GDP p.c.)j,t−1 -0.103*** -0.219***

(0.013) (0.033)

Adj. R-Squared 0.110 0.0993 0.166 0.178 0.200 0.278

Observations 7,573 5,690 7,573 1,978 1,978 1,978

#Countries 182 171 182 116 116 116

Country F.E.s: Yes Yes Yes Yes Yes Yes

Year F.E.s: Yes Yes Yes Yes Yes Yes

Country-Trends: Yes Yes Yes Yes Yes Yes

S.E. Cluster Country Country Country Country Country Country

Table presents regression of countries’real GDP per capita growth rate in year t on number of cyclone landfalls per sqkm. (top
panel) or max. wind speed per sqkm. in year t plus controls for lagged natural log of real GDP per capita in level and interacted
with storms (Cols.3, 6) or domestic credit provided by financial sector (%GDP) in level and interacted withstorms (Cols. 2, 5). All

regressions include country fixed effects, year fixed effects, country-specific linear time trends, and a constant. Standard errors

are heteroskedasticity-robust and clustered at the country level. (*** p<0.01, ** p<0.05, * p<0.1).
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Table 3: Sample Comparison
Sample

"Unfiltered" "Has Controls" Diff. (SE)

Population Mean 31.1 49.1 -18.0

(3.40)***

Statistical Capacity Rating Mean 68.2 74.2 -6.0

(0.70)***

Real GDP p.c. Growth Mean 1.8% 2.2% -0.4%

(0.12)**

Var. 6.7% 4.2% f = 2.53***

Table compares means or variance for indicated variables across "Unfiltered" and "Has Controls"

samples of country-years. Means are compared with two-sided t-tests (with Welch approximation

for unequal variances). Variance compared with F-test. (*** p<0.01, ** p<0.05, * p<0.1).

Lessons and Limitations: On the one hand, panel specifications such as (2) are clearly
attractive in terms of econometric identification. Cyclone impacts β1 are identified based on

variation in cyclone realizations across years within each country, and thus plausibly causal.

On the other hand, given the findings and theoretical considerations described in Section

2.1.1, we would expect the fixed effects related to countries’average growth rates in (2), γj
and θj, to remain endogenous to cyclone risk. This endogeneity becomes important if one

wishes to use panel estimates to predict the growth impacts of climate change. That is, while

some empirical studies have analyzed climate change impacts by evaluating (2) at alternative

potential future storm realizations ε̃j,τ (e.g., Hsiang and Jina, 2014), our analysis suggests

that this approach is incomplete as climate change will also alter baseline cyclone risks and

thus average growth rates as in Table 1. In a prior version of this paper (Bakkensen and

Barrage, 2016), we explored a two-step estimator to evaluate cyclone impacts through both

channels; however, this analysis remains subject to the core concern that growth impacts do

not correspond to welfare effects.

Despite these limitations, panel output growth regressions can provide essential insights

to inform the design of environment-economy models. For example, limited financial markets

are clearly an empirically relevant contributor to vulnerability, but not accounted for in many

IAMs. Another common empirical finding is that negative cyclone strike impacts on output

levels appear persistent (e.g., Raddatz, 2007; Strobl, 2011; Hsiang and Jina, 2014; Elliott et

al., 2015). This stylized fact is at odds with a standard Ramsey model, which would imply

a growth rebound after the initial negative impact, motivating the exploration of alternative

frameworks.
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3 Modified Empirical Approach

3.1 Total Factor Productivity

Though the empirical literature frequently focuses on GDP per capita growth as an outcome

variable, these impact estimates are diffi cult to incorporate directly into macroeconomic

climate-economy models as GDP growth is typically endogenized. In contrast, climate im-

pacts upon structural model parameters are straightforward to interpret and utilize. We thus

begin by conducting a standard growth accounting exercise that decomposes cyclone output

growth impacts into productivity versus factor input changes. The appropriate empirical

specification depends on the structure of the climate-economy model for which the estimates

are intended. First, in the seminal DICE framework, countries produce GDP Yj,t with capital

Kj,t and labor L
Pop
j,t (measured by population) inputs via Cobb-Douglas technology:

Yj,t = ADICEj,t KαD
j,t (LPopj,t )1−αD (3)

Taking logs and rearranging yields:

ln(ADICEjt ) = ln(Yj,t)− αD ln(Kj,t)− (1− αD)
[
ln(LPopj,t )

]
(4)

Using Penn World Tables (PWT) data on GDP, capital stocks, and populations, one can

thus back out ‘DICE TFP’from (4) given the relevant capital share (αDICE = 0.67).

For DICE, climate change impacts on human capital factors such as educational attain-

ment should thus be counted in TFP. In contrast, other models may endogenize human

capital accumulation. Indeed, in light of the potential links between cyclone risks and hu-

man capital (e.g., Skidmore and Toya, 2002; Ikefuji and Horii, 2012), our model specifies

production as a Cobb-Douglas aggregate of physical and human capital stocks:

Yj,t = Aj,tK
αj,t
j,t H

1−αj,t
j,t (5)

For this specification, the appropriate TFP series is given by:

ln(Aj,t) = ln(Yj,t)− αj,t ln(Kj,t)− (1− αj,t)
[
ln(hcj,t) + ln(LPopj,t )

]
(6)

We map (6) into the data following standard approaches (e.g., Hall and Jones, 1999) that

specify human capital-augmented labor Hj,t as the product of the number of workers Lj,t and

human capital per worker hcj,t. The latter, in turn, is provided by PWT based on schooling

data and returns to education estimates (Inklaar and Timmer, 2013). As our model features
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inelastic labor supply, we also use LPopj,t as a measure of workers. Following Gollin (2002) we

assume common labor shares across countries and set 1− αjt = 0.67 ∀j, t.
The preferred specification de-trends each TFP series log-linearly through the inclusion

of country-specific time trends (γj · t) and year fixed-effects δt in an estimating equation
which follows the standard panel approach (analogous to (2) but for TFP):

ln(Aj,t) = γj + δt + (θj · t) +

L∑
l=0

βA1+lεj,t−l + εj,t (7)

where γj denotes country fixed-effects and εj,t−l are cyclone realization measures up to lag

L. Standard errors εj,t are heteroskedasticity-robust and clustered at the country level. We

consider a range of values of L. Table 4 presents results for maximum wind speed per sqkm.

Table 4: TFP Impacts
(1) (2) (3) (4) (5)

Dep. Variable: ln (ADICEjt ) ln (ADICEjt ) ln (Ajt) ln (Ajt) ln (ADICEjt )
Labor Measure: Pop. Pop. hc·Pop hc·Pop Pop.

Max. Wind/sqkmj,t -1.453* -2.162* -1.485* -2.061* -0.018

(0.863) (1.174) (0.859) (1.171) (0.237)

Max. Wind/sqkmj,t−1 -2.249** -2.095* 0.259

(1.118) (1.082) (0.188)

Max. Wind/sqkmj,t−2 -2.303* -2.129* 0.269*

(1.250) (1.207) (0.162)

Max. Wind/sqkmj,t−3 -1.852 -1.821 0.140

(1.265) (1.241) (0.149)

Max. Wind/sqkmj,t−4 -1.554* -1.497* -0.095

(0.903) (0.889) (0.139)

Obs. 5,649 5,649 6,161 5,649 6,997

Clusters 144 144 144 144 180

Adj. R2 0.700 0.625 0.642 0.625 0.678

AIC -8551 -8263 -8447 -8160 -9065

BIC(n=#Clusters) -8420 -8133 -8316 -8029 -8924

Table presents regression of natural log of countries’TFP on a constant, country- and year-fixed effects, country-specific

linear time trends, and max. wind speed per sqkm. Cols. 1, 2, and 5 use DICE TFP. Cols. 3 and 4 use benchmark model TFP.

Cols. 1-4 use consistent sample with PWT (human) capital data. Col. 5 uses unfiltered sample incl. countries without education,

labor data. Standard errors are heteroskedasticity-robust and clustered at country level. *** p<0.01, ** p<0.05, * p<0.1.

The results indicate significant negative impacts of cyclone strikes on both TFP measures.

Columns (1)-(4) present estimates for a consistent sample of countries. While both the

Bayesian and Akaike information criteria are minimized for the contemporaneous impacts

specifications (Cols. 1 and 3), we also find negative and at least marginally precisely esti-
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mated TFP impacts persisting up to around 5 years. The Online Appendix shows results

for alternative lag structures. Additional lags reduces the estimates’precision, but leave

the magnitudes similar. For completeness, Column (5) presents estimates of the DICE TFP

impacts on the unfiltered sample of available country-years for this indicator. That is, com-

pared to Column (2), Column (5) add 36 countries that lack PWT data on education and/or

employment, which renders the cyclone impact estimates noisy, echoing the results of Section

2.1.2. The Online Appendix shows additional results for specifications that (i) de-trend TFP

through HP-filtering, which leads to broadly similar results, and (ii) use energy as cyclone

intensity measure, which yields somewhat noisier estimates. Overall, the results thus suggest

that one of the channels through which cyclone strikes affect realized growth is by lowering

TFP.17

3.2 Depreciation

While there is limited literature guidance for the estimation of cyclone TFP impacts, nu-

merous studies have quantified cyclone destruction of property and human life as a function

of storm characteristics. Following these studies (e.g., Kahn, 2005; Nordhaus, 2010b; Schu-

macher and Strobl, 2011; Hsiang and Narita, 2012), we specify polynomial damage functions:

ηkj,t(εj,t) ≡
PropertyDamagesj,t

Kj,t

= ξk1j,t(εj,t)
ξk2j,t (8)

ηhj,t(εj,t) ≡
Fatalitiesj,t

Lj,t
= ξh1j,t(εj,t)

ξh2,j,t

Our setup allows the damage function coeffi cients to vary across countries and time, in line

with the results of prior literature. We specifically estimate (8) in logs:18

ln(ηmj,t) = x′j,tβ
m+βmε ln εj,t+(lnεj,t · xj,t)′γm + εj,t, m ∈ {k, h} (9)

Given (9) one can infer countries’vulnerability coeffi cients as a function of their covariates

x′j,t:

ξ̂m1,j,t = ex
′
j,tβ̂

m

(10)

ξ̂m2,j,t = β̂ε + xj,t
′γm

17 Loayza et al. (2012) consider a productivity impact channel for disasters by including capital investment
rates in several output impact regressions, but do not estimate a structural damage function for TFP
impacts.

18 Since we use the same explanatory variables for physical capital and fatality regressions, a seemingly
unrelated regression (SUR) approach would not change the results.
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Table 5 displays the results for our preferred cyclone measure of maximum wind speed (per

square kilometer). As expected, depreciation losses are increasing in wind speeds, albeit with

heterogeneous steepness across countries. Column (1) adopts country fixed effects as damage

covariates x′j,t. This specification allows countries to differ in baseline damages conditional

on experiencing a cyclone, but with common curvature in wind speed. Given the empir-

ical literature’s finding that damage curves are considerably steeper in the United States

(e.g., Nordhaus, 2010b; Strobl, 2011) than globally (Hsiang and Narita, 2012; Bakkensen

and Mendelsohn, 2016), Column (2) presents a U.S.-only specification, which confirms this

pattern.19

Finally, Columns (4) and (6) allow depreciation damages to vary with countries’levels of

economic development and the population share living below five meters elevation in coastal

zones. Importantly, while there are many other potential determinants of countries’cyclone

vulnerability, these are two covariates we would expect to have first-order relevance and

for which we can obtain projections of future levels in order to consider potential changes

in countries’ future vulnerabilities. As expected, the results indicate that both physical

and human capital depreciation impacts are significantly larger in countries with larger

population shares in low-lying coastal areas, and significantly mitigated in countries with

higher economic development.

19 Quantitatively, the results may differ from studies normalizing damages by GDP as we study damages
as a fraction of countries’capital stocks, which are not equiproportional to GDP across countries.
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Table 5: Depreciation Impacts
Dependent Variable: ln(PropertyDamagesj,t/Kj,t) ln(Fatalitiesj,t/Lj,t)

(1) (2) (3) (4) (5) (6)
ln(MaxWindj,t) 1.112** 4.704*** 2.034*** 2.209*** 0.771*** 1.967***

(0.530) (0.959) (0.564) (0.559) (0.226) (0.339)
ln(MaxWindj,t)· ln(GDP pc)j,t−1 -0.164** -0.201*** -0.150***

(0.064) (0.064) (0.037)
ln(MaxWindj,t)·(Pct. Below 5m)j,t 0.023*** 0.011**

(0.007) (0.005)
ln(GDP pc)j,t−1 -1.940*** -2.352*** -2.088***

(0.644) (0.645) (0.370)
Pct. Below 5mj,t 0.198*** 0.081**

(0.062) (0.038)
Constant 1.456 45.304*** 13.797** 16.045*** -6.891*** 10.373***

(4.784) (10.957) (5.574) (5.520) (2.042) (3.357)
Country Fixed Effects? Yes U.S. Only No No Yes No
Observations 356 29 356 356 472 471
Adj. R-Squared 0.0350 0.401 0.218 0.236 0.0316 0.489
Table presents regression of natural log of fractions of capital stock destroyed (Cols. 1-4) or population killed (Cols. 5-6) on

natural log of MaxWindj,t (max. wind speed normalized by country area), lagged GDP per capita levels and max. wind

interactions (Cols. 3, 4, 6), the percentage of population living below 5 meters elevation in levels and max. wind interactions

(Cols. 4, 6), and country fixed-effects (Cols. 1, 5). Col. 2 restricts sample to U.S. storms only. Damage data source is EMDAT.

Heteroskedasticity-robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

Table 5 is estimated using EMDAT data on cyclone damages. For robustness, we repeat

the specification usingMunichRe data (see Online Appendix Table A6). On the one hand, the

MunichRe data yield steeper wind speed curvature estimates in the fixed effects specifications

(e.g., U.S. damage elasticity of 5.9 instead of 4.7). On the other hand, the specifications with

interaction terms are comparatively attenuated. We consider these results for robustness in

our structural analysis below.

4 Cyclone Risk Changes

The empirical estimates presented thus far quantify the impacts of weather shocks εj,t. Link-

ing these estimates to climate-economy models requires a quantification of how the probabil-

ity distribution of these shocks will change along with the global climate, indexed by global

mean surface temperature Tτ in decade τ , specifically cyclone probability density functions

(pdfs) fj(ε|Tτ ). The availability of atmospheric science data to estimate such pdfs was previ-
ously limited, forcing some earlier literature to evaluate damage functions at the projected

futuremeans of cyclone intensity, effectively computing damages at expected intensity rather
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than expected damages (e.g., Narita, Tol, Anthoff, 2009; see also review by Ranson et al.,

2014). Of course, if damage functions δk(εj,t) are convex, this approach risks underesti-

mating expected future impacts. In this paper we gratefully take advantage of advances

in climatological research from Kerry Emanuel and co-authors (Emanuel, 2008; Emanuel,

Sundararajan, and Williams, 2008; and as utilized by Mendelsohn et al., 2012) to construct

estimates of cyclone pdf s. Their work generates 68,000 simulated synthetic tropical cyclone

tracks under each of the current (1980-2000) and future climate, specifically 2080-2100 under

the IPCC’s A1B emissions scenario and processed through four different general circulation

models. Our benchmark analysis focuses on results using NOAA’s GFDL model (17,000

simulated tracks; Manabe et al., 1991), but we also consider alternatives in our sensitivity

analysis below. The synthetic cyclone tracks contain parallel information to the historical

record, such as storm latitude, longitude, and wind speeds at points along the track life. Re-

cent literature that has used synthetic tracks to inform both current cyclone risk assessments

(Hallegatte, 2007; Elliott, Strobl, Sun, 2015) and projections of direct cyclone damages from

climate change (Hallegatte, 2009; Mendelsohn et al., 2012).

In order to estimate cyclone pdfs at the country-year level, we conduct Monte Carlo

simulations based on current and future landfall frequencies and sampling from either the

historical cyclone record (to estimate current risk) or from synthetic tracks (to estimate

future risk) (see Online Appendix). Importantly, this process captures changes in expected

future intensity driven both by changes in the number and characteristics of storms. For

landfall frequencies, we adopt a Poisson distribution (Emanuel, 2013). For our preferred

cyclone measure of maximum wind speeds, the literature has found Weibull distributions

to provide the best fit (Johnson and Watson 2007), which we consequently use to estimate

cyclone pdfs for each country.20 To validate this approach, we compare the expected annual

maximum wind speeds from the Weibull model against empirically observed means in the

data. The Weibull model reproduces the data extremely well, with a correlation coeffi cient

of 0.9982 (plotted in Online Appendix Figure A1).

In order to illustrate the potential impacts of climate change on cyclone risks, Figure 1

next compares the current (from data) and projected future maximum wind speed distri-

bution for four example countries. The simulations indicate highly heterogeneous impacts,

with cyclone risk increases in some regions (e.g., United States), but decreases in others (e.g.,

20 While ‘fat tails’ have been noted as a concern for some climate risks, cyclone wind speeds face a
physical upper bound (Holland and Emanuel, 2011), and fitting even a log-normal distribution can
imply "meteorologically unrealistic" upper tail behavior of excessive wind speeds (Johnson and Watson,
2007). Relatedly, Conte and Kelly (2016) find that cyclone damages in the United States follow a fat
tailed distribution due to the spatial distribution of properties, but that household-level damages and
the wind speed distribution are thin tailed. We account for uniquely high U.S. damages by utilizing a
separate capital depreciation elasticity.
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Australia). Countries are also predicted to experience heterogeneous changes in the variabil-

ity of cyclone intensity, with tightening distributions in some (e.g., India), but increasing

variability in others. Figure 2 presents results for a broader set of countries, specifically by

comparing current annual maximum wind speeds (x-axis) against expected future annual

maximum wind speeds (y-axis). By comparing the location of each point (country) against

the plotted 45◦ line, we see again some countries are predicted to experience substantial

increases in average risk, whereas others are predicted to see declines in average cyclone

activity.

0
.0

1
.02

De
ns

ity

0 50 100 150 200
Max. Annual Cyclone Wind Speed

Current Future

United States

0
.0

2
.04

De
ns

ity
0 50 100 150

Max. Annual Cyclone Wind Speed

Current Future

Vietnam

0
.02

.0
4

De
ns

ity

0 50 100 150
Max. Annual Cyclone Wind Speed

Current Future

India

0
.0

1
.02

De
ns

ity

0 50 100 150
Max. Annual Cyclone Wind Speed

Current Future

Australia

Current reflects IBTRACS data 19702015.
Future reflects 20902100 in IPCC A1B Scenario based on Emanuel et al. (2008) synthetic cyclone tracks.

Current vs. Future Max. Wind Speed Distribution

Figure 1

24



AIAASM
ATG

AUS

BGD

BHS

BLZ

BMUBRBBRN

CAN

CHN

COLCOMCPV
CRI

CUB

DMA

DOM

FJI

FSMGBRGRDGRL

GTM

GUM

HNDHTI

IDN

IND

IRL
JAM

JPN

KHM

KNA

KOR

LCALKA
MAR

MDG

MEX

MMR

MNP

MOZ

MSRMUS
MYS

NCL

NIC

NZLOMNPAK

PHL

PLW
PNG
PRI

PRK

PRT

RUS

SAU

SLB
SOMTCA

THA

TLSTONTTOTZA

USA

VCTVENVGBVIR

VNM

VUT

WSMYEM0
50

10
0

Ex
pe

ct
ed

 F
ut

ur
e 

M
ax

. W
in

d

0 20 40 60 80 100
Current Mean Max. Wind

Projected Cyclone Risk Changes by Country

Figure 2

5 Stochastic Endogenous Growth Cyclone-EconomyModel

This section presents our country-specific stochastic endogenous growth cyclone-economy

model designed to incorporate the empirical evidence from Section 3. The framework builds

closely on Krebs (2003ab, 2006; see also Krebs et al., 2015), who develops a heterogeneous

agent version of this class of model to study the implications of idiosyncratic human capital

and business cycle risks for household savings, investment, growth, and welfare. We con-

sider a representative agent economy but allow for (i) correlated shocks to both human and

physical capital, (ii) partial insurance availability, and (iii) an application and damage spec-

ification to natural disaster risk, specifically tropical cyclones. As the prior theory literature

has analyzed disaster impacts in other endogenous growth models (e.g., Ikefuji and Hoori,

2012), our fundamental contribution here is that we bring such a model to the data. That

is, we produce a novel integration of empirical evidence into a structural model, and produce

quantitative estimates of growth and welfare impacts resulting from cyclone risk changes

for 40 countries. In particular, we show that making the econometrically identifying level of

variation (weather realizations) explicit in the structure of model allows for a straightforward

integration of empirically estimated impact functions into an environment-economy model.
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5.0.1 Model Setup

Each country j is inhabited by a representative household who can invest in human capital

(hj,t) and physical capital (kj,t). Both assets are at risk for cyclone depreciation shocks

ηhj (εj,t), η
k
j (εj,t) that depend on realized disaster intensity εj,t.21 We represent financial

market incompleteness in a reduced-form way by assuming that fraction πj of damages can be

insured at actuarially fair rates, so that, with risk-averse agents, (1−πj) denotes the fraction
of uninsured damages.22 The representative agent in country j chooses state-contingent plans

for consumption cj,t and investments in human and physical capital (xhj,t, x
k
j,t) to maximize:

maxEj,0

∞∑
t=0

βtu(cj,t) (11)

s.t. : cj,t + xkj,t + xhj,t = kj,tR
k
j,t + hj,tR

h
j,t (12)

kj,t+1 = (1− δk − πjµkj − (1− πj)ηkj (εj,t))kj,t + xkj,t

hj,t+1 = (1− δh − πjµhj − (1− πj)ηhj (εj,t))hj,t + xhj,t

kj,0, hj,0 given

Here, Rk
j,t and R

h
j,t denote returns to physical and human capital, δm denotes baseline depre-

ciation of assetm, and µmj ≡ Ej[η
m
j (ε)] denotes the expected cyclone damages to assetm.We

include insurance premia πjµmj in the capital laws of motion for ease of illustration as both

assets are produced linearly from the final consumption good. Disaster intensity follows some

iid distribution εj,t ∼ fj(εj|Tτ ) in each country with mean µj,ε ≡ Ej[εj,t]. We suppress the

dependence of mean damages and mean intensity on the climate Tτ for notational simplicity.

Aggregate production by the representative firm rents households’factors Kj,t ≡ kj,tLj

andHj,t ≡ hj,tLj in competitive national markets, where Lj denotes the country’s population.

max
Kj,t,Hj,t

Aj,t(εj,t)K
α
j,tH

1−α
j,t −Rk

j,tKj,t −Rh
j,tHj,t (13)

Here Aj,t(εj,t) ≡ Aj,t(1 − ηA(εj,t)) denotes total factor productivity, which also depends on

storm realizations.23 Next, letting k̃j,t ≡ kj,t
hj,t

denote the household’s physical-human capital

21 We now suppress the time subscripts on the damage functions ηhj (.), η
k
j (.) as the model treats these as

constant within the current steady-state. In comparing present and future steady-states, however, we
later allow for the possibility that damage functions change along with cyclone risks.

22 Properly microfounding this parameter would require a specification of international asset markets.
23 Our benchmark quantification focuses on contemporaneous TFP impacts of ηA(εj,t) = β̂A1 εj,t from Col.

1 in Table 4. For robustness we also consider a cumulative 5-year impact specification (ηA(εj,t) =
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ratio, and noting that, in equilibrium, by market clearing, k̃j,t = K̃j,t ≡ Kj,t
Hj,t

, factor returns

are given by:

Rk
j,t = (α)Aj,t(εj,t) · (k̃j,t)α−1 (14)

Rh
j,t = (1− α)Aj,t(εj,t) · (k̃j,t)α

Let the household’s wealth at time t be defined by the sum of his physical and human capital:

wj,t ≡ kj,t + hj,t. Further let s̃j,t ≡ 1 − cj,t

wj,t(1+rj(k̃j,t,εj,t))
denote the household’s savings-out-

of-wealth ratio, let ωk(k̃j,t) ≡
(

k̃j,t

1+k̃j,t

)
be the share of the household’s wealth invested in

physical capital, and let δ
m

j ≡ δm + πjµ
m
j m ∈ {k, h} denote the known proportional annual

losses of asset m (baseline depreciation plus insurance premia). The household’s realized

return on his portfolio at time t is then given by the weighted sum of net returns on physical

and human capital:

rj(k̃j,t, εj,t) ≡ ωk(k̃j,t)
[
Rk
j,t(k̃j,t, εj,t)− δkj − (1− πj)ηkj (εj,t)

]
(15)

+
(

1− ωk(k̃j,t)
) [
Rh
j,t(k̃j,t, εj,t)− δhj − (1− πj)ηhj (εj,t)

]
Finally, we assume that preferences are of the standard form:

u(cj,t) =
c1−γj,t

1− γ if γ 6= 1, = log(cj,t) if γ = 1 (16)

Equilibrium Growth Following Krebs (2003b), it is straightforward to show (see Online

Appendix) that the capital ratio k̃j and the savings rate s̃j that solve the household’s problem

in stationary equilibrium (where k̃j,t = k̃j and s̃j,t = s̃j) are jointly determined by:

s̃j =
(
βEj[(1 + rj(k̃

′
j, ε
′
j))

1−γ]
) 1
γ

(17)

0 = βEj


[
Rk
j (k̃j, ε

′
j)− δkj − (1− πj)ηkj (ε′j)

]
−
[
Rh
j (k̃j, ε

′
j)− δhj − (1− πj)ηhj (ε′j)

]
)

(1 + rj(k̃′j, ε
′
j))

γ

(18)
Intuitively, optimal savings s̃j follows from the household’s Euler Equation, whereas (18)

expresses a no-arbitrage condition for human and physical capital. Equations (17)-(18) thus

implicitly characterize how cyclone risk affects equilibrium savings and investments which,

(β̂A1 + β̂A2 + ... + β̂A5 )εj,t) based on Col. 2 in Table 4. Given that our analysis compares steady-state
growth rates, the latter measure serves as upper bound on the implications of the lagged model.
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in turn, alter growth. Long-run or average growth then equals (see Online Appendix):

gj ≡ E

[
c′j
cj

]
= (s̃j)(1 + Ej[rj(k̃

′
j, ε
′
j)]) (19)

Realized year-to-year growth gj,t, in turn, is given by:

gj,t =
cj,t
cj,t−1

= (s̃j)[1 + rj(k̃j,t, εj,t)] (20)

Equations (15)-(20) illustrate how the model captures the cyclone-growth impact mecha-

nisms described in Section 2. As these results are qualitatively standard, we relegate their

formal illustration to the Online Appendix, and only summarize the key points here. First,

if households are suffi ciently risk averse, an increase in cyclone risk may increase the equi-

librium savings rate (17), thus increasing long-run growth (19), ceteris paribus. Second, if

human and physical capital have different vulnerability to storms (ηhj (εj,t) 6= ηkj (εj,t)), an

increase in cyclone risk may change the household’s optimal portfolio allocation k̃j (defined

by (18)). In particular, if physical capital is more susceptible to storms, higher cyclone risk

may induce households to invest relatively more in human capital. Third, higher storm risk

increases average depreciation and lowers TFP, thus decreasing average returns and hence

long-term growth (19), ceteris paribus. In sum, an increase in cyclone risk thus has a the-

oretically ambiguous impact on average growth, whereas a cyclone strike unambiguously

reduces realized returns (15) and thus year-to-year growth (20), in line with the empirical

evidence. Finally, the model also captures the empirical stylized facts that cyclone strike

impacts persistently decrease output levels.

In sum, our parsimonious model thus arguably matches several of the empirical litera-

ture’s key findings. Of course it also has some shortcomings that should be noted. Human

capital accumulation does not induce a positive growth externality à la Lucas (1988), so

that the benefits of increased human capital may be understated. More broadly, endogenous

growth models differ in the underlying source of growth. The present framework features

constant returns to scale in reproducible factors. This class of models is standard in modern

stochastic growth models, including in many analyses of disasters and growth (e.g., Pindyck

and Wang, 2013; Bretschger and Vinogradova, 2016), quantitative models of human capital

risk over the business cycle (e.g., Krebs, 2003ab, 2015) and also leading advancements in

stochastic climate-economy modeling (e.g., van den Bremer and van der Ploeg, 2018). At

the same time, this structure has known shortcomings in matching certain moments such as

on cross-country convergence (Mankiw, Romer, Weil, 1994). While alternative models may

thus better explain advancements in international technology frontiers and the growth of
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mature economies, for capturing the marginal effects of cyclone risk changes on growth, we

argue that our model provides a natural starting point firmly in line with related literature.

We also note that the core contribution of this paper lies in its joint empirical-structural

approach to climate change impact estimation, which can readily be extended to other types

of models. Indeed, Section 6 integrates our damage functions into the seminal DICE model,

a Ramsey growth framework (Nordhaus, e.g., 2010a).

5.0.2 Quantification

We quantify the model for each country using a combination of data, estimation, matching

of moments, and external calibration. Table 6 summarizes the calibration strategy. Initial

capital stock levels (K0,j) are taken directly from the data (PennWorld Tables), with a model

base year (indexed by 0) of 2014. Human capital stocks are backed out via H0,j =
K0,j

k̃0,j
after

solving for initial asset allocation ratios (k̃0,j) as described below. We obtain estimates of

the currently insured fraction of disaster damages from MunichRe’s NatCatService, which

range from 55% in high income countries to only 3.3% in low income countries.24 ,25 Cyclone

risk pdfs ( fj(ε|Tτ )) and damage functions (ηkj (ε), ηhj (ε), ηAj (ε)) are as estimated in Sections

4 and 3, respectively. Baseline (i.e., non-cyclone) depreciation rates (δk, δh) are calibrated

at standard rates from the literature, as are the capital share (α), utility discount factor

(β), and coeffi cient of relative risk aversion (CRR, γ). Finally, our calibration then matches

observed base year GDP per capita growth g0,j (from PennWorld Tables) at base year cyclone

realizations ε0,j (from IBTrACS) in each country by solving jointly for initial productivity

level A0,j, savings-out-of-wealth rates s̃0,j, and asset allocation ratios k̃0,j via (17), (18), and

(20).26

We first consider the ceteris paribus effect of changing cyclone risks in today’s economy,

with insurance rates and damage functions evaluated at current covariate levels. Welfare

changes are measured as percent change in stationary equilibrium welfare under the cur-

rent versus future climate. Figures 4 and 5 present the results for projected welfare and

growth impacts, respectively (dark bars). The results reveal significant heterogeneity in

24 In upper middle income countries, the fraction is 11.7%, and in lower middle income countries, 5.2%.
Income groupings are based on 2017 gross national income per capita as per World Bank classification.

25 Deryugina (2017) shows that general fiscal transfers constitute an important source of implicit disaster
insurance in the U.S., suggesting that our base insurance measure may be an underestimate in similar
countries. We consider higher insurance rates based on future income adjustments, as described below.

26 At this step we drop six countries from the sample that experienced negative growth in 2014, in some
cases severely so due to warfare or other non-modeled crises (e.g., Yemen, Venezuela). Seeking to match
their growth rates yields problematic calibration results, such as savings-out-of-wealth ratios in excess
of unity. The other dropped countries are Oman, St. Lucia, The Bahamas, and the British Virgin
Islands.
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Table 6: Model Calibration
Country-Specific from Data, Estimation, Matched Moments
Item Description Source or Value
K0,j Capital stock PWT Data
πj Insured fraction MunichRe NatCatService

H0,j Human capital Back out via H0,j =
K0,j

k̃0,j
given investment ratio k̃0,j

fj(ε|T τ ) Cyclone risk pdf Estimated from IBTrACS cyclone records, Emanuel et
al. (2008) synthetic tracks, see Section 4

ηkj (ε), η
h
j (ε) Damage Estimated from global macro panel, damage data; see

ηAj (ε) functions Section 3

A0,j TFP Match initial GDP growth (PWT) given s̃0,j, k̃0,j
s̃0,j Savings/wealth Model

k̃0,j Investment ratio Model
Globally Standard from Literature
α Capital share 0.33
δk Baseline depr. 10%/yr
δh Baseline depr. 10%/yr
γ Risk Aversion 2
β Utility discount 0.975

the projected effects of climate-induced cyclone risk changes across countries, ranging from

substantial negative impacts in vulnerable small island states (e.g., a -6% welfare change

in St. Vincent and the Grenadines) to small welfare gains in countries where cyclone risks

are predicted to decline with global warming. The predicted growth impacts mirror this

heterogeneity, but are generally smaller in magnitude. Another striking result is that the

United States stands out among the ‘top 10’of most negatively impacted countries, which

are otherwise mostly poor and/or small island states. This result is in line with empirical

evidence that the United States appears uniquely vulnerable to hurricanes given its levels of

income and exposure (see, e.g., Bakkensen and Mendelsohn, 2016).

We next consider the combination of future cyclone and vulnerability changes by evalu-

ating damage coeffi cients at projected future (2095-2105) levels of GDP and the population

share living below five meters elevation, respectively,27 and allowing insurance rates to in-

crease along with projected economic development.28 The results are also displayed in Fig-

ures 3 and 4 (light grey bars). We find that reductions in future cyclone vulnerability due to

continued economic development may vastly mitigate the potential losses from future cyclone

27 GDP projections are based on regionally differentiated business-as-usual per capita GDP growth pro-
jections from the RICE model (Nordhaus, 2011), applied to each country’s GDP per capita levels in
2015. Low elevation population projections to 2100 are from CIESIN (2013).

28 We assume that the relationship between incomes and insurance remains as currently observed in
MunichRe data, and assign 2095 insurance rates based on countries’projected future incomes.
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risk increases. Indeed, there are a number of cases where the ceteris paribus welfare impacts

of cyclone risk increases may be substantial and negative, but where the combined effect of

future changes in cyclone risk and vulnerability is predicted to be positive (e.g., Comoros,

Belize, Haiti, Mozambique, etc.). That is, in a ‘horse race’, the protective effects of economic

and insurance market development are predicted to outweigh cyclone risk increases in several

countries. Of course we must caution that there are further sources of future vulnerability

change that are not included in our model, such as learning from increased cyclone exposure

conditional on income (which would decrease future vulnerability, ceteris paribus, see, e.g.,

Schumacher and Strobl, 2011; Hsiang and Narita, 2012; and Fried, 2019), or sea level rise

(which will increase future vulnerability to storms conditional on intensity, ceteris paribus).

We present additional model results for a number of alternative specifications in the On-

line Appendix, including for 5-year TFP impacts, three alternative climate models (MIROC,

CNRM, and ECHAM), and for the MunichRe data-based capital depreciation function. As

expected, the cumulative TFP impacts specification generally implies higher welfare losses

associated with cyclone risk increases. For example, Haiti’s predicted welfare impacts of

ceteris paribus cyclone risk changes increase from -0.56% in the benchmark to -1.84% in this

specification. At the same time, cumulative TFP impacts can also increase the welfare gains

associated with cyclone risk declines. For example, Japan’s welfare impacts of ceteris paribus

cyclone risk changes increase from +0.024% to +0.12%. For the other sensitivity runs, we

find that the model predictions have mixed sensitivity to these changes. In some countries,

there are qualitative differences across climate models. For example, in Bangladesh, while

the benchmark model implies a cyclone risk decline, other climate models predict increases

in cyclone risk with global warming, and associated negative welfare impacts. Conversely,

in the Dominican Republic, the MIROC climate model predicts a cyclone risk decrease im-

plying a welfare gain, whereas our benchmark scenario implies a cyclone risk increase and

corresponding welfare loss. Similarly, the MunichRe-based damage function increases the

projected welfare costs of cyclone risk changes in, e.g., the United States (from -0.25% to

-0.31%) , but also increases welfare gains in countries predicted to experience cyclone risk

declines, such as Japan (from +0.024% to +0.033%). In other cases, the results appear simi-

lar. We address the overall sensitivity of the results to these variations through an analogous

sensitivity check in the DICE model extension. While individual country predictions may

vary, we find that the aggregate costs of climate-induced cyclone risk changes appear broadly

robust to these model variations, as shown in the next section.
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6 DICE Model Integration

In order to gauge the aggregate implications of cyclone risk changes for global climate policy,

this section concludes by presenting an integration of our damage functions into the seminal

DICE climate-economy model (Nordhaus, e.g., 1992, 2011). DICE serves as a central bench-

mark across the literature, and is one of three frameworks used by the U.S. government to

value the social cost of carbon (Greenstone, Kopits, and Wolverton, 2013).

The DICEmodel is deterministic and specifies climate change impacts as output-equivalent

loss D(Tτ ) as a function of the mean global atmospheric temperature change Tτ in decade

τ . The first step in mapping our estimates into DICE is thus to compute expected annual

capital depreciation, fatalities, and TFP losses under different climates for each country.

Specifically, we use our estimates for damage function (8) and cyclone pdfs for each country

to compute:

Ej[η
k
j,t(ε)|Tτ ] =

∫ ∞
0

δhj,t(ε) · fj(ε|Tτ )dε (21)

Ej[η
h
j,t(ε)|Tτ ] =

∫ ∞
0

δhj,t(ε) · fj(ε|Tτ )dε

For TFP impacts, we focus on the cumulative damage specification ηA(εj,t, ...εj,t−4) = β̂A1 εj,t+

β̂A2 εj,t−1+...+β̂A5 εj,t−4 as our aggregate effects ultimately appear to be quite modest. Assum-

ing independence in year-to-year cyclone fluctuations, expected annual cyclone TFP impacts

in country j can then be estimated through an analogous specification to (21). As a sec-

ond step, we then aggregate expected impacts across countries, using global GDP shares as

weights for TFP impacts, global capital shares as weights for physical depreciation impacts,

and populations as weights for fatality impacts. Table 8 presents the resulting estimates

of global aggregate expected annual cyclone impacts under the current and future climate,

respectively.

These results reveal the following insights. First, global heterogeneity in projected cyclone

risk changes across countries nets out to an increase in aggregate expected damages. For

example, annual expected global TFP losses due to cyclones are projected to increase by

around 14% (from 0.0288% to 0.0329%). With fixed damage functions, capital depreciation

is moreover predicted to increase by around 75%; for fatalities, the relevant figure is 5-11%.

Second, while the levels of estimated losses may appear small, their magnitude is broadly in

line with historical data. While cyclones can be locally extremely destructive, their impacts

are limited both geographically and physically, especially as a fraction of global capital stocks

and populations.
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Table 8: Global Aggregate Annual Expected Cyclone Depreciation (%/year)
Current Climate Future Climate (T2090)

TFP (DICE) 0.0288% .0329%

Physical Capital
Damage Fn. Coeffi cients:
Country-Fixed; U.S. sep. .0062% .0109%
Current GDP, Pop<5m; U.S. sep. .0062% .0112%
Future GDP, Pop<5m; U.S. sep. .0042% .0087%
Future GDP, Pop<5m .0018% .0016%
Historical Data:
Avg. (1970-2014) .0091%
Year 2014 .0050%

Fatalities
Damage Fn. Coeffi cients:
Country-Fixed .000040% .000042%
Current GDP, Pop<5m .000035% .000039%
Future GDP, Pop<5m .000004% .000005%
Historical Data:
Avg. (1970-2015) .000422%
Year 2014 .000008%

For example, even the $108 billion in damages caused by Hurricane Katrina - the costliest

storm in U.S. history - accounted for only 0.24% of the U.S. capital stock at the time, ($44.4

trillion, $2011), or 0.042% of the global capital stock. A third result to emerge from Table

8 is the critical importance of U.S. cyclone damages for the global aggregate. For example,

if we project future damages assuming that the United States will maintain its separate

damage function (based on Column 2 of Table 5), global capital losses are estimated to be

0.0087% per year. If, instead, we assume that the United States will follow other countries’

pattern of decreasing vulnerability with further economic development (based on Column 4

of Table 5), projected global capital losses are only 0.0016%. That is, limited adaptation

to cyclones in the U.S. could increase global damages by more than a factor of five. These

results thus highlight the importance of ongoing research illuminating distinct U.S. cyclone

damage patterns (e.g., Nordhaus, 2010b; Conte and Kelly, 2016; Bakkensen and Mendelsohn,

2016; Fried, 2019).

The next step in the DICE model integration is to convert our estimates into climate

damage functions, which ought to reflect only the additional impacts due to warming Tτ in

decade τ . The benchmark DICE model aggregates climate impacts into an output-equivalent

loss D(Tτ ). That is, available (net of damages) output in DICE differs from (3) via:

Y DICE
τ = (1−D(Tτ ))A

DICE
j,t KαD

j,t (LPopj,t )1−αD
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We add three cyclone-specific damage functions into DICE. First, we integrate cyclone-

induced capital depreciation explicitly into the model’s law of motion for capital by making

the depreciation rate a function of the climate δ(Tτ ) (and where Iτ denotes investment):

Kτ+1 = Kτ (1− δ(Tτ )) + Iτ

Second, for fatality impacts, we introduce an effective labor parameter ZH(Tτ ) designed to

capture the cumulative loss in the effective work force due to climate change up until time

τ with Tτ ≡ {Tτ , Tτ−1, ...T0}.29 Third, for TFP impacts, we also specify an effective (i.e.,
net of cyclone damages) decadal productivity term ZA(Tτ ). The aggregate (net) production

function in our extended DICE model is thus given by:

Y DICE+Cyclones
τ = ZA(Tτ ) · (1−D(Tτ ))A

DICE
j,t KαD

j,t [LPopj,t · ZH(Tτ )]1−αD (22)

Given that natural scientists generally project the global cyclone intensity-temperature re-

lationship to be linear (Holland and Bruyere, 2014), and adopting NOAA’s assessment that

anthropogenic warming between pre-industrial and current times has not yet altered tropical

cyclone patterns (GFDL, 2018), we extrapolate linearly to convert the results of Table 8 into

the following damage function parameterizations (see Online Appendix for details). First,

letting δ denote the benchmark annual depreciation rate assumed in DICE, and adding in

annual expected cyclone damages, the decadal depreciation rate becomes:

δ(Tτ ) = 1− [(1− δ − α̂kTτ )10] (23)

The effective work force term ZH(Tτ ) is similarly given by:

ZH(Tτ ) =

τ∏
j=0

(1− α̂hTτ−j)10 (24)

Intuitively, (24) equals one minus cumulative cyclone deaths through decade τ . Finally, the

effective TFP term is given by:

ZA(Tτ ) = 1− [(1− α̂ATτ )10] (25)

Each damage function specification in Table 8 implies different coeffi cient values for α̂k and

α̂h. Given that our social cost of carbon (SCC) impact estimates are generally modest, we

29 We choose this specification in lieu of explicit population losses as the DICE model’s welfare weighting
of future generations depend on their population size. It is standard for IAMs to value mortality without
changing the assumed population in the model.
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focus on the largest α̂ values which assume no future decreases in cyclone vulnerability. For

sensitivity, we also present estimates for damage functions based on the MunichRe loss data

(specifically for the fixed effects and U.S. depreciation specifications in Columns 1 and 2

of Table 6) and two alternative climate models, MIROC and CNRM (see Online Appendix

for extended Table 8 including these models). Table 9 presents the results of incorporating

damage functions (23)-(25) into the 2010 DICE model, specifically the percentage increase

in the (optimal) social cost of carbon in 2015 (∆SCC2015), and on average over the 21st

century (∆SCC2015−2115).

Table 9: Cyclone Impacts on the Social Cost of Carbon

Impacts Case α̂A α̂h α̂k ∆SCC2015 ∆SCC2015−2115

Benchmark .0000173 1.60e−08 .0000212 +0.9% +0.7%

MIROC Climate Model .0000281 4.50e−08 .0000067 +1.2% +1.0%

CNRM Climate Model .0000101 3.38e−08 .0000049 +0.5% +0.4%

MunichRe Damages .0000173 1.60e−08 .0000373 +1.0% +0.9%

In the aggregate, we find only modest increases in the optimal global social cost of carbon af-

ter integrating our estimated damage functions into DICE. Though perhaps surprising from

the perspective of the United States, where cyclone damages are among the world’s largest

and projected to increases significantly with global warming, this result is less surprising in

light of the substantial heterogeneity in expected cyclone-warming impacts around the world

(see Figure 2). In addition, regional cyclone impacts are modest relative to the global econ-

omy. Nonetheless, there are reasons to suspect that our estimates may understate the true

SCC impact of tropical cyclone changes. First, as DICE is deterministic, the welfare costs

of uninsurable risk changes and behavioral responses thereto are not accounted for. Second,

our estimates exclude some cyclone-vulnerable countries due to data limitations, and may of

course be generally attenuated due to measurement error. Third, our estimates also do not

account for potential future cyclone vulnerability increases due to sea level rise. At the same

time, they also do not account for some mechanisms that may decrease future vulnerabil-

ity, such as learning-based adaptation conditional on income, or technological innovations.

Ceteris paribus, these omissions would be expected to bias our SCC estimates upwards. As

a growing empirical literature continues to explore these issues, it would be a rich area for

future work to build on the frameworks presented in this paper to integrate new empirical

evidence into structural environment-economy models.
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7 Conclusion

This paper proposes a novel empirical-structural approach to analyze the macroeconomic

consequences of climate change with a focus on tropical cyclones. We first empirically and

conceptually review competing approaches to quantifying cyclone impacts on growth. We

highlight that differences in reduced-form findings, driven in part by empirical choices, are

maintained using a comprehensive dataset yet can also be reconciled through a theoretical

lens. Importantly, theory also tells us that even perfectly identified reduced-form regressions

of growth on cyclone shocks or risk may not be individually suffi cient to characterize the

welfare effects of future changes in cyclone risks given broader general equilibrium changes.

Second, we present our approach to estimating and modeling cyclone impacts designed

to combine empirical evidence with the structure of a model to deliver welfare cost estimates

and policy implications. We propose that empirical research focus on quantifying cyclone

impacts on the structural determinants of growth, and not just growth itself, as the latter

is typically endogenous in macroeconomic climate-economy models. We then present a sto-

chastic endogenous growth cyclone-climate-economy model that we quantify separately for

40 cyclone-vulnerable nations. Important for policy, we find significant heterogeneity of pro-

jected climate change impacts, ranging from substantial negative effects in vulnerable small

island states, to small welfare gains in countries where cyclone risks are predicted to decline

with global warming. The United States stands out among the most negatively impacted

countries.

Third, in order to assess the global climate policy implications of changing cyclone risks,

we integrate our cyclone impact estimates into the seminal DICE model and assess their

impact on the social cost of carbon. More broadly, our approach highlights opportunities to

reduce the "micro-macro" gap between growing empirical evidence on macroeconomic im-

pacts and the quantification climate-economy models. We show that only minor extensions

of existing empirical approaches yield structurally interpretable impact estimates. We also

demonstrate how modifying climate-economy model structure to make weather explicit per-

mits (i) direct incorporation of plausibly causally identified impact estimates, (ii) accounting

for macroeconomic adaptation through endogenous adjustments in savings and investments,

and (iii) computing welfare costs of changes in climatic risks. As frontier advancements in

stochastic climate-economy models are now able to account for multiple sources of uncer-

tainty at high frequency (Cai and Lontzek, 2019), extending a truly integrated assessment

models to explicit consideration of weather impacts may thus be an interesting area for fu-

ture work and facilitate linkages to the empirical literature. Similarly, while our quantitative

results are subject to numerous limitations ranging from our abstractions of advancements
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in wind-field modeling (Strobl, 2011; Hsiang and Narita, 2012) to distinguishing productive

and adaptation capital (e.g., Fried, 2019), our proposed method seeks to complement these

empirical and modeling advancements so as to facilitate the integration of both frontiers and

to improve our understanding of the social costs of climate change.
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