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1 Introduction

The Intergovernmental Panel on Climate Change predicts a mean increase in the Earth’s surface

temperature of 2◦ to 7◦F over the next century, calling it “virtually certain” that there will be more

frequent hot temperature extremes experienced over most land areas by 2100 (IPCC, 2014). From

the US (Barreca, 2012; Barreca et al., 2016; Deschênes and Moretti, 2009; Deschênes, Greenstone and

Guryan, 2009; Deschênes and Greenstone, 2011; Heutel, Miller and Molitor, 2017) and from other

middle and high income countries (Gasparrini et al., 2015), there is now evidence on the extent to

which extreme temperatures kill. Yet, for developing countries we know little about the temperature-

mortality relationship, especially for the least-developed countries, where billions of people live.

Extrapolations from the rich word or from middle-income countries with more urbanized economies

could be misleading. In particular, very poor populations may be less capable of reducing exposure

to extreme heat and humidity, such as via climate-controlled housing and indoor work. Further, the

harm conditional on exposure could be greater in the developing world due to baseline health among

the poor that is substantially more fragile.

The environmental economics literature has routinely highlighted the need to understand the

health impacts of temperature and climate change in developing countries (Greenstone and Jack,

2015). But to date research progress has been limited because the poorest countries lack the kind of

vital registration data routinely available in high- and middle-income countries. As a broad coali-

tion of economists recently noted in Science, the near exclusive focus in the prior literature on rich

countries is “problematic ... because the nature of impacts and context for policy choice could dif-

fer greatly relative to developed regions” (Burke et al., 2016). Similarly, Deschênes (2014) explains

in a review of this literature: “An important component of future research is to better ascertain the

differences in the temperature–mortality response across countries, especially the difference between

developed and less developed countries.”

This study provides needed evidence on the human mortality effects of extreme heat and hu-

midity in the poorest countries. The prior temperature-mortality literature has generally focused on

places where vital statistics data or other complete records of all deaths exist, but many poor coun-

tries lack high-quality vital registration systems. We overcome this fundamental data challenge by

constructing sample-based measures of mortality using Demographic and Health Surveys. These

surveys record information on infant deaths for large, nationally representative samples in many of
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the poorest countries in the world. We link retrospective fertility histories from surveys of mothers

to data on temperature, humidity, and precipitation at fine-grained geographic and temporal resolu-

tion. From this, we generate a panel of temperature exposure and child survival from the in utero

period into childhood for households in 53 developing countries spanning Africa, Asia, and Latin

America.

Because we observe many births within the same villages, and because within a village, observed

births occur in the same months of different years, we can flexibly control for locality-specific season-

ality. Identifying effects off of only temperature shocks addresses any seasonality in the composition

of births that could otherwise confound estimates (Barreca, 2017; Barreca, Deschênes and Guldi, 2018;

Buckles and Hungerman, 2013).

In addition to extending the temperature-mortality literature to study the poorest populations—

these are the least likely to be covered by functioning death registration systems—we innovate by

introducing wet bulb temperature (Twb) into the climate economics literature. Twb is an index that

combines information on heat and humidity. Sweat evaporation is humans’ primary thermoregu-

latory mechanism in high ambient temperatures, and evaporation depends critically on humidity

levels. Wet bulb temperature tracks the physics of evaporative heat exchange better than the famil-

iar (“dry bulb”) measurement of temperature. Twb is recognized in textbook treatments of human

thermal environments as a more informative signal of both comfort and heat stress (Parsons, 2014).

It is also widely employed by climate scientists and biologists interested in describing the envelope

of theoretically survivable temperature-humidity combinations (Sherwood and Huber, 2010; Im, Pal

and Eltahir, 2017). In practice, we show that this parameterization of temperature best fits the infant

mortality patterns we observe.

We find that very hot and humid days generate large infant mortality effects: Experiencing an

additional day of mean wet bulb temperature above 85◦F (equal to about 100◦F at 55% humidity)

in the first month of life increases neonatal mortality by 0.7 deaths per thousand births. This infant

mortality effect is an order of magnitude larger than most previous econometric estimates of the

impacts of hot days, which have primarily been generated from developed country samples. Our

parameter estimates are closest to those in Barreca et al. (2016) for the US from 1930 to 1959, prior to

the widespread adoption of air conditioning.

We show that the largest and most robust mortality effects are associated with exposure to ex-
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treme temperature-humidity combinations experienced during the month of birth, rather than in

utero or later in infancy. Further, the largest share of the resulting deaths occur in the birth month,

contemporaneously with the timing of temperature exposure. This immediate response suggests a

direct biological channel, rather than a channel through eventual agricultural yields and incomes.

The findings thus complement work that has highlighted effects of extreme temperatures on agricul-

tural output (Guiteras, 2009), with impacts on economic wellbeing overall (reviewed in Dell, Jones

and Olken, 2014) and on health in particular (Burgess et al., 2017). The contrast here suggests that

policy responses focused on income smoothing in the face of weather uncertainty, while potentially

protective against some harms, may be insufficient to fully counteract the infant mortality effects.

Our paper contributes to the economic analysis of temperature, mortality, and climate change in

several important ways. This paper is the first to identify the effect of extreme heat and humidity

on early life mortality in a sample that spans very poor countries without vital statistics systems.

We thus contribute to a broad economic literature examining the short- and long-term health and

human capital consequences of adverse environmental exposures during the in utero period and

early childhood (reviewed in Almond, Currie and Duque, 2017). In particular, we build on studies

that examine in-utero and infant weather exposure in rich country settings, including Deschênes,

Greenstone and Guryan (2009) and Isen, Rossin-Slater and Walker (2017). We likewise complement a

very small literature (Burgess et al., 2017; Carleton et al., 2018) that has identified any health impacts

of temperature in any developing country context, and a broader literature that considers weather-

related natural disasters in developing countries (e.g., Guiteras, Jina and Mobarak, 2015).

Second, the new facts we establish about the role of properly-parameterized humidity have the

potential to reshape understanding of the geographic distribution of health damages, an issue of

broad current interest (see, e.g., Hsiang, Oliva and Walker, 2017). Figure 1 plots the location of each

village or urban block in our global sample, along with temperature and humidity characteristics.

Some of the hottest places on Earth are concentrated in sub-Saharan Africa. However, our estimates

do not imply the largest incidence of heat-related mortality at these locations, which tend to be dry.

Instead, our findings indicate the largest impacts occur in the more humid regions of Asia. In this

way, we build on earlier work by Barreca (2012), which showed that absolute humidity is predictive

of US adult mortality, but in contrast to our results, found no amplifying effect between heat and

humidity.
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Third, our findings contribute to the continued evolution of climate damage functions and in-

tegrated assessment models used to determine optimal climate policy, including the optimal carbon

tax. Though damage functions have historically been crude, the most recent research has attempted

to directly incorporate the type of micro-econometric estimates we generate here. In such models for

the US, health and mortality impacts comprise the greatest share of total climate damages (Hsiang

et al., 2017). Thus, our finding that mortality effects in poor countries are an order of magnitude

larger than what has been estimated for the developed world has the potential to significantly alter

assessments of optimal policy.

2 Background

We use wet bulb temperature, denoted Twb, to combine information about ambient air temperature

and moisture in the air in a functional form that is motivated by the physics of how humans regu-

late body temperature. Twb is widely used in climate science, biology, and ergonomics as a useful

summary statistic for heat stress danger and thermal comfort (Parsons, 2014). As a practical matter,

it is also the dominant meteorological variable used for assessing heat exposure danger by the US

military, by OSHA, and by (outdoor) sports medicine physicians (Budd, 2008). Mechanically, Twb

corresponds to the temperature reading on a standard mercury thermometer whose bulb is wrapped

in a continuously dampened cloth. The reading is lower than on a familiar “dry bulb” thermometer

because evaporation carries heat energy away from the bulb.

Twb connects naturally to the process of cooling oneself via sweating. As dry bulb ambient air

temperatures rise above the skin’s surface temperature (typically 96◦F), the only biological process

that can substantially cool the body is the evaporation of sweat. High humidity exacerbates heat

stress by reducing the efficiency of sweating/evaporation: Holding ambient temperature fixed, the

rate of heat transfer via evaporation is lower on a humid day (when the sweat clings to the skin

rather than quickly evaporates). When sweating functions inefficiently, the cardiovascular system

experiences greater stress, dilating blood vessels in the skin and working harder to transport heat

away from the body’s core towards the skin via blood circulation. This problem can particularly

impact neonates, who effectively free-ride on maternal temperature regulation in utero. The baby’s

own thermoregulation remains poorly controlled for the first days of life (Hey and Katz, 1969).

Because wet bulb temperatures (Twb) are highly non-linear combinations of dry bulb temperature
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(T) and relative humidity (H), they do not readily translate into more familiar units. In fact, there is

no closed form expression linking Twb, T, and H. A wet bulb temperature of 85◦F (a relevant thresh-

old below) corresponds to the following temperature/relative humidity combinations at standard

pressure: {120◦F, 30%}, {100◦F, 55%}, and {90◦F, 80%}. If the true model linking human mortality to

extreme heat is a function of Twb, then simple linear interactions of temperature and relative humid-

ity may be insufficient to capture the relevant impacts of humidity. We show that this turns out to be

empirically true, at least in the cases we study.

3 Data and Empirical Framework

3.1 Data

We link data from two sources: the Demographic and Health Surveys (DHS) and a globally grid-

ded weather dataset. DHS are nationally-representative survey data collected as a joint effort of

USAID and the national governments where the surveys are fielded. The main questionnaire mod-

ules, which focus on demographic statistics and maternal and child health, are comparable across

countries. Women aged 15 to 49 are the primary respondents. Each woman reports her complete

birth history (e.g., child #3 was born in March 2006 and survived to the date of interview). Therefore,

although we observe each surveyed woman at just one point in time, information on month and year

of birth—and, if applicable, date of death—enables us to construct a month-by-month panel of child

survival.

Although the DHS are not a complete census of deaths registered by a government agency, the

high quality of the DHS mortality data has been established by a literature in economics that uses

DHS data to study causes of death other than temperature (but including other weather-related or

environmental factors). These include studies of weather-related phenomena, such as the effects of

malaria (Kudamatsu, Persson and Strömberg, 2012), rainfall shocks (Burke, Gong and Jones, 2015),

dusty wind (Adhvaryu et al., 2016), and coffee prices (Miller and Urdinola, 2010), as well as other

factors such as macroeconomic fluctuations (Paxson and Schady, 2005; Bhalotra, 2010), sanitation

(Geruso and Spears, 2018), and democracy (Kudamatsu, 2012).

We assemble and harmonize all DHS datasets collected through 2014 for which the latitude and

longitude of the primary sampling unit (PSU) was recorded. PSUs correspond to a very fine level
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of geographic disaggregation: villages in rural areas and city blocks in urban areas. We use village

as shorthand for PSU below. The universe of DHS surveys with geolocation information includes

countries spanning Latin America, Africa, Eastern Europe, South Asia, and Southeast Asia. For many

countries we observe several survey rounds (e.g., Bangladesh in 1999/2000, 2004, 2007, and 2011).

Even for countries with only a single round, the retrospective nature of birth histories implies that

we observe many births within the same village, occurring in different months and years—and in

the same months of different years. Our assembled dataset includes 53 countries observed over 111

country × survey rounds. Figure 1 maps the countries in our assembled data. In Table A1 we list

each country and associated survey rounds.

To the DHS data, we match geographically-gridded sub-daily measures of temperature, humid-

ity, and other meteorological variables from the Princeton Meteorological Forcing Dataset (PMFD),

generated by Sheffield, Goteti and Wood (2006) and Sheffield, Wood and Roderick (2012). The PMFD

combines reanalysis data from NCEP-NCAR with a collection of observation-based data from the

Climactic Research Unit and other sources. These weather data have a geographic resolution of 0.25◦

latitude × 0.25◦ longitude and a temporal resolution of 3 hours. The data are described in additional

detail in Appendix Section A.1.

To merge the datasets, for each PSU in the DHS we identify the four closest surrounding grid

points, and assign weather values averaged across those points, weighted by inverse distance to the

PSU. This yields a panel that locates each month of each child’s life in time and in latitude × longitude

with linked information on exposure to various weather variables.

Variables of particular interest in our study include daily mean humidity, daily mean dry bulb

temperature (T), and daily mean wet bulb temperature (Twb). Daily means are generated by averag-

ing across eight daily temperature readings. Thus, a day described by a mean temperature of 90◦F

may have daytime highs in excess of 100◦F. We follow the recent literature in tabulating the exposure

variables semi-parametrically, as counts of days falling in various temperature ranges. In wet bulb

degrees Fahrenheit, we count the days per month in each of the following bins: < 30, [30,40), [40,50),

[50,60), [60,70), [70,75), [75,80), [80,85), and ≥ 85. Panel D of Figure 1 plots the incidence of daily

means across these bins in our sample.

It is important to understand the strengths and limitations of these data, relative to the kinds

of vital registration data typically used in temperature-mortality studies. A primary advantage is
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that DHS data allow us to measure mortality in the poorest countries in the world. As Table A1

summarizes, most of these countries do not have credible national vital registration systems (Math-

ers et al., 2005). In this way, our approach resembles Young (2012), which uses DHS asset data to

measure economic growth in African countries with weak national accounts systems. In addition,

even compared to the few, relatively richer developing countries where there is at least partial vital

registration coverage (e.g., Brazil, China and India, studied in Carleton et al., 2018 or Brazil, China,

and Thailand studied in Guo et al., 2014), the data here allow for finer temporal and geographic res-

olution in the measurement of births and deaths than is typically possible. This enables us to narrow

in on perinatal events and to construct the first econometric estimates of effects of temperature on

neonatal mortality in the literature (including in rich country-settings).1 This advantage proves im-

portant in practice, as we show that exposure and death during the birth month accounts for most of

the temperature-related mortality in the first year.

A relative weakness of the DHS is that despite our assembled data spanning dozens of countries,

the number of lives and deaths represented in each country sample is small relative to the number of

lives and deaths represented in birth and death registry data, which are based on complete censuses.

Therefore, the analysis here is powered to detect large effects, which it finds; we are limited in our

ability to detect or rule out mortality effects of the sizes documented in richer populations.

3.2 Empirical Framework

We follow the recent literature to estimate flexible regressions of the form

Yijdct = ∑
B

βB · TempB
ijdct + σt + θdm + ∑

B
ζB · TempB, 5-year

ijdct + ΦXijdct + εijdct, (1)

where j indexes survey PSUs, d indexes about 2,300 administrative divisions (“districts”) within

countries, and c indexes the 53 countries.2 Calendar months are indexed by m. We denote month

× year interactions (e.g., July 2009) with t. Observations i are children. The dependent variable Y
1To our knowledge, no other study has identified effects of temperature on neonatal mortality in a manner that ad-

dresses the potential for endogenous seasonality. The epidemiology literature that examines weather and birth outcomes
often explicitly relies on seasonality to identify effects. See Strand, Barnett and Tong (2011) for a review. In both public
health (e.g., Guo et al., 2014, Mora et al., 2017) and the econometric literature, studies tend to report annualized deaths in
most cases and to estimate a single “age-adjusted” effect that combines infants with adults and the elderly. Even in cases
where mortality is measured monthly or infants have been estimated separately, studies have not distinguished between
neonatal deaths (month one) and infant deaths (year one).

2The units of within-country administrative divisions d vary across countries in the pooled sample, and may refer to
districts, divisions, provinces, regions, states, zones, etc., each interacted with urban/rural. We use districts for parsimony.
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represents a child health outcome, the focal outcomes being an indicator for infant death (first year)

or neonatal death (first month). Mortality indicators are multiplied by 1000, so that coefficients cor-

respond to mortality effects per 1000 lives.

The coefficients of interest are βB, with B indexing temperature range bins. The variables TempB

count the days in the relevant month for which the child/fetus was exposed to temperatures in some

range—e.g., the child experienced 6 days with mean temperatures in the range 75-80◦F during her

birth month. Coefficients β are interpretable as effects relative to the experiencing a day of mean tem-

perature in the omitted category (60-70◦F). Saturated fixed effects for the month × year, σt, accom-

modate time trends with maximal flexibility. We additionally control for rainfall and household-level

characteristics (X) recorded in the DHS.

The identifying assumption in our analysis is that conditional on the controls for typical weather

and place-specific seasonality, the actual realization of temperature is random. An important prac-

tical consideration is exactly how to control for local seasonality that could otherwise lead temper-

ature to be endogenous to the timing and socioeconomic composition of births. We take several

approaches. As written, Equation (1) includes district fixed effects interacted with calendar month,

θdm (e.g., an indicator for rural areas of the Rangpur administrative division of Bangladesh in Au-

gust), to flexibly control for local seasonal variation in both the weather and patterns of births and

deaths. This accommodates seasonality that differs across locales within a country. We investigate

sensitivity to coarser controls, including country × calendar quarter fixed effects, and to finer con-

trols, including village × month fixed effects. To further account for predictable, seasonal weather

at the local level, all regressions also control for the count of days in each bin in the PSU averaged

over the preceding 5 years (TempB, 5-year) for the same calendar month as the main exposure variable

(TempB).

4 Variation in Heat and Humidity

Figure 1 offers several views of the weather variation that identifies mortality effects below. Panel B

indicates the locations of the individual survey PSUs in our data, plotted as points. We add special

markers to PSUs above the 99th percentile of days in the top dry bulb bin (T ≥ 95◦) in gold. We

likewise indicate PSUs above the 99th percentile of days in the top wet bulb bin (Twb ≥ 85◦) in red.

Whereas the hottest dry bulb days tend to be located in sub-Saharan Africa, the hottest wet bulb days
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are more likely to occur in South Asia and Southeast Asia.

Panel C of Figure 1 further illustrates how wet and dry bulb temperatures often diverge. Begin-

ning from observations at the PSU-day level, we calculate the range of wet bulb temperatures that

corresponds to various dry bulb temperature bins. The figure shows that for a dry bulb bin that is

10◦F wide, variation in humidity can lead to ranges of wet bulb temperatures spanning 20◦, 30◦, or

even 40◦F. The variance in Twb conditional on T tends to increase at higher temperatures.

Panel C shows that the hottest wet bulb temperatures are not coincident with the highest dry

bulb temperatures. The nearly linear relationship between Twb and T breaks around 85◦F dry bulb, at

which point the sign of the correlation changes. We exploit the non-collinearity of dry and wet bulb

temperatures when examining which measure better fits the observed patterns of infant mortality.

5 Results

5.1 Birth Month Exposure and Infant Mortality

Figure 2 displays our main estimates of Equation (1) for both dry and wet bulb temperature. The

dependent variable is infant mortality, and weather exposure is measured during the month of birth.

We control for interactions of district indicators with month indicators, for rainfall in the exposure

month, and for typical weather in the infant’s birth month in the infant’s village over the five years

that precede the birth. The regression thus reveals how, conditional on usual weather and place-

specific seasonality of births, the temperature profile experienced during the first month of life im-

pacts infant survival.

The plots show a U-shape that is characteristic of temperature-mortality studies: Mortality de-

creases moving left to right from colder to warmer temperatures, then bottoms out in the mild tem-

perature range (60-70◦F), and finally rises sharply at very high temperatures. Due to the scaling of

the dependent variable, effects are per 1,000 births. Therefore, a coefficient of 0.7 for Twb ≥ 85◦ (right-

most point in bottom panel) implies that exposure to one day of mean wet bulb temperature above

85◦F in place of a 60-70◦F day increases deaths by 0.7 infants per thousand births.

Estimates corresponding to Figure 2, along with additional regression specifications, are reported

in Table 1. Although we include as regressors all of the same degree-day bins shown in the figure,

in the table we report coefficients for only the coldest and hottest bins. Across the columns, we
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try various approaches to controlling for local seasonality: In columns 1 and 5, country indicators

interacted with calendar quarter indicators; in columns 2 and 6, country indicators interacted with

month indicators and additional fixed effects for each district; in columns 3 and 7, these district

indicators interacted with month indicators, as in Figure 2.

To examine robustness to very fine geography × season controls, we add village × month fixed

effects in columns 4 and 8. Here we face a bias-precision tradeoff as this involves identifying about

500,000 village × month fixed effects. In practice, the addition of these in column 8 increases standard

errors but does not impact point estimates relative to column 7, which we treat as the preferred

specification. We add household and individual-level covariates in column 9.3 Consistent with the

assumption that conditional on controls for typical local weather, realized weather is as good as

random, the inclusion of household controls has essentially no impact on parameter estimates. We

show in Appendix A.2 that our estimates are similar when splitting the sample to either focus on or

to drop South Asia, where extreme heat and humidity most often occur together.

It is clear from Table 1 that the estimates that are most robust to alternative control sets are the

coefficients on Twb ≥ 85◦. The effect of temperatures < 30◦ are also relatively stable. The stabil-

ity of the cold temperature effects holds for both the wet and dry bulb measures, which are more

strongly correlated at low temperatures than at high temperatures (see Figure 1C). In contrast, the

estimated impact of experiencing a day in the T ≥ 95◦ dry bulb bin is imprecisely estimated and

varies significantly in magnitude across the columns. Indeed, we show in Appendix A.3 that the wet

bulb specifications are much more robust to further reasonable perturbations on the controls for local

seasonality and the choice of bin cutoffs.

In columns 10 through 12, we simultaneously include wet and dry bulb variables in the same

regressions. Coefficients can be separately estimated because a day with T ≥ 95◦ could correspond to

any of several wet bulb bins. In these columns, estimates for Twb ≥ 85◦ remain essentially unchanged

while estimates for T ≥ 95◦ move closer to zero.

An alternative approach to parameterizing the impact of humidity would be to interact dry bulb

temperatures with measures of absolute or relative humidity. Interestingly, we find that various sim-

ple forms of such interactions yield estimates that are small and never statistically significant.4 Given

3Household covariates include the child’s sex and whether the mother is literate as well as indicators for birth order,
sibship size, household asset wealth quintiles, and household electrification.

4See Appendix A.4.
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that the broader scientific literature (e.g., Im, Pal and Eltahir, 2017) anticipates non-linear impacts

of heat-humidity combinations on human health, this is sensible. The finding is also is consistent

with Barreca (2012), which finds null effects for these types of linear interactions in the context of US

mortality.

The sum of this evidence suggests that the functional form of Twb—which is intrinsically linked

to the physics of evaporation—may better parameterize the underlying process linking heat and

humidity to deaths, at least with respect to infant mortality in our developing country sample. This

finding fits with the theoretical literature that treats the upper range of survival temperatures as

being best described by wet bulb temperature (Sherwood and Huber, 2010), though our paper is the

first to our knowledge to provide econometric estimates of the effects of wet bulb temperatures on

infant deaths. An open question is whether humidity-indexing is as important for adults and is as

important in the less hot, less humid regions of the world (where richer countries are predominately

located).

A special feature of our data is that at the person level, we observe household characteristics like

wealth and mother’s literacy, which are potentially important for child health outcomes (Thomas,

Strauss and Henriques, 1991) and may interact with weather exposure to affect mortality. However,

in practice we cannot rule in or out economically meaningful heterogeneity by individual or house-

hold characteristics.5 One exception (see Table A2) is that household electrification is correlated with

smaller impacts of cold, but not hot, days. The limit to statistical power here is the tradeoff made in

using sample survey data to measure effects in populations for which effects would be otherwise un-

measurable. As Setel et al. (2007) explains, “Most people in Africa and Asia are born and die without

leaving a trace in any legal record or official statistic.”

5.2 Effects in Context

The qualitative pattern in Figure 2 resembles results from the prior literature estimated in US and

European data and adult populations, but the scale is importantly different. Many such studies (e.g.,

Deschênes and Greenstone, 2011; Heutel, Miller and Molitor, 2017) find that exposure to a day in the

highest temperature bin increases all-age mortality on the order of 0.01 deaths per 1,000 population.

Days with the highest humidity-indexed mean temperatures in our setting cause about 0.7 infant

5See Appendix A.2 for results showing these null interactions.
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deaths per thousand infants born.

Our study differs from most of the prior econometric literature in its geographic focus (the poor-

est countries, where mortality rates are highest) and in its age focus (infants, whose mortality rates

are higher than adults). Both differences make the larger effects we document plausible. Pregnant

mothers and babies in the developing world are more likely than in richer populations to be al-

ready physically weakened due to interactions among poor nutrition, infectious disease, and poverty

(Foster, 1994). And neonates are especially sensitive to environmental conditions due to their still-

developing thermoregulation systems.

For reference, in Table A1 we generate infant mortality rates by country in our sample. In several

countries, these rates exceed 100 deaths per 1,000 births. Mean infant mortality in our overall DHS

sample is an order of magnitude larger (77 deaths per thousand infants) than all-age mortality in

the US and Europe today (8 to 10 deaths per thousand population). Table A1 also shows that these

(survey-derived) infant mortality rates tend to be highest in countries with the weakest capacity to

generate demographic data (assessed by Mathers et al., 2005). This underscores the possibility that

mortality processes may be significantly different between places with and without functioning vital

registration systems.

Populations in poor countries are also more exposed to outdoor temperatures: In our sample,

which covers births occurring in the 1980s through 2010, a negligible minority of households would

have had access to climate-controlled indoor environments, which have been shown to mitigate

weather’s impacts on fetuses and infants in the US (Isen, Rossin-Slater and Walker, 2017).6 Our

estimates are closest in magnitude to estimates from the historical US, derived from a period prior to

the introduction of air conditioning. In a sample spanning 1931 to 1959, Barreca et al. (2016) estimates

that the impact of a > 90◦ day on all-age mortality is about 0.20 deaths per 1,000 population.7

5.3 Timing

An important issue in the context of weather-related deaths is “harvesting,” or hastening deaths that

would have otherwise occurred within a few days or months. Deschênes and Moretti (2009) finds

that increases in mortality following days of very high temperatures in the US are primarily driven

6Questions regarding AC were not asked by the DHS precisely because they are irrelevant to these populations.
7Our dry bulb estimates in Table 1 column 3 for T ≥ 95◦ are similar: 0.24. However, as discussed above these estimates

are noisy. We cannot rule in or out effects of dry bulb temperature of the magnitudes that have been documented in studies
using vital registries.

12



by this type of near-term displacement. In contrast, Heutel, Miller and Molitor (2017) does not find

evidence of such displacement in its US estimates. Both studies examine displacement up to one

month. We examine potential displacement up to two years in Figure 3.

We find that the weather-induced mortality in our setting is not claiming sick babies who would

have succumbed in their first two years regardless of having experienced the weather. In Figure 3

we hold the month of exposure fixed at the birth month (month zero), and measure survival through

age two in one-month increments. Harvesting here would imply a declining effect size moving right

along the horizontal axis, as an initial increase in mortality during the month of exposure would be

(partially) offset by a later decrease in mortality, generating a smaller net effect for mortality mea-

sured in later months. In contrast to the pattern implied by harvesting, the effects of Twb ≥ 85◦ are

stable over the two year period. For Twb < 30◦, the effect grows as mortality is measured later, indi-

cating that some of the mortality occurs in the future rather than occurring contemporaneously with

the month of exposure. The finding that the effects of cold, in particular, are stronger when allowing

a longer lag is consistent with Heutel, Miller and Molitor (2017), which studies effects among the US

elderly.

So far, we have focused on the impacts of the weather that occurs during each infant’s birth

month. In Figure 4, we examine impacts of weather that occurs outside of the birth month. Here

we regress infant mortality (first 12 months) on the temperature profile experienced during various

periods. The exposure period varies along the horizontal axes, organized as trimesters (3-month

periods). Towards the left, the exposure variables are calculated as the mother’s exposure prior to

birth. Toward the right, exposure is calculated as the child’s own exposure during various periods

post-birth. Each point represents a separate regression. The central point in each panel corresponds

to the estimates in Table 1, column 7.

For very cold days (Panel A), the strongest effects correspond to birth month exposure. Exposure

in the prenatal and post-neonatal periods is associated with mortality effects that are each positive

and on the margin of statistical significance. The only estimate in the panel for which this does not

hold is the leftmost point. This point corresponds to the 3-month period that would precede concep-

tion for a full-term birth. Cold days thus appear important throughout the prenatal and postnatal

periods.

The pattern for very hot and humid days (Panel B) is simpler: The only clear effects occur when
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the exposure takes place in the month of birth. There is evidence from North America and Europe in

the economics (Barreca, 2018) and epidemiology (Kuehn and McCormick, 2017) literatures that hot

days cause premature births. A possibility here is that high temperatures cause decreased gestational

length, in turn increasing the risk of neonatal death. If this were the case, the total effect of hot and

humid days on IMR would be correctly estimated in our regressions, but the mechanism would

include causing a change in birth month. (A reliable measure of gestational length is not a part of

mothers’ self reporting of their birth histories.)

An implication of the apparently contemporaneous timing of hot weather exposure and death in

Figure 3B is that it appears most consistent with a direct, biological channel rather than a more com-

plex income feedback mechanism. Exposure and death occurring in the same month would be more

difficult to rationalize through, for example, a weather-induced crop failure feeding back into family

income at the time of harvest and sale. Although such a channel is known to be important for other

outcomes—e.g., adult mortality in Burgess et al. (2017), and economic wellbeing more generally, as

reviewed in Dell, Jones and Olken (2014)—the timing here suggests a more direct biological channel

for this outcome (Hey and Katz, 1969).

6 Conclusion

We shed important new light on the relationship between temperature and health in the developing

world, overcoming the lack of vital registry data by relying on birth history surveys from 53 countries.

Our evidence of large effects of heat and humidity on infant mortality highlights several important

avenues for future research. First, the apparent importance of humidity-indexing suggests the need

for further analysis of the wet bulb parameterization in the economics literature, especially where

there is statistical power to identify the best-fit functional form of heat-humidity interactions. Second,

our findings cohere with concerns in the climate literature that estimates from rich countries could

significantly understate the mortality vulnerability of poor populations. Again, the availability of

data is a key constraint. For example, whereas Deschênes, Greenstone and Guryan (2009) shows

birth weight effects of extreme weather in the US, no estimates are available from poor populations,

where weighing babies at birth is rare (Strauss and Thomas, 1996). Other health and human capital

outcomes (e.g., test scores in Zivin et al., 2018) should be explored in developing countries wherever

data exists or can be generated by researchers. Finally, assessments of the social costs of climate
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change should incorporate the high social value of death that occurs in early life, as well as a refined

understanding of the geographic distribution of damages across the hot versus the humid regions of

the world.
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Figure 1: Sample and Summary Statistics

(A) Sample: 53 developing countries

(B) Spatial incidence of hot days and high wet bulb (humidity-indexed temperature) days

(C) Daily means of wet bulb versus dry bulb temperatures
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Note: Panel A displays the countries in our sample. Panel B plots the locations of each survey PSU in the sample.
PSUs are villages in rural places and blocks in urban places. Gold markers indicate PSUs above the 99th percentile of
counts of days with mean dry bulb temperatures above 95◦F. Red markers indicate PSUs above the 99th percentile
of counts of days of mean wet bulb temperatures above 85◦F. Panel C displays the median, middle 90%, and overall
range of mean daily wet bulb temperatures associated with various mean daily dry bulb temperatures. Panel D plots
the count of days in each wet bulb temperature bin in our sample. In panels B and D, statistics are calculated over
the birth months of infants in our sample. In panel C, daily means are taken for each day in the 10 years preceding
sample births for each survey PSU in the sample.
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Figure 2: Birth Month Exposure and Infant Mortality

(A) IMR and dry bulb temperature
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(B) IMR and wet bulb temperature
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Note: Figure plots the estimated infant mortality effects of exposure to days in various temperature ranges. The
dependent variable is death in the first year of life (infant mortality), scaled by 1,000 so that the vertical axes indicate
effects in terms of deaths per thousand births. The regressors of interest measure the counts of days in various tem-
perature ranges in the infant’s PSU (village/urban block) during the infant’s month of birth. The plotted coefficients
express the marginal effect of exchanging a day in the specified temperature range with a day in the excluded range
(60-70◦F). Panel A displays impacts of dry bulb temperatures. Panel B displays impacts of wet bulb temperatures
in a separate regression. Specifications here control for “district” indicators interacted with month indicators. See
Table 1 for further description the controls common to all specifications, which include precipitation in the birth
month (linear in centimeters), year × month indicators for the birth month (e.g., July 2003), and the typical seasonal
weather in the preceding five years in the PSU. Observations are children (live births). Standard errors clustered by
PSU. Point estimates and 95% confidence intervals shown.
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Table 1: Effects of Extreme Wet and Dry Bulb Temperatures on Infant Mortality

Local	Seasonlity	Controls																													
(Fixed	Effects):

Country	
✕	

Quarter

Country		
✕				

Month

District				
✕					

Month

Village					
✕					

Month

Country	
✕	

Quarter

Country		
✕				

Month

District			
✕					

Month

Village					
✕					

Month

Village					
✕					

Month

Country		
✕				

Month

District			
✕					

Month

Village					
✕					

Month
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dry	Bulb

#	Days	with	T	<	30	 0.44 0.68+ 0.88* 0.62 -0.40 -0.48 0.07
(0.40) (0.41) (0.42) (0.53) (1.09) (1.10) (1.42)

#	Days	with	T	≥	95 0.40 0.31 0.26 0.05 0.25 0.19 -0.03
(0.29) (0.29) (0.29) (0.33) (0.29) (0.30) (0.34)

Wet	bulb

#	Days	with	Twb	<	30	 0.48 0.66+ 0.81* 0.54 0.50 1.02 1.27 0.49
(0.34) (0.35) (0.36) (0.46) (0.46) (0.92) (0.93) (1.21)

#	Days	with	Twb	≥	85	 0.67* 0.68* 0.68* 0.71+ 0.71+ 0.70* 0.67+ 0.80*
(0.33) (0.33) (0.34) (0.39) (0.38) (0.35) (0.35) (0.40)

Degree-day	bins	included
Prior	5	year	weather	in	birth	month	in	village
Year	indicators	✕	month	indicators X X X X X X X X X X X X
Local	seasonality	FEs
Country	✕	quarter X X
Country	✕	month	and	district X X X
District	✕	month X X X
Village	✕	month X X X X

Household	covariates X
Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898

Wet	&	Dry	Bulb

All	dry	bulb	bins
All	dry	bulb	bins All	wet	bulb	bins

All	wet	bulb	bins
All	wet	and	dry	bulb	bins
All	wet	and	dry	bulb	bins

Dry	Bulb Wet	Bulb

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for death in the first year multiplied by 1,000.
The regressors of interest measure the counts of days in various temperature ranges in the infant’s PSU (village/urban block) during the infant’s month of birth.
Coefficients express the marginal effect of exchanging a day in the specified temperature range with a day in the excluded range (60-70◦F). All of the same bins shown
in Figure 2 are included as regressors here, though the table reports coefficients for only the coldest and hottest bins. All specifications control for precipitation in
the birth month (linear in centimeters), for year × month indicators for the birth month (e.g., July 2003), and for the typical seasonal weather in the preceding five
years. The latter is constructed as, for each bin, the count of days in the PSU in the same calendar month as the birth month, averaged over the five years preceding
the birth. Household covariates include the child’s sex and whether the mother is literate as well as birth order (indicators for each order, capped at 6), sibship size
(indicators for each size, capped at 6), indicators for asset wealth quintiles, and an indicator for household electrification. Observations are children (live births).
To create a consistent sample across specifications, we restrict all regressions to observations that are not dropped by the inclusion of the most granular set of fixed
effects. Standard errors clustered by PSU. + p < 0.1, * p < 0.05.
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Figure 3: Mortality Measured at Various Ages for Temperature Exposure Experienced in Birth
Month

(A) Exposure month (for Twb < 30◦) held fixed at month of birth; survival to
month x varying
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(B) Exposure month (for Twb ≥ 85◦) held fixed at month of birth; survival to
month x varying
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Note: Figure plots the estimated infant mortality effect of exposure to one day of Twb < 30◦ (Panel A) or one day
of Twb ≥ 85◦ (Panel B), relative to the impact of exposure to one day in the excluded bin, [60,70). Each point within
each panel is estimated in a separate regression in which the dependent variable is defined as survival up to age
x, with x in months indicated along the horizontal axes. The month of weather exposure is held fixed at the birth
month (month zero). Survival through month 23 is survival to age 2 years. The control specification matches column
7 in Table 1. Observations are children (live births). Standard errors clustered by PSU. Point estimates and 95%
confidence intervals shown.
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Figure 4: Effects of in Utero and Postnatal Temperature Exposure

(A) Exposure month (for Twb < 30◦) varying;
survival measured at 1 year
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(B) Exposure month (for Twb ≥ 85◦) varying;
survival measured at 1 year
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Note: Figure plots the estimated infant mortality effect of exposure to one day of Twb < 30◦ (Panel A) or one day of
Twb ≥ 85◦ (Panel B), relative to the impact of exposure to one day in the excluded bin, [60,70). The dependent variable
is mortality by age one year (end of month 11) scaled per 1,000 births. Each point represents a separate regression in
which the weather exposure regressors are varied. Toward the left within each panel, exposure is calculated as the
mother’s exposure prior to birth. Toward the right, exposure is calculated as the child’s own exposure during various
periods post-birth. Except for the birth month, exposure periods are grouped into 3-month periods (trimesters). The
control specification matches column 7 in Table 1. Observations are children (live births). Standard errors clustered
by PSU. Point estimates and 95% confidence intervals shown.
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Appendix

APPENDIX

A.1 Data Appendix: Princeton Meteorological Forcing Dataset

We use the Princeton Meteorological Forcing Dataset for weather variables. The Princeton dataset
combines reanalysis data from the National Centers for Environmental Prediction-National Center
for Atmospheric Research (NCEP-NCAR) with a collection of observation-based data. The observa-
tional data come from the Climactic Research Unit (CRU), which is a gridded historical dataset using
weather station observations. Additional observational data come from the Global Precipitation Cli-
matology Project (GPCP), which uses microwave and infrared measurements, outgoing longwave
radiation retrievals from multiple satellite instruments, and rain gauge observations.

Reanalysis datasets combine observational data with physics-based models to improve the data
in observationally sparse regions. The NCEP-NCAR dataset uses rawisonde (balloon) data from the
NCEP-Global Telecommunications System (GTS) data as the main observational data source, along
with marine data, aircraft data, and satellite sounder data sources, among others. In the NCEP-NCAR
data, upper air temperature and wind are most strongly influenced by the observational data, while
humidity and surface temperature rely more strongly on the model. Precipitation is entirely derived
from the model. Biases in the reanalysis precipitation and near-surface meteorology are corrected
in the Princeton data using observational data on precipitation, temperature, and radiation. We use
Princeton data on temperature, specific humidity, pressure and precipitation at a 0.25 degrees latit-
tude x 0.25 degrees longitude, 3-hourly resolution, which are available from 1948-2010. To produce
our final weather variables, we make the following calculations:

1. From 3-hourly temperature, specific humidity, and pressure, we calculate relative humidity
using the following equation1

rh = 0.263 × p × sh ×
[

exp
(

17.67(t − 273.16)
t − 29.65

)]−1

(2)

where rh is relative humidity (%), p is pressure (Pa), sh is specific humidity, and t is temperature
in Kelvin.

2. From 3-hourly temperature and relative humidity, we calculate wet bulb temperature using the
Stull Calculation, which is standard for sea level pressure:

wb = t ×
(

atan[(0.151977 × (rh + 8.313658)
1
2 ]
)
+ atan(t + rh)− atan(rh − 1.676331)+

0.00391838(rh)
3
2 × atan(0.023101rh)− 4.686035 (3)

Here, temperature is in degrees Celsius and rh is again relative humidity.

3. We create daily means of each weather variable across the 8 observations. For the precipitation
data, we create a daily total.

1This equation can be derived as follows: relative humidity is defined by the World Meteorological Organization as
the ratio of the mixing ratio to the saturation mixing ratio ( w

ws
), where ws = 0.622 es

p−es
, where p is pressure and es is the

saturation vapor pressure. This can be closely approximated by 0.622 es
p . Specific humidity can be used as an approximation

for w (http://glossary.ametsoc.org/wiki/Mixing_ratio). Substituting a commonly-used approximation for the Clausius-
Clapeyron equation for es (http://glossary.ametsoc.org/wiki/Clausius-clapeyron_equation) results in the calculation we
use.
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4. From the daily means, we collapse to the monthly level, generating counts of days in various
temperature range bins, as well as monthly precipitation, monthly mean relative humidity, and
other variables.

5. For each DHS PSU/month, we create a weighted average of each weather variable for the four
surrounding 0.25-degree grid points. The average is weighted by inverse distance from the
PSU.

To merge weather data with the DHS data, we divide the world into regions and generate
weather variables beginning 10 years prior to the earliest country survey in each region. The re-
sulting coverage of survey years and birth years linked to weather data for each country is listed in
Table A1. To account for predictable, seasonal weather at the local level, our regressions control for
the count of days in each bin in the PSU averaged over the preceding 5 years (TempB, 5-year) for the
same calendar month as the main exposure variable (TempB), which is often calculated for the birth
month. For 12% of observations, the weather data do not extend far enough backward to generate a
full five-year average. 5.5% of observations rely on a lookback of one or two years to generate this
variable.

A.2 Heterogeneity in Effects

In Table A2 we examine heterogeneity in effects across different world regions and heterogeneity in
effects by household-level characteristics within regions. Column 1 repeats our main estimate for
reference (Table 1 column 7). In columns 2 through 5, the regression is estimated over subsamples
defined by world regions. Because the combination of high heat with high humidity is most common
in our sample in South Asia (in our data Bangladesh, Nepal and Pakistan), we show results separately
for South Asia alone and for the world other than South Asia. We repeat the exercise for Southeast
Asia, another region where high heat and high humidity most often combine. At face value the
point estimates suggest the impacts of hot, humid days are larger in South Asia and Southeast Asia,
where these days are more common. However, the various splits do not yield statistically significant
differences, consistent with our treatment of the effects as homogeneous.

In columns 6 through 9, we examine whether individual- and household-level characteristics
(and the unobserved endowments and behaviors of which these are correlates) appear to protect
against the effects of extreme weather. The variables of interest are indicators for: mother being liter-
ate, household asset wealth in the highest quintile, electricity present in the household, and whether
the household is in a rural area. To preserve sample size, missing covariate data are coded as zero
for the high assets indicator and as zero for the electricity present in the household indicator. These
variables are interacted with each temperature bin, though only the interaction coefficients for the
highest and lowest temperature bins are reported. Each of the main effects shows an economically
large and statistically significant effect on infant mortality in the expected direction, indicating that
these variables are informative of endowments and behaviors that materially affect infant survival.8

In contrast, in the interaction terms, there is no clear pattern in which greater endowments are as-
sociated with smaller effect sizes than the main effects presented in Table 1, though the confidence
intervals are wide and could accommodate economically meaningful heterogeneity. One exception
is that household electrification appears protective against cold but not hot days. The limited sam-
ple size of our survey data cannot in practice be used to rule in or out economically meaningful
heterogeneity by potentially relevant individual or household characteristics.

8The main effect of rural is subsumed in the “district” fixed effects.
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Our paper relies on high-dimensional fixed effects to control for local seasonality in our pooled
global sample. Although high-dimensional fixed effects are a core tool in the applied microecono-
metric literature that identifies environmental effects off of variation in the weather (Dell, Jones and
Olken, 2014), a potential concern with computing a pooled global estimate is that, if the effects of
weather are in fact heterogeneous across places, then the regression would be misspecified for esti-
mating the developing world population-weighted average. This is because regression, in the case
of parameter heterogeneity, does not recover the simple average of the observation-specific potential
treatment effects in the population or the sample. Instead, as Angrist and Pischke (2009) explain,
“regression puts the most weight on covariate cells where the conditional variance of treatment sta-
tus is large.” In other words, regression implicitly up-weights observations where the independent
variable of interest has a large variance conditional on the other independent variables (Angrist and
Krueger, 1999). A more recent literature has focused on the implications of this general fact about
regression for the special case of fixed effects (Wooldridge, 2005). As Gibbons, Serrato and Urbancic
(2018) prove, “in the presence of heterogeneous treatment effects, the [fixed effects coefficient] gives
a weighted average of these effects. The weights depend not only on the frequency of the groups, but
also upon sample variances within the groups.”

With that in mind, we directly investigate the conditional variance in the regressors of interest,
net of the fixed effects. Table A3 shows the weights implicit in our fixed effects regressions by global
region. Columns 3 and 4 of the table are computed by first regressing count of days in the Twb < 30◦

bin (column 3) or Twb ≥ 85◦ bin (column 4) on all other regressors from the main infant mortality
regression. Residuals from these regressions are then calculated and squared. The table shows that
the conditional variance of high wet bulb days is much greater in Asia, especially South Asia, than in
Africa. This is precisely because high wet bulb days are less common in Africa (see Figure 1.)

This fact offers another motivation for Table A2, which estimates parameters separately for only
South Asia, for the sample excluding South Asia, for only Southeast Asia, and for the sample ex-
cluding Southeast Asia. Although the precision of the estimates is reduced in these split-sample re-
gressions, the point estimates reflect comparably large effect sizes within each subsample for which
effects are estimable. Of course, there is no method that could identify the effects of high wet bulb
days other than than by doing so for the places where such temperatures have been observed, but
it is nonetheless useful to understand the geographic pattern of the underlying variation and to see
that results are similar when disaggregating.

A.3 Robustness

In this section, we report additional specifications to allow the reader to assess the robustness of
various estimates. Table A4 presents wet and dry bulb estimates for a wider combination of fixed
effects, controls for temperatures in the 5-year window preceding the birth, and household-level
covariates. Columns 1 to 4 do not control for the count of days in each bin in the PSU averaged over
the preceding 5 years (TempB, 5-year). Columns 5 to 8 add these controls. Columns 9 to 12 additionally
control for the household covariates described in Table 1. The most stable coefficient estimates are
for the effect of day with wet bulb temperatures in excess of 85◦ (Panel B). Point estimates for T ≥ 95
(Panel A) are more sensitive to the control set and never statistically significant at p < .05. The
estimates for the coldest bin (< 30◦, both panels) are less sensitive in columns 4 through 12 and
similar in the wet and dry bulb specifications, though often not statistically significant.

In Table A5 we show that the lack of statistical significance for hot dry bulb days is not due to
the choice of drawing the cutoff temperature for the highest bin at T ≥ 95◦. For the births in our
estimation sample, the average count of days during the birth month with dry bulb temperatures
exceeding 90◦, 95◦, and 97.5◦ are 0.85, 0.13, and 0.03, respectively. By comparison the average count
of days in the birth month with with wet bulb temperatures exceeding 85◦ is 0.04. Across the columns
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in Table A5, the cutoffs for the highest bin are set at T ≥ 90◦, T ≥ 95◦, and T ≥ 97.5◦. In the alternative
binning, none of the high dry bulb bins yield statistically significant coefficients, though confidence
intervals remain large. We conclude that this analysis is not powered to detect moderately-sized
effects of hot dry bulb days.

A.4 Alternative Heat-Humidity Interactions

Wet bulb temperature is a humidity-indexed measure of heat with a functional form that tracks the
thermodynamics of evaporation. We find that simpler forms of interactions between dry bulb tem-
perature bins and humidity are small and never statistically significant. In Table A6 we explore
alternative parameterization of the heat-humidity interaction. Across the columns, the functional
form of the heat-humidity interaction is varied: In columns 1 and 2, days falling in the highest bin
range (T ≥ 95◦) are split according to whether each day’s relative humidity was above the median
for days above 95◦. In columns 3 and 4, the count of days for which T ≥ 95◦ is interacted with the
mean relative humidity in the month. In columns 5 and 6, the count of days for which T ≥ 95◦ is
interacted with the mean specific humidity in the month. In the table, the main effects of humidity
are statistically significant and negative, which is consistent with the Barreca (2012) finding of greater
mortality on very low humidity (but possibly very cold) days. Interactions between dry bulb temper-
ature bins and humidity are small and never statistically significant, suggesting that wet bulb may
better parameterize humidity information in the temperature-mortality relationship.

Note that in general, high humidity cools the air, which is one reason why days that are both very
hot and very humid are rare. In our sample the average count of days in the birth month with wet
bulb temperatures exceeding 85◦ is 0.04. By comparison, the average count of days during the birth
month with dry bulb temperatures exceeding 90◦, 95◦, and 97.5◦ are 0.85, 0.13, and 0.03, respectively.

In columns 7 to 10, we add controls for specific and relative humidity to the main wet bulb
specifications. The addition of these controls increases point estimates and statistical significance of
the coefficients on Twb ≥ 85◦. However, the interpretation becomes more complex, as the marginal
effect of a day at, say, 100◦F and 60% relative humidity in place of a day in the excluded category
(60-70◦F wet bulb) would include both a humidity component and a Twb component. For example,
taking the estimates from column 8: (60%)×−0.15 + (1)× 0.81 = 0.72. The corresponding estimate
without humidity controls from Table 1 (column 7) was 0.68.
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Table A1: Sample: Nationally Representative Surveys Merged to Gridded Weather Data

(1) (2) (3) (4) (5)

Country
DHS	Survey	Rounds																																							
(Years	of	Interviews)

Birth	Years	
Matched	to	
Weather	Data

DHS-Derived	IMR	
in	Sample	(per	
1,000	births)

Quality	of	non-DHS	

Mortality	Registrationa

Albania 	2008,	2009 1996-2008 29 Low
Armenia 2010 1996-2009 23 Low
Bangladesh 	1999,	2000,	2004,	2007,	2011,	2014 1990-2010 69 (Incomplete)
Benin 	1996,	2001,	2011,	2012 1981-2010 69 (Incomplete)
Bolivia 2008 1991-2007 66 (Incomplete)
Burkina	Faso 	1992,	1993,	1998,	1999,	2003,	2010 1981-2009 94 (Incomplete)
Burundi 	2010,	2011 1981-2010 88 (Incomplete)
Cambodia 	2000,	2005,	2006,	2010,	2011,	2014 1991-2010 81 (Incomplete)
Cameroon 	1991,	2004,	2011 1981-2010 76 (Incomplete)
Central	African	Republic 	1994,	1995 1981-1994 102 (Incomplete)
Colombia 	2009,	2010 1991-2009 24 Medium
Comoros 2012 1981-2010 39 (Incomplete)
Congo,	Democratic	Republic 	2007,	2013,	2014 1981-2010 85 (Incomplete)
Cote	d'Ivoire 	1994,	1998,	1999,	2011,	2012 1981-2010 92 (Incomplete)
Dominican	Republic 	2007,	2013 1991-2010 34 (Incomplete)
Egypt 	1992,	1993,	1995,	1996,	2000,	2005,	2008 1983-2007 63 Low
Ethiopia 	2000,	2005,	2010,	2011 1981-2010 99 (Incomplete)
Gabon 2012 1981-2010 44 (Incomplete)
Ghana 	1993,	1994,	1998,	1999,	2003,	2008,	2014 1981-2010 68 (Incomplete)
Guinea 	1999,	2005,	2012 1981-2010 106 (Incomplete)
Guyana 2009 1991-2008 36 Medium
Haiti 	2000,	2005,	2006,	2012 1991-2010 74 (Incomplete)
Honduras 	2011,	2012 1991-2010 29 (Incomplete)
Indonesia 	2002,	2003 1991-2002 49 (Incomplete)
Jordan 	2002,	2007,	2012 1983-2010 26 (Incomplete)
Kenya 	2003,	2008,	2009,	2014 1981-2010 55 (Incomplete)
Kyrgyz	Republic 2012 1996-2010 32 Medium
Lesotho 	2004,	2005,	2009,	2010,	2014 1981-2010 74 (Incomplete)
Liberia 	2006,	2007,	2013 1981-2010 113 (Incomplete)
Madagascar 	1997,	2008,	2009 1981-2008 73 (Incomplete)
Malawi 	2000,	2004,	2005,	2010 1981-2009 98 (Incomplete)
Mali 	1995,	1996,	2001,	2006,	2012,	2013 1981-2010 117 (Incomplete)
Moldova 2005 1996-2004 24 (Incomplete)
Morocco 	2003,	2004 1983-2003 60 (Incomplete)
Mozambique 2011 1981-2010 88 (Incomplete)
Namibia 	2000,	2006,	2007,	2013 1981-2010 45 (Incomplete)
Nepal 	2001,	2006,	2011 1990-2010 74 (Incomplete)
Niger 	1992,	1998 1981-1997 129 (Incomplete)
Nigeria 	1990,	2003,	2008,	2013 1981-2010 93 (Incomplete)
Pakistan 	2006,	2007 1990-2006 76 (Incomplete)
Peru 2000 1991-1999 49 Low
Phillipines 	2003,	2008 1991-2007 31 Medium
Rwanda 2005 1981-2004 100 (Incomplete)
Senegal 	1992,	1993,	1997,	2005,	2010,	2011 1981-2010 72 (Incomplete)
Sierra	Leone 	2008,	2013 1981-2010 127 (Incomplete)
Swaziland 	2006,	2007 1981-2006 58 (Incomplete)
Tajikistan 2012 1996-2010 42 Low
Tanzania 	1999,	2009,	2010 1981-2009 82 (Incomplete)
Timor-Leste 	2009,	2010 1991-2009 71 (Incomplete)
Togo 	1998,	2013,	2014 1981-2010 74 (Incomplete)
Uganda 	2000,	2001,	2006,	2011 1981-2010 86 (Incomplete)
Zambia 	2007,	2013,	2014 1981-2010 73 (Incomplete)
Zimbabwe 	1999,	2005,	2006,	2010,	2011 1981-2010 47 (Incomplete)

Pooled	Sample	IMR 77
US	Crude	Death	Rate	(all	ages;	per	1,000	lives),	2016 8
EU	Crude	Death	Rate	(all	ages;	per	1,000	lives),	2016 10

Note: Table lists DHS surveys used in construction of the sample. Column 1 lists countries in the sample.
Column 2 lists the DHS survey round years. Column 3 indicates the birth years included in our sample matched
in time and place to weather variables. These years extend backwards from the survey date, as mothers are
reporting on their birth histories. Column 4 reports our DHS-based calculation of mean IMR in the sample, by
country. Column 5 describes the completeness and quality of national mortality registration data (from Mathers
et al., 2005) as a point of contrast. Data on the US and EU crude mortality rates come from the World Bank:
https://data.worldbank.org/indicator/SP.DYN.CDRT.IN.
a Source for column 5 data is Mathers et al. (2005). The label “incomplete” was applied by Mathers et al. (2005) if the
country did not supply registration data on cause-of-death with at least 50% completeness or coverage as estimated
by WHO.
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Table A2: Heterogeneity by World Region and Household Characteristics

World,	
Main	

Estimate

South	Asia
World	
Minus	

South	Asia

Southeast	
Asia

World	
Minus	

Southeast	
Asia

Mother	
Literate

HH	Asset	
Wealth

HH	
Electricty Rural

Mean	days	of	85	≤	Twb	in	birth	month: 0.04 0.45 0.01 0.13 0.04 0.04 0.04 0.04 0.04
(1) (2) (3) (4) (5) (6) (7) (8) (9)

#	Days	with	Twb	<	30	 0.81* 0.45 0.70+ -- 0.80* 0.96* 0.77* 1.82** 0.47
(0.36) (1.01) (0.38) (0.36) (0.40) (0.37) (0.57) (0.58)

#	Days	with	Twb	≥	85	 0.68* 1.11* 1.03 1.12 0.54 0.70+ 0.72* 0.43 0.19
(0.34) (0.56) (0.64) (0.80) (0.39) (0.42) (0.36) (0.42) (0.56)

Mother	Literate -15.54**
(1.02)

Mother	Literate	✕	#	Days	with	Twb	<	30 -0.53
(0.55)

Mother	Literate	✕	#	Days	with	Twb	≥	85	 -0.09
(0.51)

High	Asset	Wealth -19.92**
(1.33)

High	Asset	Wealth	✕	#	Days	with	Twb	<	30 0.24
(0.41)

	High	Asset	Wealth	✕	#	Days	with	Twb	≥	85	 -0.25
(0.59)

Electricity	in	HH -17.69**
(1.16)

Electricity	in	HH	✕	#	Days	with	Twb	<	30 -1.28*
(0.53)

Electricity	in	HH	✕	#	Days	with	Twb	≥	85	 0.56
(0.52)

Rural	✕	#	Days	with	Twb	<	30 0.50
(0.69)

Rural	✕	#	Days	with	Twb	≥	85	 0.66
(0.65)

Degree-day	bins	included
Prior	5	year	weather	in	birth	month	in	village
Year	indicators	✕	month	indicators X X X X X X X X X
Local	seasonality	FEs
Country	✕	quarter
Country	✕	month	and	district
District	✕	month X X X X X X X X X
Village	✕	month

Observations	(live	births) 2,865,898 196,782 2,669,116 183,378 2,682,520 2,865,898 2,865,898 2,865,898 2,865,898

Interactions	with	HH	Characteristics

All	wet	bulb	bins
All	wet	bulb	bins

All	wet	bulb	bins
All	wet	bulb	bins

By	World	Region

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for
death in the first year multiplied by 1,000. In columns 2 through 5, the regression is estimated over subsamples defined by
world regions. In columns 6 through 9, the indicated household-level covariates are interacted with each temperature bin,
though only the coefficients for the highest and lowest bins are reported. These interaction variables are indicators for:
mother being literate, household asset wealth in the highest quintile, electricity present in the household, and rural. The
control set for all regressions matches the specification in column 7 of Table 1. See Table 1 notes for additional information
on control variables. Observations are children (live births). Standard errors clustered by PSU. + p < 0.1, * p < 0.05, **
p < 0.01.
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Table A3: Residual Variance that Identifies High-Dimensional FE Estimates

Observations
Fraction	of	
Observations

Fraction	of		
Squared	

Residuals	for	
Twb<30

Fraction	of	
Squared	

Residuals	for	
Twb≥85

(1) (2) (3) (4)
sub-Saharan	Africa 1,946,595 0.68 0.13 0.07
Southeast	Asia 183,378 0.06 0.00 0.33
Europe	and	Central	Asia 27,754 0.01 0.53 0.00
Latin	America	and	Caribbean 228,189 0.08 0.06 0.01
Middle	East	and	North	Africa 283,200 0.10 0.06 0.00
South	Asia 196,782 0.07 0.22 0.58

Total 2,865,898 1.00 1.00 1.00

Note: Table tabulates how various regions contribute to the count of observations and how observations across regions are
implicitly weighted in the fixed effects regressions in Table 1. See Appendix Section A.2 for a full discussion of the issue
of implicit weights. To create column 3, residuals are calculated by regressing count of days in the Twb < 30◦ bin on all
regressors (other than # Days with Twb < 30◦, which here is the dependent variable) from the specification in column 7
of Table 1. Residuals from these regressions are calculated and squared. Column 3 tallies the sum of squared residuals
for the Twb < 30◦ regression that arise from each region and divides by the total sum of squared residuals. An analogous
calculation for Twb ≥ 85◦ is made for column 4. South Asia in our sample includes Bangladesh, Nepal, and Pakistan.
Southeast Asia includes Indonesia, Cambodia, Philippines, and Timor-Leste. North Africa includes Egypt, Jordan, and
Morocco.
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Table A4: Robustness to Alternative Controls for Local Seasonality and Household Covariates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel	A:	Dry	Bulb

#	Days	with	T	<	30	 0.95** 1.46** 1.93** 0.57 0.44 0.68+ 0.88* 0.62 0.41 0.54 0.71+ 0.62
(0.26) (0.36) (0.42) (0.52) (0.40) (0.41) (0.42) (0.53) (0.40) (0.41) (0.42) (0.52)

#	Days	with	T	≥	95 0.38+ 0.08 -0.04 0.06 0.4 0.31 0.26 0.05 0.36 0.28 0.22 0.08
(0.19) (0.20) (0.25) (0.33) (0.29) (0.29) (0.29) (0.33) (0.29) (0.29) (0.29) (0.33)

Panel	B:	Wet	bulb

#	Days	with	Twb	<	30	 1.12** 1.27** 1.63** 0.52 0.48 0.66+ 0.81* 0.54 0.46 0.54 0.67+ 0.5
(0.22) (0.29) (0.32) (0.45) (0.34) (0.35) (0.36) (0.46) (0.34) (0.35) (0.35) (0.46)

#	Days	with	Twb	≥	85	 0.35 0.59* 0.55+ 0.66+ 0.67* 0.68* 0.68* 0.71+ 0.67* 0.66* 0.65+ 0.71+
(0.28) (0.28) (0.31) (0.39) (0.33) (0.33) (0.34) (0.39) (0.33) (0.33) (0.33) (0.38)

Degree-day	bins	included
Prior	5	year	weather	in	birth	month	in	village X X X X X X X X
Year	indicators	✕	month	indicators X X X X X X X X X X X X
Local	seasonality	FEs
Country	✕	quarter X X X
Country	✕	month	and	district X X X
District	✕	month X X X
Village	✕	month X X X

Household	covariates X X X X
Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2865898 2,865,898

All	dry	bulb	(Panel	A)	or	wet	bulb	(Panel	B)	bins

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for death in the first year multiplied by
1,000. Within each column, Panels A and B report results from separate regressions with parallel control sets. See Table 1 notes for additional information
on control variables. Observations are children (live births). Standard errors clustered by PSU. + p < 0.1, * p < 0.05, ** p < 0.01.
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Table A5: Alternative Dry Bulb Temperature Binning

(1) (2) (3) (4) (5) (6)

#	Days	with	T	<	30	 0.68+ 0.88* 0.68+ 0.88* 0.68+ 0.88*
(0.41) (0.42) (0.41) (0.42) (0.41) (0.42)

#	Days	with	T	≥	95 0.31 0.26
(0.29) (0.29)

#	Days	with	T	≥	90 0.22 0.18
(0.15) (0.16)

#	Days	with	95	≤	T	<	97.5	 0.43 0.28
(0.37) (0.38)

#	Days	with	T	≥	97.5 0.08 0.22
(0.55) (0.59)

Year	indicators	✕	month	indicators X X X X X X
Local	seasonality	FEs
Country	✕	quarter
Country	✕	month	and	district X X X
District	✕	month X X X
Village	✕	month

Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator
for death in the first year multiplied by 1,000. Across the columns, the binning of dry bulb temperatures for the
hottest days is varied. Columns 1 and 2 repeat columns 2 and 3 from Table 1: < 30, [30,40), [40,50), [50,60), [60,70),
[70, 80), [80,85), [85,90), [90,95), and ≥ 95. Columns 3 and 4 use the dry bulb bins: < 30, [30,40), [40,50), [50,60),
[60,70), [70, 80), [80,85), [85,90), and ≥ 90. Columns 5 and 6 use the dry bulb bins: < 30, [30,40), [40,50), [50,60),
[60,70), [70, 80), [80,85), [85,90), [90,95), [95,97.5), and ≥ 97.5. In all cases, the controls for typical weather match the
Table 1 specification. See Table 1 notes for additional information on control variables. Observations are children
(live births). Standard errors clustered by PSU. + p < 0.1, * p < 0.05, ** p < 0.01.
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Table A6: Alternative Heat-Humidity Interactions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

#	Days	with	T	≥	95	 0.32 0.22 0.23 -0.14 0.17 -0.13
(0.37) (0.41) (0.56) (0.64) (0.59) (0.68)

#	Days	with	Twb	≥	85	 0.77* 0.81* 1.01** 1.13**
(0.34) (0.34) (0.35) (0.37)

#	Days	with	T	≥	95		✕	high	rel.	humidity	on	day 0.00 0.08
(0.48) (0.55)

Relative	humidity	in	month -0.07* -0.13** -0.11** -0.15**
(0.03) (0.04) (0.03) (0.04)

Rel.	humidity	in	month	✕	#	Days	with	T	≥	95		 0.00 0.01
(0.02) (0.02)

Specific	humidity	in	month -0.17 -0.37* -0.66** -0.92**
(0.12) (0.16) (0.24) (0.29)

Spec.	humidity	in	month	✕	#	Days	with	T	≥	95 0.02 0.05
(0.06) (0.07)

Degree-day	bins	included
Prior	5	year	weather	in	birth	month	in	village
Year	indicators	✕	month	indicators X X X X X X X X X X
Local	seasonality	FEs
Country	✕	quarter
Country	✕	month	and	district X X X X X
District	✕	month X X X X X
Village	✕	month

Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898

Dry	Bulb	✕	Humidity	Interactions Wet	Bulb	Effects	with	Humidity	Controls

All	dry	bulb	bins
All	dry	bulb	bins

All	wet	bulb	bins
All	wet	bulb	bins

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for death in the first year multiplied
by 1,000. Across the columns, the functional form of the heat-humidity interaction is varied. In columns 1 and 2, days falling in the highest bin range
(T ≥ 95◦) are split according to whether each day’s relative humidity was above the median for days above 95◦. In columns 3 and 4, the count of days
for which T ≥ 95◦ is interacted with the mean relative humidity (%) in the month. In columns 5 and 6, the count of days for which T ≥ 95◦ is interacted
with the mean specific humidity (grams water per grams air) in the month. In columns 7 to 10, controls for specific and relative humidity are added
to the main wet bulb specifications. See Table 1 notes for additional information on control variables. Observations are children (live births). Standard
errors clustered by PSU. + p < 0.1, * p < 0.05, ** p < 0.01.
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