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1 Introduction 

      Every day, billions of humans solve numerous mathematical and logical problems, ranging 

in difficulty from basic counting to complex problem-solving. Individual health and well-being 

depend on these processes in myriad ways. Good nutrition requires careful tracking of caloric and 

nutrient intake. Workers must weigh the pros and cons of micro-decisions over the course of their 

day and even during their commute to the office. In ways large and small, risk calculations drive 

nearly all aspects of decision making. Thus, any threats to cognitive performance may have 

sizeable impacts on the health and well-being of human-based systems. Self-evidently, the impact 

of external factors on cognitive performance matters more when the decisions being made are 

important and have potentially life changing implications. 

      One such threat to cognition is temperature. Large segments of the population are regularly 

exposed to temporarily or persistently elevated temperatures. The brain’s chemistry, electrical 

properties and function are all temperature sensitive (Bowler and Tirri, 1974; Schiff and Somjen, 

1985; Deboer, 1998; Yablonskiy et al., 2000; Hocking et al., 2001). Moreover, exposure to heat 

has been shown to diminish attention, memory, information retention and processing, and the 

performance of psycho-perceptual tasks (Hyde et al., 1997; Hocking et al., 2001; Vasmatzidis et 

al., 2002). The impacts of thermal stress on working memory performance are especially relevant 

as cognitively challenging tasks rely heavily on the working memory for multi-step processing.     

      In this paper, we provide the first nation-wide estimates on temperature effects on high-

stakes cognitive performance in a developing country using data from the National College 

Entrance Examination (NCEE), or gaokao, in China. The NCEE offers a useful means of 

examining the effect of heat on cognitive performance for several reasons. It is one of the most 
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important institutional features of admissions to post-secondary education in China and affects the 

lives of hundreds of millions of families. Each year, around 9 million students take the exam to 

compete for admission to around 2,300 colleges and universities. Unlike other countries which rely 

upon standardized tests along with other factors such as high-school GPA, extracurricular activities, 

and recommendation letters to determine college admissions, the NCEE is almost the sole 

determinant for college admission in China1, making it an extremely high-stakes exam. This is 

especially true for those aiming for the top-tier universities, as graduates can expect, on average, 

to earn 40% more per month than their counterparts from lesser universities (Jia and Li, 2017). The 

competition is fierce. Though the overall admission rate of test takers to college or university has 

been around 75% in recent years (China Education Online, 2016), the admission rate for the 

roughly 100 first-tier universities in China is only 12% (China Education Online, 2015). 

      Several other features of the NCEE make it particularly well-suited for measuring the 

causal effects of temperature on cognitive performance. First, the date of the NCEE is fixed, on 

June 7th and 8th, making self-selection on test dates impossible. Second, because the NCEE is held 

only once a year, the cost of retaking the exam is quite high, essentially requiring students to repeat 

an additional year of high school. Third, during our sample period of 2005-2011, students were 

required to take the exam in the same county as with their household registration (hukou). 

Therefore, self-selection on exam locations is heavily regulated. Finally, air conditioning is not 

available at testing facilities2, thereby eliminating a potentially endogenous adaptation strategy, 

                                                 
1 Less than 0.1% of students can gain admission to college without taking the NCEE (Bai et al., 2014). They 

usually take the exams administered by the university itself, or they are waived from having to take the NCEE 
because of special talent, such as the winners of National High-School Olympic Competitions. 

2 In regions where air conditioning is available, its use is prohibited during the test period to ensure fair 
competition with regions in which AC is not available. More details can be found at: 
http://news.sina.com.cn/c/2007-06-07/152711978182s.shtml and http://news.sina.com.cn/c/2014-06-
05/070830296473.shtml. 

http://news.sina.com.cn/c/2007-06-07/152711978182s.shtml
http://news.sina.com.cn/c/2014-06-05/070830296473.shtml
http://news.sina.com.cn/c/2014-06-05/070830296473.shtml
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and providing a better simulacrum of the conditions under which cognitive tasks are performed 

throughout the developing world where air conditioning penetration is quite low.   

      To examine the impact of temperature on the NCEE performance, we obtained a unique 

dataset that covers the universe of students who were admitted into college between 2005-2011 

across China, yielding more than 14 million observations. The dataset reports the exam scores 

(ranging from 0 to 750) and exam counties for each student. We then match this dataset with daily 

weather data on temperature, precipitation, relative humidity, wind speed, sunshine duration, 

pressure, and visibility from more than 800 weather stations spread across the entire country. 

      We find both economically and statistically significant negative effects of temperature on 

test scores. In particular, a one-standard-deviation increase in temperature (3.29 °C) decreases total 

test scores by 1.12%, or approximately ten percent of one standard deviation in test performance. 

The effects are roughly linear in the temperature range found in China during early June – mean 

temperature during the exam period is 23.21 °C . Given the significantly negative effect of 

temperature on exam scores, we then turn our attention to the effects of temperature on college 

admissions. 3  We find that a one-standard-deviation increase in temperature decreases the 

probability of getting into first-tier universities by approximately 2 percent. Together, these results 

indicate that temperature plays an important role in high-stakes cognitive performance and has 

potentially far-reaching impacts for the careers and lifetime earnings of students.  

      This paper builds upon a growing economics literature that examines the impacts of 

temperature on cognitive performance in a developed country context in which air conditioning is 

ubiquitous and the ramifications from underperforming on a test are significantly less 

                                                 
3 In China, only students whose scores are above a pre-specified cutoff are eligible to apply for first-tier 

universities. Approximately 75% of students are admitted into first-tier universities if their scores are above the 
cutoff (Jia and Li, 2017). Since we do not have data on college admission, we proxy top-tier university 
admissions based on obtaining a score higher than the cutoff.   



4 
 

consequential (Park, 2017; Graff Zivin et al., 2018).4 It also complements recent work by Garg et 

al. (2016), which finds that increases in annual temperature exposure in India can impair test 

performance largely through impacts on agricultural yields and nutrition. Our study also has 

implications for the study of standardized test performance more generally. While these tests are 

often viewed as gold standard for assessing the academic competence of students (Koretz and 

Deibert, 1996; Robelen, 2002; US Legal, 2014), recent studies have shown that the time the test is 

given as well as local air pollution can impact performance (see Sievertsen et al. (2015) and 

Ebenstein et al. (2016), respectively). Temperature appears to be another important factor to add 

to this list.   

      The NCEE is one of the important institutions in China that affects the lives of hundreds of 

millions of families in ways large and small (Bai et al., 2014; Chen and Kesten, 2016; Jia and Li, 

2017; Cai et al., forthcoming). Since high temperatures impair the NCEE test performance, hotter 

regions may be unfairly penalized by the current system. We believe there exist at least three policy 

responses to remedy this injustice. First, the time of the NCEE might be shifted from June to cooler 

months, such as March, April, or May. In fact, the time of the NCEE was shifted once from July 

to June in 2003, to avoid the adverse effects of hot weather on students, but our results suggest that 

this shift was insufficient to fully address that concern. Second, AC could be installed and used in 

the exam rooms to help protect against the harmful effects of heat and level the playing field across 

regions which vary considerably in the average summertime temperatures. Finally, the college 

admission authorities could simply adjust test scores under the current system based on our 

                                                 
4 While the relationship between long-run temperature exposure and changes in test scores have also been 

examined, these changes in test scores (controlling for weather during the test) reflect the impacts of weather on 
learning, as opposed to performance. Graff Zivin et al. (2018) find no such effects on learning, while recent 
work by Goodman et al. (2018) find evidence of very small effects that are completely offset by access to air 
conditioning. 
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estimates to ensure that environmental factors are purged from the assessment of intellectual 

capabilities.  

      The remainder of the paper is organized as follows. In Section 2, we introduce the 

background on the NCEE. In Section 3, we describe the data and the empirical strategy. We present 

our results in Section 4 and conclude in Section 5.  

2 Empirical Background 

      The NCEE is a prerequisite for entrance into almost all higher education institutions at the 

undergraduate level in China. It is held annually, and is generally taken by students in their last 

year of high school. The NCEE has undergone continuous reform since 1978. It was once 

uniformly designed by the Ministry of Education (MOE) such that all the students across the 

country took exactly the same examination. In the early 2000s, the MOE launched the “unified 

examination, provincial proposition” reform (Zhu and Lou, 2011). Provinces and municipalities 

were allowed to customize their own exams independently, while the MOE continued to provide a 

national exam that could be used by provinces not employing independent exams. In 2011, 16 out 

of 31 provinces created customized exams while the others adopted national exam versions.  

      The most common examination format across provinces during our study period (from 

2005 to 2011) is the two-day exam, which takes place annually on June 7th and 8th, and is scored 

on a 0-750 scale based on the “3+X” subjects system.5 In the “3+X” subjects system, “3” refers to 

the three compulsory subjects: Chinese, Mathematics, and a foreign language usually English (each 

                                                 
5 Six provinces take a three-day exam on Jun 7th, 8th and 9th, including Shanghai, Jiangsu and Guangdong from 

2005 to 2011, Hainan and Shandong from 2007 to 2011, and Zhejiang from 2009 to 2011. Four provinces use a 
scale rather than 0-750 marks, including Hainan 0-900 from 2005 to 2011, Guangdong 0-900 from 2005 to 
2006, Jiangsu 0-440 in 2008, and Shanghai 0-630 from 2005 to 2011. We normalize the scale to 750 marks for 
these four provinces. 
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accounting for 150/750 of the total score) and “X” refers to the combination of science subjects 

(biology, chemistry, and physics) for students on the science track, or the combination of art 

subjects (geography, history, and political science) for students on the art track (accounting for 

300/750 of the total score).6 

      The NCEE is an extremely high-stakes exam. It is almost the sole determinant for higher 

education admission in China. Every year, around 9 million students in China take the exam to 

compete for admission to approximately 2,300 colleges and universities. These colleges are 

divided into two hierarchical categories: regular colleges and universities that are degree-granting 

and academically oriented; and advanced vocational colleges that certify students based on the 

attainment of practical and occupational skills. Though the overall admission rate of exam takers 

to both forms of higher education ranges from 57% to 72% during our study period, the admission 

rate for former category is only around 30%.7 The regular colleges and universities can further be 

classified into three tiers according to the recruitment process – Tier 1 universities, generally 

regarded as elite or key universities, recruit before Tier 2 and Tier 3 universities and require a much 

higher cut-off score for admission.8 Admission rates for Tier 1 universities in recent years has 

hovered around 12% and was even lower in earlier years (China Education Online, 2015). The 

higher the NCEE score the greater the chance that a student can attend an elite university, which is 

highly correlated with future life opportunities and earning potential (Jia and Li, 2017).  

                                                 
6 There are also a small number of specialized tracks, which include sports, art (music, painting, dancing), 

military, and pedagogical. These constitute less than 10% of all track specializations in our data. All students 
choose their track of study prior to the start of their second year of high school.   

7 See annual statistical data from the MOE: 
http://old.moe.gov.cn//publicfiles/business/htmlfiles/moe/moe_1651/index.html 

8 The cut-off score for each tier is the minimum qualifying score for students to apply to universities of the tier, 
and varies annually across provinces and subject tracks. It is determined by the Provincial Admission Offices 
based on each year’s admission quota and the distribution of student scores within the province (Chen and 
Kesten, 2017). 

http://old.moe.gov.cn/publicfiles/business/htmlfiles/moe/moe_1651/index.html
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3 Empirical Strategy 

  3.1 Data 
 

      We obtain the NCEE data from the China Institute for Educational Finance Research at 

Peking University, which reports the total score and ID for the universe of students enrolled into 

college during 2005-2011.9 This dataset includes observations for roughly 2 million students 

each year. The student ID contains a six-digit code for county of residence, which we use to 

match with weather data. The ID also reports the specific track, allowing us to explore 

heterogeneity across the science and art tracks. Unfortunately, we do not have data on scores by 

specific subject nor information on where each student enrolls. Data on the cut-off scores that 

determine eligibility to apply to first-tier universities for each province-year-track are obtained 

from a website specialized for the exam: gaokao.com.  

 The weather data are obtained from the China Meteorological Data Service Center, which 

is an affiliate of the National Meteorological Information Center of China. The data report daily 

maximum, minimum and average temperatures, precipitation, relative humidity, wind speed, 

sunshine duration, and atmospheric pressure for more than 800 weather stations in China. Data on 

visibility are obtained from the National Oceanic and Atmospheric Administration of the U.S. We 

extract weather data during the exam time and then convert from station to county using the 

inverse-distance weighting (IDW) method (Deschênes and Greenstone, 2007, 2011). The basic 

algorithm calculates weather for a given county based on weighted averages of all weather station 

                                                 
9 Note that the sample only includes students admitted into some type of college or university since test score 

data are not available for those students that are not admitted to a school of higher education. Whether our 
results generalize to those students that do not attend college is an open question that will depend on the relative 
temperature sensitivity of this population. 
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observations within a 200 km radius of the county centroid, where the weights are the inverse 

distance between the weather station and the centroid. 

      Panel A of Table 1 presents the summary statistics of the exam score, which ranges from 0 

to 750. There are more than 14 million observations in total, with a mean of 518.96, and a standard 

deviation of roughly 60 marks. Approximately 26% students were in the art track, and 64% 

students were in the science track, with the remaining 10% corresponding to students in specialized 

tracks. 

      In panel B, we define a dummy variable which is equal to one if a student’s score is above 

or equal to the cutoff for the first-tier universities, as a proxy for admission into a first-tier 

university. Approximately 75% of students with a score above the cutoff are admitted into first-

tier universities (Jia and Li, 2017). That corresponds to approximately 30% of the students in our 

sample.10 Admission rates for the science track are higher than the art track using this proxy, a 

results that is consistent with actual admissions patterns at top-tier universities.. 

      We report the summary statistics of weather variables in panel C. The average mean 

temperature during the exam period is 23.21 °C. The histogram of average temperature during the 

2-day exam period is plotted in Figure 1. This figure reveals a great heterogeneity, with 

temperatures ranging from 10 °C to 30 °C, and a peak around 25 °C. To measure the non-linear 

effects of temperature, we construct two measures. The first is degree days (DD), which is a piece-

wise linear function that measures the number of degrees above and below a threshold. Following 

Graff Zivin et al., (2018), we deploy a threshold of 20 °C. As can be seen in panel C of Table 1, 

the average degree days above or equal 20 °C (DD>=20) is 3.59, and the average below 20 °C 

(DD<20) is 0.38, consistent with the skewed distribution of temperature seen in Figure 1. The 

                                                 
10 This rate is higher than the 10% admission rate for the entire population of high school graduates since our 

sample only includes students who enrolled into an institution of higher learning. 
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second measure we deploy to capture non-linear effects is a series of indicators of 2 °C bins 

(Deschênes and Greenstone, 2011; Barreca et al., 2016; Graff Zivin and Neidell, 2014; Graff Zivin 

et al., 2018), with the lowest bin including all temperatures below 12 °C and the highest bin 

including all temperatures above 30 °C due to data sparseness at the extremities of the distribution. 

Figure A1 in the online appendix plots the percentage of days that fall into each bin.    

  3.2 Econometric Model  

      In order to assess the effect of temperature on students’ performance, we estimate the 

following equation: 

𝑌𝑖𝑐𝑡 = 𝛼0 + 𝛽1𝑇𝑐𝑡 + 𝛽2𝑾𝑐𝑡 + 𝛾𝑐 + 𝜂𝑡 + 𝜀𝑖𝑐𝑡, 

where 𝑖 denotes an individual student, 𝑐 denotes the county in which the exam was taken, and 𝑡 

denotes the year the exam was taken. We have two measures for 𝑌𝑖𝑐𝑡. The first is the logarithm of 

the exam score. The logarithm specification was chosen to facilitate interpretation, since point 

estimates correspond to the semi-elasticity of exam scores with respect to temperature. As we will 

show later, our results are also robust to specifying exam scores in levels. The second is a dummy 

variable which is equal to one if a student’s score is equal to or higher than the cutoff for first-tier 

universities and zero otherwise. Both specifications are estimated using OLS, although our results 

for admission to elite universities remain unchanged when we use a logit specification (as shown 

in Table 6). We use 𝑇𝑐𝑡 to denote the average of daily mean temperature (the average between 

daily maximum and minimum temperatures) on June 7th and 8th. We do not include temperature in 

each day separately because of the strong serial correlation in temperature across days. To explore 

the non-linearity of temperature, we use degree day measures and a series of 2 °C bins as described 

earlier.  
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      The variable 𝑾𝑐𝑡 denotes a vector of weather variables, including precipitation, relative 

humidity, wind speed, sunshine duration, atmospheric pressure, and visibility. As with our 

temperature variable, all of these are averaged across the two-day exam period. We use 𝛾𝑐 to 

denote county fixed effects, which controls for any county-specific time-invariant characteristics, 

such as geography or cultural and demographic features that are stable over our study period. We 

use 𝜂𝑡 to represent year fixed effects, to control for any nation-wide policy or economic shocks 

that could differ by year but affect test takers equally across all counties. The error terms 𝜀𝑖𝑐𝑡 are 

clustered by county to allow for serial and spatial correlation within each county. 

      In the end, our identifying variation is based on county deviations from the mean after we 

adjust for common shocks for the whole country in a given year. One potential concern with this 

strategy is that exam difficulty varies by province-year, but we cannot include year-by-province 

fixed effects because they absorb most of our variation in weather (Fisher et al., 2012). Since the 

absence of these fixed effects are only a concern if exam difficulty across provinces is correlated 

with temperature, we test this directly. Column (1) of Table 2 reports the average weather for 

provinces that use their own exams, and column (2) reports the average weather for provinces using 

national exams. Temperatures in provinces that use their own exams are 1.90 °C higher than 

temperatures in provinces using national exams (column 3). This difference disappears once the 

comparison is conditional on the county and year fixed effects that are included in our model 

specification (see column 4).  

      The coefficient of interest is 𝛽1. Under our linear measure of temperature, this coefficient 

measures the percentage change in total score (or the probability change of admission to first-tier 

universities) when temperature during the exam increases by 1 °C. When we use degree days, the 

coefficient of DD>=20 (DD<20) measures the percentage change in total score (or the probability 
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change of admission to first-tier universities) if temperature increases (decreases) by 1 °C 

conditional on temperature being above (below) 20 °C. The non-linear binned approach has a 

slightly different interpretation. Here the coefficient of each bin measures the percentage change 

in total score (or the probability change of admission to first-tier universities) when temperature 

falls into that bin rather than the reference bin of 18-20 °C  which was chosen following Graff Zivin 

et al. (2018). 

4 Results 

  4.1 Main Results 

      Table 3 presents the main regression results, where outcomes are defined as the logarithm 

of the total test score. The total test score is the summation of scores from three compulsory 

subjects, including Chinese, mathematics, and foreign language (typically English) with 150 marks 

each plus scores from one combined subject with 300 marks comprising politics, history, and 

geography for the art track and physics, chemistry, and biology for the science track. Unfortunately, 

the data does not report the score for each specific subject. We report results for all students in 

columns (1) and (2), only students in the art track in columns (3) and (4) and only those in the 

science track in columns (5) and (6).  

      In columns (1), (3), and (5), temperature is measured using the average of daily mean 

temperature during June 7th and 8th. All the estimates are negative and statistically significant at 

the 1% significance level. The coefficient of temperature in column (1) suggests that a 1 °C  

increase in temperature decreases the total test score by 0.34%, or 1.76 marks evaluated at the 

mean level (mean=518.96). To better place these figures in context, it is helpful to situate them 

relative to the weather variability in our dataset. A one-standard-deviation increase in 
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temperature (3.29 °C ) decreases total test scores by 1.12%, or 9.62% of a standard deviation 

(standard deviation=60.40).  

      In columns (2), (4), and (6), we relax the assumption of linearity by specifying temperature 

in terms of degree days as described above. As can be seen in column (2), the effect of DD>=20 

is significantly negative, and the magnitude is quite close to the linear effect in column (1). This 

near identical result is largely an artefact of exam timing. June temperatures in China tend to be 

quite high, with a mean temperature of 22.78 °C , which lies above the degree days threshold. In 

contrast, the effect of DD<20 is significantly positive, providing additional support for our linear 

specification. 

 When we run subsample analyses for each track separately (see columns (3) – (6)), we 

find that the negative effect of temperature is much larger for students in the art track than those 

in the science track. For example, a 1 °C  increase in temperature decreases the score for the art 

track by 0.36%, but only by 0.18% for the science track. Evaluated at the mean level, this is 

equivalent to 1.85 marks for the art track (mean=512.66) and 0.94 marks for the science track 

(mean=521.20). One possible explanation for this difference is sample composition. The art track 

is disproportionately female relative to the science track and recent research suggests that female 

test performance in China may be more stress-dependent (Cai et al., forthcoming).  

 In addition to temperature, we also include precipitation, relative humidity, wind speed, 

sunshine duration, pressure, and visibility in the regression model. We find a significantly 

positive effect of wind speed, consistent with the notion that higher wind speeds reduce 

perceived temperature – the effect of so-called wind chill.11 The effect of sunshine duration is 

also significantly positive, as many studies find that sunshine induces good mood and happiness 

                                                 
11 http://www.nws.noaa.gov/om/cold/wind_chill.shtml.  
 

http://www.nws.noaa.gov/om/cold/wind_chill.shtml
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(Schwarz and Clore, 1983; Guven, 2012) and further increases labor productivity (Osward et al., 

2015). The effect of precipitation, humidity, pressure, and visibility are either weakly significant 

or statistically insignificant. 

 In Table 4, we turn our attention to the effects of temperature on admissions to elite 

universities. Our estimate in column (1) suggests that a 1 °C  increase in temperature decreases 

the probability of being admitted to first-tier universities by 0.60%, or 1.33% of a standard 

deviation (standard deviation=0.45). When we measure temperature using degree days in column 

(2), we find that a 1 °C  increase in temperature above 20 °C  decreases the admission probability 

by 0.75%. As with the linear results, we also find that the effect is larger for those students in the 

art track. Interestingly, the impacts of other weather variables differ under this specification, with 

the coefficients on precipitation, humidity, and pressure all statistically significant, small (relative 

to their mean values) and in the expected direction. The coefficient on visibility, a proxy measure 

for pollution, is also negative and statistically significant and reasonably large (a result we will 

explore more directly below).     

 Figure 2 plots the coefficients (in blue) as well as 95% confidence intervals (in grey) 

under our non-parametric binned approach when the dependent variable is the log of exam score. 

As noted earlier, the 18-20 °C  bin is omitted as the reference group, so all other estimates are 

relative to it. We find that the coefficient decreases monotonically for all bins hotter than 12-

14 °C . The magnitude here is also comparable to column (1) in panel A of Table 3. For example, 

the estimated coefficient for the above 30 °C  bin is -0.0310. Since the difference between bins 

above 30 °C  and 18-20 °C  is approximately 10 °C , each 1 °C  increase in temperature decreases a 

score by 0.0031 (0.0310/10) log points (-0.0034 log points in column (1) of Table 3). We conduct 

a similar exercise in Figure 3, where the dependent variable is the dummy variable for admission 

to first-tier universities, and find similar results. 



14 
 

      Studies show that AC can protect the human body from harms due to excess heat (Barreca 

et al., 2016) and it seems plausible that these protective effects might also extend to cognitive 

performance. Unfortunately, we do not have data on the availability of AC at test facilities. 

Moreover, AC use is supposed to be prohibited during the NCEE to ensure fairness across regions, 

some of which clearly do not have AC. Nonetheless, we explore the potential role of AC indirectly, 

by splitting our sample into urban districts and rural counties,12 under the assumption that cities 

are more likely to have AC. Table A1 in the online appendix reports these results. The effects of 

temperature appear larger in urban districts than rural ones, although these differences are not 

significant at conventional levels. Whether the lack of difference suggests a limited protective role 

for air conditioning, the effectiveness of the policy ban on usage, or the noisiness of our AC 

measure remains an open question. 

      Since others have found that exposure to fine particulate matter less than 2.5 microns in 

diameter (PM2.5) can also impair test performance (Ebenstein et al., 2016), one concern with our 

study is that our results may be confounded by air pollution levels in ways that are not fully 

captured by our controls for visibility. To examine this issue directly, we use data on the air 

pollution index (API) – a composite measure of pollution that ranks air quality based on its 

associated health risks (Ministry of Environmental Protection, 2006) – to examine the 

relationship between air quality and test performance.13 The API is only available in major cities 

and thus our sample size for this analysis is greatly reduced. The estimates are reported in Table 

5. Column (1) reports the baseline estimates from Table 3, column (1). Column (2) reports results 

from the same specification but only for the sample of cities covered by the API. In column (3) 

                                                 
12 In China, districts (qu) and counties (xian) are in the same administrative level, but districts are typically 

located in urban cities. 
13 The data on PM2.5 are only available since 2013. 
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we add controls for pollution as measured by the API. Though the sample size in columns (2) and 

(3) is less than half of column (1), the effect of temperature remains unchanged, which suggests 

that air pollution is not driving our temperature results. 

 While the results on API are reassuring, it remains possible that PM2.5 could be confounding 

our results. To further probe this possibility, we utilize data from a more recent period when that 

data are available to examine the correlation between PM2.5 and temperature. These results are 

reported in Tables A2 – A4 in the online appendix for the period 2013-2016. Regardless of 

functional form, the correlation coefficients are small, providing additional evidence that PM2.5 is 

unlikely to explain the relationship between temperature and test performance in our setting.       

  4.2 Robustness Checks 

      Table 6 presents robustness checks for our main results. Column (1) is the baseline 

model. In column (2) we cluster the standard errors by prefecture (an administrative unit between 

province and county), to control for spatial and serial correlation within each prefecture. The 

effect of temperature is still statistically significant at the 1% significance level. In column (3), 

we calculate the average temperature between June 7th and 8th using daily maximum temperature, 

instead of daily mean temperature in the baseline model. The effect is robust, though the 

magnitude is slightly smaller, consistent with the observation that most of the testing period 

occurs before the hottest part of the day. In column (4) of panel A, we use level of score, instead 

of log of score in the baseline model, as the dependent variable. The point estimate is very close 

to the estimate when we use the log of score and evaluated at the mean level. In column (4) of 

panel B, we use the logit model and report the marginal effect evaluated at the mean level. The 

estimate is similar to the linear model. While the NCEE is held in most provinces on June 7th and 

8th only, some provinces also have exams on June 9th. Therefore, in column (5), we calculate the 



16 
 

average of temperature on June 7th-9th for provinces with a three-day exam. The results are 

robust. In the last column, instead of using individual-level score data in the baseline model, we 

average scores to county-year and then estimate the regression model to reflect the fact that the 

weather data are only at county-year level. Again our results remain robust.    

5 Discussion and Conclusion 

      In this paper, we show that temperature plays an important role in high-stakes cognitive 

performance using data from the NCEE, the most important academic examination in China. In 

particular, a one-standard-deviation increase in temperature decreases total test scores by 9.62% 

of a standard deviation. This is approximately two times larger than the effects found by Park 

(2017) for similarly aged students in New York City and 1.5 times larger than that found by 

Graff Zivin et al. (2018) for younger children across the United States. The larger magnitude in 

our setting may be a reflection of the higher-stakes environment, the limited access to air 

conditioning, or fundamental differences in our study populations. It is also noteworthy that our 

estimates suggest that a one-standard-deviation change in temperature alters test performance by 

roughly the same magnitude as the impacts of the most successful interventions that directly 

target educational performance in developing countries J-PAL (2014). 

 Our results also imply that students in hotter regions may have disadvantages compared 

with their peers in cooler regions, highlighting potentially important concerns about equitable 

access to higher education within China under the NCEE system. We believe there exist at least 

three policy responses to remedy this inherent unfairness in the national testing and admissions 

system. First, the time of the NCEE might be shifted from June to cooler months, such as March, 

April, or May. In fact, the time of the NCEE was shifted once from July to June in 2003, to avoid 

the adverse effects of hot weather on students, but our results suggest that this shift was 
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insufficient to fully address that concern. Second, AC could be installed and used in the exam 

rooms. Ironically, some regions prohibit the use of AC to enhance the fairness to regions where 

air conditioning is not available, which misses the important point that some regions are always 

hotter than others and that the use of AC may have leveled the playing field in the first place. 

Third, college admission authorities could adjust the test scores based on our estimates. For 

example, they may adjust upward (downward) test scores by 0.34% for counties with 

temperature above (below) provincial average every 1 °C .  

 Though our empirical setting is China, our results have important implications for other 

developing countries that utilize standardized testing to gate access to institutions of higher 

learning or access to particular professions. Whether these results generalize to a developed country 

setting, where AC is more prevalent, remains an open question. Nonetheless, the significant effect 

of temperature on cognitive performance suggests a potential channel through which future climate 

change may affect economic well-being. 
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Figure 1: Histogram of mean temperature (°C) during the exam 

Notes: Mean temperature over this two-day period is defined as the average of the daily average 

temperature on June 7th and 8th over 2005-2011. As is standard practice, the daily average temperature is 

the average of the daily maximum and minimum temperatures. 
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Figure 2: Relationship between temperature and log of exam scores  

Notes: Each point estimate represents the effect of replacing a day with temperature in the 18-20 °C interval 

(reference group) with a day with temperature in the corresponding interval. Control variables include: 

precipitation, relative humidity, wind speed, sunshine duration, pressure, visibility, county fixed effects, 

and year fixed effects. Whiskers denote the 95% confidence interval, after adjusting for spatial and serial 

correlation within each county. 
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Figure 3: Relationship between temperature and probability of getting into first-tier universities 

Notes: Each point estimate represents the effect of replacing a day with temperature in the 18-20 °C interval 

(reference group) with a day with temperature in the corresponding interval. Control variables include: 

precipitation, relative humidity, wind speed, sunshine duration, pressure, visibility, county fixed effects, 

and year fixed effects. Whiskers denote the 95% confidence interval, after adjusting for spatial and serial 

correlation within each county. 
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Table 1: Summary statistics 

Variable Mean SD Min Max 

Panel A: Score (0-750)     

Full sample 518.96 60.40 60.00 750.00 
Art track 512.66 57.24 74.00 749.17 
Science track 521.20 62.56 60.00 750.00 

Panel B: Probability of above cutoff for first-tier universities    

Full sample 0.29 0.45 0.00 1.00 
Art track 0.20 0.40 0.00 1.00 
Science track 0.32 0.47 0.00 1.00 
Panel C: Weather      

Temperature (°C) 23.21 3.29 2.55 31.96 
DD>=20 (degree days) 3.59 2.64 0.00 12.00 
DD<20 (degree days) 0.38 1.09 0.00 17.45 
Precipitation (cm) 0.54 1.01 0.00 15.42 
Relative humidity (%) 69.20 15.34 13.56 99.74 
Wind speed (m/s) 2.30 0.86 0.26 16.22 
Sunshine duration (hour) 5.77 3.73 0.00 14.17 
Pressure (hpa) 965.33 53.67 581.45 1014.39 
Visibility (km) 13.32 5.99 0.27 29.76 

 

Notes: The NCEE data covers all students enrolled into college during 2005-2011. The observations for the full sample: 

14,042,417. The observations for the art track: 3,699,915. The observations for the science track: 8,972,856. The sum 

of observations between the art track and the science track is not equal to the observations of the all track due to the 

existence of a small number of specialized tracks. The score scale is 0-750 for most provinces. We normalize the score 

scale to 750 for provinces that are not using the same scale. All students need to take three compulsory subjects: 

Chinese, mathematics, and a foreign language (typically English). The students in the art track need to take one 

combined subject comprising politics, history, and geography, and the students in the science track need to take one 

combined subject comprising physics, chemistry, and biology. The data on the cutoff of the first-tier universities are 

only available for the art and science tracks. The Tier 1 cut-off score is the minimum qualifying score for students to 

apply to Tier 1 universities. It is determined by the Provincial Admission Offices based on each year’s admission quota 

and the distribution of student scores within the province and track. It varies annually across provinces and subject 

tracks. The weather variables are averaged using daily values on June 7th and 8th, when the NCEE is held. 
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Table 2: Statistical test on the difference of weather variables between provinces using 

independent exams and national exams 

  Provinces using Provinces using Unconditional Conditional  

 own exams national exams difference difference 
  (1) (2) (3) (4) 

Temperature 23.7723 21.8715 1.9008*** -0.0002 

 (2.8438) (3.8719) (0.0574) (0.0293) 

Precipitation 0.6865 0.3951 0.2914*** 0.0001 

 (1.1850) (0.7776) (0.0167) (0.0138) 

Humidity 73.9069 62.3013 11.6056*** -0.0011 

 (12.9731) (17.4421) (0.2598) (0.1505) 

Wind 2.2474 2.2465 0.0009 -0.0001 

 (0.9213) (0.8385) (0.0148) (0.0087) 

Sunshine 4.8838 6.6744 -1.7906*** -0.0003 

 (3.6954) (3.6573) (0.0618) (0.0423) 

Pressure 980.7174 921.5846 59.1328*** 0.0002 

 (34.6706) (72.4946) (0.9668) (0.0571) 

Visibility 11.6256 17.9341 -6.3085 -0.0001 

 (4.9484) (6.5800) (0.0984) (0.0448) 

Observations 6,811 7,367 --- --- 
 
Notes: Column (1) reports the average of county-year weather variables for provinces that use their own exams. 

Column (2) reports the average of county-year weather variables for provinces that use national exams. Column (3) 

reports the unconditional difference between columns (1) and (2). Column (4) reports the difference between columns 

(1) and (2) conditional on county fixed effects and year fixed effects. Standard errors are clustered at the county level 

and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3: Effect of temperature on log of exam score  

  

 
Dependent variable: Log of exam scores 

 
 All track  Art track  Science track 

  (1) (2)  (3) (4)  (5) (6) 

Temperature -0.0034*** ---  -0.0036*** ---  -0.0018*** --- 
 (0.0004) ---  (0.0004) ---  (0.0004) --- 

DD>=20 --- -0.0029***  --- -0.0031***  --- -0.0012*** 
 --- (0.0004)  --- (0.0004)  --- (0.0004) 

DD<20 --- 0.0061***  --- 0.0061***  --- 0.0046*** 
 --- (0.0006)  --- (0.0005)  --- (0.0007) 

Precipitation -0.0008 -0.0004  0.0002 0.0007  -0.0004 0.0002 
 (0.0005) (0.0005)  (0.0006) (0.0006)  (0.0006) (0.0007) 

Humidity 0.0000 -0.0000  -0.0002** -0.0003***  0.0003*** 0.0002** 
 (0.0001) (0.0001)  (0.0001) (0.0001)  (0.0001) (0.0001) 

Wind 0.0039*** 0.0036***  0.0008 0.0005  0.0024*** 0.0020*** 
 (0.0007) (0.0007)  (0.0008) (0.0008)  (0.0007) (0.0007) 

Sunshine 0.0025*** 0.0025***  0.0018*** 0.0018***  0.0023*** 0.0023*** 
 (0.0003) (0.0003)  (0.0003) (0.0003)  (0.0003) (0.0003) 

Pressure -0.0000 0.0000  0.0004*** 0.0004***  -0.0006*** -0.0006*** 
 (0.0001) (0.0001)  (0.0001) (0.0001)  (0.0001) (0.0001) 

Visibility 0.0001 0.0000  0.0004* 0.0004*  -0.0002 -0.0002 
 (0.0002) (0.0002)  (0.0002) (0.0002)  (0.0002) (0.0002) 

Observations 14,042,417 14,042,417  3,699,915 3,699,915  8,972,856 8,972,856 
R-squared 0.2697 0.2699   0.4035 0.4037   0.2738 0.2740 

 

Notes: The dependent variable is the log of the exam score. All students need to take three compulsory subjects: 

Chinese, mathematics, and foreign language (typically English). Students in the art track need to take one combined 

subject comprising politics, history, and geography, and students in the science track need to take one combined subject 

comprising physics, chemistry, and biology. The observations for all tracks does not equal the sum of observations 

from the art and science tracks, due to the existence of a small number of specialized tracks. Regression models also 

include county fixed effects and year fixed effects. Degree days (DD) ≥20 (<20) is the number of degrees above (below) 

20 °C. Standard errors are clustered at the county level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 4: Effect of temperature on the probability of above cutoff for first-tier universities 

  

 
Dependent variable: Above cutoff for first-tier universities 

 

 All track  Art track  Science track 
  (1) (2)  (3) (4)  (5) (6) 

Temperature -0.0060*** ---  -0.0083*** ---  -0.0052*** --- 
 (0.0012) ---  (0.0015) ---  (0.0011) --- 

DD>=20 --- -0.0075***  --- -0.0095***  --- -0.0068*** 
 --- (0.0013)  --- (0.0016)  --- (0.0012) 

DD<20 --- -0.0021  --- 0.0019  --- -0.0036** 
 --- (0.0014)  --- (0.0015)  --- (0.0015) 

Precipitation -0.0185*** -0.0200***  -0.0220*** -0.0232***  -0.0159*** -0.0175*** 
 (0.0018) (0.0019)  (0.0020) (0.0022)  (0.0017) (0.0019) 

Humidity -0.0010*** -0.0008***  -0.0017*** -0.0015***  -0.0007*** -0.0005** 
 (0.0003) (0.0003)  (0.0004) (0.0003)  (0.0002) (0.0002) 

Wind -0.0010 0.0001  0.0023 0.0031*  -0.0023 -0.0011 
 (0.0016) (0.0016)  (0.0019) (0.0019)  (0.0016) (0.0016) 

Sunshine 0.0002 0.0002  0.0025*** 0.0025***  -0.0005 -0.0005 
 (0.0006) (0.0006)  (0.0007) (0.0007)  (0.0006) (0.0006) 

Pressure -0.0017*** -0.0019***  -0.0022*** -0.0024***  -0.0013*** -0.0016*** 
 (0.0004) (0.0004)  (0.0005) (0.0005)  (0.0005) (0.0005) 

Visibility -0.0033*** -0.0032***  -0.0056*** -0.0055***  -0.0021*** -0.0021*** 
 (0.0007) (0.0007)  (0.0008) (0.0008)  (0.0007) (0.0007) 

Observations 
              

12,672,771  
    

12,672,771   3,699,915 3,699,915  8,972,856 8,972,856 
R-squared 0.0550 0.0552   0.0666 0.0668   0.0568 0.0570 

 

Notes: The dependent variable is a dummy variable, which equals to one if a student’s score is above or equal to the 

cutoff of the first-tier universities and zero otherwise. All students need to take three compulsory subjects: Chinese, 

mathematics, and foreign language (typically English). Students in the art track need to take one combined subject 

comprising politics, history, and geography, and students in the science track need to take one combined subject 

comprising physics, chemistry, and biology. The data on the cutoff of the first-tier universities are only available for 

the art and science tracks. Regression models also include county fixed effects and year fixed effects. Degree days 

(DD) ≥20 (<20) is the number of degrees above (below) 20 °C. Standard errors are clustered at the county level and 

reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 5: Effect of weather and air pollution on log of exam scores 

  

 
Dependent variable: Log of exam scores 

 

  (1) (2) (3) 

Temperature -0.0034*** -0.0031** -0.0032** 

 (0.0004) (0.0015) (0.0016) 

Precipitation -0.0008 -0.0016 -0.0015 

 (0.0005) (0.0018) (0.0018) 

Humidity 0.0000 0.0000 0.0000 

 (0.0001) (0.0004) (0.0004) 

Wind 0.0039*** 0.0034** 0.0035* 

 (0.0007) (0.0018) (0.0018) 

Sunshine 0.0025*** 0.0024*** 0.0025*** 

 (0.0003) (0.0008) (0.0009) 

Pressure -0.0000 0.0003*** 0.0003*** 

 (0.0001) (0.0001) (0.0001) 

Visibility 0.0001 -0.0003 -0.0002 

 (0.0002) (0.0005) (0.0005) 

API --- --- 0.0000 

 --- --- (0.0001) 
Observations 14,042,417 6,321,398 6,321,398 

 

Notes: The dependent variable is the log of the exam score. All weather and air pollution variables are calculated using 

the average between June 7th and 8th. Column (1) reports the baseline estimates from Table 1, column (1). Column (2) 

reports results from the same specification but only for the sample of cities covered by the air pollution index (API). 

In column (3) we add controls for pollution as measured by the API. The regression models also include county fixed 

effects and year fixed effects. Standard errors are clustered at the county level and reported in parentheses. *** p<0.01, 

** p<0.05, * p<0.1. 
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Table 6: Robustness checks 
 

Panel A Dependent variable: Log of exam scores 

 Baseline Clustering  Max Level of  Three County- 

   prefecture Temp score days year 

 (1) (2) (3) (4) (5) (6) 

Temperature -0.0034*** -0.0034*** -0.0026*** -1.7453*** -0.0022*** -0.0026*** 

 (0.0004) (0.0009) (0.0003) (0.2062) (0.0004) (0.0003) 
 
Observations 14,042,417 14,042,417 14,042,417 14,042,417 14,042,417 14,042,417 

Panel B Dependent variable: Above cutoff for first-tier universities 

 Baseline Clustering  Max Logit Three County- 

   prefecture Temp   days year 

Temperature -0.0060*** -0.0060** -0.0044*** -0.0289*** -0.0029*** -0.0078*** 

 (0.0012) (0.0026) (0.0008) (0.0058) (0.0010) (0.0009) 

Observations 12,672,771 12,672,771 12,672,771 12,672,771 12,672,771 14,177 
 

In panel A, the dependent variable is the log of exam score except for column (4), where the dependent variable is the 

level of score. In panel B, the dependent variable is a dummy variable which equals to one if the student's score is 

above or equal to the cutoff of the first-tier universities and zero otherwise. Column (1) is the baseline model. In 

column (2), we cluster standard errors by prefecture, to control for serial and spatial correlation within prefecture. 

Noted that prefecture is an administrative unit between province and county. In column (3), we use average of daily 

maximum temperature on June 7th and 8th. In column (4) of panel A, we use the level of score as the dependent variable. 

In column (4) of panel B, we use the logit model and reported the marginal effects evaluated at the mean level. In 

column (5), we include temperature on June 9th for provinces with exams held on June 7th-9th. In column (6), we 

collapse observations by county-year, and estimate the model using count-year observations. Standard errors are 

clustered at the county level except in column (2) and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Online Appendix 

 
Figure A1. Distribution of 2 °C  indicators.  

Notes: The height of each bar denotes the percentage of each 2 °C  indicator. 
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Table A1: Effect of weather on log of exam scores across urban and rural areas 

  

 
Dependent variable: Log of exam scores 

 

 Full  Urban  Rural 

  (1) (2)  (3) (4)  (5) (6) 

Temperature -0.0034*** ---  -0.0039*** ---  -0.0026*** --- 

 (0.0004) ---  (0.0005) ---  (0.0005) --- 

DD>=20 --- -0.0029***  --- -0.0031***  --- -0.0026*** 

 --- (0.0004)  --- (0.0006)  --- (0.0005) 

DD<20 --- 0.0061***  --- 0.0079***  --- 0.0026*** 

 --- (0.0006)  --- (0.0008)  --- (0.0008) 

Precipitation -0.0008 -0.0004  -0.0018*** -0.0013*  0.0015** 0.0015* 

 (0.0005) (0.0005)  (0.0006) (0.0007)  (0.0008) (0.0008) 

Humidity 0.0000 -0.0000  -0.0002 -0.0002*  0.0003*** 0.0003*** 

 (0.0001) (0.0001)  (0.0001) (0.0001)  (0.0001) (0.0001) 

Wind 0.0039*** 0.0036***  0.0048*** 0.0043***  0.0030*** 0.0030*** 

 (0.0007) (0.0007)  (0.0010) (0.0010)  (0.0009) (0.0009) 

Sunshine 0.0025*** 0.0025***  0.0026*** 0.0026***  0.0021*** 0.0021*** 

 (0.0003) (0.0003)  (0.0003) (0.0003)  (0.0004) (0.0004) 

Pressure -0.0000 0.0000  -0.0002 -0.0001  0.0003* 0.0003* 

 (0.0001) (0.0001)  (0.0002) (0.0002)  (0.0002) (0.0002) 

Visibility 0.0001 0.0000  -0.0003 -0.0003  0.0010*** 0.0010*** 

 (0.0002) (0.0002)  (0.0003) (0.0003)  (0.0003) (0.0003) 

Observations 14,042,417 14,042,417   9,418,385 9,418,385   4,624,032 4,624,032 
 

Notes: The dependent variable is the log of the exam score. All weather variables are calculated using the average 

between June 7th and 8th. Columns (1) - (2) report the estimates for the full sample. Columns (3) - (4) report the 

estimates for urban districts and columns (5) - (6) report the estimates for rural counties. Degree days (DD) ≥20 

(<20) is the number of degrees above (below) 20 °C. Regression models also include county fixed effects and year 

fixed effects. Standard errors are clustered at the county level and reported in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1.  
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Table A2: Correlation coefficients between PM2.5 and temperature 

  
PM2.5 

 

 
Raw Correlation    

 
Correlation conditional on fixed 

effects 

 (1) (2) (3)  (4) (5) (6) 

Temperature 0.1589 --- ---  0.1817 --- --- 

DD>=20 --- 0.1217 ---  --- 0.1989 --- 

DD<20 --- -0.1855 ---  --- -0.0190 --- 

<12 °C  --- --- -0.0197  --- --- -0.0015 

12-14 °C  --- --- -0.0404  --- --- 0.0032 

14-16 °C  --- --- -0.0859  --- --- 0.0070 

16-18 °C  --- --- -0.1110  --- --- -0.0115 

18-20 °C  --- --- -0.1478  --- --- -0.0312 

20-22 °C  --- --- -0.0559  --- --- -0.0957 

22-24 °C  --- --- 0.1158  --- --- -0.0143 

24-26 °C  --- --- 0.1206  --- --- -0.0111 

26-28 °C  --- --- 0.1039  --- --- 0.1585 

28-30 °C  --- --- -0.1409  --- --- -0.0098 

>30 °C  --- --- -0.0539   --- --- -0.0010 
 

Notes: This table reports the correlation coefficients between PM2.5 and temperature. All variables are calculated using 

the average between June 7th and 8th during the period 2013-2016. Columns (1)-(3) report the raw correlation 

coefficients and columns (4)-(6) report the correlation coefficients conditional on county fixed effects and year fixed 

effects. The variable “Temperature” is the average temperature between June 7th and 8th during the period 2013-2016. 

The variable “Degree days (DD) ≥20 (<20)” is the number of degrees above (below) 20 °C  constructed using the 

variable “Temperature”. The non-parametric approach that ranges from <12 °C  to >30 °C, with 2 °C  bins in between 

is constructed using the variable “Temperature”.  
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Table A3: Raw correlation coefficients between PM2.5 and temperature indicators 

  
PM2.5 (µg/m3) 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 <20 20-40 40-60 60-80 80-100 100-120 120-140 >140 

<12 °C 0.0063 0.0229 -0.0110 -0.0133 -0.0090 -0.0060 -0.0037 -0.0058 

12-14 °C 0.0318 0.0233 -0.0167 -0.0243 -0.0165 -0.0110 -0.0068 -0.0107 

14-16 °C 0.1230 0.0040 -0.0476 -0.0409 -0.0326 -0.0146 -0.0135 -0.0138 

16-18 °C 0.1060 0.0354 -0.0427 -0.0509 -0.0528 -0.0173 -0.0147 -0.0296 

18-20 °C 0.1242 0.0848 -0.0744 -0.0921 -0.0695 -0.0242 0.0146 -0.0406 

20-22 °C -0.0381 0.1337 -0.0498 -0.0475 -0.0341 -0.0526 0.0120 0.0081 

22-24 °C -0.1626 -0.0173 0.0615 0.0633 0.0979 0.0114 -0.0218 -0.0077 

24-26 °C -0.1408 -0.0892 0.1460 0.0899 -0.0254 0.0443 -0.0171 0.0240 

26-28 °C -0.0093 -0.0684 -0.0115 0.0222 0.0793 0.0163 0.0472 0.0532 

28-30 °C 0.2677 -0.0676 -0.0924 -0.0303 -0.0497 0.0230 -0.0241 -0.0377 

>30 °C 0.1119 -0.0369 -0.0273 -0.0177 -0.0120 -0.0080 -0.0050 -0.0078 
 

Notes: This table reports the raw correlation coefficients between PM2.5 and temperature indicators. All variables are 

calculated using the average between June 7th and 8th during the period 2013-2016.  
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Table A4: Correlation coefficients between PM2.5 and temperature indicators conditional on 

county fixed effects and year fixed effects 

  
PM2.5 (µg/m3) 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 <20 20-40 40-60 60-80 80-100 100-120 120-140 >140 

<12 °C 0.0015 0.0041 -0.0091 0.0004 0.0061 0.001 0.0001 -0.0013 

12-14 °C -0.0075 0.0071 -0.0037 -0.0004 0.0069 -0.006 -0.0057 0.0044 

14-16 °C 0.0294 -0.0058 -0.0285 -0.0007 0.0134 -0.0018 0.0063 0.0153 

16-18 °C 0.0635 -0.0211 -0.0361 0.0167 -0.0052 0.004 0.001 0.0069 

18-20 °C 0.0579 0.0195 -0.0473 -0.0011 -0.0439 0.0051 0.0358 0.002 

20-22 °C 0.0072 0.109 -0.0136 -0.0654 -0.0602 -0.0612 -0.0115 0.0033 

22-24 °C -0.0562 0.0279 0.025 -0.0309 0.0637 0.0231 -0.0579 -0.0631 

24-26 °C -0.0093 -0.0723 0.0698 0.1029 -0.0662 -0.0066 -0.0496 -0.0194 

26-28 °C -0.0533 -0.0466 -0.0015 -0.0309 0.0767 0.0137 0.1096 0.0899 

28-30 °C 0.0546 -0.0308 -0.0428 0.0273 0.0147 0.0427 -0.0085 -0.0158 

>30 °C 0.0431 -0.0407 0.0021 0.0017 0.0131 0.0034 0.0007 -0.0006 
 

Notes: This table reports the correlation coefficients between PM2.5 and temperature indicators conditional on county 

fixed effects and year fixed effects. All variables are calculated using the average between June 7th and 8th during the 

period 2013-2016.  




