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1 Introduction

The mortality and morbidity impact of air pollution is an essential component of the overall benefit
of environmental regulations. The existing literature has primarily focused on the impact of air pol-
lution on mortality.1 Among the studies on the morbidity impact of pollution, most of them focus
on specific health outcomes (such as asthma attacks) and the associated physiological channels of
the impact.2 There is a limited understanding of the aggregate morbidity cost of air pollution from
all health outcomes and a lack of a commonly agreed method to measure it (WHO, 2015). Differ-
ent from mortality, morbidity outcomes have diverse endpoints ranging from respiratory problems
to cardiovascular diseases and lung cancer, as well as multiple complications that could arise for
those with pre-existing conditions. Therefore, the morbidity outcomes are much harder to col-
lect and measure on a large scale than mortality (Landrigan et al., 2018), especially in developing
countries.

As a result of the increased pressure from economic development and lax environmental reg-
ulations, developing countries and especially emerging economies, such as China and India, are
currently experiencing the worst air pollution in the world. This is especially concerning given
the size of the population and the lack of access to adequate health care in these countries. While
policymakers in these countries are increasingly aware of the negative impacts of air pollution
on human health and quality of life, data on health outcomes are limited and rigorous empirical
evidence on the health impact of air pollution is only emerging recently. Consequently, the dose-
response relationships (between pollution exposure and health outcomes) estimated using data from
developed countries have often been used as critical inputs for evaluating environmental regulations
in developing countries, raising the question of external validity of this benefit-transfer approach
(Arceo et al., 2015; OECD, 2016).

This study fills these two gaps in the literature by offering, to our knowledge, the first com-
prehensive, nationwide analysis of how air pollution affects health expenditures from all medical
conditions for a developing country.3 We combine hourly air pollution readings from all monitoring
stations from January 2013 to December 2015 with the universe of credit and debit card (or ‘bank
card’) transactions in China during the same period. The transaction data come from the UnionPay
Network, the largest payment network in the world, and the only inter-bank payment network in

1For papers on mortality, see for example Chay and Greenstone (2003); Currie and Neidell (2005); Currie and Walker
(2011); Chen et al. (2013); Knittel et al. (2015); Clay et al. (2016); Ebenstein et al. (2017); Anderson (2020).

2For example Pope (1989); Dockery (2009); Pope and Dockery (2012); Neidell (2004); Schlenker and Walker (2016).
3A growing literature uses health insurance claims data to examine the impact of air pollution on healthcare spending
in the U.S. (Deschênes et al., 2017; Williams and Phaneuf, 2016; Deryugina et al., 2019). In developing countries,
health insurance tends to be inadequately provided and detailed insurance data at the national level are hard to find.
The current system of health-care delivery in China is fragmented, hospital-centered and treatment-dominated, with
little effective collaboration among institutions in different tiers of the system (Wang et al., 2018b). This is a key
challenge in obtaining consistent micro-level data of health outcomes for the whole country.
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China. The data contain transactions for 2.7 billion bank cards that contribute to over $5 trillion
of economic transactions annually. In addition to covering 51% of private healthcare spending
in China in 2015, this dataset also includes spending in over 300 non-healthcare categories. Our
approach of using healthcare spending data (which include both the frequency and value of transac-
tions) allows us to quantify the aggregate healthcare cost without explicitly examining every health
outcome that is negatively affected by pollution. Although our data on bank card transactions in
healthcare facilities do not contain information on the specific diagnoses or treatment associated
with these transactions, we provide evidence on the strong correlation between our spending data
and health outcomes at both the macro- and micro- levels.

There are two key empirical challenges in identifying the causal effect of air pollution on health-
care spending. The first challenge is the potential endogeneity in contemporaneous and lagged
PM2.5 that we use to capture pollution exposure. The endogeneity can arise from unobservables
that affect both the pollution level and consumer spending (e.g., economic conditions). In addition,
there could be measurement errors in constructing pollution exposure using air quality monitor-
ing data. Ideally, residents’ pollution exposure should be measured by the population-weighted
local pollution, because the pollution level could vary greatly across locations within a city. How-
ever, monitoring stations are located sparsely across the country, preventing us from constructing
population-weighted averages at a fine geographic scale.

To deal with this challenge, we construct instrumental variables by modeling the spatial spillovers
of PM2.5 due to fine particles’ long-range transport property. Our IV approach is similar to the iden-
tification strategy used in Bayer et al. (2009), Williams and Phaneuf (2016), and Deryugina et al.
(2019). The first two studies construct IVs based on air quality predictions from the EPA’s source-
receptor matrix that uses distant polluting facilities as inputs, while the latter study exploits changes
in daily wind directions in a county as exogenous shocks to local air pollution. Based on a parsi-
monious model of PM2.5 concentration in the spirit of EPA’s air quality modeling, we disentangle
the contribution of local and non-local sources and use PM2.5 concentration from non-local sources
as an exogenous variation. This allows us to leverage factors that directly affect pollution transport
– wind patterns and other meteorological conditions in both the source and receptor cities, as well
as geographic information such as distance – in constructing IVs.

Our instruments are essentially weighted averages of lagged PM2.5 levels in distant cities where
the weights are a function of the distance between the source and receptor cities, wind direction
and speed, and other meteorological conditions. To examine the role of different identification
variations, we experiment with alternative IVs, including the historical average and hence time-
invariant level of air pollution in source cities, IVs that do not depend on local conditions, wind
direction in the destination city interacted with regional dummies as in Deryugina et al. (2019), as
well as placebo tests that randomize wind direction and speed. Our results indicate that both wind
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direction and other meteorological conditions (wind speed, precipitation, and temperature) provide
important exogenous identifying variation.

The second challenge in estimating the causal effect of pollution on healthcare spending arises
from the nature of the high-frequency data. On the one hand, the rich data variation provides an
opportunity to examine the dynamic impacts of past pollution exposure. On the other hand, daily
pollution measures exhibit high autocorrelation. A direct OLS or IV estimation that includes many
lagged terms leads to oscillating and imprecise estimates. We propose a flexible distributed lag
model that extends the Almon technique (Almon, 1965) and uses finite-order B-splines (Corradi,
1977) to flexibly capture the effects of long lags. We combine this framework with the IV method
to address endogeneity in contemporaneous and lagged air pollution measures. Our empirical
framework is semiparametric in nature and can flexibly accommodate various data patterns.4

Our analysis based on daily healthcare spending by city shows that a short-run (i.e., contem-
poraneous) increase of 10 µg/m3 in PM2.5 would lead to 0.65% more healthcare transactions. A
medium-run (i.e., three-months) increase of PM2.5 would lead to 2.65% more healthcare transac-
tions. The impact of PM2.5 differs across health facilities: spending in Children’s hospitals is more
than twice as responsive as spending in other types of health facilities. For non-healthcare spending,
we find a negative impact of PM2.5 in the short-term but no significant impact beyond a few weeks.
In addition, predicted worsening of air quality the next day increases the current day’s spending in
both health and non-healthcare categories. These results provide evidence of avoidance behavior
whereby consumers reduce outdoor activities (such as shopping) to mitigate pollution exposure.

We have examined a host of robustness checks, including various parametric specifications of
the medium-term impact, different buffer zones, alternative B-spline segments, more flexible con-
trols of meteorological conditions, the inclusion of other pollutants such as CO, SO2 and average
PM2.5 in nearby cities, and different sample cuts. Our results are robust to these alternative speci-
fications. The estimates are also similar if we conduct the analysis using the number of healthcare
transactions per capita, or if we include controls for card penetration over time.

In monetary terms, a medium-run reduction of 10 µg/m3 in daily PM2.5 would lead to annual
savings in healthcare spending that exceed 59.6 billion yuan, or $9.2 billion, with a 95% confi-
dence interval ranging from 4.0-115.2 billion yuan.5 This is equivalent to $22.4 per household per
year. Bringing down China’s PM2.5 to the World Health Organization’s (WHO) annual standard
of 10 µg/m3 could lead to savings exceeding $42 billion per year, nearly 7% of China’s national
healthcare spending or 0.4% of China’s GDP in 2015.

How does the estimated healthcare cost from this study compare to the mortality cost estimates

4This framework is less restrictive than a more intuitive framework that regresses the current-day spending on the
average pollution during a time window (e.g., the past week or month), where the effect of pollution is assumed
constant over the time window.

5We use an exchange rate of $1= 6.5 yuan throughout this analysis.
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in the literature? Ebenstein et al. (2017) examine the mortality impact of PM10 in China for different
age groups. Their results imply that the monetized mortality cost based on the Value of a Statistical
Life (VSL) is $13.4 billion from a 10 unit increase in PM10. Our estimated healthcare cost of
$9.2 billion is therefore about two-thirds of the mortality cost estimates in the literature. The ratio
between pollution’s healthcare cost and mortality cost in China is similar to the estimate derived
by Deschênes et al. (2017) who analyze reductions in NOx emissions in the U.S. These findings
contribute to a better understanding of the significance of air pollution’s morbidity cost and are
in contrast to the common perception that morbidity is a minor component of the overall health
impact of air pollution.6

Our study makes several contributions to the literature. First, to our knowledge, this is the first
comprehensive study that analyzes the effect of pollution on healthcare spending at the national
level for a developing country. Our paper adds to the growing literature that examines air pollution
in developing countries (Arceo et al., 2015; Chen et al., 2013; Greenstone and Hanna, 2014; He
et al., 2016; Ebenstein et al., 2017). Different from these studies which all focus on mortality,
our analysis studies the impact of air pollution on spending in healthcare facilities. Among its
recommendations to contain pollution’s economic costs, the Lancet Commission on pollution and
health (Landrigan et al., 2018) calls for further research to improve the morbidity cost estimates of
pollution, recognizing that it is more difficult to measure the morbidity impact than mortality. Our
analysis directly contributes to this research endeavor and highlights the economic magnitude of
the morbidity impact.

Second, our analysis provides an alternative to the benefit-transfer approach commonly used
in the literature to evaluate the health impact of air pollution in developing countries (due to a
lack of rigorous empirical evidence from these countries). The benefit-transfer approach takes the
dose-response function estimated in developed countries and interpolates the mortality or morbid-
ity benefit from reduced air pollution to developing countries (Lelieveld et al., 2015; World Bank,
2007). This approach may lead to significant inaccuracies due to differences in air pollution levels,
baseline health conditions, and access to health care between these two groups of countries. In
addition, to monetize the health impact, the dose-response function is then combined with some-
times ad hoc assumptions on the monetary costs for different illnesses (e.g., the cost of one asthma
attack). Our analysis is not subject to these concerns. Our estimates suggest that China’s elevated
PM2.5 level relative to the WHO’s annual standards entails $42 billion additional healthcare expen-
diture in 2015. This estimate is an order of magnitude larger than the estimate in OECD (2016)
based on the benefit-transfer approach.

Third, the rich spatial and temporal variation in our data allows us to examine both the short-

6EPA (2011) estimates that the morbidity benefit from the Clean Air Act from 1990 to 2020 is about 8% of the mortality
benefit. WHO (2015) applies an additional 10% of the overall mortality cost as an estimate for the morbidity cost.
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and medium-term impacts of air pollution on healthcare spending. Most studies focus on the con-
temporaneous impact by using daily or quarterly data and abstract away from the dynamic impact
of air pollution. This is partly because it is difficult to disentangle the short-term and medium-
term health impacts when current and lagged air pollution variables are both endogenous and at
the same time exhibit high autocorrelations. We address this challenge by developing a novel
approach that adapts a flexible distributed lag model to the IV setting. Our method is semipara-
metric, computationally light and has several advantages over existing methods such as VARs or
local projection methods. It delivers a smooth impulse response function of both the short- and
medium-term effects, easily incorporates instrumental variables, and can accommodate theoretical
restrictions reflecting researchers’ prior about the data generating process. To our knowledge, our
study is the first analysis in the economics literature that exploits this technique to study the short-
and medium-term health impacts with high-frequency data.

The rest of the paper is organized as follows. Section 2 describes the data and air pollution
challenges facing China. Section 3 discusses our empirical framework and the identification strat-
egy. Section 4 presents estimation results and Section 5 calculates the morbidity cost based on
parameter estimates. Section 6 concludes.

2 Data

Our analysis is based on three comprehensive, nation-wide, micro-level datasets of air pollution,
consumer spending by category, and meteorology conditions from January 2013 to December 2015,
aggregated to daily and city-level. These datasets enable us to evaluate the impact of air pollution
on spending in both the short- and medium-terms, as well as heterogeneous impacts across regions
and pollution levels.

2.1 Air Pollution

For nearly four decades, China has maintained its GDP growth at an annual rate of nearly 10% and
has transformed from an agricultural economy to a manufacturing-dominated economy. China be-
came the world’s largest exporter in 2009 and the largest trading nation in 2013. This unprecedented
economic growth is largely propelled by fossil fuels, with coal accounting for about two-thirds of
aggregate energy consumption and oil nearly twenty percent. China is by far the world’s largest
energy consumer, accounting for roughly a quarter of the world’s total energy consumption and
half of the world’s coal consumption.

Fast economic growth and rising energy consumption have put enormous pressure on the en-
vironment, with air, water, and soil pollution becoming serious challenges that adversely affect
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human health, ecosystems, and the quality of life.7 Improving air quality has become an important
policy goal for the central government, which extensively revised the Environmental Protection
Law in 2014 and defined goals of pollution abatement in both the 12th (2011 - 2015) and 13th
(2016 - 2020) five-year plans.

Fine-scale air quality data at monitoring stations in China only became publicly available in
2013. The Ministry of Environmental Protection (MEP) publishes hourly measures of PM2.5, CO,
SO2, NO2, and O3. The number of monitoring stations and cities covered increased steadily from
1003 stations in 159 cities in 2013 to 1582 stations in 367 cities in 2015. We calculate the daily
concentration of PM2.5 and other pollutants at the city level by averaging data across monitoring
stations within a city.

Air pollution affects human health mainly through its impact on respiratory and cardiovascular
systems. Several decades of study in epidemiology and more recently in economics has associated
exposure to air pollution with increases in mortality and morbidity risks (Brunekreef and Holgate,
2002; Pope and Dockery, 2012). Fine particles (PM2.5), the focus of our analysis, are shown
to be especially detrimental to health as they can penetrate deep into lungs and carry toxins to
other organs. High levels of PM2.5 irritate respiratory and cardiovascular systems and can lead to
aggravated asthma, lung disease, heart attacks, and stroke.

Figure 1 plots the three-year average of PM2.5 from 2013 to 2015 across cities. China’s na-
tionwide average during this period is 56 µg/m3 (with a standard error of 46 µg/m3), which is
much higher than the annual standard of 12 µg/m3 that is set by the U.S. Environmental Protec-
tion Agency and also higher than the standard of 35 µg/m3 by China’s MEP.8 Notably, there is
considerable regional disparity. Cities in northern and central China with a high concentration of
manufacturing industries suffer from the most severe pollution, with many of them experiencing a
three-year average PM2.5 concentration of 90 µg/m3 or higher. The less-developed regions in the
west and wealthy regions in the south have better air quality. The latter, especially regions along
the coast, has seen noticeable improvement in air quality as a result of shutting down or relocating
polluting industries and reorienting the industry structure toward high tech and service industries.

One advantage of our empirical analysis is the rich variation in pollution measures both across
cities and over time. To illustrate the time-series variation, we present in Appendix Figure A1 the
daily PM2.5 concentration for the nation (the top panel) and separately for four regions (the bottom
panel). The daily PM2.5 concentration is higher than 35 µg/m3, the official MEP standard, in most
days for all parts of the country. The northern regions have more pronounced peaks in winter than

7Lelieveld et al. (2015) estimate that air pollution led to 1.3 million premature deaths in China in 2010, accounting for
40% of the world’s total premature deaths in the same year. World Bank (2007) puts the health cost of air pollution at
1.2-3.8% of China’s GDP in 2003.

8U.S. EPA’s daily standard is 35 µg/m3 and annual standard is 12 µg/m3. China’s MEP sets limits on PM2.5 for the
first time in 2012 to take effect in 2016: the daily standard is 75 µg/m3 and annual standard is 35 µg/m3.
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the southern region, largely because of the coal-fired central heating systems north of the Huai River
(Chen et al., 2013). The pollution level is trending downwards in all regions, driven by tightened
government regulations, private and public investment in waste treatment, and changes in China’s
overall industry structure.

2.2 Credit and Debit Transactions

The second main database for our analysis is the universe of credit and debit card (or ‘bank card’)
transactions in China that are settled through the UnionPay network. The UnionPay network is the
only inter-bank payment network in China and is state-owned. It is the largest network in the world
in terms of both the number and value of transactions, ahead of Visa and Mastercard. There were
2.7 billion cards in use from 2013 to 2015, covering over 300 merchant categories and contributing
to over $5 trillion of economic transactions annually.9,10 We observe the location, time, merchant
name, and amount for all transactions and aggregate the data to daily spending by category and city.
To our knowledge, these are the most comprehensive and fine-scale data on consumer spending in
China in temporal and spatial dimensions, and we are the first to utilize them for academic research.
It is worth noting that during our sample (2013-15), the use of mobile payment (such as WeChat Pay
and AliPay) was limited. In 2015, the share of mobile payments in China’s total retail consumption
was only 8%, compared to 44% for debit and credit cards (Kapron and Meertens, 2017).

Healthcare spending includes transactions at hospitals, pharmacies, and other healthcare facil-
ities (e.g. small health clinics). We exclude transactions exceeding 200,000 yuan ($30,770).11 In
2015, hospitals account for 83.5% of healthcare spending and 56.8% of healthcare transactions.
Different from pharmacies in the U.S., such as CVS or Walgreens, most pharmacies in China only
carry medicine and do not sell daily necessities. Pharmacies account for 6.0% of healthcare spend-
ing and 31.0% of healthcare transactions in 2015. The remaining transactions are accounted for by
other healthcare facilities. Within hospitals, we identify People’s hospitals and Children’s hospitals
based on merchant name. People’s hospitals are state-owned general hospitals and tend to be the
largest health care facilities in a city. Each city has at least one People’s hospital but not all cities
have Children’s hospitals, which accept mostly child patients. People’s and Children’s hospitals
account for 24.1% and 4.2% of total healthcare spending respectively, and 26.2% and 9.0% of

9There were 800 million bank-card holders in China in 2015. The latest available census (2010-2011) shows that
China’s population was 1.33 billion, out of which 221 million were below the age of 15 (and ineligible to hold bank
cards). Of the 1.1 billion eligible individuals, 72% hold at least one bank card.

10There are seven major categories and 300 subcategories. The major categories are: retail; wholesale; direct sales; real
estate and finance; residential and commercial service; hotel, restaurant, and entertainment; and education, health,
and government service. Merchants are classified by these categories.

11200,000 yuan ($30,770) is the 99th percentile of transaction values across all categories. Transactions exceeding
200,000 yuan are excluded from the database due to UnionPay’s data quality assurance protocol that aims to remove
potentially fraudulent transactions (a practice called “cash out”).
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transactions in 2015.
Our data account for 31% of total private healthcare spending in 2013. As card penetration

grew, the coverage rose to 51% in 2015, similar to the share of bank card transactions in other
sectors. According to official statistics from the Central Bank of China (2015), bank card transac-
tions accounted for 48% of overall spending in retail sales of consumer goods in the third quarter
of 2015. In comparison, spending from credit and debit cards accounts for 55% of all consumer
spending in 2012 in the U.S. (Bagnall et al., 2014).

Appendix Figure A2 illustrates the spatial pattern of card adoption by plotting the number of
active cards per resident by city in 2015. Card adoption is higher in coastal or high-income cities.
Table A1 in Appendix A correlates the cross-sectional card adoption rate with city demographics.
Cities with a higher household income and education and a younger population are associated with
higher adoption.

In addition to healthcare spending, we also analyze spending in non-healthcare categories, such
as daily necessities. We closely follow the United Nations’ Classification of Individual Consump-
tion According to Purpose (COICOP) in defining necessity goods.12 Relative to healthcare spend-
ing, spending on daily necessities is three times as large and transactions three times as frequent.
A unique feature of Chinese consumers’ shopping behavior is their frequent trips to supermarkets
for groceries (often on a daily basis). We therefore use supermarket spending as another proxy for
daily consumption, in addition to spending on necessities.13 Spending in supermarkets is over four
times as large as healthcare spending in value and five times as frequent in 2015.

To illustrate inter-temporal spending patterns, Appendix Figure A3 plots weekly healthcare
spending and the number of transactions at the national level from 2013 to 2015. There is a signif-
icant drop in both the spending amount and the transaction frequency during holidays. In addition,
both variables have more than tripled during our sample period due to the diffusion of bank cards.
We control for these two salient features in our regression analysis through holiday fixed effects
and city-specific time trends.

To graphically illustrate the relationship between pollution and spending, we plot the log num-
ber of transactions against contemporaneous PM2.5 in Figure 2. All other controls (weather, city
trend, etc.) are partialled out, so the figure displays the net correlation of pollution with spend-
ing. For ease of presentation, we group PM2.5 by percentiles and plot the in-group average of log
number of transactions against each percentile of PM2.5. In addition to the aggregate number of
healthcare transactions (top left), we also plot the relationship separately for pharmacies, People’s
hospitals, Children’s hospitals, and two non-healthcare categories (necessities and supermarkets).
PM2.5 has a positive relationship with spending in all health categories and a negative relationship

12United Nations’ COICOP defines necessity goods as 1) food and non-alcoholic beverages, 2) alcoholic beverages,
tobacco and narcotics, 3) clothing and footwear, 4) recreation and culture, and 5) restaurants and hotels.

13We exclude supermarkets from necessity spending because they sell a large variety of goods other than necessities.
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with non-health spending across nearly all quantiles of PM2.5. The contrast in the relationship of
PM2.5 with health versus non-health spending is interesting and suggests potential causal impacts:
elevated air pollution negatively affects health and leads to avoidance behavior among consumers.
We quantify the causal impact in our regression analysis below.

2.3 Health Insurance and Health Outcomes

Health care in China is financed by government programs, individuals’ out-of-pocket spending, and
commercial health insurance. There are three major public health insurance programs, covering ur-
ban employees, urban non-employee residents, and rural residents, respectively. Through massive
government subsidies and successful public campaigns, China achieved nearly universal health
care coverage in 2011, when 95% of the population was covered through these three government
supported insurance programs, up from 65% in 2009 (Yu, 2015). Commercial health insurance is
rare and accounts for a negligible fraction of national health spending (Choi et al., 2018).

Despite the nearly universal health insurance in China, the coverage is low with high coinsur-
ance rates (the fraction of health care expenses paid by individuals out of pocket) and low coverage
ceilings that vary across insurance programs, healthcare facilities, and cities (or counties) which are
the local risk pooling units in China (Meng and Yang, 2015). For example, the 2016 coinsurance
rate (after deductible) in Shanghai varied from 25%-50% across tiers of healthcare facilities for em-
ployees and 10%-30% for retirees for out-patient visits and 8-20% for in-patient visits.14 In terms
of the drug coverage, the Ministry of Human Resources and Social Security maintains the National
Reimbursement Drug List. Only drugs on this list are covered by China’s public health insurance
programs, some in full (type A drugs) and others partially (type B). In most cases, individuals can
purchase drugs without a doctor prescription.

Nearly all covered medical expenses (e.g., hospital visits and drug purchases) require some
individual contributions through either bank card payments (which are included in our database) or
cash.15 In most cases, out-patient care requires payment up front before receiving treatment, while
in-patient care is billed several times a week (Jha, 2014; Browne, 2005). In light of this, the number
of health-related transactions recorded in our database should capture well the number of visits to
healthcare facilities and serves as a key outcome variable in our empirical analysis.

The bank card transactions do not identify specific disease diagnoses or treatment associated
with the spending. This may raise concerns of whether the healthcare spending data correspond
well to health outcomes. We provide several pieces of evidence that validate the data quality. We
first obtain data on the aggregate number of hospital visits by in-patients, out-patients, and ERs in

14http://sh.bendibao.com/zffw/2016325/158153.shtm. Last accessed in Nov 2018.
15The fraction of medical expenses that is covered by the government health insurance programs is directly billed on

health insurance cards and goes through a different clearing system from UnionPay.
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each province from the annual China Statistical Yearbook that is published by the National Bureau
of Statistics (NBS). This allows us to examine the correlation between our healthcare spending data
and the national-level healthcare statistics. Appendix Figure A4 plots the number of card transac-
tions in hospitals against the number of hospital visits in logarithms at the province-year level for
our sample period. There is a close relationship between these two series with a high correlation
coefficient: 0.86 in logs and 0.75 in levels, indicating that the number of card transactions is a good
proxy for hospital visits.

Appendix Table A2, Table A3, Figure A5, and Figure A6 provide further evidence based on
two confidential micro-level data sets, including the universe of medical emergency calls in Beijing
and healthcare insurance claims in Ganzhou city, Jiangxi Province. As the capital city, Beijing has
a highly educated population and a high penetration of bank cards. Ganzhou, on the other hand,
is a medium-sized city that is primarily rural. In both cases, there is a strong correlation between
our spending data and micro-level health outcomes, which is reassuring. Patterns from these very
different examples suggest that the spending data provide reliable measures of health outcomes.
Given the lack of micro-level data on health outcomes at the national level, our data provide to
our knowledge the only alternative health-related measures that are both granular and have national
coverage in China.

2.4 Meteorology Data and Summary Statistics

We obtain meteorology data from the Integrated Surface Database (ISD) that is hosted by National
Oceanic and Atmospheric Administration (NOAA). The ISD dataset includes hourly measures of
temperature, precipitation, wind speed, and wind direction for 407 monitoring stations in China,
covering most major Chinese cities. We match cities with the nearest weather station according to
their geographic coordinates and compute daily temperature and wind speed from a simple average
of the hourly data.

ISD’s hourly measure of precipitation suffers from noticeable measurement errors, so we use
daily precipitation from NOAA’s Global Surface Summary of the Day database (GSOD) instead.16

Daily wind direction is calculated by adding up twenty-four hourly vectors of wind direction, where
the length of each vector is the hourly wind speed.

Table 1 reports the summary statistics for all variables used in our study at the city-day level.
The daily PM2.5 concentration is on average 56 µg/m3, with the inter-quartile range from 27 to 69
µg/m3. The maximum recorded daily PM2.5 is 985 µg/m3. Sixty-seven percent of these city-day
observations record a concentration level that is above the U.S. daily standard of 35 µg/m3. For
healthcare spending, the average daily number of transactions is 7,229 per city, and the average

16GSOD reports daily precipitation using Greenwich Mean Time, which is the cumulative rainfall from 8 a.m. Beijing
time to 8 a.m. the next day. We use this measure as our daily precipitation.
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daily spending is 6.7 million yuan.

3 Empirical Framework

In this section, we first present a flexible econometric model that allows us to estimate the short-
and medium-term impacts of air pollution on healthcare spending. Then we discuss our estimation
strategy and the construction of instrumental variables.

3.1 Flexible Distributed Lag Model

Air pollution has both short- and long-term consequences on healthcare spending. Different from
quarterly or annual data commonly used in the literature, our daily data allow us to characterize
the path of health impacts from both contemporaneous and past air pollution exposure. We use the
following distributed lag model (DL) to capture this relationship:

yit =
k

∑
τ=0

βτ pi,t−τ +xitα +θi · t +ξi +ηw + εit (1)

where yit is daily healthcare spending in city i on day t, pi,t−τ is either contemporaneous (τ = 0) or
lagged pollution exposure (τ ≥ 1), and k is the number of lagged pollution variables. xit includes
a rich set of controls such as weather conditions, holiday fixed effects, day-of-week fixed effects,
and seasonality. θi · t is a city-specific linear time trend, ξi is city fixed effect, and ηw is week-
of-the-sample fixed effect. The key parameters of interest are βτ ’s, which capture the short- and
longer-term causal impacts of pollution exposure on healthcare spending.

The short-term impact of pollution is characterised by β0, which captures responses in health-
care spending to a contemporaneous increase in pollution concentration, everything else fixed. The
long-term impact, or the cumulative impact of pollution, is characterised by ∑

k
τ=0 βτ , which reflects

changes in healthcare spending as a result of persistent elevation in past pollution exposure. We are
interested in quantifying both the short-term and the long-term impact of pollution.

Suppose, for a moment, that there is no measurement error in pollution exposure pi,t−τ and
that there are no omitted variables, two important issues we return to in the next section. Then
the DL model can be estimated using OLS. But the linear estimation with a large number of lags is
undesirable due to the high autocorrelation among the lag variables pi,t−τ . The parameter estimates
tend to be imprecise with artificial oscillations as shown in Appendix Table B4. Alternatively, one
can use the average pollution during a time window (such as the past week or past month) as in the
following framework:

yit = β p̄it +xitα +θi · t +ξi +ηw + εit , (2)
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where p̄it =
1

k+1 ∑
k
τ=0 pi,t−τ . Although this specification is easy to implement and addresses the is-

sue of high autocorrelation, it imposes a strong restriction that all lagged pollution variables within
the time window have a constant impact on current-day spending and does not allow researchers to
examine the dynamic time-path of pollution’s impact. We present results from this specification as
a robustness check in Section 4.2.

To allow for flexible and smooth longer-term impacts and at the same time dealing with the
issue of high autocorrelation, we extend Almon (1965) and specify βτ ’s in equation (1) as cubic
B-spline functions of time with z segments (where z is a constant chosen by econometricians),
following Corradi (1977).17 The intuition is that any smooth function (here βτ can be treated as a
function of time) defined on a closed interval [a,b] can be approximated uniformly closely by basis
splines.

To illustrate our approach, consider the example of cubic B-splines with one segment which
amounts to a simple 3rd order polynomial:

βτ = γ0 + γ1τ + γ2τ
2 + γ3τ

3, (3)

where the contemporaneous effect of pollution on spending is captured by β0 = γ0, the effect of
yesterday’s pollution is β1 = γ0+γ1+γ2+γ3, and the effect of pollution from τ days’ in the past is
βτ = γ0 + γ1τ + γ2τ2 + γ3τ3. Appendix B.1 describes how to extend this to the more general case
where there are multiple segments and the coefficients βτ are piecewise polynomials in τ . Plug (3)
into (1) and rearrange terms, we have:

yit =
k

∑
τ=0

βτ pi,t−τ +xitα +θit +ξi +ηw + εit

= γ0 pit +(γ0 + γ1 + γ2 + γ3)pi,t−1 + ...+(γ0 + γ1k+ γ2k2 + γ3k3)pi,t−k

+xitα +θit +ξi +ηw + εit

= γ0v1,it + γ1v2,it + γ2v3,it + γ3v4,it +xitα +θit +ξi +ηw + εit (4)

where v1,it = pit + pi,t−1 + pi,t−2 + ...+ pi,t−k, v2,it = pi,t−1 +2pi,t−2 + ...+kpi,t−k, v3,it = pi,t−1 +

22 pi,t−2 + ...+ k2 pi,t−k, and v4,it = pi,t−1 +23 pi,t−2 + ...+ k3 pi,t−k, respectively. These four terms
in equation (4) now constitute our key regressors. The first term, v1,it , is the sum of past pollution
exposure. The second to the fourth terms, v2,it , ...,v4,it , are weighted sums of past exposure with
the weights being polynomial terms of time. With this reformulation, we only need to estimate four
coefficients {γi}3

i=0 rather than k+ 1 coefficients (the number of lags plus current day). Once we

17Almon (1965) first proposed approximating the lag coefficients with polynomial functions. Poirier (1975), Corradi
and Gambetta (1976) and Corradi (1977) suggested using spline functions, which impose weaker restrictions on the
lag coefficients than polynomials while keeping the number of parameters small.
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obtain the OLS or IV estimates and standard errors of γ’s, we can recover βτ ’s using equation (3).
In summary, the flexible distributed lag model transforms a series of many lagged pollution

variables {pi,t−τ}τ into a small number of {v·,it}’s, which are weighted sums of past pollution ex-
posure with the B-spline functions of time as weights. This approach has several advantages over
competing distributed lag models, the most popular one being the geometric decay model. First,
these new regressors {v·,it} exhibit much less multicollinearity than lagged pollutions {pi,t−τ}k

τ=0.
Second, this model allows for much more flexible time-series patterns of the marginal impact βτ

than those in geometric decay models. Third, it is straightforward to impose additional restric-
tions that are generated by economic theories or reflect prior knowledge of the data generating
process. For example, if tomorrow’s pollution exposure (forward one period) should not affect
current healthcare spending, then β−1 = 0. If pollution exposure prior to k lags has no effect, then
βk+τ = 0,∀τ ∈ N and τ > 0. These assumptions can be imposed individually or jointly as esti-
mation constraints and tested as linear restrictions.18 Finally, we allow for an arbitrary correlation
between the contemporaneous error term εit and past error terms, which is difficult in geometric
decay models.

Our benchmark specification incorporates 90 daily lags (k = 90) and allows the time series
patterns of the marginal impact βτ in each month to be characterized by a separate cubic poly-
nomial. This corresponds to a cubic B-spline with three segments, which leads to six regressors
{v1,it , ...,v6,it} and six γ parameters to be estimated. We examine robustness to different numbers
of lagged pollution variables and spline segments in Section 4.2.

3.2 Identification

3.2.1 Sources of Endogeneity

There are multiple factors that would render the OLS estimates as discussed above inconsistent.
As recognized in the recent literature on estimating the causal impact of air pollution on health
(Currie and Neidell, 2005; Arceo et al., 2015; Knittel et al., 2015; Schlenker and Walker, 2016;
Deryugina et al., 2019), the pollution exposure variable likely suffers from measurement errors.
This is because pollution levels vary across locations within a city and pollution readings from
different monitoring stations are averaged to the city level. For example, among the 9 monitoring
stations in the urban core of Beijing, the average difference between the maximum and minimum
pollution level in a day is 35 µg/m3 in 2014, a sizable gap given the daily average of 87 µg/m3

at the city level. Since population is unevenly distributed within a city and the spatial distribution
of monitoring stations does not align with residential areas, the arithmetic mean across all stations

18Another benefit over other distributed lag models is that this specification does not require instruments for the lagged
dependent variable (lagged consumption in our setting), which is often challenging.
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within a city may not accurately reflect the city population’s pollution exposure. An ideal measure
would be the population-weighted average of local air quality, but this is impractical due to the
lack of air pollution data at the finer spatial level (e.g., city block or zip code) and the fact that
many monitoring stations are located outside of population centers. In addition, our daily pollution
measure is a simple average of hourly measurements and abstracts away the temporal variation.
To the extent that these measurement errors are classical, our OLS estimates would suffer from
attenuation bias.19 City fixed effects are unlikely to adequately address these measurement errors,
which vary over time. For example, on days when there is more local pollution in densely populated
areas, the difference between the population’s pollution exposure and the simple average pollution
will be larger.

Another factor that makes OLS estimates inconsistent is unobservables that are correlated with
pollution. Despite our rich set of controls for weather and local conditions (e.g., city specific time
trend and seasonality), there are various sources of temporal variations that cannot be adequately
controlled for. For example, permanent local shocks to healthcare spending, such as income shocks,
could be correlated with economic activities and thus with air quality. Temporary local shocks, such
as major sport and political events and traffic congestion, could affect both the air pollution level
and healthcare spending (and consumer activities in general).20 These unobservables that are not
absorbed by our location fixed effects and trend/seasonality interactions would render the air quality
variable endogenous.

3.2.2 IV Construction

To address these concerns, we construct instruments by exploiting the spatial spillovers of PM2.5

due to its long-range transportability. PM2.5 particles are light, can travel at a speed of 10 mph,
and often reside in the atmosphere for 3-4 days (Yassin et al., 2012; Díaz and Dominguez, 2009;
Riva et al., 2011; Joksić et al., 2009). Their region of influence is determined by wind speed
and direction. Based on atmospheric modeling, Zhang et al. (2015) document significant regional
pollutant transport in China. For example, nearly half of the pollution in Beijing originates from
sources outside of the municipality. These results suggest that PM2.5 from other cities could serve
as exogenous shocks to the pollution level for a given city.

We use a parsimonious model to apportion observed pollution levels into components from
local and non-local sources (see Appendix B.2 for more details on modeling and IV construction).
Denote the pollution level of city i in time t as pit , which is a function of past pollution and pollution

19Satellite data on Aerosol Optical Depth (AOD) offer an alternative measure of the ground level pollution with finer
spatial resolutions (e.g., 3 km by 3 km from Terra satellite and 10 km by 10 km from Aqua) (Zou, 2018). However,
there are a lot of missing values at the daily level due to cloud coverage.

20An unexpected increase in congestion on a given day (e.g., due to accidents or weather conditions) raises air pollution
and at the same time reduces healthcare spending (residents might prefer to stay at home on more congested days).
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from other cities:

pit = θ1 pi,t−1 + ∑
j 6=i,di j≤r

p+j→i, t︸ ︷︷ ︸
PM2.5 imported

from nearby cities

+ ∑
j 6=i,di j>r

p+j→i, t︸ ︷︷ ︸
PM2.5 imported

from distant cities

+µit

where θ1 captures the amount of pollution that is carried over from the previous day (which is
affected by local meteorological conditions), p+j→i, t denotes the amount of PM2.5 pollutants in
city i at time t that is originated from city j, di j represents the distance between cities i and j, r

is the radius of a buffer zone, and µit is the error term. The total amount of PM2.5 imported by
city i is the sum of ∑ j 6=i,di j≤r p+j→i, t (pollution imported from cities within the buffer zone) and

∑ j 6=i,di j>r p+j→i, t (pollution imported from cities outside the buffer zone).
The contribution of non-local sources to the pollution level of a given city could be affected

by a host of meteorological conditions and is the subject of sophisticated air quality modeling.21

We use the following parsimonious model to capture the key feature that PM2.5 pollutants dissipate
over time and across space as they move:

p+j→i, t = max[cosΦ ji,0] · p j,t−si jt · f (di j,w j,t−si jt ,wi,t), (5)

where p+j→i, t is the amount of pollution that enters city i on day t, having originated from city j on
day t− si jt . Pollution decays over time as it travels and only part of the pollution from city j enters
the atmosphere of city i. This is represented by f (di j,w j,t−si jt ,wi,t) ∈ [0,1], which is a function of
the distance between the two cities (di j), weather conditions in the source city when the pollution
is generated (w j,t−si jt ), and weather conditions in the destination city when the pollution enters its
atmosphere (wi,t). To take into consideration the effect of wind direction and speed, we invoke a
vector decomposition. Let Φ ji denote the angle between the wind direction and the direction from
city j to city i, and v j,t−si jt denote the wind speed in city j. The amount of pollutants carried toward
city i from city j is assumed to be cos(Φ ji)p j,t−si jt at speed cos(Φ ji)v j,t−si jt . Note that p+j→i, t is
zero if cos(Φ ji) is negative: when wind blows away from city i, pollution from the source city j

should not contribute to that of the receptor city. The number of days it takes pollutants to travel

from city j to city i, si jt , is rounded to the next smallest integer: si jt =

⌊
di j

cos(Φ ji)v j,t−si jt

⌋
. As an

example, Appendix Figure B7 illustrates graphically all subvectors of pollutants that are blown
towards Beijing on Dec. 5, 2013.

We now describe how to construct instruments using the above model. The decay function
f (di j,w j,t−si jt ,wi,t) in equation (5) is unknown. We approximate it by a set of polynomial functions

21Meteorological conditions play a key role in the diffusion of PM2.5. See, for example, Seibert and Frank (2003); Tai
et al. (2012); Wang and Ogawa (2015); Wang et al. (2018a) and Wang et al. (2019).
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{ul(di j,w j,t−si jt ,wi,t)}L
l=1. The total amount of pollution imported from cities outside of the buffer

zone, p̂ f ar
it , is the following:

p̂ f ar
it = ∑

j:di j>r
p+j→i, t = ∑

j:di j>r
max[cosΦ ji,0] · p j,t−si jt ·

L

∑
l

γlul(di j,w j,t−si jt ,wi,t)

=
L

∑
l

γl ∑
j:di j>r

max[cosΦ ji,0] · p j,t−si jt ·ul(di j,w j,t−si jt ,wi,t)

=
L

∑
l

γlZl
it

where Zl
it = ∑

j:di j>r
max[cosΦ ji,0] · p j,t−si jt ·ul(di j,w j,t−si jt ,wi,t), l = 1, ...,L (6)

Our instruments for current day pollution pit is the set of {Zl
it}L

l=1. These are valid instruments
since they only depend on weather in city i at time t, which we control for in our regressions, and
on pollution and weather variables in cities outside of the buffer zone at time t − si jt , which are
uncorrelated with city i’s spending shocks by our identification assumption. Equation (6) makes it
explicit that this strategy exploits a number of restrictions to construct powerful IVs. For example,
if the prevailing wind conditions are such that it takes two days for pollution generated in city j

to reach city i, we would expect p j,t−2 instead of p j,t or p j,t−1 to affect pi,t . Our instrument Zit is
therefore a function of p j,t−si jt , where si jt is the number of days it takes for pollution generated in
city j to arrive in city i. As such, the calculation of Zit properly dates the relevant pollution source
in origin city p j,t−si jt and aggregates over all origin cities.

Set of IVs In the baseline specification, we use 15 second-order polynomial terms {ul(·)}L=15
l=1 to

flexibly approximate the decay function: 1) constant, the inverse distance, and origin city’s weather
(wind speed, precipitation, temperature) (5 terms); 2) the quadratic terms of the inverse distance
and origin city’s weather (4 terms); 3) the product of the inverse distance and the origin city’s
weather (3 terms); 4) the destination city’s weather (wind speed, precipitation, temperature) (3
terms). Hence, we have 15 instruments {Zl

it}L=15
l=1 for current day pollution pit .

As shown in Section 3.1, the flexible distributed lag model transforms many lagged pollution
variables {pi,t−τ}τ into a few {v·,it}’s, which are weighted sums of past pollution exposure with
B-splines as weights (see equation (4) for a simple example). In our main specification that uses a
cubic B-spline with three segments, there are six B-spline terms and hence six endogenous variables
{v1,it , ...,v6,it}. The instruments for these endogenous variables are constructed analogously, except
that the lagged endogenous pollution variables are replaced with the corresponding lagged vector
of exogenous IVs {Zl

i,t−τ
}L=15

l=1 . There are fifteen IVs for each v·,it and a total of 90 instruments.
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Appendix B.2 provides more details.

Identification Assumptions Our approach that exploits PM2.5’s region of influence is analogous
to the source-receptor matrix constructed by the US EPA for air pollution prediction. The in-
struments we construct leverage variation in PM2.5 in non-local sources, wind patterns and other
meteorological conditions such as temperature and precipitation in both the source cities and the
destination city, which have been shown to affect the long-range transport of PM2.5. These in-
struments provide ample variation that allows us to simultaneously identify the short-term and
medium-term impacts of pollution and quantify the time-path of these impacts. An alternative
strategy involves using variation in local wind direction to estimate the health impacts of particu-
late matter pollution (Deryugina et al., 2019). Although changes in local wind direction are more
plausibly exogenous and well suited towards identifying the short-run impact of pollution, they
may lack enough variation to explain changes in both current and lagged pollution variables. As
we illustrate in Section 4.2, IVs that only use variation in wind direction (interacted with region
dummies) fail to pass the weak IV tests and lead to insignificant estimates, though the estimated
impact of PM2.5 on aggregate health spending is broadly similar to our baseline estimates.

Our identification assumption is that pollution shocks (e.g., economic activities) in regions
outside of the buffer zone are uncorrelated with local shocks to spending.22 This assumption would
be violated if spending shocks (e.g., high temperature that leads to more hospital visits as well as
increased demand for electricity) in city i affect production activities in other cities (e.g., electricity
generation) outside the buffer zone, which in turn affect the pollution level in city i. To the extent
that economic shocks in city i affect production and hence pollution in other cities, this should
induce correlation between the error term εit and future pollution levels rather than lagged pollution
levels in other cities. In contrast, our instruments are weighted sums of lagged pollution levels in
distant cities, where the weights are the inverse distance and meteorological conditions in both the
source and receptor cities. In addition, averaging over the exogenous variation in wind speed and
direction across a large number of source cities should reduce such correlations, if any.

To further address potential concerns on the validity of our IVs, we proceed in three ways.
First, we show in section 4.2 that results are robust to different radii of the buffer-zone. Second, we
construct an alternative set of IVs using the historical average (time-invariant) level of air pollution
in source cities, rather than the observed lagged pollution that could be subject to regional economic
spillovers. The within-city variation of these IVs is solely driven by wind patterns and other weather
conditions rather than time-varying pollution levels in source cities, hence should not be correlated

22Pollution imported from regions outside the buffer zone is assumed to be uncorrelated with the measurement errors
in local pollution exposure. This is plausible because changes in measurement errors arise from within-city variation,
while imported pollution is affected by economic activities at the source cities and weather conditions determining
the diffusion of pollutants.
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with unobserved economic shocks in the destination city. The results from this specification are
similar to the benchmark estimates. Third, we include the average PM2.5 in other cities outside
of the buffer zone but within the same region as an additional regressor to control for regional
spillovers in economic activities. This has little impact on the parameter estimates.

Finally, our identification strategy is different from the regression discontinuity (RD) approach
based on the Huai River heating policy used in Chen et al. (2013) and Ito and Zhang (2018). The
RD design exploits the long-term cross-sectional variation in pollution and is better suited to study
long-term impacts, such as that on mortality. This study focuses on the short- and medium-term
impacts and our IV approach is designed to leverage the data’s rich spatial and temporal variations.

4 Empirical Results

4.1 Impact of Pollution on Health Spending

We now describe our empirical analysis of air pollution’s effect on health spending. We use the
logarithm number of transactions as the dependent variable rather than the value of transactions,
following the literature that uses similar transaction-level purchase data (Einav et al., 2014). As
explained in Sec 2.3, the number of transactions is a good proxy for visits to healthcare facilities.
In Appendix C, we report results using the value of transactions as the dependent variable. They are
similar in magnitude to those based on the number of transactions but less precise. This is partly
because the distribution of healthcare spending is right-skewed with many large transactions (e.g.,
surgeries) that are unlikely caused by air pollution in the short run. While our baseline specification
utilizes the total number of transactions as the dependent variable, the estimates are very similar if
we instead use the number of transactions per capita, as discussed in Section 4.2.

All regressions include city fixed effects to control for time-invariant unobservables, week-of-
the-sample fixed effects to control for nationwide shocks, and city-specific time trend and city-
specific seasonality (i.e., interactions of city fixed effects and quarterly dummies) to control for
trends in bank card adoption and seasonal diseases. We also add fixed effects for state holidays,
working weekend,23 day of the week, as well as weather variables to control for their direct effects
on spending. For example, people may reduce non-urgent hospital visits during holidays or on
raining days. All standard errors are clustered at the city level.

First-Stage Results To address the issue of measurement errors and endogeneity, we instru-
ment PM2.5 using pollution imported from distant cities outside the buffer zone as discussed in

23Weekends near multi-day holidays are usually swapped with weekdays next to the actual holidays to create a longer
holiday. As a result, businesses and schools treat those weekends as working weekends.
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Section 3.2. To assess the strength of instruments in first stage regressions, we follow the best
practice as suggested in the weak IV literature. Since the Cragg-Donald F-statistic that assumes
homoskedasticity tends to overstate the strength of instruments in non-homoskedastic settings, we
report F-statistics that are robust to heteroskedasticity throughout this analysis. When there is
one endogenous regressor, Andrews et al. (2019) recommend the effective F-statistic of Olea and
Pflueger (2013), which is the appropriate statistic for formally testing weak identification in non-
homoskedastic settings. We therefore report the effective F-statistic in all regressions with one
endogenous variable.

The benchmark specification of our distributed lag model has six endogenous variables and a
total of 90 instruments. To our knowledge, the literature on weak instruments has not yet developed
formal methods for detecting weak identification in the presence of multiple endogenous regressors
and non-homoskedastic errors. As such, we report the Kleibergen-Paap Wald rk F-statistic that is
clustered at the city level in all regressions with multiple endogenous regressors.

Appendix Table C5 reports the first-stage result where we regress pit on different sets of IVs.
The signs for included IVs are expected: pollution is lower in holidays and decreases with local
precipitation and wind speed. In Column (1), the only excluded instrument is a simple sum of PM2.5

from distant cities traveling toward the destination city. Column (2) takes into account that PM2.5

decays as it travels and uses the sum of PM2.5 from distant cities weighted by the inverse distance
and weather variables of the origin cities as excluded IVs. This corresponds to a linear decay
function. The coefficient estimates suggest that both higher temperatures and greater precipitation
in origin cities lead to a faster decay of PM2.5. In addition, the further PM2.5 has to travel, the
more it decays. As a result, the distance weighted sum of PM2.5 has a much higher predictive
power of local pollution than a simple sum of pollution from origin cities.24 Column (3) allows
for a second-order polynomial decay function in the inverse distance and weather conditions in
the origin cities, as well as weather conditions in the destination city, leading to a total of fifteen
instruments as discussed in Section 3.2.2. The effective F-statistic is 161 and 112 in Columns (2)
and (3), respectively. They exceed the critical value by a large margin and indicate a strong first
stage. Our preferred specification is Column (3) which allows for a more flexible decay function of
PM2.5 than Column (2), though the estimated health impacts are similar with either four or fifteen
IVs.

For our baseline specification, the robust F-statistic varies from 38 to 48 (Table 3), which sug-
gests that weak identification is unlikely to be a concern in our setting. In comparison, if we were to
assume homoskedastic errors, the Cragg-Donald F-statistic varies from 213 to 255 and far exceeds
the critical value (which converges to 21 with a large number of IVs).25

24The raw correlation between local pollution and distance weighted pollution from origin cities is 0.21, while the raw
correlation between local pollution and a simple sum of pollution from origin cities is close to 0.

25We extend the analysis in Stock and Yogo (2005) by using the programming code in Skeels and Windmeijer (2018) to
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Short-term Impacts Our empirical analysis begins with the current-day PM2.5 as the only key
variable of interest, i.e., k = 0 in Equation (1). The coefficient estimate on current-day PM2.5,
β0, captures the effect of both current-day and past pollution exposure, the latter of which are
correlated with current-day pollution but omitted from the regression. As a result, β0 is not the
marginal impact of the current-day exposure on spending. Nevertheless, we can view the estimate
as a short-term impact. Appendix Tables C6 and C7 report the OLS and IV estimates of the short-
term impacts, respectively. A 10 µg/m3 increase in current-day PM2.5 is associated with a 0.65%
contemporaneous increase in transactions in the aggregate health care sector. The effect of air
pollution on spending at Children’s hospitals is the largest among different health care categories
and is nearly twice as large as that for the overall healthcare spending.

The IV estimates of the health impact of air pollution are several times as large as their OLS
counterparts.26 The large differences between OLS and 2SLS results are common in this literature.
For example, Schlenker and Walker (2016) use runway congestion at airports on the US East Coast
as exogenous variation to measure the contemporaneous health impact of air pollution exposure
for communities near large airports in California. Their 2SLS estimates on the respiratory-related
emergency room admissions due to CO and NO2 exposure are 7-10 times as large as the OLS
estimates. Ebenstein et al. (2017) use a regression discontinuity design based on the Huai River
policy to examine the long-term impact of PM10 on mortality. Their RD estimates are 2-3 times
as large as the OLS estimates. Similarly, in Deryugina et al. (2019)’s study of the mortality and
medical costs of PM2.5 in the US, the IV estimates are between 6 and 17 times larger than the cor-
responding OLS estimates. The smaller OLS estimates are consistent with the attenuation bias due
to (classical) measurement errors in PM2.5. The downward bias could also be driven by temporary
local shocks, such as economic activities or major local events, that are positively correlated with
air pollution but negatively correlated with healthcare spending (more outdoor activities and fewer
hospital visits).

Longer-Term Impacts Exposure to PM2.5 could have dynamic longer-term health impacts that
are nonlinear. Directly including a large number of lagged PM2.5 suffers from high autocorrelation.
For example, Appendix Table B4 reports coefficient estimates from including up to 5-day lags of
PM2.5 in equation (1). Although these results indicate that the effect of PM2.5 persists beyond one
day, the high autocorrelation makes it difficult to tell apart the effect of PM2.5 on consecutive days.
As such, many coefficients are imprecise with oscillating signs. To address this issue, we employ
the flexible distributed lag model discussed in Section 3.1 and allow pollution impacts to follow a

compute the critical value for the homoskedastic F-statistic with a large number of IVs. The critical value converges
to 21 at the 5% significance level when there are 30 or more IVs with one endogenous variable.

26The magnitude of the differences between OLS and IV estimates is theoretically possible, especially with a large
number of fixed effects (Cameron and Trivedi, 2005).
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smooth path.
Table 2 reports the cumulative effects of elevated PM2.5 concentration over different time pe-

riods, ∑
k
τ=0 βτ , from OLS regressions. Our benchmark specification incorporates daily pollution

exposure for the past three months (90 lags). Effects beyond 90 days are modest and imprecisely
estimated, thus excluded from the cumulative effects.27 A one-day surge of 10 µg/m3 in PM2.5

concentration increases today’s transactions in all healthcare facilities by 0.03%. A medium-run
(three-month) elevation of 10 µg/m3 raises the number of transactions by 0.86%, eight times as
large as the effect reported in Appendix Table C6 when only the contemporary PM2.5 concentra-
tion is included in the regression. There is a statistically significant negative impact on necessities
and supermarket spending within two weeks, but not in the long run.

To deal with measurement errors and the endogeneity in current and lagged PM2.5, we use IVs
discussed in Section 3.2 and present results in Table 3. Several important findings emerge. First,
the estimated 2SLS longer-term impacts of PM2.5 across all healthcare categories are positive and
much larger than the short-term impact, consistent with the comparisons from the OLS estimates.
Specifically, a 10 µg/m3 increase in PM2.5 concentration over the past 90 days raises the number
of transactions in the aggregate healthcare sector by 2.65%. Second, the impact on Children’s
hospitals is the largest and more than twice as large as the impact on aggregate healthcare spending,
consistent with the fact that children are among the most vulnerable groups. Pharmacy is the
second most responsive category among the four healthcare categories. When elevated air pollution
aggravates symptoms for people with respiratory problems, they may go to pharmacies without
visiting hospitals. Third, the effects on daily necessities and supermarket spending are all negative
and appear to be short-lived.

To examine how the impact on spending changes over time, Figure 3 plots the path of the cumu-
lative effects of past pollution exposure across different categories. Solid lines (and solid segments)
indicate significance at the 5% level. The optimal number of lags should in theory differ across cat-
egories. For example, the effect of pollution on non-healthcare categories appears to be short-lived,
while for children’s hospitals it could last for more than three months. To keep the results compa-
rable, we impose the same lag structure on all categories. Panel (a) depicts the cumulative effect
for the aggregate health spending and spending in Children’s hospitals. Consistent with the results
in Table 3, the cumulative effect increases over the 90-day window and is stronger (in percentage
terms) for spending in Children’s hospitals. For spending in the aggregate health category, the cu-
mulative effect appears to stabilize at three months, which is confirmed in the robustness analysis
below.

In contrast, air pollution reduces spending on necessities and in supermarkets in the short term.
The cumulative effect appears to peak at around two weeks, reduces in magnitude afterward and

27We examine the robustness of our results to the choice of lags and B-spline segments in section 4.2.

21



becomes imprecise past one month. One explanation for the short-term reduction in non-health
spending is the budget constraint: if consumers have to spend more on heath care to mitigate the
negative health impact of air pollution, they may have less to spend on non-health-related cate-
gories. However, the temporary reduction we find is inconsistent with the budget constraint hy-
pothesis, since a sustained increase in healthcare spending would lead to a sustained reduction
in necessities with a fixed budget. Instead, our results lend support to the hypothesis of avoidance
behavior, whereby consumers postpone or reduce shopping trips to reduce pollution exposure in re-
sponse to poor air quality. This is consistent with recent evidence in the literature (Mu and Zhang,
2016; Ito and Zhang, 2018; Sun et al., 2017).

Chinese consumers are increasingly aware of the air quality and its impact on health (Barwick
et al., 2020) and PM2.5 readings are becoming readily accessible through cell phone apps and
from government websites in recent years.28 Given the importance of avoidance behavior, we
provide additional evidence that individuals engage in avoidance in Appendix F by examining how
expectations about future air pollution affect current healthcare and non-health spending.

Table 4 examines how the estimates of the short- and medium-run effects of PM2.5 on total
health transactions depend on various controls included in regressions. City fixed effects control
for baseline differences across cities where more polluted cities tend to have higher health spend-
ing. Week-of-the-sample fixed effects allow for nation-wide temporal variation in spending and
air pollution. City-specific time trends capture the heterogeneous card adoption rates across cities,
which are important given the rising card penetration in our sample periods. The coefficient esti-
mates for short- and medium-run effects become intuitive after controlling for city fixed effects and
week-of-the-sample fixed effects and remain stable once we include city-specific time trends. The
holiday fixed effects, day-of-the-week fixed effects, and weather variables play a less important
role in determining the magnitude of pollution’s impact on health spending.

Our results suggest that a 10 µg/m3 increase in PM2.5 would raise health-related transactions
by 2.65% in the medium term. In terms of the value of transactions, the effect is 1.5% over the
out-of-pocket expenses (Appendix Table C8). The estimates are somewhat less precise than those
based on the number of transactions, driven by the larger noise inherent in the value of healthcare
spending. The smaller impact on the transaction value makes intuitive sense in that the illnesses
due to air pollution likely cost less to treat than other diseases on average.29 In our analysis in
Section 5.1, we use these estimates to bound the healthcare cost.

28Hourly air pollution data in major Chinese cities have been published on the websites of the Ministry of Environment
Protection and other non-government entities since 2013.

29The average medical spending for in-patients in China is 6140 yuan ($944) in 2013, while the average is 4109 yuan
($632) for in-patients treated for respiratory diseases (National Health Commission, 2013). Relatedly, in the US,
average expenditure per in-patient for respiratory diseases is $1491, ranked 22 among 30 disease types according to
Agency for Healthcare Research and Quality (2017).
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4.2 Robustness Checks

We conduct an extensive set of robustness checks to examine whether the results discussed above
depend on the empirical specification and choices of IVs.

Robustness to B-splines and buffer zone radii Table 5 reports the cumulative impact for overall
healthcare spending under three different numbers of B-spline segments (1, 2, and 3) and five
lags (30, 60, 90, 120 and 150). The estimates across different segments are similar. Our base
specification uses three segments which provides a good balance between flexibility and precision.
In terms of the number of lags, the cumulative impact is considerably smaller using 30-day lags but
stabilizes after 90 lags.30 We prefer 90-day lags because the estimated effects for lagged pollution
are significant until around 90 days and start to lose significance for further distant lags.

Next, we carry out robustness checks with regard to the buffer zone radius in constructing
IVs. We fix the radius at 150 km in the benchmark specification and assume that unobservables
outside of the buffer zone of a city would not affect healthcare spending in that city. There is
an inherent trade-off in the choice of the radius. On the one hand, the larger the buffer zone,
the easier it is for the exclusion restriction to hold. On the other hand, the bigger the radius, the
weaker the correlation between the predicted PM2.5 using non-local pollution and the observed
PM2.5 in a given city. Table 6 presents several choices of the buffer zone from 100 km to 300 km
with an increment of 50 km.31 The top panel reports the first-stage results. Generally, both the
R2 and the F-statistics decrease with the radius of the buffer zone, suggesting a weaker correlation
between the IV and the endogenous variable as the buffer zone gets larger. The bottom panel shows
the cumulative medium-term impact on healthcare spending, which varies from 2.42% to 2.88%
across different radii when PM2.5 increases by 10 µg/m3 over a 3-month period. Our preferred
specification with a 150 km radius delivers an estimate that is in the middle of this range, though
results are relatively stable across buffer zones within 300km.32 This is consistent with: (1) the
long-range transportability of PM2.5, and (2) non-local sources accounting for a significant share of
local air pollution level (e.g., on average 35% for Beijing during 2005-2010 (Wang et al., 2015)).

Additional Controls The next set of robustness analysis includes various additional controls.
Panel A in Table 7 reports estimates controlling for other pollutants including O3, SO2, NO2 and
CO. Emission sources such as electricity generation and transportation produce both particulate
matters and other pollutants which also have harmful health impacts, though our IV strategy should

30Cross-validation results indicate that models with long lags are preferred to the model with 30 days of lags.
31Williams and Phaneuf (2016) construct IVs for air pollution using pollutants 60 km (or 120 km) away without

exploiting wind patterns.
32300km is well within the travel distance of PM2.5. For example, at a moderate speed of 15 miles per hour, it takes

only one day for PM2.5 from 360 miles away to be transported to a destination.
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address this to some extent since it leverages the long-range transport property of PM2.5, which is
different for other pollutants, especially O3 and CO. Results with these four additional pollutants
are similar to those in Table 3 for both healthcare and non-healthcare spending categories.33

To address potential spillovers in regional economic activities, Panel B in Table 7 includes as a
regressor the average level of PM2.5 of nearby cities in the same region outside of the buffer zone.34

If regional economic activities have systematic spillover beyond the buffer zone, one might be
concerned with the exogeneity of our IVs: local unobservables could be correlated with economic
activities in other cities, which are in turn correlated with pollution levels in other cities. Including
PM2.5 of nearby cities directly controls for economic activities in other cities and delivers similar
results as those in the benchmark specifications.

Card penetration is growing rapidly over time during our sample period, which raises a concern
that our results might be driven by uneven rates of card adoption across cities. The city-specific
time trends in our baseline specification should capture this. In Panel C of Table 7, we introduce
as additional controls the annual number of active cards and the annual number of point-of-service
terminals in each city. Including these variables has little effect on the estimated impacts of PM2.5.

In our baseline regressions, we control for local temperature, precipitation and wind speed.
Table 8 explores the effect of including more flexible weather controls. Panel A is identical to the
baseline specification. Panel B includes 2nd-order polynomial terms in weather variables. In Panel
C, we create ten temperature bins similar to Deschênes and Greenstone (2011) and six bins for each
of precipitation and average wind and include interaction terms of the bins. Panel D accommodates
medium-term effects of local weather on health spending by additionally controlling for lagged
weather variables up to 90 days.35 Finally, in Panel E, we include lagged weather at both the
origin and the destination cities, given that weather patterns are spatially correlated and weather
conditions in a destination city may be correlated with lagged weather conditions in origin cities.36

Overall the results appear reasonably robust though somewhat smaller with the inclusion of more
flexible weather variables. The long-run effect of a 10µg/m3 increase in PM2.5 on the number of all
health transactions is 2.16% in Panel C with the most flexible weather controls, 1.98% in Panel D
with lagged local weather variables, and 1.80% in Panel E with lagged weather in both the source

33The correlation coefficient between daily levels of PM2.5 and O3, SO2, NO2 and CO is -0.13, 0.55, 0.66, 0.03,
respectively. While we directly control for these pollutants in addition to PM2.5 in our robustness checks, we do
not address the potential endogeneity in these pollutants. Therefore, our estimated impact of PM2.5 may reflect the
impact of other pollutants. Disentangling the impacts of different pollutants is an important gap in the literature.

34We follow the National Bureau of Statistics’ classification that groups provinces into seven regions: East, North,
Mid, South, Southwest, Northwest and Northeast.

35We include the following lags for each weather variable at the destination city: the weather of day (t-1), (t-2), up to
day (t-7); the average weather from day (t-8) to (t-14), the average weather from (t-15) to (t-28), the average weather
from day (t-29) to (t-56) and the average weather from (t-57) to (t-90).

36For each destination city, we construct an unweighted average of the lagged weather in each of the source cities,
under the assumption that the weather travels to the destination city at the prevailing wind speed. We then include the
same set of lags for source weather as we do for local weather. We thank an anonymous referee for this suggestion.
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and destination cities, as opposed to 2.65% in the baseline specification.
Finally, Appendix Table C9 illustrates that adjusting for population size by using the number

of transaction per capita as the dependent variable leads to similar results to those in the baseline
specification.

Specifications Using Average Pollution Our flexible distributed lag model delivers a smooth
marginal impact estimates of past pollution on current-day spending. The robustness checks pre-
sented in Table 5 illustrate that our results are not driven by the B-spline choices. To further
address concerns over the functional form assumption, we estimate the more conventional specifi-
cation in Equation (2) that uses the average pollution during a certain time window (e.g., current
day + the past week) as the key variable of interest. While the specification may appear to be less
restrictive than the flexible distributed lag model, it actually imposes a strong restriction that the
marginal impact of lagged daily pollution on current-day spending is constant within the specified
time window. The epidemiology literature has documented hump-shape (nonlinear) responses to
air pollutants due to either normal physiological considerations or behavioral factors such as har-
vesting (Zanobetti et al., 2000, 2002; Schwartz, 2000). On the one hand, the impact of air pollution
on respiratory system could take time to manifest. On the other hand, patients may postpone hos-
pital visits until the symptoms are fully developed or cannot be treated by home remedies. Figure
3 corroborates these findings in the epidemiology literature and indicates that the marginal impact
of lagged daily pollution on healthcare spending is unlikely to be constant.

Nonetheless, Appendix Table C10 presents the IV results for Equation (2) across several win-
dows: current day, a week, a month, two-months, and 90 days. While the overall patterns are
broadly consistent with those from the more flexible model in Table 3, the estimates from the re-
strictive model over current-day are substantially larger than those in our baseline specification
across all health categories, while the estimates over the 90-day period are smaller. These dif-
ferences are driven by two considerations. First, when pollution exhibits serial correlation, the
estimated impact for the average pollution over a given window also captures the impact of pol-
lution exposure in earlier periods. This is especially true for the current-day estimate. Second,
restricting lagged pollution to have a constant impact on health spending could either overestimate
or underestimate the true effect.

Choices of Instruments and Placebo Tests We have carried out a series of robustness analyses
to examine the role of the instruments. To address the concern on the exogeneity of the instruments,
we create an alternative set of IVs in Panel A of Table 9 using the historical average (time-invariant)
level of air pollution in source cities, rather than the observed lagged pollution that could be subject
to regional economic spillovers. The within-city variation in these IVs comes purely from changes
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in wind and weather patterns, and thus the IVs should be uncorrelated with local unobserved eco-
nomic shocks after controlling for city fixed effects. Though the IVs are not as strong as those in
the main specification as indicated by a reduction in the F-statistic, the estimated effect of pollution
on healthcare spending is similar to the benchmark specification.

A subset of the instruments depend on the destination city’s weather. Panel B in Table 9 drops
instruments that are functions of the destination city’s weather so that none of the IVs uses in-
formation related to local conditions. The estimated aggregated health impact is 2.91%, slightly
larger than our baseline result of 2.65%. In Panel C of Table 9, we drop the following large cities:
Beijing, Shanghai, Guangzhou, Shenzhen, Wuhan, Chongqing, Chengdu, and Nanjing. Due to su-
perior medical facilities in these large transportation hubs, these cities receive a large number of
patients from other areas. If some out-of-town patients come from areas that export pollution to
these major cities, this could lead to a correlation between the instruments and unobserved health-
care spending shocks. The estimated aggregated health impact is 2.25%, somewhat lower than our
baseline result though the difference is insignificant statistically.

Appendix Table C11 conducts a placebo test that constructs IVs based on randomly generated
wind direction and wind speed. To offer a useful benchmark, we first drop IVs that depend on tem-
perature and precipitation and limit to a parsimonious set of IVs that are only interactions between
wind speed and direction and source cities’ pollution. As shown in Column (2), the estimated im-
pact of PM2.5 on health spending is comparable to our baseline specification, though the F-stats is
lower indicating weaker IVs. In Column (3), we randomize wind direction and speed using random
draws from their empirical distribution. The first-stage F-stat is merely 7.24. Moreover, the impact
of air pollution is noisily estimated with wrong signs and statistically insignificant, as expected.

Alternative Identification Strategies An alternative identification strategy is to drop source
cities’ pollution and other meteorological conditions altogether and only uses wind direction in
destination cities to instrument for changes in air pollution. Since the effect of wind direction on
air pollution depend on geography, we interact wind direction with region dummies that are created
by a K-means clustering algorithm to spatially classify cities.37 This is essentially the empirical
strategy used in Deryugina et al. (2019).

Appendix Table C12 compares our baseline results (Column 1) with results from these alter-
native IVs that are purely based on destination wind direction (Column 2). One challenge we
encounter with wind-IVs is that they fail to pass the weak IV test. While wind directions are well-
suited to identify short-term impacts as in Deryugina et al. (2019), they lack enough variation to
explain changes in both current and lagged daily pollution in our context. Using the identification-
robust confidence intervals proposed by Andrews (2018) that are valid under weak IVs, the impacts

37Results are similar if use wind direction interacted with province fixed effects as IVs.

26



of pollution on healthcare spending are estimated with much less precision. The long-run effect of
a 10µg/m3 increase in PM2.5 on the aggregate healthcare transactions is estimated to be an insignif-
icant 1.48%, as opposed to 2.65% in the baseline.

Lastly, we also implement the RD design based on the differential heating policy across the Huai
River. Following Chen et al. (2013); Ebenstein et al. (2017); Ito and Zhang (2018), we collapse
the sample to a single cross-section which removes the high-resolution temporal variation. These
papers examined (heavier) TSP or PM10 in earlier years. In our context, the Huai River policy
turns out a weak IV for PM2.5, likely a result of PM2.5’s long-range transport property, the recent
reform on the heating policy (e.g., pay for heating in the north), and other environmental and energy
regulations (e.g., switching coal to natural gas for winter heating) in recent years.

Pollution Monitoring and Sample Cities The number of cities where air pollution was moni-
tored has grown considerably over time as the Chinese government rolled out the nationwide pol-
lution monitoring and public disclosure program from 2013 (Barwick et al., 2020). To check if the
effects of air pollution are different for cities where monitoring began early and cities where moni-
toring began later, we carry out a robustness check that limits to the 159 cities where pollution has
been monitored since 2013 (thus dropping cities where monitoring began in 2014 or afterwards).
The results are shown in Appendix Table C13. The long-run effect of a 10µg/m3 increase in PM2.5

on the number of health transactions is 2.08% for cities with pollution monitoring since 2013, as
opposed to 2.65% for the full sample. This reflects the fact that pollution monitoring began in
larger, richer cities and was later extended to smaller cities with lower per capita income. As we
discuss in the next section, the marginal effect of PM2.5 is smaller for wealthier cities.

4.3 Nonlinearity and Heterogeneity

One concern regarding the external validity of the benefit-transfer approach is the potential nonlin-
earity of the dose-response function. The pollution level observed in developing countries such as
China and India is far greater than the prevailing level studied in the literature. Linear projections
in the benefit-transfer approach could either under- or over-estimate the health costs of air pollution
in developing countries if the underlying effect is nonlinear (Lelieveld et al., 2015; World Bank,
2007). Despite of its important implications, there is a lack of empirical evidence on the nonlin-
earity of the dose-response function (Lelieveld and Poschl, 2017). The rich spatial and temporal
variation in our data allows us to examine the health impacts of PM2.5 for a wide range of pollution
levels.

To capture nonlinearity, we include the quadratic term of PM2.5 in addition to its linear form.38

38To conserve the number of parameters, we use one-segment instead of three-segment B-splines, since cumulative
effects are similar across different segments (section 4.2). Appendix Table D14 reports the coefficient estimates.
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The top panel of Figure 4 plots the estimated surface of the marginal response for varying levels
of PM2.5 and along the time path for up to 100 days. For each value of PM2.5, the slice of the
surface along the p-axis is the estimated dynamic response. The surface is tilted upwards with a
higher marginal response for a higher pollution level, indicating an increasing marginal impact of
PM2.5 on healthcare spending. In the bottom panel of Figure 4, we plot the cumulated marginal
effect over three months (∑τ βτ ) against pollution level. The cumulative impact on healthcare
spending increases in PM2.5, but the overall nonlinearity of the health impact does not appear very
pronounced. Based on this finding, we extrapolate our estimates across a wide range of pollution
levels in evaluating the pollution’s healthcare cost in China (Section 5).

Appendix Figure D8 examines the impact of air pollution across cities with different per capita
income. In 2015, China’s average annual disposable income per capita varied from 12,000 yuan

to 53,000 yuan across cities, with an average of 25,530 yuan. Pollution’s impact on healthcare
spending appears to diminish monotonically within our range of disposable income: it is largest
in poor cities and decreases with income. This may be driven by the limited avoidance behavior
(e.g., use of air purifiers) among low income households and a lack of preventive healthcare in poor
cities. While the differences across income levels could be meaningful economically, the evidence
is suggestive given the statistical insignificance of income coefficients (Appendix Table D14).

We have also estimated heterogeneity across seasons and years (Appendix Table D15). Most
of the heterogeneity coefficients are statistically insignificant, except for the coefficient on winter,
suggesting that health spending is more responsive to pollution in winter than in other seasons.
This is consistent with results on the nonlinearity analysis, as pollution peaks in winter and higher
pollution invokes a larger marginal response.

5 Healthcare Cost of Air Pollution

In this section, we estimate the healthcare cost of PM2.5 in China and compare it with the mortality
cost estimated from the literature. It is important to note that the impact of particulate matter
pollution on health spending will generally understate the welfare impact of morbidity. This is
because in addition to increased healthcare costs, individuals who fall sick due to air pollution also
suffer from reduced productivity (e.g. sick-days) and reduced quality of life. Moreover, individuals
may engage in costly avoidance behavior in order to reduce exposure to air pollution as shown in
Appendix F. Since avoidance behavior is a response to pollution (i.e., an outcome), rather than an
unobserved confounding factor, the presence of avoidance behavior does not bias our estimates per
se. It does, however, change the interpretation of the results. Our estimates provide the healthcare
cost of pollution conditional on defensive behaviors undertaken by individuals, which is different
from (and in general lower than) the morbidity cost of pollution in the absence of any avoidance
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behavior.

5.1 Healthcare Cost

To better understand the magnitude of our estimates, we first benchmark our results with the find-
ings in the related literature in Appendix Table E16. Our preferred specifications show that a 10
µg/m3 increase in PM2.5 would lead to a 2.65% increase in the number of health-related transac-
tions (Table 3) and a 1.5% increase in the value of transactions (Table C8) in the long term. In a
study on preventive expenditure, Mu and Zhang (2016) estimate that face mask purchases in China
increase by 5.45% for a 10-point increase in Air Quality Index (AQI) and 7.06% for anti-PM2.5

masks. Using the piecewise linear relationship between PM2.5 and AQI, this means that exposure
to 10 µg/m3 more PM2.5 leads to a 3.6% to 7.3% increase in preventive spending.

Williams and Phaneuf (2016) use data in the U.S. and find that a one-standard-deviation (3.78
µg/m3) change in PM2.5 leads to 8.3% more spending on asthma and COPD, which is equivalent
to a 22% increase for 10 µg/m3 more PM2.5. According to China’s National Health Commission
(2013), spending on respiratory diseases accounts for 8% of total health expenditure in 2012. As-
suming all additional spending induced by air pollution is for respiratory diseases, our estimates
translate to a 33% increase in respiratory-related spending, about 50% larger than the estimate from
Williams and Phaneuf (2016).

We now calculate the healthcare cost from elevated PM2.5. Assuming that the health impact is
the same for both bank-card and non-bank-card spending (see discussions in Appendix E), the 1.5%
impact from a 10 µg/m3 increase in PM2.5 translates to 59.6 billion yuan ($9.2 billion) based on the
national healthcare spending in 2015.39 Taking 2.65% as the upper bound, the healthcare cost from
a 10 µg/m3 increase in PM2.5 would be 105.3 billion Yuan ($16.2 billion). To be conservative,
we use the lower bound estimate for our analysis below. These estimates can directly inform
the overall economic cost of PM2.5 and related policy discussions. For example, OECD (2016)
estimates that PM2.5 and ground level ozone are associated with a $20 billion direct cost on health
expenditures (due to morbidity) worldwide based on the benefit-transfer approach, with half of
these costs coming from non-OECD countries. A simple linear interpolation based on our estimates
implies that the elevated PM2.5 (56 µg/m3 on average) relative to WHO’s recommended level of 10
µg/m3 leads to $42 billion (with a 95% confidence interval of $2.8 - $81.8 billion) added healthcare
spending each year in China alone.

Our analysis suggests that OECD (2016) underestimates the health cost from air pollution,
potentially up to an order of magnitude for developing countries. This could be due to: (1) the
downward bias from endogeneity in the dose-response function; (2) the inherent differences in

39China’s health expenditure exceeded four trillion yuan ($615 billion) in 2015 (National Health Commission, 2016).
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the dose-response function across countries; and (3) the monetization of the disease incidences.
The discrepancy highlights the importance of empirical studies using data on health spending from
developing countries.

The morbidity cost of air pollution includes both the direct healthcare cost and the value of lost
time from the illnesses (such as hospital visits and sick days). Our database recorded 670 million
health-related transactions in 2015, which accounted for 50% of private health spending. As such,
our estimate implies 35.5 million additional trips to healthcare facilities from a 10 µg/m3 increase
in PM2.5. To monetize the lost time, we assume that each trip takes three hours and the value of
time (VOT) is 100% of the hourly wage, which is an upper-end estimate of VOT in the literature
(Small, 2012; Wolff, 2014). The total value of the lost time from additional trips to healthcare
facilities amounts to 2.3 billion yuan in 2015, compared to 59.6 billion yuan in additional healthcare
spending from a 10 µg/m3 increase in PM2.5. This suggests that the direct healthcare cost is the
dominant component of the overall morbidity cost.

5.2 Comparing Morbidity and Mortality Cost

The current literature on the burden of disease from air pollution is based primarily on mortality.
A common perception is that relative to mortality, the morbidity cost is a minor component of
the overall cost of pollution. To put our estimates on healthcare cost (the primary component
of morbidity) into perspective, we calculate the mortality cost based on the empirical analysis of
Ebenstein et al. (2017). Using detailed mortality data by gender, age cohort, and disease types in
161 representative counties across China, they estimate that a 10 µg/m3 increase of PM10 would
increase the cardiorespiratory mortality rate by 8% on average and the impact varies across age
cohorts but not across gender.

We take two steps to monetize the literature’s mortality estimate. There are no national-level
estimates on the Chinese population’s VSL. Narain and Sall (2016) suggest a transfer elasticity (or
income elasticity) of 1.2 for transferring the U.S. VSL estimate to a developing country. China’s
per capita income is about an eighth of that in the U.S. At the elasticity of 1.2, the VSL for the
Chinese population is 9.27% of that for the U.S. population. Using Ashenfelter and Greenstone
(2004)’s estimate of $2.27 million (in 2015$) for the U.S. population – adopted by Deschênes et al.
(2017) to quantify the mortality cost of NOx emissions reductions – the Chinese population’s VSL
is $0.21 million in 2015.40

Second, we use estimates in Murphy and Topel (2006) to adjust the VSL for each age group.
The VSL is at the full value for people less than 40 years old but reduces to 40% of its full value

40Hoffmann et al. (2017) use data from 3 major cities in China and find a VSL of $0.615 million in 2016 dollars. The
average income in these cities doubles China’s national average income level. Using a transfer elasticity of 1.2, the
VSL at the national level would be $0.25 million, close to our estimate of $0.21 million.
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by age 65 and 15% by age 80. Similar to what Deschênes et al. (2017) find, this adjustment is
important because the age group 65 and above accounts for less than 9% of the total population but
nearly 75% of the changes in mortality from air quality improvement.

This back-of-the-envelope analysis implies that a 10 µg/m3 increase of PM2.5 would generate
a mortality impact of $13.4 billion in 2015 in China (Appendix Table E17). In comparison, our
conservative estimate of the healthcare cost is 59.6 billion yuan, or $9.2 billion, which constitutes
69% of the mortality cost. The implied ratio of healthcare costs to mortality costs is similar to that
from Deschênes et al. (2017) in the context of the NOx emissions reduction in the U.S.. Both esti-
mates are substantially higher than the 10% ratio used in WHO (2015) to interpolate air pollution’s
economic impact.

The mortality cost is sensitive to the assumed VSL. There is considerable heterogeneity across
published estimates of the VSL (Kniesner et al., 2012), ranging from under $2 million (Alberini
et al., 2004; Ashenfelter and Greenstone, 2004) to EPA’s estimate of $8.7 million. If we were to
use EPA’s estimate of $8.7 million, the healthcare cost we estimate from PM2.5 is still 18% of the
mortality cost. The ratio of morbidity over mortality could be higher once other components of
morbidity are factored in, such as reduced productivity and the disutility of falling sick.

6 Conclusion

WHO’s global air pollution database shows that the world’s most polluted cities in 2016 were all
from developing countries such as China, India, Iran, Pakistan, Philippines, and Saudi Arabia. In
addition, 98% of cities in low- and middle-income countries with more than 100,000 residents do
not meet WHO air quality guidelines. However, past research from epidemiology and economics
going back several decades has focused on the impacts of air pollution on human health, particularly
mortality, in developed countries. This study provides the first comprehensive analysis on the direct
healthcare cost of PM2.5 in a developing country context based on the high-resolution data from the
world’s largest payment network.

To address potential endogeneity in the pollution exposure measure, we develop an air quality
prediction model in the spirit of the US EPA’s source-receptor matrix that allows us to isolate ex-
ogenous variations in local air quality using the spatial spillovers of PM2.5. We propose a flexible
distributed flexible distributed lag model to estimate the temporal effect on healthcare spending
and use a data-driven method to construct powerful IVs. Our results suggest that a 10 µg/m3 de-
crease in PM2.5 would lead to at least a $9.2 billion reduction in healthcare spending annually, or
1.5% of China’s national annual healthcare expenditure. The estimated healthcare cost exceeds
two-thirds of the mortality cost based on the recent literature. China’s elevated PM2.5 level rel-
ative to the WHO’s annual standards entails at least $42 billion added healthcare expenditure in
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2015. Together, these results indicate that the recent report by OECD (2016) may have signifi-
cantly underestimated the worldwide impact of air pollution on health expenditure ($10 billion for
all non-OCED countries including China).

In estimating the healthcare cost of air pollution in China, our analysis offers an alternative
approach to the commonly used benefit-transfer approach for developing countries. The air pol-
lution level in urban centers in developing countries is often an order of magnitude higher than
that observed in developed countries. As urbanization continues and development pressure rises,
air pollution could get worse before it gets better. The aggregate impact of air pollution on eco-
nomic growth, including factors such as human capital accumulation, productivity, talent loss due
to migration, and foreign direct investment, is an interesting and important area for future research.
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Figure 1: Three-Year Average PM2.5 Concentration

Jan. 2013 - Dec. 2015, µg/m3

Notes: Each dot represents a city. There are 329 cities in total.
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Figure 2: Residuals of Log Number of Transactions v. Residual of PM2.5 Concentration (Binned)

(a) Total Healthcare Industry (b) Pharmacies

(c) People’s Hospitals (d) Children’s Hospitals

(e) Necessities (f) Supermarkets

Notes: Each dot denotes the in-group average residuals, partialing out city FEs, weekly FEs, city-specific time trends,
city-specific seasonality, day-of-week FEs, dummies for holidays and working weekends, and weather controls (tem-
perature, precipitation, wind speed). Groups are binned by percentiles of PM2.5, which is depicted by the x-axis.
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Figure 3: Impact of Air Pollution on Number of Transactions from IV Regressions with 90 Lags

(a) Health-related Consumption

(b) Non-Health Consumption

Notes: the figure plots ∑
k
τ=0 βτ , the percentage change in the number of transactions for a given consumption category

as a result of a 10 µg/m3 increase in PM2.5 concentration over the past k days as indicated by the x-axis. On the x-axis,
0 refers to the current day, 30 refers to the past 30 days, etc. For example, a 10 µg/m3 increase in PM2.5 concentration
over the past 28 days leads to 2.12% more transactions in Children’s hospitals but 0.41% fewer transactions in super-
markets. Solid lines (and solid segments) indicate significance at the 5% level. Dashed lines indicate that the impact is
statistically insignificant at the 5% level. Shaded areas are 95% confidence intervals.
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Figure 4: Nonlinear Impacts of Air Pollution

Notes: the top panel plots βτ , the (marginal) percentage change in today’s healthcare transactions for a temporary 10
µg/m3 increase in PM2.5 on day t− τ at a specific level of pollution concentration. On the τ-axis, 0 refers to day t, 50
refers to day t−50, etc. The bottom panel plots ∑

90
τ=0 βτ , the percentage change in today’s total healthcare transactions

as a result of a 10 µg/m3 increase in PM2.5 over the past 90 days, at different pollution levels as denoted by the x-axis.
For example, a 10 µg/m3 increase in PM2.5 over the past 90 days raises total healthcare transactions by 2.21% when
the PM2.5 concentration is at 50 µg/m3. Based on parameter estimates reported in Appendix Table D14.
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Table 1: Summary Statistics

Mean Std. Dev. Min. Max. N

Pollution
PM2.5 Concentration, µg/m3 56.3 46.4 0 985.2 198,246

Number of Transactions, Daily
Healthcare Industry, Total 7,229.2 21,308.6 0 330,974 211,318

All Hospitals 4,122.7 14,503.9 0 237,525 210,539
People’s Hospitals 1,060.6 2,800.4 0 40,332 203,407
Children’s Hospitals 464.7 1,290.5 0 18,227 158,637

Pharmacies 2,245.3 7,063.3 0 96,336 210,001
Non-health Spending, from 1% card sample

Daily Necessities 233.3 628.6 0 10,865 211,318
Supermarkets 393.4 990.3 0 15,224 210,493

Total Value of Transactions, Daily, thousand yuan
Healthcare Industry, Total 6,701.8 17,818.9 0 301,108.7 211,318
All Hospitals 5,556.5 15,066.8 0 275,883.0 210,539

People’s Hospitals 1,588.1 3,401.2 0 56,856.9 203,407
Children’s Hospitals 363.9 843.3 0 10,324.3 158,637

Pharmacies 407.4 1,109.5 0 16,735.1 210,001
Non-health Spending, from 1% card sample

Daily Necessities 236.9 551.3 0 9,532.4 211,318
Supermarkets 232.8 643.4 0 14,404.7 210,493

Weather
Mean Temperature, ◦F 60.1 18.9 -27.5 101.6 211,317
Precipitation, inch 0.1 0.4 0 15.6 211,318
Mean Wind Speed, mph 5.5 3.1 0 48.7 211,296
Wind Direction, navigational bearing - - 0 360 211,263

Notes: Data sources include China’s Ministry of Environmental Protection, UnionPay, Integrated Surface Database
(ISD), and Global Surface Summary of the Day (GSOD) Database. Data for health spending are from the full sample
of bank cards. Data for non-health spending are based on a randomly selected 1% of bank cards. Children’s hospital
category has fewer observations because some small cities do not have a Children’s hospital. UnionPay’s data quality
control process treats certain transactions as fraudulent, which leads to missing data in a few cases. The arithmetic
mean and standard deviation of wind directions do not have statistical meaning and are left out in the table.
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Table 2: Cumulative Effect of Pollution, OLS with 90 Lags

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.03*** 0.04*** 0.05*** 0.04*** 0.06*** -0.03*** -0.02**
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

Current + Past 3d 0.12*** 0.11*** 0.18*** 0.13*** 0.19** -0.11*** -0.07**
(0.03) (0.03) (0.04) (0.04) (0.08) (0.03) (0.03)

Current + Past 7d 0.19*** 0.16*** 0.32*** 0.21*** 0.25* -0.16*** -0.11***
(0.05) (0.06) (0.07) (0.06) (0.15) (0.05) (0.04)

Current + Past 14d 0.25*** 0.16 0.49*** 0.30*** 0.20 -0.16** -0.13**
(0.08) (0.10) (0.10) (0.08) (0.28) (0.07) (0.06)

Current + Past 28d 0.38*** 0.18 0.80*** 0.39*** 0.12 -0.15 -0.09
(0.13) (0.15) (0.16) (0.14) (0.50) (0.12) (0.11)

Current + Past 56d 0.66*** 0.27 1.42*** 0.47** 0.57 -0.27 0.03
(0.19) (0.20) (0.29) (0.24) (0.74) (0.21) (0.18)

Current + All Lags 0.86*** 0.34 1.81*** 0.59* 0.38 -0.08 0.02
(0.27) (0.28) (0.42) (0.36) (1.14) (0.27) (0.21)

N 141,794 141,657 141,567 137,853 110,259 141,770 141,652

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Column (1) includes all healthcare facilities.
Columns (2)-(5) include all hospitals, pharmacies, people’s hospitals, and children’s hospitals, respectively. Columns (6)-(7) include necessities following United
Nations’ COICOP classification and supermarkets, respectively. Each row reports the percentage change in the dependent variable in response to a 10 µg/m3

increase in PM2.5 over the corresponding period, ∑
k
τ=0 βτ , estimated using the OLS version of the flexible distributed lag model with 90 lags. For example, the third

row reports the cumulative effect of a 10 µg/m3 increase in PM2.5 in the current day and the past week. The controls are city FEs, week FEs, city-specific time
trends, city-specific seasonality, day-of-week FEs, dummies for holidays and working weekends, and weather controls (temperature, precipitation, wind speed).
Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table 3: Cumulative Effect of Pollution, IV with 90 Lags

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.12*** 0.12*** 0.07* 0.14*** 0.19*** -0.14*** -0.06***
(0.02) (0.03) (0.04) (0.04) (0.07) (0.03) (0.02)

Current + Past 3d 0.40*** 0.40*** 0.23* 0.47*** 0.65*** -0.45*** -0.21***
(0.07) (0.08) (0.12) (0.13) (0.23) (0.09) (0.07)

Current + Past 7d 0.61*** 0.62*** 0.39** 0.75*** 1.04*** -0.64*** -0.34***
(0.10) (0.12) (0.18) (0.19) (0.36) (0.13) (0.10)

Current + Past 14d 0.74*** 0.75*** 0.57*** 0.97*** 1.40*** -0.63*** -0.45***
(0.14) (0.16) (0.21) (0.22) (0.50) (0.16) (0.12)

Current + Past 28d 0.91*** 0.90*** 0.99*** 1.24*** 2.12*** -0.44* -0.41**
(0.22) (0.25) (0.30) (0.27) (0.79) (0.23) (0.21)

Current + Past 56d 1.97*** 1.71*** 2.31*** 2.01*** 4.65*** -0.85** -0.23
(0.42) (0.47) (0.54) (0.46) (1.56) (0.41) (0.36)

Current + All Lags 2.65*** 2.18*** 2.80*** 2.13*** 6.37*** -0.55 -0.57
(0.68) (0.71) (0.89) (0.75) (2.33) (0.58) (0.47)

N 141,794 141,657 141,567 137,853 110,259 141,770 141,652
First-stage F 38.35 38.36 38.37 39.69 47.79 38.29 38.29

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Column (1) includes all healthcare facilities.
Columns (2)-(5) include all hospitals, pharmacies, people’s hospitals, and children’s hospitals, respectively. Columns (6)-(7) include necessities following United
Nations’ COICOP classification and supermarkets, respectively. Each row reports the percentage change in the dependent variable in response to a 10 µg/m3

increase in PM2.5 over the corresponding period, ∑
k
τ=0 βτ , estimated via the IV version of the flexible distributed lag model with 90 lags. Same controls as in Table

2. The IVs are interactions of pollution transported from distant source cities (150km away) and meteorological conditions in the source and destination cities as
defined in Equation (6) and Section 3.2.2. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, **
p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table 4: IV Cumulative Effect of Pollution on Health Transactions: Different Fixed Effects

Total Number of Healthcare-related Transactions

No Controls City FE + Week FE + City×Trend + Holiday + Day-of-week + Weather + City×Season

Current Day 0.11 0.34*** 0.05* 0.12*** 0.14*** 0.15*** 0.12*** 0.12***
(0.31) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

Current + Past 3d 0.61 1.00*** 0.18* 0.39*** 0.47*** 0.48*** 0.39*** 0.40***
(0.99) (0.10) (0.11) (0.07) (0.07) (0.07) (0.07) (0.07)

Current + Past 7d 1.57 1.26*** 0.29* 0.61*** 0.72*** 0.73*** 0.61*** 0.61***
(1.48) (0.14) (0.16) (0.11) (0.11) (0.11) (0.10) (0.10)

Current + Past 14d 3.50** 0.73*** 0.39* 0.76*** 0.87*** 0.87*** 0.75*** 0.74***
(1.74) (0.15) (0.20) (0.13) (0.13) (0.13) (0.12) (0.14)

Current + Past 28d 6.12*** -0.93*** 0.56* 0.96*** 1.04*** 1.03*** 0.92*** 0.91***
(1.87) (0.25) (0.32) (0.20) (0.20) (0.20) (0.19) (0.22)

Current + Past 56d 6.87*** -3.27*** 1.15* 1.80*** 1.88*** 1.86*** 1.70*** 1.97***
(2.03) (0.31) (0.62) (0.38) (0.38) (0.38) (0.36) (0.42)

Current + All Lags 11.43*** -6.33*** 1.15 2.45*** 2.53*** 2.50*** 2.28*** 2.65***
(3.15) (0.46) (1.06) (0.61) (0.61) (0.61) (0.59) (0.68)

N 146,427 146,427 146,427 146,427 146,427 146,427 141,794 141,794
First-stage F 50.50 55.15 29.71 38.30 38.35 38.34 38.39 38.35

City FE Yes Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes
City×Trend Yes Yes Yes Yes Yes
Holiday Yes Yes Yes Yes
Day of the Week Yes Yes Yes
Weather Yes Yes
City×Season FE Yes

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. Each row reports the percentage change in the dependent variable
in response to a 10 µg/m3 increase in PM2.5 over the corresponding period, ∑

k
τ=0 βτ , estimated via the IV version of the flexible distributed lag model with 90 lags.

Same IVs as in Table 3. Each column progressively adds more controls, as denoted in the bottom panel. Standard errors are in parentheses, clustered at the city
level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust
to heteroskedasticity and clustered at the city level.
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Table 5: IV Cumulative Effects of Pollution: Different Number of Lags and Segments

Number of Lags k

Number of Segments z 30 days 60 days 90 days 120 days 150 days

1 1.18*** 2.12*** 2.42*** 2.60*** 2.58*
(0.25) (0.51) (0.69) (0.98) (1.48)

2 1.41*** 2.26*** 2.67*** 2.80*** 2.62*
(0.25) (0.52) (0.69) (0.95) (1.43)

3 1.28*** 2.16*** 2.65*** 2.74*** 2.41*
(0.25) (0.49) (0.68) (0.93) (1.40)

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. Each cell reports the
percentage change in the dependent variable in response to a 10 µg/m3 increase in PM2.5 over the period as indicated
by the column heading, estimated via the IV version of the flexible distributed lag model that uses the number of
B-spline segments as indicated by the row heading. For example, the cell in the first column and first row reports the
percentage change in all health-related transactions in response to a 10 µg/m3 increase in PM2.5 over the past 30 days,
estimated via the IV version of the flexible distributed lag model with one B-spline segment. Same IVs and controls
as in Table 3. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by ***
p < 0.01, ** p < 0.05, and * p < 0.10.

Table 6: IV Cumulative Effects of Pollution: Different Buffer Zone Radii

Radius for the Buffer Zone

100 km 150 km 200 km 250 km 300 km

First Stage Regression
R2 0.486 0.474 0.467 0.464 0.462
First-stage F 46.69 38.35 34.14 35.36 35.33

IV Regression
Current + All Lags 2.42*** 2.65*** 2.86*** 2.86*** 2.88***

(0.60) (0.68) (0.71) (0.72) (0.70)

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. The number of
obs is 141,794. Each column uses the buffer zone radius as indicated by the column heading in constructing the
instruments. The top panel reports the first-stage results and the bottom panel reports the percentage change in all
health-related transactions in response to a medium-run 10 µg/m3 increase in PM2.5 over the past 90 days. Same set of
IVs (except for the buffer zone radius) and controls as in Table 3. Standard errors are in parentheses, clustered at the
city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics
are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table 7: IV Cumulative Effects of Pollution: Additional Controls

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Panel A: Controlling for other pollutants
Current + All Lags 2.55*** 2.07*** 2.73*** 2.01*** 6.21*** -0.55 -0.69

(0.69) (0.72) (0.91) (0.76) (2.34) (0.58) (0.46)
First-stage F 39.76 39.85 39.75 41.61 50.98 39.71 39.71

Panel B: Controlling for economic spillover
Current + All Lags 2.62*** 2.15*** 2.76*** 2.12*** 6.37*** -0.56 -0.56

(0.68) (0.72) (0.89) (0.76) (2.34) (0.59) (0.47)
First-stage F 37.53 37.49 37.54 38.91 45.28 37.49 37.48

Panel C: Controlling for card adoption
Current + All Lags 2.60*** 2.14*** 2.75*** 2.10*** 6.31*** -0.56 -0.59

(0.69) (0.73) (0.90) (0.74) (2.37) (0.56) (0.46)
First-stage F 38.01 38.02 38.03 39.33 47.38 37.95 37.95

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each cell reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the past 90 days, ∑

90
τ=0 βτ , estimated via the IV version of the flexible distributed lag model.

Same IVs as in Table 3. In addition to controls in Table 3, Panel A includes the daily average concentration levels of O3, SO2, NO2 and CO, Panel B includes
the average pollution level in cities outside of the buffer zone but within the same region, and Panel C includes log(number of cards used) and log(number of POS
terminals) at the city-year level. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and *
p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table 8: IV Cumulative Effects of Pollution: Flexible Weather Controls

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

Panel A: Baseline regression with linear terms of local weather
Current + All Lags 2.65*** 2.18*** 2.80*** 2.13*** 6.37*** -0.24 -0.55

(0.68) (0.71) (0.89) (0.75) (2.33) (0.44) (0.58)
First-stage F 38.35 38.36 38.37 39.69 47.79 38.35 38.29

Panel B: Include 2nd-order polynomials of local weather
Current + All Lags 2.39*** 1.85*** 2.66*** 1.94*** 5.54** -0.41 -0.74*

(0.67) (0.69) (0.90) (0.74) (2.34) (0.57) (0.45)
First-stage F 37.28 37.25 37.30 38.11 46.46 37.21 37.20

Panel C: Include bins of local weather variables
Current + All Lags 2.16*** 1.58** 2.54*** 1.63** 5.49** -0.37 -0.74

(0.68) (0.70) (0.91) (0.72) (2.37) (0.58) (0.46)
First-stage F 36.25 36.21 36.23 36.89 46.90 36.19 36.22

Panel D: Include current and lagged local weather variables
Current + All Lags 1.98*** 1.06* 3.01** 1.81** 4.29 0.25 -0.61

(0.59) (0.58) (1.24) (0.87) (3.65) (0.76) (0.60)
First-stage F 24.88 24.82 24.81 26.33 33.75 24.86 24.88

Panel E: Include lagged weather variables at both source cities and destination city
Current + All Lags 1.80*** 0.68 3.03** 1.37 4.02 0.36 -0.55

(0.60) (0.61) (1.24) (0.90) (3.74) (0.77) (0.59)
First-stage F 23.77 23.81 23.64 24.44 32.16 23.76 23.73

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each cell reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the past 90 days, ∑

90
τ=0 βτ , estimated via the IV version of the flexible distributed lag model.

Panel A replicates the bottom row of Table 3 which controls for linear terms of weather variables (temperature, precipitiation and average wind speed). Panel B
includes 2nd-order polynomials in weather variables. Panel C includes bins of temperature, precipitation and average wind speed as well as all the interactions
between the bins. Temperature is grouped into 10 bins (< 10F◦,10−20F◦, ...,> 90F◦). Precipitation and average wind speed are grouped into 6 bins each. Panel
D includes the following weather lags at the destination city: the weather of day (t− 1),(t− 2), up to day (t− 7); the average weather between day (t− 8) and
(t−14), the average weather between (t−15) and (t−28), the average weather between day (t−29) and (t−56) and the average weather between (t−57) and
(t−90). Panel E includes the same set of weather lags as in Panel D for both the source and destination cities. The remaining controls and IVs are the same as in
Table 3. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage
F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table 9: Cumulative Effects of Pollution: Robustness of IVs

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

Panel A: IV constructed using source cities’ time-invariant pollution
Current + All Lags 2.69*** 2.17*** 3.83*** 2.16** 2.41 -1.74*** -0.56

(0.64) (0.58) (1.22) (0.90) (1.99) (0.67) (0.57)
First-stage F 26.96 27.02 26.95 26.88 29.34 26.79 26.93

Panel B: IV constructed without destination cities’ weather variables
Current + All Lags 2.91*** 2.49*** 2.79*** 2.41*** 6.66*** -0.41 -0.31

(0.71) (0.77) (0.90) (0.80) (2.56) (0.62) (0.49)
First-stage F 29.62 29.67 29.60 30.57 37.92 29.55 29.57

Panel C: Drop major cities
Current + All Lags 2.25*** 1.75*** 2.75*** 2.21*** 5.50*** -0.48 -0.51

(0.55) (0.51) (0.92) (0.76) (2.03) (0.60) (0.48)
First-stage F 37.00 37.03 37.06 38.16 47.25 36.98 36.93

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each cell reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the past 90 days, estimated via the IV version of the flexible distributed lag model. Same
controls as in Table 3. Panel A constructs the IVs using the average (time-invariant) level of PM2.5 in cities more than 150 km away. Panel B drops IVs constructed
using destination cities’ weather so that none of the IVs uses local information. Panel C drops the following large cities: Beijing, Shanghai, Guangzhou, Shenzhen,
Wuhan, Chongqing, Chengdu, and Nanjing. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, **
p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Appendices
Online Appendix. Not for Publication.

A Descriptive Data Pattern

Figure A1: National and Regional Average Daily PM2.5 Concentration (µg/m3) 2013-2015

(a) National

(b) Northern Region (c) Northeastern Region

(d) Northwestern Region (e) Southern Region

Notes: This figure reports the national and regional average daily PM2.5 concentration (µg/m3) during 2013-2015.
The Red line in all subfigures indicates the daily standard set by the US EPA: 35 µg/m3. Daily averages are across all
monitoring stations in the respective region.
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Figure A2: The Number of Active Bank Cards per Capita, 2015

Notes: Bank cards include debit and credit cards. Active bank cards are defined as cards that have been used at least
once in a given year. Each card is assigned to one primary city based on the location of its most frequent usage.
Population measure is year-end registered population of each city.

Table A1: Coverage of Bank Cards from UnionPay in 2015

Log(No. of cards per capita)

(1) (2)

log(household income) 1.556*** 1.362***
(0.093) (0.126)

Years of education 0.156*** 0.327***
(0.041) (0.055)

Average age -0.040*** 0.005
(0.012) (0.014)

Constant -13.00*** -13.82***
(0.662) (0.983)

Province fixed effects No Yes
No. of obs. 287 287
R2 0.682 0.831

Notes: The unit of observation is a city. The dependent variable is the log of number of active bank cards per capita in
2015 as shown in Figure A2. The city-level demographics (income, education, and age) are from the 2005 Census.
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Figure A3: Weekly Healthcare Spending, 2013 - 2015

Notes: bank card transactions in all healthcare facilities aggregated to the national-week level from 2013 to 2015.

A.1 Correlation between Card Spending and Health Outcomes

Our data on card transactions in healthcare facilities do not identify specific diseases associated
with the spending. Figure A4 illustrates the high correlation between the log number of Unionpay
card transactions in hospitals against the log number of NBS reported hospital visits at the province-
year level for our sample period. The remaining part of this section provides further evidence on
the strong correlation between our spending data and health outcomes based on two confidential
micro-level health data.

Figure A4: Annual Hospital Card Transactions vs. Hospital Visits

10
12

14
16

18
20

Lo
g 

of
 h

os
pi

ta
l c

ar
d 

tra
ns

ac
tio

ns

15 16 17 18 19 20
Log of hospital visits

Notes: The figure plots the logarithm of bank card transactions in hospitals (our data) against the logarithm of total
hospital visits (from the National Bureau of Statistics) at the province-year level from 2013 to 2015.
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Beijing: Emergency Ambulance Dispatches (EAD) Our first micro-level evidence on the va-
lidity of using card transactions in healthcare facilities as a measure of health outcomes is based on
the universe of daily emergency ambulance dispatches (EAD) data in Beijing from 2013 to 2015,
which was used in Zhong et al. (2017). EAD has been used in the medical literature as a measure
of health outcomes (Yang et al., 2014; Straney et al., 2014; Dolney and Sheridan, 2006). In China,
an ambulance is dispatched whenever someone calls 120, the public phone number for emergency
medical services. Due to the low private vehicle ownership and the highly subsidized fees for emer-
gency ambulances (50 Yuan (about $7) within 3km and 7 Yuan (about $1) for each additional km),
calling 120 is very common in case of a medical emergency.

Figure A5 shows a strong positive correlation between the number of ambulance dispatches
in Beijing and the number of card transactions in hospitals at the monthly level. The correlation
coefficient between these two variables is 0.55 at the daily level and 0.88 at the monthly level.
Table A2 presents the OLS regressions of daily card transactions in hospitals on daily emergency
ambulance dispatches in Beijing with and without controlling for various fixed effects. These fixed
effects capture seasonalities in diseases that are common underlying factors behind card transac-
tions and ambulance dispatches. The positive correlation between these two variables persists after
a rich set of time fixed effects, is very precisely estimated (significant at the 1% level), and remains
stable from Column 3 onwards. The results imply that the correlation between the two data series
is driven not only by seasonalities (captured by the fixed effects) but also by idiosyncratic factors
(such as weather and air pollution). The R-squared value is high, considering the different nature
of these two times series.

Figure A5: Monthly Card Transactions vs. Ambulance Dispatches in Beijing 2013-2015

Notes: The figure plots the number of ambulance dispatches in Beijing (y-axis) against the number of card transactions
at hospitals in Beijing (x-axis) at the monthly level from 2013 to 2015.
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Table A2: Daily Card Transactions and Ambulance Dispatches in Beijing 2013 - 2015

Number of Card Transactions in Hospitals

(1) (2) (3) (4) (5) (6) (7)

Number of 227.5*** 213.0*** 89.64*** 92.49*** 91.84*** 85.56*** 86.13***
Emergency Calls (10.60) (7.804) (15.37) (15.38) (15.46) (11.90) (11.89)

Fi
xe

d
E

ff
ec

ts Day of the Week Yes Yes Yes Yes Yes Yes
Year-week Yes Yes Yes Yes Yes
Linear Trend Yes Yes Yes Yes
Season Yes Yes Yes
Holidays Yes Yes
Spring Festival Yes

R2 0.300 0.625 0.849 0.850 0.851 0.912 0.912

Notes: We regress the number of card transactions in hospitals in Beijing on the number of hospital ambulance
dispatches in Beijing at the daily level from 2013 to 2015. The number of observations is 1,078. Standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Ganzhou City: Health Insurance Claims Our second micro-level evidence is based on the uni-
verse of health insurance claims by urban employees from the Urban Employee Health Insurance
program (UEHI) in the city of Ganzhou in Jianxi province. UEHI is one of the three major public
health insurance programs in the country. Ganzhou is a medium sized city with a population of 8.4
million, 75% of whom lives in rural areas. Its GDP per capita is 15,000 yuan in 2011, less than
half of the national average. Bank card penetration in these rural areas is lower than in urban cities.
We use Ganzhou to evaluate the correlation between card transactions and health outcomes in rural
areas, which helps to address concerns of sample selection.

The data contain the total number of health insurance claims at the daily level from January
2012 to September 2013, which overlaps with the earlier part of our sample period.41 As the case
with Beijing, there is a strong and positive correlation between the number of health insurance
claims and hospital related card transactions (Figure A6 and Table A3). The correlation coeffi-
cient is 0.39 at the daily level and 0.69 at the monthly level.42 The R-squared value is high and
the regression coefficients are statistically significant, with Column (7) implying a 1% increase in
insurance claims is associated with a 0.1% increase in the number of hospital card transactions.
These results suggest there is a strong correlation between card transactions and insurance claims
after partialling out a rich set of time fixed effects.

41Card penetration prior to 2013 was lower than that in our sample period. We expect the correlation between card
transactions and health insurance claims during our sample period to be higher than the numbers reported here.

42The date reported in the claims data refers to the date when the patient visited the hospital, rather than the date when
the claim was filed.
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Figure A6: Monthly Hospital Card Transactions vs. Insurance Claims in Ganzhou

Notes: The figure plots the logarithm of the number of insurance claims in Ganzhou (y-axis) against the logarithm of
the number of card transactions at hospitals in Ganzhou (x-axis). The data is aggregated to the monthly level from
January 2012 to September 2013.

Table A3: Daily Hospital Card Transactions and Insurance claims in Ganzhou

log (Number of Card Transactions in Hospitals)

(1) (2) (3) (4) (5) (6) (7)

log (Number of 0.571*** 0.553*** 0.198*** 0.193*** 0.192*** 0.118** 0.103**
Insurance Claims) (0.057) (0.056) (0.048) (0.048) (0.048) (0.048) (0.048)

Fi
xe

d
E

ff
ec

ts

Day of Week Yes Yes Yes Yes Yes Yes
Year-week Yes Yes Yes Yes Yes
Linear Trend Yes Yes Yes Yes
Season Yes Yes Yes
Holidays Yes Yes
Spring Festival Yes

R2 0.140 0.177 0.651 0.652 0.652 0.677 0.680

Notes: We regress the logarithm of the number of card transactions in hospitals in Ganzhou on the logarithm of the
number of insurance claims in Ganzhou. The data is at the daily level, ranging from January 2012 to September 2013.
The number of observations is 623. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

B B-Spline and IV Construction

B.1 B-Spline Construction

Table B4 illustrates that using daily lagged pollution leads to imprecise and oscillating coefficients
as a result of high serial correlations among lagged pollution. To address this issue, we extend
Almon (1965) and specify the impact of past pollution exposure on today’s spending as basis func-
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tions to flexibly capture pollution’s dynamic impact on health spending.

Table B4: IV Estimates for the Effect of Lagged PM2.5 on Health Spending

(1) (2) (3) (4) (5) (6)

pi,t 0.65*** 0.213 1.639*** 1.282*** 1.032*** 1.012***
(0.0891) (0.141) (0.277) (0.227) (0.210) (0.204)

pi,t−1 0.343** -1.708*** -1.062*** -0.646* -0.505*
(0.132) (0.367) (0.294) (0.268) (0.255)

pi,t−2 1.136*** 0.572** 0.270 -0.00588
(0.220) (0.206) (0.206) (0.217)

pi,t−3 0.152 0.256 0.604**
(0.115) (0.150) (0.194)

pi,t−4 -0.0467 -0.413**
(0.0953) (0.141)

pi,t−5 0.231*
(0.104)

N 192586 191,598 190,786 190,068 189,401 188,750
First-stage F 61.93 29.24 13.03 10.06 11.19 12.16

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. Same controls as in
Table 3. The IVs are interactions of pollution transported from distant source cities (150km away) and meteorological
conditions in the source and destination cities as defined in Equation (6) in the main text. Standard errors are in
parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.
The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the
city level.

Recall our baseline specification:

yit =
k

∑
τ=0

βτ pi,t−τ +xitα +θi · t +ξi +ηw + εit (B.1)

where {βτ}τ denotes the impact of pollution exposure τ days in the past on today’s spending. We
assume that βτ can be approximated by a set of B-spline basis functions of τ: βτ = ∑m γmBm(τ),
where γm are unknown parameters to be estimated and Bm are basis functions. Section 3.1 discusses
the example of a cubic B-spline with one segment, which amounts to a simple 3rd order polynomial
function of τ . We now describe how to extend this to the more general case where the basis function
Bm(τ) is an r-th order B-spline in τ with z segments.

To do so we introduce some new notation. Let the support of τ be [0,s]. We divide the support
into z sub-intervals by a vector of z+1 knots t= [t0, t1 · · · , tz], where t0 = 0 and tz = s. The r-th order
B-spline, which is equivalent to a piecewise polynomial of order r−1 (enforcing Cr−2 continuity),
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can be constructed from a set of basis functions:

Bm,r(τ|t) = (tm+r− tm)
r

∑
k=0

[
∏

0≤h≤r,h6=k
(tm+h− tm+k)

]−1

(τ− tm+k)
r−1
+

where

(τ− tm+k)
r−1
+ = 1(τ > tm+k) · (τ− tm+k)

r−1

Since there are z subintervals and the order of the spline is r, there will be z+ r−1 such B-splines.
We can now define βτ as a linear combination of these B-splines:

βτ =
z−1

∑
m=1−r

γmBm,r(τ|tm, ..., tm+r) (B.2)

Plug equation (B.2) into equation (B.1) and rewrite the distributed lag model as:

yit =
k

∑
τ=0

βτ pi,t−τ +xitα +θi · t +ξi +ηw + εit

=
k

∑
τ=0

z−1

∑
m=1−r

γmBm,r(τ|t)pi,t−τ +xitα +θi · t +ξi +ηw + εit

=
z−1

∑
m=1−r

γm

[
k

∑
τ=0

Bm,r(τ|t)pi,t−τ

]
+xitα +θi · t +ξi +ηw + εit

=
z−1

∑
m=1−r

γmvm,it +xitα +θi · t +ξi +ηw + εit

where vm,it = ∑
k
τ=0 Bm,r(τ|t)pi,t−τ , a weighted sum of past pollution exposure with the B-spline

basis terms Bm,r(τ|t) as weights.
In practice, the econometrician chooses both the order of the spline, r− 1, and the number

of segments, z. In our benchmark estimates, we use cubic B-splines (r = 4) with three segments
(z = 3), which leads to six key regressors {v1,it , ...,v6,it}. The cubic B-spline is a popular choice
and is equivalent to a piece-wise cubic polynomial with smoothness constraints at each knot up to
the 2nd order derivative (twice continuously differentiable). We choose three segments so that the
time series pattern of the marginal impact βτ for each past month is characterized by a separate
cubic polynomial.

B.2 IV Construction

As discussed in Section 3.2.2, we exploit the long-range transport property of PM2.5 to construct
instrumental variables for PM2.5. To provide a graphical example, panel (a) of Figure B7 plots the
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wind-pollution vectors for over 300 cities on Dec. 5, 2013. Each arrow’s length indicates the wind
speed, rescaled to match the exact distance the arrow can travel in a day. The arrow width indicates
the level of PM2.5 concentration at the source city. Panel (b) shows all pollution subvectors that are
blown towards Beijing on the same day. The amount of pollution that Beijing imports is the sum
of pollutants carried through all subvectors that reach Beijing at time t after originating from other
cities in previous days.

Figure B7: Wind-Pollution Vector Decomposition

(a) Wind-Pollution Vectors (b) Wind-Pollution Vectors toward Beijing

Notes: Panel (a) depicts the wind-pollution vector fields on Dec. 5, 2013. Each vector’s length indicates the wind speed
(re-scaled to match the distance traveled per day). Its width indicates the PM2.5 concentration level in the source city.
Panel (b) plots the decomposed subvectors pointing towards Beijing.

Our instruments aim to proxy for the amount of pollution imported from cities outside of the
buffer zone, p̂ f ar

it :

p̂ f ar
it = ∑

j:di j>r
p+j→i, t = ∑

j:di j>r
max[cosΦ ji,0] · p j,t−si jt ·

L

∑
l

γlul(di j,w j,t−si jt ,wi,t)

=
L

∑
l

γl ∑
j:di j>r

max[cosΦ ji,0] · p j,t−si jt ·ul(di j,w j,t−si jt ,wi,t)

=
L

∑
l

γlZl
it , where Zl

it = ∑
j:di j>r

max[cosΦ ji,0] · p j,t−si jt ·ul(di j,w j,t−si jt ,wi,t), l = 1, ...,L

(B.3)

The instruments for pit is the set of {Zl
it}L

l=1. These are valid instruments since they only depend on
weather in city i, which we control for in our regressions, and on pollution and weather variables
in cities outside of the buffer zone, which are uncorrelated with city i’s spending shocks by our

9



identification assumption. In our baseline specification, we use 15 second-order polynomial terms
ul(.) for a flexible approximation of the decay function: 1) constant, the inverse distance, and
origin city’s weather (wind speed, precipitation, temperature) (5 terms); 2) the quadratic terms of
the inverse distance, and the quadratic terms of origin city’s weather (4 terms); 3) the product of
the inverse distance and the origin city’s weather (3 terms); 4) the destination city’s weather (wind
speed, precipitation, temperature) (3 terms).

Baseline IVs In summary, we use fifteen instruments {Zl
it}L

l=1 for current-day pollution pit , where
the IVs are defined in equation (B.3). The IVs for lagged pollution pi,t−τ are lagged instruments
{Zl

i,t−τ
}L

l=1.
We now describe how to construct instruments for our flexible distributed lag model. As shown

in Section 3.1 and in Appendix B.1, the lagged distributed model can then be written as:

yit =
z−1

∑
m=1−r

γm

[
k

∑
τ=0

Bm,r(τ|t)pi,t−τ

]
+xitα +θi · t +ξi +ηw + εit

=
z−1

∑
m=1−r

γmvm,it +xitα +θi · t +ξi +ηw + εit

where the main regressors, vm,it = ∑
k
τ=0 Bm,r(τ|t)pi,t−τ , are weighted sums of lagged pollution

pi,t−τ . To construct instruments for these regressors, we similarly take the weighted sum of the
lagged exogenous variables Zl

i,t−τ
, where the weights are the same B-spline terms:

W l
m,it =

k

∑
τ=0

Bm,r(τ|t)Zl
i,t−τ , l = 1, ...,L

Our L instruments for {vm,it}m are therefore {W l
m,it}L

l=1. In our baseline specification with cubic
B-splines (r = 4) and three segments (z = 3), we have 6 endogenous regressors {vm,it}m=2

m=−3 and 90
instruments.

C Robustness Analysis

C.1 Additional Results for the Baseline Specification

10



Table C5: First-Stage Regressions

Endogenous variable: PM2.5, current day

(1) (2) (3)
In

cl
ud

ed
IV

s D
ai

ly
w

ea
th

er
Temperature -4.57*** -4.21*** -6.47***

(0.44) (0.43) (0.64)
Precipitation -48.52*** -47.30*** -23.35***

(2.32) (2.29) (4.12)
Wind speed -2.58*** -3.93*** -5.61***

(0.49) (0.49) (0.76)

D
ay

co
nt

ro
ls

Holiday -47.41*** -45.75*** -42.72***
(4.06) (4.09) (4.06)

Working weekend 15.46* 15.95* 17.58**
(6.23) (6.32) (6.15)

Spring festival 293.7*** 273.6*** 253.9***
(17.67) (17.37) (16.80)

City FEs, week FEs, city-specific time trends,
Yes Yes Yescity-specific seasonality, day-of-week FEs

E
xc

lu
de

d
IV

s

Sum of PM2.5 from distant cities:
Unweighted 0.01***

Yes

(0.002)
Weighted by inverse of distance 0.46***

(0.03)
Weighted by wind speed of source city 0.001

(0.001)
Weighted by temperature of source city -0.09***

(0.006)
Weighted by precipitation of source city -0.02***

(0.005)
Weighted by destination city’s weather variables,

Yessquares of inverse distance and source cities’ weather variables,
and interactions between inverse distance and source cities’ weather variables.

R2 0.46 0.46 0.47
Number of excluded IVs 1 4 15

Effective F-statistic for excluded IVs 36.02 161.06 112.21
Critical value for weak IVs 37.41 28.84 28.89

Notes: The endogenous variable is current-day PM2.5. The number of observation is 192,586. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01,
** p < 0.05, and * p < 0.10. Effective F-statistics for excluded IVs following Olea and Pflueger (2013) are reported in the bottom panel. Critical value for weak IVs reports the upper 5% quantile for the
noncentral χ2 distribution from Olea and Pflueger (2013), allowing for a 5% bias with one single endogenous variable.
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Table C6: OLS Estimates of the Pollution Impact on Health Spending: Contemporaneous Effects

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

PM2.5, Current Day 0.11*** 0.11*** 0.12*** 0.13*** 0.18*** -0.06*** -0.03
(0.02) (0.02) (0.02) (0.02) (0.05) (0.02) (0.02)

N 192,586 191,814 191,277 185,773 146,224 192,035 191,766

Notes: the dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each column reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 in the current day. Same controls as in Table 3. Standard errors are in parentheses, clustered at the
city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.

Table C7: IV Estimates of the Pollution Impact on Health Spending: Contemporaneous Effects

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

PM2.5, Current Day 0.65*** 0.73*** 0.60*** 0.77*** 1.13*** -0.09 -0.10
(0.09) (0.11) (0.15) (0.13) (0.37) (0.15) (0.12)

N 192,586 191,814 191,277 185,773 146,224 192,035 191,766
First-stage F 112.21 111.37 111.17 104.91 86.13 111.71 111.77
Critical value for weak IVs 28.89 28.88 28.89 28.85 29.01 28.88 28.89

Notes: the dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each column reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 in the current day. Same controls as in Table 3. The IVs are interactions of pollution transported from
distant source cities (150km away) and meteorological conditions in the source and destination cities as defined in Equation (6). Standard errors are in parentheses,
clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The First-stage F for excluded IVs is the effective
F-statistics following Olea and Pflueger (2013). Critical value for weak IVs reports the upper 5% quantile for the noncentral χ2 distribution from Olea and Pflueger
(2013), allowing for a 5% bias with one single endogenous variable.
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Table C8: IV Estimates of Pollution Impacts on the Value of Transactions with 90 Lags

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.07*** 0.07** 0.01 0.10** 0.01 -0.12** -0.04
(0.02) (0.03) (0.05) (0.05) (0.09) (0.05) (0.05)

Current + Past 3d 0.23*** 0.25*** 0.04 0.34** 0.05 -0.38** -0.16
(0.08) (0.08) (0.15) (0.15) (0.30) (0.17) (0.17)

Current + Past 7d 0.36*** 0.38*** 0.04 0.54** 0.13 -0.55** -0.36
(0.11) (0.13) (0.21) (0.23) (0.45) (0.24) (0.25)

Current + Past 14d 0.42*** 0.46*** 0.03 0.69** 0.33 -0.56** -0.68**
(0.15) (0.17) (0.24) (0.27) (0.59) (0.27) (0.31)

Current + Past 28d 0.43* 0.44 0.29 0.79*** 1.09 -0.34 -0.99**
(0.25) (0.29) (0.34) (0.30) (0.88) (0.34) (0.43)

Current + Past 56d 1.04** 0.83 1.64*** 1.15** 4.07** -0.32 -0.95
(0.47) (0.54) (0.61) (0.47) (1.72) (0.58) (0.75)

Current + All Lags 1.47** 1.08 1.96** 1.20 6.12** 0.54 -0.66
(0.70) (0.78) (0.96) (0.83) (2.61) (0.87) (1.04)

N 141,794 141,656 141,566 137,854 110,257 141,757 141,641
First-stage F 38.35 38.38 38.37 39.68 47.79 38.26 38.30

Notes: the dependent variable is log(value of transactions) for a given consumption category in city i on day t. Each row reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the corresponding period, ∑

k
τ=0 βτ , estimated via the IV version of the flexible distributed lag

model with 90 lags. Same controls and IVs as in Table 3. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by ***
p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city
level.
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C.2 Additional Robustness Analysis

Table C9: IV Estimates of Pollution Impacts on the Number of Transactions per capita

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.11*** 0.12*** 0.05 0.14*** 0.19*** -0.16*** -0.07***
(0.02) (0.03) (0.04) (0.04) (0.07) (0.03) (0.02)

Current + Past 3d 0.36*** 0.38*** 0.19 0.48*** 0.64*** -0.51*** -0.26***
(0.08) (0.08) (0.12) (0.12) (0.24) (0.09) (0.06)

Current + Past 7d 0.56*** 0.58*** 0.34* 0.76*** 1.03*** -0.73*** -0.41***
(0.11) (0.12) (0.18) (0.18) (0.36) (0.13) (0.10)

Current + Past 14d 0.70*** 0.70*** 0.54** 0.98*** 1.40*** -0.73*** -0.53***
(0.14) (0.16) (0.22) (0.22) (0.50) (0.16) (0.12)

Current + Past 28d 0.91*** 0.86*** 1.04*** 1.22*** 2.13*** -0.54** -0.46**
(0.22) (0.25) (0.30) (0.27) (0.79) (0.23) (0.21)

Current + Past 56d 1.99*** 1.71*** 2.34*** 1.98*** 4.71*** -0.95** -0.25
(0.42) (0.47) (0.53) (0.45) (1.54) (0.42) (0.36)

Current + All Lags 2.70*** 2.22*** 2.85*** 2.26*** 6.53*** -0.59 -0.61
(0.69) (0.72) (0.89) (0.75) (2.33) (0.61) (0.47)

N 135,297 135,162 135,291 131,699 107,424 135,283 135,294
First-stage F 39.12 39.16 39.16 40.85 52.47 39.09 39.14

Notes: the dependent variable is log(number of transactions per capita) for a given consumption category in city i on day t. Each row reports the percentage change
in the dependent variable in response to a 10 µg/m3 increase in PM2.5 over the corresponding period, ∑

k
τ=0 βτ , estimated via the IV version of the flexible distributed

lag model with 90 lags. Same controls and IVs as in Table 3. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by ***
p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city
level.

14



Table C10: IV Estimates of the Impact of Average Lagged Pollution on Spending

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Panel A: Contemporaneous effect (Table C7)
Current Day PM2.5 0.65*** 0.73*** 0.60*** 0.77*** 1.13*** -0.09 -0.10

(0.09) (0.11) (0.15) (0.13) (0.37) (0.15) (0.12)
First-stage F 112.21 111.37 111.17 104.91 86.13 111.71 111.77

Panel B:
7-day Average PM2.5 0.68*** 0.73*** 0.63*** 0.83*** 1.58** -0.22 -0.08

(0.13) (0.16) (0.17) (0.15) (0.60) (0.13) (0.12)
First-stage F 109.3 109.1 108.7 104.2 83.43 109.2 109.3

Panel C:
30-day Average PM2.5 1.17*** 1.25*** 1.31*** 1.39*** 3.33** -0.10 0.37

(0.28) (0.33) (0.38) (0.32) (1.27) (0.27) (0.25)
First-stage F 61.74 61.71 61.46 59.28 45.12 61.73 61.80

Panel D:
60-day Average PM2.5 1.97*** 1.67** 2.21** 1.79*** 5.50* -0.53 0.17

(0.53) (0.60) (0.69) (0.52) (2.22) (0.45) (0.35)
First-stage F 37.97 37.92 37.91 36.51 29.34 37.97 37.96

Panel E:
90-day Average PM2.5 2.15** 1.50 2.44* 1.61* 6.53* -0.44 -0.11

(0.76) (0.79) (1.02) (0.73) (2.64) (0.63) (0.44)
First-stage F 27.69 27.63 27.66 26.96 24.43 27.68 27.71

Notes: the dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each panel is a separate set of regressions, where
the key regressor is PM2.5 averaged over the corresponding time window. For example, in Panel B, the regressor ‘7-day average PM2.5’ is the average PM2.5 from
day t − 7 to day t. Remaining controls (fixed effects, time trends and weather controls) and IVs are the same as in Table 3. Standard errors are in parentheses,
clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F for excluded IVs is the effective F-statistic
following Olea and Pflueger (2013). Critical value for weak IVs, allowing for a 5% bias with one endogenous variable, ranges from 27.3 to 29.0 depending on the
specification.
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Table C11: Placebo Exercise – IV Estimates Using Randomized Wind Direction and Speed

(1) (2) (3)

Only keep IVs that interact with wind No Yes Yes
Randomize wind direction + speed (placebo) No No Yes

Current Day 0.12*** 0.11 -0.06*
(0.02) (0.07) (0.03)

Current + Past 3d 0.40*** 0.37* -0.15
(0.07) (0.21) (0.12)

Current + Past 7d 0.61*** 0.54* -0.10
(0.10) (0.31) (0.22)

Current + Past 14d 0.74*** 0.60 0.20
(0.14) (0.37) (0.41)

Current + Past 28d 0.91*** 0.71* 0.80
(0.22) (0.40) (0.71)

Current + Past 56d 1.97*** 2.07*** 1.13
(0.42) (0.55) (1.17)

Current + All Lags 2.65*** 2.29*** -1.69
(0.68) (0.83) (1.82)

# IVs 90 24 24
First-stage F 38.35 15.09 7.24

Notes: the dependent variable is log(total number of healthcare transactions) in city i on day t. The number of observations is 141,794. Same controls as in Table 3.
Column (1) replicates the first column in Table 3. Column (2) keeps IVs that interact pollution transported from distant source cities (150km away) with wind speed
and wind direction and drops IVs that use variation in temperature and rainfall. Column (3) replicates Column (2), except that the actual wind direction and speed
are replaced with randomly generated wind direction and speed (a placebo exercise). Standard errors are in parentheses, clustered at the city level. Significance
levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity
and clustered at the city level.
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Table C12: Estimates of Pollution Impacts: Alternate IVs Using Wind Direction Following Deryugina et al. (2019)

(1) (2)

Baseline IVs Yes
Wind direction interacted with spatial group FE as IVs Yes

Current Day 0.12*** 0.06
(0.02) (0.08)

Current + Past 3d 0.40*** 0.19
(0.07) (0.29)

Current + Past 7d 0.61*** 0.30
(0.10) (0.51)

Current + Past 14d 0.74*** 0.39
(0.14) (0.86)

Current + Past 28d 0.91*** 0.56
(0.22) (1.51)

Current + Past 56d 1.97*** 1.22
(0.42) (2.62)

Current + All Lags 2.65*** 1.48
(0.68) (3.54)

# IVs 90 900
First-stage F (Cragg-Donald) 254.91 14.73

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. The number of observations is 141,794. Column (1) replicates
the first column in Table 3. Column (2) follows Deryugina et al. (2019), where wind direction dummies are interacted with 50 group dummies classified via the
K-means clustering algorithm, resulting in 900 IVs. Since the number of IVs exceeds the number of city clusters, the cluster-robust Kleibergen-Paap Wald rk F-stat
cannot be computed. Instead, we report the Cragg-Donald F-statistic which assumes homoskedasticity. For reference, the Stock and Yogo (2005) critical value
based on a maximal TSLS bias of 5% with three endogenous variables and 30 instruments is 20.27. It is computationally challenging to compute critical values with
many endogenous regressors; simulation evidence indicates the critical value is around 20. As Column (2)’s IVs fail to pass the weak IV test, we follow Andrews
(2018) and construct the identification-robust confidence intervals that are valid under weak IVs. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and
* p < 0.10.
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Table C13: IV Estimates of Pollution Impacts, Limiting to Cities Where Pollution Was Monitored from 2013 onward

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.11*** 0.12*** 0.06 0.17*** 0.18** -0.13*** -0.05***
(0.03) (0.03) (0.04) (0.04) (0.08) (0.03) (0.02)

Current + Past 3d 0.36*** 0.39*** 0.20 0.55*** 0.60** -0.42*** -0.20***
(0.08) (0.09) (0.13) (0.14) (0.25) (0.10) (0.07)

Current + Past 7d 0.55*** 0.58*** 0.33* 0.84*** 0.95** -0.62*** -0.36***
(0.12) (0.14) (0.20) (0.20) (0.40) (0.14) (0.10)

Current + Past 14d 0.64*** 0.63*** 0.50** 1.01*** 1.30** -0.67*** -0.52***
(0.16) (0.19) (0.24) (0.24) (0.57) (0.16) (0.13)

Current + Past 28d 0.73*** 0.63** 0.86** 1.10*** 2.14** -0.47** -0.46**
(0.25) (0.28) (0.34) (0.28) (0.89) (0.22) (0.19)

Current + Past 56d 1.55*** 1.28** 1.84*** 1.54*** 4.77*** -0.65* -0.17
(0.48) (0.52) (0.61) (0.46) (1.72) (0.37) (0.31)

Current + All Lags 2.08*** 1.62** 2.09** 1.63** 6.37** -0.19 -0.50
(0.77) (0.80) (0.98) (0.79) (2.54) (0.56) (0.45)

N 103,146 103,142 103,140 101,161 87,295 103,137 103,145
First-stage F 45.31 45.33 45.42 50.60 64.90 45.37 45.32

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. The sample is limited to the 159 cities with hourly
monitored pollution data since 2013. Same controls and IVs as in Table 3. Standard errors are in parentheses, clustered at the city level. Significance levels are
indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and
clustered at the city level.
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D Heterogeneous Impact

This section examines the heterogeneity of pollution’s impact on health spending. To conserve the
number of parameters, we use one-segment instead of three-segment B-splines, since cumulative
effects are similar across different segments (Table 5). This corresponds to a simple third-order
polynomial, as explained in Section 3.1.

To examine how pollution’s impact on health spending differs across polluted and less-polluted
days and by income, we allow βτ , the coefficient of pollution exposure on day t− τ , to depend on
the quadratic term of PM2.5 (for Figure 4 in the main text) and income (for Appendix Figure D8)
as well as the linear term. Specifically, the impact of past pollution pi,t−τ is defined as:

βτ(τ,w|γ,σ) = (σ1w+σ2w2)+(γ0 + γ1τ + γ2τ
2 + γ3τ

3) (D.1)

where σ1w+σ2w2 captures heterogeneity and allows the intercept of the βτ -curve to vary across
different levels of w. Parameters σ ’s and γ’s are coefficients to be estimated. If σ ’s are significant,
then pollution’s impact on health spending exhibits heterogeneity across variable w.

We report coefficient estimates for equation (D.1) in Table D14. Column (1) reports estimates
without heterogeneity, i.e., the specification z = 1,k = 90 in Table 5. Columns (2) and (3) report σ

estimates that govern heterogeneity across different PM2.5 concentration and per capita disposable
income, respectively. We draw Figure 4 and Appendix Figure D8 based on estimates in Columns
(2) and (3). Column (4) allows βτ to depend on both pollution concentration and income.

To examine pollution’s heterogeneous impact across seasons, we use the following:

βτ(τ,w|γ,σ) = (σ1 ·1{summer}+σ2 ·1{fall}+σ3 ·1{winter})+(γ0+γ1τ +γ2τ
2+γ3τ

3) (D.2)

where 1{summer},1{fall},and 1{winter} are dummy variables for different seasons. Coefficient
estimates for σ ’s are reported in Table D15. Analysis for the heterogeneity across years is done
analogously:

βτ(τ,w|γ,σ) = (σ1 ·1{Year 2014}+σ2 ·1{Year 2015}+(γ0 + γ1τ + γ2τ
2 + γ3τ

3) (D.3)

Results are reported in Column 2 of Table D15.
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Figure D8: Impact of Air Pollution Across Income Levels

Notes: the top panel plots the (marginal) percentage change in total healthcare transactions for a temporary 10 µg/m3

increase in PM2.5 at a specific level of per-capita income and on a given day. On the t-axis, 0 refers to day t, 50 refers to
day t−50, etc. The bottom panel plots the percentage change in total healthcare transactions for a 10 µg/m3 increase in
PM2.5 over the past 90 days at different levels of per capita disposable income as denoted by the x-axis. For example, a
10 µg/m3 increase in PM2.5 over the past 90 days raises today’s total healthcare transactions by 2.44% when disposable
income is 15,000 yuan. Based on parameter estimates reported in Appendix Table D14.
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Table D14: Coefficient Estimates on Heterogeneity: PM2.5 and Disposable Income

(1) (2) (3) (4)

Heterogeneity (w) No Heterogeneity PM2.5 Disposable Income PM2.5 & Income

C
ub

ic
Po

ly
no

m
ia

l
γ1 0.06*** 0.06*** 0.07* 0.08**

(0.01) (0.01) (0.04) (0.04)
γ2 -4.11E-03*** -3.86E-03*** -3.52E-03*** -3.91E-03***

(1.41E-03) (1.38E-03) (1.25E-03) (1.32E-03)
γ3 1.17E-04*** 1.11E-04*** 1.07E-04*** 1.16E-04***

(3.79E-05) (3.74E-05) (3.18E-05) (3.47E-05)
γ4 -9.23E-07*** -8.77E-07*** -8.76E-07*** -9.30E-07***

(2.89E-07) (2.88E-07) (2.36E-07) (2.60E-07)

H
et

er
og

en
ei

ty

σ1 - PM2.5 0.13** 0.14**
(0.06) (0.06)

σ2 - PM2.5 -0.37*** -0.40***
(0.11) (0.12)

σ1 - Income -1.24E-02 -1.53E-02
(2.53E-02) (2.49E-02)

σ2 - Income 1.14E-03 1.62E-03
(3.66E-03) (3.60E-03)

Max./Min. Point = −σ̂1
2σ̂2

179 µg/m3 54,700 yuan

Notes: the table reports coefficient estimates on equation D.1:

βτ(τ,w|γ,σ) = (σ1w+σ2w2)+(γ0 + γ1τ + γ2τ
2 + γ3τ

3).

where βτ(τ,w|γ,σ) denotes the percentage change in healthcare expenditure in response to a 10 µg/m3 increase in PM2.5 on day t− τ . Column (3) uses each city’s
average annual per capita disposable income from 2013 to 2015. Column (4) allows βτ to depend on both pollution concentration and income. PM2.5 concentration
is rescaled to mg/m3 and disposable income is rescaled to 10,000 yuan. The maximum/minimum points are defined by ∂β

∂w = 0, or w∗ = −σ̂1
2σ̂2

, which corresponds to
the maximum/minimum point of the quadratic term (σ1w+σ2w2). Standard errors are in parentheses, clustered at the city level. Significance levels are indicated
by *** p < 0.01, ** p < 0.05, and * p < 0.10. γ2,γ3,γ4’s in Columns (2), (3) and (4) are insignificantly different from those in Column (1).
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Table D15: Coefficient Estimates on Heterogeneity: Season and Year

(1) (2)

Heterogeneity (w) Season Year

C
ub

ic
Po

ly
no

m
ia

l

γ1 0.04*** 0.05*
(0.02) (0.02)

γ2 -2.94E-03** -4.59E-03***
(1.30E-03) (1.29E-03)

γ3 9.36E-05*** 1.34E-04***
(3.47E-05) (3.58E-05)

γ4 -7.80E-07*** -1.1E-06***
(2.66E-07) (2.81E-07)

H
et

er
og

en
ei

ty

1{spring} -
-

1{summer} -8.13E-05
(1.82E-03)

1{fall} 2.13E-03
(2.65E-03)

1{winter} 7.66E-03***
(1.60E-03)

1{Year 2013} -
-

1{Year 2014} 0.01
(0.02)

1{Year 2015} 0.02
(0.03)

Notes: the table reports coefficient estimates based on equation (D.2) and (D.3). 1{·} is a dummy variable. This
analysis allows βτ , the percentage change in healthcare expenditure in response to a 10 µg/m3 increase in PM2.5 on
day t−τ , to differ across seasons and years. Standard errors are in parentheses, clustered at the city level. Significance
levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.

E Healthcare Costs

According to China’s National Health Commission (2016), national health expenditure which in-
cludes both private and public spending, was more than four trillion yuan ($615 billion) in 2015.
Bank card transactions in the Unionpay system account for half of the total private spending (which
is roughly 30% of the aggregate health spending). In order to interpolate our estimates of the health
impact to the entire population, we need to make assumptions on health spending that is not covered
by Unionpay. There are several considerations that suggest our analysis is likely to underestimate
the population impact. First, elderly are more vulnerable to air pollution. In the U.S., the elderly
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accounts for 15% of the population but 34% of health spending in 2014. The elderly population
has few cards per person and is less likely to use credit and debit cards on average. Second, low-
income residents experience a more severe health impact from pollution (Figure D8), but bank card
penetration is lower in low-income areas. As a result, our analysis is likely to underestimate the
population impact.

One might be concerned that individuals using credit and debit cards are likely to have better
insurance coverage than individuals without cards, and hence consume more healthcare when pol-
lution increases. While the extent of moral hazard could be different between card users and other
consumers, this concern is mitigated by the institutional features of China’s healthcare system, in
particular the long waiting time (which discourages over-usage), time lags in getting reimbursed
for insurance, and high co-pays. Moreover, while individuals with better insurance coverage may
use more healthcare than individuals with lower coverage, the morbidity cost (which includes lost
productivity and reduced quality of life due to sickness in addition to the healthcare cost) of the
latter group is not necessarily lower. Indeed, the inability of an individual to seek treatment upon
falling sick (due to limited insurance coverage) may lead to worsening of their health condition,
thus increasing their morbidity cost relative to individuals with better insurance coverage.

Our main analysis indicates that health spending (in the Unionpay system) increases by 1.5%
in value and 2.65% in transaction frequency in response to a 10 µg/m3 increase of PM2.5 over 90
days. Table E16 benchmarks our results with the findings in the related literature. To estimate the
healthcare cost from elevated PM2.5 for the entire population, we assume that the health impact is
the same for both bank-card and non-bank-card spending. Based on China’s national healthcare
spending in 2015, the 1.5% impact from a 10 mg/m3 increase in PM2.5 translates to 59.6 billion
yuan ($9.2 billion).

To compare our healthcare estimate (part of the morbidity cost) with the mortality impacts
in the literature, we monetize the mortality estimate from Ebenstein et al. (2017). Specifically,
Ebenstein et al. (2017) find that a 10 µg/m3 increase of PM10 would increase the cardiorespiratory
mortality rate by 8% on average. In the main text, we assume that the mortality cost of a 10 µg/m3

increase of PM2.5 is the same as that of a 10 µg/m3 increase of PM10. This translates to a mortality
cost of $13.4 billion. Alternatively, since PM2.5 accounts for 60% of PM10 concentration (Zhou et
al., 2016), another assumption could be that the mortality cost of a 10 µg/m3 increase of PM10 is
equivalent to the mortality cost of a 6 µg/m3 increase of PM2.5. Under this alternative assumption,
a 10 µg/m3 increase of PM2.5, or equivalently a 16.7 µg/m3 increase in PM10, would inflict a
mortality cost of $22.3 billion (as opposed to $13.4 billion).
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Table E16: Summary of the Dose-Response Relationship from Literature

Source Dose, additional Response

Mu and Zhang (2016) 100-point AQI 54.5% increase in mask purchases,
70.6% increase in anti-PM2.5 mask purchases

Williams and Phaneuf (2016) 1 std. dev. of PM2.5 (3.78 µg/m3) 8.3% more spending on asthma and COPD

Schlenker and Walker (2016) 1 std. dev. of pollution 17% more asthma and other respiratory incidences,
9% more heart incidences

Arceo et al. (2015) 1 µg/m3 PM10 0.23 per 100,000 increase in infant mortality
1 ppb CO 0.0046 per 100,000 increase in infant mortality

He et al. (2016) 10 µg/m3 PM10 (roughly 10%) 8.36% increase in all-cause mortality rate
285,000 more premature deaths each year

Chay and Greenstone (2003) 1% TSP 0.35% increase in infant mortality rate nationwide

Our estimation 10 µg/m3 PM2.5 2.65% increase in healthcare transactions
1.5% increase in healthcare expenditure
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Table E17: Mortality Cost Calculation

Age group Urban population Rural Population Urban mortality rate Rural mortality rate VSL Mortality impact
(per 100,000) (per 100,000) in million (2015$) in percentage

20-24 73,195,616 58,048,857 4.31 3.81 0.2106 10
25-29 59,414,692 44,637,171 5.47 5.54 0.2106 11
30-34 57,695,497 42,364,156 8.07 7.07 0.2106 14
35-39 66,981,015 54,594,597 13.71 12.48 0.2106 10
40-44 65,704,887 62,801,076 26.02 23.90 0.1895 12
45-49 55,242,460 53,527,870 42.25 46.27 0.1684 13
50-54 40,364,926 40,756,761 65.87 71.27 0.1474 13
55-59 38,563,476 45,194,486 105.52 125.79 0.1263 12
60-64 26,819,982 33,611,729 209.62 255.81 0.1053 12
65-69 18,448,986 23,900,786 402.25 459.16 0.0842 11
70-74 15,221,689 18,742,359 880.11 1092.46 0.0632 9
75-79 10,848,240 13,721,250 1744.92 1998.33 0.0421 7
80-84 5,936,146 7,839,253 3632.06 4316.95 0.0316 5
85 and above 3,370,721 4,474,484 9685.26 13128.58 0.0211 3

Notes: this mortality cost calculation follows closely Deschênes et al. (2017). The population data are for 2015. The mortality rates per 100,000 are only for
cardiorespiratory diseases and are from the 2015 National Health Statistics. Based on the transfer elasticity of 1.2 and the 2.27 million (in 2015$) estimate for the
U.S. population’s VSL from Ashenfelter and Greenstone (2004), the estimated VSL for the Chinese population is $0.2106 million for a prime age person. The age
adjustment is based on Murphy and Topel (2006). The estimated mortality impact (last column) of a 10 µg/m3 increase in PM10 on the cardiorespiratory mortality
rate during life cycle is from Table S6 in Ebenstein et al. (2017).
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F Avoidance Behavior

This section provides a brief description on evidence that households engage in avoidance behavior
to mitigate their pollution exposure. A key insight of this analysis is that when consumers engage
in avoidance behavior, expectations of future pollution levels should affect current consumption.
For example, if consumers expect pollution to improve in the near future, they may postpone their
consumption to avoid current exposure. On the other hand, an expectation of worse air quality
tomorrow may encourage them to shift future consumption to today.

To investigate avoidance behavior, we assume that consumers can perfectly foresee the air qual-
ity on the following day and adjust their spending accordingly. In other words, we include the
following day’s pollution as an additional regressor in the main specification. The perfect-foresight
assumption is partly driven by the lack of systematic data on pollution forecasts that individuals had
access to when making decisions. Admittedly, this is a strong assumption. However, the issue of air
quality was highly salient during our sample period and China’s Ministry of Environmental Protec-
tion (MEP) had just launched a nationwide pollution monitoring-and-disclosure program (Barwick
et al., 2020). Real-time forecasts of air quality were available to consumers both from government
websites and smartphone apps. To account for measurement errors and possible omitted variable
bias, we instrument for future PM2.5 using 1-day leads of our instruments for today’s PM2.5.

The results are illustrated in Panel A of Table F18. A 10 µg/m3 increase in PM2.5 on the next
day is associated with a 0.70% contemporaneous increase in transactions in the aggregate health
care sector. The impact is larger for pharmacies than for hospitals, consistent with the fact that
hospital visits are often scheduled in advance and less substitutable intertemporally. Spending in
supermarkets also increases when next-day pollution is expected to deteriorate. The estimated
cumulative impact on healthcare spending that is associated with a 10 µg/m3 increase of PM2.5

over the past 90 days is 2.51%, slightly lower than but comparable to when we do not control for
avoidance. In Panels B and C, we replace pollution the following day with the average pollution in
the next 3 days and 7 days respectively. The results are similar. While the assumption of perfect
foresight is stronger for longer time horizons, our IV approach can potentially address the concern
of measurement errors that arise as a result of not observing the forecasts that consumers use.

We have carried out additional analyses where we relax the assumption of perfect foresight
and assume that individuals form an expectatio of PM2.5 on day (t + 1) based on the information
they have available at day t. Specifically, we regress pi,t+1 on current day PM2.5, current weather,
weather on day (t + 1) (assuming meteorological forecasts are available and accurate), as well as
PM2.5 that is expected to arrive on day (t +1) from surrounding cities, and use the predicted value
from this regression as the forecasted PM2.5 on the next day. The results are quantitatively similar,
though slightly noisier.
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Table F18: IV Cumulative Effects of Pollution: Avoidance Behavior

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

Panel A: Avoidance depends on tomorrow’s pollution
Pollution tomorrow 0.70*** 0.67*** 0.86*** 0.61*** 0.85*** -0.02 0.31***

(0.12) (0.11) (0.20) (0.17) (0.32) (0.14) (0.11)
Current + All Lags 2.51*** 2.11*** 2.57*** 2.01*** 6.25*** -0.56 -0.71

(0.70) (0.74) (0.90) (0.75) (2.42) (0.59) (0.48)
First-stage F 44.95 45.07 45.41 45.86 51.04 45.01 45.13

Panel B: Avoidance depends on average pollution in the next 3 days
Average pollution, 0.89*** 0.88*** 1.10*** 0.80*** 1.10** -0.02 0.47***
next 3 days (0.16) (0.16) (0.27) (0.25) (0.51) (0.19) (0.15)
Current + All Lags 2.61*** 2.27*** 2.65*** 2.16*** 6.46** -0.52 -0.68

(0.73) (0.77) (0.92) (0.75) (2.55) (0.60) (0.49)
First-stage F 38.89 39.07 39.15 38.89 46.44 38.92 39.12

Panel C: Avoidance depends on average pollution in the next 7 days
Average pollution, 0.75*** 0.86*** 1.02** 0.72* 1.08 -0.30 0.62***
next 7 days (0.26) (0.24) (0.46) (0.40) (0.81) (0.28) (0.23)
Current + All Lags 2.69*** 2.31*** 2.75*** 2.11*** 6.72** -0.54 -0.65

(0.76) (0.81) (0.95) (0.76) (2.79) (0.64) (0.52)
First-stage F 36.45 36.00 36.69 35.15 41.91 36.48 36.75

Notes: the dependent variable is log(number of transactions) for a given consumption category in city i on day t. We assume that individuals perfectly foresee
pollution in the next few days and adjust spending accordingly. The instrument for future pollution is the same instrument for today’s pollution (defined in equation
(6) in the main text), leading 1 day (Panel A), 3 days (Panel B), and 7 days (Panel C). The remaining IVs and controls are identical to those in Table 3. Standard
errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are
Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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