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ABSTRACT

Most environmental policy assumes the form of standards and enforcement. Scarce public 
budgets motivate the use of disclosure laws. This study explores a new form of pollution 
disclosure: real-time visual evidence of emissions provided on a free, public website. The paper 
tests whether the disclosure of visual evidence of emissions affects the nature and frequency of 
phone calls to the local air quality regulator. First, we test whether the presence of the camera 
affects the frequency of calls to the local air quality regulator about the facility monitored by the 
camera. Second, we test the relationship between the camera being active and the number of 
complaints about facilities other than the plant recorded by the camera. Our empirical results 
suggest that the camera did not affect the frequency of calls to the regulator about the monitored 
facility. However, the count of complaints pertaining to another prominent industrial polluter in 
the area, steel manufacturing plants, is positively associated with the camera being active. We 
propose two behavioral reasons for this finding: the prior knowledge hypothesis and affect 
heuristics. This study argues that visual evidence is a feasible approach to environmental 
oversight even during periods with diminished regulatory capacity.
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Introduction. 

Environmental policy in developed economies depends on effective monitoring and 

enforcement. Monitoring ambient levels of pollution and direct mensuration of 

emissions are expensive and therefore incomplete.1 A vast swath of the economy 

remains unmonitored. Enforcement, which is often contentious, requires the 

deployment of scarce public resources and is, therefore, imperfect. Recent 

developments in the federal political environment suggest even more limited federal 

enforcement (New York Times, 2017).  

The dearth of pollution monitors and incomplete enforcement motivates public 

disclosure as a means to affect change among polluting firms (Tietenberg, 1998). Direct 

information on pollution provided to concerned citizens may enhance public pressure 

on regulatory agencies to enforce existing rules and laws. Traditional approaches to 

public disclosure in the environmental realm manifest as legal requirements for firms to 

reveal, or list, their emissions (Graham, 2002). Prominent examples of disclosure laws 

include the Toxic Release Inventory (TRI), and the Greenhouse Gas Reporting Program 

(GHGRP), (40 CFR Part 98).  

1 The current network of ambient air pollution monitors in the United States (see 
https://www.epa.gov/outdoor-air-quality-data) is sparsely distributed. Monitoring 
sites are typically chosen to maximize the likelihood of detecting a violation. Hence, the 
monitors are clustered in densely populated locations.  Further, the Continuous 
Emissions Monitoring System (CEMS), an example of a system of emissions monitors, 
only tracks discharges of nitrogen oxides (NOx) and sulfur dioxide (SO2) at certain point 
sources. 
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This study focuses on a new means to provide the public with information on emissions 

and ambient pollution: visual evidence of emissions captured by camera, and broadcast 

on a free, public website. Essentially, livestreaming images of emissions is a means of 

disclosing risk to the public. In contrast to perhaps more conventional means (such as 

periodically reporting pollution levels or announcing risks to certain population 

groups) broadcasting live imagery of emissions provides a contemporaneous view of 

the threat from pollution in a more graphic, tangible, and visceral manner. Previous 

research suggests that people react to risk messaging in two general ways: systematic, 

or cognitive, responses and emotional responses (Lowenstein and Mather, 1990; 

Lowenstein et al., 2001; Slovic et al., 2002; Dillard and Anderson, 2004; Hastings, Stead, 

and Webb, 2004). Providing quantitative risk estimates - like direct measurements of 

pollution data - clearly speaks to cognitive message processing. The camera targets 

emotional reactions – anger or fear - that may trigger acute responses such as picking 

up the phone and calling the local air quality regulator (Averbeck, Jones, and 

Robertson, 2011).  

Undergirding our analysis is the argument that visual disclosure may present a new set 

of tools for regulators, environmental advocates, and concerned communities to affect 

behavior of firms that manage to circumvent traditional regulatory frameworks. 

Recognizing the potential for visual evidence as an important complement to customary 

monitoring and enforcement, Giles (2013) notes that: 

 “[W]e are not far from the day when the public will have access to pollution 
monitoring tools. Communities with monitoring data will encourage better 
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performance by industries they host…These changes, driven by new technologies, will 
encourage more direct industry and community engagement, and reduce the need for 

government action.” 
 

In addition to its comprehensivity, particularly attractive is the cost-effectiveness of this 

approach. Any demonstrable reduction in pollution attained through this approach 

would come at very low opportunity cost, relative to more traditional approaches that 

require significant allocations of physical and financial capital as well as labor 

resources.2  

1.1 Empirical Context 

The analysis focuses on a now shuttered coke plant located just west of Pittsburgh, 

Pennsylvania on Neville Island in the Ohio River: the Shenango Coke Works, or the 

“mill”. Coke is purified coal; it is a nearly pure carbon substance produced by baking 

coal to remove impurities. This site has repeatedly violated air pollution standards.3 

The mill has received considerable attention in the local media and in nearby 

communities (Pittsburgh Post-Gazette, 2015a).4 A robotic camera was installed to track 

                                                           
2 Over the past twenty years, there were over 19,000 inspections performed by the 
United States Environmental Protection Agency (USEPA), per year.   Of these, about 
1,000 to 3,000 were related to the Clean Air Act (CAA), (Shimshak, 2014). The USEPA’s 
Office of Enforcement and Compliance Assurance has an annual budget in the range of 
$600 million (Shimshak, 2014). 
3 Recent examples of such violations include: Allegheny County (home to the plant) 
fined DTE Energy (the corporate owner of the plant) in late 2013. In the spring of 2014, 
the operator of the plant reached a settlement with the Allegheny County Health 
Department. The agreement contains specific changes to operations designed to reduce 
emissions, investments in pollution control technology, and fines related to earlier 
violations (Pittsburgh Tribune Review, 2014). Previously, in 2012, DTE reached a 
consent decree involving a $1.75 million penalty (Pittsburgh Post-Gazette, 2015b). 
4 In particular, violations occurred in: 1980, 1993, 2000, 2005, 2012, and 2014. 
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visible emissions from the plant (Shenango Channel, 2015; Pittsburgh Post-Gazette, 

2015b). The Shenango Channel first went live on November 15th, 2014, providing visual 

smoke imagery online for most of the next three weeks until stopping the broadcast on 

December 5th, 2014. Then, again, on January 22nd, 2015 the livestream began anew and 

continued to broadcast for the duration of 2015.  The imagery captured by the camera is 

posted on a website devoted to providing visual evidence of emissions from the mill 

(Shenango Channel, 2015). The device also generates quantitative estimates of the 

opacity of emissions from the facility every five minutes. Emissions density is 

quantified through pixel counts. Thus, in addition to the raw visual imagery posted 

online, the camera provides a numerically based approach to real-time measurement of 

emissions that is both more reliable than ad hoc observations made by members of 

affected communities, and distinct from mensuration performed by regulators.  

The empirical analysis begins with a test of whether there is an association between the 

quantitative smoke readings produced by the camera’s algorithm and actual pollution 

observations gathered at a nearby (ambient) pollution monitoring site. This first set of 

tests examine the internal validity of the visual data. That is: do the smoke images 

reflect actual conditions in nearby communities? As such, are the data then useful as an 

additional means of environmental monitoring?  

The second set of empirical exercises tests whether the visual evidence provided on the 

internet affects public engagement with the local air quality regulator. By extension, we 

argue that the degree of engagement is a reflection of how the citizenry perceives risk 
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from air pollution. We begin by testing whether the number of air pollution-related 

calls to the local air quality regulator (the Allegheny County Health Department, or 

ACHD) is associated with the activation and continued operation of the camera and the 

visual data published online.   

We then conduct two additional tests that emanate from the literature on behavioral 

responses to risk messaging in the following way. A key determinant of how 

individuals react to information is prior knowledge about the subject matter (Averbeck, 

Jones, and Robertson, 2011). If an intervention conveys threat information that for some 

subjects is utterly new, while for others it is known, it is intuitive that the emotional 

effect on the latter groups will be less than the former. Without an existing knowledge 

base, the uninformed go with their gut instinct. 

In order to parse calls according to prior knowledge held by the caller, we subdivide 

calls to the ACHD in two ways. First, we test whether the number of calls to the ACHD 

that refer to the Shenango mill is associated with the presence of the camera and the 

visual data published online. Calls targeting Shenango overwhelmingly originate from 

the zip code that contains the mill, both before and after the deployment of the camera 

(see ACHD, 2016). Hence, prior knowledge is high among these callers.  

Next, we limit the sample to calls that single out steel mills. (While steel-related calls are 

the second most common industrial category of calls in the ACHD air pollution 

complaint data, there are no steel manufacturing facilities in the zip code that contains 

Shenango.) Thus, these callers are much less likely to experience the pollution from the 
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mill regularly. The prior knowledge hypothesis suggests that onset of the camera 

imagery is likely to generate a stronger response among these communities if only 

because it is a true shock to their existing knowledge.  

Also relevant to our empirical design is a phenomenon known as the affect heuristic: an 

emotionally based short cut to decision-making (Finucane, et al., 2000; Slovic et al., 2002; 

Kahneman and Frederick, 2002; Shiller, 2017), which the literature emphasizes is salient 

to risk assessments (Keller, Siegrist, and Gutscher, 2006). One manifestation of affect 

heuristics is that people experiencing strong emotional responses to a stimulus may 

apply their emotions to other circumstances (Shiller, 2017). For example, a person not in 

the direct vicinity of the mill accesses the livestreaming website and responds 

emotionally to what they see. When they observe emissions in their own neighborhood, 

they are more likely to call the ACHD because of their heightened emotional state.  Both 

the affect heuristic and the prior knowledge hypothesis provide a behavioral basis for 

the camera influencing public perception about the risk from air pollution more broadly 

than just centered on the mill. Such responses bolster the case that visual monitoring 

and real-time disclosure of imagery may serve as a broad-based strategy to raise 

awareness and, subsequently, boost citizen engagement with local environmental 

enforcement authorities. 

This paper relates to several aspects of the literature in economics. First, it builds on 

research exploring disclosure laws (Konar and Cohen, 1997; Tietenberg, 1998; Afsah, 

Blackman, Ratunanda, 2000; Cohen and Santhakumar, 2007; Garcia, Sterner, and Afsah, 
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2007; Blackman, 2010; Huang and Kung, 2010). For a discussion of emission reductions 

from such programs see (Konar and Cohen 1997; Foulon et al., 2002; Hahn et al., 2003). 

Since we study the use of the camera as a means to monitor emissions from a point 

source of pollution, the paper also is associated with the literature on enforcement and 

monitoring. Shimshak (2014) provides an overview of enforcement and monitoring of 

environmental laws.  Finally, the notion that the public may have concerns over 

emissions and concentrations of ambient pollution stems, in part, from a literature that 

reports and association between exposure and adverse health impacts (see for example, 

Krewski et al., 2009; LePeule et al., 2013). Prior research in the policy literature discusses 

advanced pollution monitoring techniques that pertain to the present study, (Giles, 

2013). The methods used to collect visual evidence are discussed briefly herein and 

pertain to a set of techniques discussed in Hsu et al., (2017). 

1.2 Preview of Results 

The empirical analysis finds statistical evidence that the visual smoke data are 

associated with PM2.5 levels at the nearby monitoring station operated by the ACHD as 

part of USEPA’s network. The statistical association is strongest when controlling for 

wind direction: a one-hour lagged value of the pixelated smoke data interacted with 

wind direction is significantly associated with PM2.5 levels at the ambient pollution 

monitoring station. The use of a lagged measure of pollution reflects the difference 

between the real-time measurement of smoke imagery and the time it takes for 
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emissions to reach the monitoring station, which depends on both wind speed and 

direction. 

We detect evidence of an association between the daily count of all calls pertaining to 

air pollution in the ACHD’s database and the presence of the camera. In the most 

parsimonious specification, the camera being on is associated with an increase of one 

call every two days (p < 0.01). In our preferred specification, we find evidence that 

interactions between the active camera indicator and day of the week fixed effects are 

significantly associated with call counts. For example, the interaction with the Monday 

fixed effect suggests an increase of 0.3 calls per day (p< 0.05), relative to the count of 

calls on weekend days, above and beyond this Monday-weekend difference prior to the 

onset of the camera. The interaction between the camera control and other weekdays 

indicates that the camera produces an increase twice as large (p < 0.01), again, relative 

to weekend days, as compared to this day-of-week difference prior to the deployment 

of the camera. 

The models that feature complaints about Shenango, the monitored facility, suggest that 

the camera had no effect on daily Shenango-related call counts. We control for the 

announcement (in December of 2015) of the closure of Shenango, and find that this 

event resulted in a permanent reduction of about two calls per day (p < 0.01).  

Our final set of tests explores the association between the camera and complaints 

targeting steel manufacturing facilities. In our preferred specification, we detect 

evidence of an effect through the interaction of the active camera indicator with day-of-
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week controls; the camera boosted the pre-camera Monday peak in calls and 

diminished the pre-camera tapering of calls in the rest of workweek. For example, the 

interaction term with the Monday control suggests that the camera was associated with 

an increase of one call per day, relative to weekend days, above and beyond this 

Monday-weekend difference prior to the onset of the camera (p < 0.01). In what is 

perhaps evidence of a persistent effect of the camera on citizen behavior, the Shenango 

closure announcement does not affect the call counts targeting steel mills. 

The remainder of the paper is organized as follows. Section 2 describes the data, the 

approaches used to gather the visual smoke data and our econometric modeling. 

Section 3 explores the results while section 4 concludes. 

2. Data and Method 

This section is subdivided into three parts. The first describes data used in the analysis. 

The second subsection explores the approach to gathering and analyzing the visual 

smoke emissions data. The third subpart discusses the econometric techniques and 

model specifications. 

2.1 Data 

Hourly observations of ambient pollution are obtained from the USEPA Air Quality 

System (AQS) database. These data are provided on an hourly basis, which are then 

aggregated up to the day when used in conjunction with the daily call counts. The 

monitoring data includes fine particulate matter (PM2.5), sulfur dioxide (SO2), ozone 
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(O3), and for the Avalon air quality monitor operated by the ACHD, hydrogen sulfide 

(H2S). Data are gathered for 2014 through 2016.  Hourly weather data, also aggregated 

up to the day when used with the daily call count data, are also assembled from a 

nearby weather station. These include wind speed, wind direction, ambient outdoor 

temperature, and atmospheric pressure. The livestream smoke resolution data comes 

from collaborative initiative between Carnegie Mellon University researchers and 

Pittsburgh community members (as described in greater detail in Section 2.2). 

Table 1 summarizes these data. The average PM2.5 level across all monitors in Allegheny 

County over the time period under examination was 15.28 ug/m3. At the Avalon 

monitor, PM2.5 averages 12.6 ug/m3. The hourly maximum reading of SO2 averaged 

21.77 ppb. The hourly maximum O3 level was 41.42 ppb. (We report maximums for SO2 

and O3 because the National Ambient Air Quality Standards set by the Clean Air Act 

are defined in terms of maximum values.) H2S averaged less than 1 ppb. The mean 

temperature at the monitor location is about 18oC. The site, which is located in the Ohio 

River Valley, is not characterized by high winds; average wind speed is just 3.8 miles 

per hour. Table 1 indicates that the mean wind direction is southwesterly (204o). 

However, figure A.1, which shows a histogram of wind direction, indicates that the 

distribution of wind direction is multi-modal. Winds most frequently blow from 

between 250o and 360o. Thus, prevailing winds are westerly and northwesterly. The 

smoke resolution data averages 72 pixels out of 4,000 pixels in a given frame. The 

maximum smoke reading is 2,666 pixels. There are numerous zeroes in the data 
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corresponding to hours in which there is no smoke detected: 2,625 out of 3,061 

observations are zero.  

Data on public air quality complaints to government regulators come from the ACHD 

Air Quality Program, which is responsible for “regulating air pollutants” as well as 

“enforcing federal pollution standards, and permitting industrial sources of air 

pollution” within Allegheny County, site of the  Shenango Coke Mill (ACHD Air 

Quality Program, 2016). The complaints are made either by phone or online and 

recorded by ACHD employees with detailed information about the time and nature of 

the complaint, as well as a categorization of the offending party the caller is 

complaining about (when discernable) and zip code locations of both the caller and 

alleged offender coded when possible.  

Of 2,314 total complaints made in 2014 and 2015, 944 clearly are marked as pertaining to 

the Shenango Coke Mill, representing nearly 41% of all air quality complaints, by far the 

largest cause of air quality complaints to ACHD in this time period. The next most 

common complaint source categorized by ACHD is steel manufacturing (115 

complaints, or, 5% of all complaints).  Many of the remaining complaints are not 

directly related to specific industrial sources of pollution either because the complaint is 

about general air quality (163 complaints, or, 7% of all complaints) or odors that are not 

source-specific (403 complaints, or, 17.6% of all complaints). In addition, some of the 

complaints deal with pollution typically caused by fellow citizens or seasonal allergens 

rather than industry: for example, open burning (161, or, 7% of all complaints), wood 
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smoke (162, or, 7% of all complaints), and, dust (103 complaints, or, 4.5% of all 

complaints).  

Over the 730 days encompassed by the analysis, there were 3.5 calls per day pertaining 

to air pollution received by the ACHD. The maximum daily call volume was 31. There 

were 1.3 calls per day specifically related to the Shenango Mill. The maximum 

Shenango-related call count was 16. And, there were 0.1 calls per day focused on steel 

mills.  

As documented in Figure 1, there is a clear day-of-week trend in the ACHD complaints. 

The top panel of Figure 1 shows all calls occurring before (bottom red line) and after 

(top blue line) the installation of the camera. With and without the camera, call volumes 

are highest on Mondays. The call frequency tapers off during the remainder of the 

week. This pattern is also evident for the calls about Shenango. Steel mill-related calls 

also spike on Monday and taper off during the rest of the week in the period without 

the camera, but, when the camera is on, the average call count rises at the end of the 

work week (Thursday and Friday actually are the highest average call count days). For 

all three groups of call types, we observe higher call volumes after the camera was 

installed for weekdays. The clear day of week effects and the apparent reduction in the 

degree to which calls taper off later in the workweek when the camera livestream is on 

motivate day of week fixed effects and day of week-camera interactions in the statistical 

analysis to follow.  
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2.2 Assessment of Visual Smoke Emissions. 

2.2.1. Gathering Video Data 

The smoke data are gathered through a collaboration with a local community in 

Pittsburgh, Pennsylvania to document images of fugitive emissions from the Shenango 

mill. Starting from November 2014, researchers at Carnegie Mellon University have 

helped the local community build a live camera monitoring system (Shenango Channel, 

2015; Hsu et al., 2017) pointing at the coke oven where the fugitive emissions usually 

happen. The camera takes a picture every 5 seconds and gathers nearly 17,000 images 

for one day. The system processes the imagery gathered each day into a time-lapse 

video and visualizes the result by using a web-based large-scale time-lapse viewer, 

available in real time, which was developed previously (Sargent et al., 2010). The 

interactive viewer (see the top-left panel of Figure A.4 in the appendix; Figure A.4 

presents what users see on the website) facilitates the exploration of high quality time-

series images by panning and zooming for finding fugitive emissions. 

2.2.2. Smoke Detection Algorithm 

It is important to re-emphasize that the camera serves two purposes. First, it is used to 

broadcast real-time imagery of emissions on the web. Second, it is used to produce 

quantitative estimates of visible particulate emissions produced by the mill. To measure 

emissions, the system provides a thumbnail tool for generating and sharing animated 

smoke images. However, manually searching through each image to identify smoke 

emissions is prohibitively inefficient for computational purposes. As such, we have 
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implemented a computer vision tool that uses a baseline smoke detection algorithm for 

detecting industrial smoke emissions during the daytime and generating related 

animated images automatically. Figure A.2 in the appendix demonstrates various 

smoke emission images. It also shows steam, shadows, and the mixture of steam and 

smoke that may confound smoke images. The task is to detect frames from a static 

camera containing smoke, exclude the ones having steam and shadow, identify the 

starting and ending frames of emissions, and output animated images that include 

smoke used for quantification. The following subsections describe three main steps of 

the algorithm: change detection, texture segmentation, and region filtering. Figure A.3 

in the appendix outlines the steps. 

2.2.3. Change Detection 

The purpose of change detection is to identify moving pixels that may contain smoke. 

Smoke is semi-transparent with various opacities and occludes parts of the background 

upon presence, which causes changes of high frequency signals and pixel intensity 

values across frames. To reduce the computational cost, we first scale the original image 

at time (t) down to one-fourth of the original size to obtain a down sampled image 

denoted (It) in Figure A.3. Next, we estimate the background image (Bt) by taking the 

median over the previous 60 images. Then we subtract the pixel intensity values in the 

estimated background image from the current image to get a residual image and 

threshold the residual image to obtain a binary mask (shown as Mheq in Figure A.3). We 

also filter high frequency signals in (It) and (Bt) and perform the same background 
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subtraction process to obtain another binary mask (Mdog). Finally we combine (Mheq) 

and (Mdog) into (Mcd) which indicates moving pixels. 

2.2.4 Texture Segmentation 

Texture segmentation clusters pixels into several candidate regions based on texture 

information. We first convolve the current image (It) with a filter bank (a set of 5-by-5 

convolution masks) to obtain feature vectors. Each vector represents the corresponding 

pixel in a high dimensional space. Then we perform Principal Component Analysis that 

preserves 98% of the energy (eigenvalues) on the feature vectors to reduce dimensions. 

Finally we run a k-means++ algorithm which chooses better initialized values (seed 

points) to cluster feature vectors into textons. We use these textons to divide the current 

image (It) into various regions as shown in image (Rt). 

2.2.5 Region Filtering 

Region filtering iteratively evaluates each candidate region based on shape, color, size, 

and the amount of changes to determine if it matches the appearance and behavior of 

smoke. We first smooth the image (Rt) by discarding small regions, removing noise by 

using a median filter, and performing morphological closing. Next, we use the 

connected component algorithm to find all separated regions and remove the ones that 

are thin and narrow. Then we group nearby regions having white or black colors to 

reconstruct the shapes of objects. Since the color of smoke is usually grayish or bluish, 

we can remove regions having non-grayish and non-bluish colors. We also exclude 

regions having extremely light colors because steam is usually white. Then we compute 

the size of each region and ignore extremely large or small ones that may be noise and 
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shadow respectively. Furthermore, we eliminate regions having insufficient amount of 

moving pixels based on image (Mcd). Finally, we remove regions that may contain 

shadow by using a baseline shadow detection algorithm. (Rfilter) shows the final result, 

and (Mt) indicates the union of smoke regions. 

2.2.5 Visualization 

The computer vision tool provides three visualization features: an interactive timeline 

for video seeking, an autonomous fast-forwarding feature for skipping uninteresting 

frames, and a visual summary of animated images that are likely to contain smoke for 

documentation. We first use the smoke detection algorithm to predict the number of 

smoke pixels in a video frame (see the top graph in Figure A.5). The x-axis and y-axis 

indicate the frame number and the sum of smoke pixels in a frame respectively. Next, 

we compute the peaks and the corresponding peak widths to obtain frame segments 

(see Figure A.5). Then we visualize the graph using an interactive timeline (see the 

bottom-left graph in Figure A.4), which gives indicators of emissions.  

The top panel of figure A.5 shows (graphically) the pixel counts that are subsequently 

used in the econometric analysis. The time signature for the smoke readings enable 

joining to weather and pollution data. 

2.3 Econometric Analysis 

The first set of empirical analyses focus on the determinants of ambient pollution 

(PM2.5, SO2, H2S) at the Avalon monitor that is situated very near to the Shenango mill. 

Within this category of tests, the central hypothesis test is whether there is an 
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association between the visual smoke readings and ambient PM2.5, SO2, and H2S at the 

Avalon monitor. In effect, we test the internal validity of the information captured by 

the camera with respect to more traditionally gathered data on ambient air pollution. 

Because the visual emissions data, by definition, are visible, we expect that the only 

plausible empirical relationship is between smoke and ambient PM2.5 since SO2 and H2S 

are gaseous. Additional controls in the models include the determinants of ambient 

pollution: wind speed and direction, a linear time trend, month, day, and hour of the 

day, temperature, pressure, as well as day of the week. 

The second group of hypotheses explore whether there is a public response to the 

information provided by the digital camera.  We test for an association between all calls 

to the ACHD, calls targeting the Shenango mill, and complaints that zero-in on steel 

mills. 

2.3.1 Determinants of Ambient PM2.5 

Model (1) is the default specification and all covariates enter in linear and quadratic 

forms. For each pollutant, we estimate the following model. 

𝑃𝑃𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑊𝑊𝑡𝑡 + 𝛽𝛽3𝐸𝐸𝑡𝑡 + 𝛽𝛽4𝑆𝑆𝑡𝑡 + 𝜀𝜀𝑡𝑡 (1) 

where: Pt = ambient pollution at the Avalon monitor at time (t). 
Tt = time controls: hour, day, month, and linear time trend at time (t). 
Wt = weather controls: wind speed, direction, temperature, and pressure at time 
(t). 
Et = environmental pollutants other than the dependent variable at time (t). 
St =  smoke readings from camera at time (t). 
𝜀𝜀 𝑡𝑡  = idiosynchratic error term. 
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In the context of model (1), the primary hypothesis test focuses on 𝛽𝛽4. That is: 

𝐻𝐻0: 𝛽𝛽4 = 0 
𝐻𝐻𝐴𝐴: 𝛽𝛽4 ≠ 0 

 

Model (2) includes interaction terms between wind direction and the smoke readings. 

Let 𝑆𝑆𝑡𝑡𝑊𝑊 = (𝑆𝑆𝑡𝑡 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡). Then model (2) is given by: 

𝑃𝑃𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑊𝑊𝑡𝑡 + 𝛽𝛽3𝐸𝐸𝑡𝑡 + 𝛽𝛽4𝑆𝑆𝑡𝑡 + 𝛽𝛽5𝑆𝑆𝑡𝑡𝑊𝑊+𝜀𝜀𝑡𝑡     (2) 

Model (3) recognizes that, given the low observed wind speeds, it may take time 

between when smoke is detected visually (by the camera) and when an effect of such 

smoke registers at the air quality monitoring station across the river. To incorporate the 

potential delay between smoke emission and ambient readings, model (3) includes a 

one-hour lagged measure of smoke releases. 

𝑃𝑃𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑊𝑊𝑡𝑡 + 𝛽𝛽3𝐸𝐸𝑡𝑡 + 𝛽𝛽4𝑆𝑆𝑡𝑡 + 𝛽𝛽5𝑆𝑆𝑡𝑡𝑊𝑊 + 𝛽𝛽6𝑆𝑆𝑡𝑡−1 + 𝛽𝛽7𝑆𝑆𝑡𝑡−1𝑊𝑊 +𝜀𝜀𝑡𝑡  (3) 

Model (4) tests whether extreme episodic emissions from the Shenango Coke Works 

had a measureable effect on PM2.5 readings. In particular, this specification includes a 

dummy variable which assumes the value of unity (zero otherwise) for all days 

between May 26th through June 15th, 2015. These dates correspond to a series of power 

outages at the facility that also resulted in fires at the plant. The incident dummy 

variable is also interacted with wind direction. Let 𝐼𝐼𝑡𝑡𝑊𝑊 = (𝐼𝐼𝑡𝑡 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡). Thus, 

model (4) is given by: 
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𝑃𝑃𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑊𝑊𝑡𝑡 + 𝛽𝛽3𝐸𝐸𝑡𝑡 + 𝛽𝛽4𝑆𝑆𝑡𝑡 + 𝛽𝛽5𝑆𝑆𝑡𝑡𝑊𝑊 + 𝛽𝛽6𝑆𝑆𝑡𝑡−1 + 𝛽𝛽7𝑆𝑆𝑡𝑡−1𝑊𝑊 +𝛽𝛽8𝐼𝐼𝑡𝑡 + 𝛽𝛽9𝐼𝐼𝑡𝑡𝑊𝑊 + 𝜀𝜀𝑡𝑡 (4) 

2.3.2. Public Response to the Camera. 

The second dimension of the empirical analysis tests whether the installation of the 

camera surveillance system trained on the plant affects the frequency and nature of 

complaints made to ACHD. We employ three different dependent variables. The first is 

the daily count of all calls about air pollution to the ACHD. The second dependent 

variable is the number of complaints that clearly refer to the Shenango mill. The third 

outcome variable is the daily count of calls that single out steel mills. In models (5), (6), 

and (7) shown below, each of these three dependent variables are employed. These 

models are estimated using OLS, Poisson, and negative binomial estimators; our default 

results feature the negative binomial estimator as it is well known that OLS is 

inappropriate in count data contexts. The dependent variables show evidence of over 

dispersion, which detracts from the viability of the Poisson estimator. 

Model (5), our most parsimonious specification, regresses daily ACHD calls on two 

indicator variables: one for the initial days during which the camera and livestreaming 

footage was made public5, and one for all days during which the camera was actively 

streaming images to the internet.   

𝐶𝐶𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑂𝑂𝑡𝑡 + 𝛼𝛼2𝐴𝐴𝑡𝑡 + 𝑣𝑣𝑡𝑡        (5) 

                                                           
5 The camera was initially turned off and on over a period of days, and didn’t remain 
permanently on until January of 2015, so, there are two weeks we treat as onset weeks. 
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Where: Ct = count of complaints/posts in week (t). 

 Ot = indicator for days of camera and data onset. 

 At = indicator for days during which camera and data are active. 

 𝑣𝑣𝑡𝑡 = stochastic error term. 

To this specification we subsequently add season fixed effects, a cubic time trend, and a 

suite of pollution controls from the monitors in Allegheny County. We also add 

covariates for weather conditions: temperature, wind speed, wind direction, and 

pressure. Model (6) also controls for the days during which local newspapers ran 

articles on the camera and the accompanying website, as well as the day on which the 

ACHD announced that it was in talks with the USEPA about executing a new 

enforcement action against the mill; this day also coincided with a community meeting 

held by a local environmental activist organization. This specification also controls for 

the announcement of the closure of the Shenango facility, which happened in December 

of 2015.   

𝐶𝐶𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑂𝑂𝑡𝑡 + 𝛼𝛼2𝐴𝐴𝑡𝑡 + 𝛼𝛼3𝑃𝑃𝑡𝑡 + 𝛼𝛼2𝑊𝑊𝑡𝑡 + 𝛼𝛼2𝑇𝑇𝑡𝑡 + 𝛼𝛼2𝑁𝑁𝑡𝑡 + 𝛼𝛼2𝐸𝐸𝑡𝑡 + 𝑣𝑣𝑡𝑡  (6) 

Model (7) allows for interactions between the active camera indicator variable and 

pollution readings. Model (8) extends model (7) to include day-of-week fixed effects as 

well as interactions between the camera indicator and the day-of-week fixed effects. The 

motivation for this model is provided in Figure 1 and discussed in Section 2.1. 
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3. Results 

Table 2 displays the first set of regression analysis results. Column (1) corresponds to 

the results from model (1), which indicate strong statistical evidence of a relationship 

between wind direction and PM2.5 readings at the Avalon monitor (all of the ambient 

pollution data included in models (1) through (4) are gathered from the Avalon monitor 

which is in close proximity to the Shenango mill). That there is an association is 

intuitive: particularly strong sources of emissions will only affect air quality at the 

monitor for a particular range of wind directions. The fitted quadratic function bears an 

inverted U-shape with a maximum effect when the wind blows from 210o. Importantly, 

the partial effect contributes over 8 ug/m3 at 210o. Note that the average PM2.5  reading 

is 12.6 ug/m3 at the Avalon monitor. The partial effect of wind direction comprises an 

important determinant of ambient PM2.5. 

Figure A.2. plots PM2.5  levels against wind direction. The left-hand panel of the figure 

displays the raw hourly readings. The right side collapses the hourly data into averages 

by wind direction. From both plots it is clear that PM2.5  levels are highest when the 

wind blows from the southwest. The raw hourly data show extremely high values (over 

75 ug/m3) are associated with the wind blowing from about 210o. This figure also 

indicates that the maximum PM2.5 levels correspond to periods when the wind is 

blowing from the Shenango mill toward the Avalon monitor. That is, the vertical lines 

shown in both panels of Figure A.2 represent the bearing between the main smokestack 

at the Shenango mill and the monitor. The figure and the fitted quadratic between wind 
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direction and PM2.5 suggest that the mill has an important role in dictating extreme 

pollution levels at the monitor.  

Counterintuitively, the visual smoke variable is significantly negatively associated with 

ambient PM2.5 readings; a one-pixel increase in smoke density is associated with a 0.001 

ug/m3 decrease in PM2.5. The explanation for this result is a function of how the visual 

smoke data is gathered. Consider that the camera detects higher smoke readings when 

pixels in the field are most obscured. This occurs when the winds blow across the 

camera’s field of vision; in this case, any actual particulate matter emitted by the plant is 

spread out across numerous pixels in the camera’s field. Contrast this with a case in 

which winds blow toward the camera. Then any particulate emissions are less likely to 

be dispersed among multiple pixels thereby reducing the camera’s smoke reading. 

While the precise location of the camera is not publicly known (the camera is located 

near a community members’ home and exact location is withheld for privacy concerns), 

it is in the same general direction, relative to the mill, as the Avalon monitor. Thus, 

higher pollution periods tend to occur when the winds blow toward the camera.  

Column (2) in Table 2 displays the results from model (2). Including the interaction 

term between smoke and wind direction does not appreciably alter the coefficients for 

wind direction. However, the smoke readings are no longer significantly associated 

with PM2.5 levels – either directly or when interacted with wind direction. 

Column (3) shows the fitted coefficients from model (3). This model includes one-hour 

lagged smoke readings along with contemporaneous smoke readings. Both measures 
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appear in the model directly and interacted with wind direction. As in models (1) and 

(2), wind direction is significantly related to PM2.5 levels; the coefficients are of the same 

sign and similar magnitude. In addition, none of the contemporaneous smoke controls 

are associated with PM2.5 readings. However, the lagged smoke measurements are 

significant determinants of ambient PM2.5. A one-pixel increase in the direct measure of 

smoke is associated with a 0.005 ug/m3 decrease in PM2.5. This is roughly five times 

larger than the effect of smoke estimated in model (1). The interaction between the one-

hour lagged readings of smoke and wind direction suggests an inverted U-shape 

functional form with respect to the effect of these covariates on ambient PM2.5. The 

partial effect maximizes at a wind direction of roughly 200o. The association between 

the smoke readings and the monitor readings for PM2.5 is positive, combining the 

partial effect of smoke through both the direct and wind interaction terms, for periods 

of time when the wind blows from 130o to 270o.  

Model (4) includes a dummy variable corresponding to the intermittent power losses at 

the plant. This control is included because there were fires and copious smoke 

emissions at the facility during the outages.  First, the aforementioned association 

between the smoke readings from the camera and ambient PM2.5 readings is essentially 

unchanged. Second, the results show a statistically significant relationship between the 

incident and PM2.5 levels. The direct incident variable is associated with a 5.2 ug/m3 

reduction in PM2.5. This seems counterintuitive since there were fires and copious 

smoke emissions at the facility during the outages. As such, it is also important to 
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examine the effects of the incident through wind direction. Combining the direct effect 

of the incident and the interaction terms (with wind direction) reveals that PM2.5 levels 

were higher during the incident when the wind was blowing from 50o (about northeast) 

through 300o (about northwest). The maximum effect occurred when the wind was 

blowing from the due south; the partial effect, conditional on this wind direction, was 

about 4 ug/m3. Thus, for the majority of realized wind directions, the power outages 

and associated fires increased ambient PM2.5. 

Table 3 tests for associations between ambient readings of SO2 and H2S and the visual 

smoke data. Our prior here is a finding of no association because both of these 

pollutants are gaseous and should be invisible to the camera’s smoke detection 

algorithm. Columns (2) and (3) confirm this basic hypothesis. There is no evidence of a 

statistical association between the smoke readings produced by the camera and ambient 

readings of these gases. This serves as a useful placebo test. 

3.1 Citizen Responses to the Camera 

We begin by noting qualitative evidence suggesting a link between ACHD complaints 

and the activation of the camera and the concomitant livestreaming website. ACHD 

employees record summaries of caller comments, and, Figure 2 contains a selection of 

these comments that explicitly note the livestreaming channel in their calls. Such 

evidence motivates a more systematic assessment of this link. 
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Figure 3 presents the weekly count of total air quality complaints made to the ACHD in 

2014 and 2015, with vertical lines indicating the first full week following the 

livestreaming start dates in 2014 and 2015 (the first and last vertical lines), as well as the 

week after the livestream temporarily stopped for over a month at the end of 2014 (the 

middle vertical line). 

Table 4 reports regression results formally testing the association between all air 

pollution-related calls to ACHD and the presence of the camera and website. All results 

in Table 4 correspond to the negative binomial regressions, as previously mentioned. 

Column (1) corresponds to model (5), the most parsimonious specification including 

indicator variables for days during which the camera was active and days immediately 

following the camera’s initial activation, or onset. We report a significant increase in call 

counts on days with the camera active. Specifically, there was an increase of one call 

every two days (p < 0.01) when the camera was active compared to days when the 

camera was not running. We find no evidence of an effect only on days when the 

camera was activated. (All further references to the indicator for the camera in Table 4 

are for the indicator of days on which the camera was active.) Adding seasonal fixed 

effects, weather and pollution data, and controlling for time trends both reduces the 

magnitude of the effect and renders the camera active control insignificant. We do find 

evidence that on days following the announcement about the closure of the Shenango 

mill, there were about 1.4 fewer calls per day (p < 0.01). Column (3) adds interactions 

between the camera indicator and the pollution readings from monitoring stations. The 
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indicator for the camera being active now has a negative coefficient, but it remains 

statistically insignificant. The effect of the closure of the mill is similar to that reported 

in column (2). Finally, in column (4), we include day-of-week fixed effects and 

interactions of these terms with the camera-active control. The results from this model 

provide evidence consistent with Figure 1; the camera boosts the Monday peak in calls 

and reduces the tapering of calls in the rest of the workweek (relative to weekend call 

counts). Recall from Figure 1 that average call counts peaked on Mondays, and then 

declined throughout the remaining weekdays. The results in column (4) of Table 4 

indicate that the camera is associated with an increase in this peak, by about one call 

every three days (p < 0.01). This is roughly a 20% increase in call counts over the 

Monday fixed effect. On the other weekdays, the camera corresponds to an increase in 

the weekday fixed effect by one call every two days (p < 0.01). This amounts to a 55% 

rise in call counts, relative to the weekday fixed effect. Additionally, in this specification 

the mill closure announcement indicator variable remains a significant determinant of 

call counts (p < 0.01), and the indicator variable for the days on which the local 

newspapers published articles about the camera increased call counts by about one call 

every two days (p < 0.10). The indicator for the day on which the community meeting 

was held is associated with a reduction of about one call every two days (p < 0.10). 

Using the specification in column (4), the linear combination of either of the day-of-

week interaction terms with the camera active variable is not significant at conventional 

levels. (Tables A2 through A4 in the appendix display the full econometric results 

corresponding to tables 4, 5, and 6.) 
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Table 5 focuses on calls made to the ACHD that mention, or clearly refer to, the 

Shenango mill. Figure 4 plots the weekly Shenango call counts against time. The vertical 

lines correspond to when the camera was activated, stopped, and reactivated (as in 

Figure 3). Akin to the results in Table 4, in the parsimonious model shown in column (1) 

we report a significant association between the indicator variable corresponding to days 

on which the camera was active (α = 0.01). The estimated coefficient suggests calls 

increase by about one call every three days. However, adding seasonal fixed effects, 

time trends, and controls for pollution and weather eliminate this effect. The mill 

closure announcement variable suggests that there were roughly two fewer calls per 

day about Shenango after the announcement.  

In columns (2), (3), and (4) the estimated coefficient on the camera active control is 

negative, though, not generally significant. In column (4), there is weak evidence that 

the camera-onset variable is associated with an increase in calls about Shenango of 

about one per day. Finally, we find no evidence of an effect of the camera when 

interacted with the day-of-week fixed effects. The indicator variable for the day on 

which the community meeting was held is associated with a reduction of about one call 

per day (p < 0.05). Using the specification in column (4), the linear combination of either 

of the day-of-week interaction terms with the camera active variable is marginally 

significant (p < 0.10) and negative; the combined effect of the camera is a reduction of 

between four and five calls per day.  
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At first, this result seems counterintuitive. Why would the camera be associated with 

lower call counts? One candidate explanation is that the well-publicized livestream 

affected emissions produced by the mill. While we cannot test this directly without 

emission readings both before and after the onset of the camera, we can leverage the 

hourly PM2.5 observations and wind direction data from the Avalon monitor. Shenango 

is situated under one-half mile and 210 degrees from the monitor. One way to test 

whether emissions released by the plant changed after the camera was installed is to 

assess ambient PM2.5 levels at the Avalon monitor. To do so, we restrict the sample to 

those hours during which the wind blew from four different direction ranges, all 

centered at 210 degrees. We then conduct a t-test comparing the hourly PM2.5 readings 

before and after the camera was activated. These results are shown in table A1 in the 

appendix. Beginning with the widest direction band between 165 and 255 degrees, the 

test rejects the null hypothesis of equal pre-and-post-camera means at (p < 0.001). The 

absolute difference is 14.2/m3 before the camera was launched and 13.2 ug/m3 after the 

camera was activated. This amounts to a 6.7% reduction in hourly PM2.5 readings. We 

find similar results for the specifications using 175 to 245 degrees and 195 to 225 

degrees, though the significance of the rejection of the null hypothesis weakens. 

Employing the 200 to 220 specification, we find a nearly 9% reduction in ambient PM2.5; 

here we reject the null at (p < 0.05). Finally, when we restrict observations to those in 

which the wind was blowing from 210 degrees plus or minus just five degrees, the 

mean difference is much larger: nearly 20 percent (p < 0.01).  
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One interpretation of the negative effect that the camera has on Shenango-related call 

counts is that the camera caused a change in behavior at the mill, which reduced 

emissions, and in turn, ambient concentrations in the community from which most of 

these calls emanate. That is, if calls are associated with visual emissions and ambient 

concentrations of PM2.5, then the significant reductions after the camera was installed 

may explain this finding. The results reported in table A1, especially those for the 205 – 

215 degree specification appear to support this argument. 

Table 6 displays the results of the regression analyses that employ calls pertaining to 

steel mills. Figure 5 plots the weekly call counts against time. The vertical lines 

correspond to when the camera was activated, stopped, and reactivated (as in Figures 3 

and 4). A dramatic uptick in call counts following a few weeks after the final activation 

of the camera is evident in the figure. This is reflected in column (1) of Table 6, which 

reveals a large and significant relationship between the camera being active and call 

counts (p < 0.01). The effect is over three calls every two days. Much like the results 

reported in Tables 4 and 5, however, this effect is not robust to the inclusion of seasonal 

fixed effects, the time trend, and controls for weather and pollution conditions. In 

columns (2) and (3), neither controls for the announcement of the closure of the 

Shenango mill nor the days on which articles about the camera were published are 

significantly associated with call counts pertaining to steel mills. In column (4), the 

control for days on which articles about the camera appeared in local newspapers is 

significantly positively related to call counts about steel mills, while the announcement 
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of the closure of the Shenango mill had no effect on call counts. Notably, we report 

significant evidence of an effect of the camera on call counts when interacted with the 

day-of-week fixed effects. In particular, there was an estimated one more call per day on 

Mondays relative to weekends when the camera was active than when the camera was 

inactive (p < 0.10). An effect of three calls every two days is detected for other weekdays 

(p < 0.01). To put this into perspective, this later effect boosts the later weekday fixed 

effect by 10% relative to the pre-camera period, resulting in a noticeable reduction in the 

tapering of calls throughout the work week for the camera on period (see the bottom 

panel of Figure 1 in which steel-related calls rise at the end of the week in the post 

camera period). Taken in total, these findings suggest that the camera, working through 

the interactions with day-of-week fixed effects, had a persistent (if heterogeneous) effect 

on the propensity of citizens to call ACHD about air pollution produced by steel mills. 

3.2 Spatial Analysis of Citizen Complaints About Shenango 

Investigation of the location of origin for ACHD complaints reveals further suggestive 

evidence of a possible role of the information provided by the Shenango livestream in 

ACHD complaint generation. Whenever possible, ACHD records the zip code of all 

complainants, allowing us to exploit geographical variation in the public response to 

Shenango pollution. Importantly, 79% of all Shenango-related complaints come from 

one zip code: that which contains the Avalon neighborhood and the camera. This zip 

code lies directly to the north east of the Shenango coke plant. This area is downwind 

from Shenango when the wind blows from the most frequent wind direction. The 
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fraction of all Shenango complaints coming from this zip code is the same both before 

and during the Shenango channel livestream broadcast. In addition to being downwind 

from the mill conditional on the most common wind direction, the topography of this 

neighborhood is such that many residents have a direct view (unassisted by the camera 

livestream) of the Shenango plant itself and its visible pollution. Therefore, it is difficult 

to empirically disentangle an effect of direct observation versus information provided 

by the camera on calls from this area. 

On the other side of the river (the southwest bank relative to the Shenango plant) the 

topography leaves the Shenango coke plant largely out of view to most residential 

neighborhoods. Residents in the two zip codes that lie to the southwest of the mill do 

not generally have a direct line of sight to the Shenango-coke plant. This suggests that 

the online camera may comprise a greater shock to the set of information commonly 

accessible to residents of these zip codes relative to those in neighborhoods from which 

the mill can be seen. Visual evidence of pollution provided by the camera may be more 

important in assisting residents from the southwest zip codes in the attribution of 

ambient pollutants to a source. Notably, calls from these two southwest bank zip codes 

increase dramatically from two calls in the period in 2014 and 2015 before the 

livestream to 16 calls during the same period when the livestream was operational. (The 

periods with and without the camera are almost exactly the same duration). A ranksum 

test confirms that there is indeed a significant difference in the share of Shenango-
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related calls to ACHD from these southwest bank zip codes between the periods in 

which the livestream is active and when it is not (p-value of 0.0047).  

Of course, other factors simultaneous to the period of livestream activity could be 

causing an increase in calls from the southwest bank. The obvious concern is that wind 

patterns may happen to direct the Shenango smoke to the southwest bank more often in 

the period during which the camera was active. We test for this non-parametrically by 

comparing the distribution of wind direction when the camera was active and when it 

was inactive.  Figure 6 and Figure 7 present, respectively, the cumulative distribution 

functions (cdfs) and kernel densities of the hourly-normalized wind direction 

distribution6.  The cdfs and densities in Figure 6 and Figure 7 reflect two periods: when 

the camera was inactive and when it was active during 2014 and 2015 up until the 

announcement of the Shenango plant closure. As can be seen, there is little difference in 

the camera-active and camera-inactive periods. A Kolmogorov-Smirnov test with the 

null hypothesis that the distribution of wind points more in the direction of the 

southwest bank when the camera is on than when it is off rejects the null (p < 0.000). 

This suggests no support for this alternative explanation for the increase in southwest 

bank calls during the livestreaming period.  

                                                           
6 The normalization is such that 0 represents the direction from which the wind 
 would come in order to make the average of the geographic centers of the south bank 
zip codes directly down stream from the Shenango coke mill, with 1 degree 
representing a wind direction coming from a degree away (on either side) from this 
point. 
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5. Conclusions 

Most environmental policy assumes the form of standards and enforcement. However, 

because both monitoring and enforcement are expensive, these efforts encompass just a 

sample of polluters. The fact that both enforcement and monitoring are not 

comprehensive motivates the use of disclosure laws. This study explores a new form of 

pollution disclosure: real-time visual evidence of emissions provided on a free, public 

website. Real-time broadcasts of emissions differ in important ways from extant rules 

such as TRI and the GHGRP. First, gathering visual evidence does not rely on firm 

reporting. In fact, the approach used in this study completely obviates the firm’s 

internal pollution tracking efforts, and, even in the face of a disinterested or 

overburdened governmental regulatory authority, the approach studied opens avenues 

for polluter accountability before the public. Second, the imagery provides graphic 

evidence of transgressions by firms. This is likely to engender a very different response 

among citizens relative to emissions data disclosed in tabular form.  

We develop a new dataset comprised of daily call counts to the local air quality 

regulator that we employ to test whether this new form of disclosure affects the nature 

and frequency of calls that citizens make to the regulator. Ultimately, the paper seeks to 

evaluate whether visual evidence offers a viable complement to traditional approaches 

to managing pollution. 

The literature focusing on how individuals respond to risk messaging guides our 

empirical strategy. That is, one factor that dictates whether people respond 
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systematically or emotionally to information about risk is the amount of prior 

knowledge they have about the subject (Averbeck, Jones, and Robertson, 2011). Because 

the preponderance of calls focusing on the Shenango mill originate from callers in the 

same zip code, we claim that their prior knowledge about emissions is high. In contrast, 

citizens in other zip codes are less likely to have knowledge about the visually evident 

emissions from Shenango. After testing for an association between the camera being 

active and all air pollution-related calls, we test the prior knowledge hypothesis by 

subdividing the sample of calls into those specifically about the Shenango Mill and 

those that are about the other large industrial source of air pollution. Specifically, we 

employ a subsample of calls just about steel manufacturing facilities. There are no such 

facilities in the same zip code as Shenango and calls about this source type are the 

second largest industrial category of complaints. Because of less prior knowledge held 

by these callers, we expect to see a greater response to the camera imagery among this 

subset of calls than among calls about Shenango. 

We detect evidence of an association between the daily count of all calls pertaining to 

air pollution in the ACHD’s database and the presence of the camera. In our preferred 

specification, we find evidence that interactions between the active camera indicator 

and day of the week fixed effects are significant determinants of call counts. The 

interaction with the Monday fixed effect suggests an increase, above and beyond the 

pre-camera period, of 0.3 calls per day (p < 0.01) on Mondays (relative to the count of 

calls on weekend days). The interaction between the camera control and other 
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weekdays indicates that the camera produces an increase twice as large (p < 0.01). The 

models that feature complaints about Shenango, the monitored facility, suggest that the 

camera had no clear effect on daily call counts. Our final set of tests detects evidence of 

an effect of the camera on the count of calls about steel mills through the interaction 

with day-of-week controls. For example, the interaction term with the Monday control 

suggests that the camera was associated with an increase of 1 call per day, relative to 

weekend days during the period when the camera was active (p < 0.01).  

Our results broadly comport with the prior knowledge hypothesis. The frequency of 

calls specifically about Shenango is not affected by the onset of the camera. People who 

call the ACHD about the mill tend to live near the mill. They routinely observe, and are 

exposed to, its discharges. The camera provides limited information. In contrast, when 

we limit our analysis to calls about another class of major point source of air pollution 

we find an enduring effect of the camera. Since these calls originate in areas more 

distant from Shenango we posit that callers have less knowledge about emissions from 

the mill. The prior knowledge hypothesis predicts that these communities react more 

emotionally to risk messaging. Indeed, we find evidence of such responses. The uptick 

in calls for steel-related complaints also embodies as aspects of the affect heuristic; 

particularly the formulation put forth by Shiller (2017), in which people responding 

emotionally to stimuli often apply it to unrelated, or not directly related, circumstances. 

A citizen living near a steel mill reads about the Shenango camera, visits the website, 

sees graphic evidence of air pollution, reacts emotionally, and then when they observe 
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emissions from the facility nearby where they live, they are more prone to complain. 

This is a reaction based on the affect heuristic and it may help to explain the enhanced 

call counts to the ACHD about steel manufacturing plants. 

There are a number of ways to communicate the risks associated with air pollution 

exposure. Regulatory agencies provide current measurements of pollution and 

characterize associated risks. The USEPA publishes an air quality index that employs 

categories of risk (USEPA, 2017). Alternatively, activists and other stakeholders 

communicate risk through personal experience or narrative-based storytelling in 

popular media outlets (Pittsburgh Post-Gazette, 2015a; 2015b). Livestreaming images of 

emissions is an alternative tack to conveying risk to the public. Publishing the live 

imagery of emissions is more tangible, more emotionally charged, than either approach 

described above.  

Whether due to the prior knowledge hypothesis or the affect heuristic (or a combination 

of the two) the fact that the Shenango camera appears to induce an increase in calls to 

the ACHD about pollution from other sources suggests that visual evidence may 

provide a valuable tool in boosting citizens’ willingness to engage with regulators about 

pollution. In an era in which traditional monitoring and enforcement efforts may be on 

the decline, this new tool may be an especially important complement to traditional 

management of pollution. 

This paper suggests further research on the efficacy of disclosure through visual 

evidence in potentially numerous contexts. For example, researchers could test whether 
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visual disclosure of other forms of pollution affect citizen engagement with regulators. 

These might include water or solid waste pollution. Future studies could design more 

tightly controlled experiments in which the type of visual evidence differs across 

random samples of individuals to glean what aspects of visual evidence is most 

effective in triggering a response. Further, future work could explore whether citizens’ 

responses are sensitive to environmental justice issues: does visual evidence about 

pollution in distressed communities engender a different response than that provided 

in more affluent locales? 

 

  



39 
 

Tables 

Table 1: Summary Statistics 
 

Variable mean  
(std. dev.) 

min Max 

PM2.5  
(ug/m3) 

15.28 
(9.06) 

2.6 63.8 

SO2  
(ppb) 

21.77 
(22.99) 

0.2 244 

O3 

(ppb) 
41.42 

(14.78) 
5 84.0 

H2S 
(ppm) 

0.000 
(0.001) 

0 0.011 

Temp. 
(oC) 

17.27 
(6.75) 

-4.6 30.6 

Pressure 
(mm Hg) 

742.29 
(4.19) 

727.7 754.6 

Smoke 
(pixels) 

71.48 
(288.18) 

0 2,666 

Wind Speed 
(mph) 

3.82 
(1.91) 

0 13.1 

Wind Direction 
(degrees) 

204.36 
(84.68) 

0 359 

All Calls per 
Day 

3.52 
(4.07) 

0 31 

Shenango Calls 
per Day 

1.33 
(2.32) 

0 16 

Steel Mill Calls 
per Day 

0.10 
(0.41) 

0 5 
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Table 2. The Determinants of Pollution Levels at the Avalon Monitor 

 
 (1) (2) (3) (4)  
Covariates      
      
Wind Direction 0.0818*** 0.0817*** 0.0796*** 0.0710***  
 (0.00702) (0.00720) (0.00727) (0.00728)  
(Wind Direction)2 -0.000195*** -0.000196*** -0.000191*** -0.000167***  
 (1.76e-05) (1.80e-05) (1.82e-05) (1.82e-05)  
Smoke -0.00102** -0.00128 -0.00112 -0.00137  
 (0.000431) (0.00125) (0.00116) (0.00117)  
Smoket-1   -0.00540** -0.00567**  
   (0.00228) (0.00227)  
Smoke x  
Wind Direction 

 -6.73e-06 
(1.86e-05) 

-8.78e-06 
(1.79e-05) 

-6.03e-06 
(1.80e-05) 

 

(Smoke x  
Wind Direction)2 

 3.68e-08 
(5.80e-08) 

4.26e-08 
(5.64e-08) 

3.70e-08 
(5.68e-08) 

 

Smoke x  
Wind Directiont-1 

  6.14e-05** 
(2.85e-05) 

6.45e-05** 
(2.83e-05) 

 

(Smoke x  
Wind Direction)2t-1 

  -1.54e-07** 
(7.46e-08) 

-1.60e-07** 
(7.38e-08) 

 

Incident    -5.202*  
    (2.857)  
Incident x  
Wind Direction 

   0.0967*** 
(0.0300) 

 

(Incident x  
Wind Direction)2 
 

   -0.000264*** 
(7.24e-05) 

 

Constant 4,744* 4,790* 4,796* 5,167**  
 (2,533) (2,537) (2,549) (2,543)  
      
N 2,836 2,836 2,836 2,836  
R2 0.400 0.401 0.402 0.410  

 
 Dependent variable: Hourly PM2.5  

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 3: The Determinants of PM2.5, SO2, and H2S Levels at the Avalon Monitor 

 (1) (2) (3) 
Covariates PM2.5 SO2 H2S 
    
Wind Direction 0.0706*** 8.11e-06*** 2.44e-06*** 
 (0.00726) (2.57e-06) (8.08e-07) 
(Wind Direction)2 -0.000167*** -2.23e-08*** -5.88e-09*** 
 (1.82e-05) (6.37e-09) (1.96e-09) 
Smoke -0.00147 1.98e-07 9.44e-09 
 (0.00120) (6.62e-07) (1.51e-07) 
Smoket-1 -0.00575** -1.17e-06 7.87e-08 
 (0.00228) (1.39e-06) (1.99e-07) 
(Smoke x Wind Direction) -3.63e-06 1.90e-09 -7.47e-10 
 (1.82e-05) (1.17e-08) (2.59e-09) 
(Smoke x Wind Direction)2 2.91e-08 -0 0 
 (5.71e-08) (0) (0) 
(Smoke x Wind Direction)t-1 6.62e-05** 1.46e-08 -1.28e-09 
 (2.84e-05) (1.97e-08) (2.38e-09) 
(Smoke x Wind Direction)t-12 -1.65e-07** -0 0 
 (7.41e-08) (0) (0) 
Incident -5.201* 0.00160*** 1.28e-05 
 (2.843) (0.000601) (0.000170) 
(Incident x Wind Direction) 0.0937*** -2.62e-05*** 1.00e-06 
 (0.0299) (6.78e-06) (2.14e-06) 
(Incident x Wind Direction)2 -0.000253*** 6.18e-08*** -4.64e-10 
 (7.22e-05) (1.68e-08) (5.22e-09) 
Constant 6,311** 1.570 -0.786* 
 (2,491) (1.687) (0.406) 
    
N 2,836 2,836 2,836 
Adj. R2 0.409 0.362 0.386 

Dependent variables shown in top row of table. 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Determinants of All Complaints to ACHD  
 
Covariates 
 

    (1)        (2)        (3)        (4)    

Camera -0.0250    -0.0759    -0.0302    -0.0488    
Onset (0.201)    (0.224)    (0.226)    (0.175)    
Camera  0.462***   0.233     -0.944     -0.827    
Active (0.0823)    (0.247)    (1.409)    (1.171)    
Closure             -1.390***  -1.366***  -1.254***  

           (0.285)    (0.286)    (0.246)    
Article              0.654      0.765      0.662***  

           (0.519)    (0.540)    (0.148)    
Camera x                                    0.310**  
Monday                                  (0.143)    
Camera x                                    0.582*** 
Weekday                                  (0.0893)    
Monday                                    1.648***  

                                 (0.100)    
Weekday                                    1.060***  

                                 (0.0639)    
Constant   1.009***  -0.419    0.00154     -1.421     

(0.0565)    (0.708)    (1.084)    (0.892)    
Season Fixed            X            X          X           
Effects     
Cubic Time  X X X 
Trend     
Weather  X X X 
Controls     
Monitor  X X X 
Pollution     
Camera x   X X 
Monitor Pollution     
Ln(alpha)  -0.526***  -0.698***  -0.710***  -1.429***  

(0.0652)    (0.0640)    (0.0634)    (0.104)    
N     730        727        727        727    

 
Standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01 
Dependent Variable is daily count of all calls to ACHD pertaining to air pollution. 
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Table 5: Determinants of Shenango Complaints to ACHD 

Covariates 
 

    (1)        (2)        (3)        (4)    

Camera   0.337      0.519      0.653      0.704*   
Onset (0.313)    (0.432)    (0.445)    (0.392)    
Camera   0.280**   -0.184     -4.700*    -3.718    
Active (0.131)    (0.331)    (2.456)    (2.491)    
Closure             -1.992***  -1.821***  -1.809***  

           (0.562)    (0.577)    (0.553)    
Article              0.498      0.623      0.250     

           (0.608)    (0.612)    (0.298)    
Camera x                                   -0.706    
Monday                                  (0.893)    
Camera x                                   -0.249    
Weekday                                  (0.886)    
Monday                                    5.099***  

                                 (0.703)    
Weekday                                    4.236***  

                                 (0.697)    
Constant   0.130     -4.605***  -2.631     -7.899***  

(0.0990)    (1.288)    (1.869)    (1.854)    
Season Fixed            X            X          X           
Effects     
Cubic Time  X X X 
Trend     
Weather  X X X 
Controls     
Monitor  X X X 
Pollution     
Camera x   X X 
Monitor Pollution     
Ln(alpha)   0.882***   0.666***   0.657***  -0.188     

(0.0905)    (0.0970)    (0.0967)    (0.131)    
N     730        727        727        727    

 
Standard errors in parentheses.  * p<0.10, ** p<0.05, *** p<0.01 
Dependent Variable is daily count of Shenango calls to ACHD pertaining to air 
pollution. 
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Table 6:  Determinants of Steel Complaints to ACHD 
Covariates 
 

    (1)        (2)        (3)        (4)    

Camera  -1.096      0.744      1.088      1.116    
Onset (0.770)    (0.770)    (0.785)    (0.807)    
Camera   1.738***  -0.839     -1.513     -1.749    
Active (0.302)    (0.957)    (6.400)    (5.814)    
Closure              0.328      0.445      0.432     

           (0.761)    (0.786)    (0.726)    
Article              0.675      0.831      0.923*    

           (0.838)    (0.890)    (0.493)    
Camera x                                    1.026*   
Monday                                  (0.536)    
Camera x                                    1.530*** 
Weekday                                  (0.487)    
Monday                                    16.18***  

                                 (0.461)    
Weekday                                    15.45***  

                                 (0.343)    
Constant  -3.064***  -7.361**   -7.408     -23.72***  

(0.265)    (3.285)    (5.815)    (5.327)    
Season Fixed            X            X          X           
Effects     
Cubic Time  X X X 
Trend     
Weather  X X X 
Controls     
Monitor  X X X 
Pollution     
Camera x   X X 
Monitor Pollution     
Ln(alpha)   1.025***   0.625*     0.517    -0.0739     

(0.301)    (0.349)    (0.350)    (0.420)    
N     730        727        727        727    

 
Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 
Dependent Variable is daily count of Steel Manufacturing calls to ACHD pertaining to 
air pollution.  



45 
 

Figures 

Figure 1. Average ACHD Complaints by Day of Week with Camera On and Off 
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Figure 2: Text from ACHD Call Notes 

Sample Complaint 1: ACCORDING TO SHENANGOCHANNEL.ORG, THE PM 2.5 
LEVEL AT ABOUT 9 AM ON 11/2/15 WAS 47UG/M^3 IN AVALON!  THE AIR 
SMELLS HORRIBLE TODAY. 
 
Sample Complaint 2: SHENANGO COKE WORKS - STRONG SMELL OF TAR AND 
GAS.  CALLER SAID TO CHECK THE CAMERA FEED FOR 8:45 PM.  THERE WERE 
50 FT+ GAS FLARES SHOOTING OUT. 
 
Sample Complaint 3: THE HOUSE REEKED OF CHEMICALS WHEN HE WOKE UP 
TODAY.  WENT OUT FOR A WALK AT 6:20 AND THE BURNT, INDUSTRIAL 
SMELL WAS IN THE AIR.  IT WAS STILL STINKY AT 7 AM WHEN HE GOT BACK.  
ACCORDING TO HTTP://SHENANGOCHANNEL.ORG THE WIND HAS BEEN 
BLOWING FROM THE WEST (AKA SHENANGO) ALL NIGHT. 
 
Sample Complaint 4: WHAT THE HELL IS GOING ON AT SHENANGO?  DESPITE 
YOUR RIDICULOUS AND USELESS CONSENT AGREEMENTS, THINGS ARE 
GETTING WORSE!  WHAT THE HELL HAPPENED LAST NIGHT AT AROUND 7?  
IT'S ON VIDEO:  BILLOWING BLACK SMOKE FOR SOME TIME, THE 
EMERGENCY FLARE SHOOTING UP AT LEAST 20 FEET!  I WANT ANSWERS!  
THIS IS RIDICULOUS!  I THINK THE NEWS NEEDS TO BE INFORMED AND THEN 
THE WHOLE DAMN CITY CAN SEE THE NEGLECT OF ACHD AND HOW YOU 
LET INDUSTRY POISON AND DESTROY THE LIVES OF THOUSANDS OF 
RESIDENTS.  I HOPE YOUR FAMILIES ARE ALL CHIKING LIKE MINE DOES!  
HISTORY IS A HARSH JUDGE, THOSE WHO ARE COMPLICIT ARE AS GUILTY AS 
THE PERPETRATORS AND EVERY MEMBER OF ACHD WHO DOES NOT DO 
SOMETHING ABOUT THIS IS GUILTY!  
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Figure 3: Weekly Count of All Calls to the ACHD in 2014 and 2015 
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Figure 4: Weekly Count of Shenango-Related Calls to the ACHD in 2014 and 2015 
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Figure 5: Weekly Count of Steel Pollution-Related Calls to the ACHD in 2014 and 2015 
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Figure 6: CDF of Normalized Wind Distribution Hourly Readings (Livestream Camera 

on and Off) 
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Figure 7: Kernel Density of Normalized Wind Distribution Hourly Readings 

(Livestream Camera on and Off) 
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Figure A.1. Histograms of Wind Direction at Avalon Monitor. 

 

Left Panel: Hourly wind direction from March, 2015 through November, 2015. Right 

Panel: Hourly wind direction during spring 2015 power outage. 
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Figure A.2. PM2.5 and Wind Direction. 

 

Left Panel: Hourly PM2.5 Observations. Right Panel: Average PM2.5 Readings. 

Vertical line = orientation of main stack at Shenango and Avalon monitor. 

 

 

 

  



60 
 

 

 

Figure A.3: Smoke Detection Algorithm. 
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Figure A.4: Sample of Time Lapse View and Data Depiction. 
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Figure A.5: Smoke Detection Results for May 2, 2015. 
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Figure A.6: Animated images generated by the time lapse viewer for May 2, 2015. 
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Table A1: Comparison of PM2.5 Levels at Avalon Monitor Before and After Camera. 

Wind 
Direction 
(Degrees) 

Before 
Camera 

After  
Camera 

Percent 
Change 

t-stat 
(p-value) 

Obs. 
Before/ 
Obs. After 

205 - 215 13.793A 11.193 18.85 2.568 
(0.005) 

116/135 

200 – 220 13.862 12.649 8.75 1.937 
(0.027) 

443/387 

195 – 225 13.904 13.038 6.23 1.595 
(0.055) 

636/551 

175 - 245 14.340 13.293 7.30 3.122 
(0.001) 

1,446/1,305 

165 - 255 14.184 13.234 6.70 3.419 
(0.000) 

1,990/1,771 

A = before and after camera activation measurements of PM2.5 expressed in ug/m3. 
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Table A2: Full Regression Model Results for All Calls to ACHD. 

Covariates 
 

    (1)        (2)        (3)        (4)    

Cam. On -0.0250    -0.0759    -0.0302    -0.0488     
(0.201)    (0.224)    (0.226)    (0.175)    

Cam. Active  0.462***   0.233     -0.944     -0.827     
(0.0823)    (0.247)    (1.409)    (1.171)    

Closure             -1.390***  -1.366***  -1.254***  
           (0.285)    (0.286)    (0.246)    

Article              0.654      0.765      0.662***  
           (0.519)    (0.540)    (0.148)    

Meeting             -0.532     -0.571     -0.629*    
           (0.464)    (0.469)    (0.346)    

PM2.5             0.0216      0.161      0.140     
           (0.100)    (0.158)    (0.135)    

SO2              0.119**   0.0866     0.0915     
           (0.0498)    (0.0714)    (0.0637)    

O3            -0.0258      0.111      0.125     
           (0.135)    (0.217)    (0.175)    

Incident            -0.0657    -0.0807    -0.0493     
           (0.203)    (0.200)    (0.150)    

spring             -0.388**   -0.358**   -0.332**   
           (0.166)    (0.166)    (0.142)    

summer             -0.586***  -0.569***  -0.485***  
           (0.188)    (0.185)    (0.154)    

fall             -0.320**   -0.278*    -0.213*    
           (0.154)    (0.155)    (0.125)    

Day of sample            0.00767*** 0.00595**  0.00545**   
           (0.00226)    (0.00266)    (0.00236)    

(Day of sample)2            -0.0000191**  -0.0000122    -0.0000112     
           (0.00000835)    (0.0000100)    (0.00000863)    

(Day of sample)3            1.53e-08**  8.94e-09    8.01e-09     
           (7.59e-09)    (9.12e-09)    (7.78e-09)    

Temperature             0.0236**   0.0222**   0.0227***  
           (0.00919)    (0.00922)    (0.00760)    

Temperature2            -0.0000121    0.0000273    -0.000161     
           (0.000390)    (0.000387)    (0.000332)    

Wind            0.00271    0.000682    0.00626    
Direction            (0.00441)    (0.00559)    (0.00442)    
Wind            -0.00000629    -0.00000279    -0.0000142    
Direction2            (0.0000109)    (0.0000137)    (0.0000108)    
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Wind            -0.0449    -0.0142    -0.0247    
Speed            (0.0905)    (0.0904)    (0.0722)    
Wind            0.00949    0.00674    0.00659    
Speed2            (0.00772)    (0.00764)    (0.00619)    
Camera x PM2.5                        -0.237     -0.154     

                      (0.185)    (0.159)    
Camera x SO2                        0.0677     0.0582     

                      (0.0997)    (0.0853)    
Camera x O3                        -0.234     -0.271     

                      (0.275)    (0.226)    
Camera x Wind                       0.00601    -0.00151    
Direction                       (0.00812)    (0.00667)    
Camera x Wind                       -0.0000117    0.00000445    
Direction2                       (0.0000201)    (0.0000166)    
Camera x Monday                                    0.310**   

                                 (0.143)    
Camera x Weekday                                    0.582***  

                                 (0.0893)    
Monday                                    1.648***  

                                 (0.100)    
Weekday                                    1.060***  

                                 (0.0639)    
Constant   1.009***  -0.419    0.00154     -1.421     

(0.0565)    (0.708)    (1.084)    (0.892)     
                                            

Ln(alpha)  -0.526***  -0.698***  -0.710***  -1.429***  
(0.0652)    (0.0640)    (0.0634)    (0.104)    

N     730        727        727        727    
 
Standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01 
Dependent Variable is daily count of all calls to ACHD pertaining to air pollution. 
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Table A3: Full Regression Model Results for Shenango-Related Calls to ACHD. 

Covariates 
 

    (1)        (2)        (3)        (4)    

Cam. On   0.337      0.519      0.653      0.704*    
(0.313)    (0.432)    (0.445)    (0.392)    

Cam. Active   0.280**   -0.184     -4.700*    -3.718     
(0.131)    (0.331)    (2.456)    (2.491)    

Closure             -1.992***  -1.821***  -1.809***  
           (0.562)    (0.577)    (0.553)    

Article              0.498      0.623      0.250     
           (0.608)    (0.612)    (0.298)    

Meeting             -0.916     -0.877     -1.012**   
           (0.640)    (0.634)    (0.497)    

PM2.5              0.134     0.0977      0.144     
           (0.177)    (0.267)    (0.239)    

SO2              0.103     0.0968     0.0985     
           (0.0811)    (0.118)    (0.110)    

O3             -0.176      0.237      0.313     
           (0.199)    (0.359)    (0.324)    

Incident             0.0559    0.000337     0.0615     
           (0.334)    (0.339)    (0.295)    

spring             -0.208     -0.131    -0.0610     
           (0.274)    (0.267)    (0.221)    

summer             -0.596*    -0.563*    -0.437     
           (0.324)    (0.319)    (0.273)    

fall            -0.0771    0.00192     0.0905     
           (0.254)    (0.256)    (0.211)    

Day of sample             0.0102**  0.00523    0.00452     
           (0.00401)    (0.00517)    (0.00512)    

(Day of sample)2            -0.0000217    -0.000000877    0.00000128     
           (0.0000133)    (0.0000184)    (0.0000178)    

(Day of sample)3            1.55e-08    -4.08e-09    -5.96e-09     
           (1.18e-08)    (1.67e-08)    (1.59e-08)    

Temperature             0.0355**   0.0354**   0.0349***  
           (0.0165)    (0.0163)    (0.0131)    

Temperature2            -0.000478    -0.000483    -0.000603     
           (0.000676)    (0.000671)    (0.000585)    

Wind             0.0220**   0.0182     0.0301*** 
Direction            (0.00897)    (0.0117)    (0.0106)    
Wind            -0.0000526**  -0.0000453    -0.0000696*** 
Direction2            (0.0000220)    (0.0000290)    (0.0000259)    
Wind            -0.0212     0.0284     0.0213    
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Speed            (0.149)    (0.151)    (0.131)    
Wind             0.0117    0.00726    0.00609    
Speed2            (0.0125)    (0.0126)    (0.0110)    
Camera x PM2.5                        0.0682      0.142     

                      (0.305)    (0.290)    
Camera x SO2                       0.00928     0.0325     

                      (0.155)    (0.139)    
Camera x O3                        -0.761*    -1.038**   

                      (0.451)    (0.439)    
Camera x Wind                        0.0131    -0.00311    
Direction                       (0.0152)    (0.0137)    
Camera x Wind                       -0.0000274    0.00000766    
Direction2                       (0.0000376)    (0.0000338)    
Camera x Monday                                   -0.706     

                                 (0.893)    
Camera x Weekday                                   -0.249     

                                 (0.886)    
Monday                                    5.099***  

                                 (0.703)    
Weekday                                    4.236***  

                                 (0.697)    
Constant   0.130     -4.605***  -2.631     -7.899***  

(0.0990)    (1.288)    (1.869)    (1.854)     
                                            

Ln(alpha)   0.882***   0.666***   0.657***  -0.188     
(0.0905)    (0.0970)    (0.0967)    (0.131)    

N     730        727        727        727    
 
Standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01 
Dependent Variable is daily count of all calls to ACHD pertaining to Shenango Mill. 
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Table A4: Full Regression Model Results for Steel Manufacturing Calls to ACHD 

Covariates 
 

    (1)        (2)        (3)        (4)    

Cam. On  -1.096      0.744      1.088      1.116     
(0.770)    (0.770)    (0.785)    (0.807)    

Cam. Active   1.738***  -0.839     -1.513     -1.749     
(0.302)    (0.957)    (6.400)    (5.814)    

Closure              0.328      0.445      0.432     
           (0.761)    (0.786)    (0.726)    

Article              0.675      0.831      0.923*    
           (0.838)    (0.890)    (0.493)    

Meeting             -0.123    -0.0389     -0.130     
           (0.805)    (0.823)    (0.797)    

PM2.5             -0.206     -0.195     -0.217     
           (0.286)    (0.686)    (0.640)    

SO2              0.185      0.550      0.540     
           (0.141)    (0.412)    (0.365)    

O3             0.0111      1.132      1.177     
           (0.433)    (1.089)    (1.100)    

Incident             -0.655     -0.688     -0.670     
           (0.582)    (0.603)    (0.581)    

spring              2.220***   2.145***   2.280***  
           (0.635)    (0.648)    (0.682)    

summer              1.853***   1.712***   1.811***  
           (0.632)    (0.664)    (0.668)    

fall              0.503      0.407      0.521     
           (0.486)    (0.503)    (0.522)    

Day of sample             0.0177     0.0122     0.0127     
           (0.0175)    (0.0179)    (0.0176)    

(Day of sample)2            -0.0000246    0.00000228    0.00000136     
           (0.0000495)    (0.0000565)    (0.0000542)    

(Day of sample)3            1.62e-08    -9.47e-09    -8.35e-09     
           (4.07e-08)    (4.93e-08)    (4.69e-08)    

Temperature             0.0831*    0.0770     0.0571     
           (0.0491)    (0.0492)    (0.0490)    

Temperature2            -0.00398**  -0.00396**  -0.00343*    
           (0.00181)    (0.00177)    (0.00176)    

Wind            -0.00427     0.0314     0.0429    
Direction            (0.0128)    (0.0244)    (0.0263)    
Wind            0.0000124    -0.0000856    -0.000110*   
Direction2            (0.0000312)    (0.0000628)    (0.0000664)    
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Wind              0.306      0.261      0.240    
Speed            (0.456)    (0.398)    (0.347)    
Wind            -0.0329    -0.0293    -0.0268    
Speed2            (0.0460)    (0.0425)    (0.0351)    
Camera x PM2.5                       -0.0487     0.0286     

                      (0.702)    (0.673)    
Camera x SO2                        -0.427     -0.407     

                      (0.436)    (0.395)    
Camera x O3                        -1.307     -1.280     

                      (1.247)    (1.245)    
Camera x Wind                       -0.0373    -0.0509*   
Direction                       (0.0282)    (0.0297)    
Camera x Wind                       0.000104    0.000134*   
Direction2                       (0.0000720)    (0.0000749)    
Camera x Monday                                    1.026*    

                                 (0.536)    
Camera x Weekday                                    1.530***  

                                 (0.487)    
Monday                                    16.18***  

                                 (0.461)    
Weekday                                    15.45***  

                                 (0.343)    
Constant  -3.064***  -7.361**   -7.408     -23.72***  

(0.265)    (3.285)    (5.815)    (5.327)     
                                            

Ln(alpha)   1.025***   0.625*     0.517    -0.0739     
(0.301)    (0.349)    (0.350)    (0.420)    

N     730        727        727        727    
 
Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 
Dependent Variable is daily count of Steel Manufacturing calls to ACHD pertaining to 
air pollution. 
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Table A5: Comparison of Different Estimators for All Calls to ACHD. 

Covariates 
 

    (1) 
OLS    

    (2) 
Neg. Bin.    

    (3)    
Poisson 

Camera On  -0.146    -0.0488    -0.0571     
(0.780)    (0.175)    (0.198)    

Closure  -5.027***  -1.254***  -1.338***  
(1.261)    (0.246)    (0.248)    

Article   6.170***   0.662***   0.697***  
(2.367)    (0.148)    (0.167)    

Camera Active  -5.682     -0.827     -0.954     
(5.436)    (1.171)    (1.332)    

Camera x Monday   1.918*     0.310**    0.283*    
(0.979)    (0.143)    (0.151)    

Camera x Weekday   2.448***   0.582***   0.583***  
(0.405)    (0.0893)    (0.0944)    

Monday   4.372***   1.648***   1.679*** 
 (0.585)    (0.100)    (0.105)    
Weekday   1.961***   1.060***   1.084*** 
 (0.208)    (0.0639)    (0.0680)    
Constant  -2.534     -1.421     -1.507     

(3.496)    (0.892)    (1.058)    
Season Fixed  X           X           X          
Effects    
Cubic Time X X X 
Trend    
Weather X X X 
Controls    
Monitor X X X 
Pollution    
Camera x X X X 
Monitor Pollution            

  

lnalpha             -1.429***             
           (0.104)               

Adj. R2   0.306                          
N     727        727        727    

 
Standard errors in parentheses 
Note:* p<0.10, ** p<0.05, *** p<0.01 
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Table A6: Comparison of Different Estimators for Shenango-Related Calls to ACHD. 

Covariates 
 

    (1) 
OLS    

    (2) 
Neg. Bin.    

    (3)    
Poisson 

Camera On   0.643      0.704*     0.389     
(0.610)    (0.392)    (0.325)    

Closure  -1.907***  -1.809***  -1.899***  
(0.595)    (0.553)    (0.504)    

Article   1.884***   0.250      0.359     
(0.439)    (0.298)    (0.264)    

Camera Active  -5.420*    -3.718     -2.340     
(3.000)    (2.491)    (2.355)    

Camera x Monday   0.133     -0.706     -0.766     
(0.599)    (0.893)    (0.936)    

Camera x Weekday   0.703***  -0.249     -0.293     
(0.242)    (0.886)    (0.925)    

Monday   2.807***   5.099***   5.075*** 
 (0.451)    (0.703)    (0.713)    
Weekday   1.276***   4.236***   4.223*** 
 (0.151)    (0.697)    (0.704)    
Constant  -3.040     -7.899***  -7.336***  

(2.371)    (1.854)    (1.991)    
Season Fixed  X           X           X          
Effects    
Cubic Time X X X 
Trend    
Weather X X X 
Controls    
Monitor X X X 
Pollution    
Camera x X X X 
Monitor Pollution            

  

Ln(alpha)             -0.188                
           (0.131)               

Adj. R2   0.234                          
N     727        727        727    
 
Standard errors in parentheses 
Note:* p<0.10, ** p<0.05, *** p<0.01 
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Table A7: Comparison of Different Estimators for Steel Manufacturing Calls to ACHD. 

Covariates 
 

    (1) 
OLS    

    (2) 
Neg. Bin.    

    (3)    
Poisson 

Camera On  0.0201      1.116      1.103     
(0.0631)    (0.807)    (0.828)    

Closure   0.207      0.432      0.422     
(0.168)    (0.726)    (0.750)    

Article   0.378      0.923*     0.975**   
(0.256)    (0.493)    (0.488)    

Camera Active  -0.366     -1.749     -1.710     
(0.721)    (5.814)    (6.012)    

Camera x Monday   0.274***   1.026*     1.205**   
(0.0965)    (0.536)    (0.480)    

Camera x Weekday   0.268***   1.530***   1.687***  
(0.0594)    (0.487)    (0.373)    

Monday   0.124***   16.18***   15.26*** 
 (0.0449)    (0.461)    (0.452)    
Weekday  0.0759***   15.45***   14.59*** 
 (0.0220)    (0.343)    (0.356)    
Constant  0.0897     -23.72***  -22.90***  

(0.241)    (5.327)    (5.407)    
Season Fixed  X           X           X          
Effects    
Cubic Time X X X 
Trend    
Weather X X X 
Controls    
Monitor X X X 
Pollution    
Camera x X X X 
Monitor Pollution            

  

Ln(alpha)            -0.0739                
           (0.420)               

Adj. R2   0.100                          
N     727        727        727    
 
Standard errors in parentheses 
Note:* p<0.10, ** p<0.05, *** p<0.01 
 




