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ABSTRACT

The optimal income taxation problem has been extensively studied in one-

period models. When consumers work for many periods, this paper analyzes what

information, if any, that the govermment learns about abilities in one period

can be used in later periods to attain more redistribution than in a one-

period world. When the govermment must commit itself to future tax schedules,

the gains come from relaxing self-selection constraints by intertemporal

nonstationarity. The effect of nomstationarity is analogous to that of

randomization in one-period models.

In a model with two ability classes it is shown that the key use of

information is that only a single lifetime self-selection comstraint for each

type of consumer must be imposed. Some necessary and sufficient conditions

for randomization or nonstationarity are given. The plammer can make

additional use of the information when individual and social rates of time

discounting differ.

In this case, the limiting tax schedule is a

nondistorting one if the govermment has a lower discount rate than

individuals.
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I. Introduction

Most optimal income tax models in the Mirrlees [1971] tradition analyze
only a single period. If individuals are identifiable across periods,
questions arise about the contimued validity of the results in those models.
An obvious objection is that, in the first period, the govermment learns
individuals' abilities and therefore should be able to attain a first best
result in the next period. If individuals do not recognize that their second
period taxes depend upon their first period behavior, this conclusion is
correct. However, if individuals correctly anticipate this linkage and adjust
their behavior accordingly, the gain from using the information is at least
partially negated. This paper considers whether the first best ocutcome can be
achieved in later periods despite this response by individuals and if not,
whether the use of any information from period one can lead to an improvement
over simple repetition of the one period optimal tax schedule.

The model has individuals of two discrete ability classes. The
govermment knows the size and ability lewvel of each class but does not
initially know to which class any particular individual belongs. This paper
thus adapts the one period model of Stiglitz {1982a] to a many period
situation and relaxes assumptions about the preferences of the two classes.

Two different assumptions about the goverument's use of information can
be made. One is that the govermment is able to commit itself to the tax
schedules it will use in each period and thus to limit the extent to which it
uses information about an individual's ability, learned from the taxes paid in
one period, to affect the taxes paid in later periods. The other is that the
govermment carmot commit itself in advance not to use information to the full
extent. Once an individual's ability is learned, the govermment is not only
able to impose lump sum taxation but does so as soon as possible. Both

assumptions are worth studying. The second may be more realistic since it may



in fact be impossible for govermments to commit themselves even by constitu-
tional means since later govermments can change rules and constitutions. On
the other hand, the no commitment solution is feasible when commitment is
possible but not the reverse. Hence, the first assumption allows studying a
benchmark case where information is used optimally across periods. In this
paper, the first assumption of commitment is made. Elsewhere, we analyze the
no comnitment case.

When the govermment can commit itself, the following results are shown:

(1) If first best is not optimal in a one period model, it is not
optimal in later periods of a milti-period model.

(2) The self-selection constraint creates a potential nonconvexity which
implies that sometimes it may be desirable to have different tax functions in
each period.

(3) When the tax structure differs between periods, the information from
the first period incorporated in later periods' schedules is only an
individual's ability class. The plarmer uses this to incorporate a large
penalty in later periods for an agent who acts in the second period as if his
ability differs from that revealed in the first, thus forcing agents to be
consistent in their behavior across periods.

These results follow from noting that a multiperiod optimal tax model and
a one period model with random taxation as discussed in Stiglitz [1982a] are
essentially the same. The random tax model has no restrictions on the
relative frequencies with which different schedules are offered. With an
infinite horizon, it is possible to exactly duplicate the random solution.
However, in a finite period model, restrictions exist on the frequency with
which bundles can be offered over time. In addition, the multiperiod model
may be more restrictive if it has period-by-period govermment budget

constraints instead of one intertemporal constraint. Despite these extra



restrictions, similar arguments show that different tax schedules in different
periods may be desirable. Intertemporal nonstationarity is an alternative
method of implementing random taxes that does not require either ex ante or ex
post violations of horizontal equity.

(4) The "single crossing" assumption common to many self-selection
models is not needed' for nnsf results. At the optimum, at most one self-
selection constraint can bind whether or not single crossing is assumed. A
complete characterization of the solution to the one-period problem, with and
without random taxation, is given both in terms of taxes and the Pareto
frontier. These results are more general than p.evious analyses since no
specific relationship between the classes is assumed.

(5) When a self-selection constraint binds, randomization is desirable for
any indifference map under a sufficiently concave transformation of the utility
function of the class with the binding constraint. If a local randomization
improves upon the nonrandom solution, then for any three probabilities, some
lottery with those probabilities improves upon the nonrandom solution.

In section II, the basic model is described and results for a one period
model with and without randomization are derived. In addition, more general
conditions are derived for randomization to be desirable than have previously
appeared in the literature. In section ITI, the multiperiod problem is
considered. Results are given for a single intertemporal govermment budget
constraint and for separate period-by-period comstraints. The results depend
upon whether the govermment's and individuals' discount rates differ. If they
are equal, information is used across periods only to mimic randomization.
When they differ, systematic use of information occurs since "trade' between
the govermment and individuals is now possible due to different discount
rates. In section IV, some general conclusions are drawn about the use of

information in optimal tax models.



II. Taxation in a One Period Model

In this section, we analyze the basic one period model. The results here
generalize those in Stiglitz [1982a] and help draw the analogy between random

taxation and miltiperiod taxatiom.

A. Basic Assumptions

A society is composed of two different classes of individuals denoted A
and B. The individuals within each class are jdentical but the two classes
differ either in tastes or abilities. The govertment is assumed initially not
to know to which class any individual belongs but to know the mmbers of
individuals in each class, denoted Ni’ i = a, b. Individuals consume a single
good, C, and earn income, Y. People in each class have a utility function
or these bundles VL(C, V), i = a, b, with avi/aC = VE > 0 and aV/3Y = v; <o0.
The maximm income that individuals in each class can earn is bounded from above
by KL so that Y os Ki, i =a, b. The marginal rate of substitution for a given
individual is denoted MRS1(C, V) = -v;/vi >0, i=a, b.

The following assumptions are made about V-(C, ¥):

1) vi(C, V), i = a, b, is twice contimuously differentiable in C and Y;

(A2) Vi(C, V), i = a, b, is strictly concave in C and Y;

(A3) MRSA(C, ) and MRSP(C, ¥) differ at almost every (C, ¥) bundle and
points where the MRS's are equal are not where the indifference curves
are tangent to the no-tax budget line. |

Assumption (Al) is made for convenience but could be relaxed without
difficulty. Assumption (A2) of concavity (instead of quasiconcavity) insures
that expected utility in the random taxation model and lifetime discounted
utility in multiperiod models describe convex preferences. Assumption (A3) is
crucial in guaranteeing that the two groups actually have different preferences

since, if their indifference curves coincide, redistribution between groups is



impossible. Assumption (A3) allows the indifference curves of the two classes
to have multiple crossings. If there are multiple crossings, then there will be
bundles at which the indifference curves of the two groups are tangent, having
equal marginal rates of substitution. Such tangencies are not ruled out as long
as they form discrete lines in the (C, Y) plane.1

A special case satisfying these assumptions is that considered in
Stiglitz [1982a] in vhich the utility functions V1(C, Y) arise from common
underlying preferences over consumption and labor with the classes A and B
having different abilities (and wages). Let e be hours worked and W, the wage
rate of group i. Then 1= Y/wi and Vi(C, Y) = U(C, Y/wi) where U is the common
utility function over C and L. If A is the more able group (w, > w) then
MRS(C, V) < MRS®(C, V) at each (C, 1).2 As shown below, such a "single

crossing' assumption is urmecessary for most of the standard results.

B. Nonrandom Taxation

Assume that the goverrment must impose the same tax on everyone who earns
the same income either to satisfy horizomtal equity or for administrative
ease. It cammot randomly charge some individuals a different tax than others.
Since the govermment cannot distinguish individuals of the two classes, it must
therefore offer a single tax schedule T(Y) to all individuals.? An individual
belonging to either class then faces a budget constraint C s Y - T(Y) and
maximizes utility subject to this constraint taking the tax schedﬁle as given.
For each possible tax schedule, there will be a best consumption-income vector
(€T, Y'(T)) for each class and a utility for each class ViT = vici(r),
YHT)). It is clear that for any T, V1T 2 viccd(m, YIm), 1 = 3, since ViT is
the maximm given the constraint and (CJ(T), YJ(T)) is a feasible vector for
both classes.® Budget balance, NT(Y}) + N.T(P) 2 0, must also be satisfied

for feasibil:‘.t:y.5 The govermment then seeks the tax function which yields the



"best' pair of utilities (VaT, VbT) . This best pair could be selected according
to a social welfare function. For any social welfare function, the pair (VaT,
VbT) will be a constrained Pareto optimm. Thus, in this paper, we consider the
set of Pareto-optimal utilities without arbitrarily assuming a particular
welfare function.

Since directly searching over tax functions to find the optimum is
difficult, an equivalent problem is solved of choosing (C1, Y') pairs for each
class that satisfy self-selection constraints, Vi(Ci, Yi) 2 Vi(Cj, Yj ), 1=a
and b and j # i. That is, individuals in neither class can prefer the bundle
assigned to the other class to their own. These self-selection constraints
are necessary and sufficient for there to exist a tax function under which the
two classes optimally choose the assigned bundles. Necessity was argued
above. To show sufficiency, note that if v' 2 ¥ then ct > c) must also hold
or both classes prefer (Cj, Yj) . Consider the tax functiom,

=y, v<d, Tm=v-, ¥sy<vh, rm=v-cf vsv.

Under this step function, the only bundles which individuals in either class
could choose are (0, 0), (01, ¥y, and (¢}, ¥). This follows, for example,
since (Ci, Yi) is preferred to any bundle (Ci, v, Y> Yi, which are the only
ones possible for incomes greater than Y1 In addition, under boundary
conditions on preferences, either bundle will be preferred to (O, 0). Under
this tax function, individuals in class i can do no better than (Ci, Yi) and
those in j can do no better than (¢J, ¥)).® Given the individuals' budget
constraints, budget balance is satisfied if N_(C* - ¥%) + N, - ) 5 0
(aggregate consumption no greater than aggregate income).

The government's one period nonrandom Pareto taxation problem then can be

written as maximization problem (PI) :7



D Max N VA, Y + (1 - ONPC, P)
s.t. vieh, v 2 v, v, i=a, b, e gy
N - +N (-1 50 -

OsYlsKl,i=a,b

CizO,i=a,b

where ¢ is a parameter which can be varied between 0 and 1 to find the
constrained Pareto fromtier, A;i» 1= a, b, is the Lagrange multiplier
associated with the self-selection constraint of class i; and , is the

Lagrange multiplier associated with the resource balance constraint.

Theorem I: For all ¢ ¢ [0, 1], there exists a solution ((Ca*, Ya*), ((,b*, Yb*))

to maximization problem (PI).

Proof: The constraint set isnonaxptysinceanyYa=Yb=Ca=Cbsmin(Ka, Kb)
satisfies all the constraints in (PI). The constraint set is closed because all
constraint fumctions are continuous in the choice variables and the constraints
are specified by weak inequalities. Incomes are bounded by assumption and these
bounds imply that consumptions are bounded through the resource constraint.
Hence, the constraint set is bounded. The objective function is contimuous and

thus attains a maximm on the nonempty compact constraint set. Q.E.D.

To characterize the solution to (PI), let Cl(a), Y(a), and -
Vi(a) = Vi(Ci(a), Yi(a)), i = a, b, be the optimal bundles and utilities as
functions of a. Let Vio, i = a, b, be the utilities of each group in the no

tax situation.

Theorem II: The solution to (PI) satisfies the following properties:
1) If Vi) 2 V2O then Vi (@), W) < V(a), i=a, b and j = i.



i) If vi@) = vicd (@), Y(o)) then W) > W(cte), ¥ (@), i = a, b and
j = i

(iii) v > 0

(i) I£A; =0 then STl (@), Y¥(@)) =1, i =a, band j = 1.

(v) Ifli>0thenfori=a,bandj=ieither

1 <msi @), Y@y < mstdw), ¥y, or
Mrst(cd (@), (o)) < MRsI(cI(a), V(o)) < 1.

Before proving Theorem II, an explanation of these conditions is in order.
The first says that the self-selection constraint does not bind for a group
which receives higher utility than in the no-tax situation. The second says
that at most one self-selection constraint can bind at the optimum -- even
with multiple crossings of the indifference curves. The third says that
production efficiency is satisfied in that all production is consumed (Na(Ca -
¥ + Nb(Cb - Yb) = 0). The fourth says that, if the self-selection
constraint does not bind for group i, then the optimmm bundle for the group j
is one with no distortion -- the implicit marginal tax rate is zero. The
fifth condition says that if the self-selection constraint for group i is
binding, then at group j's bundle, MRS) lies between the marginal rate of
transformation and MRS®. The marginal rate of transformation (=1) can be

either larger or smaller than the two MRS's.

Proof

(i) Consider the no tax situation. The budget constraint of group i is
ct s v and the optimal choice (C°, Y19 satisfies ¢1° = ¥° from
monotonicity of vicck, vy, 1£ vi(dd, vd) = vicct, vh 2 vI°, then ¢tz ¥
and Cj 2 Yj must hold with strict inequality in the second unless (Cj, Yj) =
(Ci ) Yi) = (Cio, Yio). This latter possibility can occur only when



vicct, v = vi© and mrst(ct®, ¥1°) = mrsI(cl®, ¥¥% = 1. Disregarding this
special case, Ni(Ci - Yi) + Nj(Cj - Xj) > 0 must hold, violating the resource
balance constraint. (See Figure 1).

(ii) The no tax utilities (V2°, V™) are feasible and must lie on the
constrained Pareto frontier. It is impossible to raise both types' welfare
since no distortions exist. There must exist some @ for which Vi(ao) = Vio,
i = a, b. Hence, for any other a, either V3(a) 2 Va(ao) or Vb(a) 2 Vb(ao).
From (i), the group whose utility is at least at the no tax level cammot have
its self-selection constraint bind. It is thus impossible to have self-
selection constraints binding for both groups.

(iii) Rewrite the resource constraint as N (C* - ¥4 + N (& - ¥°) sy
and let L(a, y) be the value of the objective function of (PI) at ﬁhe optimum.
Then, from the envelope theorem, differentiating L around y = 0, 3L/3y = u.
For any y > 0, the extra resources can always be given to the groups whose
self-selection constraint is not binding without any of the comstraints being
violated. This raises the value of the objective fumction, showing
aL/3y > 0.8

(iv) Assume A, =0 and the self-selection constraint for group i holds
with strict inequality. If MRSI(C(a), Y (a)) > 1, then, for small &,
Vi@ -5, Y -0 > Wi, Y amd i -5, P - 6 < v
will hold. Since resource balance continues to hold, the bundle (Cj(a) -8,
Yj(u) - §) yields a higher value for the objective function. Similarly, if
MrsJ (cd (@), W) <1, (@) +6, Yi(a) + &) yields a higher value of the
objective function. (See Figure 2). If Ay = 0 but the self-selection
constraint holds with equality, then from (ii), lj = 0 must hold. The first
order conditions immediately yield the result since terms from neither

self-selection constraint enter.
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MRSj(Cj(a), Yj(a)) < 1, (Cj(a) + 4, Yj(a) + 8) yields a higher value of the
objective function. (See figure 2). If A = 0 but the self-selection
constraint holds with equality, then from (ii), Aj = 0 must hold. The first
order conditions immediately yield the result since terms from neither

self-selection constraint enter.

fl

(v) Assume Aa > 0 so that from (ii), Ab 0 must hold. The first order

conditions with respect to Cb and Yb are:

{
[en)

(1 - N, WP, Py -2, ) - - (1)

A - N, VP, 1) -V, 1) 4y = 0 (2)

Solving for “NB and combining terms yields:
A - N R, P + P, P =, 3, )+ B, ¥ 3
or:

(1 - NP, P11 - 1rsP(®, ™)1 = 2 A, ) 11 - Mrs2(cP, ¥9)1
C ac (4)
Adding » V3(C®, YMRS®(C, ¥°) to both sides of (4), combining terms, and
substituting (1) yields
11 - L, )1 = a3, Py ors(c®, vy - rs?(e®, v -
Since Ay (by assumption) and u (from part (ii)) are positive, the result
follows.

If A, > 0, similar manipulation of the first order conditions for @ and Y?

b
shows the required results. Q.E.D.
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Requiring taxes to raise net revenue does not change significantly any of the
results. In Theorem II(i), instead of using the no tax situation as a
benchmark, the situation with a lump sum tax equal to the per capita share of
net required revenue can be used and all the results follow.

(2) 1If the "single crossing” assumption is made, as in Stiglitz [1982a]
due to different sbilities, MRS® < MRS” holds at all (C, Y) bundles. Thus, part
(v) simplifies to A, > 0 implies MS*(C(a), Y(a)) < ML (P(a), P(ay) < 1 and
% > 0 implies 1 < MRS*(C(a)), Y2(a)) < MRSP(CR(a), YP(a)).

(3) The intuition behind part (v) can be given by arét.ments similar to
the proof of part (iv). Assume Aa > 0 and that MRSb(Cb, Yb) <1« MRSa(Cb, Yb).
Then, at least for small § > 0, if the bundle (P, Y) is changed to
(Cb + 6, Yb + 6) resource balance continmues to be satisfied. A's self-
selection constraint holds with strict inequality, and B's welfare riges
yielding a Pareto improvement. (See Figure 3). I1f MRSP(P, ¥) < mrs?(cb, vP)
<lorif 1 <M, ¥) < ™, ), then moving (&, v along A's
indifference curve below the 45° line through (¥, YP) leaves the self-
selection constraint for A holding with equality, raises B's utility, and
yields extra resources which can be given to A to yield a Pareto improvement.
(See Figure 4).

(4) Along the Pareto frontier, there are regions in which each self-
selection constraint binds. Even if the two groups differ only because of
ability differences, it cammot be assumed that the self-selection constraint
of the able will bind. At some points on the frontier, little redistribution
is done and neither binds. At others, the redistribution is from the unable
to the able, so the self-selection constraint of the unable binds.

(5) Our characterization of the optimal taxes permits comparisons between
the utility possibility frontiers (UPF) of the constrained problem and the full
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information problem (with no self-selection constraints). If neither self-
selection constraint binds, then the two UPF's coincide. If one binds, then the
constrained UPF lies strictly below the full-information one. With the
additional assumption that consumption and leisure are normal for both classes,
the three regions of the UPF (neither constraint binds, the constraint on A

binds, the constraint on B binds) are comected segments. (See Figure 5).

Corollary I: Under assumptions (Al)-(A3) and normality of consumption and
leisure, if a self-selection constraint binds at a point on the UPF then that
constraint binds at all points on the UFF with lower utility for that class.
The UPF has three segments: first, one self-selection constraint binds; then,
neither binds (this includes the no-tax point); lastly, the other self-

selection constraint binds.

Proof: Comsider a solution to (PI) for some « such that A a’ 0. Denote this
solution as (@2, ¥, &2, T3) where VA(C3, ¥9) = VA(G}, ¥} and, from Theoren
(), VA, ¥ < ¥, From Theorem I(), wsP(@, ¥ = 1. Let (CJ, ¥ be
the bundle such that W(@&, ¥ = W@, ) and WS, ¥ = 1. Then 3,
is the bundle which minimizes @ - ¥ subject to (&, ¥ = P&, ¥). From

strict concavity, it then follows that Cg - Yg < Ctl> - Y? Therefore,
P&, ¥ > (@, ¥ mst hold. If not, and (@, B s (@, ), then
the bundle (2, Y3, €}, ¥3) would satisfy self-selection for both types and,
as compared to (C"i, Yall, Ctl’, Yli) would give both types the same utility but
would use less net resources. This would contradict the assumption that
(C‘?, Y‘;, Cl{, Yli) is on the constrained UPF.

Assume that the result is false so that there exists a solution for some
other a, (Ca, Y‘;, Cg, Yg) which is on the constrained UPF at a lower utility for

A and at which neither self-selection constraint binds. That is, assume (i)
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QL R =G B > R, B PG R, a) P, By > P, ),
and (ii1) MRS*(CH, ¥3) = mRsP(cD, Y)) = 1. From these assumptions, it follows
that C5 2 € and ¥ 2 Y3 camnot both hold. If both held, then V3(c), ¥3) 2
V3(C3, ¥2) and hence, since v, ) > v, ¥) was shown above, vie, ) »
Va(Cllj, YIID) which contradicts (i). Therefore, either (.J; < Clz’ or Yg > Yg must
hold. - Since, from (i1) and (111), MRSP(cD, o) = s, ¥)) and Y, B «
(), the first inequality would imply that consumption is inferior and
the second that leisure is inferior. In either case, a contradiction arises

from assuming the result is false. Q.E.D.

(6) In the constrained problem, the self-selection constraints imply
minimm utility levels for each group, while in the full information problem,
- utility for a group can be pushed down to v1(0, KY). Thus the utility
possibility fromtier is truncated at higher utility levels. For example,
suppose the classes differ only in ability with Wy > W,. For any Y > 0,
Va(C, Y) > Vb(C, Y) since A's need to work less to eam the same income.

VA, ¥ > VP, ) since VAR, ¥ 5 P, P « v, ¥°) violates
A's self-selection constraint. Thus, A must always achieve more utility than
B. This remains true if the problem is formilated as maximizing V' subject to
v being not less than a target level, and varying the target to map out the
utility possibility frontier. At low enough target levels, the target
constraint will not bind, |

(7) The ordering of MRS's at the distorted bundle, (cJ, v}y if A > 0,
has an interpretation in terms of taxes. If the group desiring to mimic (i)
has the steeper indifference curve through j's bundle, then group j is
subsidized on the margin. If i hag the flatter indifference curve through j's
bundle, group j is taxed on the margin.
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B. Random Taxation

The desirability of randomizatiom in optimal taxation models, or in
principal-agent models in general, has been studied by Weiss [1976], Stiglitz
[1982a], Fellingham, Kwon, and Newman [1984], and Armott and Stiglitz [1985].
(A related problem is that of designing auctions; Maskin and Riley [1984] have
established the desirability of randomization of payoffs in optimal auctions.)
The results in this section generalize those in Stiglitz [1982a]l. The random
action by the govermment takes place after individuals reveal their type but
before they decide their levels of effort. The govermment constructs two
lotteries of tax schedules, one intended for individuals in group A and one for
those in group B. Each individual must decide which lottery to participate in.
Then, at random, a tax schedule is assigned to the individual. The individual,
given his tax schedule, decides on the amount of income to produce. Since the
jndividual has already declared his type, every schedule can be constructed to
allow only one (C, Y) bundle to be chosen, even if the individual has
misrevealed his type. Thus, each lottery can be viewed as a lottery over
different (C, Y) bundles - onme for each possible tax schedule that may be drawn.

Randomization before the effort decision carmot do worse than randomiza-
tion after the effort decision. Assume the randomization occurs after the
effort decision. In all outcomes, the individual produces the same pre-tax
income but consumption differs depending upon the tax charged. Thus, at the
revelation stage, each lottery can be viewed as over (C, Y) bundles in which Y
is fixed and C differs. Such lotteries remain feasible when the income
decision is made after randomization but, in that case, other bundles with
different Y's also are feasible. Hence, randomization after the income

decision, yields a smaller feasible set for the government and may be

suboptimal. ?
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On the other hand, randomization before revelation camnot improve on
randomization after revelation. In such circumstances, the government
randomly assigns tax schedules to individuals without knowing their type.
After receiving a schedule, an individual faces no further uncertainty. Each
schedule the govermment randomizes over can be treated as a pair of (C, Y)
bundles, one for each type. When the government's problem is transformed to
choosing pairs of (C, Y) bundles, then each pair corresponding to one tax
schedule must satisfy the self-selection constraints for each type. When the
randomization occurs after revelation, only one self-selection constraint over
the expected utilities arises. Although the bundles under prerevelation
randomess will satisfy this expected constraint, it is clearly weaker and
hence the prerevelation randomness may be suboptimal.10

To specify formally the government's optimization with the possibility of
random taxation, consider the lotteries to be offered to the two groups A and
B. Each group will be offered a set of bundles and a probability for each
bundle in the set. The lotteries tius are L'((C™", ¥, #,), i = a, b, and
h=1,...,k(i) where k(i) is some finite mmber. The goverrnment can choose
both the bundles and the probabilities in each lottery. The one period

maximization problem with randomization (PII) is then:

k(a) k(b) h bh

KA . o o kG e e .
st. § nihvl(clh, vih fj ro Vi, W i-a b, 51 A
h=1 h=1 J

k(a) k(b) -
N ﬁ nah(Cah-Yah)+th§‘;1rbh(Cbh-th)SO: u

2 p=1
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L nih=1,i=a, b, nih20,1=a,bandh=l,...,k(i)

0sYP sk i=a, b, h=1,...k4

=
2
\

=a, b, h=1,...,k(1)

As in (PI), o is a weight which can be varied to find the entire Pareto
fromtier, ;‘i and ; are the multipliers on the self-selection and resource
constraints. The upper bounds M on cth bound the feasible set.11

In problem (PII), the objective function and constraints incorporate ex
ante expected values. For the self-selection constraints and the govermment's
objective function this is reasonable. The govermment must design the tax
scheme and the individuals must decide which type to declare before realization.
It is therefore of no consequence if, ex post, someone prefers the bundle
achieved by someone of the other type. However, production occurs after the
realization of the random process. If the ex post realization has total
consumption greater than income, it is not feasible even though expected
consumption equaled expected income. For the constraints in (PII), this can

ih exceeds NaKa + Nbe (maximmm total production), even

clearly occur. If some C
if it arises with very small probability, the cutcome is not feasible when this
bundle arises. Such ex post violations of feasibility can clearly occur even if

ih 12
to be less than NaKa + Nbe

the M are set to restrict all C
One justification for the constraint is if the govermment places one tax
function for each individual of a particular type into an urn and the
individuals draw without replacement. Then the ex ante expected net resource
use of an individual is achieved exactly ex post by the group. Hence the
constraint in (PII) is appropriate. An altermative justification of the
constraint in (PII) is that each individual of a revealed typed draws a tax

schedule at random from the same distribution. As the mmber of individuals
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gets large, the distribution of ex POSt resource balance will always have values
violating the constraint. However, the law of large numbers implies that the
per capita violation of the constraint goes to zero. Thus if the consumption
vectors are reduced by even an arbitrarily small ¢, the probability that the
constraint is satisfied goes to 1 as the population grows Hence, the solution
to (PII) can be viewed as an e-equilibrium in this case. Since the
self-selection constraints holding with equality already imply that the solution
to (PII) is an e-equilibrium, this is not a real restriction.

To summarize, there exist randomization procedures under which the resource
constraint in (PII) is appropriate. Without specifying it in detail, such a
Procedure is assumed to be utilized by the govermment. Care must be taken,
since for other procedures, the formulation in (PII) is inappropriate.

Under allowable procedures, a solution to (PII) always exists.

* *
Theorem III: For every a, there exists a pa1r of lotteries 12 ((C""I ! Yah

* Cbh* th .
“ah)’ h=1,. k (a) and L (( ), "bh) h=1,. k (b) which solve (PII).

Proof: As in Theorem I, the constraint set is nonempty since feasible bundles
in (PI) can be treated as degenerate lotteries. The constraint set is closed
and all variables (vlh, lh Ylh) are bounded. Hence, the constraint set is
compact. The continuous objective function then attaing a maximm on the

nonempty compact constraint set. : Q.E.D.

The optimal lotteries which solve (PII) can be characterized in a similar
pamer to the nonrandom optimm. As in the previous section, Vi°, i - a, b,
ave the utilities in the no tax situation, ((CP(a), YiP(a)), (@),
i=a, b, h=1 k (1), are the optimal lotteries as a function of «, and

. i
EVi(a) = I ow (a)Vl(Clh(a), Ylh(a)), i=a, b, are the optimal expected

utilities achieved as fumctions of a.
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Theorem IV: The solution to (PII) satisfies the following properties

k() . : .
(1) If EVi(w) z V2© then ] ﬂjhm)vl(th(a), i)y < ), i=a, b,

j = i

(i1) If BV (o) =kij)1rjh(a)vi(cjh(a), viB(s)) then BV (o) >
hil)ﬂlh(a)VJ(C YJ'h(a)), i=a, b, andj=1i.

(iii) 4 > O.

(iv) 1If i's self-selection constraint does not bind, then an optimal solution
exists with k(j) = 1 and i (I1(a), ¥l =1, i=4a, b, andj = 1.
(v) Fori=a,b, and j = 1i, if A > 0 then an optimal solution exists with

k(j) s 3 and at each h = 1,...,k(j), either
1 < msi ), YP@) < mstcP, ¥,
st Py, ¥Ry < Mesd (€ Pa), ¥R < 1, or
wrst ey, ¥y = st (P, ¥R =
Proof: See the Appendix.

Conditions (i)-(iii) of Theorem IV are essentially the same as those of Theorem
1I with the utilities replaced by expected utilities. Condition (iv) states
that if the self-selection constraint of group 1 is not binding then it is
desirable to have no randomization for group j and, as in Theorem II, there is
no distortionary taxation at this bundle. Condition (v) states that there is no
gain to having randomization over more than three bundles and, if randomization
is over group j's bundles, then at each of those bundles the mrst, MRST and
MRT(=1) must relate to each other in the ways specified in condition (v) of
Theorem 11. That is, at each (617, ¥, MRS) must lie between MRS and 1. The
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possibility that Mrst = MRS) =1 at one of the bundles camot be ruled out.
Note it is possible to randomize with MRS* and MRS greater than 1 at some
bundles and less than 1 at others. Single crossing imposes the same relation
between MRS® and MRS] at all bundles in the lottery.

In the solution to (PII), at most one nondegenerate lottery is needed and
randomization over more than three bundles is urmmecessary. It has not been
shown that either group will face a nondegenerate lottery. First order
conditions are of little use for showing that a nondegenerate lottery exists or
for finding the random solution, because the nonrandom solution to (PI)
satisfies the first order conditions for (PII). To see this, denote the
norrandom solution as a lottery over k(i) bundles where each bundle is identical
to the nonrandom bundle solving (PI). First order conditions with respect to
T}, are trivially satisfied and those with respect to CJ‘h and Y]‘h reduce to
those in (PI). Hence, a nondegenerate random solution exists only when multiple
solutions to the first order conditions exist, with the extra solutions
asymmetric (and not readily apparent). However, since the self-selection
constraints involve the difference in utilities and therefore do not define
convex sets, multiple solutions are possible. Theorem V shows that for any pair
of indifference maps satisfying assumptions (AI)-(AIII), some allowable
transformation exists under which a random solution is desirable. Maskin and
Riley [1980] show a similar result with a contimmm of abilities for the special
case of preferences which are additive in consumption and labor and linear in

consumption.

Theorem V: Consider any V- and W satisfying assumption (Al)-(A3) and any o
such that Ai >0, i =a, b. Then there exists some concavification of Vi such
that k(j) > 1 holds in the solution to (PII), whether or mot W is similarly
transformed. Proof: See the Appendix.
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In Theorem V, only the utility function of individuals in group i is
transformed. However, transforming the utility of individuals in group j as
well does not change the result since the randomization involves bundles over
which j is indifferent. Hence, the result also applies to situations in which
the two groups have the same utility functions but differ in ability. See
Figure 6 for an illustration of the comstruction.

The construction in the proof demonstrates clearly how the noncounvexity
of the self-selection constraints can induce randomization. If group j has
the random bundle, then the transformation makes group i's utility fumction
more concave and thus reduces the desirability of j's lottery to individuals
in group i. This weakens i's self-selection constraint and allows for
adjustments which raise j's expected utility. Having the initial randomiza-
tion over two bundles which are chosen to be indifferent to the optimum
nonrandom bundle given to j is a convenient way to demonstrate that an
improvement over the solution in (PI) exists. This particular randomization
has a special property -- it does not violate horizontal equity defined as
identical agents having eqﬁal utilities even if they have different budget
sets. All type j's receive equal utility, although with different consumption
bundles. The randomization only causes utilities to be stochastic for type
i's who mimic type j's. While this may not be the optimal randomization, it
remains feasible even when ex post horizontal equity is required..

Theorem V shows that the desirability of randomization canmot be ruled
out from indifference maps since randomization can arise for essentially any
indifference maps under some transformation. It is worth noting however, that
the shape of the indifference map does have some effect on whether randomiza-
tion is desirable. The next theorem gives a necessary and sufficient

condition for local randomization which depends in part on the curvature of
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indifference curves. Assume A a” 0 in the solution to (PI) so that the
marginal tax rate is not zero at (Cb, Yb). Let Hi be the Hessian of the

utility function of type i at (Cb, Yb).

Theorem VI: Assume A, > 0 in the solution to (PI) and consider any
probability triple 1y, I, ,), at least two of which are positive and

My + 0, + 1y = 1. There exists some local randomization with these
probabilities around the nonrandom solution to (PI) which improves on that

solution iff there exists q ¢ R2 such that

qiqt qiq" (6)

B, B - 2@, B AP, P)[1 - mA@, P

where qt is the transpose of q. Proof: See the Appendix

The expression in (6) depends upon properties of the indifference map though
the MRST(C?, YP) terms and the qHIq" terms which depend upon both the
curvature of indifference curves and the transformation of utility.

As a corollary, it follows that, if preferences of A's and B's are
similar, then local randomization will not be desirable. Assume the utility
functions belong to a family parameterized by P, VA(C, ¥, B,) and (P(C, Y, B,).

Corollary II: Assume that preferences are related such that at all P = Pa = Pb’
V3(C, Y, P) = F(W(C, ¥, P)). Then, for P, near P, no randomization is

desirable unless F is sufficiently concave. Proof: See the Appendix.

A special case of this result is two classes with identical preferences but
different abilities. If the abilities are close to each other, no
randomization is desirable regardless of which group the redistribution
favors.13 Both Theorem V and Corollary II show that concavifying utility
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makes randomization desirable. Theorem V concerns the degree of concavity of
each utility function separately, while Corollary II involves the concavity of
one utility function relative to the other. For Pa near Pb’ if both functions
undergo the same transformation, no local randomization will be desirable.
Theorem V demonstrates that, if Pa z Pb’ randomization will be desirable if
the common transformation is extreme enough. Thus, this randomization must be
a nonlocal randomization of bundles offered a group in a lottery.

In order to see that the condition of Theorem VI can be satisfied,
consider a special case of all individuals having identical additive utility
functions over consumption and labor with the groups differing only in ability.

Corollary III: Consider the utility functiouns Vi(C, Y) =v(C) - Y(Y/wi),

i = a, b, where the w,; are ability parameters with 0 < W, < W,. To satisfy
concavity of Vi, ¥ is concave and vy couvex. Let 1= Y/wi.
(A) Assume the self-selection constraint for group A is binding.
(i) No randomization is desirable if Ly'"(L)/y"(L) 2 - 2, at all L.
(ii) Consider any probabilities (w;, 7, 74) with at least two positive
and with T tw, by = 1. There exists some local randomization
with these probabilities around the nonrandom optimm of (PI) which

improves on the nonrandom solution iff:

Y ) Y (P )

> Q)
v ‘a - M2, Y)) w1 - MRS?(C°, Y°))

(B) Assume the self-selection constraint for group B is binding:
(i) No randomization is desirable if Ly"'(L)/y"(L) s -2, at all L.
(ii) Consider any probabilities (m;, w,, w3) with at least two positive
and with n) + n, + 75 = 1. There exists some local randomization
with these probabilities around the nonrandom optimm of (PI) which

improves on the nonrandom solution iff:
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Y (Y/,) Y (¥ /)

> (8)
wbz(MRSb(Ca, Y3 - 1) waz(msa(ca, 3 - 1)

Proof: See the Appendix.

Consider the condition in A(if). Since w, > w and 1 - MRS, ¥P) »
1-1R°(c®, ¥) > 0, the denominator of the LiS exceeds that of the RES in
(7). Hence, y"(Yb/wa) must exceed y"(Yb/wb) by a sufficient amount for this
condition to be satisfied. Since Y/, < Y/, this can be satisfied by a
sufficiently negative value of v'". A sufficient condition for ( 7) to be
satisfied is that the derivativs of y"(Y/w)/[wz(l - MRS)] with respect to w be
positive. Taking this derivative yields the following sufficient condition
for the desirability of local randomization with any probabilities which is
stricter than the necessary condition in A(i) of Theorem VI:

Ly "™@)/Y"(@L) < - 2 - [y' (@) + Y'@L)1/[wp' (C) - y'(L)] (9

vhere W' (C) - y'(L) =w'(C)(1 - MRS(C®, ¥)) > 0. A similar calculation for
B(ii) yields (9) with the inequality reversed as a sufficient condition for
local randomization when Ay > 0. Note that wy'(C) - y'(C) < 0 when A, > 0 so
that this is stricter than the necessary condition B(i).

Conditions (Ai) and (Bi), which are mutually exclusive unless
Ly""(L) /y"(L) = -2, are sufficient conditions for no randomization to be
desirable. Thus, randomization is desirable nowhere on the UPF if
Iy " @) /") = -2."* Rurthermore, randomization camot be desirable hoth
with A, > 0 and \p > 0 unless Ly'"(L)/y"(L) + 2 changes sign along the UPF as
labor supply changes. Since sufficient conditions for local randomization
such as (7) and (8) are opposite in sign, randomization is desirable somewhere
on the UPF, for many allowsble v(.) functions,ld
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III. Taxation in a Multiperiod Model

A. Assumptions
The model is an M period repetition of the one period world of section II

(M may be finite or infinite). Two classes exist and each individual belongs
to the same class across periods. The tumbers in each group remain constant
over time. Preferences over income and consumption within each period satisfy
(Al)-(A3) and are identical across periods. Lifetime utility is the present
discounted value of the utility in the M periods. Individuals in both classes
have the same discount factor demoted p. Denoting &i = (Ci,...,Cbi,[) and §1 =
(Y%, e ,Yﬁ) as the vectors of lifetime consumption and income for class i and

{Ii(&i, i‘{i) as the lifetime utility function for class i, then

vt ¥ = il oF ik, vh, 1=a,b (10)

It follows that if there is randomizatiom, with the individuals offered
lotteries over lifetime income-consumption vectors, then this lottery can be
decomposed into separate lotteries in each period and expected lifetime
utility equals the present discounted value of the expected utilities in the
different periods.

Individuals are unable to save or to borrow across periods and thus face
M separate budget constraints. This assumption is made to focus i:tn'ely on the
role of information transfer across periods in affecting taxation without
complicating the analysis with possibility of wealth or interest taxation. In
the first period, every individual faces the same tax function TH(Y)) since
the government has no basis upon which to distinguish individuals. There-
after, the govermment can recall the incomes reported in previous periods and
can condition the tax functions on previous periods' income. Thus, the tax
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function in period t > 1, is written as Tt(YtIYl, . ,Yt_l). Taking the
sequence of tax functions as given, each individual chooses lifetime

consumption and income to solve the following maximization:

max  J ot Wi, vh

i g £l
(ch,¥h
s.t. chsvi-rhd
i, gl _ mtdiol i _
Cps Yy - T (Y |Yp,..., Y% )y £=2,...M

The solution gives lifetime consumption and income vectors as functions of the
vector of tax functions &i(Tl, .ee ,'IM) , '}i(Tl, ceo ,'IM) .

Given the choices by individuals in each class and subject to budget
balance requirements, the govermment chooses the set of tax functions to
achieve its maximm. As in the one period model, the decision on the choice
of tax functions can be transformed into choice of lifetime consumption income
vectors for each class with (E!a, ) and (&b , ?b) sustainable by a system of
tax functions if and only if lifetime self-selection constraints are satisfied
for each class. There is only one lifetime constraint for each class and not
period by period self-selection constraints. In the first period, individuals
will base their decisions whether or not to reveal their type through their
choice of income on the entire lifetime consequences that follow.  If
individuals do reveal in the first period, the govermment knows thereafter who
they are and can prevent them from acting as if they belonged to a different
class. After revelation through their first period choices, the second and
later period tax functions can incorporate a large penalty if any other bundle
is chosen than the one the government desires them to choose. For example, a
tax function of the form T(Y) =Y, Y< ¥, T(Y) =Y+K- ¥, Y2 ¥, will induce

the individual to produce income of ¥, raises revenue of K, for any K 5 ¥, and
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allows the individual to consume C =Y - T(Y) = ¥ - K. After the first period
revelation, the individuals in later periods no longer find the bundle of the
other group to be feasible. Hence, a self-selection constraint no longer
constrains the govermments' choices. Because the govermment has the ability
to commit itself, and separation is desirable in a single period problem
(Theorem II), separation will occur in every period.

Two separate budget balance requirements for the government are
considered. One possibility is that the govermment has a single multiperiod
budget constraint til at'l[NaTz + NbT‘E] 2 0, where TE is the tax reveme
raised from group i in period t and § is the discount factor faced by the
government. Alternmatively, the govermment could be required to balance its
budget separately in each period with NaTZ +NTE 20, t=1,... M Clearly,
the second is a tighter constraint on the government's choices. It reflects
more closely the goal of considering pure information transfer between periods
and is consistent with the no saving assumption for individuals. On the other
hand, the single multiperiod constraint is justifiable if the government has
access to possibilities not available to individuals such as a storage
technology feasible only on a large scale or access to a world market closed
to trade by individuals.

The govermment maximizes the present discounted value of a weighted sum
of utilities in each period where the weights o and (1 - o) are arbitrary and
can vary to change the distribution between the groups but are constant over
time. The government's discount factor & need not equal that of individuals.
When they are equal (§ = p), the government's maximization corresponds to
finding the multiperiod Pareto frontier as o varies from 0 to 1. When they
differ (s = p), the problem is no longer a Pareto problem since the govertment
does not respect individuals' intertemporal preferences. While much

literature analyzes why private and social discount rates could differ, these
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do not constitute the major reasons for allowing 6 = p in this paper. The
major focus is on the case of equal discount rates. Allowing them to differ
gives rise to a case which serves as a useful benchmark for comparison when
discussing the uses of information in the optimal tax structure. The use of
information across periods when § = p is mich less systematic than when 6 = p.
With randomization not available to the govermment, we consider two
maximization problems, (PIIIa) and (PIIIb), depending upon which budget

constraint is used. For the single multiperiod constraint the problem is:

M
£-1
(FIla)  Max ) UG, ¥ + - NP, )

t-1yi ~i i J i . s L s
s.t. ) ptTr[V (C., ¥ - vl(ct, ¥)120,i=a,b, j=1i

M
t-1
Lo men@ - s

For the separate constralnts on each period, the problem is identical except
-1 .

that the constraint tzl st [Na(Ciz1 - Y?) + Nb(Cl; - YI;) s 0 is replaced by:

PII)  N(CE - ¥ +N (- 50, £=1,...M

The Lagrange multipliers on the self-selection constraints are still denmoted
by A, and A, although their values will differ between problems (PIIIa) and
(PITIb). The Lagrange multiplier on the single budget balance constraint in
(PITIa) is denoted by p while e t =1,...,M denote the miltipliers on each
period’'s budget balance constraint in (PIIIb).

Section B presents the case of & = p and section C the case of § = p.
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B. Optimal Taxation When 8 = o

Characterization theorems of the optimal solution in (PIIIa) similar to
Theorems II and IV for (PI) and (PII) continue to hold. Let Ci(a) and Yi(a) ,
t=a,b,and t =1,...,M, be the solutions to (PIIIa) as functions of a.
vit(a) demotes the optimal utility in period t of individuals in class 1 for

(PIIIa). Vio, i = a, b, again denotes one period utility with no taxes.

Theorem VII: The optimal solution to (PIIIa) satisfies the following

properties:

@ T£7] ot W@ 2 VIO o then | Tl @), H) <] oE it @),
t=1 t=1 t=1 t=1

i=a,band j= i.

ap 1 3 W@ = ] Wi, Hea) then § oW @ >
t=1 t=1 t=1

Moo g4 4 :
21 o (CL(a), Yo(a)), i =a, band j = 1.
&

(iii) u > 0
(i) I£ 2, = 0 then Gl = Cl(@), W) = Ha) and wesd (¢ @), B =1,
i=a b, jei, t=1,....8

(v Fori=a,bandj= i, if A > 0 then at each t = 1,...,M either:
1 msd @, Y < mstcl@, e
westcl@), B « sl @, @) <1
wstcl), ) = msd @, ) =1

Proof: See the Appendix.



29

From part (v) it follows that even if information is utilized, if
distortions exist in the first period then they persist in future periods.
Thus, information learned cannot be fully used to move to a first best result
after the first period. The govermment must commit itself to use information
only to a limited extent.

Theorem VII does not show that the govermment will use any information
gained in the first period to affect later period taxes. In fact, a simple
repetition of the one period nonrandom solution to (PI) satisfies all the first
order conditions in (PIIIa). However, despite the apparent symmetry of the
first order conditions, multiple asymmetric solutions may arise in the form of
nonstationarity of the optimal consumption-income vectors. Such nonstationary
solutions arise from the same nonconvexity of the self-selection constraints
that gives rise to random solutions in the one period problem. In fact, the
following theorems show that there is an exact analogy between existence of a
nondegenerate solution to (PII) and a nonstatlonary solution to (PIIIa).

Let\‘li(m)—bfI R ACHOR Yl(a))/z otl , i=a, b, be the average
utility achieved lt;;leach group over its llfetlme Let the normalized utility

possibility frontier be the utility possibility frontier in average utilities.

Theorem VIII: Assume p = 6 2 2/3 and M = », Then for every a, there exists a

solution to (PIIIa). This solution involves nonstationarity iff k(i) > 1,
i =aorb, in (PII). In addition, the normalized Pareto frontier arising in

(PIIIa) is identical to that in (PII). Proof: See the Appendix.

Given an infinite horizon and a large enough discount factor, any one
period random solution can be exactly duplicated by a nonstatiomary solution.
The circumstances in Theorem V and VI under which randomization will arise are
thus sufficient for nonstationary solutions. Even if M is finite or 6 is

small, nonstationarity can arise.
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Theorem IX: If 6§ =p and if M is finite or § < 2/3, then the normalized Pareto
frontier for (PIIIa) may be interior to that for (PII). For any a, a solution
will ‘irwolve nonstationarity only if k(i) > i, 1 =a or b in (PII). For § 2 2/3,
there exists a sufficiently large finite M such that nonstationarity in a solution

to (PIIIa) arises iff k(i) > 1, i = a or b in (PII). Proof: See the Appendix.

In many cases, the result for finite M or § < 2/3 may be stronger. As
shown in Theorem VI, when some local randomization improves on the nonrandom
solution, then there exists a randomization with any probabilities in the
probability simplex which improves on the nonrandom solution. In this case,
even though the optimal solution to (PII) cammot be duplicated, a nonstationary
solution to (PIIIa) exists iff a local nonrandam solution exists in (PII).

Problem (PIIIb) is the case of pure information transfer across periods
since neither the govermment nor individuals can borrow or save. It is not
possible to duplicate the one period random solution by nonstationarity unless
randowization was over bundles with €™ - Y = (/M) (@ - ¥, h =1, 2, 3.
This is not always true as shown by the example in Theorem VI where only income
is random. Nevertheless, nonstationarity may still arise in (PIIIb) as long as
randomization arises in (PIIIb). The Appendix contains a characterization of
the solution to (PIIIb) as Theorem Al.

The only significant difference between the results for (PIIIb) and those
for (PIIIa) is that it carmot be shown that the same bundle is given in every
period to group j if group i's self-selection constraint is not binding.

However, any nonstationarity for group j is over bundles with no distortiom.

Theorem X: If p = §, nonstationarity is possible in the solution to (PIIIb)
and arises only if k(i) > 1, i = a or b, in (PII). The normalized Pareto
frontier found in (PIIIb) is generally interior to that in (PIIIa) whenever

the solution to (PIIIa) involves nonstationarity. Proof: See the Append:l.x
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If randomess within periods is permitted as well as nonstationarity of
the tax schedules, clearly, the govermment can do as well as in the solution
to (PII). This is true for finite M and any discount rate. Only if random
solutions are used for (PII) will either random or nonstationary solutions be
used in the multi-period problem, regardless of whether the budget constraint
is a single one or a period-by-period ome. Allowing both types of variation
leads to multiple optimal solutions which combine randomization and

nonstationarity in different ways.

C. Optimal Taxation when ¢ = P

When the goverrment and individuals have different discount rates,
systematic nonstationarity arises in the optimal solution. To contrast with
the nonsystematic nonstationarity when 6§ = p, only results for (PIIIa) are
given. Similar results hold if period-by-period budget balance is required or
if additional randomization is allowed. Note that similar results arise if
the two classes had different private discount rates instead of identical
Private rates different from the govermment's.

The first order conditions in (PIIIa) are:

[at‘laNa + Aapt'lj(ava/ac‘:) - Abpt-l(BVb/BC‘:) - uat'lNa =0, (11a)
t=1,...,M

[<st‘1aNa + Aapt'l](ava/ay‘:) - Abpt'l(avb/ay";) - uat'lna =0, . (11b)
t=1,...,M

(65 (1), + Abpt‘ll(avb/ac‘g) - 240" L avachy - ust Iy = o, (11c)
t=1,...,M '

e R [C A WSl tusty 0, (114
t=1,...,M

When § > p, it follows from these conditions that as t increases, the
economy approaches the single period first best UPF for any values of A a and
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pY This, of course, does not mean that the normalized UPF based on average

bo
utilities is the first best.

Theorem XI: Consider (PIIIa) when § >p and M = @, Assume that the utility
functions satisfy the conditions that lim(ava/aC)/(aVb/BC) and

>0
lmb(aVa/BY)/(BVb/BY) are finite. Then, when A, =0 and A, > 0,
{im 1R P2, ¥) = 1. Since wrs?(@, Y3 = 1, for all t, as t grows, the

troo

optimm approaches the period-by-period Pareto frontier.

Proof: Given A =0, equations (lla) and (11b) yield MRS*(CZ, ¥3) =1, for
411 t. Divide equation (1l¢) by 87 LawP/acd) and (11d) by stleP ).

(1 - o, - A e/0 VR OV/C)] - Wy /@PRC) =0, (122)
t=1,...,M

1 - ey, - 2 6/OF eV OPEE] - ay /PRy =0, (1ZD)
t=1,...,M

Since 3VL/3C is Finite for C > 0 and Lim(3V3/3C)/ (3WP/3C) is finite,

11m sup(o/G)t 1[('(Wa/'éC )/(3Va/3Cb)] C+0 Hence, should lim sup(BVb/8C) =
then after some t the left hand side of (12a) would be sg:ctly positive
violating the first order condition. Thus, no C sequence goes to zero,

guaranteeing that lim inf C > 0. Similarly, from (12), lim sup Yb Kb
= tr®

Therefore, lim sup(p/G)t 1(avb/ac ) = hm sup (p/G)t -1 (aVb/BYb) = 0.
Given this, divide (1lc) and (11d) > by 6t~! and solve for MRS P2, ¥ =

_(aWP/aYD)/ VP /aC)
WN - A (/) Lav3/ard)

b Py =

MRS (C_, Y.) (13)
BTN+ (p/cs)t 1(av*‘/acb)

then Lim MRSP(C?, ¥©) = 1. Q.E.D.
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Note that the conditions on utility given in this theorem can be
satisfied by the utility functions in Theorem VI with Wy > W,. Given the
separability, (aVa/aC)/(aVb/aC) 1 at all C. The maximm income earned by
the able exceeds that earned by the umable K2 > Kb Hence, even if 3y/3L goes
into infinity as L approaches it maximm value at K /W , since Kb/W < Ka/w
then ay(K®/w_)/5Y and 11%(ava/aY)/(aVb/aY) are finite.

Different dlscount rates cause the govermment and individuals of type A
to have difference preferences. Therefore, trade between them is possible.
The govermment places a higher value on the future than do individuals.

Hence, the govermment can offer type A individuais higher current utility and
lower future utility while doing the reverse for type B as compared to the
solution when § = p. Self-selection will contimue to be satisfied given the
value of p but social welfare rises. To see this, note that from equation
(11a) and (1Ib), aV/aCf = -aV?/a¥g = uN /[N, + A_(o/6)5™1]. Hence, marginal
utility of consumption rises over time indicating that consumption declines.
As t goes to infinity, aaVa/aC‘g goes to y. For group B consumption,

(1= @ GWP/50) = u + (/%) (6/6) 1 aV3/acD), which since Lim inf ® > o,
mist at least eventually decline with C2 rising. As t goes to infinity,

(1- a)(aVb/aCE) goes to y. Thus, in the limit, the solution is not only
Pareto optimal but it is first best in the sense of being the same as the
solution to the one period problem without self-selection constraints.

I£ 6 < o, the trade is still possible but tends to go in the opposite
direction. As t goes to infinity, C': goes to infinity and Y‘: goes to zero
along a path with MRS*(CZ, Y2) =1, at all t. Thus, A's utility rises over
tima.]‘6 From (llc), it follows that CE must also go to infinity as t rises.
However, Yz going either to 0 or to K° could be consistent with the first
order condition (11d). Whatever the specific solution, in this case as when s
> p, the paths of commodities and utilities move systematically over time and

do not vary solely to mimic randomization.
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IV. Conclusions

These results indicate that when the goverrment respects individual
discount rates, only in a weak sense does the optimal tax system incorporate
any information about individuals learned from their responses over time.
First, if the govermment is able to randomize in each period, then no benefit
is gained by keeping track of what individuals have earned in past periods. A
lottery can be offered in each period, independent of other periods,
satisfying self-selection constraints and yielding the best possible outcome.
Second, if the govermment carmot randomize directly, then it can duplicate
randomization by intertemporal nonstationarity. Such nonstationarity requires
that the govermment keep track of individuals' past behavior since, after the
first period, self-selection constraints need not be satisfied. Third, even
when the govermment must keep track of behavior and uses this in future
periods, the information is not used systematically to yield continued
increases in the govermment objective function over time. Instead, changes in
the weighted sum of utilities across periods occurs only as the goverrment
tries to mimic a one period random optimum. If tax schedules must vary over
time in a particular mammer, it is not because of the need to learn
individuals' abilities, but because utility in each period must be ordered
correctly to be consistent with 1ifetime utility constraints.

By contrast, when the government discounts at a different rate than
individuals, then there is systematic change in the bundles given to
individuals. In the limit, the distortions may be eliminated. This arises
because the different intertemporal preferences of the govermment and
individuals leaves room for "trade" between them. Over time the differences
between the utilities of the groups grows larger.

The results in this paper show that nonstationarity over time and

randomization within each period can substitute for each other in the optimal
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intertemporal income tax. It is not clear which approach is preferable since
each has some advantages.

First, they are not perfect substitutes. Even if the goverrment has a
single intertemporal budget balance comstraint, nonstationarity is guaranteed
to do as well as randomization only with an infinite horizon and a
sufficiently large discount factor. If the goverrment has a separate budget
constraint in each period, the optimal randomization cannot be completely
duplicated by intertemporal varisbility, so that randomization along with
nonstationarity would be needed to reach this Pareto fromtier.

Second, political and administrative difficulties could prevent
implementation of either method. On one hand, the govermment may be reluctant
to incorporate randomization explicitly in the tax code. This is especially
true since the optimal randomization requires individuals to declare their
type and then receive at random a tax schedule before choosing their labor
supplies. The optimal randomization can generally not be implemented by
random collection or enforcement after labor supply decisions. On the other
hand, intertemporal nonstationarity requires keeping track of past labor
supply decisions to determine individuals' current tax payments. However,
this is simplified since the government needs only to recall each individual's
type as revealed by past decisions instead of relearning this each period as
is Fequired by randomization.

Third, both ethically and to increase acceptance of the tax system by
society, it is desirable that the system be perceived as fair. A standard
notion of fairmess is horizomtal equity, that individuals in the same
circumstances be treated the same. Randomization satisfies horizontal equity
€x ante but not ex post. Before the random selection, all individuals of the
same type face the same lottery. After receiving a random draw of tax
functions, individuals of the same type will be induced to choose bundles
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which need not yield the same utility. Note, however, that suboptimal
randomization in which ex post horizontal equity is imposed may often still be
better than no randomization as the proof of Theorem V demonstrates. Inter-
temporal nonstationarity achieves horizontal equity both ex ante and ex post
in each period. Individuals of the same type are induced to choose the same
bundles as each other in every period even though the choice varies over time.
Fourth, both procedures induce asymmetries in the bundles chosen by
individuals of a type either within a period in an expected sense under
randomization or over time under nonstationarity. With strictly concave
utility functions, individuals desire to reduce these asymmetries. Under
randomization, individuals might gain by purchasing insurance counteracting
the randomess in the tax system. Lf such policies were forbidden, then
similar effects could be achieved by trades with other individuals of the same
type. For the same reason, under nonstationarity, individuals desire to
smooth consumption and leisure over time by saving or borrowing. Saving or
insurance serves to counteract the weakening of self-selection constraints
which motivated asymmetry of bundles in the first place. The ability to save
or buy insurance will be a factor in the decision to reveal one's type
truthfully. The choice between nonstationarity or randomness may depend upon
whether it is easier to prevent saving or insurance. If these are desirable
for other reasons or cammot be prevented, then the simple repetition of the
solution to (PI) may be the best feasible solution. However, the opposite
problem arises if only symmetric solutions are allowed when individuals have
nonconvex opportunity sets. Individuals may desire randomization of
consumption about their bundles to convexify budget sets. Thus, gambling
might have to be inhibited by the govermment. Any nonconvex tax structure
mist account for additional markets whose use might be encouraged by the tax

structure.
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Footnotes

Guesnerie and Seade [1982] derived some results without global single
crossing, but they assumed that MRS's were not equal at the optimal
bundles. We only assume that tangencies do not lie on the no-tax budget
line and show that the MRS's are not equal at an optimm.

This requireg an additional assumption on U(C,L). Note that MRSi(C,Y) =
-[0, €LY U, C, L 1. IE w2 > WP then 12 < IP. The result holds if
the direct effect of the higher wage is not countered by the effects of a
lower L on the MRS. Differentiating -[UL(C,Y/W) /MJC(C,Y/W)] with respect
to w yields ARS(C,V)/dw = (U /W) - (LADA(-U /U /dL. A sufficient
condition for dMRS(C,Y)/dw < 0 is d(-UL/UC)/dL 2 0 which holds if C is

not inferior. See Sadka [1976].

The schedule T(Y) need not be differentiable. In fact, it will generally
be nondifferentiable at the incomes chosen by the two groups.

A lower ability class might be unable to produce the income of a higher
ability class. Such bundles can be assigned arbitrarily low utilities.

The results are essentially unchanged if taxes had to raise net revenue
as well as redistributing across groups.

Other tax functions could yield the same result as long as the slope of
the individual budget constraint is greater than both MRS's, for Y less
than Y', and is smaller than both MRS's, for Y greater than Y'.

A self-selection constraint may hold with equality so that one of the
groups may be indifferent between the two bundles offered. The solution
requires that all individuals in the group choose the bundle aimed at that
group. This can be achieved by assuming that the govermment can assign
indifferent individuals to whichever group it desires. Given that the
govertment does not know to which group a particular individual belongs,
this is not a reasonable assumption. An alternative view is that the
solution to (PI) is really an e-equilibrium. Although it cannot itself
be achieved, a bundle arbitrarily close to that solution can be found
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which satisfies resource balance and which has the self-selection
constraint hold with strict inequality. If the self-selection
constraints must hold with strict inequality, then there may exist no
solution to the maximization problem.

This is true provided the group whose self-selection constraint does not
bind does not have its weight equal 0. However, if o = 0 then B's
self-selection constraint camnot bind since resources are being
transferred to B. Similarly, if o = 1, then A's self-selection
constraint cammot bind. In addition, there is an implicit assumption
that the maximized value as a function of y does not have an inflection
point at y = 0. Constraint qualification rules out such a possibility.

If ex ante randomization is not possible, then ex post randomization
might still be desirable.

Again, if post revelation randomess is not possible, the prerevelation
randomess may be desirable since it weakens the budget constraint of the
govermment. Such prerevelation randomess can be desirable if there are
nonconvexities in the utility possibility fromtier (see Stiglitz
[1982a]).

In (PI), the bounds on Ve along with resource balance automatically bound
ct. Here. bounds on Cih do not follow from the expected resource
constraint since that constraint bounds the products « ihCih only. As
same w., goes to zero, the corresponding C1h could be made arbitrarily
large. The M could be chosen sufficiently large to bound the feasible
set without affecting the solutionm. '

To guarantee ex post resource balance for all realizations of all random
mechanisms, a stronger constraint must be imposed:

N MaxCP - ¥+ MaxiPP - PP s 0 (FL)
2 h h
where the max's are over those bundles with nonzero probability.

Condition (F1) says that, even if all individuals receive the bundle with
the largest difference between C and Y, resource balance still holds.
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For some types of randomization, (F1l) may be required. For example,
assume, in the lotteries, that ome tax schedule (that is, one bundle) is
chosen for every individual of a type. The objective function and
self-selection constraints are unaffected by the mammer in which
randomization occurs. If (F1) is violated, then there is clearly some
positive probability of assigning more consumption than is available.

On the other hand, for many mechanisms, (Fl) is far too restrictive. It
rules out balancing large consumption to some people from a favorable
draw for them against low consumption to others of the same type. This
can be achieved without violating the feasibility constraint ex post as
discussed in the text.

This result holds not just because little redistribution is desired with
similar abilities so that neither self-selection constraint binds. If

e« =0 in (PI) and the A's are more able, redistribution is carried out so
that A's self-selection constraint binds. Randomization will not improve

on this solution.

If y = K, InL + KoL, where K; < 0 and K, > 0, then Ly"'/y'" = -2 so that
randomization will never occur. (y' > 0 can be assumed by the function
at small values of L.) If there is quadratic disutility of labor with y
= KL2, then (Ai) is satisfied so that randomization does not occur when
A\, > 0. Substituting into (Bii) shows that local randomization cammot

occur when Ay > 0. Whether nonlocal randomization can occur is unclear.

Stiglitz [1982a] derived the conditions in Theorem VI and Corollary III
as sufficient for local randomization over two bundles arising with equal
probability. The results here are stronger: these conditions are both
necessary and sufficient for any local randomization to exist which
improves on the nourandom solution. The same condition applies with any
arbitrary probabilities over three bundles. Due to an error in |
calculation, Stiglitz [1982a] asserts a result opposite that of
Corollary II.

Transversatility conditions must be checked to guarantee that this is a
valid solution.
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APPENDIX
PROOFS OF THEOREMS

k(i)
PROOF OF THEOREM IV: (i) Let Cl(a) = Z ™o (@) c®P(a) and

k(i)
(a) = Zl w]_h(a)Y]'h(a), i = a, b. Then since Vl(Cl Y ) is strictly concave,
h=

viel), ) 2 EVi(a), with strict inequality if the i lottery is

k(3) . . . . i3
nondegenerate. Ifz v h(a)Vl(CJh(a) ¥P.)) = Evi(a) then v L (),

o)) 2 vl (a), w1th strict inequality if the j lottery is nondegenerate,
also follows from the strict concavity. By assumptionm, EVl(a) 2 Vi° so that
vEE @), @) 2V and Vi@ (@), @) = VI mist bold. Since the
indifference curve through V1° is tangent to the line C = ¥, Ci(a) > ¥i(a) and

&) > ¥(a) mst hold. Hence, N, @) - @) + N, (CJ<a) - ¥ > 0

k(i)
mist hold.  But Ny ] “nyp (0 cP@) - vih)) + N Z 15n(@ () - ¥ia))

= N, @) - ¥(a)) " N @ (e), B (@) so resource bulance is violated unless
the self-selection constra:Lnt for i holds with strict inequality.

(ii) Since even with randamization the point (V?°, W*©) mist 1lie on the
constrained utility possibility fromntier, the proof follows as in that for
Theorem II.

(iii) Given (ii), this result follows exactly as the corresponding result
in Theorem II.

(iv) Consider the first order conditions with respect to each cib and

ih in maximization problem (PII). Tn each condition, “_jh multiplies every

vJ
term so it drops out leaving conditions identical in form to those in (PI).
Since A; = 0, it is immediate that at each h, Mrsd(cih, yiby - 1.

To see that k(j) > 1 is not needed at an optimm, consider the case where

the self-selection constraint for group i holds with strict inequality (that
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s, T PR SRS i, ¥). Having k() > 1in a
nondt;;inerate lottery so there exist h and k with v, jh and T jk positive and
b ity » (3 v3%)) camnot be optimal. With the probabilities fixed,
consider a change in the (th, th) which moves each closer to the mean bundle
without changing the mean. Such a shift will continue to satisfy both the
bounds on the th and th and the resource balance constraint. The

probabilities do not change, satisfying the constraints that they sum to 1.

k(i)
From concavity, f Vl'(CJh YJh) will rise but since the self-selection

constraint for i holds with strict inequality, if the shift is not too large,

kﬁj) sh  ih

this constraint will still hold. Since "thJ c?, ¥ rises, the
h=1

self-selection constraint for group j must still hold. Thus, the bundles

after the shift yield a feasible lottery. Since kiJ)wthj(th, th) rises,
the objective function rises showing that the prio:: bundle was not optimal.

(v) The first order conditions with respect to th and th are the same
as those for ¢) and Y in (PI) since the « jh cancel from the conditions.
Hence, the relations here can be shown exactly as in the proof of the Theorem
1I. Unlike in that theorem, equal MRS's equal to unity can not be ruled out.

To see that k(j) > 3 is not required, consider the optimal lotteries.
Fix the quantities (€, ¥, i =a, b, and h = 1,...,k(1). Consider (PID
as a linear programming problem in the w., . From part (iv), one of the
lotteries is degenerate with 7 i 1. From part (ii), at most one
self-selection constraint can bind. Thus, of the five original constraints,
at most three (a self-selection comstraint, the resource balance constraint,
and the constraint that the probabilities in the nondegenerate lottery sum to
1) are binding. A solution exists with the muber of nonzero variables no

greater than the mumber of binding constraints. Q.E.D.
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PROOF OF THEOREM V: The proof requires the following lemma.

Lemma I: Consider any utilify function U(X), any bundles Xl, X2, and X3
with UKD > UK?) and UXY) > UKD), and any 7, 0 < v < 1. There exists some
concave increasing transformation V(X) = F(U(X)) such that »V(X}) + (1 -
V&%) < V).

Proof: It is sufficient to provide an example of a transformation under which
the result holds. Let UZ = U(X?) consider F.(U) = (U - UH/®, Then

Vx5 = W% - tH/M 2 0 for all n. The result then reduces to there
existing an n* with an*(Xl) < Vn*(X3) . This in turu follows if there exists
an 0" for vhich V) V& = (06D - /@) - )15 4. since
Lim{ (UK®) - U /W) - U9)1/™ = 1 and since v < 1, the existence of the

N+

required n* follows. Q.E.D.

Proof of Theorem: Given a, let (Ci, Yi) and (Cj, Yj) be the solutions to

(PD). Since ); > 0 and MST(CI(w), Y (a)) = 1 from Theorem TI(v), there must
exist two bundles (¢1, Y31y and (¢72, ¥I2) with vi(cI!, vil) = vi(ci2, ¥i2) -
W), Y()) and such that 31 - ¥l 5 clqay - (o) » 32 - ¥i2
Therefore, a v (0 < v < 1), mst exdst with 7(¢3L - ¥J1y + 1 - 1y cd? - ¥
= @ - Y(a). It also follows from Theorem TI(v) that Vi(ci2, ¥i2) »
V@), Y@ > v, v3l) since the indifference curve of j through

() (a), ¥ (a)) 1ies between indifference curve of i and the 45° line through
that bundle (see Figure 6). From Lemma I, there exists a transformation of vi
such that -F(v (A3, ¥il)) + a - mretci?, ¥2) < rrtdi @), Vo)) =
Flch@, Y. since Wi(cd, ¥ib) = vioi2, ¥12) = Wiy, Yy,
W@l ¥l 41 - v, ¥2) 5 vWicla), Vi) so the self-selection
constraint for j continues to be satisfied. The self-selection constraint for

1 is now satisfied with strict inequality. Hence, all constraints hold. If
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L s G, Y@ > WsHc @), ¥ia)), the bundles @1, ¥y and «c3?,
sz) can be chosen close enough to (Cj (o), Yj (a)) so that 1 > MRSj (le, le)
nd 1 > ST (GI2, ¥92). Then consider the bundles (G311 +5, ¥ + ) and «c3?
+ s, 2+ §). These contimue to satisfy resource balance. For small enough
<5 0, it will still follow that ;F@l +5, YT+ ) + @ - MEEHEI? +
5. Y92+ 6)) < FW(cha), YH(a)) so i's self-selection constraint still
lde. Since 1 » MES) at both bundles, V(&) + 5, ¥ + &) > Vicl, vy and
W2 + 5, ¥92 + 5 > Wicd?, %), Hence, the lottery «cll +s, ¥+ 9,
2 + 5, Y32 + &), ) is feasible, raises j's welfare and thus improves upon
the nonrandom solution (@ (), Y@). If 1< MsIcl@), Y@ < ws' @),
(o)) a similar proof follows with (@1 - &, Y1 - &) and (¥ - s, 2 _ 5

forming the lottery improving on (C)(a), Y. — Q.E.D.

PROOF OF THEOREM VI: From Theorem IV, A, > 0 implies Ap = 0 and so it is not

desirable to randomize A's tax schedule. Furthermore, the optimal
randomization to offer B need involve at most three tax schedules. This
result carries over to finding lotteries which improve on the nonrandom
solution to (PI) even if the optimal lottery is not found. That is, if a
lottery over k > 3 bundles is better than the nonrandom solution, a lottery
over just 3 bundles must exist which also does better. Hence, we can restrict
the analysis to lotteries (1, 7, Y, h = 1,2,3, where fn, = 1. Let
(@, ¥, ¢, ) denote the nonrandom solution to (PI). |

A Tottery exists which improves won (€, Y2, C°, YP) if, holding
(2, Y) fixed:

B, P 2 [nvAeh, v (A1)
N (P - ¥ + NI @ - ¥ 5 0 (A2)
Pl P 2 P, V) (A3)
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and at least one of (Al) to (A3) holds with strict inequality. (Al) and (A2)
guarantee the lottery is feasible while (A3) says that B's expected utility
does not decline. (Al) can be replaced by an equality since, if it held with
strict inequality, a mean preserving shrink of the lottery would continue to
satisfy (A2) and would raise Jm,v2(cPP, YPP) leaving (A3) satisfied. Since
(A1) is assumed to hold with strict inequality, a small rise in Jn V3P, ¥oh)
would not violate it. Of course, such a shrinkage would cause (Al) to hold with
equality before all randomness was eliminated, else there would exist a
nonrandom vector better than (Ca, Ya, Cb, Yb), a contradiction. If (A2) holds
with strict inequality, C? could be raised to get an improvement while, if (A3)
holds with strict inequality, the improvement is direct. Since Na(Ca -YhH +
N.(C° - Y") = 0, equation (A2) can be rewritten as

Znh(cbh B I P (A4)

Consider any probability vector (lIl, I,, 113). A local randomization is a
path (C(t), ¥(t)), b=1,2,3 with (A(0), ¥0)) = (&, ), all h, and such
that for t > 0 at least two bundles with nonzero probabilities differ from
each other. A local randomization is improving for this probability vector if

a path exists with

In (o), P = AP, ) (45)
In ) - feny P - (A6)
I, P 2 P, ¥ A7)

Differentiating (A5)-(A7) with respect to t around t = 0 and recalling that
mrst = -v)i,/v(i: yields:
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Znh[ﬁzéﬂ - s, ) ﬂgé—ol] = 0 (48)
znh[dYZé‘” - dCZEO)] 2 0 (49)
In h[dch“’) wrs? (P, ) ﬂg—éﬁ] 20 (A10)

Substituting (A8) into (A9) and (Al0) yields:
i1 - w2, ¥ g, L0 th(O) (A11)
nrs?(c®, ¥y - mrsP(®, )1 Imy, th(O) (A12)
From Theorem II(v), 1 - MRS, ) and MRSA(P, ) - Ms®(P, Y) must have

opposite signs so that (All) and (Al2) can both hold if and only if

dCh(O)

order effects along an improving path must be zero. The gain to randomization

on, T th(o) = 0 vhich from (A8) implies that Jm g™t Thus, the first
mist come from second order effects. If either the second derivatives of net
resources or of B's expected utility are positive, themn, since the first
derivatives are zero at t = 0, for t > 0, for t > 0 the first derivatives and
hence the functions will become positive as required. These second

derivatives at t = 0 are:

2
ImsP2 + In A, ¥ 9%0—’ + V3, 1) %hé‘-’ll =0 (A13)
t t
2
o dzzh(O) Z“éﬂ)] . 0 A16)
t t

2
IS + R, ) LOD B, OO0 )
t t
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where S

th d—C:(O_))Z vicP, ) +2 dYZéO) d(‘héo) vi (cb, ) + (%éﬂ)z
V (C Yb) From the fact that the utility functlons are strictly concave,
for any h with dCh(O)/dt or th(O)/dt not zero, s mist be negative. For
convenience, the arguments of partials of v are deleted since all partials
are evaluated at (Cb , Yb) .

Substituting (Al3) into (Al4) and (A15) yields

- [r, SXO gy sy 2 o (A16)
[ h dtz I h c
b A(0) bh cah
[MRS? - MRS®] Z“hjz_” Im [(s /vbc) - )1z 0 (A17)

Solving (Al6) for Jm, %ﬂ and substituting into (A17) gives:
t

b
MRS® - 1) sah bh RSP - MRs?)
== (. s /v® + ('S )/vb z (A18)
(1 - MRS®) 1y ot Uy (1 - MRS®)

From Theorem II(v), 1 - MRS?, 1 - MRS®, and MRS® - MRS® all have the same

sign. Hence, (Al8) can be rewritten as

IS | I . DR st (A19)
I AR A, I

Given any (I, T, 1), a path (C%(t), Yt)), h = 1,2,3, yields a local

randam.zaglon which improves on the nonrandom solution to (PI) iff %éﬂ
a(0) Ch(O) ZYh(O) are such that Jn 9C(0) dCh(O) In, f&m = 0 but, for

’

dt dt
some h, (dcgéo’, th‘O’ = 0, and (Al5), (Al6), and (Al9) hold with a strict

inequality in (Al6) or (A19). Note that since (1 - MRS?) = 0 and d2¥'%(0)/dt
are otherwise unrestricted, for any (dC(0)/dt, d¥'(0)/dt), h = 1,2,3,
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4280y /dt%, h = 1,2,3, can be chosen to make Z defined in (Al6) take any
value. Given this choice of d¥?(0)/dt?, h = 1,2,3, a2 0)y/at?, h = 1,2,3,
can always be chosen to make (A13) hold. It therefore follows that local
randomization is desirable iff there exists a (dCh (0)/dt, th (0)/dr),

h = 1,2,3, such that

ah
)L S
th (A20)

Znhsbh
>
WY1 - 1’| V3|1 - MRs?|
C C

Necessity of (A20) follows directly from (A19). If (A20) holds, then, given
(A16) d(0)/dt? can be chosen to make Z small enough that (Al9) holds.
If (A20) bolds, then for at least one h, S°T/ (V2|1 - mrsP|) >

5%/ (V2|1 - MRs®|) must bold. For this h, set X = (dCh(O)/dt at(0)/dt) and
necessity is shown. To show sufficiency, let Xh = ( X;‘) = (dc™(0)/dt,
th(O)/dt), h = 1,2,3 and assume there exists a Y= (Yl, 2) such that
wPYt) / PI1 - wrsP]) > )/ P11 - MRsP|). Given I, M, and I, some
allowable ¥, h = 1,2,3 will exist that is equivalent to (¥;, ¥,) if the

following five conditions are satisfied:

nlx% + nzxﬁ + n3x% =0 (A21)
nlx% + nzxg + n3x% =0 (A22)
nl(xi)z + nz(x%)z + n3(x:{)2 = Y% | (A23)

(xz) + I (x%) + I (x:"Z = (A24)
nlxix% + nzx%xg + n3x§x% = Y,Y, (A25)

Conditions (A21) and (A22) guarantee that I, (dC7(0)/dt) = In, (d¥(0)/dt) = 0
while (A23)-(A25) guarantee that Jn (PHP(HE) = viPY® and that
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Znh(XhHa(Xh)t) = YIPYC. Given the assumptions on Y, any solution to (A21)-
(A25) would satisfy (A20). Since at least two of the I, must be positive,
assume without loss of generality that I; > 0 and I, > 0. Consider

X% = Xg =0, X% = '(”1/”2)}(% =Yy [my/(m,(my + nz))]%, and x% = -(nl/nz)X% =
Y, [0/ (y(1y + 1,))1%  Substituting these values shows that (A21)-(A25) are
satisfied showing sufficiency. Q.E.D.

PROOF OF COROLIARY II:
t t
Let Q(P_, P,) = |1 - MRS?| ﬂ%L - |1 - MRS?| 9%;9— From Theorem III, local

c c
randomization is desirable at some Pa and P, if Q(Pa, Pb) > 0. At Pa = Pb’
no redistribution is possible since their indifference maps are identical so
MRS? = MRSP = 1. Hence Q(P,, B,) = 0. Differentiating Q with respect to P_
around Pa =Py yields

(P, P) _d|l - S?| g~ _ d|1 - MrsP| qiPqt A26
%a_ .JT_LQ;;ESL R (A26)

C

. - - Tt _ ] ' 2 . ' ' 2
SlnceVa—F(Vb), Vi—FVZ, Vic—FV2c+F'(V2) , V;y-—FV?y+F'(V§:) , and
V'acy = F'ng + F"VEV?,. When Pa = Pb, substituting these into (qHaqt) /V'z yields:

a?qt _ gt 2
= (9 ~ q,) (A27)
eV P17

Substituting (A27) into (A26) yields

QE,P)  gq" d[1 - MRs?|  d[1 - RSP
= [ -
I, ® 12 3,

v2F d|1 - MRS?|
2
@t —— (A28)

a






