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ABSTRACT

The optimal incaie taxation problem has been extensively studied in one-

period nzxlels. When consi.niers work for many periods, this paper analyzes 'what

information, if any, that the goverrient learns about abilities in one period

can be used in later periods to attain re redistribution than in a one-

period world. When the govertinent nhast cc*niit itself to future tax schedules,

the gains c fran relaxing self-selection constraints by intertaiporal

nonstationarity. The effect of nonstationarity is analogous to that of

raridanization in one-period nh,dels.

In a ncdel with two ability classes it is shown that the key use of

information is that only a single lifetine self-selection constraint for each

type of constziEr Ixiast be imposed. Sa'e necessary and sufficient conditions

for randanization or nonstationarity are given. The planner can make

additional use of the information when individual and social rates of tine

discounting differ. In this case, the limiting tax schedule is a

nondistorting one if the goverrrnt has a lower discount rate than

individuals.
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I. Introduction

Most optimal incare tax nixiels in the Mirrlees [1971] tradition analyze

only a single period. If individuals are identifiable across periods,

questions arise about the continued validity of the results in those models.

An obvious objection is that, in the first period, the goverrnEnt learns

dividua' abilities and therefore should be able to attain a first best

result in the next period. If individuals do not recognize that their second

period taxes depend upon their first period behavior, this conclusion is

correct. However, if individuals correctly anticipate this linkage and adjust

their behavior accordingly, the gain fran using the information is at least

partially negated. This paper considers whether the first best outc can be

achieved in later periods despite this response by individuals and if not,

whether the use of any information fran period one can lead to an inprovmnt

over sfnle repetition of the one period optimal tax schedule.

The model has individuals of t discrete ability classes. The

goverrnint knows the size and ability level of each class but does not

initially know to which class any particular individual belongs. This paper

thus adapts the one period model of Stiglitz [1982a1 to a many period

situation and relaxes assunptions about the preferences of the t classes.

1 different assunptions about the governrent's use of information can

be made. One is that the goverrnnent is able to ccmiiit itself to the tax

schedules it will use in each period and thus to limit the extent to which it

uses information about an indivichial's ability, learned fran the taxes paid in

one period, to affect the taxes paid in later periods. The other is that the

governnnt cannot ccmnit itself in advance not to use information to the full

extent. Once an individual's ability is learned, the goverrilEnt is not only

able to impose hmp simi taxation but does so as soon as possible. Both

assurptions are rth studying. The second may be more realistic since it may
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in fact be impossible for goverrmEnts to carinit themselves even by constitu-

tiorial maans since later goverrirnts can change rules and constitutions. On

the other hand, the no cannitnEnt solution is feasible when caiinitnnt is

possible but not the reverse. Hence, the first assixnption allows studying a

benchnark case 'kere information is used optimally across periods. In this

paper, the first assulption of cannitnnt is made. Elsewhere, we analyze the

no caimitnnt case.

When the goverriint can cannit itself, the following results are shown:

(1) If first best is not optimal in a one period nxxlel, it is not

optimal in later periods of a milti-period mxlel.

(2) The self-selection constraint creates a potential nonconvexity which

flip lies that somatiixs it may be desirable to have different tax functions in

each period.

(3) When the tax structure differs between periods, the information frctn

the first period incorporated in later periods' schedules is only an

individual's ability class. The planner uses this to incorporate a large

penalty in later periods for an agent who acts in the second period as if his

ability differs fran that revealed in the first, thus forcing agents to be

consistent in their behavior across periods.

These results follow fran noting that a nultiperiod optimal tax nxdel and

a one period wdel with randan taxation as discussed in Stiglitz [1982a] are

essentially the sanE. The randan tax nxxiel has no restrictions on the

relative frequencies with which different schedules are offered. With an

infinite horizon, it is possible to exactly duplicate the randan solution.

Howsver, in a finite period iu,del, restrictions exist on the frequency with

which bundles can be offered over tinE. In addition, the nailtiperiod mdel

may be uore restrictive if it has period-by-period governnEnt budget

constraints instead of one intertenporal constraint. Despite these extra
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restrictions, similar argnnts show that different tax schedules in different
periods may be desirable. Intertiporal nonstationarity is an alternative
rrthod of inip1nting randan taxes that does not require either ex ante or ex
post violations of horizontal equity.

(4) The "single crossing" assunption camKn to many self-selecticxi
uodels is riot needed for uost results. At the optiniim, at nxst one self-
selection constraint can bind whether or not single crossing is asstid. A
ccxrplete characterization of the solution to the one-period probln, with and
without randcm taxation, is given both in terms of taxes and the Pareto
frontier. These results are re general than pLevic*is analyses since no

specific relationship beten the classes is assuied.

(5) en a self-selection constraint binds, randanization is desirable for
any indifference map under a sufficiently concave transformation of the utility
function of the class with the binding constraint. If a local randairLzation

inproves upon the nonrandctii solution, then for any three probabilities, s
lottery with those probabilities inproves upon the nonrandan solution.

In section II, the basic nxxlel is described and results for a one period
ndel with and without randanization are derived. In addition, nre general
conditions are derived for randcl,1i7.ation to be desirable than have previously
appeared in the literature. In section III, the niiltiperiod problan is

considered. Results are given for a single intert,oral goverr1int budget

constraint and for separate period-by-period constraints. The results depend

upon whether the goverritnt 's and individuals' discount rates differ. If they

are equal, information is used across periods only to nthnic randcxnization.

Wcien they differ, systratic use of information occurs since "trade" between

the goverrnt and individuals is now possible due to different discount

rates. In section IV, sa general conclusions are drawn about the use of
information in optimal tax nodels.
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II. Taxation in a One Period ?bdel

In this section, we analyze the basic one period trodel. The results here

generalize those in Stiglitz [1982a1 and help draw the analogy between randan

taxation and nultiperiod taxation.

A. Basic AssimptioflS

A society is ccxnposed of two different classes of individuals denoted A

and B. The individuals within each class are identical but the two classes

differ either in tastes or abilities. The goverrint is assuxd initially not

to know to which class any individual belongs but to know the niithers of

individuals in each class, denoted i = a, b. Individuals corisui a single

good, C, and earn incai, Y. People in each class have a utility function

overthesebundlesV1(C, Y), i=a, b, withV1/3C >0 0.

The maxinun incam that individuals in each class can earn is bounded fran above

by K1 so that Y1 1(1, = a, b. The marginal rate of substitution for a given

individual is denoted FIRS1(C, Y) -V/V > 0, i = a, b.

The following asstnnptions are made about V1(C, Y):

(Al) V1(C, Y), i = a, b, is twice continuously differentiable in C and Y;

(A2) V1(C, Y), i = a, b, is strictly concave in C and Y;

(A3) MRSa(C, Y) and b(C Y) differ at alnxst every (C, Y) bundle and

points sihere the MRS 's are equal are not where the indifference curves

are tangent to the no-tax budget line.

Assuliption (Al) is made for convenience but could be relaxed without

difficulty. Assuiptiori (A2) of concavity (instead of quasiconcavity) insures

that expected utility in the randan taxation nDdel and lifetize discounted

utility in iiultiperiod nixiels describe convex preferences. Asstmption (A3) is

crucial in guaranteeing that the two groups actually have different preferences

since, if their indifference curves coincide, redistribution between groups is
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impossible. Assurrption (A3) allows the indifference curves of the two classes
to have railtiple crossings. If there are uultiple crossings, then there will be

bundles at 'which the indifference curves of the two groups are tangent, having

eqial marginal rates of substitution. Such tangencies are not ruled out as long

as they form discrete lines in the (C, Y) planeJ

A special case satisfying these assunptions is that considered in

Stiglitz [1982a1 in 'which the utility functions V1(C, Y) arise francon
underlying preferences over corisunption and labor with the classes A and B

having different abilities (arid wages). Let L1 be hours worked aridw the wage
rate of group i. Then L1 = Y/w and V1(C, Y) = U(C, Yfw) 'where U is the ccxmon

utility function over C and L. If A is the nre able group (Wa >
Wb) then

NRSa (C, y) < b(C, Y) at each (C, Y) As shown below, such a "single

crossing" assunption is unnecessary for nxst of the standard results.

B. Nonrandan Taxation

AssunE that the governnEnt nnst :impose the sai tax on everyone who earns

the s inccxiE either to satisfy horizontal equity or for administrative

ease. It cannot randanly charge son individuals a different tax than others.

Since the goverriint cannot distinguish individuals of the two classes, it nust

therefore offer a single tax schedule T(Y) to all individuals . An individual

belonging to either class then faces a budget constraint C Y - T(Y) and

maximizes utility subject to this constraint taking the tax schedule as given.

For each possThle tax schedule, there will be a best consutption-incaiE vector

(C1(T), Y1(T)) for each class and a utility for each class v1T = V-(C1(T),

Y1(T)). It is clear that for any T, v1T V1& (T), Y3 (T)) i j, since 1LT is
the max nun given the constraint and (C3(T), Y3(T)) is a feasible vector for

both classes.4 Budget balance, NaT(Ya) + NbTd) 0, mist also be satisfied
for eas ty5 The governmant then seeks the tax function 'which yields the
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"best" pair of utilities (Va.T, vbT). This best pair could be selected according

to a social welfare function. For any social welfare function, the pair (VaT,

vbT will be a constrained Pareto optilmill. Thus, in this paper, we consider the

set of Pareto-optimal utilities without arbitrarily assuiing a particular

welfare function.

Since directly searching over tax functions to find the optiimun is

difficult, an equivalent problan is solved of choosing (C1, Y1) pairs for each

class that satisfy self-selection constraints, V1(C1, Y1) V1(C3, Y3), i = a

and b and j i. That is, individuals in neither class can prefer the bundle

assigned to the other class to their own. These self-selection constraints

are necessary and sufficient for there to exist a tax function under which thet classes optiially choose the assigned bundles. Necessity was argued

above. To show sufficiency, note that if Y1 y3 then C' > C3 trust also hold

or both classes prefer (C3, y3). Consider the tax function,

T(Y) = Y, Y < y, T(Y) = Y -C3, yJ Y < Y1, T(Y) = - C'-, y'

Under this step function, the only bundles which individuals in either class

could choose are (0, 0), (C3, Y3), and (C', Y'). This follows, for exanple,

since (C1, Y) is preferred to any bundle (C1, Y), Y> Y1, which are the only

ones possible for incaxes greater than Y'. In addition, under boundary

conditions on preferences, either bundle will be preferred to (0, 0). Under

this tax function, individuals in class i can do no better than (C', Y') and

those in j can do no better than (C3, 6 Given the iridividn1s' budget

constraints, budget balance is satisfied if Na(Ca - +
Nb

(Cb - yb) 0

(aggregate consuiption no greater than aregate incane).

The goverruxent' s one period nonrandan Pareto taxation problan then can be

written as mnaximization problen (P1)
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(P1) Max CLNaVa(Ca, Ya) + (1 - a)NbVb(Cb, b)

s.t. V1(C1, y1) V1(&, yJ), i = a, b, j xi:

N(Ca - Ya) + NaWb - b) : u

< y1 K1, i = a, b

C1 0, i = a, b

where a is a paraneter which can be varied between 0 and 1 to find the

constrained Pareto frontier, A, i = a, b, is the Lagrange nultiplier
associated with the self-selection constraint of class i; and is the

Lagrange niiLtiplier associated with the resource balance constraint.

* * J* j.*Theorn I: For all a c [0, 1], there exists a solution ((Ca y ), (( y ))

to maximization probln (P1).

Proof: The constraint set is nonanpty since any = = Ca = min(K, Kb)

satisfies all the constraints in (P1). The constraint set is closed because all

constraint functions are continuous in the choice variables and the constraints

are specified by weak inequalities. Inccts are bounded by assttption and these

bounds imply that consunptions are bounded through the resource constraint.

Hence, the constraint set is bounded. The objective function is continuous and

thus attains a maxinun on the nonnpty ccmpact constraint set. Q.E.D.

To characterize the solution to (P1), let C1 (a), y1(a), and

V1(a) V1(C1(a), Y1(c)), i = a, b, be the optiiiul bundles and utilities as

functions of cz. Let V10, i = a, b, be the utilities of each group in the no

tax situation.

Theorn II: The solution to (P1) satisfies the following properties:

(i) If V'(a) Vi then V1(&(a), Y3(a)) < V1(a), i = a, b and j i.
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(ii) If V1(ct) = V1(C3(cL), y-()) then V3(cL) > V3(C1(a), y3-(cL)), i = a, b and

j i.
(iii) > 0

(iv) If = 0 then MR&(C(ct), Y(ci)) = 1, i = a, b and j i
(v)

1 < MRS3 (C3(cL), y3(ci)) < NRS1(C3(cx), Y3(CL)), or

MRS1(C3(a), Y3()) < MR&(C3(ct), y3(c*)) < 1.

Before proving Theoraii II, an explanation of these conditions is in order.

The first says that the self-selection constraint does not bind for a group

which receives higher utility than in the no-tax situation. The second says

that at nost one self-selection constraint can bind at the optTTIm -- even

with nultiple crossings of the indifference curves. The third says that

production efficiency is satisfied in that all production is consunEd (Na(Ca -

ya) + rccb - Yb) = 0). The fourth says that, if the self-selection

constraint does not bind for group i, then the opt fimmi bundle for the group j

is one with no distortion -- the inplicit marginal tax rate is zero. The

fifth condition says that if the self-selection constraint for group i is

binding, then at group j's bundle, MR& lies between the marginal rate of

transformation and MRS1. The marginal rate of transformation (=1) can be

either larger or smaller than the t MRS' •

Proof:

(i) Consider the no tax situation. The budget constraint of group i is

C- and the optinial choice (Crn, y) satisfies C = y10fr
monotonicity of V'-(Ci, y1). If V'(C3, yJ) = V1(C1, y-) V1°, then C1 y1

and C3 y3 nust hold with strict inequality in the second unless (C3, Y3) =

(C1, y) = (C10, Y°). This latter possibility can occur only when
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V1(C1, y1) = V1° and NRS1(C10, yin) = NF3(C1° yO) = 1. Disregarding this

special case, N(C1 - y) + N(CJ - yi > 0 trust hold, violating the resource

balance constraint. (See Figure 1).

(ii) The no tax utilities (Vao, V'°) are feasible and mist lie on the

constrained Pareto frontier. It is impossible to raise both types' 'welfare

since no distortions exist. There trust exist sai for which
V1(a0)

= V10

i = a, b. Hence, for any other a, either Va(a) ,a(a) or Vb(a)

Frc*n (i), the group whose utility is at least at the no tax level cannot have

its self—selection constraint bind. It is thus impossible to have self-

select ion constraints binding for both groups.

(iii) Rewrite the resource constraint as Na(Ca - Ya) + - b) <

and let L(ct, y) be the value of the objective function of (P1) at the opt1m'

Then, frcin the envelope theorn, differentiating L around y = 0, L/ay =

For any y > 0, the extra resources can always be given to the groups whose

self-selection constraint is not binding without any of the constraints being

violated. This raises the value of the objective function, showing

o.8

(iv) Assure = 0 and the self-selection constraint for group i holds

with strict inequality. If MR& (C3(ct), yJ (a)) > 1, then, for small 6,

V3(C3(ct) — 5, Y3(ct) - 6) > V3 (C3 (a), Y3(a)) and V1(C3(a) — 6, Y3(a) — 6) <

will hold. Since resource balance continues to hold, the bundle (C3(ct) - 6,

yJ (a) - (5) yields a higher value for the objective function. Similarly, if

MRS (C3 (a), Y3(a)) < 1, (C3(ct) + 6, Y3(a) + 6) yields a higher value of the

objective function. (See Figure 2). If = 0 but the self-selection

constraint holds with equality, then fran (ii), = 0 trust hold. The first

order conditions immEdiately yield the result since ternE fran neither

self-selection constraint enter.
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MRS(C3(), yJ()) < 1, (C() + , Y(a) + ) yields a higher value of the

objective function. (See figure 2). If Ai = 0 but the self-selection

constraint holds with equality, then fran (ii), A1 = 0 trust hold. The first

order conditions inirediately yield the result since terms from neither

self-selection constraint enter.

(v) AssunE
Xa

> 0 so that fran (ii), Ab = 0 trust hold. The first order

conditions with respect to and Yb are:

(1 -
c)Nb V(cb, yb) xV(C, yb) - = 0 (1)

(1 -
c)Nb V(Cb, yb) - xV(C, yb) + iNb

= 0 (2)

Solving for uNb and canbining terms yields:

(1 - )Nb[V(Cb, Yb) + V(Cb, Yb)] =
Aa[V(Cb Yb) + V(Cb, Yb)] (3)

or:

(1 -
a)NbVb(Cb,

Yb)[1 - sb(cb, Yb)] = A V(Cb, Yb) [1 - 4fa(Cb yb)]
c ac (4)

Mding AaV(Cb yb)b(cb Yb) to both sides of (4), combining terms, and

substituting (1) yields

- b(Cb Yb)] = A Va(Cb, Yb)[sb(cb, b) - a(Cb Yb)]ac (5)

Since
Xe (by assunption) and i (from part (ii)) are positive, the result

follows.

If
Xb

> 0, similar manipulation of the first order conditions for Ca and 111a

shows the required results. Q.E.D.
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Requiring taxes to raise net revenue does not change significantly any of the
results. In Theorsm 11(i), instead of using the no tax situation as a
benchmark, the situation with a luTp s.mi tax equal to the per capita share of
net required revenue can be used and all the results follow.

(2) If the "single crossing" assuaption is made, as in Stiglitz [l982aJ
due to different abilities, MRSa < holds at all (C, Y) bundles. Thus, part
(v) siuplifies to Aa > 0 inplies a(Cb(a) < gb(b() Yb(cs)) < 1 and

> 0 inplies 1 < NRSa(Ca(CL)), Ya(a)) < 5b((5(a) ya(a))

(3) The intuition behind part Cv) can be given by argunts similar to
the proof of part (iv). Assure A> 0 and that gb(b yb) < J <5ab yb)
Then, at least for small 'S > 0, if the bundle (d', Yb) is changed to
Cd' + cS, +'S) resce balance continues to be satisfied. A's self-

selection constraint holds with strict inequality, and B's welfare rises
yielding a Pareto improvanent. (See Figure 3). If b(d' yb) <a(Cb Yb)

1 or if 1 <MRSa(d', Yb) <MRSb(d), Yb), then mving (d', Yb) along A's
indifference curve below the 450 line through (d', Yb leaves the self-
selection constraint for A holding with equality, raises B's utility, and
yields extra resources which can be given to A to yield a Pareto improvement.
(See Figure 4).

(4) Along the Pareto frontier, there are regions in which each self-
selection constraint binds. Even if the t groups differ only because of
ability differences, it cannot be assuid that the self-selection constraint
of the able will bind. At sa points on the frontier, little redistribution
is done and neither binds. At others, the redistribution is fran the unable
to the able, so the self-selection constraint of the unable binds.

(5) Our characterization of the optimal taxes permits canparisons between
the utility possibility frontiers (UPF) of the constrained problem and the full
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information probln (with no self-selection constraints). If neither self-

selection constraint binds, then the t IJPF's coincide. If one binds, then the

constrained UPF lies strictly below the full-information one. With the

additional assumption that consumption and leisure are normal for both classes,

- the three regions of the UPF (neither constraint binds, the constraint on A

binds, the constraint on B binds) are connected seIEnts. (See Figure 5).

Corollary I: Under assumptions (Al)-(A3) and normality of consumption and

leisure, if a self-selection constraint binds at a point on the 13FF then that

constraint binds at all points on the 13FF with lower utility for that class.

The UPF has three seients: first, one self-selection constraint binds; then,

neither binds (this includes the no-tax point); lastly, the other self-

selection constraint binds.

Proof: Consider a solution to (P1) for son a such that Xa> 0. Denote this

solution as (Ct,'4, C, 4) where Va(C,'4) = Va(C, 4) and, fran Theorn

11(i), 14) < \7LO Fran TheornI(v), 4) 1. Let (C, 4) be

the bundle such that Vb(C, 4) = Vb(C, 4) and b( 4) = 1 Then (4 4)
is the bundle which minimizes - 'f" subject to Vb(Cb, b) = vb(( v1)

strict concavity, it then follows that C - 4 < C - 4. Therefore,

Va4, 4) > Va4, 4) niist hold. If not, and Va4, 4) Va(C, 4), then

the bundle (Ct, '14, C, 4) xild satisfy self-selection for both types and,

as canpared to (C,'4, C, '4)
would give both types the s utility but

'would use less net resources. This would contradict the assunption that

'4, c, 4) is on the constrained 11FF.

AssuI that the result is false so that there exists a solution for saie

other a, (C, '4, C, '4) which is on the constrained 13FF at a 1ocr utility for

A and at 'which neither self-selection constraint binds. That is, asswe (i)
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4) = ) > ) 4, (ii) 4) > 4),and (iii)
MRSa(C, Y) = b(cb 4) = 1. Fran these assunptions, it follows

that C and 4 4 cannot both hold. If both held, then
Va(C, 4)

Va(C, 4) and hence, since Va(C, 4) > Va(C, 4) was shown above, Va(C, 4)
Va(C, 4) which contradicts (i). Therefore, either < or 4 > 4 uust
hold. Since, fran (ii) and (iii),

MRSb(C, 4) = b(cb
4) and Vb(C, 4) <

Vb(c, 4), the first inequality would imply that consiixptjon is inferior and
the second that leisure is inferior. In either case, a contradiction arises
fran asstnriing the result is false.

Q.E.D.

(6) In the coristraj.n problem, the self-selection constraints imply
minini utility levels for each group, while in the full information problem,
utility for a group can be pushed down to V'(O, K'). Thus the utility

possibility frontier is truncated at higher utility levels. For example,
suppose the classes differ only in ability with Wa > wb. For any Y> 0,

Va(C, Y) > Vb(C, Y) since A's need to wor1 less to earn tFie sane incon.
Va(Ca, Ya) > Vb(Cb, Yb) since Va(Ca, Ya) Vb(Cb, Yb) <Va(Cb, Yb) violates
A's self-selection constraint. Thus, A niist always achieve nire utility than
B. This rins true if the problem is fornulated as maximizing V1 subject to
V3 being not less than a target level, and varying the target to map out the
utility possibility frontier. At low enough target levels, the target
constraint will not bind.

(7) The ordering of MRS'S at the distorted bundle, (C3, Y3) if > 0,
has an interpretation in terma of taxes. If the group desiring to nTtmic (i)
has the steeper indifference curve through j 's bundle, then group j is
subsidized cxi the margin. If i has the flatter indifference curve through j 's
bundle, group j is taxed on the margin.
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B. Randan Taxation

The desirability of randanizatiOfl in optimal taxation ni,dels, or in

principal-agent uodels in general, has been studied by Weiss [1976], Stiglitz

[1982a1, Fellingham, Kn, and Neinan [1984], and Arnott and Stiglitz [1985].

(A related problan is that of designing auctions; Naskin and Riley [19841 have

established the desirability of randanizatiOfl of payoffs in optimal auctions.)

The results in this section generalize those in Stiglitz [1982a]. The randc*n

action by the govermnt takes place after individuals reveal their type but

before they decide their levels of effort. The govermnt COnStIUCtS t

lotteries of tax schedules, one intended for individuals in group A and one for

those in group B. Each individual nust decide 'which lottery to participate in.

Then, at randan, a tax schedule is assigned to the individual. The indivicb1,

given his tax schedule, decides cxi the anmt of inccxie to produce. Since the

individual has already declared his type, every schedule can be constructed to

allow only one (C, Y) bundle to be chosen, even if the individual has

misrevealed his type. Thus, each lottery can be viewed as a lottery over

different (C, Y) bundles - one for each possible tax schedule that may be drawn.

Randanization before the effort decision cannot do rse than ranckiiriza-

don after the effort decision. Assune the randanizatiOti occs after the

effort decision. In all outcarEs, the individual produces the sSnE pre-tax

incale but conslxnption differs depending upon the tax charged. This, at the

revelation stage, each lottery can be viewed as over (C, Y) bundles in which Y

is fixed and C differs. Such lotteries remain feasible 'èien the inccxie

decision is made after randcinizatiOn but, in that case, other bundles with

different Y's also are feasible. Hence, randani.zatiOfl after the incalE

decision, yields a smaller feasible set for the goverrtnt and may be

suboptimal.9
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on the other hand, randomization before revelation cannot inrove on

randomization after revelation. In such circumstances, the govertnt

randomly assigns tax schedules to individuals without knowing their type.

After receiving a schedule, an individual faces no further uncertainty. Each

schedule the goverrixnt randomizes over can be treated as a pair of (C, Y)

bundles, one for each type. When the govermnt's probln is trarisfornEd to

choosing pairs of (C, Y) bundles, then each pair corresponding to one tax

schedule nust satisfy the self-selection constraints for each type. When the

randomization occurs after revelation, only one self-selection constraint over

the expected utilities arises. Although the bundles under prerevelation

randainess will satisfy this expected constraint, it is clearly weaker and

hence the prerevelatiori ranckTlness may be suboptim1 10

To specify formally the gaverrmnt 's optmi ation with the possibility of
randan taxation, consider the lotteries to be offered to the t groups A and

B. Each group will be offered a set of bundles and a probability for each

bundle in the set. The lotteries thus are L1( (C, Y), ir), i = a, b, and
h = 1,. .. ,k(i) where k(i) is SaiE finite nuiber. The goverriint can choose

both the bundles and the probabilities in each lottery. The one period

maximization prthln with randomization (P11) is then:

(P11) ka)( ah) + (1 - c:t), kfb) ybha h=l h=1

St. F,rihvi(ci1, ylh) jhvi(cih yJh) i. = a, b,

Na 1Tai( - +
N1) bh - ybh) 0: u
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k(i)
iT = 1, i = a, b, nih

0, i = a, b and h = 1,...,k(i)
h=1

i=a,b,h=1,...,k(i)

0 C M', i = a, b, h = 1,...,k(i)

As in (P1), a is a weight which can be varied to find the entire Pareto

frontier, A and i are the niiltipliers on the self-selection and resource

constraints. The upper bounds M1 on bound the feasible

In prob1n (P11), the objective function and constraints incorporate ex

ante expected values. For the self-selection constraints and the govermnt' s

objective function this is reasonable. The goverrnElt nx.ist design the tax

SchaTE and the individuals niist decide which type to declare before realization.

It is therefore of no consequence if, ex post, saneone prefers the bundle

achieved by sone of the other type. Heier, production ocs after the
realization of the randan process. If the ex post realization has total

consunption greater than inccxne, it is not feasible even though expected

consunption equaled expected incane. For the constraints in (P11), this can

clearly occur. If sare cth exceeds NaKa + NbKb (maxinun total production), even

if it arises with very &nall probability, the outcaie is not feasible when this

bundle arises. Such ex post violations of feasibility can clearly occur even if

the M1 are set to restrict all C'' to be less than NaKa +l2
One justification for the constraint is if the governnnt places one tax

function for each individual of a particular type into an urn and the

individuals draw without replacIEnt. Then the ex ante expected net resce

use of an individual is achieved exactly ex post by the group. Hence the

constraint in (P11) is appropriate. An alternative justification of the

constraint in (P11) is that each individual of a revealed typed draws a tax

schedule at randan fran the same distribution. As the nunber of individuals
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gets large, the distribution of ex post resource balance will always have values
violating the constraint. Howaver, the law of large numbers implies that the
per capita violation of the constraint goes to zero. Thus if the consunptjon
vectors are reduced by even an arbitrarily small , the probability that the
constraint is satisfied goes to 1 as the population grows. Hence, the solution
to (P11) can be viewed as an c-equilThrit in this case. Since the
self-selection constraints holding with equality already imply that the solution
to (P11) is an c-equilibriun, this is not a real restriction.

To sImmn-ize, there exist randomization procedures under which the resource
constraint in (P11) is appropriate. Without specifying it in detail, such a
procedure is assuned to be utilized by the goverrm1t. Care trust be taken,
since for other procedures, the forrriilition in (P11) is inappropriate.

Under allowable procedures, a solution to (P11) always exists.

___________ a* h* h*Theoran III: For every a, there exists a pair of lotteries L ((C , r ),* * b* h* h* * *h=1, . . k (a) and L h=1,. .. ,k (b) which solve (P11).

Proof: As in Theorn I, the constraint set is nonnpty since feasible bundles
in (P1) can be treated as degenerate lotteries. The constraint set is closed
and all variables (1rh, cth, Yth) are bounded. Hence, the constraint set is
cciipact. The continuous objective function then attains a maxinun on the
noneipty cc*ipact constraint set.

Q.E.D.

The optiiml lotteries which solve (P11) can be characterized in a similar
manner to the nonrandan optiniii. As in the previous section, V°, i = a, b,
are the utilities in the no tax situation,

((Cth(cz), Yth(a)),
lrth(a)),i = a, b, h=1,. . ,k* (i), are the optim1 lotteries as a function of a, arid

(a) h(a)V1(Cth(a) Y(a)), i a, b, - optil ected
utilities achieved as functions of a.
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Theorn IV: The solution to (P11) satisfies the following properties

(i) If (a) V1° then kfi)
OVi(cjh() yih) <(a), i = a, b,

h=1

j i.

(ii) If EV1(cx)
k(J)

.h vi(CJh(), ih) then EV (a) >

h=1
k(i)

,rth(a)VJ(C (ci),
Y(a)), i = a, b, and j i.

h=1

(iii) > 0.

(iv) If i's self-selection constraint does not bind, then an optimal solution

existswithk(j) =1andMR&(C(a), 'f1(a)) =1, i=a, b, andj i.

(v) For i = a, b, and j i, if > 0 then an optimal solution exists with

k(j) 3 and at each h = 1,... ,k(j), either

1 < NR&(C3FI(a), ih) < NRS1(CJh(a), yJh(a))

IYIRS1(CJh(ct), yh) < NR&(C'(ct), jh) < 1, or

NRS1(CJh(a), yjh()) = MR& (C(a), .]h()) = 1.

Proof: See the Appendix.

Conditions (i) -(iii) of Theorn IV are essentially the sama as those of Theoran

II with the utilities replaced by expected utilities. Condition (iv) states

that if the self-selection constraint of group i is not binding then it is

desirable to have no randanizatiofl for group j and, as in Theorn II, there is

no distortionary taxation at this bundle. Condition (v) states that there is no

gain to having randcinization over nxre than three bundles and, if randanization

is over group j's bundles, then. at each of those bundles the NRS1, FIR& and

NRT(=1) niist relate to each other in the ways specified in condition (v) of

Theorn II. That is, at each (CJh, Jh) NR& trust lie between MRS1 and 1. The
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possibility that MRS1 = NRS = 1 at one of the bundles cannot be ruled out.

Note it is possible to raridanize with MRS1 and MR& greater than 1 at sane

bundles and less than 1 at others. Single crossing iioses the s relation
bet MRS1 arid MR& at all bundles in the lottery.

In the solution to (P11), at nost one nondegenerate lottery is needed and

randanization over nire than three bundles is unnecessary. It has not been

shown that either group will face a nondegenerate lottery. First order

conditions are of little use for showing that a nondegenerate lottery exists or

for finding the randan solution, because the nonrandcni solution to (P1)

satisfies the first order conditions for (P11). To see this, denote the

nonrandan solution as a lottery over k(i) bundles where each bundle is identical

to the nonrandan bundle solving (P1). First order conditions with respect to

are trivially satisfied and those with respect to Cth and reduce to

those in (P1). Hence, a nondegenerate randan solution exists only when nultiple

solutions to the first order conditions exist, with the extra solutions

asyninetric (and not readily apparent). Hver, since the self-selection

constraints involve the difference in utilities and therefore do not define

convex sets, nnltiple solutions are possible. Theorn V shows that for any pair

of indifference maps satisfying assunptions (Al) -(Aill), sane allowable

transformation exists under which a randcxn solution is desirable. Maskin and

Riley [1980] show a similar result with a continwin of abilities for t1 special

case of preferences which are additive in consution and labor and linear in

consunpticxi.

Theorn V: Consider any V1 and V3 satisfying assuxption (Al)-(A3) and any a

such that A> 0, i = a, b. Then there exists sane concavification of V1 such

that k(j) > 1 holds in the solution to (P11), whether or not V3 is similarly

transfonned. Proof: See the Appendix.
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In Theoran V, only the utility function of individuals in group i is

transforned. However, transforming the utility of individuals in group j as

well does not change the result since the randcxnizatiori involves bundles over

which j is indifferent. Hence, the result also applies to situations in which

the t groups have the sama utility functions but differ in ability. See

Figure 6 for an illustration of the construction.

The construction in the proof den,nstrates clearly how the nonconvexity

of the self-selection constraints can induce randcii ation. If group j has

the randan bundle, then the transformation makes group i 's utility function

nxre concave and thus reduces the desirability of j 's lottery to individuals

in group i. This weakens i's self-selection constraint and allows for

adjusnts which raise j 's expected utility. Having the initial randaniza-

tion over tv bundles which are chosen to be indifferent to the optiiiii

nonrandctn bundle given to j is a convenient way to dalDristrate that an

iinprovent over the solution in (P1) exists. This particular randcinization

has a special property -- it does not violate horizontal equity defined as

identical agents having equal utilities even if they have different budget

sets. All type j's receive equal utility, although with different consuition
bundles. The randanization only causes utilities to be stochastic for type

i's who nrimic type j's. Jhile this may not be the optimal randanization, it

rains feasible even when ex post horizontal equity is required..

Theoren V shows that the desirability of randanization cannot be ruled

out frcin indifference maps since randanizaticxi can arise for essentially any

indifference maps under sai transformation. It is orth noting hever, that

the shape of the indifference map does have sai effect on whether randaniza-

tion is desirable. The next theoran gives a necessary and sufficient

conditn for local randcinization which depends in part on the curvature of
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indifference curves. As str Aa > 0 in the solution to (P1) so that the

marginal tax rate is not zero at (Cb, Yb). Let H1 be the Hessian of the

utility function of type i at (Cb, Yb).

Theoran VI: Assun X> 0 in the solution to (P1) and consider any

probability triple 11, 2' 113). at least t of 'which are positive arid

TI1
+ + 113 = 1. There exists s local randanjzation with these

probabilities around the nonrandcxn solution to (P1) 'which improves on that

solution iff there exists q c such that

g}Ibgt gg
(6)

V(Cb, Yb)l1 _b(cb, Yb)l V(Cb, Yb)I1 _MRSa(Cb, Yb)

where qt is the transpose of q. Proof: See the Appendix

The expression in (6) depends upon properties of the indifference map though

the MRS1(Cl), Yb) terRE and the qHlqt terms which depend upon both the

curvature of indifference curves and the transformation of utility.

As a corollary, it follows that, if preferences of A' s and B's are

similar, then local randcxrLzation will not be desirable. Assl.mE the utility

functions belong to a family paranEterized by P, Va(C, and (Vb(C, '' b'
Corollary II: ASSURE that preferences are related such that at all P = 'a =

Va(C, Y, P) = F(V1'(C, Y, F)). Then, for a b' randclm7atiofl is

desirable unless F is sufficiently concave. Proof: See the Appendix.

A special case of this result is t classes with identical preferences but

different abilities. If the abilities are close to each other, no

randanization is desirable regardless of which group the redistribution

favors.13 Both Theorn V and Corollary II show that concavifying utility
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makes randanization desirable. Theoren V concerns the degree of concavity of

each utility function separately, while Corollary II involves the concavity of

one utility function relative to the other. For a n1es1 b' if both functions

undergo the same transformation, no local randanization will be desirable.

Theorn V daixnstrates that, if a b' randctiization will be desirable if

the ccmix,ri transformation is extr enough. Thus, this randanization laist be

a nonlocal randanization of bundles offered a group in a lottery.

In order to see that the condition of Theoran VI can be satisfied,

consider a special case of all individuals having identical additive utility

functions over consuition and labor with the groups differing only in ability.

Corollary III: Consider the utility functions V1 (C, Y) = *(C) - Y (Y/w),

i = a, b, where the are ability parameters with 0 <w <Was To satisfy

concavity of V1, iji is concave and y convex. Let L1 = Y/w.
(A) Assume the self-selection constraint for group A is binding.

(i) No randanization is desirable if Ly"(L)/y"(L) - 2, at all L.

(ii) Consider any probabilities 112, 113)
with at least to positive

and with 111 + 112 + 113
= 1. There exists sare local randanization

with these probabilities around the nonrandan optinu of (P1) which

improves on the nonrandan solution iff:

(ftCYb/Wa) > .yTt(yb/%)

Wa2(1
- ab ybfl ,2(1 - b(cb, yb))

C

(B) Assure the self-selection constraint for group B is binding:

(i) No randanization is desirable if Ly"(L)/y"(L) -2, at all L.

(ii) Consider any probabilities (if1, ira, 113) with at least t positive
and with in + + 113 = 1. There exists sai local randanization

with these probabilities around the nonrandan optinhiTi of (P1) which

improves on the nonrandan solution if f:
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yI(Ya/wb) YlI(Ya/W)
8,2b(Ca ya) - 1) WaZ(NRSa(Ca, ) - 1)

Proof: See the Appendix.

Consider the condition in A(ii). Since Wa> and 1 - RSa(Cb, b) >
1 sb(cb yb) > 0, the denanjnator of the LHS exceeds that of the RHS in

(7). Hence, y"(Yb/w) nxist exceed y"(Yb/wb) by a sufficient anount for this
condition to be satisfied. Since Yb/Wa <

Y"/Wb, this can be satisfied by a
sufficiently negative value of y". A sufficient condition for (7) to be
satisfied is that the derivatji of -y"(Y/w) /[w2(1 - MRS) I with respect to w be
positive. Taking this derivative yields the following sufficient condition
for the desirability of local raridcxnization with any probabilities which is
stricter than the necessary condition in A(i) of Theoran VI:

L(y"(L)/y"(L) < - 2 - [y'(L) + y"(L)}/[w'(C) - y'(L)J (9)

where wi'(C) - y'(L) = w(C)(1 - NRS(Cb, Yb)) > 0. A similar calculation for

B(ii) yields (9) with the inequality reversed as a sufficient condition for
local randaijzation when Ab > 0. Note that wçb'(C) - y'(C) < 0 when Ab > 0 so
that this is stricter than the necessary condition B(i).

Condjtion (Ai) and (Bi), which are niitually exclusive unless

= -2, are sufficient conditions for no randanization to be
desirable. Thus, randanjzatjon is desirable nowhere cxi the IJPF if
Lv"CL)/y" (L) = 2.14 F'urthernore, ranckinization cannot be desirable both
with > 0 and > 0 unless Ly'"(L)/y"(L) + 2 changes sign along the TJPF as
labor supply changes. Since sufficient conditions for local randmf 7ti
such as (7) and (8) are opposite in sign, randaiiization is desirable sacthere
on the UPF, for many allowable y(.) functions.15
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III. Taxation in a 1hltiperiod MDdel

A. AssuiiptioflS

The trodel is an N period repetition of the one period orld of section II

(N may be finite or infinite). 1 classes exist and each individual belongs

to the sau class across periods. The nuthers in each group rin constant

over tine. Preferences over inca1 and consunptiOfl within each period satisfy

(Al) - (A3) and are identical across periods. Lifetin utility is the present

discounted value of the utility in the M periods. Individuals in both classes

have the sane discount factor denoted p. Denoting C1 = (Ci,. . . ,C) and Y1 =

(Y,.. . ,Y) as the vectors of lifetijie consunption and inc for class i and

V1(C1, Y1) as the lifetinE utility function for class i, then

N
V1(C1, Y) = ptV1(C, Y), i = a, b (10)

t=1

It follows that if there is randcxnizatiorl, with the individuals offered

lotteries over lifetine inccze-constnhlptiofl vectors, then this lottery can be

deccxnposed into separate lotteries in each period and expected lifetinE

utility equals the present discounted value of the expected utilities in the

different periods.
Individuals are unable to save or to borrow across periods and thus face

N separate budget constraints. This assutptiotl is made to focus purely on the

role of information transfer across periods in affecting taxation witlx,ut

ca,licating the analysis with possibility of alth or interest taxation. In

the first period, every individual faces the s tax function T1 (Y1) since

the governneflt has no basis upon which to distinguish individii1s. TIre-

after, the goverriint can recall the inccilEs reported in previous periods and

can condition the tax functions on previous periods' incctte. Thus, the tax
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function in period t > 1, is written as Tt(YtIY1, .. . Taking the

sequence of tax functions as given, each individual chooses lifetinE

consuiiption and inccxi to solve the follcMing maximization:

.x pt_lV1(t, yl)

(1,yl)
s.t. C Y - T'(Y)

I-Il < V1 Pt tVl V1. V- \ e. —— t — "t L —

The solution gives 1ifetin consulçtion and incalE vectors as functions of the

vector of tax functions C1 (T1,. .. , 'In), Y1 (T1, . .. ,

Given the choices by individuals in each class and subject to budget

balance requireients, the governnent chooses the set of tax functions to

achieve its inax:inum. As in the one period iiodel, the decision on the choice

of tax functions can be transfornd into choice of lifetin consuulption inccxr

vectors for each class with (Ca, ) and (Cb, sustainable by a systen of

tax functions if and only if lifetinE self-selection constraints are satisfied

for each class. There is only one lifetin constraint for each class and riot

period by period self-selection constraints. In the first period, individuals

will base their decisions whether or not to reveal their type through their

choice of incai on the entire lifetinE consequences that follow. If

individuals do reveal in the first period, the goverrnt knows thereafter who

they are and can prevent then fran acting as if they belonged to a different

class. After revelation through their first period choices, the second and

later period tax functions can incorporate a large penalty if any other bundle

is chosen than the one the governnEnt desires then to choose. For exanpie, a

taxfunctionoftheforinT(Y)=Y,Y<?,T(Y)=Y+K-?,Y?,willinduce
the individual to produce incaxe of?, raises revenue of K, for any K ?, and
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allows the indivichial to consi C = Y - T(Y) = I - K. After the first period

revelation, the individuals in later periods no longer find the bundle of the

other group to be feasible. Hence, a self-selection constraint no longer

constrains the goverrnts' choices. Because the goverrmEnt has the ability

to cainiit itself, and separation is desirable in a single period problem

(Theorem II), separation will occur in every period.

T separate budget balance requirenEnts for the goverEnt are

considered. One possibility is that the goverritent has a single nultiperiod
N

budget constraint ti [N Tt + NbT I 0, where T is the tax revenueaa 1

raised from group i in period t and cS is the discount factor faced by the

governmEnt. Alternatively, the governmEnt could be required to balance its

budget separately in each period with NaT + NbT 0, t = 1,. .. ,M. Clearly,

the second is a tighter constraint on the goverrmmnt' s choices. It reflects

uxre closely the goal of considering pure information transfer beten periods

and is consistent with the no saving assimiption for individuals. On the other

hand, the single ntiltiperiod constraint is justifiable if the governmEnt has

access to possibilities not available to individuals such as a storage

technology feasible only on a large scale or access to a rld market closed

to trade by individuals.

The governmEnt maximizes the present discounted value of a weighted sum

of utilities in each period where the weights a and (1 - a) are arbitrary and

can vary to change the distribution beten the groups but are constant over

tima. The governmant's discount factor 6 need not equal that of individw1s.

Wnen they are equal (s = p), the govenmnt' s maximization corresponds to

finding the nultiperiod Pareto frontier as a varies fran 0 to 1. when they

differ (6 p), the problem is no longer a Pareto problem since the governmEnt

does not respect individuals' intertnporal preferences. .Jhile nuch

literature analyzes why private and social discount rates could differ, these



27

do not constitute the maj or reasons for allowing S p in this paper. The
major focus is on the case of equal discount rates. Allowing than to differ
gives rise to a case which serves as a useful benchmark for canparison when
discussing the uses of information in the optimal tax structure. The use of
information across periods when 6 = p is nuch less systanatic than when 6 p.

With randcinization not available to the govertnt, r_ consider t
maximization problans, (Pilla) and (P11Th), depending upon which budget
constraint is used. For the single nultiperiod constraint the problan is:

(Plila) Max 6t [aNaVa(C, Y) + (1 - a)NbVb(C, Y)]

M . . .

s.t.
pt_l[V1(C, Y) - V1(C, Y)] 0, i = a, b, j i

t=1

ti 6•1[N(C - + Kb(C - 0

OYK1, i=a,b, t=1,...,M

C0, i=a,b,

For the separate constraints on each period, the problan is identical except
that the constraint t1[Na(C - Y) ÷ Nb(C

- Y) 0 is replaced by:

(P11Th) Na(C - Y) + Nb(C - Y) 0, t =

The Lagrange nxiltipliers on the self-selection constraints are still denoted
by Aa and Ab aitluigh their values will differ between problans (Pilla) and
(P11Th). The Lagrange nultiplier on the single budget balance constraint in
(Pilla) is denoted by i while t = 1,. . . ,M denote the nultipliers on each

period's budget balance constraint in (P11Th).

Section B presents the case of 6 = p and section C the case of 6 p.
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B. Optimal Taxation 'Jhen 6

Characterization theorems of the optimal solution in (Pilla) similar to

Theorems II and IV for (P1) and (P11) continue to hold. Let C(ci) and Y),

t = a, b, and t = 1, . . ,M, be the solutions to (Plila) as functions of .

Vlt(a) denotes the optimal utility in period t of individuals in class i for

(Plila). V10, i = a, b, again denotes one period utility with no taxes.

Theorem VII: The optimal solution to (Plila) satisfies the following

properties:

(i) Ifpt_lV1(ct) vioLpt_1 thenpt_lV1(C(c),
yJ()) <pt_l1t(ç),

i = a, b and j i.

N . N . . . M

(ii) 1:f t_lVlt(a) = pt_lV1(C(a), y3()) ) pt_1vJt() >

t=1 t=1 t=1

N
ptlVJ(C(), Y(cx)), i = a, b and j i.

t=1

(iii) ii > 0

(iv) If = 0 then C(ct) = C(ct), Y(ci)
= Y(ct) dl1R&(C(c&), Y(a))

= 1,

i=a,b,ji,t=l,..,M

(v) For i = a, b and j i, if 0 then at each t = 1,...,M either:

1 < MRS3 (C(a), Y(ci)) < 1RS1(C(ct), Y(a))

NRS1(C(ci), Y(a)) <
MRS3 (C(ci), Y(a)) < 1

MRS'(C(ct), Y(ci)) MR&(C(ct), Y(ci)) =
1

Proof: See the Appendix.
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Fran part (v) it follows that even if information is utilized, if

distortions exist in the first period then they persist in future periods.

Thus, information learned cannot be fully used to uL,ve to a first best result

after the first period. The govermnt nust ccmnit itself to use information

only to a limited extent.

Theorn VII does not show that the goverrilEnt will use any information

gained in the first period to affect later period taxes. In fact, a s inpie

repetition of the one period nonrandan solution to (P1) satisfies all the first

order conditions in (Pilla). Hver, despite the apparent synhietry of the

first order conditions, nultiple asynmatric solutions may arise in the form of

nonstationarity of the optimal consunption-incai vectors. Such nonstationary

solutions arise fran the sama nonconvexity of the self-selection constraints

that gives rise to randan solutions in the one period probln. In fact, the

following theor show that there is an exact analo beten existence of a

nondegenerate solution to (P11) and a nonstationary solution to (Pilla).

Let V'() =
pt_lV1(C(a), Y(ct))/ , i = a, b, be the average

t=l t=1
utility achieved by each group over its lifetiix. Let the normalized utility

possibility frontier be the utility possibility frontier in average utilities.

Theorn VIII: Assuma p = 6 2/3 and M = . Then for every ci, there exists a

solution to (Pilla). This solution involves nonstationarity iff k(i) > 1,

i = a or b, in (P11). In addition, the normalized Pareto frontier arising in

(Plila) is identical to that in (P11). Proof: See the Appendix.

Given an infinite horizon and a large enough discount factor, any one

period randan solution can be exactly duplicated by a nonstatiaiary solution.

The circuxistances in Theorn V and VI under which randanization will arise are

thus sufficient for nonstationsry solutions. Even if M is finite or 6 is

1l, nonstationarity can arise.
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Theorem IX: If tS = p and if M is finite or ó < 2/3, then the normalized Pareto

frontier for (Pilla) y be interior to that for (P11). For any , a solution

will involve nonstationarity only if k(i) > i, i = a or b in (P11). For S 2/3,

there exists a sufficiently large finite M such that nonstationarity in a solution

to (Pilla) arises iff k(i) > 1, i = a or b in (P11). Proof: See the Appendix.

In many cases, the result for finite N or tS < 2/3 may be stronger. As

shown in Theorem VI, 'when son local randanization inproves on the nonraridom

solution, then there exists a randanization with any probabilities in the

probability siuplex which iuproves on the nonrandan solution. In this case,

even though the optinal solution to (P11) cannot be duplicated, a nonstationary

solution to (Pilla) exists iff a local nonrandan solution exists in (P11).

Problem (P11th) is the case of pure information transfer across periods

since neither the goverriInt nor individuals can borroc or save. It is not

possible to duplicate the one period randan solution by nonstationarity unless

randanization was over bundles with C - = (N/N) (C3 - Y3), h = 1, 2, 3.

This is not always true as shown by the exan,le in Theorem VI where only inca

is randcxn. Nevertheless, nonstationarity may still arise in (P11th) as long as

randanization arises in (P11Th). The Appendix contains a characterization of

the solution to (P11Th) as Theorem Al.

The only significant difference between the results for (P11th) and those

for (PlIla) is that it cannot be shown that the sane bundle is given in every

period to group j if group i's self-selection constraint is not binding.

However, any nonstationarity for group j is over bundles with no distortion.

Theorem X: If p = d, nonstationarity is possible in the solution to (P11th)

and arises only if k(i) > 1, i = a or b, in (P11). The normalized Pareto

frontier found in (P11th) is generally interior to that in (Plila) whenever

the solution to (Plila) involves nonstationarity. Proof: See the Appendix.
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If randcirness within periods is permitted as ll as nonstationarity of
the tax schedules, clearly, the goverruint can do as l1 as in the solution
to (P11). This is true for finite M and any discount rate. Only if randc]jl
solutions are used for (P11) will either randan or nonstationary solutions be
used in the niilti-perjod problan, regardless of whether the budget constraint
is a single one or a period-by-perjj one. Allowing both types of variation
leads to tailtiple optimal solutions which canbine randanization and
nonstationaz.ity in different ways.

C. pptiinal Taxation when 6 p

When the governmant and individuals have different discount rates,
5ysttjc ncxlstationarity arises in the optinal solution. To contrast with
the nonsysteitjc nonstationarity when 6 = , only results for (Pilla) are
given. Similar results hold if period-by-period budget balance is required or
if additional randcwjzatjon is allowed. Note that similar results arise if
the t classes had different private discount rates instead of identical
private rates different fran the govertiirit's.

The first order conditjon in (Pilla) are:

r6tcNa + Aapt_i](aVa/aC) — Xbpt_i(Vb/aC) —

pót_lNa
= 0, (ha)

t =

+ Aapt_h] (aVa/ay) — Apt(aVb/ya) — I.L6tN = 0, (hib)t = 1, . . . ,M

+
Abp ](Vb/ac)) — Aapt_l(aVa/Cb) —

p6thrq = 0, (lie)
t = 1, . . . ,N

+
xbP ](av1'/aY) - Xapt_l(3V/Y) + p6tl 0, (lid)t = 1,... ,M

When 6 > p, it follows fran these conditions that as t increases, the
ecorKmy approaches the single period first best UPF for any values of Aa and



32

Ab.
This, of course, does not tran that the normalized UPF based on average

utilities is the first best.

Theorn XI: Consider (Pilla) *ien S > p and M = . AssunE that the utility

functions satisfy the conditions that lirn(Va/3C) / (aVb/9C) and
C+o

liI%(ava/ay)/(?)DIaY) are finite. Then, when Ab = 0 and Aa> 0,

K b (C, ) = 1. Since NRSa ( C, Y) = 1, for all t, as t grows, the

optinhlit approaches the
period-by-period Pareto frontier.

Proof: Given Ab = 0, equations (ha) and (lib) yield NRSa(C, ?) = 1, for

all t. Divide equation (lie) b:r 6t_1(3Jb/acl)
and (lid) by

(1 - )Nb - A 6)t [( f9C)I(avb/aCt)I - Nb/(vb/ac) = 0, (12-a)

(1 -
Nb

- - pNb/(3vb19) = 0, (12b)

Since av1/aC is finite for C > 0 and lifl(Va/C) / (aVb/aC) is finite,

urn p(p/s)t_ [( /C)/(Va/aC)1 = 0. Hence, should urn sup(aVb/aC)
=

then after sara t, the left hand side of (12a) ,uld be strictly positive

violating the first order condition. Thus, no C sequence goes to zero,

guaranteeing that Urn inf C> 0. Similarly, frcxn (12b), Urn sup <Kb.

refore, Em (/6)t(/aCb) = Urn (p/)t1 (3/3) = 0.

Given this, divide (lie) and (lid) by and solve for iisb(c, ) =

_(/y)/(Vb/aC).

b(cb, yb) =
- Aa(p/5)t1(aVa/) (13)

÷ X,145) (3Va/9IP)

then umrsbcb, Y) = 1. Q.E.D.

t+co
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Note that the conditions on utility given in this theorn can be

satisfied by the utility functions in Theorn VI with Wa > wb. Given the
separability, (aVa/aC)/(aVb/ac) = 1 at all C. The maxiimri incare earned by

the able exceeds that earned by the unable Ka> Kb. Hence, even if ay/aL goes

into infinity as L approaches it maxinun value at K11w1, since Kb/Wa < Ka,Wa

then 3Y(Kb/w)/ay and ljjn(DVa/ay)/(avb/ay) are finite.
y+1c

Different discount rates cause the goverrunt and individuals of type A
to have difference preferences. Therefore, trade between th9n is possible.

The goverrxrnt places a higher value on the fixture than do individuals.

Hence, the govemlent can offer typ. A individuaia higher current utility and

lower future utility 'while doing the reverse for type B as canpared to the

solution when d = p. Self-selection will continue to be satisfied given the
value of p but social welfare rises. To see this, note that fran equation
(ha) and (hib), aVa/aC = aVa/aY = b"a +

Aa(P/(5)t_lj.. Hence, nrginal
utility of consunption rises over tinE indicating that consuTption declines.
As t goes to infinity, a3Va/aC goes to . For group B consuriptiori,
(1 — )aVb/aC) u + a/N)(p/s)t_ la/C), which since urn inf C > 0,
mist at least eventually decline with C rising. As t goes to infinity,
(1 - a)(3Vb/C) goes to Thus, in the limit, the solution is not only
Pareto optinial but it is first best in the sense of being the s as the
solution to the one period probln without self-selection constraints.

If < p, the trade is still possible but tends to go in the opposite
direction. As t goes to infinity, C goes to infinity and Y goes to zero
along a path with MRSa(C, Y) = 1, at all t. ihis, A's utility rises over

Fran (lic), it follows that Cmist also go to infinity as t rises.
However, Y going either to 0 or to Kb could be consistent with the first
order condition (lid). Whatever the specific solution, in this case as when s
> p, the paths of carnodities arid utilities nove systematically over tine and
do not vary solely to nthn-ic randariizatiorj.
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IV. Conclusions

These results indicate that when the governnent respects individual

discount rates, only in a weak sense does the optimal tax sys tan incorporate

any information about individuals learned fran their responses over tine.

First, if the goverrment is able to randanize in each period, then no benefit

is gained by keeping track of what jndividuals have earned in past periods. A

lottery can be offered in each period, independent of other periods,

satisfying self-selection constraints and yielding the best possible outccxre.

Second, if the govertent cannot ranckxnize directly, then it can duplicate

ran&rnizatiOtl by intertanporal nonstationaritY. 3uch nonstationaritY requires

that the governnent keep track of individuals' past behavior since, after the

first period, self-selection constraints need not be satisfied. Third, even

when the goverment nust keep track of behavior and uses this in future

periods, the information is not used systanatically to yield continued

increases in the governnent objective function over tine. Instead, changes in

the weighted suni of utilities across periods occurs only as the govertiient

tries to mimic a one period randcin optimrun. If tax schedules mist vary over

tine in a particular iner, it is not because of the need to learn

individuals' abilities, but because utility in each period mist be ordered

correctly to be consistent with lifetine utility constraints.

By contrast, 'when the governnent discounts at a different rate than

individuals, then there is systanatic change in the bundles given to

individuals. In the limit, the distortions may be eliminated. This arises

because the different intertaporal preferences of the govermnt and

individuals leaves roan for "trade" between than. Over t:ine the differences

between the utilities of the groups grows larger.

The results in this paper show that nonstationaritY over tine and

randanization within each period can substitute for each other in the opti1'l
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intertnpora1 incai tax. It is not clear which approach is preferable since
each has sr advantages.

First, they are not perfect substitutes. Even if the goverrlnQnt has a

single intertanporal budget balance constraint, nonstationarity is guaranteed
to do as well as randanization only with i infinite horizon and a

sufficiently large discount factor. If the goverruent has a separate budget

constraint in each period, the optimal randanization cannot be canpietely

icated by intertrporal variability, so that randanization along with
nonstationarity would be needed to reach this Pareto frontier.

Second, political and administrative difficulties could prevent

inplaientation of either nethod. On one hand, the goverrinent may be reluctant

to incorporate randcinization explicitly in the tax code. This is especially

true since the optimal randanization requires individuals to declare their

type and then receive at randan a tax schedule before choosing their labor

supplies. The optimal randanization can generally not be iniplanented by

randcxn collection or eaforcannt after labor supply decisions. On the other

hand, intertanporal nonstatioriarity requires keeping track ofpast labor

supply decisions to determine individuals' current tax paynents. Hocver,

this is simplified since the goverrnent needs only to recall each individual's

type as revealed by past decisions instead of relearning this each period as

isrequired by randanization.

Third, both ethically and to increase acceptance of the tax sys tan by

society, it is desirable that the systan be perceived as fair. A standard

notion of fairness is horizontal equity, that individuals in the sane

circinstances be treated the sane. Randcxnizatiori satisfies horizontal equity

ex ante but not ax post. Before the randctn selection, all individuals of the

sane type face the sane lottery. After receiving a randan draw of tax

functions, individuals of the sane type will be induced to choose bundles
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which need not yield the sama utility. Note, however, that suboptimal

randanization in which ex post horizontal equity is imposed may often still be

better than no randcxnization as the proof of Theorn V daionstrates. Inter-

tpora1 nonstationarity achieves horizontal equity both ex ante and ex post

in each period. Individuals of the s type are induced to choose the sara

bundles as each other in every period even though the choice varies over tinE.

Fourth, both procedures induce asynnEtries in the bundles chosen by

individuals of a type either within a period in an expected sense under

randaEizaticxi or over tine under noristationarity. With strictly concave

utility functions, individuals desire to reduce these asyimtries. Under

randonization, individuals might gain by purchasing insurance counteracting

the randamess in the tax systn. If such policies re forbidden, then
similar effects could be achieved by trades with other individuals of the sane

type. For the sane reason, under nonstationarity, individuals desire to

sncoth consuition and leisure over tinE by saving or borrowing. Saving or

insurance serves to counteract the weakening of self-selection constraints

which notivated asynixetry of bundles in the first place. 'fle ability to save

or buy insurance will be a factor in the decision to reveal one' s type

truthfully. The choice between nonstationarity or randaxriess may depend upon

whether it is easier to prevent saving or insurance. If these are desirable

for other reasons or cannot be prevented, then the simple repetition of the

solution to (P1) may be the best feasible solution. However, the opposite

probløn arises if only symxetric solutions are allowed when individuals have

nonconvex opportunity sets. Indivitbv1s may desire randmiation of

consuiiption about their bundles to convexify budget sets. Thus, gaibling

might have to be inhibited by the govermEnt. Any naiconvex tax structure

nust account for additional markets whose use might be encouraged by the tax

structure.
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Footnotes

1. Guesnerie and Seade [1982] derived scxr results without global single
crossing, but they assumed that MRS 's 'were not equal at the optimal
bundles. We only assume that tangencies do not lie on the no-tax budget
line and show that the MRS's are not equal at an optiim iii.

2. This requires an additional assizptiori on U(C,L). Note that MRS1 (C, Y) =

_1hJL(C,L1)IwUc(C,I)n. Ifa> b then La < Lb. The result holds if
the direct effect of the higher wage is not countered by the effects of a
lower L on the MRS. Differentiating -

[UL(C ,Y/w) /'wlJ (C ,Y/w) I with respect
to w yields dMRS(C,Y) /dw = (UL/WU)

- (L/w )d(_tJL/UC) /dL. A sufficient
condition for dMRS(C,Y)/d < 0 is d(_UL/UC)/dL 0 'which holds if C is
not inferior. See Sadka [1976].

3. The schedule T(Y) need not be differentiable. In fact, it will generally
be nondifferentiable at the inccxlEs chosen by the t groups.

4. A lower ability class might be unable to produce the incam of a higher
ability class. Such bundles can be assigned arbitrarily low utilities.

5. The results are essentially unchanged if taxes had to raise net revenue
as wall as redistributing across groups.

6. Other tax functions could yield the sane result as long as the slope of
the individual budget constraint is greater than both MRS 's, for Y less
than Y1, and is smaller than both MRS's, for Y greater than Y1.

7. A self-selection constraint may hold with equality so that one of the
groups may be indifferent between the t bundles offered. The solution
requires that all individuals in the group choose the bundle aiimed at that
group. This can be achieved by assumiing that the goverrnt can assign
indifferent individuals to whichever group it desires. Given that the
goverment does not know to which group a particular individual belongs,
this is not a reasonable assumption. An alternative view is that the
solution to (P1) is really an c-equilibrium. Although it cannot itself
be achieved, a bundle arbitrarily close to that solution can be found
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which satisfies resource balance and which has the self-selection
constraint hold with strict inequality. If the self-selection
constraints taist hold with strict inequality, then there may exist no

solution to the maximization prob1n.

8. This is true provided the group whose self-selection constraint does not

bind does not have its weight equal 0. However, if a = 0 then B's

self-selection constraint cannot bind since resources are being
transferred to B. Similarly, if a = 1, then A's self-selection

constraint cannot bind. In addition, there is an implicit assumption

that the maximized value as a function of y does not have an inflection

point at y = 0. Constraint qualification rules out such a possibility.

9. If ex ante randaiiLzation is not possible, then ex post randatiization
might still be desirable.

10. Again, if post revelation randarriess is not possible, the prerevelation

randamness may be desirable since it weakens the budget constraint of the

governnnt.
Such prerevelation randarriess can be desirable if there are

nonconvexities in the utility possibility frontier (see Stiglitz
[1982a]).

11. In (P1), the bounds onY1 along with resource balance autcinatically bound

C1. Here. bounds on C do not foll fran the expected resource
constraint since that constraint bounds the products 11. cih only. As

sara ir goes to zero, the corresponding C could be made arbitrarily
large. The M1 could be chosen sufficiently large to bound the feasible

set without affecting the solution.

12. To guarantee ex post resource balance for all realizations of all randan
mechanisms, a stronger constraint nust be imposed:

N MaX[Cth - Y] + N,, Nax[d)h - bh < 0 (Fl)
ah h

where the max's are over those bundles with nonzero probability.
Condition (Fl) says that, even if all individuals receive the bundle with

the largest difference between C and Y, resce balance still holds.
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For sai types of randcinization, (Fl) may be required. For exairple,
assuIE, in the lotteries, that one tax schedule (that is, one bundle) is
chosen for every individual of a type. The objective function arid
self-selection constraints are unaffected by the manner in which
randairizaticjn occurs. If (Fl) is violated, then there is clearly s
positive probability of assigning nore consulption than is available.
On the other hand, for many machanisms, (Fl) is far too restrictive. It
rules out balancing large corisuiiption to sai people frc*n a favorable
draw for them against low consumption to others of the sama type. This
can be achieved withxit violating the feasibility constraint ex post as
discussed in the text.

13. This result holds not just because little redistribution is desired with
similar abilities so that neither self-selection constraint binds. If

= 0 in (P1) and the A's are nore able, redistribution is carried out so
that A's self-selection constraint binds. Randaization will not improve
on this solution.

14. If y = K1lnL + K2L, where K1 < 0 and 1(2 > 0, then Ly"/y" = -2 so that
randaiization will never occur. (y' > 0 can be assumsd by the function
at small values of L.) If there is quadratic disutility of labor with y

then CM) is satisfied so that randcxnization does not occur when
Xa > 0 Substituting into (Bii) shows that local randcii 7tion cannot
occur when > 0. Whether nonlocal randcxnization can occur is unclear.

15. Stiglitz [1982aJ derived the conditions in Theorem VI and Corollary III
as sufficient for local randanizatiori over t bundles arising with equal
probability. The results here are stronger: these conditions are both
necessary and sufficient for any local randcznization to exist which
iziproves on the nonrandan solution. The same condition applies with any
arbitrary probabilities over three bundles. Due to an error in
calculation, Stiglitz [1982a] asserts a result opposite that of
Corollary II.

16. Transversatility conditions nust be checked to guarantee that this is a
valid solution.
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APPE)IX

PROOFS OF THECRE21S

k(i)
PROOF OF THEORHvI IV: (i) Let 1(a) ir(a) C (a) and

h=1
-. k(i)

ih
Y1(a) 1rh(a)Y (a), i = a, b. Then since V1(C1, Y1) is strictly concave,h=1

V1((c), 11(a)) EV1(a), with strict inequality if the i lottery is

k(j) .

nondegenerate. If 1r.h(a)V1(CJh(a), yJh(a)) =EV1(a) then V1(3(a),• • h=1
13(a)) ES!1(a), with strict inequality if the j lottery is nondegenerate,

also follows fran the strict concavity. By asstzrption, EV1(a) V1° so that
V1((a), 11(a)) V1° and V1(&(a), ?3(a)) > rqlO trust hold. Since the
indifference curve through V10 is tangent to the line C = Y, 1(ct) > ?(a) and

&(a) > 1(a) nust hold. Hence, N((a) - 11(a)) + N(3(a) - ?(a)) >

trust hold. 1t N. hl1h - Y1h(a)) + N jh(() YJh(a))
= Ni((a) - 11(a)) + (& (a), 13(a)) so resource balance is violated unless

the self-selection constraint for i holds with strict inequality.
(ii) Since even with randanizatjon the point (Vao, Vb0) mist lie on the

constrained utility possibility frontier, the proof follows as in that for
Theorn II.

(iii) Given (ii), this result follows exactly as the corresponding result
in Theorn II.

(iv) Consider the first order conditions with respect to each and
ih in maximization problan (P11). In each ccxidition, ,jh nultiplies every

term so it drops out leaving conditions identical in form to those in (P1).
Since = 0, it is inirdiate that at each h, MRS3 (C3F, yih) = 1.

To see that k(j) > 1 is not needed at an optiimiii, consider the case where
the self-selection constraint for group i holds with strict inequality (that
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is, f TrthV(C, i') > Tr.hV (C yih)) Having k(j) > 1 in a

nondegenerate lottery so there exist h arid k with lTjh and jk positive and

(Cjh, y.Jh) (cjk yjk)) cannot be optimal. With the probabilities fixed,

consider a change in the (CJh, yJh) 'which uoves each closer to the mean bundle

without changing the mean. Such a shift will continue to satisfy both the

bounds on the cjh and and the resonrce balance constraint. The

probabilities do not change, satisfying the constraints that they si.mi to 1.

k�j) -
Fran concavity, ).. ¶.V1(C3", Y3 ) will rise but since the self-selection

h=1
constraint for i holds with strict inequality, if the shift is not too large,

kU) h h
this constraint will still hold. Since L 1.hVJ(CJ , Y3 ) rises, the

h=1
self-selection constraint for group j trust still hold. Thus, the bundles

k,(j) •h h
after the shift yield a feasible lottery. Since . 1r.hVJ(CJ , Y3 ) rises,

h=1
the objective function rises showing that the prior bundle was not optimal.

(v) The first order conditions with respect to cjh and jh are the sane

as those for C3 and Y3 in (P1) since the jh cancel fran the conditions.

Hence, the relations here can be shown exactly as in the proof of the Theoren

II. Unlike in that theorn, equal NRS's equal to unity can not be ruled out.

To see that k(j) > 3 is not required, consider the optimal lotteries.

Fix the quantities (Ca', Y'), i = a, b, and h = 1,... ,k(i). Consider (P11)

as a linear progranming probln in the ir. Fran part (iv), one of the

lotteries is degenerate with = 1. Fran part (ii), at txxst one

self-selection constraint cart bind. Thus, of the five original constraints,

at nxst three (a self-selection constraint, the resc*irce balance constraint,

and the constraint that the probabilities in the nondegenerate lottery sii to

1) are binding. A solution exists with the tuther of nonzero variables no

greater than the nutiber of binding constraints. Q.E.D.
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PROOF OF THEORE2 V: The proof requires the following

Larrna I: Consider any utility function 11(X), any bundles X1, X2, and
with U(X1) > U(X) and 11(X3) > and any , 0 < i < 1. There exists sa

concave increasing transformation V(X) = F(U(X)) such that ,rV(X') + (1 -
,r)V(X2) < V(X).

Proof: It is sufficient to provide an example of a transformation under which
the result holds. Let U2 U&) consider F(U) (U - U2)1". Then

V(X2)
= (U(X2) - U2)1 = 0 for all n. The result then reduces to there

existing an ti with wV*(X') <V(X3). This in turn follows if there exists

an for which V*(X3)/V(X') = [(U(X3) - U2)/(U(X') - . Since
liin[(U(X3) - U2)/(U(X1) - U2)]1' = 1 and since iT < 1, the existence of the

required n follows.
Q.E.D.

Proof of Theorn: Given a, let (C1, Y1) and (C3, Y3) be the solutions to
(P1). Since > 0 and NRS3(C3(a), Y3(cz)) 1 from Theorn 11(v), there nust
exist t bundles (C1, yJi) and (C2, yJ2) with V(C1, Y3') = V(C2, y32) =

V3(C3(a), Y3(ct)) and such that C' — > C3(a) — Y3(a) > C — y32•

Therefore, a; I < < 1), mist exist with ;C1 — y31) ÷ (1 — ;)(C2 - yJ2)
= C3 (a) - Y3 (a). It also follows fran Theorn 11(v) that V1(&2, Y3 2) >

V'(C3 (a), Y3 (cx)) > V1(Cf, y3') since the indifference curve of j through
(C3 (a), Y3 (a)) lies between indifference curve of i and the 450 line through

that bundle (see Figure 6). Fran Ltx I, there exists a transformation of V1
such that ;F(V1(C3l, yJi)) + (1 - ;)F(V(C2, y2)) < F(V1(&(ct), Y3(a))) =

F(V1(C1(cz), Y1(a)). Since V(C1, Y1) = V(C2 y.]2) V3(C3(a), Y3(a)),
;V(Ci1 yJi) + (1 - ;)V(C2, y32) > V3(C1(a), Y'(a)) so the self—selection

constraint for j continues to be satisfied. The self-selection constraint for
i is now! satisfied with strict inequality. Hence, all constraints hold. If
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1 > NRS3(C3(ci), y3()) > MRS1(C3(x),Y3(a)), the bundles (C1, Y) and (C2,

yi2) can be chosen close enough to (C(a), Y3(cz)) so that 1 > MR&(C1, yJi)

and 1 > NRS3 (C2, yJ 2) Then consider the bundles (C1 + , + 5) and (C2

+ yj2 + • These continue to satisfy resource balance. For small enough

(5 > 0, it will still follow that ;F(V(C1 + , + ) + (1 - ;)F(V1(&2 +

i2 + < F(V(C1(c), Y1(ct)) so its self-selection constraint still

holds. Since 1 > MRS at both bundles, V (C3 + , y3 + 5) > V3 (Cf, y3 1) anci

(C2 + , yJ + ) > V3 (Cf, y32) Hence, the lottery ((C1 + , y' + ,

(C2 + , + , ;) is feasible, raises i's 'welfare and thus improves upon

the nonrandan solution (C3(c), Y(a)). If 1 < W&(C3(), Y3(a)) < NRS1(C3(a),

Y3(a)) a similar proof follows with (C1 , y3 and (C2, y -)

forming the lottery improving on (C3(a), Y3(c&)). Q.E.D.

PROOF OF 'flIEOREM VI: Frcxn Theorn IV, Xa> 0 implies Ab
= 0 and so it is not

desirable to randanize A's tax schedule. Furthernore, the optimal

randcii1zation to offer B need involve at nx)st three tax schedules. This

result carries over to finding lotteries which improve on the rionrandcxn

solution to (P1) even if the optimal lottery is not found. That is, if a

lottery over k> 3 bundles is better than the nonrandan solution, a lottery

over just 3 bundles uiist exist which also does better. Hence, we can restrict

the analysis to lotteries h' cbh, ybh) h = 1,2,3, 'where h = 1. Let

(Ca, cb, b) denote the nonrandan solution to (P1).

A lottery exists which improves upon (Ca, 1a, ci', Yb) if, holding

(Ca, ya) fixed:

bh (Al)

- + - Ybh 0 (A2)

Ybh) Vb(d, Yb) (A3)
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and at least one of (Al) to (A3) holds with strict inequality. (Al) and (A2)

guarantee the lottery is feasible while (A3) says that B's expected utility
does not decline. (Al) can be replaced by an equality since, if it held with
strict inequality, a uan preserving shrink of the lottery would continue to
satisfy (Al) and would raise

XllhVb(CML,ybh) leaving (A3) satisfied. Since
(Al) is assunEd to hold with strict inequality, a small rise in

hVa(CbhI, ybh)

would not violate it. Of course, such a shrinkage would cause (Al) to hold with
equality before all randamess was eliminated, else there would exist a
nonrandan vector better than (Ca, Ya, cb, Yb), a contradiction. If (Al) holds
with strict inequality, Ca could be raised to get an improvaxent while, if (A3)

holds with strict inequality, the iinproveint is direct. Since Na(Ca - ) +

Nb(Cb - Yb) = 0, equation (Al) can be rewritten as

- Ybh) - d + Yb 0 (A4)

Consider any probability vector 11 112, 113). A local randanization is a
path (Ch(t), Y1'(t)), h=l,2,3 with (Ch(O), Yb(O)) = (Cb, Yb), all h, and such
that for t > 0 at least two bundles with nonzero probabilities differ fran

each other. A local randanization is improving for this probability vector if

a path exists with

Va(Ch(), Y"(t)) = Va(Cb, Yb) (AS)

- C'(t)) Yb - C? (A6)

'Y'(t)) vd, Yb) (A7)

Differentiating (AS) - (A7) with respect to t around t = 0 and recalling that
=

-V/V yields:



46

d(O) - Sa(Cb, (O) = o ()dt

______ dCh(O) > o (A9)dt dt -

dC'(O) b(cb b dY1'(O)
dt ' dt I 0 (AlO)

Substituting (A8) into (A9) and (AlO) yields:

d'Y'(O) o (All)[1 MRSa(Cb, b)1 h dt

[}RSa(Cb, yb) - b(cb b)J dthW) (A.12)h dt

Frcxn Theorn 11(v), 1 - !RSa(Cb, Y1) and 3I(Ib yb) - b(cb, b) mist

opposite signs so that (All) and (A12) can both hold if and only if

______ = o iich frcin (AS) inplies that
dC'(O)

11h dt
= 0. This, the first

order effects along an itxproving path nhist be zero. The gain to randomization

niist care fran second order effects. If either the second derivatives of net

resources or of B' s expected utility are positive, then, since the first

derivatives are zero at t = 0, for t > 0, for t > 0 the first derivatives and

hence the functions will becai positive as required. These second

derivatives at t = 0 are:

JIhSha + b) d2d'(0) + V(Cb, b) d2?O)1 = 0 (A13)
dtdt

d2YF(0) d2Ch(0)10 (A14)

dt2

-

dt2

+ b) d2d'co) + vb(Cb b d(o),y) 2
(A15)

dt dt
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where S' = (dCh(O))2 V1 (Cb, Yb) + 2 dYb(O) d(O) V1 (di, Yb) + (d))2dt cc d cy
(cb, yb) Fran the fact that the utility fiuictions are strictly concave,yy

for any h with dCh (0) /dt or dY' (0) Idt not zero, S mist be negative. For
convenience, the argunents of partials of V1 are deleted since all partials
are evaluated at (Cb, Yb).

Substituting (A13) into (A14) and (A15) yields

Z (1 NR h d2Yh(O) + hS'' 0 (A16)dt

- b1 h d2YT1(0) + [(sbh/\,b) (S/V)] 0 (A17)

Solving (A16) for ii d'Y10) and substituting into (A17) gives:

1) (11 S) iv + (sbh) , b - MRSa) z (A18)(1 _MRSa) h
(1 _MRSa)

Fran Theoran 11(v), 1 - MRSa, 1 - b and NRSb - uRSa all have
sign. Hence, (A18) can be rewritten as

___________ ___________ - MRSaI z 0 (A19)
v'ji. _b, aI' NRSaI j _a b1
Given any It2, 113), a path (Ch(t), ?1'(t)), h = 1,2,3, yields a local

_____ dCi'(0)ran&njzatjon hich inroves on the nonrandcin solution to (P1) iff
d(O) d2Ch(O) d2Y¼O) are suth that dCh(0) d?'(0)dt ' 2 and ______ ______dt dt 0 but, fordt dt2

sare h, (dch(o) h
dt dt x 0, and (A15), (A16), and (A19) hold with a strict

inequality in (A16) or (A19). Note that since (1 - MRSa) 0 and
are otherwise unrestricted, for any (dCh(0)/dt, d(0)/dt), h = 1,2,3,
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d'(O)/dt2, h = 1,2,3, can be chosen to make Z defined in (A16) take any

value. Given this choice of d2Yh(O)/dt2, h = 1,2,3, d2Ch(O)/dt2, h = 1,2,3,

can always be chosen to make (A13) hold. It therefore follows that local

randcnizatiOn is desirable iff there exists a (dC'(O) /dt, dyh(O) /dt),

h = 1,2,3, such that

hS ___________- b >

i - a
Necessity of (A20) follows directly frii (A19). If (A20) holds, then, given

(A16) d2Y1(O)/dt2 can be chosen to make Z small enough that (A19) holds.

If (A20) holds, then for at least one h, s'/(vl1 - b1) >

S/(VI1 - NRSaI) nijst hold. For this h, set X = (dd(O)/dt, d(O)fdt) and

necessity is shown. To show sufficiency, let = (, X) = (dCc(0)/ dt,

dYh(O) /dt), h = 1,2,3 and ass there exists a Y = (Y1, Y2) such that

> (?layt)/cJbIl - b) Given 1' 2' and fl3 SC1I

allowable xh, h = 1,2,3 will exist that is equivalent to (Y1, Y2) if the

following five conditions are satisfied:

1114+1124+1134=0
(A21)

111X2 + 1124 + 1134 = 0 (A22)

111(4)2 + 2(4 + 11(X3) = 4 (A23)

111(4)2 + 112(4)
+ 11(4) = 4 (A24)

111X]X2 + 11244
+ 11344 = 'l'2 (A25)

Conditions (A21) and (A22) guarantee that 11h(dC'(0)/dt)
=

11h(dYh(O)/dt)
= o

while (A23) -(A25) guarantee that T(XHb(h) t) = y}jbyt and that
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= Hayt. Given the assunptions on Y, any solution to (A21)-

(A25) would satisfy (A20). Since at least two of the 11h trust be positive,

assurre without loss of generality that > 0 and 112 > 0. Consider

= = 0, X = -(n1/112)X
=

Y1L111/(112(111
+ 112))j, and X = (mh/u2) =

Y2[rr1/(n2(n1 + 112flj. Substituting these values shows that (A21)-(A25) are

satisfied shdng sufficiency. Q.E.D.

PROOF OF COROLlARY II:

Let 'a' "by = Ii - NRSaI q}bgt ggt me III, local

randcxnizatjon is desirable at sane 'a and b' a' > 0. 1'a =

no redistribution is possible since their indifference maps are identical so
= 1. Hence Q a's, "by = o. Differentiating Q with respect to

around p = b yields

c(P, P) = dli - Sat g}jbgt - dli - b1 gHagt
(A26)vb VC a c

Since Va = F(Vb), V = F'V,' = F'VC + r(vb)2 V = F'V + r(vb)2 j
= F 'V + F"VV. when a = b' substituting these into (qHaqt)/V yields:

qt Hbt 2_____ = g,g +
, q1 -

q2) (A27)

Substituting (A27) into (A26) yields

dQ(PP) qHbq df 1 - MRsal dli - b1_____ -
dl'a

__ 2dl1NRsal-
(q1

-
q2) , (A28)

F' a




