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enabling large firms to invest cheaply and grow larger.
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One of the main question in macroeconomics today is why small firms are being replaced

with larger ones. Over the last three decades, the percentage of employment at firms with

less than 100 employees has fallen from 40% to 35% (Figure 1a); the annual rate of new

startups has decreased from 13% to less than 8%, and the share of employment at young

firms (less than 5 years) has decreased from 18% to 8% (Davis and Haltiwanger, 2015).

While small firms have struggled, large firms (more than 1000 employees) have thrived: The

share of the U.S. labor force they employ has risen from one quarter in the 1980s, to about

a third today. At the same time, the revenue share of the top 5% of firms increased from

57% to 67% (Figure 1b).

Figure 1: Large Firms Growing Relatively Larger. The left panel uses the Business
Dynamics Statistics data published by the Census Bureau (from Kozeniauskas, 2017). It contains
all firms with employees in the private non-farm sector in the United States. The right panel uses
Compustat/CRSP data. Top x% means the share of all firm revenue earned by the x% highest-revenue
firms.
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One important difference between large and small firms is their cost of capital (Cooley

and Quadrini, 2001). Hennessy and Whited (2007) document that larger firms, with larger

revenues, more stable revenue streams, and more collateralizable equipment, are less risky

to creditors and thus pay lower risk premia. But this explanation for the trend in firm size

is challenged by the fact that while small firms are more volatile, the volatility gap between

small firms and large firms cash flows has not grown.1 Furthermore, the trend in covariance

of firm stock prices with market portfolio, as measured by CAPM β, is not significantly

1Evidence on the volatility gap between large and small firms is in Appendix A.4. Other hypotheses are
that the productivity of large firms has increased or that potential entrepreneurs instead work for large firms.
This could be because of globalization, or the skill-biased nature of technological change as in Kozeniauskas
(2017). These explanations are not exclusive and may each explain some of the change in the distribution
of firm size.
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different across firms of different sizes.

If neither volatility nor covariance with market risk has diverged, how could risk premia

and thus the cost of capital diverge? What introduces a wedge between unconditional vari-

ance or covariance and risk is information. Even if the payoff variance is constant, better

information can make payoffs more predictable and therefore less uncertain. Given this new

data, the conditional payoff variance and covariance fall. More predictable payoffs lower

risk and lower the cost of capital. The strong link between information and the cost of

capital is supported empirically by Fang and Peress (2009), who find that media coverage

lowers the expected return on stocks that are more widely covered. This line of reasoning

points to an information-related trend in financial markets that has affected the abundance

of information about large firms relative to small firms. What is this big trend in financial

information? It is the big data revolution.

Our goal is to explore the hypothesis that the use of big data in financial markets has

lowered the cost of capital for large firms relative to small ones, enabling large firms to grow

larger. In modern financial markets, information technology is pervasive and transformative.

Faster and faster processors crunch ever more data: macro announcements, earnings state-

ments, competitors’ performance metrics, export market demand, anything and everything

that might possibly forecast future returns. This data informs the expectations of modern

investors and reduces their uncertainty about investment outcomes. More data processing

lowers uncertainty, which reduces risk premia and the cost of capital, making investments

more attractive.

To explore and quantify these trends in modern computing and finance, we use a noisy

rational expectations model where investors choose how to allocate digital bits of information

processing power among various firm risks, and then use that processed information to solve

a portfolio problem. The key insight of the model is that the investment-stimulating effect

of big data is not spread evenly across firms. Small firms benefit less. In our model, small

firms are equivalent to young firms, and large firms to old firms. This is consistent with

the data, where age and size are positively correlated. In the model, larger firms are more

valuable targets for data analysis because more economic activity and a longer firm history

generates more data to process. In contrast, all the computing power in the world cannot

inform an investor about a small firm that has a short history with few disclosures. As big

data technology improves, large firms attract a more than proportional share of the data

processing. Because data resolves risk, the gap in the risk premia between large and small

firms widens. Such an asset pricing pattern enables large firms to invest cheaply and grow

2



larger.

The data side of the model builds on theory designed to explain human information

processing (Kacperczyk et al., 2016), and embeds it into a standard model of corporate

finance and investment decisions (Gomes, 2001). In this type of model, deviations from

Modigliani-Miller imply that the cost of capital matters for firms’ investment decisions. In

our model, the only friction affecting the cost of capital works through the information

channel. The big data allocation model can be reduced to a sequence of required returns for

each firm that depends on the data-processing ability and firm size. These required returns

can then be plugged into a standard firm investment model. To keep things as simple as

possible, we study the big-data effect on firms’ investment decisions based on a simulated

sample of firms – two, in our case – in the spirit of Hennessy and Whited (2007).

The key link between data and real investment is the price of newly-issued equity. Assets

in this economy are priced according to a conditional CAPM, where the conditional variance

and covariance are those of a fictitious investor who has the average precision of all investors’

information. The more data the average investor processes about an asset’s payoff, the

lower is the asset’s conditional variance and covariance with the market. A researcher who

estimated a traditional, unconditional CAPM would attribute these changes to a relative

decline in the excess returns (alphas) on small firms. Thus, the widening spread in data

analysis implies that the alphas of small firm stocks have fallen relative to larger firms. These

asset pricing moments are new testable model predictions that can be used to evaluate and

refine big data investment theories.

Our model serves both to showcase a new mechanism and as a framework for measure-

ment. Obviously, there are other forces that affect firm size. We do not build in many other

contributing factors. Instead, we opt to keep our model stylized, which allows a transparent

analysis of the new role that big data plays. Our question is simply how much of the change

in the size distribution is this big data mechanism capable of explaining? We use data in

combination with the model to understand how changes in the amount of data processed

over time affect asset prices of large and small public firms, and how these trends reconcile

with the size trends in the full sample of firms. An additional challenge is measuring the

amount of data. Using information metrics from computer science, we can map the growth

of CPU speeds to signal precisions in our model. By calibrating the model parameters to

match the size of risk premia, price informativeness, initial firm size and volatility, we can de-

termine whether the effect of big data on firms’ cost of capital is trivial or if it is a potentially

substantial contributor to the missing small firm puzzle.

3



Contribution to the existing literature Our model combines features from a few dis-

parate literatures. The topic of changes in the firm size distribution has been taken up

in many recent papers, including Davis and Haltiwanger (2015), Kozeniauskas (2017), and

Akcigit and Kerr (2017). In addition, a number of papers analyze how size affects the cost

of capital, e.g. Cooley and Quadrini (2001), Hennessy and Whited (2007), and Begenau

and Salomao (2018). We explore a very different force that affects firm size and quantify its

effect.

Another strand of literature explores the feedback between information in financial mar-

kets and investment: Maksimovic et al. (1999) models the relationship between a firm’s cap-

ital structure and its information acquisition prior to capital budgeting decisions. Bernhardt

et al. (1995) studies the effect of different levels of insider trading on investment. Ozdenoren

and Yuan (2008) studies a setting where asset prices influence fundamentals through coor-

dinated buying and thus self-fulfilling beliefs. Furthermore, there are papers that focus on

long run data or information trends in finance: Asriyan and Vanasco (2014), Biais et al.

(2015) and Glode et al. (2012) model growth in fundamental analysis or an increase in its

speed. The idea of long-run growth in information processing is supported by the rise in

price informativeness documented by Bai et al. (2016).

Over time, it has gotten easier and easier to process large amounts of data. As in Farboodi

et al. (2017), this growing amount of data reduces the uncertainty of investing in a given

firm. But the new idea that this paper adds to the existing work on data and information

frictions, is this: Intensive data crunching works well to reduce uncertainty about large firms

with long histories and abundant data. For smaller firms, who tend also to be younger firms,

data may be scarce. Big data technology only reduces uncertainty if abundant data exists to

process. Thus as big data technology has improved, the investment uncertainty gap between

large and small firms has widened, their costs of financing have diverged, and big firms have

grown ever bigger.

1 Model

We develop a model whose purpose is to understand how the growth in big data technologies

in finance affects firm size and gauge the size of that effect. The model builds on the

information choice model in Kacperczyk et al. (2016) and Kacperczyk et al. (2015).
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1.1 Setup

This is a repeated, static model. Each period has the following sequence of events. First,

firms choose entry and firm size. Second, investors choose how to allocate their data process-

ing across different assets. Third, all investors choose their portfolios of risky and riskless

assets. At the end of the period, asset payoffs and utility are realized. The next period, new

investors arrive and the same sequence repeats. What changes between periods is that firms

accumulate capital and the ability to process big data grows over time.

Firm Decisions We assume that firms are equity financed. Each firm i has a profitable

1-period investment opportunity and wants to issue new equity to raise capital for that

investment. For every share of capital invested, the firm can produce a stochastic payoff

fi,t. Thus total firm output depends on the scale of the investment, which is the number of

shares x̄i,t, and the output per share fi,t:

yi,t = x̄i,tfi,t. (1)

The owner of the firm chooses how many shares x̄i,t to issue. The owner’s objective is

to maximize the revenue raised from the sale of the firm, net of the setup or investment cost

φ̃(x̄i,t, x̄i,t−1) = φ01(|∆x̄i,t|>0) + φ1|∆x̄i,t|+ φ2(∆x̄i,t)
2, (2)

where ∆x̄i,t = x̄i,t− x̄i,t−1, 1|∆x̄i,t|>0 is an indicator function taking the value of one if |∆x̄i,t|

is strictly positive and φ0, φ1, φ2 > 0. This cost function represents the idea that issuing new

equity (or buying equity back) has a fixed cost φ0 and a marginal cost that is increasing in

the number of new shares issued. Each share sells at price pi,t, which is determined by the

investment market equilibrium. The owner’s objective is thus

Evi,t = E[x̄i,tpi,t − φ̃(x̄i,t, x̄i,t−1)|It−1], (3)

which is the expected net revenue from the sale of firm i.

The firm makes its choice conditional on the same prior information that all the investors

have and understanding the equilibrium behavior of investors in the asset market. But the

firm does not condition on pi,t. In other words, it does not take prices as given. Rather, the

firm chooses x̄i,t, taking into account its impact on the equilibrium price.
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Assets The model features 1 riskless and n risky assets. The price of the riskless asset is

normalized to 1 and it pays off rt at the end of period t. Risky assets i ∈ {1, ..., n} have

random payoffs fi,t ∼ N(µ,Σ) , where Σ is a diagonal “prior” variance matrix.2 We define

the n× 1 vector ft = [f1,t, f2,t, . . . , fn,t]
′ .

Each asset has a stochastic supply given by x̄i,t + xi,t, where noise xi,t is normally

distributed, with mean zero, variance σx, and no correlation with other noises: xt ∼

N (0, σxI). As in any (standard) noisy rational expectations equilibrium model, the supply

is random to prevent the price from fully revealing the information of informed investors.

Portfolio Choice Problem There is a continuum of measure one of atomless investors.

Each investor is endowed with begining-of-period wealth, Wt.
3 They have mean-variance

preferences over end-of-period wealth, with a risk-aversion coefficient, ρ. Let Êj,t and V̂j,t

denote investor j’s period t expectations and variances conditioned on all interim information,

which includes prices and signals. Thus, investor j chooses how many shares of each asset

to hold, qj,t to maximize period t interim expected utility, Ûj,t:

Ûj,t = ρÊj,t[Ŵj,t]−
ρ2

2
V̂j,t[Ŵj,t], (4)

subject to the budget constraint:

Ŵj,t = rtWt + q′j,t(ft − ptrt), (5)

where qj,t and pt are n× 1 vectors of prices and quantities of each asset held by investor j.

Prices Equilibrium prices are determined by market clearing:

∫ 1

0

qj,tdj = x̄t + xt, (6)

where the left-hand side of the equation is the vector of aggregate demand and the right-hand

side is the vector of aggregate supply of the assets.

2We can allow assets to be correlated. To solve a correlated asset problem simply requires constructing
portfolios of assets (risk factors) that are independent from each other, choosing how much to invest and learn
about these risk factors, and then projecting the solution back on the original asset space. See Kacperczyk
et al. (2016) for such a solution.

3Since there are no wealth effects in the preferences, the assumption of identical initial wealth is without
loss of generality.
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Information sets, updating, and data allocation At the start of each period, each

investor j chooses the amount of data that she will receive at the interim stage, before she

invests. A piece of data is a signal about the risky asset payoff. A time-t signal, indexed by

l, about asset i is ηl,i,t = fi,t + el,i,t, where the data error el,i,t is independent across pieces

of data l, across investors, across assets i and over time. Signal noise is normally distributed

and unbiased: el,i,t ∼ N(0, σe/δ). By Bayes’ law, choosing to observe M signals, each with

signal noise variance σe/δ, is equivalent to observing one signal with signal noise variance

σe/(Mδ), or equivalently, precision Mδ/σe. The discreteness in signals complicates the

analysis, without adding insight. But if we have a constraint that allows an investor to

process M̄/δ pieces of data, each with precision δ/σe, and then we take the limit δ → 0, we

get a quasi-continuous choice problem. The choice of how many pieces of data to process

about each asset becomes equivalent to choosing Ki,j,t, the precision of investor j’s signal

about asset i in period t. Investor j’s vector of data-equivalent signals about each asset

is ηj,t = ft + εj,t, where the vector of signal noise is distributed as εj,t ∼ N (0,Ση,j,t).The

variance matrix Ση,j,t is diagonal with the ith diagonal element K−1
i,j,t. Investors combine

signal realizations with priors and information extracted from asset prices to update their

beliefs using Bayes’ law.

Signal precision choices {Ki,j,t} maximize start-of-period expected utility, Uj,t, of the

fund’s terminal wealth Ŵj,t. Thus the objective is

max{Ki,j,t}ni=1
E[Ûj,t|I

+
t−1] (7)

where It = {I+
t−1, ηjt, pt} and I+

t−1 = {It−1, xt−1, f̃t−1} (8)

subject to the the budget constraint (5) and three constraints in the information choices.4

The first constraint is the information capacity constraint. It states that the sum of the

signal precisions must not exceed the information capacity:

n
∑

i=1

Ki,j,t ≤ Kt for each j, t. (9)

In Bayesian updating with normal variables, observing one signal with precision Ki,j,t or

two signals, each with precision Ki,j,t/2, is equivalent. Therefore, one interpretation of

the capacity constraint is that it allows the manager to observe N signal draws, each with

4See Veldkamp (2011) for a discussion of the use of expected mean-variance utility in information choice
problems.
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precision Ki,j,t/N , for large N . The investment manager then chooses how many of those

N signals will be about each shock.5

The second constraint is the data availability constraint. It states that the amount of

data processed about the future earnings of firm i cannot exceed the total data generated

by the firm. Since data is a by-product of economic activity, data availability depends on

the economic activity of the firm in the previous period. In other words, data availability in

time t is a function of firm size in t− 1.

Ki,j,t ≤ K̂(xi,t−1) for all i, j, t. (10)

This limit on data availability is a new feature of the model. It is also what links firm size

to the expected cost of capital.6 We assume that the data availability constraint takes a

simple, exponential form: K̂(xi,t−1) = α exp (βxi,t−1).

The third constraint is the no-forgetting constraint, which ensures that the chosen preci-

sions are non-negative:

Ki,j,t ≥ 0 for all i, j, t. (11)

It prevents the manager from erasing any prior information to make room to gather new

information about another asset.

1.2 Equilibrium

To solve the model, we begin by working through the mechanics of Bayesian updating. There

are three types of information that are aggregated in posterior beliefs: prior beliefs, price

information, and (private) signals. We conjecture and later verify that a transformation

of prices pt generates an unbiased signal about the risky payoffs, ηp,t = ft + ǫp,t, where

ǫp,t ∼ N(0,Σp,t), for some diagonal variance matrix Σp,t. Then, by Bayes’ law, the posterior

beliefs about ft are normally distributed: ft ∼ N(Êj,t[ft], Σ̂j,t), where the posterior mean

5The results are not sensitive to the exact nature of the information capacity constraint. We could instead
specify a cost function of data processing c(Ki,j,t). The problem we solve is the dual of this cost function
approach. For any cost function, there exists a constraint value Kt such that the cost function problem and
the constrained problem yield identical solutions.

6As our model does not distinguish between size and age, the data availabality constraint can also be
thought of linking firm age to the expected cost of capital.
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and precision are given by:

Êj,t[ft] = Σ̂j,t(Σ
−1µ+ Σ−1

η,j,tηj,t + Σ−1
p,tηp,t), (12)

Σ̂−1
j,t = Σ−1 + Σ−1

p,t + Σ−1
η,j,t. (13)

Next, we solve the model in four steps.

Step 1: Solve for the optimal portfolios, given information sets and issuance.

Substituting the budget constraint (5) into the objective function (4) and taking the

first-order condition with respect to qj,t reveals that optimal holdings are increasing in the

investor’s risk tolerance, precision of beliefs, and expected return:

q∗j,t =
1

ρ
Σ̂−1

j,t (Êj,t[ft]− ptrt). (14)

Step 2: Clear the asset market.

Substitute each agent j’s optimal portfolio (14) into the market-clearing condition (6).

Collecting terms and simplifying reveals that equilibrium asset prices are linear in payoff risk

shocks and in supply shocks:

Lemma 1. pt =
1
rt
(At +Bt(ft − µ) + Ctxt) .

A detailed derivation of coefficients At, Bt, and Ct, expected utility, and the proofs of

this lemma and all further propositions are in the Appendix.

In this model, agents learn from prices because prices are informative about the asset

payoffs ft. Next, we deduce what information is implied by Lemma 1. Price information

is the signal about ft contained in prices. The transformation of the price vector pt that

yields an unbiased signal about ft is µ + ηp,t ≡ B−1
t (ptrt − At). Note that applying the

formula for ηp,t to Lemma 1 reveals that ηp,t = ft + εp,t, where the signal noise in prices

is εp,t = B−1
t Ctxt. Since we assumed that xt ∼ N(0, σxI), the price noise is distributed

εp,t ∼ N(0,Σp,t), where Σp,t ≡ σxB
−1
t CtC

′
tB

−1′

t . Substituting in the coefficients Bt and Ct

from the proof of Lemma 1 shows that public signal precision Σ−1
p,t is a diagonal matrix with

ith diagonal element σ−1
p,i,t =

K̄2

i,t

ρ2σx
, where K̄i,t ≡

∫

Ki,j,tdj is the average capacity allocated

to asset i.

This market-clearing asset price reveals the firm’s cost of capital. We define the cost of

capital as follows.
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Definition 1. The cost of capital for firm i is the difference between the (unconditional)

expected payout per share the firm will make to investors, minus the (unconditional) expected

price per share that the investor will pay to the firm: Et[fi,t]− Et[pi,t].

Because xt is a mean-zero random variable and the payoff ft has mean µ, the uncondi-

tional expected price is Et[pi,t] = Ai,t/r. Therefore, the expected cost of capital for firm i is

µ− Ai,t/r.

Step 3: Compute ex-ante expected utility.

Substitute optimal risky asset holdings from equation (14) into the first-period objective

function (7) to get: Uj,t = ρrtWt+
1
2
Et[(Êj,t[ft]−ptrt)

′Σ̂−1
j,t (Êj,t[ft]−ptrt)]. Note that the ex-

pected excess return (Êj,t[ft]−ptrt) depends on signals and prices, both of which are unknown

at the start of the period. Because asset prices are linear functions of normally distributed

shocks, Êj,t[ft]−ptrt, is normally distributed as well. Thus, (Êj,t[ft]−ptrt)Σ̂
−1
j,t (Êj,t[ft]−ptrt)

is a non-central χ2-distributed variable. Computing its mean yields:

Uj,t = ρrtWt +
1

2
tr(Σ̂−1

j,t Vj,t[Êj,t[ft]− ptrt]) +
1

2
Ej,t[Êj,t[ft]− ptrt]

′Σ̂−1
j,t Ej,t[Êj,t[ft]− ptrt].

(15)

Step 4: Solve for information choices.

Note that in expected utility (15), the choice variables Ki,j,t enter only through the

posterior variance Σ̂j,t and through Vj,t[Êj,t[ft] − ptrt] = Vj,t[f − ptrt] − Σ̂j,t. Since there

is a continuum of investors, and since Vj,t[f − ptrt] and Ej,t[Êj,t[ft] − ptrt] depend only on

parameters and on aggregate information choices, each investor takes them as given.

Since Σ̂−1
j,t and Vj,t[Êj,t[ft]− ptrt] are both diagonal matrices and Ej,t[Êj,t[ft]− ptrt] is a

vector, the last two terms of (15) are weighted sums of the diagonal elements of Σ̂−1
j,t . Thus,

(15) can be rewritten as Uj,t = rtWt +
∑

i λi,tΣ̂
−1
j,t (i, i) − n/2, for positive coefficients λi,t.

Since rtWt is a constant (in each period t) and Σ̂−1
j,t (i, i) = Σ−1(i, i) +Σ−1

p,t (i, i) +Ki,j,t, the

information choice problem is:

max
K1,j,t,...,Kn,j,t≥0

n
∑

i=1

λi,tKi,j,t + constant, (16)

s.t.
n

∑

i=1

Ki,j,t ≤ Kt, (17)

Ki,j,t ≤ α exp (βxi,t−1) ∀i , ∀j, (18)

where λi,t = σ̄i,t[1 + (ρ2σx + K̄i,t)σ̄i,t] + ρ2x̄2
i,tσ̄

2
i,t, (19)
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where λi,t is the marginal value of information σ̄−1
i,t =

∫

Σ̂−1
j,t (i, i)dj is the average precision

of posterior beliefs about firm i. The latter’s inverse, average variance σ̄i,t, is decreasing in

K̄i,t. Equation (19) is derived in the Appendix.

This is not a concave objective, so a first-order approach will not find an optimal data

choice. To maximize a weighted sum (16) subject to an unweighted sum (17), the investor op-

timally assigns all available data, as per (18), to the asset(s) with the highest weight. If there

is a unique i∗t = argmaxi λi,t, then the solution is to set Ki∗t ,j,t
= min(Kt, α exp (βxi,t−1)).

In many cases, after all data processing capacity is allocated, there will be multiple assets

with identical λi,t weights. That is because λi,t is decreasing in the average investor’s signal

precision. When there exist asset factor risks i, l s.t. λi,t = λl,t, then investors are indifferent

about which assets’ data to process. The next result shows that this indifference is not a

knife-edge case. It arises whenever the aggregate amount of data processing capacity is

sufficiently high.

Lemma 2. If x̄i,t is sufficiently large ∀i and
∑

i

∑

j Ki,j,t ≥ K, then there exist risks l and

l′ such that λl,t = λl′,t.

This is the big data analog to Grossman and Stiglitz (1980)’s strategic substitutability in

information acquisition. The more other investors know about an asset, the more informative

prices are and the less valuable it is for other investors to process data about the same asset.

If one asset has the highest marginal utility for signal precision, but capacity is high, then

many investors will learn about that asset, causing its marginal utility to fall and equalize

with the next most valuable asset data. With more capacity, the highest two λi,t’s will be

driven down until they equate with the next λi,t, and so forth. This type of equilibrium is

called a “waterfilling” solution (see, Cover and Thomas (1991)). The equilibrium uniquely

pins down which assets are being learned about in equilibrium, and how much is learned

about them, but not which investor learns about which asset.

Step 5: Solve for firm equity issuance. How a firm chooses x̄t depends on how issuance

affects the asset price. Supply x̄t enters the asset price in only one place in the equilibrium

pricing formula, through At. From Appendix equation (33), we see that

At = µ− ρΣ̄tx̄t. (20)

x̄t has a direct effect on the second term. But also an indirect effect through information

choices that show up in Σ̄t.
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The firm’s choice of x̄t satisfies its first order condition:

E[pt|It−1]− x̄t

(

ρΣ̄t − ρx̄t

∂Σ̄t

∂x̄t

)

− φ̃′
1(x̄t, x̄t−1) = 0. (21)

The first term is the benefit of more issuance. When a firm issues an additional share,

it gets expected revenue E[pt|It−1] for that share. The second term tells us that issuance

has a positive and negative effect on the share price. The negative effect on the price is that

more issuance raises the equity premium ( ρΣ̄t term). The positive price effect is that more

issuance makes data on the firm more valuable to investors. When investors process more

data on the firm, it lowers their investment risk, and on average, raises the price they are

willing to pay ( ∂Σ̄t/∂x̄t term). This is the part of the firm investment decision that the rise

of big data will affect.

The third term, the capital adjustment cost ( φ̃′
1(x̄t, x̄t−1)), reveals why firms grow in size

over time. Firms have to pay to adjust relative to their intial size. Since firms’ starting size

is small they want to grow, but rapid growth is costly. So, they grow gradually. Each time

a firm starts larger, choosing a higher x̄t becomes less costly because the size of the change,

and thus the adjustment cost is smaller.

Note that in our static model adjustment costs perform a slightly different function

compared to a dynamic model. In the static model, the main role of adjustment costs is to

link the initial and final size together, in order to generate cross-sectional differences in the

marginal value of information. Larger firms can afford to choose a larger final scale. The

larger the final scale, the higher the marginal value of information.

2 Parameter Choice

In order to quantify the potential effect of big data on firm size, we need to perform a quan-

titative exercise. What changes exogenously at each date is the total information capacity

Kt. We normalize Kt = 1 in 1980 and then grow Kt continuously, at the rate of 36.8% per

year: Kt+1 = Kte
0.368. This rate of growth corresponds to the average rate of growth of CPU

speed, as illustrated in Figure 2. We simulate the model in this fashion from 1980-2030. As

Kt increases over time, constraint (9) becomes looser, allowing for a larger overall sum of

signal precisions.

We also need to choose values for the model parameters. For µ, σ, σx, r, we use the same

values as in the numerical example in the supplementary appendix to Kacperczyk et al.
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Figure 2: The evolution of processing performance over the period 1978–2007
Hennessy and Patterson (2011)

(2016). The next parameter to pick is risk aversion. Risk aversion clearly matters for the

level of the risky asset price. But it is tough to identify. The reason for the difficulty is that if

we change risk aversion and then re-calibrate the mean, persistence and variance parameters

to match price coefficients and variance at the new risk aversion level, the predictions of

the model are remarkably stable. Roughly, doubling variance and halving risk aversion

mostly just redefines units of risk. We set ρ = 0.1. For firm investment costs, we use

parameter estimates from Hennessy and Whited (2007). Using annual data from 1988-2001,

they estimate the cost of external investment funding as Λ(x) = φ0 + φ1x̃ + φ2x̃
2, where x̃

are the proceeds raised from equity flotation. This amount raised corresponds to the change

in issuance ∆x̄t in our model. Their parameter estimates for φ0, φ1, and φ2 are reported

in Table 1. The data availability parameters α and β are chosen to give our mechanism

a shot at meaningful results. We choose parameters so that the constraint (18) binds for

small firms only, for about the first decade. This pins both parameters to a narrow range.

If this constraint did not bind, there would be little difference between small and large firm
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outcomes. If the availability constraint was binding for all firms, then there would be no

effect of big data growth because there would be insufficient data to process with the growing

processing power.

Table 1: Parameters

µ σ σx rt φ0 φ1 φ2 ρ α β
15 0.55 0.5 1.01 0.598 0.091 0.0004 0.1 0.249 0.0002

3 Quantitative Results

Our main results use the simulated model to understand how the growth of big data affects

the evolution of large and small firms and how large that effect might be. We start by

exploring how the rise in big data availability changes how data is allocated. Then, we

explore how changes in data the investors observe affect the firm’s cost of capital. Finally,

we turn to the question of how much the change in data and the cost of capital affect the

evolution of firms that start out small and firms that start out large.

In presenting our results, we try to balance realism with simplicity, which illuminates the

mechanism. If we put in a large number of firms, it is, of course, more realistic. But this

would also make it harder to see what the trade-offs are. Instead, we characterize the firm

distribution with one representative large firm and one representative small firm. The two

firms are identical, except that the large firm starts off with a larger size x̄0 = 10, 000. The

small firm starts off with x̄0 = 2, 000. Starting in 1980, we simulate our economy with the

parameters listed in Table 1 with one period per year until 2030.

3.1 Data Allocation Choices

The reason that data choice is related to firm size in the model is that small firms are

equivalent to young firms. Young firms do not have a long history of data that can be

processed.7 They cannot offer investors the data they need to accurately assess risk and

return. Data comes from having an observable body of economic transactions. A long

history with a large amount of economic activity generates this data. In the simulation,

small firms are those that have more recently entered.

7In the data, small firms are typically younger firms.
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Figure 3: Investors’ Data Choices The left panel shows the share of the total data processed
for each firm. The right panel shows the number of bits processed about each firm.

But the question is, how does the rise of investors’ ability to process big data interact

with this size effect? Since investors are constrained in how much data they can process

about young, small firms, the increase in data processing ability results in more data being

processed about the large firm. We can see this in Figure 3 where the share of data processed

on the large firm rises and the share devoted to the small firm falls (left panel). In the right

panel, we see that investors are not processing fewer bits of data about the small firm. In

fact, as the firm grows, little by little, more data is available. As more data is available,

more small firm data is processed and data precision rises.

Eventually, the small firm gets large enough and produces a long enough data history

that it outgrows its data availability constraint. The availability constraint was pushing data

choices for the two firms apart, creating the visual bump in Figure 3. As the constraint re-

laxes, the bump gives way to a slow, steady convergence. But, even once the data availability

constraint stops binding, investors still process more data on the larger firm. A secondary

effect of firm size is that data has more value when it is applied to a larger fraction of an

investor’s portfolio. An investor can use a data set to guide his investment of one percent of

the value of his portfolio. But he gains a lot more when he uses that data to guide investment

of fifty percent of his portfolio. Big assets constitute more of the value share of the average

investor’s portfolio. Therefore, information about big assets is more valuable.

Mathematically, we can see firm size x̄i,t enter in the marginal value of information λi,t

in (19). Of course, this firm size is the firm’s final size that period. But the final size is linked

to the firm’s initial size through the adjustment cost (2). Firms that are initially larger will
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have a larger final size because size adjustment is costly. This larger final size is what makes

λi,t, the marginal value of data, higher.

In the limit, the small firm keeps growing faster than the large firm and eventually catches

up. When the two firms approach the same size, the data processing on both converges to

an equal, but growing amount of data processing.

3.2 Capital costs

The main effect of data is to systematically reduce a firm’s average cost of capital. Recall that

the capital cost is the expected payoff minus the expected price of the asset (Definition 1).

Data does not change the firm’s payoff, but it does change how a share of the firm is priced.

The systematic difference between expected price and payoff is the investor’s compensation

for risk. Investors are compensated for the fact that firm payoffs are unknown, and therefore

buying a share requires bearing risk. The role of data is to help the investor predict that firm

payoff. In doing so, data reduces the compensation for risk. Just like a larger data set lowers

the variance of an econometric estimate, more data in the model reduces the conditional

variance of estimated firm payoffs. An investor who has a more accurate estimate is less

uncertain and bears less risk from holding the asset. The representative investor is willing

to pay more, on average, for a firm that they have good data on. Of course, the data might

reveal problems at the firm that lower the investor’s valuation of it. But on average, more

data is neither to reveal positive nor negative news. What data does on average improve is

the precision and resolution of risk. Resolving the investors’ risk reduces the compensation

the firm needs to pay the investor for bearing that risk, which reduces the firm’s cost of

capital.

Figure 4 shows how the large firm, with its more abundant data, has a lower cost of

capital. With definition 1 in mind, we can think of the cost of capital as the value per share

delivered to investors. The value per share mechanically depends on the expected payout

per share, which may vary across firm size. In order to compare the cost of capital across

firms of different sizes, we normalize firms’ cost of capital with their expected payout per

share.

More abundant data does not reduce the cost of capital evenly and proportionately.

There is a second force at play here. The second force is that firm size matters. Because a

firm is large, it represents a larger share of the investor’s portfolio. In CAPM-speak, large

firms have a higher beta, and therefore need to offer investors a higher risk compensation.

To induce investors to hold lots of a risk, the compensation per unit of risk must rise. To
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Figure 4: Cost of Capital for a New Firm The solid line represents the cost of capital per
share, Et[fi,t]−Et[pi,t], normalized by average earnings per share, Et[fi,t], of the small firm (x̄0 = 2000).
The dashed line is the (normalized) cost of capital of the large firm (x̄0 = 10000). Simulations use
parameters listed in Table 1.

induce investors to hold a small amount of a risk is cheap, because small risks wash out in a

large portfolio. Thus, because large firms have more equity outstanding and are more highly

correlated with market risk, a large firm with the same volatility and conditional variance

as a small firm, would face a higher cost of capital.

As firm size and data evolve together, initially, data dominates. The cost of capital for

the large firm falls, from around 50% of earnings per share to close to 1%, because more

processing power is reducing the risk of investing in that firm. The small firm cannot initially

benefit much from higher processing power because it is a young firm and has little data

available to process. As the small firm grows older, the data availability constraint loosens,

investors can learn from the firm’s track record, risk falls and the cost of capital comes back

down. Where the two lines merge is where the small firm finally out-grows its data availability

constraint. From this point on, the only constraint on processing data on either firm is the

total data processing power K. Large and small firms evolve similarly. The only difference

between the two firms, after the inflection point where the data availability constraint ceases

to bind, is that the small firm continues to have a slightly smaller accumulated stock of

capital. Because the small firm continues to be slightly smaller, it has slightly less equity
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outstanding, and a slightly lower cost of capital due to the second force described above.

Once data is abundant, small and large firms converge gradually over time.

3.3 The Evolution of Firms’ Size

In order to understand how big data has changed the size of firms, it is useful to look at how

a large firm and a small firm evolve in this economy. Then, we turn off various mechanisms

in the model to understand what role is played by each of our key assumptions. Once the

various mechanisms are clear, we contrast firm evolution in the 1980’s to the evolution of

firms in the post-2000 period.

Recall that firms have to pay to adjust, relative to their previous size. Since firms’

starting size is small, but rapid growth is costly, firms grow gradually. Figure 5 shows that

both the large and small firms grow. However, the rates at which they grow differ. One

reason growth rates differ is that small firms are further from their optimal size. If this were

the only force at work, small firms would grow by more each period and that growth rate

would gradually decline for both firms, as they approach their optimal size.

Figure 5: The Evolution of Small and Large Firms (level and growth rate) These
figures plot firm size x̄t (left) and growth in firm size, (x̄t/x̄t−1− 1)× 100 (right), for a small firm, with
starting size 2000 and a large firm with starting size 10000. Simulation parameters are those listed in
Table 1.

Instead, Figure 5 reveals that small firms sometimes grow faster and sometimes slower

than their large firm counterparts. For much of the start of their life, the small firms grow

more slowly than the large firms do. These variations in growth rates are due to investors’

data processing decisions. This is the force that can contribute to the change in the size of
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firms.

The level of the size can be interpreted as market capitalization, divided by the expected

price. Since the average price ranges from 7 to 15 in this model, these are firms with zero

to 12 million dollars of market value outstanding. In other words, these are not very large

firms.

The Role of Growing Big Data Plotting firm outcomes over time as in Figure 5 conflates

three forces, all changing over time. The first thing changing over time is that firms are

accumulating capital and growing bigger. The second change is that firms are accumulating

longer data histories, which makes more data for processing available. The third change is

that technology enables investors to process more and more of that data over time. We want

to understand how each of these contributes to our main results. Therefore, we turn off

features of the model one-by-one, and compare the new results to the main results, in order

to understand what role each of these ingredients plays.

Figure 6: Without Improvements in Data Processing, Firm Size Converges These
results use the same simulation routine and parameters to plot the same quantities as in Figure 5. The
only difference is that these results hold data processing capacity fixed at Kt = 5 ∀t.

To understand the role that improvements in data processing play, we turn off the growth

of big data and compare results. We fix Kt = 5 ∀t. Data processing capacity is frozen at

its 1985 level. Firms still have limited data histories and still accumulate capital. Figure 6

shows that this small change in the model has substantial consequences for firm dynamics.

Comparing Figures 5 and 6, we can see the role big data plays. In the world with fixed

data processing, instead of starting with rapid growth and growing faster as data processing

improves, the large firm growth rate starts at the same level as before, but then steadily
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declines as the firm approaches is stationary optimal size. We learn that improvements in

data processing are the sources of firm growth in the model and are central to the continued

rapid growth of large firms.

The Role of Limited Data History One might wonder, if large firms attract more data

processing, is that alone producing larger big firms? Is the assumption that small firms have

a limited data history really important for the results? To answer this question, we now turn

off the assumption of limited data history. We maintain the growing data capacity and firm

capital accumulation from the original model.

Figure 7: With Unlimited Data Histories, Small and Large Firms Converge
Quickly. These results use the same simulation routine and parameters to plot the same quanti-
ties as in Figure 5. The only difference is that these results set the data availability parameters (α, β)
to be large enough such that the data availability constraint never binds.

Figure 7 reports results for the model with unlimited firm data histories, but limited

processing power, to the full model. Comparing Figures 5 and 7, we can see the difference

that data availability makes. In the world where firms have unlimited data histories, small

firms quickly catch up to large firms. There is no persistent difference in size. Small firms are

far below their optimal size. So they invest rapidly. Investment makes them larger, which

increases data processing immediately. Quickly, the initially small and large firms become

indistinguishable. Adjustment costs are a friction preventing immediate convergence. But it

is really the presence of the data availability constraint that creates the persistant difference

between firms with different initial size.
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Small and Large Firms in the New Millennium So far, the experiment has been

to drop a small firm and a large firm in the economy in 1980 and watch how they evolve.

While this is useful to explaining the model’s main mechanism, it does not really answer the

question of why small firms today struggle more than in the past and why large firms today

are larger than the large firms of the past. To answer these questions, we really want to

compare small and large firms that enter the economy today to small and large firms that

entered in 1980.

To do this small vs. large, today vs. 1980 experiment, we use the same parameters as in

Table 1 and use the same starting size for firms. The only difference is that we start with

more available processing power. Instead of starting Kt at 1, we start it at the 2000 value,

which is about 527.

Figure 8: Large Firms Grow Faster in 2000 than in 1980. Both panels plot a difference
in the growth rate of size ( (x̄t/x̄t−1 − 1) × 100). The difference is the growth rate of a large firm (x̄t

starting at 10,000) minus the growth rate of a small firm (x̄t starting at 2000). Both are the result of
simulations using parameters in Table 1. The left panel shows the difference in firm growth for firms
that start in 1980, with K1980 = 1. The right panel shows the difference in firm growth for firms that
start in 2000, with K2000 ≈ 527.

Each panel of figure 8 shows the growth rate of a large firm, minus the growth rate of a

small firm. In the left panel, both firms start in 1980, when data processing capacity was

quite limited. In the right panel, both firms enter in the year 2000, when data is abundant.

In both cases, the difference is positive for most of the first decade, meaning that large firms

grow faster than small ones. But in 2000, the difference is much more positive. Relative

to small firms, large firms grow much more quickly. The difference in 2000 growth rates

is nearly twice as large. In both cases, a surviving small firm eventually outgrows its data

availability problem, grows quickly, and then converges to the growth rate of the large firm
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(differences converge to 0).

In a model with random shocks and exit, many small firms would not survive. Of course,

for some firms, the possibility of future growth would induce them to hang on, preventing

exit. In a world where large firms gain market share much more rapidly, firms would either

exit, unable to compete, or strive to quickly grow large. This illustrates how data pro-

cessing advances may contribute to the puzzle of missing small firms, by disproportionately

benefiting large firms.

For comparison, we examine the growth rates of large and small firms in the U.S. pre-

1980 and in the period 1980-2007. We end in 2007 so as to avoid measuring real effects of

the financial crisis. For each industry sector and year, we select the top 25% largest firms in

Compustat and call those large firms and select the bottom half of the firm size distribution

to be our small firms. Within these two sets of firms, we compute the growth rates of various

measures of firm size and average them, with an equal weight given to each firm. Then, just

as in the model, we subtract the growth rate of large firms from that of small firms. For

most measures, small firms grow more slowly, and that difference grows later in the sample.

Table 2: Large Firm Growth Minus Small Firm Growth from Compustat
For each industry sector and year, large firms are the top 25% largest firms in Compustat; small firms
are the bottom half of the firm size distribution. Growth rate is the annual log-difference. Reported
figures are equal-weighted averages of growth rates over firms and years.

prior to 1980 1980 - 2007

Assets 2.1% 8.2%
Investment 14.2% 16.0%
Assets with Intangibles 0.3% 1.1%
Capital Stock -0.9% 3.7%
Sales 1.4% 2.4%
Market Capitalization 1.1% 8.9%

At times, the magnitudes of the model’s growth rates are quite large, compared to the

data. Of course, the data is averaged over many years and many firms at different points in

their life cycle. This smoothes out some of the extremes in the data. If we average the firm

growth in our model from 1980-1985, for firms that enter in 1980, we get 39.5% for large

firms and 7.3% for small firms, a difference of 32.2%. If we average firm growth in our model

from 2000-2005, for firms that enter in 2000, we get 59.9% for large firms and 7.3% for small

firms, a difference of 52.6%.

While it is not unheard of for a small firm to double in size, some of this magnitude
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undoubtedly reflects some imprecision of our current numerical example vis-à-vis the data.

A larger adjustment cost, or a labor hiring delay, would help to moderate the extremes of firm

size growth. The results also miss many aspects of the firm environment that have changed

in the last four decades. The type of firms entering in the last few years are quite different

than firms of prior years. They have different sources of revenue and assets that might be

harder to value. Firm financing has changed, with a shift toward internal financing. Venture

capital funding has become more prevalent and displaced equity funding for many firms,

early in their life cycle. All of these forces would moderate the large effect we document

here.

Our results only show that big data is a force with some potential. There is a logical way

in which the growth of big data and the growth of large firms is connected. This channel

has the potential to be quantitatively powerful. The role of big data in firms is thus a topic

ripe for further exploration.

4 Discussion

In this model, there is a one-to-one correspondence between projects and firms. Investors

gather information about the firm and smaller firms have smaller amounts of information.

This then feeds back into real investments of each firm in its single project, and determines

the firm/project size distribution. As such, information processing and big data helps a

small firm less, even if it is investing in a well known technology (for instance, the nth firm

to drill an oil well). We think this is a reasonable assumptions for publicly listed firms, since

information about the firm is both about its track record as well as the quality of its project.

The investors have a harder time accessing the survival probability of a firm with no track

record relative to a well established firm in a highly competitive industry, which is why we

find our information assumption relevant even in such settings.

We should note that our model is not best suited to speak to firm entry. For instance, a

new class of online firms have emerged who use big data to facilitate capital markets’ access

to an under-served segment of population, such as personal loans to people with very low

credit scores. Such firms are often small, but they have only emerged as a by product of big

data availability. This trend is fascinating in its own right, yet is outside the scope of our

paper.

In the context of the model, firms are equity financed. This implies that their real

investment and thus their cash flow is determined by firms’ cost of accessing external capital
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markets. Financing is costly for firms since investors require an equity premium to hold

firms’ risky shares. However, since more data is available about large firms, big data reduces

the asymmetric information friction relatively more for big firms compared to small firms.

Cheaper access to external capital markets reduces large firms’ cost of capital and accelerates

their growth. On the other hand, small firms growth is initially stagnant. However, once

they become sufficiently large, their access to capital markets improve as well, and their

growth rate picks up. This is consistent with information asymmetries being a short-horizon

notion.

5 Conclusion

Big data is transforming the modern economy. While many economists have used big data,

fewer think about how the use of data by others affects market outcomes. This paper starts to

explore the ways in which big data might be incorporated in modern economic and financial

theory. One way that big data is used is to help financial market participants make more

informed choices about the firms in which they invest. These investment choices affect the

prices, cost of capital, and investment decisions of these firms. We set up a very simple

model to show how such big data choices might be incorporated and one way in which the

growth of big data might affect the real economy. But this is only a modest first step.

One might also consider how firms themselves use data, to refine their products, to

broaden their customer market, or to increase the efficiency of their operations. Such data,

produced as a by-product of economic activity, might also favor the large firms whose abun-

dant economic activity produces abundant data.

Another step in a big-data agenda would be to consider the sale of data. In many

information models, we think of signals that are observed and then embedded in one’s

knowledge, not easily or credibly transferable. However data is an asset that can be bought,

sold and priced on a market. How do markets for data change firms choices, investments,

evolution and their valuations as firms? It is true that data intermediaries like Foursquare

or Amazon help small businesses benefit from each others’ data. At the same time, these

intermediaries retain control of the data and extract rents from firms that use it. A firm

that has its own customer data clearly has a real advantage. Whether an intermediary can

find a way for small firms to collectively leverage their data, in a way that mimics a large

firm advantage, remains to be seen.

Finally, if data is a storable, sellable, priced asset, then investment in data should be
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valued just as if it were investment in a physical asset. Understanding how to price data as

an asset might help us to better understand the valuations of new-economy firms and better

measure aggregate economic activity.
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A Proofs

A.1 Useful notation, matrices and derivatives

All the following matrices are diagonal with ii entry given by:

1. Average signal precision: (Σ̄−1

η,t)ii = K̄i,t, where K̄i,t ≡
∫

Ki,j,tdj.

2. Precision of the information prices convey about shock i: (Σ−1

p,t )ii =
K̄2

i,t

ρ2σx
= σ−1

i,p,t

3. Precision of posterior belief about shock i for an investor j is σ̂−1

i,j,t, which is equivalent to

(Σ̂−1

j,t )ii = (Σ−1 +Σ−1

η,j,t +Σ−1

p,t )ii = σ−1

i +Ki,j,t +
K̄2

i,t

ρ2σx
= σ̂−1

i,j,t (22)

4. Average posterior precision of shock i: σ̄−1

i,t ≡ σ−1

i + K̄i,t +
K̄2

i,t

ρ2σx
. The average variance is therefore

(Σ̄t)ii = [
(

σ−1

i + K̄i,t +
K̄2

i,t

ρ2σx

)

]−1 = σ̄i,t.

5. Ex-ante mean and variance of returns: Using Lemma 1 and the coefficients given by (33), (34) and
(35), we can write the return as:

ft − ptrt = (I −Bt)(ft − µ)− Ctxt + ρΣ̄tx̄t

= Σ̄t

[

Σ−1(ft − µ) + ρ

(

I +
1

ρ2σx
Σ̄−1

′

η,t

)

xt

]

+ ρΣ̄tx̄t.

This expression is a constant plus a linear combination of two normal variables, which is also a normal
variable. Therefore, we can write

ft − ptrt = V
1/2
t ut + wt, (23)

where ut is a standard normally distributed random variable ut ∼ N(0, I), and wt is a non-random
vector measuring the ex-ante mean of excess returns

wt ≡ ρΣ̄tx̄t. (24)

and Vt is the ex-ante variance matrix of excess returns:

Vt ≡ Σ̄t

[

Σ−1 + ρ2σx

(

I +
1

ρ2σx
Σ̄−1

′

η,t

)(

I +
1

ρ2σx
Σ̄−1

′

η,t

)

′

]

Σ̄t

= Σ̄t

[

Σ−1 + ρ2σx

(

I +
1

ρ2σx
(Σ̄−1

′

η,t + Σ̄−1

η,t) +
1

ρ4σ2
x

Σ̄−1
′

η,t Σ̄
−1

η,t

)]

Σ̄t

= Σ̄t

[

Σ−1 + ρ2σxI + (Σ̄−1
′

η,t + Σ̄−1

η,t) +
1

ρ2σx
Σ̄−1

′

η,t Σ̄
−1

η,t

]

Σ̄t

= Σ̄t

[

ρ2σxI + Σ̄−1
′

η,t +Σ−1 + Σ̄−1

η,t +Σ−1

p,t

]

Σ̄t

= Σ̄t

[

ρ2σxI + Σ̄−1
′

η,t + Σ̄−1

t

]

Σ̄t.

The first line uses E[xtx
′

t] = σxI and E[(ft −µ)(ft −µ)′] = Σ, the fourth line uses (36) and the fifth
line uses Σ̄−1

t = Σ−1 +Σ−1

p,t + Σ̄−1

η,t .
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This variance matrix Vt is a diagonal matrix. Its diagonal elements are:

(Vt)ii = (Σ̄t

[

ρ2σxI + Σ̄−1

η,t + Σ̄−1

t

]

Σ̄t)ii

= σ̄i,t[1 + (ρ2σx + K̄i,t)σ̄i,t]. (25)

A.2 Solving the Model

Step 1: Portfolio Choices From the FOC, the optimal portfolio is chosen by investor j is

q∗j,t =
1

ρ
Σ̂−1

j,t (Êj,t[ft]− ptrt). (26)

where Êj,t[ft] and Σ̂j,t depend on the skill of the investor.
Next, we compute the portfolio of the average investor.

q̄ ≡

∫

q∗j,tdj =
1

ρ

∫

Σ̂−1

j,t (Êj,t[ft]− ptrt)dj

=
1

ρ

(
∫

Σ−1

η,j,tηj,tdj +Σ−1

p,tηp,t + Σ̄−1

t (µ− ptrt)

)

=
1

ρ

(

Σ̄−1

η,tft +Σ−1

p,tηp,t + Σ̄−1

t (µ− ptrt)
)

, (27)

where the fourth equality uses the fact that average noise of private signals is zero.

Step 2: Clearing the asset market and computing expected excess return Lemma
1 describes the solution to the market-clearing problem and derives the coefficients At, Bt, and Ct in the
pricing equation. The equilibrium price, along with the random signal realizations determines the interim
expected return (Êj,t[ft] − ptrt). But at the start of the period, the equilibrium price and one’s realized
signals are not known. To compute beginning-of-period utility, we need to know the ex-ante expectation and
variance of this interim expected return.

The interim expected excess return can be written as: Êj,t[ft] − ptrt = Êj,t[ft] − ft + ft − ptrt and
therefore its variance is:

Vt[Êj,t[ft]− ptrt] = Vt[Êj,t[ft]− ft] + Vt[ft − ptrt] + 2Covt[Êj,t[ft]− ft, ft − ptrt]. (28)

Combining (12) with the definitions ηj,t = ft+ εj,t and ηp,t = ft+ εp,t, we can compute expectation errors:

Êj,t[ft]− ft = Σ̂j,t

[

(Σ−1µ+ (Σ−1

η,j,t +Σ−1

p,t )ft +Σ−1

η,j,tεj,t +Σ−1

p,tεp,t
]

− ft

= Σ̂j,t

[

−Σ−1(ft − µ) + Σ−1

η,j,tεj,t +Σ−1

p,tεp,t
]

Computing the expectation, we obtain Et[Êj,t[ft]− ft] = Σ̂j,tΣ̂
−1

j,t µ− µ = 0 and its variance is Vt[Êj,t[ft]−

ft] = Σ̂j,t

[

Σ−1 +Σ−1

η,j,t +Σ−1

p,t

]

Σ̂′

j,t = Σ̂j,t.
From (23) we know that Vt[ft − ptrt] = Vt. To compute the covariance term, we can rearrange the

definition of ηp,t to get ptrt = Btηp,t +At −Btµ and ηp,t = ft + εp,t to write

ft − ptrt = (I −Bt)ft −At −Btεp,t +Btµ (29)

= ρΣ̄tx̄t + Σ̄tΣ
−1(ft − µ)− (I − Σ̄tΣ

−1)εp,t (30)
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where the second line comes from substituting the coefficients At and Bt from Lemma 1. Since the constant
ρΣ̄tx̄t does not affect the covariance, we can write

Covt[Êj,t[ft]− ft, ft − ptrt] = Cov[−Σ̂j,tΣ
−1(ft − µ) + Σ̂j,tΣ

−1

p,tεp,t, Σ̄tΣ
−1(ft − µ)− (I − Σ̄tΣ

−1)εp,t]

= −Σ̂j,tΣ
−1ΣΣ−1Σ̄t − Σ̂j,tΣ

−1

p,tΣp,t(I − Σ−1Σ̄t)]

= −Σ̂j,tΣ
−1Σ̄t − Σ̂j,t(I − Σ−1Σ̄t) = −Σ̂j,t

Substituting the three variance and covariance terms into (28), we find that the variance of excess return
is Vt[Êj,t[ft] − ptrt] = Σ̂j,t + Vt − 2Σ̂j,t = Vt − Σ̂j,t. Note that this is a diagonal matrix. Substituting the

expressions (25) and (22) for the diagonal elements of Vt and Σ̂j,t we have

(Vt[Êj,t[ft]− ptrt])ii = (Vt − Σ̂j,t)ii = (σ̄i,t − σ̂i,j,t) + (ρ2σx + K̄i,t)σ̄
2

i,t

In summary, the excess return is normally distributed as Êj,t[ft]− ptrt ∼ N (wt, Vt − Σ̂j,t).

Step 3: Compute ex-ante expected utility Ex-ante expected utility for investor j is Uj,t =

Et

[

ρÊj,t[Ŵj,t]−
ρ2

2
V̂j,t[Ŵj,t]

]

. In period 2, the investor has chosen his portfolio and the price is in his infor-

mation set, therefore the only payoff-relevant, random variable is ft. We substitute the budget constraint in
the optimal portfolio choice from (26) and take expectation and variance conditioning on Êj,t[ft] and Σ̂j,t

to obtain Uj,t = ρrtWt +
1

2
Et[(Êj,t[ft]− ptrt)

′Σ̂−1

j,t (Êj,t[ft]− ptrt)].

Define mt ≡ Σ̂
−1/2
j,t (Êj,t[ft] − ptrt) and note that mt ∼ N (Σ̂

−1/2
j,t wt, Σ̂

−1/2
j,t VtΣ̂

−1/2′

j,t − I). The second
term in the Ui,t is equal to E[m′

tmt], which is the mean of a non-central Chi-square. Using the formula, if
mt ∼ N(E[mt], V ar[mt]), then E[m′

tmt] = tr(V ar[mt]) + E[mt]
′E[mt], we get

Uj,t = ρrtWt +
1

2
tr(Σ̂

−1/2
j,t V Σ̂

−1/2′

j,t − I) +
1

2
w′

tΣ̂
−1

j,twt = ρrtWt +
1

2
tr(Σ̂−1

j,t V )− tr(I) +
1

2
w′

tΣ̂
−1

j,twt.

Finally, we substitute the expressions for Σ̂−1

j,t and wt from (22) and (24):

Uj,t = ρrtWt −
N

2
+

1

2

N
∑

i=1

(

σ−1

i +Ki,j,t +
K̄2

i,t

ρ2σx

)

(Vt)ii +
ρ2

2

N
∑

i=1

x̄2

i,tσ̄
2

i,t

(

σ−1

i +Ki,j,t +
K̄2

i,t

ρ2σx

)

=
1

2

N
∑

i=1

Ki,j,t[(Vt)ii + ρ2x̄2

i,tσ̄
2

i,t] + ρrtWt −
N

2
+

1

2

N
∑

i=1

(

σ−1

i +
K̄2

i,t

ρ2σx

)

[(Vt)ii + ρ2x̄2

i,tσ̄
2

i,t]

=
1

2

N
∑

i=1

Ki,j,tλi,t + constant (31)

λi,t = σ̄i,t[1 + (ρ2σx + K̄i,t)σ̄i,t] + ρ2x̄2

i,tσ̄
2

i,t (32)

where the weights λi,t are given by the variance of expected excess return (Vt)ii from (25) plus a term that
depends on the supply of the risk.

Step 4: Information choices The attention allocation problem maximizes ex-ante utility in (31)
subject to the information capacity, data availability and no-forgetting constraints (17), (18) and (11).
Observe that λi,t depends only on parameters and on aggregate average precisions. Since each investor
has zero mass within a continuum of investors, he takes λi,t as given. Since the constant is irrelevant,
the optimal choice maximizes a weighted sum of attention allocations, where the weights are given by λi,t
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(equation (19)), subject to a constraint on an un-weighted sum. This is not a concave objective, so a first-
order approach will not deliver a solution. A simple variational argument reveals that allocating all capacity
to the risk(s) with the highest λi,t achieves the maximum utility. For a formal proof of this result, see Van
Nieuwerburgh and Veldkamp (2010). Thus, the solution is given by: Ki,j,t = Kt if λi,t = maxk λk,t, and
Ki,j,t = 0, otherwise. There may be multiple risks i that achieve the same maximum value of λi,t. In that
case, the manager is indifferent about how to allocate attention between those risks. We focus on symmetric
equilibria.

A.3 Proofs

Proof of Lemma 1

Proof. Following Admati (1985), we know that the equilibrium price takes the following form ptrt =
At +Bt(ft − µ) + Ctxt where

At = µ− ρΣ̄tx̄t (33)

Bt = I − Σ̄tΣ
−1 (34)

Ct = −ρΣ̄t

(

I +
1

ρ2σx
Σ̄−1

′

η,t

)

(35)

and therefore the price is given by ptrt = µ+Σ̄t

[

(Σ̄−1

t − Σ−1)(ft − µ)− ρ(x̄t + xt)−
1

ρσx
Σ̄−1

′

η,t xt

]

. Further-

more, the precision of the public signal is

Σ−1

p,t ≡
(

σxB
−1

t CtC
′

tB
−1

′

t

)

−1

=
1

ρ2σx
Σ̄−1

′

η,t Σ̄
−1

η,t (36)

Proof of Lemma 2 See Kacperczyk et. al (2016).

A.4 Firm Volatility Data

The introduction of our paper claims that differential trends in the volatility of large and small firms’ earnings
is not a plausible explanation for the different trends in the cost of capital. To support this claim, we explore
whether the volatility of large and small firms has diverged. We find some fluctuations, but no consistent
trend in the difference.

Our volatility measure is based on the annual growth rate in earnings calculated at the firm level from
quarterly CRSP/Computat data from 1960 - 2016. Earnings are constructed by multiplying basic earnings
per share, excluding extraordinary items (EPS) by the number of shares used to calculate EPS. We measure
the volatility of earnings growth as the rolling standard deviation over the past 20 quarters. The firms are
split by size in a number of ways: firstly, the firms in the sample are split by whether or not they are (at that
time) a member of the S&P500 index. Secondly, we split firms by whether or not they were in the top half
of the earnings distribution in each quarter. Lastly, we consider only firms in the bottom and top quartiles
of the earnings distribution. In the plots below, the dashed lines are the median volatility, whilst the solid
line is the trend extracted from this series using a HP filter, with λ = 1600.
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Figure 9: 20 month rolling standard deviation of growth in earnings: Large and
small firms. Left panel: Median volatility by whether a firm is a member of the S&P500
index. Middle panel: Median volatility by whether a firm has earnings above or below the
median each quarter. Right panel: Median volatility by whether a firm’s earnings are in the
top or bottom quartile each quarter

Figure 9 plots volatility for large and small firms, over time. Whether the firms are cut at the median,
the top and bottom quartiles, or by membership in the S&P 500, in every case, there are fluctuations in
volatility, and there are long-run increases in volatility. But there is no consistent long-run trend in the gap
between the different sized firms.
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