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1 Introduction

Understanding the large differences in labor productivity across rich and poor countries is a funda-

mental issue on the research agenda in economics. It is well understood that poor countries have

disproportionately low agricultural productivity and large agricultural sectors, when compared to

rich countries (Gollin et al., 2002; Restuccia et al., 2008; Caselli, 2005). Why is agricultural produc-

tivity so low in poor countries? The answer to this question has important implications for poverty

reduction, welfare, structural transformation, and development.

There are two possible broad explanations for the disparity in agricultural productivity across

countries. First, due to varied institutions, constraints, frictions, or policies, countries make different

economic choices in agriculture, affecting the level of productivity. Second, due to unfortunate

endowments, featuring low land quality, rugged geography, and arid lands, some countries may

have a natural disadvantage in agriculture. Understanding which of these two broad explanations is

the source of low agricultural productivity across countries is essential and has dramatically different

implications for policy. The vast majority of research has focused on explanations of constrained

economic decisions affecting agricultural productivity. The role of land quality and geography,

while often presumed and invoked in public debates on development, is largely unexplored on a

systematic cross-country basis. We examine the role of geography and land quality in accounting

for agricultural productivity differences across countries. While we find evidence of considerable

heterogeneity in land quality, even within narrow geographic regions, our main finding is that, at

the country level, differences in land quality and geography cannot explain the observed differences

in agricultural productivity.

A distinctive feature of agriculture is that it is an activity that takes place across space, using

location-specific inputs such as soil quality, climate conditions, and terrain topography. These

inputs could matter not only for what yield is obtained for any crop cultivated, but also for what

crops are ultimately cultivated in each cell (Holmes and Lee, 2012) and what cells are used for
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agricultural production.

We quantify the role of geography and land quality for agricultural productivity across 162 countries

using an accounting framework and high-resolution gridded micro-geography data, covering the

entire globe, from the Global Agro-Ecological Zones (GAEZ) project of the Food and Agricultural

Organization (FAO). A land cell in the gridded data is roughly a 10 by 10 kilometer plot, which

should not be confused with plots of land operated by individual farms that in developing countries

would typically be less than one hectare (Adamopoulos and Restuccia, 2014). GAEZ provides

land quality attributes on each land cell in the world and, more importantly, potential yields for

all the main crops, including crops not necessarily produced in the cell. The data on potential

yields by crop are generated by combining cell -specific land quality attributes with established

crop-specific agronomic models, for a given level of water supply and cultivation inputs. Potential

yields summarize how detailed geographical attributes translate into productivity by crop. That

is, differences in potential yields across cells, given inputs, represent a measure of differences in

geography total factor productivity.

We develop a spatial-accounting framework that allows us to aggregate up from the cell-crop level

resolution to the country level. Within a country, each of a fixed number of cells can produce any

of a given number of crops. However, land cells are heterogeneous with respect to their inherent

suitability in producing each crop, captured in the GAEZ data by its potential yield. We show that

a country’s aggregate yield, the value of total output per harvested land ($/ha), can be expressed

as a weighted average of the cell-crop yields valued at common prices, where the weights are the

cell-crop land shares.1 We use this expression of the aggregate yield to construct counterfactual

yields. Our main counterfactual asks, what would aggregate yields be if each country produced

each crop in each cell according to its potential yield, keeping the cell-crop land shares fixed to the

1The measure of agricultural productivity that we focus on, given the GAEZ data, is the value of agricultural
output per unit of harvested land ($/ha), also known as land productivity or yield. While cross-country differences
in aggregate yields account only for a portion of agricultural labor productivity differences, yields encapsulate the
role of land quality and geography.
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actual data? If the disparity in aggregate yields across countries were similar under potential yields,

then this counterfactual would indicate that most of the variation in aggregate actual yields is due

to geography and land quality differences.

In order to focus on the natural suitability of the land, for our baseline results, we use GAEZ’s

crop-cell potential yields under rainfed water supply and low-input cultivation practices (rainfed

low-input scenario), which assumes subsistence based farming, labor intensive techniques, and no

application of fertilizers and pesticides. We find that, if the ten percent richest and poorest countries

produced crops according to their production-potential yields, the rich-poor agricultural yield gap

would virtually disappear, from more than 200 percent to 5 percent. The relationship between

aggregate production potential and actual yields across all countries is completely flat, implying

that cross-country variation in aggregate actual yields is not due to geography and land quality

variation. If the ten percent most and least land-productive countries in agriculture produced

according to potential yields in each cell and each produced crop, the aggregate yield gap would

shrink from a whopping 790 percent to only 42 percent.

We also find that the location of crop production within a country and crop choices within cells play

important but secondary roles. Spatial reallocation raises productivity in all countries, but slightly

more for low income countries. If in addition, crop mix changes cell-by-cell in each country to the

highest value yield, then the aggregate rich-poor yield gap reverses to a 20 percent advantage for

the poorest countries. Changes in spatial and crop choices could reduce aggregate yield gaps across

the most and least land productive countries by one fifth. These findings are robust to assumptions

about input use and water supply conditions. In addition, the use of irrigation and complementary

inputs generates aggregate potential yield gains for all countries, particularly low income countries.

Using a standard two-sector model of agriculture and the rest of the economy, we show that the gains

in productivity associated with production-potential yields across countries has important quanti-

tative implications for structural transformation, average farm size, agricultural land productivity,

and income per capita.
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Our paper contributes to the growing literature studying agricultural productivity differences across

countries. One branch of this literature assesses the contribution of specific factors on agricultural

productivity.2 Another branch focuses on measuring sectoral productivity gaps (Herrendorf and

Schoellman, 2015; Gollin et al., 2014b) or agricultural productivity disparities (Prasada Rao, 1993;

Restuccia et al., 2008; Gollin et al., 2014a). We instead focus on measuring the role of land quality

and geography for agricultural productivity gaps using spatially explicit micro-geography data.

The literature on geography and economic development emphasizes both the direct effect of ge-

ography on income (Gallup et al., 1999; Sachs, 2003), as well as its indirect effect through the

institutions channel (Acemoglu et al., 2002; Easterly and Levine, 2003; Rodrik et al., 2004). While

the above literature relies on country-level data and focuses on aggregate incomes, we use detailed

geo-spatial data and focus on the more direct impact of geography and land quality for agriculture,

a sector where the observed geographic conditions would tend to matter the most.

It is well documented that countries with higher temperatures tend to be poorer (Nordhaus, 2006;

Dell et al., 2009, 2012). The literature that studies the effect of temperature and the potential impact

of climate change on agricultural productivity finds that rising temperatures lead to reductions in

crop yields, particularly beyond some threshold (Schlenker and Roberts, 2009; Calzadilla et al., 2013;

Burke et al., 2015; Zhao et al., 2017). The economics and agronomic literatures have also studied

the impact of other geographic attributes on crop yields, such as rainfall (Jayachandran, 2006;

Levine and Yang, 2014), soil quality (Cassman, 1999), and topography (Kravchenko and Bullock,

2000). While these studies isolate the impact of individual attributes, our analysis accounts for all

geographic attributes that impact the biological growth of crops.

An agronomic literature estimates yield gaps for particular crops and particular regions (e.g., Lobell

et al., 2009; Mueller et al., 2012; Tittonell and Giller, 2013; van Ittersum et al., 2013), instead we

2Examples include low intermediate input use and misallocation of labor between agriculture and non-agriculture
(Restuccia et al., 2008); poor transport infrastructure (Adamopoulos, 2011); selection (Lagakos and Waugh, 2013);
misallocation of factors across farms within agriculture (Adamopoulos and Restuccia, 2014), international transport
frictions (Tombe, 2015); idiosyncratic risk (Donovan, 2016), among others.
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assess yield gaps using a consistent methodology on a global scale at various levels of disaggregation

and we use potential yields to assess the role of land quality on productivity differences across

countries. Other studies focus on cross-country differences in aggregate land quality indices and

their effect on agricultural productivity (Wiebe, 2003; Wiebe et al., 2000), whereas we exploit the

explicit spatial nature of the micro-geography data in GAEZ using an accounting framework. Our

results are consistent with this literature, especially when controlling for agricultural practices and

the level of inputs in cross-country regressions of land quality on agricultural productivity.

While the GAEZ data are increasingly used in economics (e.g., Nunn and Qian, 2011; Galor and

Özak, 2016; Costinot et al., 2016; Godefroy and Lewis, 2018), we exploit the GAEZ data to study

the macro-level implications of land quality endowments for cross-country differences in agricultural

productivity, an issue that is paramount for understanding the foundation of poverty across the

world.3

The paper proceeds as follows. The next section describes the GAEZ data and provides some mea-

sures of land quality dispersion across countries. In Section 3, we outline the spatial accounting

framework and describe counterfactuals. Section 4 presents the main findings and robustness analy-

sis. In Section 5, we study the sectoral and aggregate implications from a closing of the agricultural

productivity gap between rich and poor countries. We conclude in Section 6.

2 Data

We describe the details of the data and characterize differences in land-quality attributes across

countries based on this data.

3See other applications in Costinot and Donaldson (2012), Costinot and Donaldson (2016), and the survey in
Donaldson and Storeygard (2016) on high-resolution spatial data in economics.
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2.1 Description

We use gridded micro-geography data from the Global Agro-Ecological Zones (GAEZ) project,

developed by the Food and Agricultural Organization (FAO) in collaboration with the International

Institute for Applied Systems Analysis (IIASA) and aggregate cross-country income data from the

Penn World Table (PWTv6.3). GAEZ is a standardized framework for the characterization of

climate, soil, and terrain conditions relevant for agricultural production. GAEZ combines state-of-

the-art agronomic models by crop, that account for science-based biophysical growing requirements

for each crop, with high resolution spatial data on geographic attributes.

The information in GAEZ is available at the 5 arc-minute resolution. To picture it, imagine super-

imposing a grid of about 9 million cells or pixels covering the entire world. Figure 1 displays a

grid map of the Montreal and Toronto area in Canada, based on cells of different resolutions, where

the pink grid represents a 5-arc min; the blue grid a 30-arc min; and the black grid a 60-arc min.

While the size of each cell is constant at 5 arc-minutes in the data, it is not constant in terms of

squared kilometers or hectares, as the mapping from arc-minutes to square kilometers depends on

the distance from the equator (latitude). As a rough approximation the size of each cell can be

described as 10× 10 kilometers.

For each cell in the grid, GAEZ reports data on the following location-specific geographic attributes

that are important for agricultural production: (1) soil quality, which includes depth, fertility,

drainage, texture, chemical composition; (2) climate conditions, which include temperature, sun-

shine hours, precipitation, humidity, and wind speed; and (3) terrain and topography, which include

elevation and slope. Importantly, GAEZ calculates a potential yield for a set of crops in each cell,

measured as the maximum output (in tonnes) per hectare that can be attained in the cell given

the crop’s production requirements, the cell’s characteristics, and assumptions about input levels

such as water supply conditions and cultivation practices. Therefore, differences in potential yields

represent measures of total factor productivity differences of cell-level geographic attributes for each
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Figure 1: Grid Resolution Example Montreal-Toronto Area

Notes: The pink grid represents a 5-arc min; the blue grid a 30-arc min; and the black grid a 60-arc min.

crop given water conditions and inputs of cultivation practices. Unfortunately, the GAEZ data do

not provide information on actual amounts of inputs. Given that the attainability of potential yields

depends on access to inputs, we consider two input scenarios relevant for cross-country comparisons,

as detailed below. Potential yields are provided for all major crops including those not actually

produced in a particular cell. Note that production statistics of crops are usually measured in fresh

weight, whereas GAEZ simulated potential production is measured in dry weight. We use GAEZ

standard conversion factors by crop to make the two measurements equivalent.

There are two key ingredients that go into the GAEZ estimation of potential yields for each crop in

each cell. First, the detailed micro-geography characteristics on soil quality, climate, and topography

outlined above for that particular cell. Second, crop-specific agronomic models that reflect each

crop’s biophysical requirements for growth. The parameters of the agronomic models capture how

a particular set of geographic conditions maps into any given crop’s yield. These parameters are

based on well tested field and lab experiments by agricultural research institutes, are established
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in the agronomic literature, and are updated to reflect the latest state of scientific knowledge. We

stress that the agronomic model parameters are not based off a regression analysis of observed

choices on outputs and inputs across countries, regions, or farms, an analysis that would be subject

to serious endogeneity issues.

Potential yields are reported for alternative configurations of water supply conditions and cultiva-

tion practices. Water supply conditions include: irrigated, rainfed, and total which covers both rain

fed and irrigated land. There are three levels of cultivation practices which specify input intensity

use and management: (a) Low level of inputs (traditional management) assumes subsistence based

farming, labor intensive techniques, no application of nutrients, chemicals, and pesticides. (b) Inter-

mediate level of inputs (improved management) assumes partly market oriented farming, improved

varieties with hand tools and/or animal traction, some mechanization, medium labor intensity, use

of some fertilizer, chemicals, and pesticides. (c) High level of inputs (advanced management) as-

sumes mainly market oriented farming, high yield variety seeds, fully mechanized with low labor

intensity, optimum application of nutrients, chemicals, and pesticides as well as disease and weed

control. The idea is that the resulting crop yield in each cell would depend not only on the “en-

dowment” of land quality and geography but also on the set of complementary inputs applied by

the farmer. GAEZ also reports potential yields for a baseline mixed input scenario covering both

irrigated and rainfed land, and assuming a mixed level of inputs, which applies high inputs on the

best quality land, intermediate inputs on moderately suitable land, and low inputs on marginal

land. This classification of land suitability for agriculture is based on cell-level data on soil type,

terrain-slope conditions, and climatic conditions.

In our analysis, we consider two input scenarios: (1) the low input cultivation practices scenario

with rainfed water supply conditions, which is the minimum input application in GAEZ; and (2)

GAEZ’s baseline scenario, which GAEZ considers as a reasonable representation of actual agri-

cultural input application management. Throughout the paper, we refer to scenario (1) as “Low

inputs,” and scenario (2) as “Mixed inputs.” Note that under each scenario we keep water supply
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and cultivation practice conditions constant across all cells and all countries. This allows for a

consistent quantification of potential land productivity around the world.

Potential yields in GAEZ are calculated for both average historical climate conditions (with the

baseline reference period being 1960-1990), individual historical years 1901-2009, as well as projected

future climate conditions based on a number of climate models. In our analysis, we use potential

yields based on the average historical climate conditions, as they iron-out year-to-year idiosyncratic

weather shocks.

The GAEZ database also provides at the 5 arc-minute resolution, for the year 2000, estimated data

on crop choice, actual production, harvested area, and actual yield, i.e., tonnes of production per

hectare (tonns/ha) by crop. The actual production data for each cell are estimated using a flexible

iterative rebalancing methodology that sequentially downscales aggregate and regional agricultural

production statistics (Appendix B). The actual production data at the cell level are available for

all major crops. In addition, the database contains land cover data that classify land in each cell

in terms of urban, cultivated, forest, grassland and woodland, water bodies, and other uses.

The data set we work with has global coverage, consisting of 162 countries. In 2000, the countries

in our sample account for 87 percent of the world production of cereal in terms of acreage and 81

percent of the value of crop production.4 The count of grid cells (pixels) per country varies widely,

from as low as 5 (Antigua and Barbuda) to as high as 421,168 (Russia). The median country in our

data set consists of 2,827 cells. A complete list of the countries in our data set, along with their cell

counts, and their GDP per capita (from the Penn World Table) are provided in Table A.1 in the

Appendix. Our analysis focuses on 18 main crops and commodity groups, that cover the majority

of produced crops across the world.5 In 2000, the crops that are covered in our GAEZ analysis

account for 83 percent of the harvested area and 60 percent of the value of production in total crops,

4Based on data from FAOSTAT, available through http://www.fao.org/faostat/en/#data.
5The crops in our data set are: wheat, rice, maize, sorghum, millet, other cereals (barley, rye, oat, and other

minor cereals), tubers (white potato, sweet potato), roots (cassava, yam and cocoyam), sugarcane, sugarbeets, pulses
(chickpea, cowpea, dry pea, grams, pigeon-pea), soybean, sunflower, rapeseed, groundnut, oilpalm, olive, cotton.
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across all countries in the world. The coverage of the crops in our analysis for the lower income

countries is very similar, both in area and production (FAOSTAT). While crop production is only

one component of the agricultural economy, our focus on crop production and yields is dictated

by the available geo-spatial data from GAEZ. In addition, productivity can be more accurately

measured and compared across countries for crops than for livestock, and land quality is a more

prominent issue for crops than for livestock. Nevertheless, the crop yield is strongly correlated

with the overall agricultural yield that includes all forms of agricultural production. For instance,

using country-level data from FAOSTAT, the correlation between the log value of agricultural crop

output per hectare of cropland and the log value of total (including livestock) agricultural output

per hectare of agricultural land is 0.83, both measured in constant 2014-16 US$.

GAEZ provides the information for each variable in raster (grid cell) files, which we work with in

ArcGIS. To aggregate cell-level information to administrative units, such as regions, provinces, and

countries, we use shape files from the World Borders data set of “Thematic Mapping.”6

2.2 Land Characteristics across the World

We use the micro-geography data from GAEZ to illustrate the diversity of some key land quality

and geographic characteristics across the world. We illustrate these characteristics in a set of

maps constructed using ArcGIS for all the cells at the 5-arc minute resolution in Figure 2. The

soil fertility constraint classifies the soil according to its nutrient availability, which captures soil

properties such as texture (e.g., clay, silt, sand), organic carbon content, acidity (pH), and the sum of

sodium, calcium, magnesium and potassium. Nutrient availability is an important indicator of soil

fertility, particularly in environments with low application of intermediate inputs. The classification

determines how nutrient constrained the soil in each cell, ranging from no/slightly constrained (index

value 1) to very severely constrained (index value 4). Except for the premafrost zones in the north,

there is considerable variation in the soil constraint around the globe, that transcends country

6Available through http://thematicmapping.org/downloads/world_borders.php.
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borders. We also document the median altitude (in meters), the mean temperature (in degrees

Celsius), and annual precipitation (in milimiters) in each cell for the whole world. Altitude is an

important indicator of terrain suitability for agricultural production, as it affects solar radiation,

oxygen availability as well as temperatures and moisture. The altitude varies substantially across

the world, with a high of 6500 meters to a low of -415 meters. Temperature is an example of an

indicator of thermal regimes, while rainfall is an example of an indicator of moisture regimes. Both

thermal and moisture regimes are important measures of agro-climatic conditions and serve as key

inputs into the GAEZ methodology in constructing crop-specific potential yields by cell. The maps

in Figure 2 illustrate the wide diversity in these agro-climatic conditions across the world.

Figure 2: Geographic Attributes around the World

Soil Fertility
Constraints

No or slight

Moderate

Severe

Very severe

Mainly non-soil

Premafrost zone

Water bodies
Ü

0 6,400 12,8003,200 Kilometers

Source: Soil Resources, Land Resources, GAEZ.

Median Altitude

High : 6563

Low : -415 Ü
0 6,400 12,8003,200 Kilometers

Source: Terrain Resources, Land Resources, GAEZ.

Mean Annual
Temperature

High : 31.2

Low : -30.52 Ü
0 6,400 12,8003,200 Kilometers

Source: Thermal Regimes, Agro-Climatic Resources, GAEZ.

Annual
Precipitation

High : 5440

Low : 0 Ü
0 6,400 12,8003,200 Kilometers

Source: Moisture Regimes, Agro-Climatic Resources, GAEZ.

It should not be surprising that there is such wide variation in land quality characteristics across

the world. Even within narrow geographic regions some locations are naturally advantaged in

terms of one or more characteristics, while others are naturally disadvantaged. The importance of
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a naturally advantageous geographic environment for agricultural production in a specific location

is ubiquitous. However, agricultural productivity differences between the developed and developing

world are often framed at the country level. As a result, we are interested in whether the land

quality characteristics vary systematically across the most and least developed countries.

We examine cross-country variation in land quality attributes in Table 1 according to mean soil,

terrain, and climate conditions. For soil quality conditions we report “fertility,” which captures

nutrient availability and is measured as an index from 1 (unconstrained) to 4 (constrained), and

“depth,” which captures rooting conditions, and is also measured as a 1 to 4 index. The terrain

conditions we report are “slope,” measured as an index between 0 and 100, and “altitude” which

measures mean elevation in meters. The slope of a plot is important, as it can affect for example

the farming practices employed (standard mechanization can be difficult on steep irregular slopes)

and the extent of topsoil erosion. The climatic conditions we report are “temperature,” measured

in degrees Celsius and “precipitation,” measured in millimetres. We report the averages of these

attributes across countries in the richest and poorest deciles of the 162 countries in our sample and

the averages over the countries with the top and bottom deciles of the cross-country distribution of

each attribute.

The main finding from Table 1 is that there is substantial variation in land quality and geographic

characteristics around the globe, but that this variation is considerably more compressed across

rich and poor countries. In particular, the dispersion in mean attributes, measured as the log

difference between rich and poor countries for each attribute, accounts for less than one quarter of

the dispersion across the world, and for most attributes less than 10 percent. This finding suggests

that the mean attribute differences are not systematic across the income distribution and as a result

the unconditional cross-country variation dwarfs the rich-poor variation in each of the attributes.

While we find some variation between rich and poor countries in terms of soil, terrain, and climate

attributes, what matters for aggregate agricultural productivity is how differences in geographical

attributes translate into productivity differences across countries. Moreover, agricultural productiv-
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Table 1: Differences in Mean Geographical Attributes

Rich 10% Poor 10% Top 10% Bottom 10%

Soil Quality
Fertility (1-4 index) 2.37 2.19 3.32 1.10
Depth (1-4 index) 2.19 1.93 3.40 1.07

Terrain Conditions
Slope (0-100 index) 72.0 78.5 96.1 37.9
Altitude (meters) 342.8 824.0 1799.4 53.97

Climate Conditions
Temperature (◦C) 12.3 23.2 27.5 2.6
Precipitation (mm) 899.6 1074.9 2515.8 123.4

Notes: Top and bottom 10% refer to the average of the highest and lowest decile in the cross-country distribution for

each attribute, whereas Rich and Poor 10% refer to the average attributes of the richest and poorest decile countries

in terms of real GDP per capita.

ity is the result of all geographical conditions combined and differences in a single attribute may not

matter as much. For this reason, in the next section we work with potential yields by cell and crop,

as a summary measure of how dispersion in geographical attributes translates into productivity

differences.

3 Accounting Framework

We develop a spatial accounting framework to study the role of land quality and geographic char-

acteristics on agricultural productivity.
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3.1 The Primitives

We consider a world comprised of a fixed number of administrative units indexed by u ∈ U ≡

{1, 2, ..., U}. These units are countries in our analysis but in general could be lower administrative

units within a country such as provinces, states, or counties. Each administrative unit u comprises a

finite number Gu of grid cells (or pixels) of fixed size. We index grid cells by g ∈ Gu ≡ {1, 2, ..., Gu}

and aggregate cells to the country level using a mapping of cells to administrative boundaries in

ArcGIS. Each grid cell can produce any of C crops, indexed by c ∈ C ≡ {1, 2, ..., C}.

Cells are heterogeneous with respect to their land characteristics and as a result differ in the

productivity of the land across crops. In particular, a key object reported in the GAEZ data is the

potential yield or land productivity (tonnes/ha) of each cell for crop c. We denote the potential

yield of crop c in grid cell g in unit u by ẑcgu. Note that for each cell g in unit u there are C such

numbers, each of which reflects the inherent productivity of that cell in producing crop c under a

given input scenario (water conditions and cultivation practices). In other words, the potential yield

of crop c in each cell represents the maximum attainable output for that crop given inputs and as

such, variation in potential yields with constant inputs reflects variation in total factor productivity

of land characteristics. We note that this variation does depend on input conditions and, as such, in

our quantitative analysis we consider two inputs scenarios, which consistently characterize potential

yields across countries.

In practice, the land in each cell can be used for crop production or some other activity (could be

agricultural such as raising livestock or non-agricultural, or some other land cover category). If a

portion of the land in a cell is used for crop production, it may produce one or several specific crops

which may differ from the crops in which the cell has the highest potential yield. We denote by

ycgu the physical output (in tonnes) of crop c and by `cgu the amount of harvested land (in hectares)

of crop c for any cell g and unit u. We denote by zcgu the actual yield of crop c which is just the

ratio of physical output to land (tonnes/ha) in each cell but note that our analysis does not rely
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on this disaggregated actual yield nor on actual output by cell from GAEZ. Only the aggregated

actual values at the country level matter for the analysis, which match the aggregate actual data

by construction. For the purpose of aggregation, in any unit u and cell g, we set the amount of

output and land used to zero if there is no production of a given crop c.

Similarly, for the purpose of aggregation of different crops in a location, we denote by pc the price

of each crop (in $) which we treat as common across space and countries. Note also that the size of

each vector is C × 1, corresponding to the total number of crops in the GAEZ project which is 18

crops. In each cell g, all the vectors have non-zero elements only for the crops actually produced.

The only vectors that have all non-zero elements for every crop are the potential yield and the price.

The potential yield vector is specific to each cell g and unit u.

3.2 Aggregate Variables

We denote with upper case letters aggregate variables at the country level. We denote by Lu the

amount of land used in agricultural production in country u (in hectares), given by,

Lu =
∑
c∈C

∑
g∈Gu

`cgu.

We denote by Yu the total value of agricultural output produced ($), given by,

Yu =
∑
c∈C

∑
g∈Gu

pcycgu.

Given these aggregates, we define the aggregate actual yield Zu by the ratio of aggregate value

output to land ($/ha), that is,

Zu =
Yu
Lu

=

∑
c∈C
∑

g∈Gu
pczcgu`

c
gu

Lu
=
∑
c∈C

∑
g∈Gu

pczcgu
`cgu
Lu

. (1)
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The aggregate yield is a weighted average of the yields in every crop and location in a given

country. Equation (1) is key in our accounting analysis as it provides the basis for assessing the role

of geography and land quality on agricultural land productivity across countries. Note also that

by construction of the disaggregated actual data in GAEZ, the country-level aggregate actual yield

Yu/Lu is consistent with aggregate actual data on output and land. The spatially disaggregated data

on actual output and yields are not relevant for our country-level analysis, only the disaggregated

land-use data `cgu/Lu as we discuss below.

3.3 Counterfactuals

We construct a set of counterfactuals on the aggregate yield for each country u by exploiting the

set of potential yields by crop at the cell level g and the spatial distribution of land use by crop

across cells. All the counterfactuals involve producing crops at potential and in some cases reallo-

cating across space and crops. Because cell-specific potential yields depend on input conditions, we

construct these counterfactuals for the rainfed low input scenario as our baseline, as this involves

the least human intervention, and more closely captures the natural suitability of the land. We

compare our baseline results to those under the mixed input scenario.

Production potential. We assess the impact on the aggregate yield in the case of countries producing

at the potential yield for each crop and each cell. We compute this counterfactual by simply using

in equation (1) the potential yield ẑcgu for each crop in each cell:

Zcf
u =

∑
c∈C

∑
g∈Gu

pcẑcgu
`cgu
Lu

.

In this counterfactual only the yield changes, while the weights represented by the share of cultivated

land of a crop in each location are kept to the actual values `cgu/Lu. Note that the construction of

the aggregate production-potential yield depends only on the disaggregated data on potential yields

and land used by crop.
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If cross-country differences in the aggregate production-potential yield are similar to the aggregate

actual yields, then production potential at the crop/cell level is an important determinant of the

aggregate actual yield differences. Instead, if cross-country differences in aggregate productivity-

potential yields are negligible, then geography and land quality are not important determinants of

actual yield gaps across countries. A possible issue with this counterfactual may be that potential

yields involve the application of inputs that are simply not available in the country. The GAEZ data

does not allow us to separate from actual data at the cell or aggregate level the input conditions.

As noted above however in our baseline results we consider the rainfed low-input scenario which

captures the application of minimum inputs, that should be attainable by all countries and hence

mitigates this concern.

Spatial potential. We assess the extent to which reallocation of agricultural production of the

different crops to the most productive locations across space can increase aggregate output. This

counterfactual combines production potential with a reallocation of crops across space to the most

suitable locations. In particular, we reallocate production so that each crop is produced in the cells

where it realizes the highest potential yields, keeping constant the amount of harvested land for

that crop in the country to the actual level, i.e., Lcu =
∑

g∈Gu
`cgu. This allocation problem is non-

trivial. Some cells within a country may exhibit higher potential productivity for all crops, while

the amount of land that can be allocated to a given crop is limited. We reallocate the production of

crops to cells to maximize total constant-price value output based on potential yields of the different

crops, i.e., to where the relative potential return for each crop is the highest. Formally, this involves

solving a large-scale linear programming problem for each country, given by,

max
{`cgu}

∑
c∈C

∑
g∈Gu

pcẑcgu`
c
gu, (2)

subject to ∑
c∈C

`cgu ≤ Lgu, g = 1, 2, ...Gu; (3)
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∑
g∈Gu

`cgu ≤ Lcu, c = 1, 2, ...C; (4)

`cgu ≥ 0, g = 1, 2, ...Gu; c = 1, 2, ...C. (5)

The objective is to maximize the total value of output across all cells and crops, subject to three

sets of constraints. The first set of constraints restricts that land allocated to the production of the

different crops cannot exceed what is available in each cell. The second set of constraints indicates

that land allocated to crop c over all cells cannot exceed the total in the data. The third set of

constraints allows for the possibility that not all crops are produced in all cells. Note again that the

constraints only involve land allocations as the application of inputs in the GAEZ data is embedded

in the different input scenarios we consider, and cannot be separated out. The low input scenario

however maps more directly to the allocation problem in equations (2) to (5). Given that our focus

is on the role of land quality for production, we abstract from demand. This prevents us from

drawing implications about welfare and analyzing possible changes in local relative prices.

Total potential. We assess the extent to which countries may not be producing the highest yielding

mix of crops in each location given their land endowment characteristics. This counterfactual

involves computing the aggregate potential yield in each country by picking the crop in each location

that maximizes the total value of output. Formally, we solve for `gu in equation (2) subject to

only the constraints in equations (3) and (5). This counterfactual involves production potential,

reallocation of crops across space, and changes in crop choices in order to maximize the aggregate

value of agricultural output ($). It is the allocation that generates the maximum attainable value

of output in each country given the total amount of land, and the set of potential yields by cell

and crop. The difference between this counterfactual and the production potential counterfactual

represents the contribution to the aggregate yield of crop-mix choices and the spatial reallocation

of production, whereas the difference with the spatial reallocation is the contribution of crop choice

changes to the aggregate yield.
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4 Results

We present the results for each counterfactual under our baseline rainfed low-input scenario for

potential yields by cell and crop and show how aggregate actual and potential yields vary across

countries. We then assess whether aggregate potential yields can account for agricultural land

productivity (aggregate actual yield) across countries. We also present results for potential yields

under the mixed input scenario and other robustness.

4.1 Baseline Results

We calculate aggregate output per hectare (aggregate actual yield) using FAO international crop

prices (Geary-Khamis dollars per tonne) for the year 2000. There are substantial differences in

aggregate actual yields across countries. The ratio between the ten percent richest and poorest

countries in terms of GDP per capita is a factor of 3.1-fold. This dispersion in aggregate yields

is consistent with cross-country estimates using micro-data sources (Gollin et al., 2014a). The

aggregate actual yield varies systematically with the level of development (GDP per capita), with

a correlation in logs of 0.58.

To what extent are aggregate yield differences across countries the result of differences in land

quality and geography? We now address this question using our spatial accounting framework.

Production potential. We calculate the aggregate production-potential yield using equation (1) and

the potential yield for each cultivated crop in each cell under the rainfed low-input scenario, keeping

the crop-cell land allocation fixed to the actual one. Given that the low-input scenario has rainfed

water conditions and the lowest application of inputs, it more closely captures the productivity

afforded by the natural geographic and land quality endowments of each country. Figure 3 doc-

uments the aggregate production-potential yield across countries along with the aggregate actual

yield. While there is substantial variation in aggregate potential yields across countries, the ratio
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of the top to bottom deciles in the production-potential yield distribution is a factor of 6, the dif-

ferences are not systematically related to the level of development. For instance, the disparity in

the production-potential aggregate yield between Tanzania and Eritrea, two low-income countries,

is roughly the same (around 3-fold) as the disparity between Belgium and Austria, two high-income

countries. Unlike the aggregate actual yields, Figure 3 illustrates that there is actually a slight

negative relationship between potential aggregate yields and GDP per capita, with a correlation in

logs of −0.19. Egypt and countries of the Arabian peninsula stand out as outliers due to large desert

areas, which are particularly arid under pure rainfed water conditions and low input application.

Figure 3: Aggregate Actual and Production-Potential Yield across Countries
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Notes: Aggregate production-potential yield under the rainfed low-input scenario.

In Panel A, Table 2, we report the production-potential yield for the weighted average of each of

the richest and poorest decile countries in terms of income per capita. The results are striking. If

countries produced the crops they are producing in the cells they are actually producing them but

according to the their potential yields, the aggregate yield disparity between rich and poor countries

would drop from the actual 3.14-fold to only 1.05-fold, that is the productivity disparity would
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Table 2: Counterfactual Production-Potential Yield

Panel A: All Crops
(country obs. = 162)

Actual Yield Potential Yield Ratio
Rich 10% 739.5 237.2 0.32
Poor 10% 235.5 225.7 0.96
Ratio 3.14 1.05 1/2.99

Panel B: Wheat
(country obs. = 110)

Actual Yield Potential Yield Ratio
Rich 10% 2.71 1.04 0.38
Poor 10% 1.07 0.66 0.62
Ratio 2.53 1.58 1/1.61

Panel C: Rice
(country obs. = 104)

Actual Yield Potential Yield Ratio
Rich 10% 6.64 0.88 0.13
Poor 10% 1.30 0.89 0.68
Ratio 5.10 0.99 1/5.13

Panel D: Maize
(country obs. = 142)

Actual Yield Potential Yield Ratio
Rich 10% 8.56 2.10 0.25
Poor 10% 1.31 1.31 1.00
Ratio 6.52 1.61 1/4.06

Notes: Rich and Poor refer to the weighted average of the highest and lowest decile of the real GDP per capita

distribution in 2000 (PWT 6.3). Aggregate actual and potential yields are measured as total value output per hectare

in international prices (GK $/ha). Actual and potential yields by crop are measured as tonnes per hectare. The

production-potential yield for each country is constructed by aggregating up from the GAEZ pixel-level information

at the 5 arc-minute resolution under the low input scenario. Low inputs assumes rainfed water supply and low-input

cultivation practices.
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virtually disappear. In other words, with no complementary inputs and rainfed water conditions,

rich countries would only attain a 5 percent higher aggregate yield. Note, that if countries were

producing according to their natural endowments without complementary inputs, yields would be

lower than actual yields for most countries, particularly for the high-income countries.

Our findings are consistent with an earlier literature on the role of aggregate measures of land

quality for agricultural productivity across countries (Wiebe, 2003). For instance, Wiebe et al.

(2000) find that good soils and climate are associated with a 13 percent increase in agricultural

productivity relative to poor soil and climate. Using this data, we find that when controlling for

(log) inputs such as agricultural labor, tractors, and fertilizer, the effect on agricultural productivity

becomes statistically insignificant. Despite the limitations of aggregate measures of land quality,

our findings with the geospatial data from GAEZ and the accounting framework, are consistent with

this earlier literature, in the lack of a systematic relationship between land quality and agricultural

land productivity, after controlling for other inputs.

We have used a common set of crop prices to aggregate yields in all locations and countries, however,

the conclusions from the production-potential counterfactual remain when focusing on individual

crops for which we can use a physical measure of land productivity. Panels B to D in Table 2 report

the production-potential counterfactual for each of the three most representative crops produced

across the world: wheat, rice, and maize. In each case, the yield is measured as crop output in tonnes

per unit of land, a physical measure of productivity that does not require prices for aggregation.

The rich-poor disparity in the actual yield differs across crops: 2.53-fold for wheat, 5.10-fold for

rice, and 6.52-fold for maize. Producing these crops according to the low-input potential yields

would reduce the rich-poor disparity to 1.58, 0.99, and 1.61-fold for wheat, rice, and maize. Despite

differences across individual crops, the main takeaway from the production-potential counterfactual

is that the disparity is substantially reduced when producing according to natural endowments,

implying a limited role of land quality and geography for differences in agricultural productivity

across countries.
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We note that the aggregate production-potential yield summarizes a great deal of heterogeneity in

land quality between cells in a country. However, we find no systematic relationship between the

within-country dispersion in potential yields and the level of development, see Appendix C, Figure

C.1 for a documentation of this fact.

Spatial potential. A fact of poor and developing countries is the prevalence of large rural popula-

tions, often operating at subsistence levels and facing poor infrastructure, conditions that may lead

farmers to produce in locations not necessarily suitable for agricultural production (Adamopoulos,

2011; Gollin and Rogerson, 2014; Adamopoulos and Restuccia, 2014). We assess the relevance of

spatial reallocation by calculating the aggregate potential yield that would result from reallocating

production of crops across cultivated cells according to where they exhibit the highest relative yield

value in the country, holding constant the total amount of land allocated to each crop in the country.

Table 3 reports the results of this counterfactual in columns two and three (column one repeats

the production-potential). Spatial reallocation has a positive effect on agricultural output for both

rich and poor countries, but relatively more for poor countries. Under spatial reallocation relative

to the production-potential, the aggregate yield for the poorest countries increases on average 36

percent, whereas for the richest the average increase is 22 percent. This implies a further decline

in the rich-poor yield gap to 0.94, relative to the production-potential counterfactual, and a slight

reversal of the rich-poor yield gap.

We also note that if spatial reallocation is guided by actual-yield differences across cells rather

than potential-yield differences in our spatial counterfactual, there is more of a decline in the

dispersion between rich and poor countries, from 3.14-fold in the aggregate actual yield to 2.3-

fold. Nevertheless, even though there is more role for spatial reallocation under actual yields, the

reduction in the disparity is much lower than producing at potential for each crop and cell which

implies an aggregate production potential yield ratio of 1.05-fold.

Total potential. We now assess the effect of crop reallocation by calculating the aggregate potential

yield in each country when the highest value-yielding crop is produced in every cell, holding the
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Table 3: Counterfactual Aggregate Spatial and Total Potential Yields

(country obs. = 162)

Aggregate potential yield - Low Inputs

Production Spatial Spatial/ Total Total/
Production Spatial

Rich 10% 237.2 288.2 1.22 363.9 1.26
Poor 10% 225.7 307.6 1.36 469.0 1.53
Ratio 1.05 0.94 1/1.11 0.78 1/1.21

Notes: Rich and Poor refer to the average of the highest and lowest decile in the real GDP per capita distribution

in 2000 (PWT 6.3). “Production” refers to the production-potential counterfactual yield, “spatial” to the spatial-

potential counterfactual yield, and “total” to the total-potential counterfactual yield. All yields are measured as

total value output per hectare in international prices (GK $/ha), aggregating from the GAEZ pixel-level information

at the 5 arc-minute resolution under the low input scenario.

amount of land in each cell constant. This counterfactual reflects the maximum aggregate value

potential yield that can be achieved via production potential across cells and crops within cells. Ta-

ble 3 reports the results of this total-potential counterfactual, in columns four and five. If countries

shift their crop mix to the highest yielding crops, cell-by-cell, then the aggregate yield disparity

would drop between rich and poor countries from the actual 3.14-fold to 0.78-fold. Adjusting the

crop mix cell-by-cell to the most suitable given each cell’s geographic characteristics, poor countries

would be 22 percent more productive than the rich countries. This occurs because relative to the

spatial potential, the total potential increases yields in poor countries by 53 percent, double the

increase in rich countries (26 percent).

Overall, while spatial and crop reallocation both contribute to reduce the dispersion in land pro-

ductivity between rich and poor countries, most of the reduction in the aggregate yield gap occurs

when countries produce each crop in each cell at potential. We note that in our accounting, spatial

and crop reallocation measure the increase in agricultural output associated with given geography

productivity, but clearly these gains may not be efficient when taking into account other uses of

land, cost and demand factors, and potential changes in relative prices. Similarly, the spatial- and
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total-potential counterfactuals abstract from complementarity in production across crops, and crop

rotation associated with best practices of land management, among others.

4.2 Accounting for Actual Yields

We now examine to what extent land quality and geographic differences across countries, captured

by the low-input aggregate potential yields, can account for agricultural land productivity differences

(aggregate actual yields).

If aggregate potential yields were roughly similar to aggregate actual yields across countries, then

when plotting these variables, countries should fall around the 45 degree line. We find in contrast

that the relationship between aggregate potential and actual yields is fairly flat. Figure 4 displays

the aggregate production-potential yield for the rainfed low-input scenario against the aggregate

actual yield. There is a weak relationship between the production-potential yield and actual yield,

in fact the correlation is slightly negative, indicating a weak role for geography and land quality in

accounting for agricultural land productivity differences.

In Table 4 we rank countries according to their aggregate actual yield, and show the results of the

three counterfactuals for the top and bottom deciles of the actual yield distribution (rather than the

rank by real GDP per capita in Tables 2 and 3). The first column shows the aggregate actual yield for

the most and least land productive countries, with a disparity in actual yields of 8.91-fold. Under the

production-potential counterfactual (second column), where all countries produce according to their

potential yields cell-by-cell (holding constant the land and crop allocation), the disparity between

the most and least productive countries declines to 1.42-fold. If countries produced according to

their raw natural endowment potential the bulk of the staggering 791 percent land productivity

differences would disappear. We conclude that the most land productive countries’ agricultural

productivity advantage is not primarily driven by favourable natural geographic endowments.

If in addition, crop production could be spatially reallocated within a country (keeping the total
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Figure 4: Aggregate Production-Potential vs. Actual Yield across Countries
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Notes: Aggregate production-potential yield under rainfed low-input scenario.

Table 4: Counterfactual Potential Yields by Agricultural Productivity

(country obs. = 162)

Aggregate potential yield - Low Inputs

Actual Production Spatial Spatial/ Total Total/
Production Spatial

Top 10% 1265.1 208.1 277.3 1.33 365.8 1.32
Bottom 10% 142.0 146.9 212.4 1.45 424.3 2.00
Ratio 8.91 1.42 1.31 1/1.09 0.86 1/1.52

Notes: Top and Bottom refer to the average of the highest and lowest decile of countries in terms of aggregate

actual yield (agricultural productivity). “Production,” “Spatial,” and “Total” refer to the production-potential,

spatial-potential, and total-potential counterfactual yields. Aggregate actual and all counterfactual potential yields

are measured as total value output per hectare in international prices (GK $/ha). Production potential yields are

constructed by aggregating the GAEZ pixel-level information at the 5 arc-minute resolution under the low-input

scenario.
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amount of land to each crop in a country fixed), then the yield disparity between the most and least

productive countries would drop further to 1.31-fold, implying that the relatively least productive

countries would benefit more from such a reallocation (columns three and four in Table 4). Under

the total potential counterfactual (columns five and six), if countries shift their crop mix to the

highest value yielding crops, cell-by-cell, then the aggregate yield disparity between the top and

bottom deciles would drop further to 0.86. In other words, by adjusting the crop mix to the most

suitable given their geographic characteristics, unproductive countries would be 14 percent more

productive than the top productive countries.

The potential yield gaps, under the different counterfactuals, show that the agricultural productivity

differences are eliminated, in fact reversed, implying that land quality does not play a key role in

explaining the actual productivity differences. We decompose the overall reduction in the yield gap

between the most and least land productive countries, into the contributions of within cell-crop

productivity, spatial reallocation, and crop choice, as implied by our counterfactuals. The disparity

in the aggregate yield between the top and bottom 10% of countries in land productivity drops from

8.91-fold in the actual yield to 1.42-fold in the production potential counterfactual, to 1.31-fold in

the spatial counterfactual, and to 0.86 in the total counterfactual using the rain and low input

scenario. We can decompose the contribution of each factor (production, spatial, and total) to the

decline in agricultural productivity disparity as follows:

8.91×
production︷︸︸︷

0.16︸ ︷︷ ︸
=1.42

×
spatial︷︸︸︷
0.92︸ ︷︷ ︸

=1.31

×
total︷︸︸︷
0.66 = 0.86.

This implies that production-potential contributes 79 percent (log(0.16)/ log(0.097)) to the decline

in the productivity ratio, while the spatial reallocation of production accounts for a small 4 percent

and crop reallocation the remaining 17 percent.
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4.3 Potential Gains under Mixed Inputs

In our analysis so far we have focused on aggregate potential yields derived under the rainfed

low-input scenario from GAEZ. The main takeaway is that these potential yields do not vary

systematically across countries. However, the potential yields based on the low input scenario are

typically lower than the actual yields for most countries. This is expected given that they mostly

capture the raw natural land endowments of countries under subsistence agricultural practices. Are

there potential yield gains that countries can reap given their existing land quality and geographic

characteristics? To answer this question, we use by-cell and by-crop potential yields from GAEZ

under the mixed input scenario, which includes both rainfed and irrigated land, as well as a mixed

level of cultivation practices and input application, that applies the highest level of inputs to the

best land and the lowest level of inputs to the marginal land. GAEZ considers this as their baseline

scenario as it more realistically represents actual input application approaches across the world.

We compute the aggregate counterfactual experiments under the mixed input scenario. In Table 5

we present the production-potential, spatial-potential, and total-potential yields for the 10 percent

richest and poorest countries. The first column reports the aggregate actual yields. Similarly to

the low-input scenario, the production-potential in column two, if countries produced their crops

in the current locations but according to the mixed-input potential yields, the rich-poor disparity

would drop from the actual 3.14-fold to 1.05-fold, a conclusion that is remarkably robust to the input

scenario assumed. However, as column three shows, what is different under the mixed-input scenario

is that aggregate production-potential yields are higher than actual yields for both rich and poor

countries. Based on the mixed input production-potential yields, the potential productivity gains

for the rich countries are 65 percent, whereas for the poor countries 393 percent. This implies that,

conditional on their land quality, there is considerable untapped potential for poor countries, and

that improvements in non-land quality factors (cultivation practices, application of complementary

inputs, farm size and organization, managerial operation, among others), rather than land quality,

would allow them to realize it.
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Table 5: Counterfactual Potential Yields with Mixed Inputs

(country obs. = 162)

Aggregate potential yield — Mixed inputs

Production Production/ Spatial Spatial/ Total Total/
Actual Production Spatial

Rich 10% 1220.0 1.65 1446.0 1.19 2498.3 1.73
Poor 10% 1160.6 4.93 1361.1 1.17 3254.7 2.39
Ratio 1.05 1/2.99 1.06 1.02 0.77 1/1.38

Notes: Rich and Poor refer to the average of the highest and lowest decile in the real GDP per capita distribution

in 2000 (PWT 6.3). “Production” refers to the production-potential counterfactual yield, “spatial” to the spatial-

potential counterfactual yield, and “total” to the total-potential counterfactual yield. All yields are measured as

total value output per hectare in international prices (GK $/ha), aggregating from the GAEZ pixel-level information

at the 5 arc-minute resolution under the mixed input scenario.

Figure 5 displays the production-potential yield and the actual yield for all countries in our sample.

Despite the substantial variation in potential yields across countries, they do not systematically vary

with the level of income per capita, as the aggregate actual yields do. Furthermore, potential yields

lie above the actual yields for all countries, particulary the lower income ones. That is, conditioning

on the set of crops each country produces on each plot, developing countries produce much further

away from their potential than developed countries.

Spatial reallocation (columns four and five in Table 5) has a positive effect on agricultural output,

but the magnitude of the effect is similar among rich and poor countries, and thus does not further

reduce the disparity in agricultural productivity across countries beyond the production potential

effect. Columns six and seven show the results of the total-potential counterfactual. If in addition,

countries shift their crop mix to the highest yielding crops, cell-by-cell, then the aggregate yield

disparity between rich and poor countries would drop to 0.77-fold with mixed inputs, very similar

to the 0.78 ratio we found under low inputs. This counterfactual points to poor countries producing

systematically lower yielding crops given their internal land quality characteristics.

The conclusions about the lack of a systematic correlation between the potential aggregate yield
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Figure 5: Aggregate Actual and Production-Potential Yield across Countries
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Notes: Aggregate production-potential yield under total-water (rainfed and irrigated) and mixed-input scenario.

and GDP per capita, and the reversal of the gap under total-potential yield remain intact between

the low and mixed input scenarios. An important element in these cross-country comparisons is

that the assumptions on inputs are kept the same in all countries, so the differences in the potential

yields for each crop and location reflect variation in the geographical attributes of the land in each

location. Interestingly, the similarity in the rich-poor potential yield disparities under the low-

and mixed-input scenarios suggest that geographical endowments in poor countries are not less

conducive to the use of certain inputs.

Our finding that gaps in potential-to-actual yields under the mixed input scenario are higher in

developing than developed countries is consistent with findings in agronomic studies. For example,

Van Ittersum et al. (2016) find that the average potential-to-actual yield gap across 10 Sub-Saharan

African countries for the main cereals is a 5, while Schils et al. (2018) find that for Northern

European countries, the yield gap in cereals is as low as 1.10-1.20.
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4.4 Robustness

We examine the sensitivity of our main results to: (a) aggregating crops by weighing them according

to their caloric content rather than using FAO international prices and (b) weighing produced crops

within cells equally, rather than using the disaggregate cell-level land allocations by crop from

GAEZ.

Caloric content of crops. In developing countries, a large proportion of farmers consume most

of the output they produce as the amount of output produced is close to subsistence levels. For

these farmers, the caloric intake from the different crops may be more relevant than international

prices for the evaluation of the different crops. To examine the robustness of our main results, we

consider an alternative to aggregating crops at the country level (in actual and potential yields)

that uses instead the crop’s caloric content. As in Galor and Özak (2016, 2015) the caloric content

of each crop, measured in kilo calories (kcal) per 100g, is obtained from the USDA’s National

Nutrient Database for Standard Reference (Release 28). Table 6 reports the aggregate actual, the

production-potential and the total-potential counterfactual yields (thousands kcal/ha) under the

rainfed low-input scenario, for rich and poor countries.

Table 6: Aggregate Potential Yields using Caloric Weights

USDA Calorie “Prices” of Crops (000s of kcal)
(country obs. = 162)

Actual Potential Yields
Yield Production Production/ Total Total/

Actual Production
Rich 10% 18.20 5.64 0.31 12.36 2.19
Poor 10% 5.10 4.43 0.87 15.05 3.40
Ratio 3.57 1.27 1/2.82 0.82 1/1.55

Notes: Aggregate actual and potential yields are measured as total output in caloric energy (thousands of kcal)

per hectare under the rainfed low-inptut scenario. Calorie “prices” (kcal per 100 grams) are obtained from USDA,

National Nutrient Database for Standard Reference (Release 28). Rich and Poor refer to the highest and lowest

decile of the distribution of real GDP per capita in 2000 (PWT 6.3).
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We find that the main conclusions of our baseline results remain intact: there are substantial dif-

ferences in actual yields across countries (3.14 in benchmark, 3.57 with calorie “prices”); producing

existing crops according to potential yields removes the vast majority of differences (1.05 in our

baseline, 1.27 with calorie “prices”); and allowing for crop mix and location to change reverses the

aggregate yields difference between rich and poor countries (0.78 in our baseline, 0.82 with calorie

“prices”).

Weighting crops within cells. In our counterfactual production-potential yield experiment we used

the disaggregated land allocations by crop for each cell from GAEZ. The crop-cell-level potential

yields are estimated from agronomic models, given the observed land quality and geographic condi-

tions in each cell. The land allocation however is based on aggregate and regional data that GAEZ,

through a downscaling methodology attributes to cells. We repeat the production-potential coun-

terfactual assuming that each produced crop is equally weighed within each cell, instead of using

the GAEZ land allocation weighting (the spatial-potential and total-potential counterfactuals do

not rely of the disaggregated GAEZ land allocations since in these experiments the cell-level land

allocations are endogenous and solved for as part of our linear programming problems). In Figure

6 we display the production-potential yield under the low-input scenario, with equal weighting of

crops within cells, across countries. The actual yield is also presented in blue circles. Comparing,

Figures 3 and 6, our conclusions about a weak relationship between potential yields and income per

capita across countries remain intact. Hence, the lack of a key role for land quality does not hinge

on the use of the GAEZ land weights.

5 Aggregate Implications

We study the macroeconomic implications from reducing the yield gap from its actual level to its

potential level, modeled as a change in agricultural TFP. Under the mixed input scenario, if rich

and poor countries produced according to their potential yields, the productivity increase for poor
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Figure 6: Production-Potential Yield across Countries with Equal Crop Weighting
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Notes: Aggregate production-potential yield with equal crop weight within each cell instead of the GAEZ actual

land allocation.

countries would be 3 times that of rich countries. A stylized feature of the process of development

is that increases in agricultural productivity lead to a reallocation of factors, in particular labor,

from agriculture to the rest of the economy, such that consumption of agricultural goods per capita

remains approximately constant (Gollin et al., 2002; Restuccia et al., 2008). What are the sectoral

and aggregate implications of higher agricultural productivity in poor countries? To answer this

question, we consider a standard quantitative sectoral model following the literature.

At each date there are two goods produced in sectors: agriculture and non-agriculture. Output in

agriculture Ya requires the inputs of land L (in fix supply) and labor Na, Ya = AaL
θN1−θ

a , where Aa

is TFP in agriculture.7 Output in non-agriculture just requires labor input, Yn = AnNn. There is

a fixed amount of labor N to be allocated between the two sectors, N = Na +Nn. We assume that

7Note that we abstract from capital and intermediate inputs. Both of these two types of inputs are known to
magnify the productivity and income implications and are discussed in detail in the literature (Restuccia et al., 2008;
Adamopoulos and Restuccia, 2014).
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in this economy there is a minimum amount of agricultural consumption goods per person ā and

that after this minimum is satisfied individuals allocate their income to non-agricultural goods.8

Denoting per-capita labor in agriculture and land as na and l, and combining the demand for

agricultural consumption goods and the production function above, we can solve for the share of

employment in agriculture:

na =

(
ā

Aalθ

)1/(1−θ)

. (6)

We can then solve for labor productivity in agriculture ya = Aal
θn−θa and average farm size AFS =

l/na. Labor productivity in non-agriculture is simply yn = An and income per capita is given by

y = pyana+yn(1−na), where p is the relative price of agricultural goods. Without loss of generality

we set l = 1.

We now proceed in three steps. (1) We calibrate a benchmark rich economy to data for the United

States. We normalize productivity parameters, Aa = An = 1 and calibrate ā to the share of

employment in agriculture in the United States of about 1.5 percent. This procedure implies ā =

0.06, p = 0.40, ya = 4.05, and y = 1.01. (2) Given the preference parameter ā, we calibrate a poor

economy, in particular we choose productivity parameters to jointly match a share of employment

in agriculture of 70 percent and a poor-rich non-agriculture productivity ratio of one fifth. We

obtain for the poor country agricultural TFP Ap
a = 0.077 and income per capita yp = 0.085 using

the calibrated benchmark relative price of agriculture. Note that the rich to poor ratio is 46.7-

fold in agricultural labor productivity and average farm size and 12.2-fold in aggregate income per

capita. (3) We study an increase in agricultural TFP of a factor of 3-fold in the poor economy

consistent with our previous findings. The share of employment in agriculture in the poor economy

falls from 70 percent to 13.5 percent and the disparities in agricultural labor productivity (average

farm size) and income per capita fall from 46-fold to 9-fold and from 12.2-fold to 5-fold. The

increase in agricultural TFP reduces the disparity in income per capita by half. The reason for this

8This assumption simplifies the analysis considerably since the total amount of agricultural goods consumed per
capita is equal to ā, however, this is a close approximation to a calibration of more general preferences for agricultural
and non-agricultural goods Gollin et al. (2002); Restuccia et al. (2008).
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remarkable reduction in income disparity is that the increase in agricultural TFP reduces the share

of employment in agriculture, increasing agricultural labor productivity and average farm size in

the poor economy by a factor of 5.2-fold.

The main takeaway from this quantification is that improving agricultural productivity in poor

countries unravels a substantial process of structural transformation that can go a long way in

reducing the large disparities in sectoral and aggregate outcomes between rich and poor countries.

6 Conclusions

That land quality and geography matter for agricultural production at the micro-level is ubiquitous

as argued by both agronomists (e.g, Doorenbos and Kassam, 1979; Steduto et al., 2012, GAEZ)

and agricultural economists (e.g., Sherlund et al., 2002; Di Falco and Chavas, 2009; Fuwa et al.,

2007; Jaenicke and Lengnick, 1999). Using detailed micro-geography data, in this paper we quantify

the macro-level consequences of land quality for agricultural productivity, measured as output per

hectare (yield). In particular, we examine to what extent differences in agricultural yields across

countries are the result of natural advantages/disadvantages or the result of economic choices. We

find that land quality differences cannot justify the agricultural land productivity gaps between rich

and poor countries. If farming practices were the same around the world then land quality would

not be a constraint on farmers in poor countries. The majority of the actual yield differences would

disappear if countries produced according to their potential, with a secondary role played by what

crops are produced and where they are produced within the country.

Under improved agricultural practices for all countries, our analysis illustrates that there are large

gaps between actual and potential yields in poor countries, much larger than in rich countries. The

implication is that using existing technologies and improving allocations can increase agricultural

productivity 5-fold. These seem like sizeable unrealized gains in productivity. One possibility is that

the technologies agronomists treat as easily localized (in the calculation of potential yields) cannot
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be profitably implemented everywhere in the developing world. The other possibility is that there

are constraints that prevent the adoption of modern technologies and frictions that prevent markets

from efficiently allocating resources in developing countries. More work is needed to understand the

importance of each one of these explanations.

While a large body of recent work has been studying the constraints and frictions that impact

agricultural productivity, with mounting evidence of their importance, much less work has been

done on understanding the localization of agricultural technologies in developing countries. GAEZ

has been following a variety of approaches for “ground-truthing” and verifying the results of their

crop suitability analysis, but more needs to be done in terms of further validation. At the same

time further research is needed to understand what factors constrain the choices of farmers in the

developing world, preventing them from better exploiting their land and environmental endowments.

Similarly, further work may be needed to better understand the role of non-biophysical factors such

as infrastructure for marketing and distribution of agricultural products, constraints on capital

and knowledge availability, as well as specific intermediate-input requirements for pest, disease and

weed. We leave these important areas of research for future work.
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Appendix — Not for publication

A Country Sample

Table A.1 lists all 162 countries in our data set, along with the corresponding country code, the

number of cells covering the country, and the level of real GDP per capita in 2000.

Table A.1: List of Countries and Other Information

Country Code Cell Count GDP per capita

Afghanistan AFG 9000 327

Albania ALB 444 3177

Algeria DZA 30751 5276

Angola AGO 14988 2901

Antigua and Barbuda ATG 5 14522

Argentina ARG 40080 12519

Armenia ARM 451 4333

Australia AUS 100208 30240

Austria AUT 1447 31574

Azerbaijan AZE 1311 3722

Bahamas BHS 160 24593

Bangladesh BGD 1759 1794

Belarus BLR 4057 12188

Belgium BEL 558 29693

Belize BLZ 271 7910

Benin BEN 1374 1336

Bhutan BTN 523 2817

Bolivia BOL 13284 3346

Bosnia and Herzegovina BIH 836 5798

Botswana BWA 7297 7219

Brazil BRA 101847 8391

Brunei Darussalam BRN 65 48210

Bulgaria BGR 1754 6374

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Burkina Faso BFA 3262 1121

Burundi BDI 312 706

Cambodia KHM 2184 1764

Cameroon CMR 5470 2448

Canada CAN 244154 31471

Central African Republic CAF 7287 918

Chad TCD 15448 1445

Chile CHL 11199 14309

China CHN 136881 4076

Colombia COL 13318 6620

Congo COG 4032 3835

Costa Rica CRI 609 9463

Cote d’Ivoire CIV 3795 2761

Croatia HRV 919 9775

Cuba CUB 1381 7636

Cyprus CYP 129 20275

Czech Republic CZE 1419 16044

Democratic Republic of the Congo ZAR 27327 312

Denmark DNK 898 30468

Dominican Republic DOM 598 7559

Ecuador ECU 2996 4894

Egypt EGY 13029 4690

El Salvador SLV 253 5192

Equatorial Guinea GNQ 314 8820

Eritrea ERI 1469 668

Estonia EST 1015 10405

Ethiopia ETH 13365 892

Fiji FJI 230 5784

Finland FIN 9008 26402

France FRA 9266 27311

Gabon GAB 3056 8504

Gambia GMB 132 1289

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Georgia GEO 1099 4310

Germany GER 6608 29051

Ghana GHA 2819 1359

Greece GRC 1970 20708

Guatemala GTM 1326 5530

Guinea GIN 2908 3235

Guinea-Bissau GNB 403 657

Guyana GUY 2475 2457

Haiti HTI 336 1655

Honduras HND 1360 3062

Hungary HUN 1590 13025

India IND 40163 2687

Indonesia IDN 22138 4151

Iran (Islamic Republic of) IRN 22489 8049

Iraq IRQ 6069 5403

Ireland IRL 1334 31389

Israel ISR 285 22356

Italy ITA 4774 27142

Jamaica JAM 135 7877

Japan JPN 5488 28341

Jordan JOR 1220 4329

Kazakhstan KAZ 47485 7641

Kenya KEN 6800 1943

Korea, Republic of KOR 1434 18597

Kuwait KWT 225 36146

Kyrgyzstan KGZ 3098 3310

Lao People’s Democratic Republic LAO 2847 1777

Latvia LVA 1371 8119

Lebanon LBN 144 7505

Lesotho LSO 414 1770

Liberia LBR 1125 492

Libyan Arab Jamahiriya LBY 21221 14674

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Lithuania LTU 1325 8566

Luxembourg LUX 47 63392

Madagascar MDG 7353 965

Malawi MWI 1425 1032

Malaysia MYS 3856 14178

Mali MLI 15355 1108

Malta MLT 6 19442

Mauritania MRT 12944 2085

Mexico MEX 25084 10339

Mongolia MNG 26562 2008

Montenegro MNE 214 4877

Morocco MAR 5529 4574

Mozambique MOZ 9647 1245

Namibia NAM 10397 5531

Nepal NPL 1944 1783

Netherlands NLD 677 31927

New Zealand NZL 4206 21437

Nicaragua NIC 1538 2058

Niger NER 14499 811

Nigeria NGA 10772 1275

Norway NOR 8617 41777

Oman OMN 3849 23752

Pakistan PAK 11827 2696

Panama PAN 888 7124

Papua New Guinea PNG 5470 2194

Paraguay PRY 5062 4556

Peru PER 15324 4975

Philippines PHL 3538 3955

Poland POL 5882 10834

Portugal PRT 1381 19606

Puerto Rico PRI 113 25955

Qatar QAT 142 61389

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Republic of Moldova MDA 576 2420

Romania ROM 3958 6151

Russia RUS 421168 8305

Rwanda RWA 293 994

Saudi Arabia SAU 25034 19207

Senegal SEN 2372 1732

Sierra Leone SLE 863 1171

Singapore SGP 7 35424

Slovakia SVK 858 11844

Slovenia SVN 341 19043

Solomon Islands SLB 334 1318

Somalia SOM 7490 480

South Africa ZAF 16282 8441

Spain ESP 7727 24945

Sri Lanka LKA 793 4603

Sudan SDN 30052 1546

Suriname SUR 1706 7490

Swaziland SWZ 228 6587

Sweden SWE 11321 27174

Switzerland CHE 704 34414

Syrian Arab Republic SYR 2672 2446

Taiwan TWN 464 21513

Tajikistan TJK 2120 1902

Thailand THA 6227 7058

The former Yugoslav

Republic of Macedonia MKD 396 6358

Togo TGO 682 984

Tunisia TUN 2186 7572

Turkey TUR 11699 6428

Turkmenistan TKM 7077 8716

Uganda UGA 2834 1094

Ukraine UKR 10587 5644

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

United Arab Emirates ARE 908 38604

United Kingdom GBR 4857 27032

United Republic of Tanzania TZA 11088 681

United States USA 160841 39241

Uruguay URY 2467 11426

Uzbekistan UZB 6960 1477

Vanuatu VUT 157 5607

Venezuela VEN 10758 10553

Viet Nam VNM 3970 2407

Yemen YEM 5148 1129

Zambia ZMB 9045 1038

Zimbabwe ZWE 4813 4528

Notes: The cell count of each country is from GAEZ, and refers to the number of 5-arc-minute cells covering the

country. Real GDP per capita is from the PWTv6.3.

B GAEZ Data

B.1 Cell-Level Actual Data

The GAEZ methodology for estimating output and harvested land by crop for each cell in the

world uses a downscaling methodology that combines aggregate and cell-level data. GAEZ first

estimates for each cell, cultivated land and the split between rainfed and irrigated, using GIS

land-cover datasets at the 5-arc minute resolution. The procedure ensures that the land class

coverage is consistent with aggregate FAO land statistics (arable land) and land cover patterns

obtained from remotely sensed data. To allocate crops to cells, GAEZ uses for each country, data

on output and harvested area by crop at the national level from the FAO and at the sub-national

level (regions, states, provinces, districts, counties, etcetera) from Monfreda et al. (2008). The

downscaling procedure employs an iterative optimization algorithm that is initialized by feeding in

a prior distribution of crops production allocation to cells that is based on cell-level information on

the amount of cultivated land, bio-physical suitability for the production of the different crops, and

socio-economic factors such as farming zone system, population density, and distance to market.
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Then each iteration step determines the discrepancy between statistical totals available at the sub-

national (or national) unit level and the respective totals calculated by summing harvested areas and

production over cells. The magnitude of these deviations is then used to revise the land and crop

allocation and to recalculate discrepancies. The process is continued until all accounting constraints

are met, that is, output and harvested land sum up to the aggregates sub-nationally and nationally.

B.2 Input Assumptions for Potential Yields

Low inputs. Under this scenario GAEZ assumes a subsistence-based farming system, with tradi-

tional management, that does not necessarily produce for the market. Production is based on the

use of traditional cultivars, labor intensive techniques, no mechanization, and minimum conserva-

tion measures. There is no application of nutrients, and no use of chemicals for pest or disease

control. The assumed water supply under this scenario is fully rainfed farming.

Mixed inputs. Under this scenario GAEZ assumes that the highest quality land (very suitable

and suitable) uses high inputs, the moderately suitable land uses an intermediate level of inputs,

and the marginal land uses low inputs. Under intermediate inputs the farming system is partly

market oriented involving both subsistence and commercial farming; use of improved varieties;

intermediate labor intensity with hand tools and/or animal traction and some mechanization; some

fertilizer application; and some chemical pest, disease, and weed control. Under high inputs the

there is advanced management; the farming system is primarily market oriented with commercial

production; high yield varieties are used; fully mechanized; low labor intensity; optimum application

of nutrients and chemical pest, disease and weed control. This scenario covers all land, both under

rainfed and irrigated water supply. GAEZ considers the mixed input scenario as a “reasonable

reflection of actual agricultural input and management circumstances.” (page 97, GAEZ Model

Documentation, 2012).

C Within-country Dispersion of Potential Yields

We document a measure of the variability of land quality across countries. In particular, we compute

the standard deviation of log potential yields across cells with agricultural production and report

this dispersion across countries by real GDP per capita in Figure C.1. We report two measures

of dispersion. The first, in panel (a), for all crops, that is the simple average of potential yields

across crops within a cell; the second, in panel (b), only for maize which is the most prevalent crop

produced around the world. We use the potential-yield under the rainfed low-input scenario as this
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most closely reflects land quality productivity.

Figure C.1: Within-country Dispersion in Land Quality

(a) All crops (b) Maize
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Notes: Dispersion in potential yields across cells within a country under the rainfed low-input scenario. Panel (a)

reports the simple average of yields across all crops within a cell, whereas panel (b) is only for maize in each cell.

We find that while the dispersion in land quality within a country differs quite substantially across

countries, the dispersion is not systematically associated with the level of development, there is

only a modest positive association. Hence, land quality endowment in poor countries is not worse

than rich countries, not just in terms of averages from aggregate potential yields, but also in terms

of the dispersion of land quality within the country. This finding is relevant to the extent that

poor countries may not optimize on the location of production or the number of locations with

agricultural production.

D Robustness and Validation

Our construction of the country-level potential yields does not rely on actual output or yields at

the crop-cell level. In the case of the production-potential counterfactual, however, the aggregate

potential yield uses the cell-level land allocation by crop in each country as weights. We examine

the bias and reliability of the cell-level land weights, conduct our own external validation, and show

the robustness of our results to alternative land weighting schemes.

Lower and middle income countries do not tend to have less detailed data. GAEZ uses the most

spatially disaggregated data available from Monfreda et al. (2008), at the sub-national level. One
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natural concern is that the prevalence of spatially disaggregated agricultural statistics that GAEZ

uses is disproportionate for developed countries than for lower and middle income countries. Using

sub-national data availability from Monfreda et al. (2008) (from their Table 2), in Figure D.2 we plot

the percentage of land covered by sub-national data across countries against their GDP per capita.

There is no systematic relationship of sub-national data availability and the level of income. There

are rich and poor countries with substantial sub-national coverage and there rich and poor countries

with no sub-national coverage. We conclude that GAEZ does not have more detailed information

for the richer countries than for the poorer countries, that can inherently bias their downscaling

methodology of attributing national and sub-national statistics to cells across countries.

Figure D.2: Subnational Data Availability
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GAEZ validation. A general limitation of cell-level estimated data is that because they require

substantial amounts of crop statistics and other data at the finest level of disaggregation, there is

not much “out-of-sample” data remaining in order to externally validate the results. Although, not

in a systematic fashion, GAEZ has done some testing of the reliability of its actual agricultural

estimates: “Tests in China and Brazil by comparing downscaled results based on statistics available

on national level, with detailed sub-national statistics on county and micro region level revealed

strong correlations between downscaled national statistics and county/micro-region level statistics

of harvested areas, yields and crop production.” (GAEZ-FAO website, under “FAQs,” www.fao.

org/nr/gaez/faqs/en/.)
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Our own validation. We conduct our own validation exercise to confirm that the crops GAEZ

attributes as being produced to the different cells are actually produced there. In particular, we

use survey farm-level data from the World Bank’s Living Standards Measurement Study (LSMS)

(https://www.worldbank.org/en/programs/lsms/overview) for Uganda for the earliest year with

GPS data in the survey of 2009. To make the comparison we use the GPS coordinates of the lo-

cations of farms in the LSMS data to assign farm households to pixels in the GAEZ rasters (5 arc

minute resolution). Given that the LSMS data are survey data, the observations are sparse with

some pixels having multiple households, others very few, and most none. For the pixels for which

there is any LSMS household we compute a series of dummies, one for each of the 18 GAEZ crops

and for each of the LSMS and GAEZ. In the set of dummies for LSMS (GAEZ), the dummy in a

pixel takes the value of 1 if the crop is produced in LSMS (GAEZ). Then we create a third dummy

that takes the value of 1 for a crop in a given pixel if the crop is produced in both GAEZ and

LSMS. Finally we compute the fraction of the aligned crops in total GAEZ crops for every pixel.

For the median pixel 60 percent of all the crops GAEZ attributes to a cell are also confirmed to

be produced according to the LSMS. If we focus only on maize, one of the most widely produced

crops in Uganda 77 percent of the cells that GAEZ attributes maize production is also confirmed

by the LSMS data. This is remarkable given that the LSMS data are survey data, are spatially

sparse, and are 9 years later than the GAEZ data. For these reasons we could not make more direct

comparisons of land allocations and yields.

Our conclusions do not change if we weigh crops within cells equally. Please refer to Robustness

Section 4.4 in the main text.

Our conclusions do not change if we use crop-cell land allocations from IFPRI’s Harvest Choice

project. The International Food Policy Research Institute’s (IFPRI) Harvest Choice project (https:

//www.ifpri.org/project/harvestchoice) is another project that uses crop statistics at the na-

tional and subnational levels across the world for the year 2005 to estimate crop yields and harvested

land at the 5 arc-minute grid cell level. Their model for downscaling agricultural statistics, called

“Spatial Production Allocation Model (SPAM),” uses a cross-entropy optimization approach that

uses information on cropland surface, location of irrigated areas, crop suitability, rural population

densities, production systems and crop prices. In this sense, even though distinct from GAEZ, Har-

vest Choice’s disaggregation methodology is similar in nature and uses similar types of disaggregate

information to estimate the same cell-level resolution as GAEZ. Harvest Choice however uses data

that reflect the year 2005 (rather than 2000 in GAEZ), and includes a finer set of crops. The under-

lying crop suitability surfaces that SPAM uses are from GAEZ, but uses a more updated cropland

surface, and has made an effort to use more district-level agricultural statistics within countries.
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While the cell-level data from Harvest Choice are also estimates at the 5 arc-minute resolution,

and involve a five year gap from GAEZ, we compare the cell-level land allocations across crops

(which determine the cell-level weights in our methodology) between GAEZ and Harvest Choice.

The cell-by-cell correlation of harvested land for all crops between GAEZ and Harvest Choice for

the entire world is 0.71. The same correlation for the three most popular crops, wheat, rice, and

maize is 0.69. The correlation for rice alone is 0.84. While these correlations are high, we go a step

further and re-compute each country’s potential yield with our methodology, aggregating GAEZ

potential yields, but using the cell-level land allocations across crops from Harvest Choice instead

(rather than the GAEZ ones). Just as in the alternative with equal weights across all produced

crops above, with the Harvest Choice weights our conclusions are the same.

Figure D.3: Potential Yields with Harvest Choice Weights
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Figure D.3 displays the aggregate potential yield for each country (against GDP per capita) using

the cell-by-cell Harvest Choice weights. The cell-level potential yields from GAEZ used are for low

inputs and rainfed water supply. The lack of a systematic relationship of aggregate potential yields

with income is true here as well.
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