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ABSTRACT
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calibrated to Twitter and simulate the information exchange process over a long horizon to 
quantify the bots' ability to spread fake news. A key insight is that significant misinformation and 
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indicating that network externality effects are quantitatively important. Higher bot centrality 
typically increases polarization and lowers misinformation. When one bot is more influential than 
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1 Introduction

In the last decade, the United States has become more polarized than ever. A recent sur-
vey conducted by The Pew Research Center indicates that Republicans and Democrats are
further apart ideologically than at any point since 1994 (see Figure 1).

Figure 1: Political Polarization in the American Public (2017, Pew Research Center)

Traditional theories in economics and political science typically model disagreement as
arising from one of two sources: (i) di�erences in preferences and (ii) informational frictions.
In the �rst case, agents may disagree on the optimal level of a given policy because they
bene�t di�erently from it. This happens when their income or wealth levels are di�erent (such
as in the case of redistributive policies) or when they have di�erent preferences over public
goods (e.g. defense vs education or health-care, etc.). In the case of informational frictions,
there may exist an optimal action, but society may not know exactly what it is. Examples are
the need for environmental policy, mandatory vaccination, unconventional monetary policy,
or simply choosing one political candidate over another. Individuals may learn about the
desirability of the policy (or political candidate choice) by acquiring information. But to the
extent that they are exposed to biased sources of information, their beliefs may di�er at the
time in which decisions must be taken.

There is a large literature trying to explain how slanted news and media bias may af-
fect voters' opinions by generating misinformation and exacerbating polarization (see Della
Vigna and Kaplan, 2007 or Martin and Yurukoglu, 2015). While this literature has been
mostly focused on traditional media, such as newspapers, radio, and cable TV�broadly cov-
ered under the umbrella of `broadcasting'�recent interest has shifted towards social media.
There are several reasons for this shift. First, because individuals are increasingly obtaining
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information from social media networks. According to a 2021 study by the Pew Research
Center, 53% of adults get their news from social media.1 In addition, 59% of Twitter users
regularly get their news from Twitter (Facebook users have a similar pattern).

Second, the technology of communication in social media is signi�cantly di�erent. In the
world of broadcasting, agents are mostly consumers of information. There is a small number
of news outlets that reach a large (and relatively passive) audience. In the world social
media, individuals are not only consuming information, but they are also producing it. This
technological change is less well understood. A key aspect of social media communication is
that one given message can reach a large audience almost immediately. Another important
change is that it is much more di�cult for individuals to back out the reliability of a piece
of information, as they observe a distilled signal from a friend in their network without
necessarily knowing its source. This allows biased actors to a�ect views indirectly (e.g.
reach a wider audience) and much more e�ectively (e.g. send more signals at once).

This is relevant when coupled with another phenomena that became prevalent particu-
larly around 2016 presidential election and has still not been resolved: the massive spread
of fake news (also referred to as disinformation campaigns, cyber propaganda, cognitive
hacking, and information warfare) through the internet. As de�ned by Gu, Kropotov, and
Yarochkin (2016), `Fake news is the promotion and propagation of news articles via social
media. These articles are promoted in such a way that they appear to be spread by other
users, as opposed to being paid-for advertising. The news stories distributed are designed to
in�uence or manipulate users' opinions on a certain topic towards certain objectives.' While
the concept of propaganda is not new, social media has made the spreading of ideas faster and
more scalable, making it potentially easier for propaganda material to reach a wider set of
people. Relative to more traditional ways of spreading propaganda, fake news are extremely
di�cult to detect posing a challenge for social media users, moderators, and governmental
agencies trying control their dissemination. A December 2016 Pew Research Center study
found that `about two-in-three U.S. adults (64%) say fabricated news stories cause a great
deal of confusion about the basic facts of current issues and events.' Moreover, 23% admit
to having shared a made-up news story (knowingly or not) on social media. Understanding
how fake news spread and a�ect opinions in a networked environment is at the core of our
work.

In this context, we study a dynamic model of opinion formation in which individuals
who are connected through a social network have imperfect information about the true state
of the world, denoted by θ. For instance, the true state of the world can be interpreted as
the relative quality of two candidates competing for o�ce, the degree of vaccine e�cacy, the
optimality of a speci�c government policy or regulation, the need for environmental policies,
the degree of government intervention in concentrated markets, etc. Why is this relevant?
Because common beliefs about the value of our variable of interest may be a decisive factor
in the implementation of certain policies under uncertainty. Consider, for example, the
decision of whether to implement a mask mandate during the COVID-19 outbreak, with θ
representing how e�ective masks are in preventing the spread of the disease. To the extent

1According to Pew, `Americans ages 18 to 29 stand out in that the most common digital way they get
news is social media, with 42% saying they get news this way often versus 28% saying the same of either
news websites or search engines.
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government representatives respond to their constituencies, implemented policies may di�er
from the optimal ones when bots are present. If a large number of voters have homogeneous
beliefs but are misinformed (that is, have beliefs far away from the true θ), implemented
policies will be ine�cient. In our example, this would happen if the true θ is high, but
a majority of voters believed their e�cacy was low and no mandate would be in place.
Another source of ine�ciency arises when there is polarization. This happens when there
are two sizeable groups with opposing beliefs and a status-quo that needed to be changed in
a timely manner. In this case, there need not be a majority of people who are misinformed,
but a mass large enough to stall the decision making process. Sub-optimal delays (or even
inaction) in response to shocks would arise. Going back to our example, if masks were
e�ective in protecting against COVID-19 but people were polarized about their e�cacy, the
government would not change the status-quo (no masks) when the optimal choice would have
been to impose a mandate. This could potentially prolong the pandemic. Hence, polarization
can also be detrimental for welfare.

Individuals can obtain information about the true state of the world from unbiased sources
external to the network, like scienti�c studies, unbiased news media, reports from non-
partisan research centers such as the Congressional Budget O�ce, etc. This is modeled as an
informative and unbiased private signal received by each agent. Due to limited observability
of the structure of the network and the probability distribution of signals observed by others,
individuals are assumed to be incapable of learning in a fully Bayesian way. Moreover, we
assume that individuals are unable to process all the available information and for that they
can also rely on the information from their social neighbors (i.e. individuals connected to
them through the network) who are potentially exposed to other sources. In this sense,
individuals in our network update their beliefs as a convex combination of the Bayesian
posterior belief conditioned on their private signals and the opinion of their neighbors, as
per the update rule proposed by Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012)
(JMST (2012) henceforth).

There are three types of agents in this society: Regular agents, bots, and bot followers.
Their characterization is to some extent interrelated because it depends not only on signals
observed, but also on their mutual connections. In terms of signals received, both regular
agents and bot followers receive informative private signals every period of time. Bots, on
the other hand, produce a stream of fake news to countervail informative signals. In terms
of connectivities, bots do not relay in the information of others (they are sinks in a Markov
chain sense), and have a positive mass of followers. Their followers are unable to identify the
bot as a source of misinformation, implying that they cannot detect and disregard fake news,
which are incorporated when updating beliefs. The opinions generated from the exchange
of information forms an inhomogeneous Markov process which may never lead to consensus
among regular agents since they are exposed to bot followers.

The structure of the graph representing the social media network and the degree of
in�uence of bot followers shape the dynamics of opinion and the degree of misinformation
and polarization in the long-run. More speci�cally, long-run misinformation and polarization
are determined by the network topology (e.g. the relative exposure to bots, how central they
are, and the ability of bots to �ood the network with fake news). Because a theoretical
characterization of the relationship between the topology of the network and the degrees of
misinformation and polarization is not trivial, we construct a synthetic large network (with
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around 4,000 nodes) and calibrate it to a real life social media network: Twitter. We then run
multiple Monte Carlo simulations in which the location of bots and their followers is assigned
randomly, and the process of communication exchange is simulated over long periods of time.
While we �x the number of bot followers, we allow bots to have asymmetric in�uence (e.g. a
di�erent in-Degree). All other variables are kept constant across simulations. Our goal is to
to infer how the absolute and relative centrality of bots (and their followers) a�ect long-run
polarization and misinformation.

For our calibrated synthetic network, we �nd that signi�cant levels of misinformation
and polarization are possible even though only 15% of agents believe fake news to be true
and there are only 2 bots, who progressively become extreme. Even though most agents can
detect fake news and exclude them from their information set, their views are indirectly af-
fected through the opinions of other friends in the network. To the extent that bots are able
to target a small amount of `in�uencers,' biased signals will travel through the network af-
fecting a large number of agents and hence generating misinformation and polarization. This
is relevant, because it shows that network externality e�ects are quantitatively important.
A summary of our quantitative results follow.

First, we �nd that misinformation and polarization have an inverted u-shape relationship
when bots are symmetrically extreme (e.g. their preferred state is equidistant from the true
state): on the one hand, when individuals are able to e�ectively aggregate information
and learn the true state of the world, polarization vanishes. On the other hand, there are
situations where there is no polarization because most individuals in the network converge
to the wrong value of θ, i.e. they end up with the same (wrong) opinion and for that they do
not polarize. This involves maximal misinformation with no polarization. In addition, there
are cases in which individuals are on average correct but distributed symmetrically around
the true state of the world, with large mass at the extremes of the belief distribution. Here,
there are intermediate levels of misinformation and extreme polarization. Even though this
implies somewhat better information aggregation, it may lead to ine�cient gridlock due to
inaction.

We distinguish between average centrality and relative centrality. The former captures
how disruptive bots are, on average, to the aggregation of information. The larger its value,
the higher the polarization and the lower the misinformation observed. The latter happens
because when bots are equidistant from the truth, they o�set each other and the unbi-
ased signals become more important. Relative centrality, on the other hand, captures how
much more in�uential one bot is relative to the other (keeping the total number of followers
unchanged). As this rises, the more in�uential bot manages to pull opinions towards its
extreme views. This signi�cantly increases misinformation and reduces polarization in our
benchmark case. This happens even in simulations in which polarization is signi�cant.

Second, we �nd that the strength of fake news relative to informative news, as measured
by the �ooding capacity parameter of bots, increases both misinformation and polarization
in a society. However, the technology seems to have decreasing returns as the e�ects of
increasing the �ooding parameter vanish at some point. We also show that increasing the
number of signals each bot can send, or �ooding, (keeping number of bots constant) is not
equivalent to increasing the number of bots (keeping �ooding constant). This is because
�ooding a�ects how fast the bot becomes extreme, whereas the latter a�ects the weight of
bot's signals relative to other signals.
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Finally, we experiment with a threshold rule (bounded con�dence model) by which agents
only pay attention to su�ciently like-minded agents. Interestingly, we �nd that this tends to
reduce both polarization and misinformation. The result may seem counter-intuitive at �rst,
as one could expect that if agents only communicate with like-minded friends, the di�erences
between societal views would widen. However, these threshold rules make bots less relevant
early on, which allows unbiased signals to move opinions towards the true state. While this
may depend on initial conditions, and studying this is beyond the scope of this paper, we
�nd this to be a promising avenue for research.

Related Literature Our paper is related to a growing number of articles studying social
learning with bounded rational agents and the spread of misinformation in networks.

The strand of literature focusing on social learning with bounded rational agents assumes
that individuals use simple heuristic rules to update beliefs, like taking repeated averages
of observed opinions. Examples are DeGroot (1974), Ellison and Fundenberg (1993, 1995),
Bala and Goyal (1998,2001), De Marzo, Vayanos and Zwiebel (2003) and Golub and Jackson
(2010). In most of these environments, under standard assumptions about the connectivity of
the network and the bounded prominence of groups in growing societies, the dynamics of the
system reaches an equilibrium and consensus emerges. In this sense, long-run polarization or
misinformation would only arise in such models if those assumptions are relaxed. Common
to most of these models is the fact that there is no new �ow of information entering into the
network. Agents are typically assumed to be bounded rational (naive) and do not observe
private signals from external sources. JMST (2012) extends these environments to allow
for a constant arrival of new information over time in an environment in which agents also
learn from their neighbors in a naive way. This feature allows agents to e�ciently aggregate
information even when some standard assumptions that ensure consensus are relaxed. Our
paper uses the update rule proposed by JMST (2012), and introduces bots that produce a
stream of fake news to countervail the e�ect of informative signals. The latter is a variation
of the concept of stubborn (or forceful) agents in the literature on misinformation. See work
by Acemoglu, Ozdaglar and ParandehGheibi (2010) (AOP henceforth), Acemoglu, Como,
Fagnani, and Ozdaglar (2013) (ACFO henceforth), or Como and Fagnani (2016).

AOP (2010) focuses on understanding the conditions under which agents fail to reach
consensus or reach wrong consensus. In their model, agents exchange opinion in a naive
way conditional on being pair-wise matched. Crucial to the emergence of misinformation
in is the presence of forceful agents whose roles are to exert disproportional in�uence over
regular agents and force them to conform with their opinions. ACFO (2013) consider the
same naive learning model with random meetings dictated by a Poisson process, but allow
for the existence of stubborn agents instead. These agents never update their opinions (they
are sinks in a Markov chain sense) but in�uence other agents. Therefore, the information
exchange dynamics never reaches a steady state and opinions �uctuate in a stochastic fashion.
Both papers abstract from Bayesian learning. In our paper, we consider simultaneously the
possibility that regular agents learn from unbiased sources while being exposed to fake news
spread by bots. Our learning rule follows JMST (2012) in the sense that agents learn from
private signals in a a fully Bayesian fashion but also incorporate friends' opinions naively.
The �nal belief is basically a convex combination of the Bayesian posterior and friends'
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posteriors. Moreover, we add the feature that agents meet randomly in the spirit of of AOP
(2010) and ACFO (2013). Therefore, the main extensions with respect to JMST (2012)
are i) the presence of bots (sinks) seeded with biased information that spread fake news,
which becomes the main source of misinformation in the system and ii) the fact that we
allow for random meetings (inhomogeneous Markov chain). On the other hand, the main
extension relative to ACFO (2013) is that we introduce Bayesian learning features. Our bots
can be understood as stubborn agents endowed with the capacity to countervail the �ow of
informative private signals that reaches regular agents every period of time. We call this
feature �ooding capacity and it basically consists in allowing these bots to spread a larger
stream of fake news (signals) as other agents in the network.2 Hence, our paper contributes
to the social learning and spread of misinformation literatures by studying misinformation
in an environment with informative signals.

Our main contribution relative to the existing literature, however, is our numerical ex-
ercise. We construct a large synthetic network, calibrated to Twitter, and simulate commu-
nication exchange over a large period of time. Importantly, we allow the location of bots
and their followers to change across simulations, which allows us to estimate how network
centrality (i.e, their degree of in�uence), potentially asymmetric, a�ects outcomes. To the
best of our knowledge, this is the �rst paper to quantify the relative importance of network
characteristics on long-run misinformation and polarization.

Finally, there is a growing empirical literature analyzing the e�ects of social media in
opinion formation and voting behavior (Halberstam and Knight, 2016). Because individual
opinions are unobservable from real network data, these papers typically use indirect mea-
sures of ideology to back-out characteristics of the network structure (such as homophily)
potentially biasing their impact. By creating a large number arti�cial networks, we can
directly measure how homophily and other network characteristics a�ect opinion. Finally,
our paper complements the literature on the role of biased media such as Campante and
Hojman (2013), Gentzkow and Shapiro (2006, 2010, and 2011), and Flaxman et al. (2013)
and the e�ects of social media on political polarization, such as Boxell et al (2017), Barbera
(2016), and Weber at al (2013).

2 Baseline Model

Agents, social bots and information structure The economy is composed by a �nite
number of agents i ∈ N = {1, 2, . . . , n} who interact in a social network over time. Individ-
uals have imperfect information about a variable of interest θ ∈ Θ = [0, 1]. This parameter
can be interpreted as the optimal degree of government intervention in private markets (e.g.
environmental control, enforcement of property rights, restrictions on the use of public land,
gun control, etc.), as optimal �scal or monetary policy (e.g. the in�ation rate, tax rates on
capital or labor income, tari�s, etc.), or as the best response to an unexpected shock (e.g.
the size of a bailout during a �nancial crisis, the response to a national security threat, the
amount of aid given to a region that su�ered a natural disaster, etc.). Agents start period 0
with a prior about θ and update their beliefs with information obtained thereafter.

2Our model considers a Bernoulli rather than a Poisson process and restrict attention to a particular class
of beliefs (Beta distributions) though.

6



Individuals obtain information from: (i) an unbiased source (signals), (ii) other agents
connected to them in a social network, and (iii) a biased source, which we interpret as a bot
spreading fake news. There are two types of bots, L-bot and R-bot with opposing agendas.
Their objective is to manipulate opinions by sending biased signals (e.g. close to 0 or 1).
We assume that a majority of the population can identify bots and disregard fake news in
their update process. We will refer to them as regular agents. There is small proportion µ of
individuals, on the other hand, that are in�uenceable because they cannot distinguish fake
news from real news (or, alternatively, that cannot distinguish bots from regular agents).
We refer to them as bot followers. A key assumption is that nobody can back out the sources
of information of other agents. As a result, regular agents may be in�uenced by fake news
indirectly through their social media contacts. We �rst describe how opinions evolve over
time and then de�ne how statistics obtained from this distribution can be used to compute
misinformation and polarization, and hence quantify welfare losses associated to them.

Each agent starts with a prior belief θi,0 assumed to follow a Beta distribution,

θi,0 ∼ Be
(
αi,0, βi,0

)
.

This distribution or world-view is characterized by initial parameters αi,0 > 0 and βi,0 > 0.
Note that individuals agree upon the parameter space Θ and the functional form of the
probability distribution, but have di�erent world-views as they disagree on αi,0 and βi,0.
Given prior beliefs, we de�ne the initial opinion of agent i about the true state of the world
as her best guess of θ given the available information,

yi,0 = E [θ|αi,0, βi,0] =
αi,0

αi,0 + βi,0
.3

Example 1. In the Figure below, we depict the world-views of two individuals (distributions) and

their associated opinions (vertical lines). The world-view that is skewed to the right is represented

by the distribution Be(α = 2, β = 8). The one skewed to the left is represented by the distribution

Be(α = 8, β = 2). The opinions are, respectively, 0.2 and 0.8.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

f
(θ

)

We formalize the information obtained from unbiased sources as a draw si,t from a

3Note that E[θ|Σ0] is the Bayesian estimator of θ that minimizes the mean squared error given a Beta
distribution.
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Bernoulli distribution centered around the true state of the world θ,

si,t ∼ Bernoulli(θ).

Through this channel, a majority of the population may learn θ in the limit. However,
agents update their world-views and opinions based not only on si,t, but also through the
in�uence of individuals connected to them in a social network, which may introduce misinfor-
mation. Social media thus generates an externality on the information aggregation process.
To the extent that the social media externality is important, the true state of the world may
not be uncovered by enough individuals and ine�cient policies may be enacted or gridlock
may arise. The network structure, and in particular the location of bot followers in it, will be
important to determine the quality of information and the degree of polarization in society.
We formalize the social network structure next.

Social Network and random meetings process The connectivity among agents in the
network at each point in time t is described by a directed graph Gt = (N, gt), where gt
is a real-valued n × n adjacency matrix. Each regular element [gt]ij in the directed-graph
represents the connection between agents i and j at time t. More precisely, [gt]ij = 1 if i
is paying attention to j (i.e. receiving information from) at time t, and 0 otherwise. Since
the graph is directed, it is possible that some agents pay attention to others who are not
necessarily paying attention to them, i.e. [gt]ij 6= [gt]ji. The out-neighborhood of any agent i
at any time t represents the set of agents that i is receiving information from, and is denoted
by N out

i,t = {j | [gt]ij = 1}. Similarly, the in-neighborhood of any agent i at any time t,

denoted by N in
i,t = {j | [gt]ji = 1}, represents the set of agents that are receiving information

from i (e.g. i's audience or followers). We de�ne a directed path in Gt from agent i to agent j
as a sequence of agents starting with i and ending with j such that each agent is a neighbour
of the next agent in the sequence. We say that a social network is strongly connected if there
exists a directed path from each agent to any other agent.

In the spirit of AOP (2010) and ACFO (2012), we allow the connectivity of the network
to change stochastically over time. This structure captures rational inattention, incapacity of
processing all information, or impossibility to pay attention to all individuals in the agent's
social clique. More speci�cally, for all t ≥ 1, we associate a clock to every directed link of the
form (i,j) in the initial adjacency matrix g0 to determine whether the link is activated or not
at time t. The ticking of all clocks at any time is dictated by i.i.d. samples from a Bernoulli
distribution with �xed and common parameter ρ ∈ (0, 1], meaning that if the (i,j)-clock
ticks at time t (realization 1 in the Bernoulli draw), then agent i receives information from
agent j. Hence, the parameter ρ measures the speed of communication in the network. The
Bernoulli draws are represented by the n× n matrix ct, with regular element [ct]ij ∈ {0, 1}.
Thus, the adjacency matrix of the network evolves stochastically across time according to
the equation

gt = g0 ◦ ct, (1)

where the initial structure of the network, represented by the initial adjacency matrix g0,
remains unchanged.4

4Here ◦ denotes the Hadamard Product, the element-wise multiplication of matrices.
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Example 2 (Bernoulli Clock). Panel (2a) represents the original network and its adjacency

matrix, whereas Panel (2b) depicts a realization such that agent 1 does not pay attention to agents

2 and 4 in period 1. Agents 2 and 3, on the other hand, pay attention to agent 1 in both periods.

1

2 3

4

g0 =


0 1 0 1
1 0 0 0
1 0 0 0
0 0 0 0


(a) Original network at t = 0

1

2 3

4

g1 =


0 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0


(b) Randomly realized network at t = 1

Figure 2: Bernoulli Clock and Network Dynamics

Evolution of Beliefs Before the beginning of each period, both regular agents and bot
followers receive information from individuals in their out-neighbourhood, a set determined
by the realization of the clock in period t and the initial network. All agents share their
opinions and precision, summarized by the shape parameters αi,t and βi,t. This representation
aims at capturing communication exchanges through social media feeds. At the beginning
of every period t, a signal pro�le is realized and an unbiased signal is privately observed by
every agent. Bots, instead, disregard this unbiased signal. Hence, part of the information
obtained by bot followers will be transmitted through the network in the following period,
as it is incorporated during the belief updating process and shared with other agents in the
network that naively internalize them.

We now explain the update rules of agents and bots. The full characterization of the
update rules can be found in Appendix B.

Agents:

Regular agents and bot followers share the same update rule. The feature that dis-
tinguishes them is the composition of their neighborhood: while regular agents only pay
attention to other regular agents, bot followers devote some share of their attention to the
information transmitted by bots, and hence are exposed to fake news. After observing the
signal from unbiased sources, agents compute their Bayesian posteriors conditional on the
observed signals. We assume that parameters αi,t+1 and βi,t+1 are convex combinations
between their Bayesian posterior parameters and the weighted average of their neighbors'
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parameters. In mathematical terms we have that

αi,t+1 = (1− ωi,t)[αi,t + si,t+1] + ωi,t
∑
j

[ĝt]ij αj,t (2)

βi,t+1 = (1− ωi,t)[βi,t + 1− si,t+1] + ωi,t
∑
j

[ĝt]ij βj,t, (3)

where ωi,t = ω when
∑

j [gt]ij > 0, and ωi,t = 0 otherwise.
Note that this rule assumes that agents exchange information (i.e. αj,t and βj,t) before

processing new signals si,t+1. Agents' full attention span is split between processing infor-
mation from unbiased sources, (1− ωi,t), and that provided by their friends in the network,
ωi,t (e.g. reading a Twitter feed). If no friends are found in the neighborhood of agent i,∑

j [ĝt]ij = 0, then the agent attaches weight 1 to the unbiased signal, behaving exactly
as a standard Bayesian agent. Conversely, if at least one friend is found, this agent uses a

common weight ω ∈ (0, 1). The term [ĝt]ij =
[gt]ij
|Nout
i,t |

represents the weight given to the infor-

mation received from her out-neighbor j. As ωi,t approaches 1, the agent only incorporates
information from social media, making her update process closer to a DeGrootian in which
individuals are purely conformists. In general, ω can be interpreted as the degree of in�uence
of social media friends.

Finally, note that the posterior distribution determining world-views of agents will also
be a Beta distribution with parameters αi,t+1 and βi,t+1. Hence, an agent's opinion regarding
the true state of the world at t can be computed as

yi,t =
αi,t

αi,t + βi,t
. (4)

Bots

We assume that there are two bots, a left wing bot (or L-bot) and a right wing bot (or
R-bot), both with biased views. They ignore unbiased signals and those provided by other
individuals in the network. The beliefs of the R-bot evolve according to αRt+1 = αRt + κ and
βRt+1 = βRt , whereas those of the L-bot evolve according α

L
t+1 = αLt and βLt+1 = βLt + κ. The

parameter κ > 0 measures the ability of bots to spread fake-news at a di�erent rate than
other agents, which can be interpreted as their �ooding capacity (i.e. how fast/slow they can
produce fake news compared to the regular �ow of informative signals received by agents).
Bots transmit the whole stream of information to agents paying attention to them. Hence,
a value of κ > 1 gives them more de-facto weight in the updating rule of their followers,
emphasizing their degree of in�uence on the network. Given initial beliefs αi0 and β

i
0 for bot

i, their update rule can simply be written as

L-bot: αLt = αL0 and βLt = βL0 + κt (5)

R-bot: αRt = αR0 + κt and βRt = βR0 . (6)

From eq. (4), these imply that the L-bot's opinion converges to limt→∞ y
L
t = 0 whereas

limt→∞ y
R
t = 1. The �ooding parameter κ dictates the speed of convergence to the extremes.
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This assumption aims to capture, in reduced form, the fact that bots try to disguise them-
selves as regular agents. Because of this, they do not typically start out with completely
extreme views, but instead converge to them over time.

Our heuristic rules di�er from those analyzed in Como and Fagnani (2016), who assume
that individuals exchange opinions yi,t directly. They resemble, instead, the ones in JMST
(2012). But there are three important distinctions. First, their adjacency matrix is �xed
over time (homogeneous Markov chain), whereas ours is stochastic (in-homogeneous Markov
chain), an element we borrowed mainly from ACFO (2013). Second, we restrict attention to
a speci�c conjugated family (Beta-Bernoulli) and assume that individuals exchange shape
parameters αi,t and βi,t that characterize this distribution. So the heuristic rule involves
updating two real valued parameters, whereas JMST (2012)'s heuristic rule involves a convex
combination of the whole distribution function. Given their rule, the posterior distribution
may not belong to the same family as the prior distribution, as the convex combination of
two Beta distributions is not a Beta distribution. That is not the case in our environment, as
the posterior will also belong to the Beta distribution family. Finally, we are considering the
in�uence of fake news spread by bots and this feature is the main source of misinformation.
Therefore, to the extent that bots are followed by agents who are in�uential (e.g. those
with a large number of followers), their presence will a�ect the existence and persistence of
misinformation and polarization over time. This is due to the fact that they will consistently
communicate fake news (biased signals) to their followers pushing them to extremes of the
belief spectrum.5

3 Misinformation and polarization: Limiting results

An agent i is misinformed when her opinion yi is su�ciently far from the true state of the
world θ. We can de�ne the `degree of misinformation' in society�at time t�as the average
distance between agents' opinions and the true state of the world.

De�nition 1. The degree of misinformation is given by

MIt =
1

n

n∑
i=1

(yi,t − θ)2 . (7)

While MIt grows with the number of agents whose beliefs are far from θ, it does not
capture disagreement. For example, consider a network in which yi,t = 1 in period t for all
i. In such case, MIt reaches its maximum theoretical value, but with all agents agreeing
on the wrong value of θ (e.g. there is zero disagreement but maximal misinformation). To

5We believe, even though we have not proved it, that the choice of modeling bots as agents in the
network instead of simply biased signals reaching a subset of agents comes without any costs to our �ndings.
Moreover, the decision of modeling bots as agents is in line with the concept of stubborn and forceful agents
in the misinformation literature. Thus, the potential bene�t of modeling in this way is the possibility of
making direct comparisons to the current results in the literature. Finally, as pointed out by Gu, Kropotov,
and Yarochkin (2016), fake news articles sometimes are promoted in such a way that they appear to be
spread by other users. In this sense, modeling bots as agents seems to be a fair natural starting point. We
get back to the resulting technical challenges later.
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capture disagreement among individuals, we use the de�nition of polarization constructed
by Esteban and Ray (1994).

De�nition 2 (Polarization). Polarization is de�ned as

Pt =
K∑
k=1

K∑
l=1

π1+ς
k,t πl,t |ỹk,t − ỹl,t| (8)

where K is a pre-determined number of groups in society, ỹk,t is the average opinion of
agents in each group k ∈ {1, ..., K} and πk,t is the share of agents in group k at time t.

Basically, this measure computes polarization over a discretized version of the domain of
θ (e.g. the interval [0, 1]), de�ning the share of agents in each group k ∈ {1, ..., K} by πk,t,
with

∑
k πk,t = 1. The higher degree of heterogeneity of opinions across groups, |ỹk,t − ỹl,t|,

the greater the level of polarization according to this measure. Polarization also increases
with intra-group opinion homogeneity, which is given by the mass of individuals πk,t that
share the same opinion. Esteban and Ray (1994) restrict ς ∈ [0, 1.6]; noting that when ς = 0,
the measure is similar to a standard Gini coe�cient across opinions.

Clearly, a society with no polarization may be very misinformed, as described above. On
the other hand, we may observe a society in which there is a high degree of polarization but
where opinions are centered around θ, so their degree of misinformation may be relatively
small. In the latter case, individuals may be deadlocked on a policy choice despite relatively
small di�erences in opinion. In terms of welfare, both variables capture di�erent dimensions
of ine�ciency. Because of that, we are interested in characterizing both, misinformation and
polarization in the limit,

MI = plim
t→∞

MIt and P̄ = plim
t→∞

Pt.

We can think of long-run misinformation and polarization as functions of: (i) the initial
network structure g0, (ii) the location of bots and their followers in it, and (iii) other pa-
rameters (such as clock speed ρ, in�uence of friends ω, share of bot followers µ, and �ooding
parameter κ),

MI = MI(g0; ρ, ω, µ, κ) and P̄ = P(g0; ρ, ω, µ, κ).

We aim at characterizing the properties of the functions P and MI. We �rst show some
(limited) theoretical results, to illustrate that this model shares the properties of other well-
known models in the literature, and then present results obtained via computer simulations.

Non-in�uential Bots The following two results show conditions under which misinfor-
mation and polarization vanish in the limit. The �rst one is analogous to Sandroni et al
(2012), whereas the second one extends it to a network with dynamic link formation as in
Acemoglu et al (2010).

Proposition 1. If the network G0 is strongly connected, the directed links are activated
every period (e.g., ρ = 1) and bots exert no in�uence, then the society is wise (i.e., all
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agents eventually learn the true θ). As a consequence, both polarization and misinformation
converge in probability to zero.

Proof. See Appendix E.1.

When the network is strongly connected all opinions and signals eventually travel through
the network allowing agents to perfectly aggregate information. Since bots exert no in�u-
ence, individuals share their private signals who are jointly informative and eventually reach
consensus (e.g. there is no polarization) uncovering the true state of the world, θ.

The result in Proposition (1) is in line with the �ndings in JMST (2012) despite the
di�erence in heuristic rules being used. Proposition (2) shows that the assumption of a
�xed listening matrix can be relaxed. In other words, even when Gt is not constant (time-
inhomogeneous graph), the society is wise and polarization vanishes in the long run in
strongly connected networks.

Proposition 2. If the network G0 is strongly connected, bots exert no in�uence, then even
when the edges are not activated every period (i.e. ρ ∈ (0, 1)) society is wise. As a conse-
quence, both polarization and misinformation converge in probability to zero.

Proof. See Appendix E.2.

In�uential Bots In�uential bots cause misinformation by spreading fake news. This does
not imply necessarily that the society will polarize. The following example depicts two
networks with three agents each: a regular one (node 3) and two bot followers (nodes 1 and
2) in�uenced by only one bot�L-bot in panel (3a) and R-bot in the panel (3b)�.

L

21

3

(a) Society in�uenced by L-bot

R

21

3

(b) Society in�uenced by R-bot

Figure 3: Two societies with bots

Polarization in both societies converges to zero in the long-run. However, neither society
is wise if θ 6= 1 or θ 6= 0. This illustrates that the in�uence of bots may generate misinfor-
mation in the long run, preventing agents from uncovering θ, but does not necessarily create
polarization. In general, if a society is wise, then it experiences no social polarization in the
long run. The converse, on the other hand, is not true.

More generally, when the relative in�uence of one type of bot is signi�cantly larger than
the other, it is possible for a society to reach consensus (i.e. experience no polarization of
opinions) to a value of θ that is incorrect. This can happen when there is a large number of
bot followers or when bot followers, even if few, reach a large part of the network (i.e. when
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they are themselves in�uential). In order for this case to arise, it is also necessary that one
of the bots has a relatively larger number of followers (or in-Degree) than the other bot; the
example presented in Figure 3 is extreme in that one bot is in�uential whereas the other one
is not. A society may converge to the wrong θ under less extreme assumptions. In order for
a society to be polarized, individuals need to be su�ciently exposed to bots with opposing
views.

Consider the social network of two agents depicted in Figure 4, in which both bot-types
are present: agent 1 is in�uenced by the L-bot whereas agent 2 is in�uenced by the R-bot.
Even though agents 1 and 2 receive unbiased signals and communicate with each other, this
society exhibits polarization in the long run. This happens because bots subject to di�erent
biases are in�uential. The degree of misinformation may be lower than in the previous
example (as opinions end up being averaged out and potentially closer to the true state of
the world), but to the extent policy is chosen by majority voting may still lead to inaction
and hence ine�ciencies.

L 1 2 R

Figure 4: Society with both L-bot and R-bot

Finally, we want to point out that whether misinformation and polarization are relevant
even in the long run depends importantly on the topology of the network, the number, and
degree of in�uence of bots and their followers. The next section is devoted to uncovering
what drives these di�erent dynamics.

4 Monte Carlo simulations

One of the biggest challenges when using network analysis is to ascertain analytical closed
forms and tractability for long-run polarization and misinformation. The combinatorial na-
ture of social networks that exhibit a high degree of heterogeneity makes them very complex
objects, imposing a natural challenge for theoretical analysis. To understand the relative im-
portance of the network structure and belief formation process on limiting polarization and
misinformation, we resort to numerical methods, where a synthetic large-scale ego-network
capturing communication via Twitter is generated. Limiting properties of the distribution
of beliefs, namely long run average misinformation and polarization, are computed through
Monte Carlo simulations for di�erent location of bot followers in the network, while keeping
all other parameters unchanged at our benchmark values. This exercise allows us to quantify
how the centrality of bot followers a�ects misinformation and polarization.

4.1 Calibrating the network structure: g0 choice

To construct g0, we use the ego-networks from Twitter identi�ed by McAuley and Leskovec
(2012).6 Their full dataset consists of 81,306 nodes and 1,768,149 direct edges capturing
social circles in Twitter. Each synthetic ego-network can be easily be constructed with the

6These are available from SNAP at http://snap.stanford.edu/data/ego-Twitter.html.
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R-package igraph. Selected statistics capturing the network topology are displayed in the
�rst column of Table 1.

Network Statistics Ego-Twitter Synthetic Ego-net
SNAP (Data) Best Fit (Model)

Average in-Degree 21.74 21.83
Average clustering 0.60 0.57
Diameter (directed) 15 12
Avg. path length 4.91 3.55
Avg. path length to Diameter (ratio) 0.33 0.30
Reciprocity 0.32 0.29
Clusters 1 1

Degree distribution (log normal)
Mean 1.94 1.98
St. Dev 1.51 1.49

Table 1: Ego-networks: data vs �t

We build a smaller calibrated synthetic network with 3,991 nodes and 87,134 edges to
capture the dynamics of complex, real life networks in a model, while at the same time
keeping the computation time of centrality measures manageable. The calibration algorithm
consists on �rst drawing a large number of ego-networks and then selecting the one that
minimizes the overall distance between selected network topology characteristics from the
model to those in the data. More speci�cally, we match: (i) the average clustering coe�cient,
(ii) average in-Degree, and (iii) reciprocity ratio of links.

The empirical in-Degree distribution (in logs) is plotted in the left panel of Figure 5.

Figure 5: Twitter in-Degree distribution

Because this is a high-dimensional object, we �rst approximate it with a Log-Normal
distribution and then use the estimated mean and variance, equal to 1.94 and 1.51, respec-
tively, as targets in our calibration. The CCDFs of the �tted log-normal (dashed red line)
and the data (solid blue line) are plotted in the right panel of Figure 5. We also include
the �tted Power function distribution (dashed gray line), to illustrate that the log-normal
�ts the Twitter data better. This eyeball test is corroborated by computing the likelihood
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ratio between the two candidate distributions, and rejecting the hypothesis that the power
function has a superior �t (see Alstott and Plenz (2014)).

The network statistics obtained from our best �t are displayed in the second column of
Table 1. The diameter of our calibrated network (12) is naturally below its data counterpart,
since the network is smaller. The average path length to diameter ratio and the reciprocity
parameter in our calibrated network are both relatively close to the data. The next step
consists on stating which agents in our synthetic network are bot followers.

We populate each network j ∈ {1, ...,M} with two bots and two types of individuals,
regular agents and bot followers. The only di�erences across networks is the location of these
agents and the identity of the bot they follow. The share of bot followers is set to µ = 0.15
(approximately 600 nodes), consistent with the percentage of agents reporting that they are
`only a little con�dent' in their ability to detect fake news from a Pew Research Center
research poll in 2019. We de�ne which agent follows the L-bot and which one follows the
R-bot in two steps. First, using a uniform distribution, we randomly select 600 nodes out of
our total of 3, 991 nodes and assign them an `bot follower' label. This de�nes their location
in g0. From an ex-ante perspective, every node in the network has the same probability
of being populated by a bot follower. Second, out of this set, we randomly pick dL ≤ 600
nodes to receive signals from the L-bot (exclusively). The remaining agents 600− dL follow
the R-bot. Through this procedure, the in-Degree of the two bots can be di�erent across
simulations (e.g. they could have asymmetric in�uence over opinions), even when the total
number of bot followers remains the same. Finally, the remaining individuals are assumed
to be regular agents, and hence are not connected to (e.g. do not follow) any bots. For the
benchmark case, we construct M = 1, 233 networks.

4.2 Communication process: benchmark case

The true state of the world is assumed to be θ = 0.5. In the long-run, this implies that
both bots have preferred points which are equidistant from the true state (e.g. they are
symmetrically biased). There is no obvious way to discipline ω and ρ using data, so we
assume that agents place half of the weight in the unbiased signal, ω = 0.5, and that the
clock parameter is ρ = 0.5. While these choices are somewhat arbitrary, the comparative
statics relative to these two parameters are straightforward. Finally, we set the bot's �ooding
capacity at κ = 25. We summarize the benchmark parameters in Table 2.

Parameters Symbol Value
In�uence of friends ω 0.5
Speed of communication ρ 0.5
Flooding capacity κ 25
Number of bots b 2
Share of bot followers µ 15%
Number of nodes n 3,991
Number of simulations (di�erent networks) M 1,233

Table 2: Benchmark Parameters
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Assigning initial beliefs αi,0 and βi,0: We �x the initial distribution of beliefs so that
the same mass of the total population lies in the middle point of each one of K = 7 groups.7

This rule basically distributes our agents evenly over the belief spectrum [0, 1] such that each
of the 7 groups contains exactly 1

7
of the total mass of agents in the initial period. We set

the same variance for each agent world-view to be 0.03. With both opinion and variance, we
are able to compute the initial parameter vector for each agent i.8

Simulating opinion exchange over time: For each network j ∈ {1, ...,M}, we allow
agents to interact (following equations (2) and (3)) for a large number of periods (T = 1, 000)
and use the resulting opinions to compute misinformation and polarization in the long run.
For each network j ∈ {1, ...,M}, we draw a signal sji,t for individual i ∈ N at time t from
a Bernoulli distribution with parameter θ = 0.5. We also draw the n× n matrix ct at each
period t from a Bernoulli distribution with parameter ρ, which determines the evolution of
the network structure according to eq. (1). Together, the signals and the clock determine
the evolution of world-views according to eqs. (2) and (3). For each network speci�cation
j ∈ {1, ...,M}, we compute a time series for opinions yi,t,j for individual i at period t and
use this to compute average opinions yj,t, polarization Pj,t, and misinformation Mj,t.

9
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Figure 6: Evolution of opinions and polarization

The left panel of Figure 6 displays the evolution over time of average opinion of all agents
(black solid line), of L-bot followers (dashed blue line) and R-bot followers (dashed red line).

7We also experimented with K = 3 groups and K = 5 groups, and the resulting average levels of long-run
polarization remain unchanged. See Appendix H.2.

8In our model, the mean opinion in group K at date zero is µk = α
α+β and its variance σ2 = αβ

(α+β)2(α+β+1) .

Using these two conditions, we �nd that α = −µk(σ
2+µ2

k−µk)
σ2 and β =

(σ2+µ2
k−µk)(µk−1)
σ2 . Since σ2 = 0.03,

the draws of µk determine initial beliefs for agents in each group.
9Note that the intervals used to compute polarization are pre-determined. We �rst set K = 7 and split

the interval [0, 1] in 7 groups, so the �rst sub-interval is [0, 1/7], the second one is (1/7, 2/7] and so on. In
the �rst period of the simulation, each group has as a mass πi,0 = 1/7, with i ∈ {1, ...7}. This is because
we start initial opinions from a uniform distribution. Over time, πi,t (the proportion of the population that
belongs to each group) changes endogenously. Hence if we end up in a situation where the whole population
converges to 1, we would have πi = 0 for i < 7 and π7 = 1.
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These plots are averaging out results across network con�gurations j at each point in time t.
We can see that agents start, on average, at θ = 0.5 (this is by construction). Immediately
after, there is a wide dispersion between the beliefs of R-bot and L-bot followers that grows
over time up until period 71, where the di�erence starts shrinking. This happens because
agents are still receiving the unbiased signal, which tends to moderate them. Despite of
that, di�erences in opinions diverge over time, which generates positive polarization. The
right panel of the �gure displays the evolution of polarization over time (averaged out across
network con�gurations), with dashed lines indicating ± 1 standard-deviation. Polarization
starts at a large value because we assigned initial opinions uniformly over the [0, 1] spectrum.
It goes down subsequently as agents share information and incorporate their unbiased signals,
with some agents getting closer to the beliefs of the bot they follow. This results in about
three distinct groups of agents with positive mass: the L-bot followers, the R-bot followers,
and regular agents not directly connected to these. It is interesting to note that while
polarization declines, it settles at a constant value. Moreover, it remains basically unchanged
after a couple of hundred interactions.

Long-run results: Because average opinions and polarization tend to stabilize after a
large number of periods in each network j, we can approximate their limiting values by
calculating an average over the last 200 periods (recall that we simulate opinion exchange
for a total of 1,000 periods),

yj =
1

200

∑
t>800

yj,t and P j ≡
1

200p̂

∑
t>800

Pj,t,

where polarization is normalized by p̂ to belong to the interval [0, 1]. The degree of misin-
formation is computed similarly.10 Table 3 reports relevant statistics for our three variable
of interest.11

Table 3: Long-run Opinions, Misinformation, and Polarization

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

Average opinions yj 0.51 0.28 0.03 0.26 0.75 0.97

Misinformation MIj 0.08 0.06 0.01 0.03 0.14 0.23
Average polarization P j 0.08 0.02 0.03 0.06 0.09 0.16

Figure 7 displays the distribution of long-run average opinions yj and polarization P j

across networks. While there are cases in which individuals are on average correct (e.g.
close to θ = 0.5), there exists signi�cant dispersion around this value with a distribution
that looks almost uniform. Additionally, there is a non-trivial amount of networks in which
agents' opinions become extreme, implying that bots are successful at manipulating options

10With ς = 0.5 the maximum possible level of polarization (theoretically) is p̂ = 2
(
1
2

)2.5
= 0.35. We

divide all values of polarization by this number to normalize the upper bound to 1. This is without loss of
generality and aims at easing interpretation.

11These are computed across simulations. For example, mean average opinions is
∑1,233
j=1 yj .
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towards their own. As a result, the degree of misinformation could be quite large (recall that
the theoretical maximum value for misinformation is 0.25).
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Figure 7: Long-run average opinions and polarization

The right panel of Figure 7 depicts the distribution of polarization resulting from our
simulation exercise. There is a signi�cant degree of variability in our sample, even though the
polarization levels are relatively small (recall that maximum polarization has been normalized
to 1, yet the maximum polarization level observed in our sample is just 0.16). The average
value of P̄j across networks is 0.08, with a standard deviation of 0.02. Interestingly, we also
observe some mass near 0, indicating that agents reach quasi-consensus. Unfortunately, most
of these cases involves consensus around extreme values of θ rather than e�cient aggregation
of information to the true θ.12
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Figure 8: Relationship between P̄j and ȳj (left) and MIj (right)

Figure 8 (left panel) shows a scatter-plot of long-run polarization and average opinions for
our benchmark parameterization. There is an inverted U-shape relationship between these
variables, indicating that polarization is generally low when individuals converge to the wrong
value of θ (e.g. when long-run opinions are close to 0 or 1) and it is larger when average
opinions are close to 0.5. Because of this, polarization and misinformation are negatively
related, as seen in the right panel of the �gure. The bars inside each box correspond to the
median values of polarization, the top of the box indicates the 75th percentile, the bottom
the 25th percentile, and the dots capture outliers.

12While we work with Esteban and Ray's measure of polarization, using the variance of opinions in the
long-run is also a feasible alternative. The two measures of disagreement are highly correlated, with a
correlation coe�cient of 0.88. See Figure 20 in Appendix G.
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5 Fake news and bot centrality

Bots need to be in�uential enough (or reach in�uential enough followers) in order to prevent
society from learning. The number and location of bots (and their followers) in g0 are thus
important determinants of limiting MI and P , as it is through them that fake news spread
in the network. In our �rst set of experiments, we keep the share of bot followers constant.

The variability in our long-run outcomes arises from two main sources. The �rst one
is how much impact bots can have, on average. This depends on how in�uential the bot
followers are. If bots can reach very central followers, they will tilt opinions towards the
extremes, generating signi�cant disagreement on the population, and hence high polarization.
Their average centrality matters. The second one arises because the L-bot and the R-bot
are competing for the attention of a potential (�xed) pool of followers. A bot will be able
to tilt the population's opinions towards its preferred value if it can successfully: (i) reach
a larger audience than the other bot (e.g. have a higher in-Degree) and/or (ii) reach more
in�uential followers. This force could, potentially, reduce polarization but would increase
misinformation. The relative centrality, then, should also impact long-run outcomes.

Average centrality: We �rst calculate the centrality measure of interest: in-Degree, out-
Degree, Betweenness or Page Rank of all the agents following a bot (formal de�nitions of
these centrality variables can be found in Appendix F). We then average them out across
bots. For example, for Avg in-Degree, we �rst compute the total in-Degree (normalized) of
all the R-bot followers as

inDegree(R) =
∑
i∈N in

i,R

∑
j

[g0]j,i
n− 1

.

The inner-sum computes the number of agents j who pay attention to i (e.g., the in-Degree
of agent i, normalized by the potential number of followers). The outer-sum adds up the
in-Degree of all i agents who are R-bot followers. Hence, it is a�ected by two forces: how
popular the R-bot followers are (measured by their in-Degree) and how many followers the
R-bot has. The in-Degree(L) is analogously computed. The Average in-Degree is just

Avg in-Degree(bot) =
inDegree(L) + inDegree(R)

2
,

Note that we are taking the average across bots (not across followers). We can interpret
this statistic as the overall indirect in�uence of bots in the network: higher values indicate
that bots are in�uencing a large number of regular agents via bot followers. The results are
reported at the top of Table 4. The �rst two rows indicate that bot followers are represen-
tative, with average in-Degree and out-Degree measures close to those in the population.
However, we see signi�cant di�erence across simulations. There are networks in which bots
capture followers who have up to 96 followers themselves.
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Table 4: Centrality of bots and followers

Mean Std Dev. Min Max

Average Centrality
Avg in-Degree 22 5 12 96
Avg out-Degree 23 2 13 64
Avg Betweenness 0.009 0.006 0.003 0.033
Avg Page Rank 0.07 0.007 0.055 0.105
Avg Page Rank (bot) 0.007 0.002 0.003 0.013

Relative Centrality
Rel in-Degree (bot) 296 172 1 596
Rel in-Degree 5 8 0 153
Rel out-Degree 3 3 0 80
Rel Page Rank 0.07 0.007 0.055 0.105
Rel Page Rank (bot) 0.007 0.004 0 0.022
Rel Betweenness 0.01 0.01 0 0.05

While average in-Degree is an intuitive measure of centrality, it is not necessarily the
only way in which a bot can be e�cient at manipulating opinions, and hence a�ecting
misinformation and polarization. There are networks in which bot followers have very few
followers (and hence a low in-Degree) but each of their followers is very in�uential. An
alternative measure of centrality that incorporates these indirect e�ects is Google's Page
Rank centrality.13 Page Rank tries to account not only for quantity (e.g. a node with more
incoming links is more in�uential) but also by quality (a node with a link from a node which
is known to be very in�uential is also in�uential). Individuals with a high Page Rank score
are key agents of the network because other relevant network agents interact often with
them. In the table, we report Page Rank centrality statistics for both, the bots and their
followers.

To illustrate how this measure can a�ect outcomes, we plotted the distribution of polar-
ization across simulations in Figure 9 for di�erent levels of bot's Average Page Rank.14 The
left panel�which includes cases with Avg Page Rank(bot) in the bottom 20th percentile�
exhibits signi�cantly less polarization than the right panel �which conditions the sample
to the top 20th percentile of Avg Page Rank(bot)�. Hence, networks with more in�uential
bots tend to be more polarized.

Our �nal measure is average Betweenness. Betweenness centrality computes how often an
agent (or node) lies on the shortest path between any two agents in the network. Individuals
with high Betweenness centrality have the potential to in�uence individuals near them and
quickly spread fake news.

13This measure is a variant of eigenvector centrality, also commonly used in network analysis.
14The measure simply averages out the Page Rank of the L-bot and the R-bot. We use the average because

we want to measure overall in�uence of bots, rather than relative in�uence.
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Figure 9: Average Page Rank (bot) and long-run polarization

Relative Centrality: While we keep the total number of followers constant, we allow the
number of followers each bot has to change across simulations. This changes how central a
bot is relative to the other. We compute Relative in-Degree as

Relative in-Degree(bot) = |inDegree(L) - inDegree(R)|.

When the variable is zero, the two bots are equally in�uential, whereas maximum central-
ity is reached when all bot followers pay attention to just one of the bots (e.g. the measure
is 600). One average, the relative in-Degree in our sample is 296 agents�with a standard
deviation of 172 followers�, suggesting large variability in the con�guration of our di�erent
networks.

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
Avg Opinion − q5

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
Avg Opinion − q1

D
en

si
ty

Figure 10: Relative in-Degree (bot) and long-run opinions

To better understand how this a�ects communication in Twitter, we plotted the distri-
bution of long-run average opinion for two di�erent levels of relative in-Degree in Figure
10. When one of the bots has a signi�cant larger number of followers (e.g. the upper 20th
percentile of relative in-Degree), society converges to extremely biased opinions about θ (see
the left panel). When the relative in-Degree is in the lowest 20th percentile, average opinions
are centered around the true θ = 0.5 (see the right panel). As a result of this, polarization
is negatively correlated to the relative in-Degree of bots (see Figure 11), whereas misinfor-
mation increases with it. The relationship between misinformation and in-Degree advantage
is less stark, indicating that this measure of centrality is not enough to explain the variabil-
ity in our simulations. Table 4 also reports the relative in-Degree of bot followers (i.e, the
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Figure 11: Polarization and misinformation Relative in-Degree(bot)

di�erence between the in-Degree of a follower of bot L and a follower of bot R, in absolute
value). While the average advantage is just 5 agents, it can reach up to a maximum of 153
(for reference, recall that agents have on average 21 followers each). The relative out-degree
is 3; a larger value of this measure increases the in�uence of friends in the network for each
given bot follower, reducing the in�uence of bots.

It is worth noticing that even though all of these are alternative measures of centrality,
they capture slightly di�erent concepts. An agent is central according to in-Degree when it
has a large number of followers, whereas she is central according Betweenness if she is in the
information path of many agents. The correlation between these two variables is just 0.2.
Moreover, the correlation of these centrality measures is relatively low, with the exception of
Relative in-Degree(bot) and Page Rank (bot follower), with a correlation coe�cient of 0.93.
This indicates that when a bot has a signi�cantly larger number of followers it is capable of
attracting the attention of relatively in�uential ones. See Appendix G.1 for an illustration
of these correlations.

5.1 Regression analysis: assessing centrality measures

We are interested in estimating which of these relative centrality measures has the largest
e�ect on long-run misinformation and polarization. To assess the quantitative importance
of each explanatory variable, we estimate the coe�cients of an OLS model,

Yj = Xjβ + εj. (9)

where the M × 1 vector Yj denotes either long-run misinformation MIj or polarization
P̄j obtained from simulation j ∈ {1 . . .M}, Xj denotes the matrix of network characteristics
per simulation j, and εj is the error term. The set of explanatory variables includes: (i)
the average and relative centrality measures from Table 4, (ii) initial opinions homophily,
(iii) initial polarization, and (iv) average clustering, as those are the ones that vary as we
randomly select bots' audience.

The results are displayed in Table 5. All variables have been normalized by their sample
standard deviation (computed for our benchmark case) in order to simplify the interpreta-
tion of coe�cients and ease comparison across covariates. Hence, each estimated coe�cient
represents by how many standard deviations misinformation or polarization change when
the respective independent variable increases by one standard deviation. The columns under
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`All' include the full sample, whereas those under PHigh restrict the sample to networks in
which polarization is high (in the top 25th percentile of P j). Analogously, columns under
MIHigh restrict the sample to networks with the top 25th percentile of MIj.

Polarization Misinformation

Full sample PHigh MIHigh Full sample PHigh MIHigh

Bot Centrality

Avg Page Rank (bot) 0.32*** 0.20*** 1.59*** -0.22*** -0.09*** -0.83***
(0.028) (0.041) (0.130) (0.014) (0.020) (0.072)

Rel in-Degree (bot) -0.24*** -0.19* 0.16 0.13*** 0.00 -0.06
(0.065) (0.112) (0.125) (0.034) (0.056) (0.069)

Rel Page Rank (bot) -0.75*** -0.27*** -2.27*** 0.87*** 0.54*** 1.42***
(0.034) (0.061) (0.165) (0.018) (0.030) (0.092)

Bot Follower Centrality

Avg in-Degree 0.15*** 0.30** -0.02 -0.12*** 0.04 -0.04**
(0.040) (0.140) (0.026) (0.021) (0.070) (0.014)

Avg out-Degree -0.04* 0.02 0.01 0.03** -0.07* 0.00
(0.026) (0.078) (0.016) (0.013) (0.039) (0.009)

Avg Betweenness -0.02 -0.16** 0.22*** 0.05* -0.00 0.06*
(0.053) (0.072) (0.060) (0.027) (0.036) (0.033)

Avg Page Rank -0.04 -0.05 -0.11** -0.00 0.02 0.00
(0.038) (0.076) (0.053) (0.020) (0.038) (0.030)

Rel in-Degree -0.11*** -0.10 0.01 0.10*** 0.06 0.02*
(0.034) (0.091) (0.021) (0.017) (0.045) (0.012)

Rel out-Degree -0.01 0.09 -0.01 0.02* -0.00 0.01
(0.023) (0.070) (0.013) (0.012) (0.035) (0.008)

Rel Betweenness 0.02 0.08 -0.21*** -0.03 -0.02 -0.04
(0.051) (0.072) (0.059) (0.026) (0.036) (0.033)

Rel Page Rank 0.08 0.19 0.36** 0.09** 0.07 0.00
(0.077) (0.123) (0.148) (0.040) (0.061) (0.082)

Network Structure

Opinions Homophily -0.04** -0.01 -0.02 0.01 0.01 -0.01
(0.017) (0.032) (0.016) (0.009) (0.016) (0.009)

Initial Polarization -0.02 -0.04 -0.00 0.01 -0.01 0.01
(0.017) (0.028) (0.015) (0.009) (0.014) (0.008)

Avg Clustering -0.02 -0.01 -0.00 -0.02 -0.02 -0.02*
(0.026) (0.049) (0.021) (0.013) (0.024) (0.012)

Observations 1,233 308 308 1,233 308 308
R-squared 0.640 0.192 0.695 0.904 0.609 0.846

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Regression results: benchmark case

Full sample: As bots become more central, subgroups of agents converge to extreme views
about θ and polarization increases. This is evidenced by the �nding that a one-standard
deviation increase in Average Page Rank (bot) increases polarization by 0.32 s.d. Relative
centrality, measured by the bot's Page Rank, has the greatest impact by lowering polarization
(by 0.75 s.d) and increasing misinformation (by 0.87 s.d.). When a bot is relatively more
in�uential than the other, it is able to nudge most opinions towards its extreme view. This
lowers disagreement at the expense of higher misinformation.

In simulations where bot followers are popular (i.e high Avg in-Degree), the problem
worsens because they in�uence a large number of people as well, increasing polarization by
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0.15 s.d. Increases in Avg out-Degree have the expected e�ect but are quantitatively small.
At the same time, networks in which both bots and their followers are in�uential experience
lower misinformation levels, as evidenced by the regression coe�cients of −0.22 (Avg Page
Rank of bot) and −0.12 (Avg in-Degree of follower). This result is consistent with Figure
8, where we saw that polarization and misinformation are negatively related. As we show
in later (in Section 6.4), this is a particular feature of the benchmark case. When bots are
equally biased (as assumed when θ = 0.5) and equally in�uential, they fail at nudging agents'
opinions away from the middle of the [0, 1] spectrum. Thus, the bots' balanced in�uence
and informative signals jointly reduce misinformation.

Increases in the relative in-Degree advantage of followers has similar e�ects by reducing
polarization and increasing misinformation by about 0.10 s.d. each. Initial polarization has
no signi�cant e�ects on long-run polarization, suggesting that initial conditions do not mat-
ter. The e�ects of opinions' Homophily are relatively small and those of Average clustering
statistically insigni�cant.

We want to point out that the largest e�ects on long-run outcomes arise from the variabil-
ity in the relative number of bot followers. That is, in cases where bots are asymmetric. We
have experimented with cases in which bots are symmetric (with in-Degree of 300 each) and
found that the coe�cients on the centrality of bot followers are smaller and the explanatory
power for polarization decreases signi�cantly.

High polarization subset: In the table we also replicated the regression for a subset of
our sample in which high levels of polarization were reached in the long run (second and
fourth columns, under PHigh). The most important predictor for polarization is the average
in-Degree of bot followers, which increases it by 0.3 sd (which is twice what we obtained
using the full sample), followed by the average Page Rank of the bot. Recall that high levels
of polarization are typically attained when bots are in�uential, but in a symmetric way. This
is why the coe�cients on relative centrality measures have a lower impact, and the goodness
of �t shrinks. Interestingly, Avg Betweenness a�ects polarization in this case: a one s.t.
reduces disagreement by 0.16 s.d. Conditional on high polarization levels, a one-s.d. in the
relative Page Rank advantage (bot) increases misinformation by 0.54 s.d. (the value for the
full sample was 0.87). Other measures of centrality are quantitatively small or insigni�cant,
which probably happens because simulations in which polarization is high tend to exhibit
low misinformation levels.

High misinformation subset: In the third and sixth columns (those under MIHigh),
we instead condition our sample to include cases in which the level of misinformation is
high. In these cases, the explanatory power of our centrality measures for both, polariza-
tion and misinformation, increases. Moreover, the e�ects of bot centrality are exacerbated
when compared to the full sample. In other words, when misinformation is already high,
marginal increases in the centrality have very signi�cant e�ects in reducing polarization and
increasing misinformation even futher, evidence of increasing returns in the spread of fake
news technology.
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6 Parameter analysis

In this section, we study how changes in selected model parameters a�ect polarization and
misinformation in the long run.

6.1 Alternative Bots' �ooding capacity

In our model, the parameter κ controls the speed at which bots' beliefs become extreme (e.g.
L-bot's opinion moves towards 0 and R-bot's opinion moves towards one). A low value of the
�ooding parameter implies high persistence in the bot's initial opinion, which need not be
extreme, and hence a lower degree of in�uence on the dynamics of communication. To study
how κ a�ects communication, we computed long-run average opinions and polarization for
κ ∈ {0.5, 1, 5, 25}. Their long-run distributions across network simulations are plotted in
Figure 12.

As κ declines from our benchmark value of 25, average opinions become more concen-
trated around the true value of θ (left panel) and polarization shrinks (right panel). In-
tuitively, a low κ reduces the in�uence of the bot and allows more e�cient aggregation of
information and consensus to the true θ. In Appendix H.1, we show results for �ooding pa-
rameters above 25 and note that the changes in long-run average opinions and polarization
are not as sensitive to increases in κ, as values are higher than the benchmark. Qualita-
tively, more �ooding above 25 is associated with a wider distribution for opinion and higher
polarization levels, but the distributions look very similar to those in our benchmark case.
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Figure 12: The e�ects of bot's �ooding capacity κ

6.2 Alternative Number of Bots

In Figure 13 we display the long-run outcomes as the number of bots increases, with the
�ooding parameter constant at our benchmark value of κ = 25 and µ = 0.15 (so the number
of its followers doesn't change). When the number of bots increases from 2 to 10, opinions
become slightly more concentrated (left panel) but polarization increases signi�cantly, as
seen by the fact that whole distribution shifts to the right (right panel).
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Figure 13: Long-run outcomes and number of bots

Notice that this comparative static is di�erent from the previous one: adding more bots
to in�uence the same number of agents is analogous to increasing the weight of bots in
the updating function of agents. Before, we were a�ecting the speed at which bots became
extreme. Now, we are increasing the attention span they receive from their followers instead.

Number of bots vs �ooding: That increasing the number of bots is not the same as
increasing the �ooding parameter can be seen more clearly in Figure14, which shows long-
run polarization for di�erent combinations of κ and number of bots. The clearest contrast
is in the case in which there are 2 bots with κ = 25 (as in the benchmark), vs the case
with 10 bots and κ = 5, so that each type of bot has roughly 25 signals per period. In the
�rst case, each bot is more extreme, and hence able to pull the network towards the edge
values. As a result, polarization goes down. In the latter, agents pay more attention to bots
than to other friends, so larger groups with opposite views arise. However, bots have more
symmetric power and manage to create a more polarized society (e.g. it is more di�cult for
one individual bot to become more in�uential than the other). Polarization is on average
20% larger in the case in which there are 10 bots with 5 signals each.
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Figure 14: Number of bots vs �ooding and polarization
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The �gure also illustrates that more bots result in more polarization for all levels of
�ooding and that more �ooding results in more polarization, although polarization levels
out for κ ≥ 25.

6.3 Alternative Bots' Audience Size

In this experiment, we keep the number of bots and the �ooding as in the benchmark (e.g.
2 bots and κ = 25), but double the share of bot followers (e.g. from µ = 0.15 to µ = 0.3).

Figure 15 depicts the distributions of long-run average opinions (left) and polarization
(right). As bots become more pro�cient in creating undetectable fake news, they generate
more polarization on average. That the dispersion of polarization increases indicates that
they are also more likely to end up in scenarios where there is either a large proportion of
individuals with extreme views (large polarization) or most of the network pulled to one
extreme view (low polarization).
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Figure 15: Long-run outcomes and share of bot followers

The distribution of opinions becomes slightly �atter, but it is not signi�cantly a�ected
by the increase in µ. This happens because bots' opinions become extreme relatively quickly
when κ = 25. Under κ = 0.5, for example, the di�erence between the distribution of opinions
for alternative values of µ is more pronounced (see Figure 22 in Appendix G).

6.4 Regression analysis: assessing centrality measures

We repeat the main regression exercise from Table 5, but pooling results from a wider
con�guration of networks and parameters. In particular, we consider alternative values
of �ooding capacity κ ∈ {0.5, 1, 5, 25, 125, 625}, number of bots b ∈ {2, 10}, and share of
bot followers µ ∈ {0.15, 0.3}. To control for these, we include a set of dummy variables,
in addition to the explanatory variables included in our previous estimation. Our total
sample is now M = 10, 980 observations. The estimated coe�cients for selected explanatory
variables are presented in Table 6, also normalized by their sample standard deviation (the
full table is shown in Appendix H.3, Table 8).

The �rst set of regressors are the average and relative centrality of bots and their followers.
The coe�cients for both polarization and misinformation have the same sign but are smaller
in magnitude if compared to the benchmark case. For example, a one s.d. increase in the
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relative Page Rank of the bot reduces polarization by 0.53 s.d. (vs 0.75 in the benchmark
case) and increases misinformation by just 0.44 s.d. (vs 0.87 in the benchmark). Here we
can see that bots' relative Page Rank and followers' relative Page Rank are the main drivers
of misinformation and are equally relevant to nudge public opinion away from the true state.
Unlike in the benchmark case, Avg Page Rank (bot) is now neutral to misinformation.

Polarization Misinformation

Avg Page Rank (bot) 0.48*** 0.04
(0.024) (0.025)

Rel in-Degree (bot) -0.12*** -0.03
(0.027) (0.028)

Rel PageRank (bot) -0.53*** 0.44***
(0.012) (0.013)

Avg in-Degree 0.12*** -0.15***
(0.010) (0.010)

Avg Page Rank -0.11** 0.01
(0.045) (0.047)

Rel in-Degree -0.08*** 0.12***
(0.008) (0.009)

Rel PageRank -0.05 0.47***
(0.030) (0.031)

Avg Clustering -0.34*** 0.12***
(0.030) (0.031)

µ = 0.3 0.36*** -0.44***
(0.085) (0.089)

κ = 0.5 -1.01*** -1.10***
(0.015) (0.016)

κ = 1 -0.63*** -0.93***
(0.015) (0.016)

κ = 5 -0.19*** -0.37***
(0.015) (0.015)

κ = 125 -0.01 0.10***
(0.016) (0.017)

κ = 625 0.02 0.11***
(0.016) (0.017)

Bots = 10 0.27*** -0.18***
(0.039) (0.041)

Observations 10,980 10,980
R-squared 0.764 0.741

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Regression results for θ = 0.5: varying µ, κ, b

Average clustering, which was statistically insigni�cant in the benchmark case, now be-
comes a relevant explanatory variable (because we change the number of bot followers in
some speci�cations, there is now enough variability in clustering). Higher clustering means
that bot followers are communicating with each other. Therefore, there is a reinforcement
aspect which reduces polarization, while increasing misinformation.
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We also include a set of dummy variables to account for potential di�erential e�ects
in parameters changed. The �rst one relates to the share of bot followers, and it is equal
to 1 when µ = 0.3. The second one captures the number of bots, and it is equal to 1
when there are 10 bots. Finally, we add a set of dummy variables for di�erent values of κ.
The results also show that, interestingly, a larger share of followers (dummy for µ = 0.30)
and more bots (dummy for b = 10) reduce misinformation relative to the benchmark case.
This counter-intuitive result has to do with the fact that equally in�uential bots induce
information aggregation when θ = 0.5. Since bots are, on average, equally balanced, they
fail at pulling people's opinions to the extreme points of the [0, 1] spectrum, leaving room
for informative signals to nudge agents opinions toward the true state.

Polarization and misinformation increase monotonically with respect to the bots' �ooding
capacity κ (see �gures 18 and 17 below), but display decreasing marginal returns. Moreover,
the benchmark �ooding capacity κ = 25 seems to be at a saturation point.

6.5 Alternative state of the world

Fixing the true state at the level 0.5 can be seen as a very particular special case because, as
in Como and Fagnani (2016), equally in�uential bots may exercise homogeneous in�uence,
i.e. may nudge public opinion to a common value which is a convex combination of bots'
extreme opinions. In this case, this common value would be 0.5, i.e. the true state. Thus, this
particular situation could suggest that the bots' presence is conducive to e�cient information
aggregation. But one may ask what happens when the true state is not exactly 0.5. To assess
this case, we consider an alternative scenario where θ = 0.8 (and keep all other parameters at
the benchmark case). Despite being another special case, it illustrates how our main results
are sensitive to the parameter choice, i.e. when the true state moves away from the center
towards extreme points in the [0.1] spectrum.
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Figure 16: Long-run outcomes for alternative state of the world (θ = 0.8)

Figure 16 is the counterpart of Figure 8, but assuming θ = 0.8. As before, we can see an
inverted U-shape relationship between long-run polarization and long-run average opinions
(left). Di�erently from before, polarization levels are not at the maximum when opinions
are close to the true value of θ. Moreover, polarization and misinformation have also an
inverted U-shape relationship now (before, the two were positively correlated). There are
cases in which polarization is low and misinformation is basically nil (these correspond to
e�cient information aggregation). In most of our simulations, increases in misinformation
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are related to decreases in polarization. These correspond to those in which the L-bot is
relatively more in�uential, pulling beliefs towards 0. Another interesting observation is that
now the range of possible misinformation levels widens signi�cantly (before, it was between
0 and 0.2, now the upper bound increases to 0.6). This happens because, theoretically, we
can also have more misinformation when one of the bots is disproportionately far away form
the true θ (in this case the L-bot). One way to interpret this experiment is to think of the
L-bot as being more extreme than the R-bot. In our benchmark case, they had biases that
were symmetric from the true state of the world.

6.5.1 Parameter analysis for θ = 0.8

Long-run misinformation levels for di�erent combinations of �ooding κ, number of bots,
and share of bot followers µ are displayed in Figure 17. The bars correspond to the median
values, and the boxes represent the variability in each speci�cation produced by the fact that
bots and bot followers may have di�erent centrality (as before, for each set of parameters,
we populate the network with bots and their followers randomly).
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Figure 17: Misinformation for alternative speci�cations for benchmark (θ = 0.5) and alter-
native state (θ = 0.8)

The most striking di�erence in experiments arises when �ooding is large enough. While
average misinformation levels are about the same, the variance of misinformation (size of the
boxes) is signi�cantly wider in the θ = 0.8 case. When κ ≤ 1, there is basically no di�erence
in long-run misinformation. This happens because when bot-L is relatively more in�uential,
it can pull most of the network towards 0, and hence further away from θ = 0.8 (than in the
θ = 0.5 scenario). The larger κ, the more likely the outcome.

Polarization outcomes across network speci�cations are displayed in Figure 18. Polariza-
tion grows with �ooding, number of followers, and number of bots regardless of the value
of θ. Hence, making one bot more extreme than the other does not change this previous
�nding. Long-run polarization is, on average, slightly larger with θ = 0.8. The variability of
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polarization outcomes (size of the boxes) is larger with 2 bots, but not necessarily with 10
bots.
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Figure 18: Polarization for alternative speci�cations for θ = 0.5 and θ = 0.8

6.5.2 Regression analysis for θ = 0.8

The regression results for this alternative value of θ are shown in Table 9 of Appendix H.3.2.
The results in the �rst column (polarization) are very much in line with those in Table 8:
the parameters are similar in magnitude and signi�cance, and the goodness of �t is around
the same. This suggests that bot centrality a�ects polarization in about the same way for
both values of θ considered (note that we are repeating the exact same simulations, but
with a di�erent value of θ). In terms of misinformation, our linear regression model does
signi�cantly worse (the R2 is just 0.24 now, versus 0.74 in the previous case). This is probably
due to the fact that our agents also update beliefs according to the unbiased signal, which
pushes them towards 0.8. Because this is close to the preferred point of the R-bot, cases in
which bots are not very central (so individuals converge to the true) and cases in which the
R-bot is relatively more central (so agents get close to 1) are confounded in the sample. In
other words, we have observations that deliver similar levels of misinformation (e.g. average
opinions closer to 1) in which the L-bot is either very in�uential or not in�uential at all.

Another important point is that now a larger share of followers (dummy for µ = 0.30)
and more bots (dummy for b = 10) are no longer relevant to reduce misinformation, which
reinforces the claim that θ = 0.5 is a very special case where bots may help decreasing
misinformation. The bot followers' popularity (as measured by the average in-Degree) still
decreases misinformation. Higher average in-Degree means that bot followers are likely
following each other and, therefore, they are balancing out their e�ect, which leaves room
for informative signals to instruct the society. This interpretation is corroborated by the
positive e�ect of relative in-Degree on misinformation, e.g. unbalanced bots tend to harm
more the information aggregation process.
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7 Threshold rules: a bounded con�dence model

Our baseline model considered an opinion formation process where agents unreservedly place
equal weight on friends they meet in every period of time. Despite its simplicity, such rule
does not allow agents to place more attention to the opinion of like-minded friends. In this
section we explore a variation of the update rule described on equations (2) and (3) to assess
how polarization and misinformation respond to such homophilic interaction.

We augment our model by considering the opinion exchange process proposed by Krause
et al. (2000) (see also Hegselmann, Krause et al. (2002) and De�uant, Neau, Amblard, and
Weisbuch (2000)) to allow for an agent to pay attention only to other agents whose opinions
do not di�er much from his or her own. The normalized adjacency matrix in equations (2)
and (3) is now replaced by the following:

[ĝt]ij =


1

|N out
i,t (d)|

, if |yi,t − yj,t| < d , where |N out
i,t (d)| = | {k : |yi,t − yk,t| < d} |

0 , otherwise.

According to this weighting rule, an agent places equal weight on all opinions that are
within some distance d of his or her own current opinion, and no weight to opinions that are
further apart. We refer to it as a `threshold rule.' Although agents place equal weight on
his or her friends, this rule implies that agents end up placing more weight on the opinion
of like-minded friends. The threshold rule substantially complicates the opinion formation
process (and increases computation time), as the updating depends on the speci�cs of the
opinions (signals received, friends met, and bots' in�uence) and the distance between an
agents' beliefs and those of the people in his or her neighbourhood. Moreover, the weights
change endogenously over time.

In order to study how the threshold rule impacts both long-run polarization and misin-
formation, we again ran multiple Monte Carlo simulations for di�erent distance thresholds d
in the grid {0.10, 0.15, 0.30} and compare them to the benchmark case. For that, we �xed all
other parameters as in the benchmark case (see Table 2). Figure 25 displays the distribution
of polarization and misinformation across simulations of the four cases considered.15

The simulations above suggest that as the distance d shrinks, i.e. as agents become
more attached to like-minded friends, both median polarization and median misinformation
decrease monotonically. The intuition behind this result is as follows: (i) since agents are
very restrictive with respect to whom to exchange information with, they tend to behave as
fully Bayesian agents since they place weight 1 to the informative signal if no agent meets
the (stringent) attention requirement imposed by the distance d; (ii) since most agents are
proportionally more exposed to other regular agents rather than bots, there is a higher
chance that signals will induce these agents to aggregate information e�ciently instead of
being in�uenced (and trapped) by bots; (iii) given the points (i) and (ii), agents opinions
start clustering around θ and, despite how restrictive agents are with respect to the distance
d chosen, they resume communication again with agents that are more in�uenced by signals

15The case where θ = 0.8 can be found in Appendix H.4. All results and conclusions are in line with the
ones for the benchmark case above.
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and end up reinforcing the relative importance of signals.
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Figure 19: Polarization and Misinformation under a homophilic weight-rule and θ = 0.5

A �nal remark regarding this exercise is that these results are de�nitely sensitive to the
initial endowment of opinions. In our case, we start the process at t = 0 with agents' opinions
uniformly distributed over the [0, 1] spectrum. If one assigns extreme opinions to agents,
the odds may change in favor of the bots. Such particular case may also depend on the κ
(�ooding capacity) and µ (share of followers) choices, i.e. as bots become more prominent,
they may overcome the informativeness of signals and nudge public opinion to the extremes
(either 0 or 1) with higher probability. For the case where θ = 0.5, both polarization and
misinformation would tend to the extremes. In our view, this is an interesting research
strand.

8 Conclusions

We created a synthetic social media network, calibrated to Twitter, and populated it with
bots and bot followers, considering alternative con�gurations of their location in the network.
We then simulated the opinion exchange process in order to identify the most important
drivers of misinformation and polarization. A premise in all of them is the ability of bots
(with opposite biased views) to purposely spread fake news in order to manipulate the opinion
of a small share of agents in the network. To the extent that agents can be partially in�uenced
by these signals�directly by not �ltering out fake news, or indirectly by following friends
who are themselves in�uenced by bots�, this can generate misinformation and polarization
in the long run. In other words, fake news prevent information aggregation and consensus
in the population.

We �nd that when one of the bots is relatively more e�cient at manipulating news (by
targeting a small number of in�uential agents), it may be able to generate full misinformation
in the long run, where beliefs are at one end of the spectrum. There would be no polarization
in that case, but at the expense of agents converging to the wrong value of θ, the parameter
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of interest. These �ndings have important policy implications: Policymakers could either try
to identify all bots and eliminate them from the network, and this would restore the e�cient
accumulation of information. However, such policy is di�cult to implement because the cost
of another bot popping in is relatively small. Alternatively, policymakers could introduce
a `counter-bot' sending signals at the other end of the spectrum to counter-balance the
e�ect of the �rst bot. In this environment, simply reporting the true state of the world
may not be su�cient. The counter-bot should be itself somewhat extreme, or in�uential
enough to tilt opinions towards the true state. This may, however, end up exacerbating
polarization and potentially inducing gridlock and inaction. This suggests the existence of
a trade-o� when combating misinformation through the use of counter-bots: the potential
to enhance polarization. Reducing the amount of bot followers (e.g. training people on the
detection of fake news) is probably a more e�ective strategy. The current practice of simply
eliminating bots from a network, rather than training the social media users, may have
undesired consequences because it may increasing asymmetries (e.g. by eliminating bots at
one extreme, we are increasing the relative centrality of the bot at the other extreme).

In most of our paper, the links in the network evolve stochastically. In the last section, we
analyzed threshold rules where links are endogenously determined, as agents place a higher
weight on individuals who share similar priors. We �nd that�in our benchmark case�
polarization and misinformation tend to be lower under such rules. However, we have not
done an extensive analysis of threshold rules under initially high polarization levels. We
believe this is a promising direction for future research.

Finally, we do observe polarization cycles in some of our simulations. Analyzing their
determinants could be a fruitful avenue for future research.

35



References

Acemoglu, D., V. Chernozhukov, and M. Yildiz (2008): �Fragility of Asymptotic
Agreement Under Bayesian Learning,� SSRN eLibrary.

Acemoglu, D., G. Como, F. Fagnani, and A. Ozdaglar (2013): �Opinion Fluctu-
ations and Disagreement in Social Networks,� Mathematics of Operations Research, 38,
1�27.

Acemoglu, D., M. A. Dahleh, I. Lobel, and A. Ozdaglar (2011): �Bayesian Learning
in Social Networks,� The Review of Economic Studies, 78, 1201�1236.

Acemoglu, D. and A. Ozdaglar (2011): �Opinion Dynamics and Learning in Social
Networks,� Dynamic Games and Applications, 1, 3�49.

Acemoglu, D., A. Ozdaglar, and A. ParandehGheibi (2010): �Spread of
(Mis)information in Social Networks,� Games and Economic Behavior, 70, 194 � 227.

Alesina, A., A. Devleeschauwer, W. Easterly, S. Kurlat, and R. Wacziarg

(2003): �Fractionalization,� Tech. rep., National Bureau of Economic Research.

Alstott, Jeff, B. E. and D. Plenz (2014): �powerlaw: A Python Package for Analysis
of Heavy-Tailed Distributions,� PLOS One.

Andreoni, J. and T. Mylovanov (2012): �Diverging Opinions,� American Economic
Journal: Microeconomics, 4, 209�232.

Aumann, R. J. . (1976): �Agreeing to Disagree,� The Annals of Statistics, 4, 1236�1239.

Azzimonti, M. (2018): �Partisan Con�ict and Private Investment,� Journal of Monetary
Economics, 23.

Bala, V. and S. Goyal (1998): �Learning from Neighbours,� The Review of Economic
Studies, 65, 595�621.

Baldassarri, D. and P. Bearman (2007): �Dynamics of Political Polarization,� Ameri-
can Sociological Review.

Banerjee, A. and D. Fudenberg (2004): �Word-of-Mouth Learning,� Games and Eco-
nomic Behavior, 46, 1�22.

Banerjee, A. V. (1992): �A Simple Model of Herd Behavior,� The Quarterly Journal of
Economics, 797�817.

Barabási, A.-L. and R. Albert (1999): �Emergence of Scaling in Random Networks,�
science, 286, 509�512.

Barber, M. and N. McCarty (2015): �Causes and Consequences of Polarization,� Solu-
tions to Political Polarization in America, 15.

36



Barberá, P. (2014): �How Social Media Reduces Mass Political Polarization. Evidence
from Germany, Spain, and the US,� Working Paper, New York University, 46.

Boxell, L., M. Gentzkow, and J. M. Shapiro (2017): �Is the Internet Causing Political
Polarization? Evidence from Demographics,� Tech. rep., National Bureau of Economic
Research.

Buechel, B., T. Hellmann, and S. Klöÿner (2015): �Opinion dynamics and wisdom
under conformity,� Journal of Economic Dynamics and Control, 52, 240�257.

Chandrasekhar, A. G., H. Larreguy, and J. P. Xandri (2012): �Testing Models of
Social Learning on Networks,� Working Paper, 1�54.

Chatterjee, S. and E. Seneta (1977): �Towards Consensus: Some Convergence Theo-
rems on Repeated Averaging,� Journal of Applied Probability, 89�97.

Como, G. and F. Fagnani (2016): �From local averaging to emergent global behaviors:
The fundamental role of network interconnections,� Systems Control Letters, 95, 70�76,
jan C. Willems Memorial Issue.

Conover, M., J. Ratkiewicz, and M. Francisco (2011): �Political Polarization on
Twitter,� ICWSM.

Deffuant, G., D. Neau, F. Amblard, and G. Weisbuch (2000): �Mixing beliefs
among interacting agents,� Advances in Complex Systems, 3, 87�98.

DeGroot, M. H. (1974): �Reaching a Consensus,� Journal of the American Statistical
Association, 69, 118�121.

DeMarzo, P. M., D. Vayanos, and J. Zwiebel (2003): �Persuasion Bias, Social In�u-
ence, and Unidimensional Opinions,� The Quarterly Journal of Economics, 118, 909�968.

Dixit, A. K. and J. W. Weibull (2007): �Political Polarization,� Proceedings of the
National Academy of Sciences of the United States of America, 104, 7351�7356.

Duclos, J.-Y., J. Esteban, and D. Ray (2004): �Polarization: Concepts, Measurement,
Estimation,� Econometrica, 72, 1737�1772.

Ellison, G. and D. Fudenberg (1993): �Rules of Thumb for Social Learning,� Journal
of political Economy, 612�643.

��� (1995): �Word-of-Mouth Communication and Social Learning,� The Quarterly Jour-
nal of Economics, 93�125.

Epstein, L. G., J. Noor, and A. Sandroni (2010): �Non-Bayesian Learning,� The B.E.
Journal of Theoretical Economics, 10.

Erdös, P. and A. Rényi (1959): �On Random Graphs, I,� Publicationes Mathematicae
(Debrecen), 6, 290�297.

37



Esteban, J., C. Gradín, and D. Ray (2007): �An Extension of a Measure of Polarization,
with an Application to the Income Distribution of Five OECD Countries,� The Journal
of Economic Inequality, 5, 1�19.

Esteban, J. and D. Ray (1994): �On the Measurement of Polarization,� Econometrica,
62, 819�851.

��� (2010): �Comparing Polarization Measures,� Journal Of Peace Research, 0�29.

Fernandes, M. (2019): �Con�rmation Bias in Social Networks,� Available at SSRN
3504342.

Fiorina, M. and S. Abrams (2008): �Political Polarization in the American Publlic,� The
Annual Review of Political Science, 49�59.

Gentzkow, M. and J. M. Shapiro (2006): �Media Bias and Reputation,� Journal of
political Economy, 114, 280�316.

��� (2010): �What Drives Media Slant? Evidence from US Daily Newspapers,� Econo-
metrica, 78, 35�71.

��� (2011): �Ideological Segregation Online and O�ine,� The Quarterly Journal of Eco-
nomics, 126, 1799�1839.

Golub, B. and M. Jackson (2010): �Naive Learning in Social Networks and the Wisdom
of Crowds,� American Economic Journal: Microeconomics, 2, 112�149.

Goyal, S. (2005): �Learning in Networks,� Group Formation in Economics: Networks,
Clubs and Coalitions, 122�70.

Grabisch, M. and A. Rusinowska (2020): �A survey on nonstrategic models of opinion
dynamics,� Games, 11, 65.

Groseclose, T. and J. Milyo (2005): �A Measure of Media Bias,� The Quarterly Journal
of Economics, CXX.

Gruzd, A. and J. Roy (2014): �Investigating Political Polarization on Twitter: A Cana-
dian Perspective,� Policy & Internet.

Guerra, P. H. C., W. M. Jr, C. Cardie, and R. Kleinberg (2013): �A Measure of
Polarization on Social Media Networks Based on Community Boundaries,� Association for
the Advancement of Arti�cial Intelligence, 1�10.

Hegselmann, R., U. Krause, et al. (2002): �Opinion dynamics and bounded con�dence
models, analysis, and simulation,� Journal of arti�cial societies and social simulation, 5.

Jackson, M. (2010): Social and Economic Networks, vol. 21, Princeton University Press.

Jackson, M. and B. Golub (2012): �How Homophily A�ects the Speed of Learning and
Best-Response Dynamics,� The Quarterly Journal of Economics, 1287�1338.

38



Jadbabaie, A., P. Molavi, A. Sandroni, and A. Tahbaz-Salehi (2012): �Non-
Bayesian Social Learning,� Games and Economic Behavior, 76, 210�225.

Kelly, J., D. Fisher, and M. Smith (2005): �Debate, Division, and Diversity: Political
Discourse Networks in USENET Newsgroups,� Online Deliberation Conference.

Krause, U. et al. (2000): �A discrete nonlinear and non-autonomous model of consensus
formation,� Communications in di�erence equations, 2000, 227�236.

Lee, J. K., J. Choi, C. Kim, and Y. Kim (2014): �Social Media, Network Heterogeneity,
and Opinion Polarization,� Journal of Communication, 64, 702�722.

Messing, S. and S. J. Westwood (2012): �Selective Exposure in the Age of Social
Media: Endorsements Trump Partisan Source A�liation When Selecting News Online,�
Communication Research, 41, 1042�1063.

Meyer, C. D., ed. (2000): Matrix Analysis and Applied Linear Algebra, Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics.

Mohammad, S. M., X. Zhu, S. Kiritchenko, and J. Martin (2015): �Sentiment,
Emotion, Purpose, and Style in Electoral Tweets,� Information Processing & Management,
51, 480�499.

Mossel, E., A. Sly, and O. Tamuz (2012): �On Agreement and Learning,� Arxiv preprint
arXiv:1207.5895, 1�20.

Roux, N. and J. Sobel (2012): �Group Polarization in a Model of Information Aggrega-
tion,� .

Rusinowska, A., R. Berghammer, H. De Swart, and M. Grabisch (2011): �Social
networks: prestige, centrality, and in�uence,� in International Conference on Relational
and Algebraic Methods in Computer Science, Springer, 22�39.

Seneta, E. (1979): �Coe�cients of Ergodicity: Structure and Applications,� Advances in
Applied Probability, 576�590.

��� (2006): Non-negative Matrices and Markov Chains, Springer Science & Business
Media.

Sethi, R. and M. Yildiz (2013): �Perspectives, Opinions, and Information Flows,� SSRN
Electronic Journal.

Shapiro, J. M. and N. M. Taddy (2015): �Measuring Polarization in High-Dimensional
Data: Method and Application to Congressional Speech,� .

Smith, L. and P. Sørensen (2000): �Pathological Outcomes of Observational Learning,�
Econometrica, 68, 371�398.

39



Sobkowicz, P., M. Kaschesky, and G. Bouchard (2012): �Opinion Mining in Social
Media: Modeling, Simulating, and Forecasting Political Opinions in the Web,� Govern-
ment Information Quarterly, 29, 470�479.

Sunstein, C. R. (2002): Republic.com, Princeton University Press.

��� (2009): Republic.com 2.0, Princeton University Press.

Tahbaz-Salehi, A. and A. Jadbabaie (2008): �A Necessary and Su�cient Condition
for Consensus Over Random Networks,� IEEE Transactions on Automatic Control, 53,
791�795.

Watts, D. J. and P. S. Dodds (2007): �In�uentials, Networks and Public Opinion For-
mation,� Journal of Consumer Research, 34, 441�458.

Webster, J. G. and T. B. Ksiazek (2012): �The Dynamics of Audience Fragmentation:
Public Attention in an Age of Digital Media,� Journal of Communication, 62, 39�56.

Yardi, S. and D. Boyd (2010): �Dynamic Debates: An Analysis of Group Polarization
Over Time on Twitter,� Bulletin of Science, Technology & Society, 30, 316�327.

40



A Basic notation for Appendix

All vectors are viewed as column vectors, unless stated to the contrarily. Given a vector
v ∈ Rn, we denote by vi its i-th entry. When vi ≥ 0 for all entries, we write v ≥ 0. To avoid
potential burden of notation, the summation

∑
v without index represents the sum of all

entries of vector v. Moreover, we de�ne v> as the transpose of the vector v and for that,
the inner-product of two vectors x, y ∈ Rn is denoted by x>y. Similarly for the product
of conforming vectors and matrices. We denote by 1 the vector with all entries equal to 1.
Finally, a vector v is said to be a stochastic vector when v ≥ 0 and

∑
i vi = 1. In terms of

matrices, a square matrix M is said to be row stochastic when each row of M is a stochastic
vector. A matrix M is said to be a square matrix of size n when the number of rows and
columns is n. The identity matrix of size n is denoted by In. For any matrix M , we write
Mij or [M ]ij to denote the matrix entry in the i-th row and j-th column. The symbols Mi∗
and [M ]i∗ are used to denote the i-th row of matrix M , while M∗j and [M ]∗j denote the j-th

column of the matrix. Finally, the transpose of a matrixM is denoted byM> and represents
a new matrix whose rows are the columns of the original matrix M , i.e.

[
M>]

ij
= [M ]ji.

B Beta-Bernoulli model and the update rule

At any time t, the belief of agent i is represented by the Beta probability distribution with
parameters αi,t and βi,t

µi,t (θ) =


Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)
θαi,t−1(1− θ)βi,t−1 , for 0 < θ < 1

0 , otherwise,

where Γ(·) is a Gamma function and the ratio of Gamma functions in the expression above
is a normalization constant that ensures that the total probability integrates to 1. In this
sense,

µi,t (θ) ∝ θαi,t−1(1− θ)βi,t−1.

The idiosyncratic likelihood induced by the vector of length S of observed signals si,t+1

is
`(si,t+1|θ) = θ

∑
si,t+1(1− θ)S−

∑
si,t+1 ,

and therefore the standard Bayesian posterior is computed as

µi,t+1(θ|si,t+1) =
`(si,t+1|θ)µi,t (θ)∫

Θ

`(si,t+1|θ)µi,t (θ) dθ
.

Since the denominator of the expression above is just a normalizing constant, the poste-
rior distribution is said to be proportional to the product of the prior distribution and the
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likelihood function as

µi,t+1(θ|si,t+1) ∝ `(si,t+1|θ)µi,t (θ)

∝ θαi,t+
∑
si,t+1−1 (1− θ)βi,t+S−

∑
si,t+1−1 .

Therefore, the posterior distribution is

µi,t+1 (θ|si,t+1) =


Γ (αi,t+1 + βi,t+1)

Γ (αi,t+1) Γ (βi,t+1)
θαi,t+1−1(1− θ)βi,t+1−1 , for 0 < θ < 1

0 , otherwise,

where

αi,t+1 = αi,t +
∑

si,t+1 (10)

βi,t+1 = βi,t + S −
∑

si,t+1. (11)

Equations (10) and (11) are used to update the shape parameters of both agents (by
setting S = 1) and bots (left and right, by setting S = κ) as per Equations (2), (3), (5) and
(6) in subsection Evolution of beliefs in section 2.

C Auxiliary lemmas and propositions regarding the prop-

erties of the sequence {Wt}∞t=1 and the average weight

matrix W̄

Before proceeding, we implement here a slight change of notation: we let 1 − ωi,t = bi,t.
Then, as explained in section 2, the weight given by agent i to the bayesian update at any
time t depends on whether agent i �nds any other agent j in his neighborhood. In algebraic
terms

bi,t = 1{∑j [ĝt]ij=0}1 +
(

1− 1{∑j [ĝt]ij=0}
)
b. (12)

Lemma 1. The adjacency matrix g0 is an irreducible matrix if and only if G0 is strongly
connected.

Proof. By assumption, g0 is strongly connected, for the completeness of the argument see ?
(Ch. 8, page 671).

Lemma 2. For all t ≥ 0, the matrix Wt is row-stochastic.

Proof. It is su�cient to show that Wt111 = Bt111 + (In −Bt) ĝt111 = 111. For that we can show
that for every period t the vector Wt111 has all entries equal to

bi,t + (1− bi,t)
∑
j

[ĝt]ij =

{
bi,t = 1{∑j [ĝt]ij=0}1 +

(
1− 1{∑j [ĝt]ij=0}

)
b = 1 , if

∑
j[ĝt]ij = 0

1 , if
∑

j[ĝt]ij = 1,

as per the equation (12).
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Lemma 3. The matrix W̄ has diagonal entries
[
W̄
]
ii

= b+ (1− b)(1− ρ)|N
out
i,0 | for all i and

o�-diagonal entries[
W̄
]
ij

= 0 when [g0]ij = 0 and[
W̄
]
ij

=
(

1− b− (1− b)(1− ρ)|N
out
i,0 |
)

[ĝ0]ij when [g0]ij 6= 0.

Proof. For any agent i ∈ N , the number of neighbors met at time t is a binomial random
variable with parameters |N out

i,0 | and ρ. Therefore, the probability that agent i �nds no other
agent in his neighborhood at time t (denoted as p0

it) is

p0
it =

(
|N out

i,0 |
0

)
ρ0(1− ρ)|N

out
i,0 | = (1− ρ)|N

out
i,0 |.

Notice that the right hand side of the expression above does not depend on time t, thus, we
can establish that p0

it = p0
i .

Therefore, according to equation (12), we conclude that the elements in the main diagonal
of the matrix W̄ are [

W̄
]
ii

= E(bi,t)

= 1p0
i + b(1− p0

i )

= (1− ρ)|N
out
i,0 | + b

(
1− (1− ρ)|N

out
i,0 |
)

= b+ (1− b)(1− ρ)|N
out
i,0 |

In contrast, the elements o�-diagonal can be written as[
W̄
]
ij

= E ((1− bi,t)[ĝt]ij)
= E (1− bi,t)E ([ĝt]ij)

= (1− E (bi,t))E

(
[gt]ij∑
j[gt]ij

)

=
(

1−
(
b+ (1− b)(1− ρ)|N

out
i,0 |
))

E

(
[g0]ij[ct]ij∑
j ([g0]ij[ct]ij)

)

=


0 , if [g0]ij = 0(

1− b− (1− b)(1− ρ)|N
out
i,0 |
) [g0]ijρ

ρ
(∑

j[g0]ij

) , if [g0]ij 6= 0

=

0 , if [g0]ij = 0

(1− b)
(

1− (1− ρ)|Nout
i,0 |
)

1

|Nout
i,0 |

, if [g0]ij 6= 0
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The next Lemma shows that the matrix W̄ is primitive, i.e. there is a positive integer m
such that W̄m > 0.

Lemma 4. The average weight matrix W̄ is irreducible and primitive.

Proof. The irreducibility of W̄ comes from the fact that g0 is irreducible by the Assumption
1 (strongly connectedness and aperiodicity). By the Perron-Frobenius theorem, the largest
eigenvalue of W̄ in absolute terms is 1 and it has algebraic multiplicity of 1 (i.e. it is the only
eigenvalue in the spectral circle of W̄ ). By the Frobenius' test for primitivity (see Meyer
(2000), ch. 8, page 678) it can be shown that any nonnegative irreducible matrix having
only one unity eigenvalue on its spectral circle is said to be a primitive matrix. The converse
is always true.

Before introducing the next lemma, we will introduce two de�nitions. First, the distance
between any two agents i and j is de�ned as the number of connections in the shortest path
connecting them, i.e. the minimum number of �steps� that agent i should take to reach
agent j. The diameter of the network is the largest distance between any two agents in the
network, i.e. the maximum shortest path length in the network.

The next lemma provides a positive uniform lower bound on the entries of the matrix W̄ d

as a function of the diameter of the network d induced by W̄ and the minimum (non-zero)
expected share of attention received by an agent i from any other agent j ∈ N (i.e. including
i himself), ω, de�ned as

ω =
+

min
i,j

[
W̄
]
ij

= min

{
min
i∈N

(
b+ (1− b)(1− ρ)|N

out
i,0 |
)
, min

i∈N

(
(1− b)

(
1− (1− ρ)|Nout

i,0 |
) 1∣∣N out

i,0

∣∣
)}

.

Lemma 5. Let d denote the diameter of the network induced by the social interaction matrix
W̄ and ω > 0 be the scalar de�ned above. Then the entries of the matrix W̄ d are bounded
below by the scalar ωd.

We will omit the proof of Lemma (5). For further details, the reader can refer to Theorems
1.3 and 1.4 in Seneta (2006, pgs. 18 and 21, respectively) and its related Lemmas.

Consider the update process described in the equation (2) of Section 2 in its matrix form

αt+1 = Bt(αt + st+1) + (In −Bt)ĝtαt

= [Bt + (In −Bt)ĝt]αt +Btst+1.

Notice that Bt is not �xed over time as it depends on the realization of encounters in
every period t. The stochastic matrix (see Lemma (2)) inside the squared bracket is denoted
by Wt from now on and we re-write the previous update process as

αt+1 = Wtαt +Btst+1.

By forward iteration, we have that when t = 0,

α1 = W0α0 +B0s1.
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When t = 1,

α2 = W1α1 +B1s2

= W1 (W0α0 +B0s1) +B1s2

= W1W0α0 +W1B0s1 +B1s2.

When t = 2,

α3 = W2α2 +B2s3

= W2(W1W0α0 +W1B0s1 +B1s2) +B2s3

= W2W1W0α0 +W2W1B0s1 +W2B1s2 +B2s3,

so on and so forth and similarly for the shape parameter vector β.
Following Chaterjee and Seneta (1977), Seneta (2006) and Tahbaz-Salehi and Jadbabaie

(2008), we let {Wt}, for t ≥ 0, be a �xed sequence of stochastic matrices, and let Ur,k be the
stochastic matrix de�ned by the backward product of matrices

Ur,k = Wr+k ·Wr+(k−1) . . .Wr+2Wr+1Wr.
16 (13)

With this de�nition in hand, we show some important properties of the expected back-
ward product that will help us to prove convergence of opinions in probability to θ.

Proposition 3. Let d be the diameter of the network induced by the matrix W̄ and ω be the
minimum expected share of attention received by some agent i from any other agent j ∈ N .
Then, for all r ≥ 1, i and j, and given d

pij = P

(
[Ur,d]ij ≥

ωd

2

)
≥ ωd

2
> 0.

Proof.

P

(
[Ur,d]ij ≥

ωd

2

)
= P

(
1− [Ur,d]ij ≤ 1− ωd

2

)
= 1− P

(
1− [Ur,d]ij ≥ 1− ωd

2

)
(14)

By the Markov inequality, the probability in the right hand side of the equation (14) can
be written as

P

(
1− [Ur,d]ij ≥ 1− ωd

2

)
≤
E
(

1− [Ur,d]ij

)
1− ωd

2

,

16Our backward product has last term equals to Wr, rather than Wr+1. This is because our �rst period
is 0, rather than 1. This notation comes without costs or loss of generality.
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and therefore,

1− P
(

1− [Ur,d]ij ≥ 1− ωd

2

)
≥ 1−

E
(

1− [Ur,d]ij

)
1− ωd

2

. (15)

Using equation (15), I rewrite equation (14) as

P

(
[Ur,d]ij ≥

ωd

2

)
≥ 1−

E
(

1− [Ur,d]ij

)
1− ωd

2

. (16)

From the functional form of the backward product (see eq. (13)) and given that {Wt}∞t=1

is a sequence of independent matrices over all t (see eq. (1)), the expectation above can be
written as

E (Ur,d) = E (Wr+d−1Wr+d−2 · · ·Wr) = W̄ d,

thus, from Lemma (5), this implies that for all i and j

E
(

[Ur,d]ij

)
≥ ωd.

Therefore, eq. (16) becomes

P

(
[Ur,d]ij ≥

ωd

2

)
≥ 1− 1− ωd

1− ωd

2

=
ωd

2− ωd
≥ ωd

2
,

proving that the (i, j) entry of the matrix represented by the backward product Ur,d is
positive with non-zero probability, i.e pij > 0.

Therefore, Proposition (3), together with the assumption that the sequence of matrices
{Wt}∞t=1 are i.i.d. and have positive diagonals (see Lemma (3)), ensures that the matrix rep-
resented by the backward product U1,n2d+1 of length n

2d is positive with at least probability
Πi,jpij > 0. The choice n2d is a conservative one as in AOP (2010) and Tahbaz-Salehi and
Jadbabaie (2008).

Lemma 6. Consider ρ = 1, i.e. Wt = W for every t. The iteration of the row-stochastic
matrix W is convergent and therefore there exists a threshold τ̄ ∈ N such that |W τ+1

ij −W τ
ij| <

ε for any τ ≥ τ̄ and ε > 0

Proof. In order to see how W τ behaves as τ grows large, it is convenient to rewrite W
using its diagonal decomposition. In particular, let v be the squared matrix of left-hand
eigenvectors of W and D = (d1, d2, . . . , dn)> the eigenvector of size n associated to the unity
eigenvalue λ1 = 1.17 Without loss of generality, we assume the following normalization
111>D = 1. Therefore, W = v−1Λv, where Λ = diag(λ1, λ2, . . . , λn) is the squared matrix with

17This is a feature shared by all stochastic matrices because having row sums equal to 1 means that
‖W‖∞ = 1 or, equivalently, W111 = 111, where 111 is the unity n-vector.
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eigenvalues on its diagonal, ranked in terms of absolute values. More generally, for any time
τ we write

W τ = v−1Λτv.

Noting that v−1 has ones in all entries of its �rst column, it follows that

[W τ ]ij = dj +
∑
r

λτrv
−1
ir vrj,

for each r, where λr is the r-th largest eigenvalue ofW . Therefore, limτ→∞ [W τ ]ij = D111>, i.e.
each row ofW τ for all τ ≥ τ̄ converge to D, which coincides with the stationary distribution.
Moreover, if the eigenvalues are ordered the way we have assumed, then ‖W τ − D111>‖ =
o(|λ2|τ ), i.e. the convergence rate will be dictated by the second largest eigenvalue, as the
others converge to zero more quickly as τ grows.

D Backward product ergodicity

Our main concern in order to prove that agents' opinions converge in probability to θ is the
behavior of Ur,k when k → ∞ for each r ≥ 0. For that, we need to de�ne two concepts of
ergodicity. The sequence {Wt}∞t=1 is said to be weakly ergodic if for all i, j, s = 1, 2, . . . , n
and r ≥ 0, ∣∣∣[Ur,k]is − [Ur,k]js

∣∣∣→ 0

as k →∞.
On the other hand, we say that this very same sequence is strongly ergodic for all r ≥ 0,

and element-wise if
lim
k→∞

Ur,k = 1P>r ,

where 1 is a vector of ones of size n and Pr is a probability vector in which Pr ≥ 0 and
P>r 1 = 1 for all r ≥ 0.

Both weak and strong ergodicity (in the backward direction) describe a tendency to
consensus. In the strong ergodicity case, all rows of the stochastic matrix Ur,k are becoming
the same as k grows large and reaching a stable limiting vector, whereas in the weak ergodicity
case, every row is converging to the same vector, but each entry not necessarily converges to
a limit. In our case, we can show that there is an equivalence between both concepts since
each row of Ur,k+1 is a weighted average of the rows of Ur,k.

Lemma 7. For the backward product (13), weak and strong ergodicity are equivalent.

Proof. Following Theorem 1 in Chatterjee and Seneta (1977), it su�ces to show that weak
ergodicity implies strong ergodicity. For that, we �x an arbitrary r ≥ 0 and a small ε > 0
and assume that there is a k = k̄ such that Wk has the form 1P>, where P is a probability
vector. Then by the de�nition of weak ergodicity we have that

−ε ≤ [Ur,k]is − [Ur,k]js ≤ ε⇐⇒ [Ur,k]is − ε ≤ [Ur,k]js ≤ [Ur,k]is + ε
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for k ≥ k̄ and for all i, h, s = 1, . . . , n. Since each row of Ur,k+1 is a weighted average of the
rows of Ur,k, we have

n∑
j=1

[Wr+k+1]hj
(
[Ur,k]is − ε

)
≤

n∑
j=1

[Wr+k+1]hj [Ur,k]js

≤
n∑
j=1

[Wr+k+1]hj
(
[Ur,k]is + ε

)
.

The inequality above shows that for any h and k ≥ k̄

[Ur,k]is − ε ≤ [Ur,k+1]hs ≤ [Ur,k]is + ε.

Thus, by induction, for any i, h, s = 1, 2, . . . , n, for any k ≥ k̄ and for any integer q ≥ 1∣∣∣[Ur,k+q]js − [Ur,k]is

∣∣∣ ≤ ε.

By setting i = j in the expression above and taking k ≥ k̄, we see that [Uk,r]i,s converges to
a limit as k →∞ for all s.

De�nition 3. The scalar function τ(·) continuous on the set of n×n stochastic matrices and
satisfying 0 ≤ τ(·) ≤ 1 is called coe�cient of ergodicity. It is said to be proper if τ(W ) = 0 if
and only if W = 111v>, where v> is any probability vector (i.e. whenever W is a row-stochastic
matrix with unit rank), and improper otherwise.

Two examples of coe�cients of ergodicity, in terms of W , drawn from Seneta (2006) p.
137 are

a(W ) = max
j

(
max
i,i′

∣∣∣[W ]ij − [W ]i′j

∣∣∣)
c(W ) = 1−max

j

(
min
i

[W ]ij

)
,

where the �rst coe�cient is proper and the second improper. Moreover, it can be shown
that, i) for any stochastic matrix W , a(W ) ≤ c(W ) and ii) if τ(·) is a proper coe�cient of
ergodicity, the inequality

τ (WmWm−1 · · ·W2W1) ≤
m∏
t=1

τ (Wt) (17)

is satis�ed for any m ≥ 1.18 In this sense, for a proper coe�cient of ergodicity τ(·), weak
ergodicity is equivalent to τ(Ur,k)→ 0 as k →∞ and r ≥ 0.

18More speci�cally, it can be shown that for any two proper coe�cients of ergodicity τi(·) ≤ τj(·), the
inequality holds with τi (WmWm−1 · · ·W2W1) ≤

∏m
t=1 τj (Wt).
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Lemma 8. The sequence {Wt}∞t=1 is weakly ergodic if there exists a strictly increasing sub-
sequence of the positive integers {ix}, x = 1, 2, . . . such that

∞∑
x=1

(
1− τ(Wix+1 · · ·Wix+1)

)
(18)

diverges.

Proof. Let θx = τ(Wix+1 · · ·Wix+1). The standard inequality z − 1 ≥ log z (or equivalently
1 − z ≤ − log z) implies that 1 − θx ≤ − log θx, for any x. Summing up across index x in
both sides yields

∞∑
x=1

(1− θx) ≤ −
∞∑
x=1

log θx

≤ − log

(
∞∏
x=1

θx

)
. (19)

Since equation (17) holds, the sum in the left hand side of equation (19) diverges, implying
that log (

∏∞
x=1 θx) = −∞. For that, it must be the case that

∏∞
x=1 θx → 0 as x → ∞.

Because τ(·) is a proper coe�cient of ergodicity, equation (17) ensures weak ergodicity of
the sequence {Wt}∞t=1

E Proofs of propositions

E.1 Proof of proposition (1)

Proof. We de�ne a `wise society' as one where there is no misinformation in the limit.
Equivalently, when the maximum distance between the limiting opinion of agents and θ is
arbitrarily small, as stated below.

De�nition 4 (Wise society). We say that a society is wise, for any �xed ε > 0, if

lim
t→∞

P

(
max
i≤n
|yi,t − θ| ≥ ε

)
= 0.

We start by considering the parameter update process described in eq. (3) of section
2. Since the network's edges are activated every single period (i.e. ρ = 1), ĝt = ĝ and
Bt = B = diag(b, b, . . . , b), where b ∈ (0, 1). Moreover, since we are assuming strong
connectivity,

∑
j[g]ij 6= 0 for any i. Thus, the update process for the parameter vector α (of

size n) in its matrix form is

αt+1 = B(αt + st+1) + (In −B)ĝαt

= [B + (In −B)ĝ]αt +Bst+1.

49



We de�ne the matrix inside the squared bracket as W for any t. We re-write the update
process above as follows

αt+1 = Wαt +Bst+1

When t = 0,

α1 = Wα0 +Bs1

When t = 1,

α2 = Wα1 +Bs2

= W (Wα0 +Bs1) +Bs2

= W 2α0 +WBs1 +Bs2

When t = 3,

α3 = Wα2 +Bs3

= W
(
W 2α0 +WBs1 +Bs2

)
+Bs3

= W 3α0 +W 2Bs1 +WBs2 +Bs3

So on and so forth, resulting in the following expression for any particular period τ

ατ = W τα0 +
τ−1∑
t=0

W tBsτ−t (20)

Similarly for the parameter β, we have

βτ = W τβ0 +
τ−1∑
t=0

W tB(1− sτ−t). (21)

where 1 is the vector of ones of size n. From Equations (20) and (21), the sum of this
two parameter-vectors is given by the following expression

ατ + βτ = W τ (α0 + β0) +
τ−1∑
t=0

W tB1

= W τ (α0 + β0) +
τ−1∑
t=0

W tb

= W τ (α0 + β0) + τb. (22)

Therefore, at any point in time τ , the opinion of any agent i is given by yi,τ =
αi,τ

αi,τ + βi,τ
.
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From equation (20), we write

αi,τ = W τ
i∗α0 +

τ−1∑
t=0

W t
i∗bsτ−t

= W τ
i∗α0 + τb

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= W τ
i∗α0 + τbθ̃i(τ), (23)

where the symbol W τ
i∗ is used to denote the i-th row of matrix W τ and W 0 = In. From

equations (23) and (22), we write yi,τ as

yi,τ =
W τ
i∗α0 + τbθ̃i(τ)

W τ
i∗(α0 + β0) + τb

=
τ

τ

(
1
τ
W τ
i∗α0 + bθ̃i(τ)

1
τ
W τ
i∗(α0 + β0) + b

)
, (24)

From Equation (24), we have that the limiting opinion (in probability) of any agent i, at
any point in time τ , is described as

plim
τ→∞

yi,τ = plim
τ→∞

θ̃i(τ)

= plim
τ→∞

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ̄∑
t=0

W t
i∗sτ−t + plim

τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t. (25)

From Lemma (6), we can split the series in Equation (26) into two parts. The �rst
term describes a series of τ̄ terms that represent the �most recent� signals coming in to the
network. Notice that every weight-matrix W t in the interval from t = 0 to t = τ̄ is di�erent
from one another, since the matrix W t does not converge to a row-stochastic matrix with
unity rank for low t. It is straight-forward to see that this term converges to zero as τ →∞.
The second term represents describes a series of τ − τ̄ terms that represent the�older signals�
that entered in the network and fully reached all agents. As τ → ∞, this term becomes a
series with in�nite terms. From the i.i.d. property of the Bernoulli signals, we can conclude
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that

plim
τ→∞

yi,τ = plim
τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ∑
t=τ̄+1

WWW i∗sτ−t

= plim
τ→∞

WWW i∗
1

τ

τ∑
t=τ̄+1

sτ−t

asy

= plim
τ→∞

WWW i∗
1

τ − τ̄

τ∑
t=τ̄+1

sτ−t

asy

= WWW i∗θθθ
∗ = θ∗, (i.i.d. Bernoulli signals) (26)

where WWW = D111>. From equation (26), we conclude that society is wise and because of
that, plimt→∞ |ỹk,t − ỹl,t| = 0, i.e. the K groups reach consensus, impliying plimt→∞ Pt =
|θ∗ − θ∗| = 0.

E.2 Proof of proposition (2)

Proof. The update process of both shape parameters can be represented in their matrix form
for any period τ as

ατ = U0,τ−1α0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1sr

)
+Bτ−1sτ , (27)

βτ = U0,τ−1β0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1 (111− sr)

)
+Bτ−1 (111− sτ ) . (28)

To reduce the burden of notation, consider [Ur,k]ij = u
(r,k)
ij for any r and k. Therefore,

from equation (27), we write its entries as

αi,τ =
∑
j

u
(0,τ−1)
ij αj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

=
∑
j

u
(0,τ−1)
ij αj,0 + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

]
=
∑
j

u
(0,τ−1)
ij αj,0 + τ θ̃i,1(τ). (29)
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Each entry of the parameter vector β is written in a similar way

βi,τ =
∑
j

u
(0,τ−1)
ij βj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1(1− sj,r)

)
+ bi,τ−1(1− si,τ ).

The sum of both parameters αi,τ and βi,τ yields

αi,τ + βi,τ =
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

=
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

]
=

∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ). (30)

In which
∑

j u
(r,(τ−1))
ij = 1, for all r ≥ 0 since Ur,k is a stochastic matrix. Therefore, the

opinion of each agent i in this society, at some particular time τ , is yi,τ =
αi,τ

αi,τ+βi,τ
, where

each entry of the parameter vectors can be written as follows:

yi,τ =

∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)

Asymptotically we have:

plim
τ→∞

yi,τ = plim
τ→∞

( ∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)

)

= plim
τ→∞

τ

τ

 ∑
j u

(0,τ−1)
ij αj,0

τ
+ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0+βj,0)

τ
+ θ̃i,2(τ)


= plim

τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
(31)

With the results of Lemmas in Appendices B and C, weak law of large numbers and the
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assumption of independence between bt and st we can can show that

plim
τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
= plim

τ→∞

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1sj,r

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1

= plim
τ→∞

∑
j ūij

1
τ

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1
τ

∑τ−τ̄
r=1 bj,r−1

asy

≡ plim
τ→∞

∑
j ūij

1
τ−τ̄

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1

τ−τ̄
∑τ−τ̄

r=1 bj,r−1

=

∑
j ūijE(bjsj)∑
j ūijE(bj)

=

∑
j ūijE(bj)E(sj)∑

j ūijE(bj)

=
θ∗
∑

j ūijE(bj)∑
j ūijE(bj)

= θ∗ (32)

F Network topology and centrality de�nitions

F.1 Network topology

� Average clustering (or transitivity) captures the tendency to form circles in which
one's friends are friends with each other. For each node, we �rst compute the local
transitivity, i.e. the ratio of the triangles connected to the node and the triples centered
on the node. Then, to compute the overall average clustering, we average the local
transitivity out across all nodes.

� Path is a �nite sequence of edges which joins a sequence of distinct nodes. A directed
path in a directed network is a �nite sequence of edges with the same direction that
joins a sequence of distinct nodes.

� Shortest path (or geodesic path) is a path with the minimum number of edges between
two nodes.

� Average path length is the average number of steps along the shortest paths for all
possible pairs of network nodes.

� Diameter captures the shortest distance between the two most distant nodes in the
network.

� Reciprocity is the proportion of all possible pairs (i, j) which are reciprocal (e.g. have
edges between them in both directions), provided there is at least one edge between i
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and j,

R(g0) =

∑
i

∑
j

(
g0 ◦ g>0

)
ij∑

i

∑
j gij

� Homophily is measured by an assortativity coe�cient, as in Newman (2003), which
takes positive values (maximum 1) if nodes with similar opinion tend to connect to
each other, and negative (minimum −1) otherwise. Notice though, that the degree
of homophily in the long-run is endogenously determined. In an environment with
no bots, for example, all agents converge to the same opinion (in which case limiting
homophily is 1).

F.2 Network centrality

� Degree is the simplest centrality measure, which consists on counting the number of
neighbors an agent has. The in-Degree is de�ned as the number of incoming links to a
given bot follower,

Din
i =

∑
j

[g0]ji .

The out-degree is the number of nodes the bot follower agent pays attention to, com-
puted as

Dout
i =

∑
j

[g0]ij .

In our dataset, degree (in/out) centrality of bots, bot followers and regular agents are
averaged across nodes of the same type.

� Betweeness centrality: the number of geodesics (shortest paths) going through a node
or an edge. The betweenness scores are normalized according by (n− 1)(n− 2), where
n is the number of nodes in the network. In our dataset, betweeness centrality of bot
followers and regular agents are summed up across nodes of the same type.

� Page Rank centrality: the PRi of a node i is represented by

PRi = α
∑
j

[g0]ji
Dout
j

PRj +
1− ν
n

,

where Dout
j is the out-degree of node j if such degree is positive and ν is the damping

factor.19 In our dataset, Page Rank centrality of bots, bot followers and regular agents
are summed up across nodes of the same type.

19The damping factor tries to mitigate two natural limitations of this centrality measure. First, an agent
can get �stuck� at the nodes that have no outgoing links (bots) and, second, nodes with no incoming links
are never visited. The value of ν = 0.85 is standard in the literature and it is the one we will use in the
simulations.
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G Auxiliary Figures and Tables
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Figure 20: Polarization and the variance of opinions in the long run

G.1 Correlation between centrality measures (benchmark)

Table 7: Correlation across relative centrality measures

Rel in-Degree Rel out-Degree Rel Page Rank Rel Betweenness Rel in-Degree(bot) Rel Page Rank(bot)

Rel in-Degree 1
Rel out-Degree 0.48 1
Rel Page Rank 0.21 0.29 1
Rel Betweenness 0.20 0.13 0.49 1
Rel in-Degree (bot) 0.25 0.31 0.93 0.31 1
Rel Page Rank (bot) 0.14 0.19 0.68 0.20 0.64 1
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Figure 21: Correlation between centrality measures under the benchmark case
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G.2 Long-run outcomes and share of bot followers when κ = 0.5
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Figure 22: Long-run outcomes and share of bot followers

H Extended results

H.1 Extreme �ooding parameters

Figure 23 depicts the distribution of long-run average opinions (left panel) and polarization
(right panel) for values of κ ≥ 25. A few things are worth noticing. First, the distribution of
opinions is relatively �at through the domain [0, 1]. However, as κ increases the distribution
becomes bi-modal with a larger number of simulations in which opinions become extreme.
The distribution of long-run polarization becomes �atter as κ grows, with higher mass at
large levels of polarization. This suggests that more �ooding is associated with a higher
ability of bots to capture their audience and create distinct groups that disagree on the true
state of the world.
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Figure 23: The e�ects of bot's �ooding capacity for large values of κ

H.2 Alternative polarization bandwidths

As a robustness exercise, we also checked for alternative number of polarization bandwidths
K in equation (8). For that we ran 30 simulations for each K in the grid {3, 5, 7}, under
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the benchmark parameters con�guration and setting random seeds for signals and meeting
realizations so results are directly comparable across di�erent choices of K. As Figure 24
shows, the average polarization path (across all 30 simulations) is statistically equivalent.
Moreover, as can be seen in the �rst panel, any random simulation (randomly seeded) has
virtually the same path for any choice of K. Therefore, our results are robust to the choice
of K. A �nal remark is that the Polarization measure, according to Esteban and Ray (1994),
is only meaningful from a groups perspective. This is because groups have positive mass,
while single individuals have zero mass in a large society. Therefore, any choice of a large K
would imply zero polarization, regardless the opinions distances, since the intra-group term
π converges to zero as K increases.
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Figure 24: Alternative polarization bandwidths, K ∈ {3, 5, 7}

59



H.3 Full sample regressions

H.3.1 θ = 0.5 case

Polarization Misinformation

Avg Page Rank (bot) 0.48*** 0.04
(0.024) (0.025)

Rel in-Degree (bot) -0.12*** -0.03
(0.027) (0.028)

Rel PageRank (bot) -0.53*** 0.44***
(0.012) (0.013)

Avg in-Degree 0.12*** -0.15***
(0.010) (0.010)

Avg out-Degree -0.06*** 0.06***
(0.010) (0.010)

Avg Betweenness -0.00 0.05***
(0.014) (0.014)

Avg Page Rank -0.11** 0.01
(0.045) (0.047)

Rel in-Degree -0.08*** 0.12***
(0.008) (0.009)

Rel out-Degree -0.02*** 0.04***
(0.007) (0.007)

Rel Betweenness 0.03*** -0.11***
(0.011) (0.012)

Rel PageRank -0.05 0.47***
(0.030) (0.031)

Opinions Homophily 0.00 -0.00
(0.005) (0.005)

Initial Polarization -0.00 -0.00
(0.005) (0.005)

Avg Clustering -0.34*** 0.12***
(0.030) (0.031)

µ = 0.3 0.36*** -0.44***
(0.085) (0.089)

κ = 0.5 -1.01*** -1.10***
(0.015) (0.016)

κ = 1 -0.63*** -0.93***
(0.015) (0.016)

κ = 5 -0.19*** -0.37***
(0.015) (0.015)

κ = 125 -0.01 0.10***
(0.016) (0.017)

κ = 625 0.02 0.11***
(0.016) (0.017)

Bots = 10 0.27*** -0.18***
(0.039) (0.041)

Observations 10,980 10,980
R-squared 0.764 0.741

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Full regression results for θ = 0.5: varying µ, κ, b
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H.3.2 θ = 0.8 case

Polarization Misinformation

Avg Page Rank (bot) 0.46*** 0.05
(0.032) (0.047)

Rel in-Degree (bot) -0.13*** 0.01
(0.034) (0.051)

Rel PageRank (bot) -0.56*** 0.17***
(0.017) (0.025)

Avg in-Degree 0.10*** -0.04**
(0.013) (0.020)

Avg out-Degree -0.08*** 0.02
(0.013) (0.019)

Avg Betweenness 0.03 0.03
(0.018) (0.027)

Avg Page Rank -0.13** 0.01
(0.059) (0.087)

Rel in-Degree -0.06*** 0.04**
(0.012) (0.017)

Rel out-Degree -0.03*** 0.01
(0.008) (0.012)

Rel Betweenness -0.01 -0.05**
(0.015) (0.022)

Rel PageRank 0.04 0.17***
(0.038) (0.056)

Opinions Homophily 0.01** 0.01
(0.006) (0.009)

Initial Polarization 0.00 0.01
(0.006) (0.009)

Avg Clustering -0.23*** 0.03
(0.039) (0.058)

µ = 0.3 0.41*** -0.17
(0.113) (0.168)

κ = 0.5 -0.83*** -0.86***
(0.021) (0.031)

κ = 1 -0.53*** -0.71***
(0.021) (0.031)

κ = 5 -0.12*** -0.29***
(0.021) (0.030)

κ = 125 0.01 0.12***
(0.022) (0.033)

κ = 625 0.03 0.14***
(0.022) (0.032)

Bots = 10 0.43*** -0.09
(0.050) (0.074)

Observations 9,202 9,202
R-squared 0.657 0.249

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Full regression results for θ = 0.8: varying µ, κ, b
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H.4 Bounded con�dence model under θ = 0.8
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Figure 25: Polarization and Misinformation under a homophilic weight-rule and θ = 0.8
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