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In this paper we develop a survival time model in which the probability of
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characteristics. We apply this model to data on the timing of return to prison for
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applications in economics; for example, it could be used to model the probability
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1. Introduction

During the 1970°¢ and early 19B0°s, evidence accumulated indicating that a
relatively small group of offenders committed most serious offenses. These
findings, coupled with increasing pressures on the budgets of criminal justice
agencies, led to calls fbr more effective use of the public sxpenditures for crime
control by identifying and incarcerating the most serious and persistent offenders.
The extremely influential work of Greenwood (19B2) is a good example of the
research promoting a policy of "selective incapacitation." However, the success of
such a policy clearly depends on the ability to predict accurately ex_ante {(at the
time a sentencing or parcle decision is to be made) which individuals would return
to crime if released, Thus there has been a resurgence of interest in the question
of how well one can predict criminality at the individual level. A good survey of
recent work on prediction in criminology is given by Farrington (19871, who
concludes that predictive ability to date iz rather disappointing, with most
predictive models yielding false positive and false negative rates both in excess
of S0Y%.

In this paper, we generate predictions of whether or not an individual will
return to prison using survival time {or "failure time")} models., Surprisingly,
survival models have not been used much in criminology, and explanataory variables
have almost never been included in those survival models that have been used, Our
predictions are therefore based on a more sophisticated statistical model than
previous researchers have considered. Encouragingly, we predict return to prison
more accurately than has been done in the past, However, the accuracy of our
predictions is {in our opiﬁion) still not sufficient to justify a policy of

selective incapacitation.,
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Such a predictive exercise is of substantial interest to criminologists, but
probably not to most econcomists. However, the mcdel which we develop to make our
predictions is novel and has potential applicatiecns in a number of areas of
economics. GSpecifically, we consider a "split population model" in which it is
assumed that some fraction of the sample would pever return to prison, so that the
distribution of time until return is relevant only for the remaining fraction of
the sample who would eventually return. B5plit msodels tend to imply very rapidly
decreasing hazard rates (because the surviving populatien is implicitly made up
increasingly of individuals who will never fail), and they are very useful in our
application because our hazard rate does indeed fall very rapidly. Furthermore, we
parameterize both the probability of eventual return and the timing of return, so
that we can make separate statements about the effects of explanatory variables on
these two conceptually different aspects of recidivism. For example, we find that
race and sex affect the probability of eventual recidivism but not its timing,
while two indicators of the nature of the previous offense affect the timing of
recidivism (for the eventua! recidivists) but not the probability of eventual
recidivism,

It is not hard to think of potential economic applications of our sodel. For
example, in the credit-scoring problem considered by Boyes, Hoffman and Low (1988),
we might wish to estipate separately the effects of individual characteristics or
of features of the loan itself on the probability of eventual default and on the
timing of default for those individuale who will eventually default. @& split model
may be very reasconable for this application because many individuals would in fact
never default, no matter how long they were obhserved. Furthermore, while most
credit-scaring analyses focus only on the probability of eventual default, the

likely timing of default is also relevant to the expected profitability of a



potential loan, and therefore should also be of use in deciding whether to grant
credit. A traditional credit-scoring analysis that focuses only on the probability
of default may fail to give proper weight to individual characteristics that affect
the timing of default {(conditional on eventual default), but that do not affect the
probability of eventual default.

More generally, our model may be useful in the analysis of the timing of any
event which does not occur for a substantial fraction of the sample. For example,
if we are interested in the duration of spells of employment, it should be
recognized that a substantial proportion of individuals will never be uneaploved.
Models which fail to recognize this point will almost surely misspecify the
distribution of survival times. They will underpredict the proportion of always-
employed individuals, and (because they are misspecified) they may give misleading

estimates of the effects of explanatory variables.

The data used in this paper consist of information on & cohort of releasees
from the North Carolina prison system. This cohort consists of all individuals
released from North Carclina prisons from July 1, 1977 through June 30, 1578.

There were 9457 such individuals. This data set is far larger and more timely than
is usual in criminal justice research, and it is clear what population it
represents,

We also obtained and analyzed data on a second similar cohort of releasees,
but to save space we will not report these results here. Further details on the
results for our second cohort (and, indeed, on all aspects of our research project)

can be found in Schmidt and Witte (1987, 1988).
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There were 130 observations in our data that were obviously de?ective and had
to be discarded. In almost all cases, the defect in the data leading to
elimination of the cbservation is that the individual was in fact not released from
priscn during the time period which defined the data set. It is important un note
that the number of defective cases was only slightly more than one percen® of the
original number of cases. This is a very low discaro rate for release cohort data
and attests to the high quality of the Nor*h Carclina record keeping system.

A more serious problem is that many observations lacked information on one or
more variavloes which we used in our analyses. Only 4618 observations contained
informaiion on all variables of interest, while the other 4709 cobeservations lacked
some information. The most commonly missing piece of data was information on
alcohol or drug abuse, which turns out to be a very significant predictor of post-
release criminality; 4287 of the 4709 incomplete observations lacked this
information. We discarded the incomplets observations entirely, and analyzed only
those which were complete. Clearly, this raises the possibility of selectivity
hias in our results, but we preferred this to the omission of a very important
explanatory variable.?

Having discarded the incomplete cobservations, we split the sample of complete
observations randomly into an "estimation sample” {(or "analysis sample") of 1540
observations and a "validation sample” of 3078 observations.® We fit our
statistical models to the estimation sample, and then used the validation sample to
check the predictive accuracy of these models. This procedure reflects the
generally accepted view that the predictive accuracy of a model can be checked
validiy only on data not used to estimate the model.

We will now define the variables used in our study. The dependent variable

which we seek to explain is the length of time from an individual®s release from
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prison in North Carolina until his or her return to prison there. Therefore the
outcome variables which we define are an indicator of whether the individual
returned to prison within the followup period and the length of time until return

tory variables are

[

for those individuals whe did return, while the szplan
demographic characteristics and measures of the past criminal and correctional
histories of the individuals.™

To be more cspecific, recall that our data set was defined by date of release
from prison. The sentence from which the individuals were relzased will he called

the sapple sentence, and the conviction which resulted in the sample sentence will

correspondingly be called the sample conviction. All explanatory variables are

defined either as of the time of entry or as of the time of release from the sample
sentence. The outcome variables were defined as the result of a search of North
Carclina Department of Correction records in April, 1984. Thus the followup periog
rarnged from 70 to B1 months, This followup period is gquite long for a study of
recidivism; most studies follow releasees for three vears or less.

We define the following ocutcome variables, for each individual:

FOLLDM, the length of the followupg pericd, in months.

RECIP, & dummy variable equal to cne if the individual returned to a North
Carclina prison during the followup period, and equal to zero otherwise.

TIME, the length of time from release from prison until return to prison,
rounded to the nearest month, for individuals for whom RECID = 1., TIME is
undefined for individuals for whom RECID = 4.

We now define the following explanatory variables, for each individual:

TSERVD, the time served {in months! for the sample sentence.

RBE, age {in months) at time of release.
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PRIDRS, the number of previcus incarceraticns, not including the sample
sentence, at the time of entry into the prison system for the sample sentence.

RULE, the number of prison rule violations reported during the sample
sentence.

SCHODL, the number of years of formal schooling completed at the time of entry
into the prison system for the sample sentence.

WHITE, a dummy variable equal to zero i+ the individual is black, and equal to
cne otherwise,

MALE, & dummy variable egual to one if the individual is male, and equal to
zeroc if female.

ALCHY, a dummy variable equal to one if the individual’s record indicates &
serious problem with alcohol (before entry into the prison system) and equal to
zero otherwise,

JUNKY, a dummy variable equal to one if the individual®s record indicates use
of hard drugs (before entry into the prison system) and equal to zero otherwise.

MARRIED, a dummy individual equal to one 1f the individual was married at the
time of entry into prison for the sample sentence, and equal to zero otherwise.

SUPER, a dummy variable equal to one if the individuzl’'s release from the
sample sentence was supervised {(e.q., parcle}, and equal to zero otherwise.

WORKREL, a dummy variable equal to one if the individual participated in the
Morth Carolipa prisoner work release program during the sample sentence, and equal
to zero otherwise.

FELON, & dummy variable equal to one 1f the sample sentence was for a felaony,
and equal to zero if It was for a misdemeanor.

PERSON, a dummy variable equal to one if the sample sentence was for a crime

against & person, and equal to zero otherwise.
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PROPTY, a dummy variable equal to one if the sample sentence was for a crime

against property, and equal to zero otherwise.?

3. Models Without Explanatory Variables

We begin our analysis by fitting various parametric models to our estimation
sample, and checking how well the models fit the estimation sample and how well
they predict the actual outcomes in our validation sample. This is a standard
exercise in the criminological literature (see, for example, Maltz (1784) and the
references therein), but there has not been sufficient attention given to the
guestion of how well commonly-used distributions fit the data.

A useful first step is to have a look at the nature of the empirical
distribution of time until recidivism. The solid line in Figure 1 gives the
empirical (actual) density for the validation sample, and the density for the
estimation sample would look more or less the same. Similarly, a graph of the
hazard rate would again reveal more or less the same pattern. Gpecifically, it is
important to note two important features of the hazard rate in our data. First, it

is non-monotonic; the hazard first rises and then falls.® Gecond, once it begins

to fall, the hazard rate falls very quickly. These features of the data are common
in applications involving recidivism, and perhaps in economics as well, but they
are not common in the biological or reliability applications typically discussed in
the statistical literature on survival times. As a result, distributions typically
found in standard texts like Kalbfleisch and Prentice (1980) or Lawless (1982) do
not fit our data well.

We fit five different distributions to the data, by maximum likelihood:
exponential, Weibull, lognormal, loglogistic and LaBuerre. The exponential and

Weibull distributions are commonly found in the survival time literature, but they
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should not be expected to do well here because they can not generate a non-
monotonic hazard rate. The lognormal and loglogistic distributions, on the other
hand, imply a hazard that first rises and then falls, just as in our data. The
LaBuerre model (Cox and Dates (1984, p. 20), Kiefer (19853)) has a density which is
the product of an exponential function and a polynomial; this is known as a
LaBuerre polynomial in the mathematical literature. It is intended to give a
flexible approximation to an arbitrary density.® We use a second-degree LaGuerre
distribution (that is, it contains a second-degree polynomial).

None of these distributions fits our data adequately. In each case they
overpredicted recidivism for the first few months after release and they
underpredicted it during the intermediate period of roughly one to three years
after release. Furthermore, all of the distributions except the LaGuerre
overpredicted recidivism in the tail of the distribution. The lognormal and
loglogistic distributions fit noticably better than the exponential or Weibull, as
expected, but they still did not generate a sufficiently rapid increase in the
hazard at first or a sufficiently rapid decrease in the hazard in the tail of the
distribution. The LaBuerre model fit better than any of the others, especially in
the tail, but it still was quite inadequate for the first two years atter release.

The superiority of the LaBuerre model is evident from the likelihood values
achieved, which were -3431, -3405, -3370, -3390 and -3354, for the exponential,
Weibull, lognorwmal, loglogistic and LaBuerre distributions, respectively. It is
also clear from any reasonable measure of the quality of the predictions generated
for the validation sample. For example, if we measure the quality of these
predictions by the maximum difference between the predicted and the actual cdf, the
value for the LaGuerre distribution is .020, compared to .079, .049, ,037, and .040

for the other four distributions.
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The dashed line in Fiqure ! displays the density of time until recidivisem
predicted by the LaBGuerre distributicen. The inadequacy of the fit is evident.
While we could continue to experiment with other distributions, one lesson that
should be clear 1s that "gff-the-shelf” models from the bicstatistical or
cperations research literatures are not necessarily adequate for applications in

other +fields.

4, Split Models

The parametric models considered in the lést section all assumed some form of
the cumulative distribution function for the time until recidivism., Any such
cumulative distribution function approaches aone as time at risk becomes
syfficiently large. In the present context, this implies that every individual
would eventually return to prison, and this implicit assumption can ke argued to be
unreasonable. In this section, we will consider "split population models" (or
simply "split models”) in which the probability of eventual recidivism is an
additional parameter to be estimated, and may be less than one. A distribution of
failure times is also specified, as before, but this is understood to apply only to
those individuals who will eventually fail. Split models were introduced to the
criminoiogical literature by Maltz and McCleary (1977), with previous treatments in
the statistical literature dating back to Anscombe (1961), and they have been
further developed in & line of research well summarized by Maltz (1984) or Bchmidt
and Witte (1988, chapter 3). They do not appear to have been used in economics,
but in our opinion they are likely to be useful there as well.

Using the notation of Schmidt and Witte (1984, section 6.4), we can express a

split model as follows. First, let F be an unobservable variable indicating

whether an individual would or would not eventually fail. Specifically, let F
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equal one for individuals who would eventually fail, and zero for individuals who
would never fail. Then we assume
(1) F(F =1)=4& , F(F=40)=1-14§
The parameter § is of course the eventual recidivisa rate. Second, we assume some
cumulative distribution function G(tiF=1) for the individuals who would ultimately
fail, and we let g{(tiF=1) be the corresponding density. We note explicitly that
such a distribution is defined conditional on F=1, and is irrelevant for
individuals for whom F=0,

Now let T be the lenath of the followup pericd, and let C be the observable
dummy variable indicating whether or not the individual has returned to prison by
the end of the followup period. For the recidivists in the sample, we observe € =
t and the failure time t, and of course we know that F = 1. The appropriate
density is therefore
(2} FiF=1) gitiF=1) = § gitiF=11},

On the other hand, for the non-recidivists in the sample we observe only C=0, and

the probability of this event is

{33 FLC=0) F{F=01 + FLIF=1)P{t T iF=1)

n

1 - 8§+ § 01 - G{TIF=1}1.

The likelihood is then made up of terms like (2) for recidivists and (3) for non-
recidivists {individuals who have not returned to prisocn by the end of the followup
period).

We fit split models to our data using the same five distributions as were
considered in the previous section {(exponential, Weibull, lognormal, loglogistic
and LaBuerre). The likelihood values achieved were -3358, -3346, -3342, -3341, and
-3349, respectively, while the mazimum differences between the actual and the

predicted cdf in the validation sample were .024, ,017, .005, .011 and .021. The
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icglogistic model fits the estimation sample slightly better than the lognormal
model, while the lognormal model generates slightly better predictions for the
validation sample, but there is in fact little basis on which to choose between the
two distributions, and either of them dominates the other three distributions
considered. However, what is more striking is the extent to which the split models
dominate the simple (not split) models of the previous section. In terms of
likelihood value or guality of predictions, the worst of our split models {(split
exponantial) is comparable to the best of ocur simple models {(LaBGuerre), even though
it contains fewer parameters. The best of our split models, say the split
lognormal, is much better than any of the models of the last section. Introduction
of the splitting parameter into the lognormal model increases the likelihood value
by approximately 30, and reduces the maximum difference between the predicted and
the actual cdf from .037 to .003; these are certainly impressive improvements in
the model to be achieved by the introduction of a single parameter.”?

The dotted line in Figure 1 gives the predicted density for the split
lognormal model. The fit of the model to the data appears to be quite adequate,
and this conclusion is confirmed by more formal tests reported in Schmidt and Witte
{1988, section 5.3).

The value of the "splitting parameter” & generated by the split lognormal
model is 0.45. This is the long-run (eventual) recidivism rate, By way of
contrast, the long-run recidivism rate is by definition equal to one in non-split
models, and this is reflected in very large implied recidivism rates for long but
finite followups. For example, the 25-year recidivism rates implied by our models
of the last section were 0.94, 0.89, 0,78, ¢.78, and 0.32 for the exponential,
Weibull, lognormal, loglogistic and LaBuerre distributions, respectively. Based on

a limited number of studies with very long followup periods, such as Mclord (1978)
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and Kitchener, Schmidt and Glaser {(1977), a long-run failure rate of approximately

(.5 appears to be reasonable for our data and definition of recidivisa.

5., Models With Explanatory Variables

We now consider models with explanatory variables. This is sbviously
necessary if we are to make predictions for individuals, or even if we are to make
potentially accurate predictions for groups which differ systematically from our
original sample {(for example, to evaluate the effectiveness of a correctional
program which is applied to a non-random sample of the population of releasees).
Furthermore, in many applications in economics or criminology the coefficients of
the explanatory variables may be of obvious interest.

We begin by fitting the proportional hazards model te our data. The point of
this exercice is to see which explantory variables are worth including, without
making a specific distributional assumption. The estimates are based on the usual
"oartial MLE" method; the ties in the data are handled using the approximation of
Feto (1972), as reported also by Kalbfleisch and Frentice (1984, equation (4.8)).
Qur estimates are given in Table I, using the 15 explanatory variables defined in
section 2. {(Note that a few variables have been rescaled, to make the coefficients
of a more conveniently magnitude.}) The "t ratios" reported are the asymptotic
standard normal statistics used to test the hypothesis that the coefficient is
zero.

Looking under the heading "ORIGINAL SPECIFICATION," we see that six
coefficients are individually insignificant at the 3% level. They are also jointly
insignificant, as judged by the likelihood ratio test, and we dropped the
corresponding six variables (RULE, MARRIED, SCHOOL, WORKREL, PERSON, and SUPER)

from the model. Interestingly, an exponential model with the log of the mean
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depending linearly on the explanatory variables led to exactly the same decision
about which variables to drop, and indeed to almost exactly the same t ratios and
likelihood ratio statistic. Our results indicate that the type of individual most
tikely to have a small value of time until recidivism is a young, black male with a
large number of previous incarcerations, who is a drug addict and/or alcoholic, and
whose previous incarceration was lengthy and was for a crime against property.
These findings, with the possible exception of the findings on race, are consistent
with the conclusions of one of the two most comprehensive surveys available {(Wilson
and Herrnstein {(1983)), with most of the conclusions of the sscond such survey
(Blumstein et al. (19B&)), and with our own previous work (Schmidt and Witte
(1584)).

We now turn to & parametric model based on the lognormal distribution. As
noted above, we also considered the exponential distribution, but it did not it
the data as well as the lognormal, so we will not discuss it here. The model in
its most general form is a split model in which the probability of eventual
recidivism follows a logit model, while the distribution of time until recidivism
{(conditional on eventual recidivism) is lognormal, with its mean depending an
explanatory variables,

To be more explicit, we follow the notation of section 4. For individual i,

there is an unchservahle variable Fy, which indicates whether or not individual i

will eventually return to prison. The probability of eventual failure for
individual 1 will be denoted &,, so that P(Fy = 1) = §;, Let Xy be a {(row! vector
of individual characteristics {(explanatory variables), and let a be the
torresponding vector of parameters. Then we assume a logit model for eventual
recidivism:

Xia

{4) do=1 7 {1 +e 1.
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Next, we assume that the distribution of time until recidivism (given eventual
recidivism) is lognormal, so that the distribution of 1n t,4 1is normal, with mean
ps and variance 2 . The mean of this distribution is assumed to depend an
individual characteristics Xy, so that ug = X, 8.

1t should be noted that the way in which we have parameterized the model
implies that a positive coefficient (in either @ or 8} indicates that the
corresponding variable has a positive influence on time until recidivism (i.e., it
makes recidivism either less likely or longer in coming, or both). This is the
opposite of the case for the proportional hazards model, in which a positive
coefficient indicates a positive effect on the hazard rate, and therefore a
negative effect on the survival time. We should therefore expect (or hope) that
most coefficients will be opposite in sign in this model as opposed to the
proportional hazards model.

The likelihood function for this model is:

N il
(3] in L = E ¢ Cy [ln &y - 0.5 In (Zw) - 0.5 1n F°
i=1 5
-~ {In ty - X B8)°/2a7 1]
+ (1 ~ CQ) in P* } N
where
{6} Py =1 - &g + &3 SL0{X4f - 1In ti)/wl s

where § 1is the standard normal cdf, and where £, is the dummy indicator of return
to prison during the followup period.

We can now define special cases of this general model. First, the model in
which &, = 1, but in which the mean time until recidivism depends on individual

characteristics, will be called the lognormal model {(with explanatory variables).

This model has been considered by Kalbfleisch and Prentice (1780, Section 3.6) and

Lawless (1982, Bection 4.%5), among others. Witte and Schmidt (1977) have used a
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very similar model to analyze recidivism. It is not a split model. 5Second, the
model in which &, is replaced by a single parameter & will be referred to as the

split lognormal model (with explanatory variables). In this model the probability

of eventual recidivism is a constant, though not necessarily equal to one, while
the mean of the distribution of time until recidiviss varies over individuals.
Third, the model in which ps is replaced by a single parameter p will be called the

logit lognormal model. In this model the probability of eventual recidivism varies

over individuals, while the distribution of time until recidivism {(for the eventual
recidivists) does not depend on individual characteristics. Finally, the general

model as preserted above will be called the logit/individual lognormal model. In

this model both the probability of eventual recidivism and the distribution of time
until recidivism vary over individuals.

In the lognormal, split lognormal and logit lognormal models, only one aspect
of recidivism {probability or timing) depends on explanatory variables.
Interestingly, these three models generate very similar results. Table 2 gives the
results for the split lognormal model and the logit lognormal model. The results
from these two models are very similar, as is evident at & glance, and are in turn
very similar to those from the proportional hazards model {(Table 1). In fact, this
robustness of results goes beyond what is displayed in this paper. Essentially the
same results are obtained from the lognormal model, and also from models like these
three models but based on the exponential distribution.

However, while the choice of model does not have much effect on the estimated
coefficients, there is considerable variation in the quality of the fit and the
predictions which are generated. In both respects the lognormal aodels dominate
the exponential models, and the logit lognormal model dominates the lognormal and

split lognormal models. For example, the likelihoad value of -3265 for the logit
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lognormal model is noticably higher than the values for the lognormal and split
lognormal models (-3273 and -3254). The maximum difference between the predicted
and the actual cdf is also smaller (.006 versus .030 and .034).

We now turn to the logit/individual lognormal model, in which both the
probability of eventual recidivism and the distribution of time until recidivism
vary according to individual characteristics. These parameter estimates are given
in Table 3. They are somewhat more complicated to discuss than the results from
pur other models, in part because there are simply more parameters, and some of
them turn out to be statistically insignificant. However, every coefficient that
is statistically significantly different from zero has the expected sign (the same
sign as in our previous models), and in that sense the results are still
essentially the same as before.

In Table 3, we can see that four variables have statistically significant
effects on both the probability of eventual recidivism and on the mean time until
recidivism: TSERVD, ABE, PRIORS, and ALCHY. Three variables have statistically
significant effects on the probability but not the timing of recidivism: WHITE,
JUNKY, and MALE. The remaining two variables, FELDN and PROPTY, have statistically
significant effects on the timing of recidivism but not on the probability of
eventual recidivism. Thus it appears that we are indeed able to separate out the
effects of individual characteristics on the probability of eventual failure from
their effects on the timing of failure (for those who will ultimately faill, an
optimistic result.

Furthermore, these results are reasonably similar to the results we obtained
using a logit/individual exponential model; see Table 4. The difference is that
AGE, PRIORS, and ALCHY did not have significant effects on the mean time until

recidivism, in the exponential case, while they did in the lognormal case., Thus
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our results are reasonably robust to our distributional assumpticons. Ferhaps not
surprisingly, however, they are less robust in this model than they were in the
simpler models previpusly considered.

The extent to which our results are sensitive to distributional assumpticons is
an important issue, because there is seldom much reason to believe strongly in
one’s distributional assumptions. However, & counterargument is that this simply
indicates that one should take care in investigating the adequacy of such

assumptions, which we have done.

&, Predictions for Individuals

We now return to the problem of prediction at the individual level, using the
models estimated in section 5. This 1s a fairly standard use of such models; for
example, the studies included in Farrington and Tarling {19B3) include predictions
of failure on parole, of recidivism, and of absconding from institutions for young
gftenders. The desire to make predictions for individuals undoubtedly derives from
a desire to use such predictions as the basis for differential treatments for
individuals., Because our data are on length of time until recidivism, it is
natural for us to regard recidivism as the event to be predicted, and to ask how
well our models predict it.

Recidivism is a discrete event, while ocur models yield a probability of this
event for each individwal. This immediately raises the gquestion of how to
summarize the accuracy of the models® predictions. One possibility 1s to use
statistical measures {akin to correlations) of the degree of association between
the models’ probabilities and the observed binary outcome. While Kendall®s tau has
pften been suggested for this purpose in the criminclogical literature, a more

standard statistical measure would be the biserial correlation coefficient, which
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is a form of the correlation coefficient used when one variable is continous and
the other is binary., However, we will not pursue such measures here, since they
are not of obvious practical use,

# more readily interpreted summary of predictive success, in the present
context, is simply to predict that individuals with probabilities above some chosen
level will return to prison {and that individuals with probabilities below that
level will not), and tc calculate the error rate of these predictions. This seems
to us to be reasonable because it evaluates the accuracy of exactly the procedure
which would be followed in a practical application of these models.

Following the usual practice in the criminological literature {(e.g., see
Wilbanks (1985)), we begin by predicting the "correct" proportion of failures, and
evaluate the extent to which we have correctly predicted which individuals will
fail. The failure rate in the estimation sample is 0.346, and so we predict
recidiviem for the 346.86% of the validation sample who have the highest
probabilities of recidivism {(regardless of the absoclute magnitudes of these
probabilites). Basing our predictions on the proportional hazards model, we
predict recidivism for 1127 individuals (35.6% of the 3078 individuals in the 1978
validation sample), of whom 595 actually returnded to prison and 532 did noty and
we predict 1931 individuals mot to return to prison, of whom 5340 returned to prison
and 1411 did not. We therefore have a false positive rate of 532 / 1127 = 0.472,
and a false negative rate of 340 / 1931 = 0.277. Although we do not report the
results here, the logit lognormal model and the logit/individual lognormal model
generate more or less the same error rates.®

The predictive accuracy of ocur models compares guite favorably with the
accuracy of the models recently surveyed by Farrington {(1987). He reports that

Greenwood (1982) had a false positive rate of 56% and a false negative rate of 44%



19
for his estimation sample. {(Greenwood had no validation sample.) Janus™ {(1983)
predictions resulted in an even poorer record, with a 62% false positive rate and a
44% false negative rate. Blumstein, Farrington and Moitra’s {(19B83) false negative
rate of 35% is lower than that of either Greenwood or Janus, although more than ten
percentage points higher than our own, and their false positive rate is higher than
either we or Sreenwood obtain. However, while we are able to predict more
accurately than the studies surveyed by Farrington, our false positive rate is in
pur opinion still much too high to justify using our models to implement a policy
of selective incapacitation.

On the other hand, not all potential users of prediction need to predict
recidivism for the "correct" proportion of the sample. For example, a policy of
selective incapacitation might be considered viable if we could predict recidivism
with considerable assurance even for a very limited proportion of the sample.
Similarly, models like ours might be useful in deciding on candidates for early
release if they could predict success {(non-recidivism) with assurance, for some
proportion of the sample.

In Table 53, we rank.individuals by their predicted probabilities of recidivisa
(generated by the logit lognormal model) and then report the actual proportions of
recidivists in groups representing various percentiles of the "distribution” of
predicted probabilities of recidivism. For example, we can see in Table 3 that the
207% of the sample (416 individuals) with the highest predicted probabilities of
recidivism had an actual recidivism rate of 39.%9%, whereas the remaining B80% of the
sample (2462 individuals) had a recidivism rate of 31.1%4. Obviously our models
have at least some predictive power, since individuals with higher predicted
probabilities of failure do indeed fail more often than individuals with lower

probabilites.
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In considering a policy of selective incapacitation, it is important that
there be some group of individuals whom we can predict to fail with near certainty.
Using this model, any such group would have to be very small. For example, our
predicted "worst” 1% of the sample has a recidivism rate of 83.%9%, but it is a
group of only 31 individuals. The recidivism rate falls to 70.1% if we include the
154 individuals in the upper 5% of the probability ranking. These probabilities of
a false positive error seem rather high. A public official who is considering
selective incapacitation for the "worst" 1% of & potential release cohort would
probably not like to think that over 15% of those "worst" individuals would in fact
not return to prison after a four-year followup.

We are much more successful in predicting individuals who will pot fail. For
example, in the group of 31 individuals who represent the predicted "best™ 1% of
the sample, the failure rate is only 6.3%. Evern if we enlarge the group
considerably to include 308 individuals {the 10% of the sample with the lowest
predicted probabilities of recidivism), the failure rate is only 13.0%, and this
false negative rate is much lower than the corresponding false positive rate
{32.5%) for the corresponding upper 10% of the sample. The fact that it is easier
for us to identify individuals who are likely to succeed than it is for us to
identify individuals who are likely to fail is patural, because in our data less

than half of all individuals fail.

7. LConclusions

One purpose of this paper is to interest econometricians and economists in
"“gplit-population”" models which have been used in criminology. These are failure
time models in which it is explicitly recognized that some individuals will never

fail. Split models tend to imply a very rapidly falling hazard rate, and they will
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tend to fit well data with this characteristic., They tend to avoid the
overprediction of the long-run failure rate, a major problem with more traditional
failure time models ip criminology. Furthermore, we can allow explanatory
variables to affect both the probability of eventual failure and the timing of
failure for those who will ultimately fail, so that we can separate out the effects
of the explanatory variables on these two conceptually different features of
behavior.,

f second purpose of the paper is to make a contribution to the criminological
literature on prediction of recidivism., There is substantial interest in the
guestion of how well we can predict the future criminal behavior of individuals.
Previpus attempts to predict individual outcomes using statistical models have had
somewhat mixed success: statistical methods have cansistently cutperformed
clinical or judgemental methods of prediction, but have still suffered from high
error rates. Most previous attempts at prediction in criminology have relied on
rather simple models, and our analysis is an attempt to see whether we can improve
the accuracy of such predictions by using a more sophisticated statistical model.
We succeed in predicting recidivism more accurately than others have done.
However, it is still not clear that predictions of the accuracy that we attain are
useful in a practical sense., Unsurprisingly, there is still a need for better

models and better data.
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FOOTNOTES

1. A discussion of the extent to which selection into the sample correlates with
our explanatory variables can be found in Schmidt and Witte (1987, chapter 2).

2. We placed approximately one third of the sample of complete cbservations into
our analysis sample because this vielded a sample size large enough to vield
precise results, but not spo large as to exhaust our computer budget prematurely.

3. Note that our data contain information only on return to prison in North
Carolina. While this is the variable of interest to the North Carclina Department
of Correction, it is certainly not ideal. 1In particular, some of our releasees
certainly must have returned to prison elsewhere than in North Carolina. A similar
problem is that some of the releasees will have died during the followup period.
Variables which correlate positively with geographical mobility or with mortality
will have a spurious correlation with our dependent variable. However, given the
nature of our data, there is nothing we can do about this. There is some prior
evidence suggesting that relatively few individuals should be expected to return to
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prison outside of North Carolina, but that the death rate is considerably higher
than in the general population; see Witte (1973).

4, Some convictions are for crimes not classified as crimes against a person or
crimes against property, so that PROPTY and PERSON do contain independent information.

5. An interesting question is whether the non-monotonicity of the density of time
until reimpriscnment is due solely to procedural delays between the commission of a
criminal offense and return to prison. Unfortunately, our data do not allow us to
answer this question.

4. For a sufficiently high degree of polynomial, the LaGuerre distribution can
approximate any survival time distribution arbitrarily well. GSee Schmidt and Mann
(1977) and Lutkepohl (1980).

7. The change in the likelihood value of 50 would generate a likelihood ratic test
statistic of 100, for a test of the restriction (§ = 1) that reduces the split
lognormal model to the simple lognormal model of section 3. While the likelihood
ratic test statistic does not have its usual chi-squared distribution here (ths
restriction is on the boundary of the parameter space), there can be little doubt
that this restriction is soundly rejected by the data,

8. The logit lognormal and logit/individual lognormal models generate rather
different probabilities of recidivism than the proportional hazards model, but the
rankings of individuals are very similar for all three models. If we fix the
proportion f the sample for whom we will predict recidivism, only the rankings are
relevant,
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VARIABLE

TSERVD/100
AGE/1000
PRIORS/10
WHITE
FELON
ALCHY
JUNKY
PROPTY
MALE
RULE/100
MARRIED
SCHOOL/10
WORKREL
PERSON
SUPER

In L

VARIABLE

TSERVD/100
AGE/1000
PRIORS/10
WHITE
FELON
ALCHY
JUNKY
PROPTY
MALE

CNST

PROFORTIONAL HAZARDS

TABLE 1

Final Specification

CORFEFICIENT

1.3712
-3.4969
.89883
-.44041
-.5734%2
. 41250
.31512
.40483
10252

-3970.7

t RATIO

8
-7

.15
.09
.75
.07
.10

98

3.28
3.02

TARLE 2

6
-5
-4

3.

3

3

Z

.92

SPLIT LOGNORMAL MODEL

COEFFLCIENT

~1.8750
3.56721
1.4551
.48400
.94958
~.61275
-.31317
-.66631
-.79656
4.0828

5
1]
In L

ot

. 70852
1.4901
~-3265.1

t _RATIOQ

.96
.48
.66
.10
.73
.21
.18
.55
.14
.33

MODEL

Original Specification

COEFFICIENT t _RATIO
1.1620 5.92
-3.3445 ~-6.43
.83602 6.09
~-.44475 -5.07
-.57866 ~-3.54
. 42850 4.11
.28204 2.91
.39012 2.47
67569 2.78
3.0861 1.83
-.15290 ~-1.4%Z
-.25082 -1.2
.086048 .96
.076b44 .31
-.0087688 -.09
-3967.0

LOGIT LOGNOERMAL MODEL

0043

-.63419

In L

.44104
.55841
.88252
067918

1
o
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I el V]
[yl g
oo
R ¢e)

[N AV N

o

t _RATIO

1

Vo !
NN Ws OO OD

.03
.74
.26
.79
.01
.60
.73
.35
.96
.19



TARLE 3

LOGIT/INDIVIDUAL LOGNORMAL MODEL

Eguation for Eguation for Duration.

P(Never Fail) Given Eventual Failure
VARIABLE CUEFFICIENT t RATIO COEFFICIENT t RATIU
TSERVD/100 -1.5841 -4.63 -1.153% -3.84
AGE/1000 3.7653 5.12 1.2498 2. 08
PRIORS /10 -1.1543 -4 .71 -, 66517 -4,01
WHITE .64818 4.34 017090 .13
FELON 46363 1.71 .68911 3.06
ALCHY ~.442890 -2.49 -.3128%2 -2.07
JUNKY -.45455 -2 .60 .004483 .03
PROPTY -.20422 -.79 -.56749 ~-2.85
MALE -.88117 -2, 21 -.0897835 -.17
CNST -.001198 -. 00 3.2381 5.43

o = 1.1212
In L = -3239.3

TABLE 4

LOGIT/INDIVIDUAL EXPONENTIAL MODEL

Equation for Equation for Duration.

P(Never Fail) Given Eventual Failure
VARI LE COREFFICIENT t RATIO CORFFICIENT t RATIO
TSERVD/100 -1.3105 ~-3.78 -1.4441 -4.75H
AGE/1000 3.7754 4.34 1.4229 1.56
PRIORS/10 -1.9868 -4.91 .039562 .20
WHITE .74084 4.67 -.13145 -.82
FELON .35430 1.30 .79184 3.39
ALCHY -.46571 -2.55 -,24999 -1.48
JUNRY -.37281 -2.23 -.11489 -, 72
PROPTY -.11487 -.46 -.67599 -3.71
MALE -.93485 -2.67 13731 .25
CNST .12416 .28 3.3319 5.729





